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Abstract

In thesis, I aim to apply advanced methods in Bayesian statistical modelling on Type Ia Super-

novae (SNIa) data to determine tighter constraints on the fiducial Lambda-Cold-Dark-Matter

(ΛCDM) cosmology and improve the modelling of systematic uncertainties in the data. The

body of work covered herein can be broadly classified into three main topics:

New Constraints on Anisotropic Expansion from Supernovae Type Ia within ΛCDM

I re-examine the contentious question of constraints on anisotropic expansion from Type Ia

supernovae (SNIa) in the light of a novel determination of peculiar velocities, which are crucial

to test isotropy with SNe out to distances � 200/h Mpc. I re-analyze the Joint Light-Curve

Analysis (JLA) Supernovae (SNe) data, improving on previous treatments of peculiar velocity

corrections and their uncertainties (both statistical and systematic) by adopting state-of-the-

art flow models constrained independently via the 2M++ galaxy redshift compilation. I also

introduce a novel procedure to account for colour-based selection effects, and adjust the redshift

of low-z SNe self-consistently in the light of our improved peculiar velocity model.

The Bayesian hierarchical model BAHAMAS is adopted to constrain a dipole in the distance mod-

ulus in the context of the ΛCDM model and the deceleration parameter in a phenomenological

Cosmographic expansion. I do not find any evidence for anisotropic expansion, and place a

tight upper bound on the amplitude of a dipole, |Dμ|< 5.93 × 10−4 (95% credible interval)

in a ΛCDM setting, and |Dq0 |< 6.29 × 10−2 in the Cosmographic expansion approach. Us-

ing Bayesian model comparison, I obtain posterior odds in excess of 900:1 (640:1) against a

constant-in-redshift dipole for ΛCDM (the Cosmographic expansion). In the isotropic case, an

accelerating universe is favoured with odds of ∼ 1100 : 1 with respect to a decelerating one.

Testing Phenomenological Models of Anisotropy with SNIa

The Cosmological Principle, based on the assumptions of spatial homogeneity and isotropy, is

one of the founding pillars of contemporary cosmology. In this work, I propose a simple model

where isotropy is broken at the time of dark matter–dark energy equality, and I investigate a

way to test this proposal by using Type Ia Supernovae data sets. I show that current data from

the JLA dataset is not enough to decisively distinguish (according to the Jeffrey’s scale) this

model from ΛCDM, with posterior odds of 56:1 for moderate to strong evidence in favour of
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the isotropic model. I also place a 95% credible interval for the anisotropy breaking parameter

ε0 > 0.970.

Accounting for Selection Effects in SNIa Cosmology using Bayesian Hierarchical

Modelling

One of the modern problems of SNIa cosmology is accounting for selection effects caused by

Malmquist bias in a principled way. Here, I present a complete formalism for handling selection

effects in Type Ia supernova (SNIa) cosmology in the context of Bayesian Hierarchical Modeling.

I demonstrate the method on simulated data sets where selection cuts are made on the apparent

magnitude and show that previous results by Rubin et al. (2015); Hinton et al. (2018) are

incorrect and can lead to biased cosmological parameters reconstruction. I also show how this

formalism is easily extended to include the Phillips corrections that are used to standardize

SNIa. In addition, the formalism presented exhibits better statistical properties in terms of

bias and mean squared error relative to a traditional ad hoc style correction and the model of

(Rubin et al., 2015).
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Chapter 1

Introduction

1.1 Motivations and Objectives

The Nobel Prize winning discovery of the accelerated expansion of the Universe in the late

1990’s by Riess et al. (1998); Perlmutter et al. (1999) is considered one of the monumental

leaps of our understanding of Cosmology. The critical instrument of this discovery was the

Type Ia Supernova (SNIa), one of the Universe’s brightest firework, formed during the violent

dying throws of a White Dwarf.

The discovery of this accelerated expansion has caused us to rework our understanding of the

universe, but many open questions remain and heated debates take place. Is the universe

composed primarily of a ‘dark energy’ that drives this expansion? Or is our understanding

of General Relativity inadequate and alternate modified theories of Gravity need to be pro-

posed? What is the cause of the so-called ‘Hubble Tension’ between measurements of the

Hubble-Lemaître constant by SNIa and the Cosmic Microwave Background? In addition, some

observations call into question the foundational assumptions of our Cosmology, the Cosmolog-

ical Principle (the notion that the universe is homogeneous and isotropic at sufficiently large

scales) such as the large-scale alignment of quasars out to Gpc scales (Friday et al., 2022) and

local bulk flows of galaxies that do not appear to decay at large distances (Boruah et al., 2020b)

as they are expected to (a matter we return to in Chapter 5).
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2 Chapter 1. Introduction

SNIa have matured as cosmological probes from when Riess et al. (1998); Perlmutter et al.

(1999) discovered the accelerated expansion of the Universe. At that time, they made use

of only a paltry (by today’s standards) ∼ 50 SNIa. As the number of detected SNIa rose

to the ∼ 1000 we have measured today, the sophistication of the machinery used to analyse

and measure them have increased to take into account the growing importance of systematic

uncertainties in SNIa cosmology, causing the current period to be colloquially called the era of

‘precision cosmology’.

However, in the next decade, new surveys are being planned, with facilities such as the

Large Synoptic Survey Telescope (LSST) (Ivezić et al., 2019b), the recently launched James

Webb Space Telescope (JWST) (Gardner et al., 2006), Wide-Field Infrared Survey Telescope

(WFIRST) (Spergel et al., 2015) and more. One of the common goals of these facilities is to

gather data on Supernovae that is several orders of magnitudes larger than what is currently

available to the Astrophysics community. We currently stand on the precipice of discovery once

again, as with this boost in statistics provided by these larger datasets, we will gain the ability

to answer some of the fundamental questions about our Universe and reconcile observational

discrepancies. This new increase in data will pose fresh challenges however. To take advan-

tage of this massive influx of data, appropriate tools need to be developed to handle the data

including methods to model the specific systematics of them in a coherent and principled way.

During this transition to the ‘big data’ era of Cosmology, Bayesian methods and tooling have

become increasingly popular, both in SNIa analysis and Cosmology as a field (Trotta, 2008;

Hobson et al., 2009). Useful features associated with them, include the ability to handle the

systematics of data in a principled manner (Kelly, 2007) and March et al. (2011) shows that

traditional non-Bayesian methods can introduce biases in SNIa cosmology analysis that are

more easily resolved within a Bayesian framework. Methods in Bayesian statistics therefore

provide a useful tool in handling the problems associated with the next generation of surveys

and are employed heavily in this thesis.

The objectives of the thesis can be split into two components. The first objective of this thesis

is to contribute to these open questions on our Cosmology by exploring whether potential
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deviations from our fiducial Lambda Cold Dark Matter (ΛCDM) cosmology can be detected

using SNIa and whether alternative cosmological models that allow for anisotropies can be

used to describe our Universe. The second objective is to help build the Bayesian statistical

tooling that will allow us to analyse the data from the next generation of surveys to unravel

the mysteries of the Universe.

1.2 Outline of Thesis

To elucidate the path taken in answering the aforementioned objectives, this thesis is structured

in the following manner. In Chapter 2, I provide the historical backdrop to our cosmology

as well outline the necessary background formalism required to understand the cosmological

models discussed throughout the thesis. In Chapter 3, I discuss SNIa and the instrumental role

they play in constraining cosmological parameters and determining the accelerated expansion

of the Universe. With the required cosmological background defined, in Chapter 4, I go on

to discuss the background statistical formalism that is required to understand our tool of

choice, Bayesian Hierarchical Models, and how we can use them in the context of Cosmology

to constrain cosmological parameters with SNIa.

I then move to on to discuss the research contributions of this thesis. In Chapter 5 I explore

whether any signatures of anisotropy exist in the distance modulus of SNIa within the context

of our ΛCDM cosmology and the deceleration parameter in a Cosmographic expansion. I then

go on to consider a phenomenological model that does not assume isotropy and analyse whether

the anisotropy parameters in this model can be constrained with SNIa and whether this model

can be discounted with respect to our fiducial cosmology using Bayesian model comparison.

In Chapter 7, I outline a fully Bayesian formalism for handling the selection effects of SNIa

data caused by brightness limited observational effects. I test this model on simulated data

and show how it is easily extended to a more realistic complex model for real data to make it

compatible with the future of SNIa surveys.



Chapter 2

Cosmology Background

Before we begin discussing aspects of Type Ia Supernovae, and the statistical methods we

use in conjunction with them, it is necessary to first provide a brief history and introductory

prescription of Cosmology and related equations we will need when analysing them which we

provide in the following sections. For a more complete historical account, see e.g. Rowan-

Robinson (1985); Mitton (2020). The majority of the material presented here also uses Liddle

(1999); Peacock (1999); Dodelson (2021); Ryden (2016) as a source as well. We discuss at the

end, the major historical probes of cosmological parameters (not including SNIa).

2.1 Hubble-Lemaître Law and the Cosmological Principle

Einstein’s seminal work in 1915 on the Theory of General Relativity (Einstein, 1915) forms the

foundation of modern Cosmology. The ideas contained therein, have lead to the currently widely

accepted ‘Cosmological Principle’ which states that on sufficiently large scales, the Universe is

isotropic (looks the same in all directions) and homogeneous (looks the same at each point),

meaning that we occupy no special place in the Universe at these scales. This represent a large

paradigm shift from the anthropocentric principle first used by ancient Greeks when Alexander

Ptolemy first posited that the Earth lay at the center of the Universe. Harlow Shapley was

the first to discover we lay approximately two-thirds of the way from the galactic center by

4
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measuring the distribution of globular clusters (Shapley, 1918), but he still believed the Milky

was the center of the Universe and the only galaxy in our universe. The latter statement was

disproven when Hubble observed Andromeda which was another galaxy outside our own in

1923, work which he later presented at the American Astronomical Society (Hubble, 9251) and

corroborated the earlier result of Ernst Öpik in 1922 (who measured its distance at 450 kPc

compared to Hubble’s measurement of 285 kPc (Opik, 1922)). It was not until 1952 Walter

Baade was able to present his work done with the 200 inch Hale telescope at the International

Astronomical Union to show the Milky Way was a fairly typical galaxy, not especially dissimilar

from others (Baade, 1948, 1952, 1956), indicating even our own galaxy was not special in the

Universe. After this, very few proponents arguing against the Cosmological Principle were left.

There remained a debate over the preferred cosmological model, with the two main competing

models being the present day Big Bang Theory of Cosmology and a Steady State Cosmology.

The Steady State cosmology put forward by Hoyle (1948); Bondi & Gold (1948) in 1948 pro-

posed that density of the universe remains unchanged throughout time, and sought to explain

the expansion of the Universe through the continuous creation of matter as the Universe ex-

panded. This was in contrast to the Big Bang theory of cosmology which stated the Universe

had a highly dense and hot beginning relative to today - notions of which go as far back as to

Lemaître who spoke of a “Primeval Atom” in 1931 (Kragh, 2015). This debate would not be

settled until the discovery of the Cosmic Microwave Background (CMB) which we discuss later

in Section 2.4.1.

We focus however, on a contemporary of Shapley, Edwin Hubble, who was working on measuring

the velocities and distances of distant objects in 1929 (Hubble, 1929). It was during this period,

Hubble published a paper describing the relation between the radial distance of extragalactic

‘nebulae’ and their velocity. It would turn out later these nebulae were galaxies themselves.

The figure he created can be seen in Fig. 2.1. This provided a key piece of observational

evidence that the Universe was expanding. Though, it would be improper to solely attribute

this discovery to Hubble as the work was built on research that came before. Slipher (1913,

1915, 1917) had already measured the radial velocity of a large number of nebulae and noted

the majority of them were moving away from us and these measurements were also used by



6 Chapter 2. Cosmology Background

Figure 2.1: Figure 1 from Hubble (1929) showing the linear relationship between distance and
velocity for extragalatic ‘nebulae’.

Hubble. Einstein (1917) and de Sitter (1917) suggested that the Universe could be described

by a set of relativistic field equations proposed by Einstein (1915). Friedmann (1922) presented

solutions of the field equations from Einstein (1915), showing that the solutions supported a

dynamical model. Lemaître later showed these solutions supported an expanding Universe in

1927 (his work was translated to English from French later in 1931 (Lemaître, 1931)). This

was in opposition to the then favoured static model of the Universe by Einstein.

Hubble’s observations were able to confirm the theory of an expanding universe made by

Lemaître, though he himself passed no judgement, preferring to leave the interpretation of

his observations to those “competent to discuss the matter with authority" as he wrote in a

letter to de Sitter Nussbaumer & Bieri (2011). His observations involved measuring distances

using Cepheid variables wherein he noted that everything further than 300 kPc was moving

away from us. Moreso, the further away an object was, the greater the recession velocity

(inferred using its redshift).

The relation between radial distance and recession velocity can be simply stated as
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vobs = H0r + vpec (2.1)

where vobs is the recession velocity, r is the radial distance and H0 is the present day value

of Hubble-Lemaître constant. From Fig. 2.1, it can be seen the linear relationship is not

exact as the objects have a separate velocity component, independent of that implied by the

expansion of the Universe, so a ‘peculiar’ velocity term, vpec is added to account for this, which

is independent from the dispersion that exists due to measurement noise.

To measure the distances, Hubble was able take advantage of the periodicity of the luminosities

of Cepheid variables, a relation which was first noticed by Leavitt (Leavitt, 1908; Leavitt &

Pickering, 1912), making them the first standardisable candles in use to measure distances.

Hubble could then make use of their apparent observed magnitude to infer their distances

(more on distances in Section 2.3). The range of objects Hubble looked at had a distance of less

than 2Mpc, but it can be shown this linear relationship holds up 100Mpc (Mukhanov, 2005).

At further distances than this, peculiar velocities are negligible, however the linear relationship

also starts to break down. It should be noted that H0 is the value of the Hubble-Lemaître

constant today and it is often written as H0 = 100hkms−1Mpc−1 where h ∼ 0.7.

2.2 The Friedmann Equations

One of the cornerstones of modern Cosmology are the Friedmann equations from which a

cosmological model that supports an expanding Universe can be derived. In this section, I will

briefly outline the general formalism and physics required to derive the Friedmann equations.

At the core of it, most of the modern underpinning of Cosmology is based around Einstein’s

field equations from General Relativity (Einstein, 1915) which connects the spatial curvature

of our universe with the energy content and can be stated as

Rμν − 1

2
gμνR = 8πGTμν + Λgμν (2.2)
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Here Rμν is the Ricci curvature tensor, gμν is the metric tensor, R is the Ricci scalar tensor,

G is Newton’s gravitational constant and Tμν is the stress-energy tensor. This equation (and

all following equations in this chapter) is given in natural units where the speed of light c =

1. The left hand side in Eq. (2.2), often called the Einstein tensor, Gμν , represents the spatial

curvature of our Universe. The right hand side represents the energy content of the Universe.

The Ricci curvature tensor and Ricci scalar tensor defining the Einstein tensor can also both be

calculated as a function of the metric gμν . Therefore, Gμν can be specified completely through

the metric. The stress-energy tensor for a perfect fluid of pressure, p and density, ρ, with

4-velocity uμ may be written as

Tμν = (ρ+ p)uμuν + pgμν . (2.3)

A note here on Λ which is the cosmological constant and was added by Einstein to allow

for a static solution by altering the dynamics to counteract the effects of gravity. After the

advent of Hubble’s observation that showed the Universe was expanding, this usage was no

longer common. However, after the discovery that the expansion of the Universe is accelerating

(Riess et al., 1998; Perlmutter et al., 1999), which could not be accounted for by current known

densities, Λ was reinstated as a means of explaining this acceleration as a positive value of Λ

corresponds to an acceleration in the expansion. Its inclusion is done usually with an extra

energy density within the stress-energy tensor in Eq. (2.3).

To solve Einstein’s field equation, one has to specify the metric tensor gμν which describes the

local geometric structure of space-time. For an unperturbed expanding isotropic Friedmann-

Lemaître-Robertson-Walker (FLRW) universe, it is defined under cartesian coordinates as

gμν = diag(−1, a(t), a(t), a(t)) (2.4)

for which we adopt the sign convention (−,+,+,+) in gμν . Here, a(t) is the scale factor of

expansion defined such that we can define the physical radial distance r(t) and the comoving
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distance, χ, that is independent of the expansion of the universe with the formula

r(t) = a(t)χ. (2.5)

For an expanding Universe, a(t) increases with time. For use further on, alongside the comoving

distance we also define the comoving time, η as

t = a(t)η. (2.6)

The Hubble parameter can also be expressed in terms of this scale factor using

H(t) =
ȧ(t)

a(t)
. (2.7)

With the simplifying assumptions of isotropy and homogeneity over large distances, the FLRW

distance metric (Friedmann, 1922, 1924; Lemaître, 1931, 1933; Robertson, 1935; Walker, 1937)

can then be defined in cartesian coordinates as

ds2 = gμνdx
μdxν (2.8)

where ds is a spacetime interval. Under spherical polars, Eq. (2.8) and Eq. (2.4) reduces to the

line element

ds2 = −dt2 + a(t)2
(

dr2

1− kr2
+ r2dθ2 + r2sin2θdφ2

)
. (2.9)

This is the FLRW metric where a(t) is the scale factor of expansion and k is the spatial curvature

defined as + |a|2
a2

, − |a|2
a2

, or 0 meaning it can take values +1, -1 or 0 which correspond to closed,

open and flat Universes respectively. Depending on the curvature this causes the comoving
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distance to be rewritten as

rχ = Sk(χ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
sinχ, k = +1

χ, k = 0

sinhχ, k = −1

(2.10)

Solutions to Einstein’s field equation are based around the first and second derivatives of the

scale factor, known as the Friedmann equations, and are given by

(
ȧ

a

)2

=
8πG

3
ρ− k

a2
+

Λ

3
(2.11)

,
ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
(2.12)

To arrive at this solution we make the assumption that the energy content of the Universe can

be modelled as perfect fluid so that the Tμν takes the form given in Eq. (2.3). ρ has two primary

contributors, the radiation density from relativistic particles, ργ, and the matter density from

pressureless non-relativistic matter, ρm. However, it is common to include the term related to

the cosmological constant Λ as a vacuum energy contribution, ρΛ, as stated before and is often

called the dark energy density. The curvature term is also included as a density parameter with

ρk. Therefore we can define the total energy density of the Universe as

ρ(t) = ργ(t) + ρm(t) + ρΛ(t) + ρk(t). (2.13)

These are all related to the pressure p via the equation of state

pi = wρi (2.14)

where i is a subscript denoting the relevant component.
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2.2.1 Density Evolution

We can derive the evolution of the density contributions in Eq. (2.13) by first deriving the

conservation equation from the two Friedmann equations Eq. (2.11) and Eq. (2.12) as

ρ̇i + 3H(ρi + pi) = 0. (2.15)

By substituting Eq. (2.14) into this, we arrive at the relativistic continuity equation (Dodelson,

2003), sometimes called the fluid equation, as

ρ̇i + 3
ȧ

a
(1 + w)ρi = 0. (2.16)

Solving this equation leads to the solution

ρi = ρi,0a(t)
−3(1+w) (2.17)

where ρi,0 is the value of the energy density today. We can therefore determine the evolution of

the density parameters given the equation of state parameter w. The functional form of these

evolutions is given in Table. 2.1.

Table 2.1: The evolution of the different density terms in our universe with time and the
different values of w in the equation of state for each density contribution in ρ

Density Term ρ(t) w

ρm(t) ∝ a−3 0
ργ(t) ∝ a−4 1/3
ρΛ(t) ∝ a −1
ρk(t) ∝ a−2 −1/3

The evolution of the non-relativistic matter density term ρm as an inverse cubic is easily un-

derstood from the classical Newtonian viewpoint on how density evolves with volume. For the

radiation term ργ however, there is an extra factor of a−1 to account for redshifting as spacetime

expands. A common assumption for density contribution of ρΛ is that it is constant in time

with w = −1. It is easy to see from the first Friedmann equation why the curvature density ρk
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has an a−2 dependence meaning it is defined by the equation of state parameter w = −1/3 and

scales at a rate slower than matter and radiation.

From Eq. (2.11), if we assume a flat Universe (k=0) and a Universe with no cosmological

constant (Λ = 0) we can derive a critical density, ρc, such that

ρc =
3H2

8πG
. (2.18)

This value can be numerically evaluated as 1.8788h2 × 10−30kg/m3 and denotes the value that

makes our universe spatially flat. The uniqueness of this number is more easily seen if we recast

the units in terms of solar masses, M�, and Mpc so that it becomes

ρc = 2.78h2 × 1011M�/Mpc3 (2.19)

which is close to the current density of galaxies and our universe when considering most galaxies

are typically separated by around ∼ 1Mpc and usually contain of the order 1011 − 1012 stars

which have a mass of roughly 1M� per star. We can then define a density parameter, Ωi, using

the different density components in ρ as a ratio of this critical density such that

Ωi =
ρi
ρc

(2.20)

and

Ωi,0 =
ρi,0
ρc

(2.21)

being the value of this density parameter today at time t0

This naturally leads to the condition that

Ωm + Ωγ + ΩΛ + Ωk = 1. (2.22)

From here we can now write the first Friedmann equation in terms of these critical density so
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that

H2(t) = H2
0

[
Ωm,0a(t)

−3 + Ωγ,0a
−4 + ΩΛ,0 + Ωk,0a

−2
]
. (2.23)

2.3 Distance Determinations

One critical aspect of this thesis, is the ability to measure distances accurately in order to inves-

tigate the late-time acceleration the Universe is undergoing. While in the ’local’ Universe, the

method of parallaxes and Cepheid variables are used, for objects very far away ( > 50 Mpc),

this is not possible. There are multiple ways to measure the distance to an object at these

distances. We discuss two methods below that are instrumental in the generation of ‘standard

candles’ and ‘standard rulers’ that have theoretical underpinnings dependent on our cosmologi-

cal parameters and therefore allow us to constrain cosmological parameters using observations.

To define these methods, we must first understand how photons propagate through spacetime.

In curved spacetime, freely falling photons travel along null geodesics which are defined by the

line element

ds2 = 0 (2.24)

The assumption of isotropy and homogeneity means we can assume light travels only radially

which implies

dr2 =
dt2

a2(t)
. (2.25)

We can therefore define the comoving distance χ from equation Eq. (2.5) as

χ =

∫ to

te

dt

a(t)
(2.26)

where te is the time the photon was emitted and to is the time the photon was observed.

However, the wavelength of the light is stretched as the Universe expands. This effect is

encapsulated in the definition of the redshift z where

z =
λo

λe

− 1. (2.27)



14 Chapter 2. Cosmology Background

Here λe is the wavelength of the photon when its emitted at the source and λo the wavelength

when it is observed. The expansion means that objects further away are reddened, hence the

term redshift. Redshift is related to the scale factor a(t) by the relation

1 + z =
a(t0)

a(t)
(2.28)

where t0 is the time today. Given that we usually define the scale factor such that a(t0) = 1

this reduces the equation to

a(t) =
1

1 + z
. (2.29)

We can therefore write the comoving distance as

χ =
1

a0

∫ z

0

dz′

H(z′)
(2.30)

where

H(z)2 = H2
0E

2(z) (2.31)

and

E2(z) =
[
Ωm,0(1 + z)3 + Ωγ,0(1 + z)4 + ΩΛ,0 + Ωk,0(1 + z)2

]
(2.32)

2.3.1 Luminosity Distance

One of the most importance distance measures that I use in this thesis is the luminosity distance,

DL, which is defined as

D2
L =

L

4πF
(2.33)

where DL is the luminosity distance measured in Mpc, L is the absolute luminosity of the source

object and F is the observed flux. This can also be written as a function of our cosmological

parameters with the equation

DL =
1 + z

H0

√|Ωk|
sinn

{√
|Ωk|

∫ z

0

dz

E(z)

}
(2.34)
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where

sinn(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
sin (x), Ωk < 0

x, Ωk = 0

sinh (x), Ωk > 0

. (2.35)

This can then be transformed into the distance modulus measure μ using the equation

μ(z) = 5 log

[
DL

1Mpc

]
+ 25 (2.36)

where the divisor of 1 Mpc ensures the argument is also a dimensionless quantity. Observation-

ally, the distance modulus is given by

μ = m−M (2.37)

where m is the apparent magnitude of the observed object and M is the absolute magnitude of

the object (the apparent magnitude it would have if it was located at a distance of 10pc and

there were no dimming caused by interstellar matter or dust).

For standardisable candles, the above is important in probing cosmological parameters as pre-

dictions of the distance modulus can be made using an assumed cosmology and then compared

with the observed distance modulus. A key feature of standardisable candles such Type Ia

Supernovae is that their absolute magnitude can be determined to a high degree of precision

and accuracy (discussed more in Chapter 3).

2.3.2 Angular Diameter Distance

One final distance measure we define is the angular diameter distance dA which is defined as

DA =
l

θ
(2.38)
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which is when an object of known length l is subtended by an angle θ along the perpendicular

line of sight. This is related to the comoving distance by

DA(z) =
Sk(χ)

1 + z
(2.39)

and the luminosity distance dL by

DL(z) = (1 + z)2DA(z). (2.40)

Here it clear to see that, unlike in Euclidean geometry, the angular diameter distance and

luminosity distance are not the same, with the relationship between the two referred to as

the distance duality relation or the Etherington reciprocity theorem (Etherington, 1933). As

a complement to the luminosity distance which are used to define a ‘standard candle’, the

angular diameter distance can be used to define ‘standard rulers’ with which we can constrain

cosmological parameters (discussed further in Section 2.4.1 and 2.4.2).

2.4 Observational Probes

Constraining the density parameters in Eq. (2.23) is one of the primary focuses of modern day

cosmology. For example, it easy to show that a matter dominated Universe (Einstein de Sitter

model) is unfeasible as this would then lead to an estimate of the age of the Universe as

t0 =

∫ ∞

0

dz

H(z)(1 + z)
=

2

3
H−1

0 . (2.41)

For an approximate value of H0 = 70kms−1Mpc−1, this would imply the age of the Universe

to be around ∼ 9Gyrs. In the time where this model was popular, H0 was believed to be

H0 ∼ 100kms−1Mpc−1 leading to an age of ∼ 7Gyrs. Both are contradictory to the age implied

by globular clusters though which are of the order 11Gyrs (VandenBerg et al., 2013).

Considering the Universe is close to flat (and confirmed to a high degree by Planck (Planck
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Collaboration et al., 2018)) and we are in an era where the radiation density is negligible (it is

only dominant at early times), this would imply a significant contribution from the dark energy

density, ΩΛ, when considering the cosmic sum rule in Eq. (2.22). In this section, we discuss

the primary probes that allow us to constrain cosmological parameters which are the Cosmic

Microwave Background (CMB) and Baryon Acoustic Oscillations (BAO). Complementary to

these probes, SNIa were also instrumental in clarifying the status of the cosmological parameters

and the non-zero cosmological constant value of Λ, but discussion of this is deferred to chapter

3 and we limit our discussion here to the CMB and BAO.

2.4.1 The Cosmic Microwave Background

While the debate between Big Bang cosmology and Steady State cosmology continued in the

20th century, as early as 1961, questions about the validity of the Steady State cosmology had

been proposed when it was noticed counts of bright radio sources such as quasars or radio

galaxies could only be observed in the distant past (Ryle & Clarke, 1961) which was at odds

with Steady State cosmology that would presume some could be found in recent history too.

It was not until 1965 that the Steady State theory was definitely ruled out, when the Cosmic

Microwave Background (CMB) predicted by the Big Bang was first detected. The CMB is

composed of the first freely streaming photos to appear when they decoupled from the primor-

dial plasma of the Universe. It represents the oldest part of the sky and was first detected

accidentally by Penzias and Wilson (Penzias & Wilson, 1965). This discovery was crucial in

favouring Big Bang Cosmology over the Steady State Cosmology.

From this discovery, Cosmologists were able to infer that the earth is bathed in a background

microwave radiation that is approximately the same in all directions. The uniformity of this

temperature in all directions is an indication of how causally connected everything was in the

past, providing near decisive evidence in favour of the Big Bang theory over the Steady State

theory.

In the following decades, these results were further confirmed by the ‘Cosmic Background
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Explorer’ (COBE) (Mather et al., 1994). From this mission, Cosmologists were able to accu-

rately measure the temperature of the CMB background at T ∼ 2.752 and saw that it was

an almost perfect blackbody spectrum, but also saw small temperature anisotropies existed.

Later missions attempted to measure these anisotropies such as ‘Balloon Observations Of Mil-

limetric Extragalactic Radiation and Geophysics’ (BOOMERANG) (de Bernardis et al., 2000),

the ‘Millimeter Anisotropy Experiment Imaging Array’ (MAXIMA) (Balbi et al., 2000), the

‘Wilkinson Microwave Anisotropy Probe’ (WMAP) (Hinshaw et al., 2009) and most recently

Planck (Planck Collaboration et al., 2018). From these experiments, it was clearly evident that

temperature anisotropies of the order 1 in 100,000 existed. These fluctuations are key to placing

constraints on our current cosmology as their nature can be predicted from assumptions about

early Universe physics and late time evolution to define ‘standard rulers’ that can be related

to the angular diameter distance to constrain cosmological parameters.

To see this how this works, first let us assume the temperature of the CMB conforms to an

isotropically radiating black body with temperature T . We can consider a perturbation of ΔT

that creates a fluctuation Θ(θ, φ) corresponding to a direction (θ, φ) in the sky in spherical

coordinates. We can expand this fluctuation in terms of spherical harmonics to write

Θ(θ, φ) =
∞∑
�=1

�∑
m=−�

a�mY
m
� (θ, φ) (2.42)

where a�m controls the scale of temperature anisotropies at different scales. What we are

interested in to constrain cosmological parameters however, is not the the value of a�m, but the

statistical properties of it, the radiation angular power spectrum which is defined as

C� = 〈|a�m|2〉. (2.43)

Due to rotational invariance, this quantity therefore does not depend on the position (θ, φ) and

thus cannot depend on the m index either, meaning it is purely a function of �. The index �

defines the angular scale of the anisotropy with small � corresponding to large angular scales

and large � for small scales. Typically the size of the anisotropy corresponds to ∼ 180◦
�
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Figure 2.2: The CMB Temperature-Temperature angular power spectrum. The dipole asso-
ciated with � = 1 is not plotted here. Theoretical predictions are in blue and observed data
points in red. The bottom plot represents the residual error of the prediction with the observed.
The unique x-axis scale here is such that the observed data points are intended to be roughly
evenly distributed. Figure taken from Planck Collaboration et al. (2018)
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Figure 2.3: The CBM temperature map taken from ESA/Planck 2018 (Planck Collaboration
et al., 2018)

The resultant power spectrum determined by Planck Collaboration et al. (2018) can be seen

in Figure 2.2. We can see on the very largest scales where � < 15, there is a non-zero value

that is roughly constant across this range called the Sachs-Wolfe plateau and is caused by the

variation in gravitational potential between regions.

The cosmic fluid would have constantly been undergoing periods of rarefaction and compression

due to the combined effects of the photon pressure and gravitation that would either dampen

or increase the anisotropies and thereby creating the oscillating peaks seen in the CMB power

spectrum. The first peak at ∼ � = 200 corresponds to an angular scale of approximately 1◦.

The anisotropies associated with these and higher modes is easily seen in the planck CMB map

in Figure 2.3

These peaks in the power spectrum can be used to constrain cosmological parameters from their

relation to the angular diameter distance which depends on cosmological parameters. For ex-

ample, the baryon density can be derived from the ratio of the second and third peaks. Analysis

by the Planck collaboration was able to determine that the Universe is nearly completely flat
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with Ωk = 0.0007± 0.0019 and that the matter density was Ωm = 0.3147± 0.0074. The baryon

density on the other hand was determined to have a value Ωb = 0.0500 ± 0.0003, implying a

significant fraction of the matter density cannot be explained by the baryon density alone. This

unseen matter is commonly called ‘dark matter’ and is the subject of ongoing research.

2.4.2 Baryon Acoustic Oscillations

The distribution of the aforementioned unseen dark matter can be traced by looking at the

large scale structure of the Universe. In other words, the distribution of galaxies and their

clustering properties. One of the ways this is done is by defining the power spectrum from the

galaxy two point correlation function.

The oscillation caused by gravitation and radiation pressure that caused the CMB anisotropies

also gave rise to a second ‘standard ruler’ that could be used to constrain cosmological param-

eters. This oscillation created spherical acoustic waves that travelled at relativistic speeds (Hu

& White, 2004). At the point of decoupling when the Universe had a temperature of approx-

imately T ∼ 3000K, these wave speeds were reduced to the point where the propagation of

the spherical waves become ‘frozen in’, meaning their evolution from that point onwards was

predominantly dictated by the expansion of the Universe and their effect can be seen in the

large scale structure of the Universe (Eisenstein & Hu, 1998). Measuring the effect of these

frozen in waves on the galaxy power spectrum provides a probe of the growth of their struc-

ture and these oscillations are referred to as Baryon Acoustic Oscillations (BAO). By relating

the angular separation in the sky of these structures to the power spectrum and the angular

diameter distance (which depends on our cosmology), cosmological parameters can be con-

strained. Therefore, analysing the galaxy distribution not only provides insight into the dark

matter distribution but also provides an avenue with which to probe dark energy and constrain

cosmological parameters.

The Sloan Digital Sky Survey (SDSS) is a multi-spectral imaging survey that has many phases

with the most recent that continues to this day being SDSS-V. Eisenstein et al. (2005) was

able to measure the BAO (with SDSS-I) using the measured spectroscopic redshifts of 46,748
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luminous red galaxies (LRGs) over 3,816 square-degrees of sky and out to a redshift of approx-

imately z = 0.47. They measured the BAO at having a size of approximately 150Mpc which

was further confirmed by SDSS-III’s Baryon Oscillation Spectroscopic Survey (BOSS) survey

(Anderson et al., 2012) and the extended BOSS (eBOSS) survey of SDSS-IV (Bautista et al.,

2020). The comparison of the results derived from the SDSS LRGs and BOSS CMASS galaxies

can be seen in Fig. 2.4.

The standard ruler constraints from BAO’s are not capable of breaking the degeneracy of the

results derived from the CMB to constrain the cosmological parameters. Conclusive determina-

tion of the late-time acceleration of our universe required a third probe in the form of Type Ia

Supernovae that came earlier in 1998. Their use in breaking the degeneracy further is discussed

in Chapter 3.
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Figure 2.4: Here we show the power spectrum derived from the SDSS-II LRGs results (top)
and compare them with the BOSS DR9 CMASS galaxies results (bottom). Solid lines show
the best-fit models.



Chapter 3

Type Ia Supernovae

In this chapter, I discuss the third major probe of our Cosmology which are Type Ia Supernovae

(SNIa) which were used to show the late-time acceleration of the Universe (Riess et al., 1998;

Perlmutter et al., 1999). This groundbreaking result which won the 2011 Nobel Prize was

because of how SNIa can be standardised so that they only show small variation in their peak

absolute magnitudes (∼ 0.1mag) meaning they can be used as ‘standard candles’. An overview

of what Supernovae are, their origins and formation mechanisms, the standardisation procedure

used to make them standard candles, and the constraints we place on our Cosmology with them

are discussed in this chapter.

3.1 A Historical Overview of Supernovae

Supernovae (SNe) of all types are formed during the end of a stars life. Their high luminosity

means they are easily detectable even when residing in galaxies outside our own with an instan-

taneous power output of the order of 1053erg s−1 (Woosley & Janka, 2005). SNe are responsible

for the creation of the heavy elements that compose our planet and our bodies. These transient

objects in the sky last for up to several months before fading away leading to them often being

called ‘Guest Stars’. Joglekar et al. (2011) claims they were first observed potentially as early

as 4600BC based on carvings found in rock walls in the Burzhama region of Kashmir, but this

24
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Figure 3.1: The remnants of Tycho’s ‘De Stella Nova’ or SN1572 as seen in X-ray light. This
was captured using the Chandra X-Ray Observatory Telescope (Image Credit: NASA/CX-
C/Rutgers/J.Warren & J.Hughes et al).

is still disputed. The first official recording that Astronomers agree on however, was not until

185AD with SN185 which was observed by Chinese Astronomers (Zhao et al., 2006). The name

‘Nova’ is taken from the Latin meaning ‘new’ and its usage in astronomical context can be

traced as far back to the Danish Astronomer Tycho Brache in 1572 who used it to describe

a ‘new star’ or ‘De Stella Nova’ SN1572 which appeared in Cassopeia (Decourchelle, 2017).

Despite having occurred a few centuries ago, its remnants can still be observed by modern

day instruments as shown in Figure. 3.1. In modern astronomy however, the word ‘nova’ is

attributed to the explosive expulsion of the outer hydrogen layers of a white dwarf causing

the hydrogen to fuse into helium. Supernovae however, cause elements heavier than iron and

nickel to be produced. Notably, after a nova, the white dwarf remains intact compared to a

supernovae which leaves behind a neutron star remnant or a black hole. A third class of nova

known as ‘Helium Nova’ have also been proposed and are characterised by the lack of hydrogen

in the white dwarf ejecta (Kato & Hachisu, 2003).

Supernovae were first recognised as distinct objects by Baade & Zwicky (1934) who saw there

was a more rare class of nova, which appeared to be on average 10 magnitudes (10000 times)

greater than normal i.e., a ‘Supernova’ as they came to be known, where they believed the
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cause was the transition of a normal size star to a neutron star. These objects were observed

to be less frequent than standard novae.

Aside from SN185 and SN1572 mentioned previously, there exists only a handful of other

historical examples of Supernovae within our galaxy, of which their location made them visible

to the naked eye. The remnants of these supernovae have been instrumental into gaining

insight into the various astrophysical processes that create supernovae and their impact on the

surrounding environment. The brightest SNe observed, SN1006, was seen in the constellation

of Lupus which was observed by Astrologers and Astronomers all over the world (Winkler et al.,

2003) and reached an estimated V-band magnitude of -7.5 (Katsuda, 2017); The remnant of

SN1054 is now known as the Crab Nebula (Blandford & Bühler, 2017); SN1181 also appeared in

the constellation of Cassopeia and it is thought the radio and x-ray pulsar ‘3C 58’ is a remnant

of it (Kothes, 2017); 32 years after Tycho’s SN1572, SN1604 i.e., Kepler’s Supernovae, was

observed and is the most recent galactic supernova according to historical records (Vink, 2017).

The last supernovae to be observed by the naked eye was SN1987A(Ken’ichi & Shigeyama,

1988), however, this event did not occur within the Milky Way, but in a satellite galaxy close by

called the Large Magellanic Cloud located approximately 51.4 kPc from earth. Its uniqueness

lay in the fact that aside from being observable by eye, it was also observed with modern

instrumentation in all parts of the electromagnetic spectrum. Notably, a few hours before the

visible light reached earth, neutrino emissions were detected at several observatories and this

event was significant into gaining insight into the core-collapse mechanism that leaves behind

a neutron star as the neutrino emission occurs before the generation of light in the visible

spectrum (Alexeyev et al., 1988).

3.2 Supernovae Origins and Classification

Supernovae are thought to occur broadly via two main mechanisms, either via the Core-Collapse

(CC) mechanism (Janka, 2012) or via the thermonuclear runaway reaction of an accreting

white dwarf (Nomoto et al., 1996). A few short years after their discovery, Minkowski (1941)
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Figure 3.2: Left: Figure taken from Filippenko (1997) showing spectra of SNe, displaying
distinctions between the four major types and subtypes. Here the variables t and τ represent
time after observed B-band maximum and time after core collapse, respectively. The y axes
here is essentially “AB magnitudes” as defined by Oke & Gunn (1983). Right: Peak absolute
V-band magnitudes. Figure from Oguri (2019)

broadly classified them into two groups, Type I and Type II SNe based on whether they showed

Hydrogen or not in their spectra. Over time, as supernova discovery and data quality improved,

this classification was refined to include numerous sub types and their classification became

based on their spectral appearance near maximum light (Filippenko, 1997). An example figure

showing the various spectral features from different SNe subtypes as well as how their peak

magnitude evolves is shown in Fig. 3.2. With the advent of new surveys such as from the

Vera Rubin Observatory Legacy Survey of Space and Time (LSST) survey (LSST Dark Energy

Science Collaboration, 2012), this classification scheme may become subject to change as richer

data becomes available to better differentiate SNe.

A summary of the main types and the spectral features that define them are also provided in

Table. 3.1.

It should be noted here that Type II SNe can sometimes be further subdivided into other

classes based on qualitative features related to their light curve decay after peak. Type IIP

SNe exhibit a plateau shortly after the peak that lasts for approximately 100 days. These are

also the most common type of Type II SNe. Their progenitors are thought to be red supergiants

with masses in the range 10− 17M� (Arcavi, 2017). Type IIL exhibit a very linear-like decline
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Table 3.1: Summary of supernovae classifications based on their spectral absorption features
as well as their primary formation scenario. Further subdivisions are sometimes defined based
on qualitative features related to the light curve evolution after the peak.

Type Spectral Absorption Features Formation Scenario

Ia No H. SiII present. Thermonuclear Runaway Reaction
Ib No H, SiII. HeI present. Core-Collapse
Ic No H, HeI, SiII. Core-Collapse
II H Core-Collapse

after the peak. The progenitors for Type IIL however are less clear (see Arcavi (2017) again).

Type IIn contain very narrow hydrogen emission lines in their spectra. It is presumed this is an

artifact of how the progenitor interacts with a sufficiently thick circumstellar medium before the

explosion (Chugai, 1991). For Type Ib/c, the progenitors are assumed to be large Wolf-Rayet

Stars that have shed their hydrogen and helium envelope through strong stellar winds (Gaskell

et al., 1986) or that it is a low-mass star that has had its envelope stripped by a close binary

companion (Nomoto et al., 1995).

Since the spectral features of a SNIa are important for its classification, the photometry alone is

not enough to confirm their typing. This requires spectroscopy to confirm the typing (discussed

more in Section 3.7.2).

3.2.1 Superluminous Supernovae

In recent times, a new class of supernova have been proposed and are referred to as ‘Superlu-

minous Supernovae’. These can occur as both Type I and Type II supernovae (Howell, 2017)

and occur around a thousand times less often than regular SNe (Prajs et al., 2016). With peak

B-band magnitudes of < −21mag and occurring at redshifts z > 2, they represent a potential

new way to probe our cosmology at higher redshifts (Cooke et al., 2012; Quimby et al., 2011;

Curtin et al., 2019). There are competing theories that discuss the cause of their extreme lu-

minosities that include the spin-down from compact magnetic objects know as magnetars and

56Ni interaction powered models (Moriya et al., 2018). They are relatively rare in nature, but

their high luminosity means they can often be seen at more further distances than regular SNe.
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For a more complete overview of Superluminous Supernovae see Gal-Yam (2012); Moriya et al.

(2018).

3.3 Core-Collapse Mechanism

While the primary focus of this thesis on SNIa which explode via a thermonuclear runaway

reaction we provide first a brief description of the core-collapse mechanism SNe that are not of

Type Ia can undergo. A more complete description can be found in Foglizzo (2016); Yamaoka

(2016).

For large stars with masses in the range of > 8M� their life generally ends as core-collapse

SNe once the core has gone through the stages of hydrogen, helium, carbon, neon, oxygen and

silicon fusion until the degenerate core of the progenitor star is typically composed primarily

of iron. The electron degeneracy pressure from the core cannot support the surrounding non-

degenerate matter, resulting in catastrophic collapse of the core at a speed that is almost a

quarter of the speed of light (Woosley & Janka, 2005) until all that remains is a dense neutron

star approximately 10km in radius. Depending on the size of the star, the remnant may also

become a black hole (Begelman, 2003).

For Progenitor stars with masses in the range 130−250M� and low metallicity (most commonly

believed to be Population III stars, the first stars that formed), they often undergo a core-

collapse explosion because of electron-positron production in the core and are referred to as

‘pair-instability’ supernovae that are powerful enough to not leave a remnant behind at all.

The lack of remnant means they are difficult to detect and they have yet to be confirmed by

observation, though some currently observed SNIa have been theorised to be the product of

pair-instability explosions (Moriya et al., 2010; Rakavy & Shaviv, 1967).
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3.4 Thermonuclear Runaway Reaction and Type Ia Super-

nova

In comparison to the supernovae that undergo core-collapse, SNIa are believed to be formed

when main sequence stars of mass less than 8M� become carbon-oxygen White Dwarfs (WDs).

The white dwarf is in stable equilibrium as further gravitational collapse is prevented by electron

degeneracy pressure. However, if a mechanism can be provided by which the white dwarf

can continue to accrete further material it can explode as a supernovae as they approach

(and in certain scenarios discussed later, exceed) the Chandrasekhar limit of ∼ 1.4M�. The

Chandrasekhar limit is when the electron degeneracy pressure of the white dwarf is no longer

capable of supporting the star against gravitational collapse and therefore defines the maximum

allowable mass of a white dwarf.

The cause of the thermonuclear runaway reaction that creates this explosion is the burning of

carbon and occurs shortly before the star reaches the Chandrasekhar limit. This kickstarts a

‘simmering’ that lasts for a few hundred years. As this burning phase progresses, large insta-

bilities are created which eventually creates the runaway reaction (see Hillebrandt & Niemeyer

(2000); Piersanti et al. (2022) for more complete details). The fusion of iron-group elements

(Cr, Mn, Fe, Co, Ni) via this process is enough to disintegrate this star within fractions of a

second. The primary driver of the light we see from SNIa are driven by radioactive decay of

the material synthesized in the explosion, primarily 56Ni.

The burning can progress via two modes, either subsonic speed (deflagration) or supersonic

speed (detonation). Neither on their own is enough to account for the observed production

of elements. Pure detonation methods mainly only produce the iron group elements and not

enough of the intermediate mass elements such as silicon, calcium and sulphur that are seen in

Ia spectra (see left plot of Fig. 3.2). As an alternative to this, a deflagration model was proposed

(Nomoto et al., 1976), however this had the issue the SNIa brightness was too low because of

the slow(er) rate of burning in comparison to detonation models. Today, the most favoured

models are ones where initially there is a deflagration component with a later transition to a
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detonation regime, but the exact mechanism via which the transition happens is still unclear

(see Gamezo et al. (2004); Mazzali et al. (2007); Poludnenko et al. (2019).

The iron group elements generated from these burning scenarios are responsible for the decay

chain powering the light curve after the initial explosion (Diehl & Timmes, 1998), with the

primary decay being

56Ni →56 Co →56 Fe. (3.1)

The initial decay of 56Ni into 56Co is most responsible for powering the light curve up to the

peak brightness. The late time evolution (∼ 30 days post-peak) is driven mostly by the decay

of 56Co to 56Fe. The peak brightness of a SNIa is directly correlated and proportional to the

amount of 56Ni produced and this is known as ‘Arnett’s rule’ (Arnett, 1982). One of the key

signatures of SNIa that also differentiate them from other Type I SNe is the presence of SiII

doublet absorption lines at λ = 6347Å and λ = 6371Å (see Fig. 3.2).

3.4.1 Progenitor Scenarios

In both burning scenarios mentioned in the previous section, mass accretion of the WD is the

crucial factor. WDs are generally formed well below the Chandrasekhar limit (< 1M�) so

a mechanism by which they can accrete mass is required. Despite their use as standardisable

candles, exact understanding of the progenitor scenarios that generate SNIa is an open problem.

The WD progenitor can come in three different forms, the lower-mass Helium-WD, the inter-

mediate mass Carbon-Oxygen WD and the higher mass Oxygen-Neon WD. The lower mass

Helium WDs and higher mass Neon-Oxygen WDs can be ruled out as their decay products

inferred from simulations are inconsistent with what is observed (Woosley et al., 1986; Nomoto

& Sugimoto, 1977). Furthermore, the population of Neon-Oxygen WDs are too low to replicate

observed SNIa rates (Saio & Nomoto, 1985; Saio & Nomoto, 2004; Nomoto & Kondo, 1991;

Gutierrez et al., 1996). Therefore, this leaves CO WDs as the only viable channel for creating

SNIa.

For the accretion phase, two principle models have been proposed. The first is a Single Degen-
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erate scenario where a single WD accretes mass from larger companion star (typically a red

giant or main sequence star) from Roche lobe overflow or strong stellar winds (Maguire, 2017)

until shortly before it reaches the Chandrasekhar limit and explodes (Li & van den Heuvel,

1997).

The second scenario is the Double Degenerate case where the companion star is another WD.

The pair inspiral towards each emitting gravitational waves as they do so (Webbink, 1984;

Maguire, 2017). When the pair get close enough usually the smaller WD has its Roche lobe

(the region around a star in a binary system within which orbiting material is gravitationally

bound to that star) filled and is tidally disrupted by the larger WD, resulting in the formation

of an accretion disk around the primary (Pakmor et al., 2012). The rapid accretion of matter

in this scenario means that there is a possibility of the explosion happening with the exploding

WD exceeding the Chandrasekhar limit (Webbink, 1994; Kamiya et al., 2012).

It was initially believed that the single degenerate case is how the majority of SNIa occurred,

which would explain the apparent standardisation of SNIa, however, there is now growing

body of evidence that the double degenerate case is more common than initially believed with

Hernández et al. (2012).

3.4.2 Peculiar Type Ia Supernovae

The variation in progenitor systems means that subgroups of ‘peculiar’ SNIa can be identified,

these can both be under- and over-luminous with respect to the average SNIa. For example,

one of the largest groups of peculiar SNIa are under-luminous and are identified as SNIax or

‘SN2002cx-like’ supernovae. These are believed to occur primarily in young/late-type galaxies

and have been shown to have lower ejecta velocites. The current leading theory on them is that

they are formed from pure deflagration models (Foley et al., 2013; Jha, 2017).

Another large group of peculiar SNIa are ‘Super-Chandrasekhar’ SNe that are noted to be

over-luminous. They are a sub-class of the aforementioned ‘Superluminous Supernovae’ and

are believed to almost certainly come from double degenerate progenitors (Branch, 2006; Howell
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Figure 3.3: Type Ia supernova rates. The dashed line is the best fit model (taken from Dahlen
et al. (2008), see therein for more details on the model and the data points present).

et al., 2006; Scalzo et al., 2010; Taubenberger et al., 2011). The lack of companion stars in this

scenario makes this hard to verify however.

3.4.3 Type Ia Supernova Rates

SNIa have been noted to be present in both, ‘young’ galaxies undergoing periods of active

formation and ‘old’ galaxies with little to no star formation present. Core-collapse SNe in

contrast, only occur in ’young’ galaxies (Li et al., 2011). The SNIa rate itself is a function of

the star-formation rate in these galaxies (see Mannucci et al. (2005); Sullivan et al. (2006)).

Because the progenitors of SNIa are difficult to determine, the evolution of the star-formation

rate as a function of redshift provides important information about their origin. An example

of the SNIa formation rate based on data by SDSS is shown in Fig. 3.3. It can be seen there is

a steep decline in SNIa formation rates after z = 2.
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3.5 Type Ia Supernovae Cosmology

Based on the physics discussed previously, it can be seen SNIa are objects that can sufficiently

be standardised to use as ‘standard candles’ with a fixed peak absolute magnitude, M . We

can also define the apparent observed magnitude mB which, as the subscript denotes, is the

apparent magnitude as measured in the B-band. This means we can write the observed distance

modulus as

μ = mB −M. (3.2)

This can directly be compared with what is predicted by theory (see Section 2.3.1) where the

distance modulus is given by

μ(z, �) = 5 log

[
c

H0

dL(z, �)

1Mpc

]
+ 25. (3.3)

where � = {ΩM,0,ΩΛ,0,ΩK,0, H0, w} is the cosmological parameters of interest.

SNIa are not usable as standard candles straight away because there is still large variability

around their peak absolute magnitudes. To reduce this residual variability sufficiently a light-

curve fitting procedure is applied.

3.6 Light Curve Fitting

For most SNIa there is a rise time to peak-brightness of ∼ 20 days and then a decline of

roughly 1-3 magnitudes month in the B-band. A series of corrections can be applied to account

for correlations of absolute peak magnitude with their light curve decline rate and colour.

This correlation with light curve decline rate is often know as the ‘width-luminosity’ relation.

The relation is such that brighter supernovae have their light curve decay more slowly and

dimmer supernovae light curves decay faster. This correlation feature was first observed by

Rust (1974) and further corroborated later by Pskovskii (1977, 1984) and Phillips (1993);
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Figure 3.4: Here a set of example light curves in the B-band are displayed. The lights curves
were from data by Hicken et al. (2009a) and Stritzinger et al. (2011). We can see an example
of the width-luminosity relation here and how after applying linear Phillips corrections the
corrected SNIa show a small residual scatter in their peak absolute B-band magnitude. Figure
taken from Maguire (2017)

.

Phillips et al. (1999) using larger samples of SNe. Later a correlation with color, the ‘colour-

luminosity’ relation, was also observed where it was noticed that brighter SNIa were ‘bluer’

(Hamuy et al., 1995; Riess et al., 1996; Perlmutter et al., 1997). Empirical corrections that

account for correlations of absolute peak magnitude with their decline time and colour can

then be applied to standardise the SNIa data (Tripp, 1998; Phillips et al., 1999). Light curves

of SNIa can be standardised so that the residual scatter of their peak B-band magnitude is

sufficiently small (∼ 0.1 mag) to infer cosmological parameters, as was first demonstrated by

Riess et al. (1998) and Perlmutter et al. (1999). An example of the reduction in scatter after

correcting for these correlations can be seen in Fig. 3.4.

To reduce the scatter in the peak magnitude, often a light curve fitter is employed. Many

light curve fitters exist, that work in various ways, but the data analysed in this thesis was

analysed using the Spectral Adaptive Light-Curve Template 2 (SALT2) light curve fitter (Guy

et al., 2007) which is currently the most popular fitter in use and is an improved version of
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Figure 3.5: Observed light-curve points of SNIa SNLS-04D3gx along with the light-curves
derived from the model fit. The solid lines indicate the fit when the SN is not included in the
training sample and the dashed lines represent the 1σ uncertainty of the fit. Taken from Guy
et al. (2007)

the original SALT fitter (Guy et al., 2005) which uses the methodology followed by Perlmutter

et al. (1999). Recently however, a new version SALT3 has been announced (Kenworthy et al.,

2021). We limit our discussion to the process followed by SALT2 though which is used for the

analysis in this thesis.

In SALT2, the data points for a SNIa are fitted to a light curve template (see Fig. 3.5 for an

example). This light curve template is ‘trained’ using both nearby and distant SNIa. As part

of this fitting, summary statistics that can be used to apply empirical corrections are derived

and can be defined as

• mB – the rest frame B-band maximum apparent magnitude of the SNIa.

• x1 – the stretch parameter which uses the width luminosity relation and the decline rate

Δm15 (the decline in apparent magnitude after 15 days from the peak) and were related

together in Guy et al. (2007) from a polynomial regression as

Δm15 = 1.09− 0.161x1 + 0.013x2
1 − 0.00130x3

1 (3.4)
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• c – the colour excess, which uses the colour-luminosity relation and is given by

c = E(B − V ) + 0.057 (3.5)

where E(B − V ) is the colour excess between the instrinsic and observed apparent mag-

nitudes in the B band compared to the V band at maximum luminosity, i.e, E(B− V ) =

(B − V ) − (B0 − V0) = (mB − mV ) − (MB − MV ). The extra constant is required as

-0.057 is the chosen reference color of a SNIa in Vega magnitudes (Guy et al., 2005). It

should be noted here that colour can be positive or negative. Shifts in either direction

can be caused by multiple effects such as intrinsic variation in color or the effects of dust

reddening. SALT2’s methodology is unable to differentiate between the different sources

and measures the combined effect.

These estimates for the best fit values of mB, x1 and c are provided with a covariance matrix

of their uncertainty from the light curve fit for each SNIa as

C =

⎛⎜⎜⎜⎜⎝
σ2
mB

σmB ,x1 σmB ,c

σmB ,x1 σ2
x1

σx1,c

σmB ,c σx1,c σ2
c

⎞⎟⎟⎟⎟⎠ (3.6)

It is stressed again that these are purely empirical corrections with the astrophysical origins

for them not fully understood as of yet. The summary statistics are then applied linearly

to the supernovae peak B-band absolute magnitude. It is at this step the ‘width-luminosity’

and ‘brighter-bluer’ relationship is encoded via a linear regression formula. This empirically

corrected absolute magnitude, M ε is related to original peak magnitude, M , via the linear

Tripp relation (Tripp, 1998).

M ε = M + αx1 − βc, (3.7)

where α and β are nuisance parameters that control the slope of the stretch and colour correction

respectively. This means the distance modulus can now be written as
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μ = mB − αx1 + βc−M (3.8)

which is used to compare with the theoretical distance modulus when constraining our cosmol-

ogy. The fitting in the second step is not done by SALT2 itself, however. Constraining the best

fit values of the nuisance parameters and our cosmology is done with the BAHAMAS methodology

presented in Section 4.3.

As mentioned in the definition of colour, SALT2 cannot differentiate between the variation

in colour due to intrinsic variation in the population of supernovae or from reddening due to

interstellar dust. At lower wavelengths, light is absorbed and scattered to a greater degree

by interstellar dust. The net effect is to cause reddening of the colour. It is relatively simple

to correct for dust owing to the Milky Way as it is well measured along different lines of

sight (Johansson, 2015). Dust from other components however, such as host galaxy dust, are

more difficult to correct. The dust-size distribution is often captured via the total-to-selective

extinction ratio RV where RV is defined as

RV =
AV

E(B − V )
(3.9)

where E(B − V ) is the colour excess as before and AV is the extinction in V-band. The

Milky Way has the value RV ∼ 3.1 and relatively little scatter of σRV
= 0.18 (Schlafly et al.,

2016). However values between 1.5 and 6 and have also been inferred by some authors (Draine,

2003; Krisciunas et al., 2006) with a lot of the lower end of these readings from SNIa with

E(B − V ) > 0.3 (Amanullah et al., 2015; Hoang, 2017). Many users of SNIa data mitigate the

effects of dust systematics by restricting the data to ‘normal’ SNIa by applying colour cuts of

E(B−V ) � 0.3 as was done with the JLA data (Betoule et al., 2014) that is used in this thesis.

Many other light curve fitters exist in Supernovae Cosmology that attempt to standardise based

off the ‘width-luminosity’ and ‘colour-luminosity’ relationship which include (but not limited to)

MLCS (Riess et al., 1998) and its successor MLCS2k2 (Jha et al., 2007). MLCS, unlike SALT2,

explicitly attempts to account for dust reddening by separating it from the intrinsic variation
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in colour. BayeSN (Mandel et al., 2009, 2011) is a Hierarchical Bayesian method for modelling

the light curves of Near IR SNIa where the effects of dust are significantly mitigated relative

to optical data. SNooPy (Burns et al., 2010), similar to MLCS also attempts to separate dust-

based reddening of colour from intrinsic variation of colour. PISCOLA (Müller-Bravo et al.,

2021) uses a Gaussian Process based method to standardise light curves without the need for a

base template to fit the curves to. SUGAR (Léget et al., 2020) includes two extra parameters

to account for variability in addition to the colour and stretch parameters of SALT2. These are

associated with the supernovae ejecta velocities and their calcium lines and leads to a colour

law that is more consistent with Milky Way dust extinction which SALT2 does not provide.

3.7 Concordance Cosmology

Before we discuss our current accepted cosmology, I introduce here the two most common

models that allow for dark energy, ΛCDM and the closely related wCDM model. They are

defined from writing the Friedmann equation as

H(z)2 = H2
0 (ΩM(1 + z)3 + Ωγ(1 + z)4 + ΩK(1 + z)2 + ΩΛ exp

[∫ z

0

1 + w(z)

1 + z
dz

]
. (3.10)

When w = −1 and constant, this is referred to as a ΛCDM model, otherwise it is a wCDM

model. Note, for dark energy to be repulsive and cause acceleration in the Universe, w < −1/3

is a strict requirement.

The largest compilation of SNIa used for cosmology purposes is the Pantheon sample (Scolnic

et al., 2017) which contains 1048 spectroscopically confirmed ‘normal’ SNe. It should be noted

however a ‘Pantheon+’ dataset is due for imminent release with over 1500 spectroscopically

confirmed SNe (see Brout et al. (2022) preprint). The constraints it places on our Cosmology

can be seen in Fig. 3.6. The left panel of Fig. 3.6 shows the constraints on a wCDM model. Here

we can see the complementary nature of SNIa with respect to fits provided by CMB and BAO
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Figure 3.6: Cosmological constraints from the Pantheon SNIa sample. The left figure shows
the constraints for a wCDM model and the combined constraints using BAO and CMB mea-
surements. The right shows constraints from SNIa only on a ΛCDM model which does assume
strict flatness (Ωk = 0). Figures taken from Scolnic et al. (2017).

probes where they serve to break the degeneracy in allowed parameters significantly because

of the orientation of the distribution in the w − Ωm plane. The inferred results have best fit

values of w = −1.014± 0.040, Ωm = 0.307± 0.008 which are consistent with a model that has

a cosmological constant Λ with w = −1. Furthermore within an oCDM model (where flatness

is not assumed), the right panel of Fig. 3.6 indicates that the universe is currently experience

a period of late-time acceleration in the expansion rate of the universe. A result that won the

2011 Nobel Prize when it was displayed by Riess et al. (1998); Perlmutter et al. (1999). This

has lead to currently accepted concordance ΛCDM cosmology, the naming of which implies

three major components to our universe - The cosmological constant, cold dark matter and

ordinary matter.

Since the initial discovery of the accelerated expansion of the universe, the field has since moved

on to attempting to characterising and measuring the equation of state parameter w = p/ρ and

its time evolution with groups such as the Dark Energy Task Force (Albrecht et al., 2006)

deciding the appropriate experiments to conduct for this purpose. The characterisation of w

by the pantheon sample of SNIa can be seen in Fig. 3.7 by using a model parameterisation from
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Figure 3.7: Results from the pantheon SNIa sample from trying to constrain an evolving wCDM
model where the model is defined according to Eq. (3.11). Figure taken from Scolnic et al. (2017)

.
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Chevallier & Polarski (2001) where

w(z) = w0 + waz/(1 + z). (3.11)

The results are consistent with a model that is not time evolving and that the data is not able

to determine an evolving value of w based on the sensitivity than can be probed by current

SNIa data.

Some tensions exist in the results derived from SNIa however, with one of the most notable

being the ‘Hubble Tension’. While the Hubble tension is not the central focus of this thesis, it

is worth discussing to motivate the need to consider deviations from ΛCDM in Chapters 5 and

6. SNIa top out the distance ladder with the first two rungs given by parallax and Cepheid

variable measurements, the latter of which are also used anchor and calibrate SNIa. SNIa

provide a measurement of the Hubble-Lemaître constant today of H0 = 74.03± 1.42kms−1Mpc

from the SH0ES collaboration (Riess et al., 2019). This is in 4.4σ tension with the Planck

2018 measurements of H0 = 67.4± 0.5kms−1Mpc (Aghanim et al., 2020), potentially calling in

to questions whether our model of flat ΛCDM is correct or whether an alternate more exotic

model is needed. Measurements of other probes of H0 are indicated in Fig. 3.8 wherein it can

also be seen that the there is a general tension between measurements of H0 at early and late

times.

3.7.1 Precision Cosmology and Systematic Uncertainties

The state of the field as it currently stands, is that we are at point where we can probe our

cosmology with less than 1% uncertainty when all probes are combined. Fig. 3.9 shows the

residual error to the best fit cosmology on the Hubble diagram is also approximately 1%.

Reducing these errors even further is one of the major goals of current cosmological analysis.

Indeed, we are currently in the era of what is colloquially called ‘Precision Cosmology’ where

uncertainties are on the scale of a percent and increasingly systematic uncertainties dominate

with respect to the statistical uncertainties.
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Figure 3.8: Compilation of Hubble Constant predictions and measurements that was presented
or discussed at the workshop “Tensions between the Early and the Late Universe” in 2019.
Figure taken from a summary of the workshop by Verde et al. (2019).



44 Chapter 3. Type Ia Supernovae

Figure 3.9: Hubble diagram from the pantheon SNIa sample. The top shows the measured
distance modulus with data points coloured according the survey the data was measured by. A
line based on the best fit cosmology is plotted on top in blue. The bottom shows the residual
error between the best fit cosmology and the data. Figure taken from Scolnic et al. (2017)

.
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Handling systematic uncertainties in SNe datasets is key to reducing the uncertainty in our

best-fit cosmology further. I briefly go through here some of the most discussed sources of

systematic uncertainty in SNIa analysis.

• Calibration - Cosmological constraints depend on measuring the relative brightness of

SNIa at different redshifts. Flux calibration errors associated with this are typically the

largest source of uncertainty (Conley et al., 2011). Furthermore, as calibration is done

early in the data pipeline, systematics associated with this can propagate to each stage

of the analysis. The flux error effect on the measurement of the SNIa propagates to the

K-corrections, extinction corrections and the final magnitude measurements which are

used to constrain cosmological parameters. In addition, while most future surveys are

likely to measure most if not all of their SNe with a single, well calibrated system such

as LSST (LSST Dark Energy Science Collaboration, 2012) and DES DES Collaboration

et al. (2018), current cosmological bounds are derived from a compilation of surveys such

as the Joint Light-Curve Analysis (JLA) data (Betoule et al., 2014) and the Pantheon

data. Calibration offsets between the data sets can also potentially result in a bias when

fitting a cosmology. In the case of the Pantheon data (Scolnic et al., 2017) which is a

multi-survey compilation, calibration uncertainty of 2-6 mmag (depending on the sample)

accounts for approximately half (0.02) of the total uncertainty on the measurement of w.

• Dust - To accurately use SNIa as standard candles, one needs to account for the interac-

tion of light with dust which may be from the circumstellar material around the exploding

star, the interstellar medium of the host galaxy, the intergalactic medium and the dust

in the Milky Way itself. Dust is important to account for as it can scatter and absorb

light, thereby dimming the SNe. Space-based observatories such as Nancy Roman Grace

Telescope (previously called WFIRST) and Euclid will have Near-Infrared (NIR) capa-

bilities. Measurements of SNIa in NIR have been noted to have better standardisation

properties than those in the optical and are noted to suffer less from systematics due

to dust related effects (Mandel et al., 2009, 2011; Wood-Vasey et al., 2007; Wood-Vasey

et al., 2008; Krisciunas et al., 2004). In addition, one can consider looking at SNe in the
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outskirts of galaxies where there is less dust (Hill et al., 2018). These NIR data can also

be combined in conjunction with optical data with the NIR data used to properly model

dust extinction of the host galaxy that affects the optical data as in Mandel et al. (2021).

• Light Curve Fitters - The light curve fitters used to standardise SNIa can also be a source

of the systematic bias. For example, the widely used SALT2 and MLCS2k2 fitter can

each introduce different systematic biases. The reference samples for training MLCS2k2

are low-z SNe so the training can be biased. Furthermore, MLCS2k2 assumes colour

shifts separate from intrinsic variation are in one direction only by assuming all shifts are

caused by dust based reddening. SALT2 on the other hand uses data from both high and

low redshift, but biases can be caused by the intrinsic changes in redshift that are not

picked up such as systematic biases for a calibration filter in a given redshift range that

ends up biasing the whole sample across over the entire redshift range during training or

not accounting for the evolution of the light curve parameters with redshift (see Kessler

et al. (2009) for a greater discussion of MLCS2k2 and SALT2).

• Selection Bias - Because of the nature of the SNIa measurements and general flux limited

measurements, they inherently suffer from Malmquist bias (Malmquist, 1922), wherein

brighter objects are easier to detect (discussed in much greater detail in Chapter 7).

Many attempts at constraining cosmology with SNIa involve the use of large scale Monte-

Carlo simulations to sample the fraction of SNIa that can be measured at a provided

redshift given your instrument detection requirements and then correct for this bias.

This procedure is used in deriving the results from the Pantheon compilation of SNIa

(Scolnic et al., 2017). Handling selection bias is one of the goals of this thesis and is

discussed further in Chapter 7.

• Gravitational Lensing - The derivation of the luminosity distance in Section 2.3.1 assumed

isotropy and homogeneity which is a valid approximation at large scales based on CMB

data, however at small scales, inhomogeneities in local structure can have an affect on

inferred distances. The foreground of galaxies have a lensing effect from gravitational

interactions with points of higher density. The effect is to create a scatter in the observed
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SNIa fluxes that increases with redshift (Bergström et al., 2000; Holz & Linder, 2005;

Mörtsell et al., 2001). These are expected to statistically average out for a sufficiently

large and complete sample, but for small samples or magnitude limited samples this can

be source of bias (Jönsson et al., 2010).

• Peculiar Velocities - Similar to gravitational lensing effects, local matter inhomogeneities

can induce a systematic bias at small redshifts. The density fluctuations can induce

peculiar velocities of ∼ 300km s−1 which are observationally not possible to separate from

the recessional velocity when interpreting the redshift. Aside from the peculiar velocity

of the galaxy, the SNIa itself can have a peculiar velocity with respect to the galaxy

motion. At smaller redshifts, where this peculiar velocity is relatively large compared to

the Hubble flow, this can cause an error in the distance modulus approximately given by

σμ ≈ v

c

5

ln 10

[
1 + z

z(1 + z/2)

]
. (3.12)

Out to a redshift of 0.015 this can be approximately 0.1 mag, greater than the resid-

ual error that is often aimed for when standardising the SNIa peak brightness. Most

authors as a precaution impose a lower redshift cutoff to mitigate this effect (typically

z > 0.02)(Riess et al., 1998; Perlmutter et al., 1997; Davis et al., 2011). The effect of

peculiar velocities and how we account for it at low redshift are discussed further in

Chapter 5.

• Host Galaxy Mass - In general, several properties of the SNIa host galaxy can be sources of

systematic bias. Sullivan et al. (2010) finds that SNIa found in more massive galaxies are

brighter after standardisation. It has therefore become common practice to split the SNe

into two groups, based on their host-galaxy stellar mass (Sullivan et al., 2010; Lampeitl

et al., 2010; Roman et al., 2018), with the mass threshold between the two groups being

around value of log10(Mg) = 10, where Mg is the host-galaxy mass measured in solar

masses. Smith et al. (2020) found a difference of up to 0.04 mag in the average intrinsic

magnitude of the two groups, and application of the Tripp relation to the two groups

separately may further reduce the residual dispersion in SNIa absolute magnitude. The
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extent the mass split reduces the residual dispersion by is not noted in Smith et al. (2020),

however, the implementation of this mass split by Shariff et al. (2016) saw that the higher

mass group in the JLA compilation of SNe (Betoule et al., 2014) had a residual dispersion

that was smaller by ∼ 0.007, with the lower mass group having a residual dispersion that

is conversely larger by ∼ .0.006 . Brout & Scolnic (2021) has recently cast doubt on

the robustness of this mass-step correction, which they ascribed instead to incorrect dust

modeling and that the mass step can be explained away by the variability in the dust

parameter RV between massive and small galaxies. Thorp et al. (2021), however, finds

the dust parameter across a low and high mass galaxy samples consistent with the global

value and does not account for the mass step within their Bayesian heirachical model.

Furthermore, Uddin et al. (2020) finds a significant mass-step in both optical and near IR

SNIa data where, in the latter, the effect of dust extinction is relatively small. Another

follow up paper by Johansson et al. (2021) claims that any significant mass-step in optical

data disappears when fitting an RV value to each individual supernovae as opposed to

two groups of high and low mass galaxies. Thorp & Mandel (2022), however, details how

modelling values of RV for individual SNIa could lead to an overestimate of the sample

variance of RV . The ultimate origin of the mass step remains unclear, and it might relate

to stellar population age (Childress et al., 2014) and metallicity (Sullivan et al., 2010;

Gallagher, 2008).

• Host Star Formation Rate - Another oft discussed property for standardising SNIa is the

host local Star Formation Rate (SFR) as a useful covariate which is related to their age.

Rigault et al. (2020) was able to find that SNIa in predominantly younger environments

with greater star formation rates were typically dimmer by about 0.163 mag (5.7σ) than

those found in older environments because of the dust and gas rich environment, in

which stars form, attenuates the brightness. This is comparable to the difference seen

based on the mass-step correction and corroborated by different authors on different

samples (Kim et al., 2018; Uddin et al., 2017), though some claim the effects is smaller

at around 0.051mag (2.1σ) (Jones et al., 2018). This has a knock on consequence on the

determination of the value of the Hubble constant as the extent of the star formation
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is correlated to brightness. This can bias H0 measurements, especially as the calibrator

Cepheids tend to be found in such active star forming environments, though the full

extent of such effects is yet to be resolved (Rigault et al., 2015; Jones et al., 2015; Riess

et al., 2016).

• Host Galaxy Metallicity - The host galaxy metallicity is also implied to have a signifi-

cant effect on the standardisation of supernova. Most theoretical reasoning leads to the

conclusion that different metallicities lead to different amounts of 56Ni produced during

explosion which powers the SNIa optical light curve (Foley & Kirshner, 2013), however

the effect is not as strong as the other two host galaxy covariates. D'Andrea et al. (2011)

found also that higher-metallicity hosts had SNIa that were brighter by 0.1 mag on aver-

age, however, later Childress et al. (2013) found that the effect is smaller at ∼ 0.077mag

on a separate sample. In addition, they noticed a small correlation with the hubble resid-

uals of a SNIa and the hosts with higher metallicity had higher stretch and redder colour.

Campbell et al. (2016) measured a weak correlation at 1.4σ with the hubble residual and

the SNIa host metallicity.

3.7.2 Future Surveys

The next generations of surveys are expected to target larger and richer amounts of data than

what we currently have by measuring an increased number of SNe and in a larger number of

wavelength bands. It is expected in the next decade that ∼ 107 SNIa will be detected which

is many times more than then current ∼ 1000 available in current SNIa datasets and can be

used to reduce sources of uncertainty further as well as provide novel new ways of probing our

cosmology. The source of this increase in data is being driven by surveys such as the Vera

Rubin Observatory Legacy Survey of Space and Time (LSST) (LSST Science Collaboration

et al., 2009), Nancy Roman Grace Telescope (Spergel et al., 2015) and the James Webb Space

Telescope (JWST) Gardner et al. (2006).

Surveys like LSST will measure hundreds of thousands SNIa per year. Because of the increased

size of the data from future surveys, it is not always possible to get the spectroscopy of the
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data. As can be seen from the discussion in Section 3.2, the spectral features of a SNe are

important for classifying their typing. Therefore, spectroscopic confirmation is important in

analysis to confirm SNIa datasets do not suffer from contamination of non SNIa. Learning to

classify SNe from just their photometry is one of the major challenges of the next generation

of surveys. To this end, the Astrophysics community created a public challenge on the Kaggle

platform1 where a sample (from simulation of the kind of data LSST is expected to observe)

is provided. The goal of the challenge to create an algorithm capable of accurately classifying

observables from just photometry alone (The PLAsTiCC team et al., 2018; Malz et al., 2019).

The winner of the challenge was the AVOCADO algorithm (Boone, 2019) which follows a

similar procedure to the gaussian process based data augmentation method of STACCATO by

Revsbech et al. (2018). These algorithms, and future ones, are unlikely to be 100% accurate

in their classification and means of the handling the probability an object is not a SNIa is

required. One methodology of doing so is the Bayesian Estimation of Multiple Species (BEAMS)

formalism of Kunz et al. (2007) which is designed to reduce biased parameter estimates made

from contaminant supernovae in data that are not of Type Ia.

Some independent probes of our cosmology with SNIa that differ from the method discussed

in this chapter, but will supported by this new richer dataset include (but not limited to)

• Gravity with Peculiar Velocities - the peculiar velocities of the galaxy motions for the

lowest redshift objects are correlated with the inhomogeneous structure of the universe at

small scales. A peculiar velocity power spectrum can be constructed from such measures

that are useful for constraining cosmological parameters such as the product of the growth

rate and amplitude of mass fluctuation, fσ8. The current best estimate of this parameter

from SNIa studies is fσ8 = 0.428+0.046
−0.045 (Huterer et al., 2017). Howlett et al. (2017)

discusses how LSST can be used to significantly reduce the uncertainty on these results

to just a few percent.

• Weak Lensing signal - SNIa are subject to lensing effects that can dim or brighten them

based on whether they pass through overdense or underdense regions. This lensing signal
1https://www.kaggle.com/c/PLAsTiCC-2018
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can be used to infer cosmological parameters (Wang, 1999, 2005; Macaulay et al., 2020;

Shah et al., 2022) or using them to assess dark matter halo properties (Metcalf, 1999;

Goliath & Mörtsell, 2000; Jönsson et al., 2008). To do this, the lensing distribution p(μ, z)

needs to be reconstructed. Some efforts to this end have been made so far such as by

Smith et al. (2013) where they look at a sample of SDSS SNIa, however, it is estimated

that ∼ 600 SNIa are required per redshift bin to have sufficiently strong statistics. It

is expected that Nancy Roman Grace Telescope will provide enough SNIa for multiple

redshift bins in the range 1 < z < 2 that will provide an independent probe of our

cosmology for that range.

• Strong Lensing of SNIa - Strong Lensing of SNIa is expected to be one of the sources

of data that will help to constrain our cosmology. The process to do this involves a

method known as Time-Delay Cosmography which measures the delay in arrival time for

multiple images of a strongly lenses transient. Via this procedure one can derive a ratio

of cosmological distances to the source and the lens which is inversely proportional H0

as well as being sensitive to other cosmological parameters. This method has already

been used successfully with strongly lensed quasar data (Suyu et al., 2018; Birrer et al.,

2020). In terms of SNIa, the first lens was detected by Kelly et al. (2015), and was named

‘SN Refsdal’ after Sjur Refsdal who first proposed using such lenses for Cosmological

inference (Refsdal, 1964). The first such lens that was strongly resolved and multiply

imaged was iPTF16geu (Goobar et al., 2017) which Dhawan et al. (2019) was able to

determine magnification, extinction, and time-delay estimates for.

A summary of the sources of data and their redshift distribution as well the kind of cosmological

probes that can be performed is shown in Fig. 3.10 and is taken from the Astro2020 decadal

survey white paper (Scolnic et al., 2019).
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Figure 3.10: A summary of the sources of SNIa data in the 2020’s and the probes of cosmology
that can be performed with them. Figure taken from (Scolnic et al., 2019)

.



Chapter 4

Bayesian Statistics

One of the foundational pillars of the scientific method is the use of statistical analysis. This is a

big departure from the days of old when Ernest Rutherford supposedly said “If your experiment

needs statistics, you ought to have done a better experiment”. The process of empiricism leads

us to make observations about the world which we can then use in order to draw conclusions and

update our beliefs. This sort of reasoning process is inevitably a probabilistic exercise. However,

observations and experiments are never perfect, as measurements are subject to stochastic errors

which can have many sources. These statistical, or ‘aleatoric’, uncertainties are a limiting factor

in determining how informative the data can be. In addition, the models, measuring apparatus

and assumptions we use to analyse the data are also rarely perfect in practice which then become

a source of systematic, or ‘epistemic’, error. Incorporating these various sources of uncertainties

in a rigorous and consistent manner is of utmost importance to ensure the conclusions we derive

from observed data are accurate reflections of the physics of the universe.

The seminal results of Riess et al. (1998); Perlmutter et al. (1999) that indicated the late-time

acceleration of the universe used only ∼ 50 SNIa which is a far cry from the volumes of data

we currently have and are expected to have access to within the next decade as mentioned in

Chapter 3. With the increasing volume and quality of data there is a corresponding reduction in

the statistical uncertainties, giving rise to the era of precision cosmology. The existence of new

physics is often inferred via detections at the 3− 4σ level necessitating the need for statistical

53
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analyses that are rigorous in their analysis of uncertainties, since the increased significance

of any resulting biases could mistakenly point to the existence or lack of new physics. This

increased influx of data presents a significant computational challenge for statistical inference,

as methods must scale efficiently to these very large datasets. The higher precision constraints

that can be place with these larger datasets also mean that previously neglected systematic

uncertainty effects must now be accounted for by providing more detailed and complex models

that can account for previously more subtle effects.

In this chapter, I will provide a brief introduction to the fundamentals of Bayesian statistics and

then move on to discussing the necessary numerical tools that allow us to fully utilise Bayes’

Theorem. I will then introduce the Bayesian Hierarchical Model BAHAMAS (March et al., 2011;

Shariff et al., 2016) which we employ for much of the analysis in this thesis. Comparisons of

the BAHAMAS algorithm with classical frequentist methods is also given. For a more in-depth

overview of the topic of Bayesian analysis in the context of Astrophysics, I refer the reader to

(Trotta, 2008; Loredo, 1992; Hobson et al., 2009; Liddle et al., 2009).

4.1 Bayesian Analysis

The history of Bayesian analysis goes all the way back to the 18th century when it was first

introduced by the Reverend Thomas Bayes, whose work was published posthumously after his

death by his friend Richard Price (Bayes & Price, 1763) in a document titled ‘An Essay towards

solving a Problem in the Doctrine of Chances’. This essay included the theorems of conditional

probability which now are part of the cornerstones Bayes’ Theorem.

The way we think about Bayes’ Theorem today is perhaps best attributed to Pierre-Simon

Laplace instead who independently around the same time, in 1814, formalised the mathematics

used for Bayes’ Theorem as it is used today. He used this to realise the skewed birth ratio of

males to females was a ‘general law of the human race’ as opposed to statistical anomaly and

measured the masses of Jupiter and Saturn to within 1% of the correct value (based on today’s

measurements). However, his work on the Central Limit Theorem late in life meant that he
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rarely used Bayesian statistics upon his death, using frequentist statistics instead (discussed

further in Section 4.1.1). These statistics were in general much easier to compute than their

Bayesian counterpart at the time and usage of Bayes’ theorem gradually fell out of favour.

Though Bayes’ Theorem did not find popularity again until the late 20th Century where our

computational power increased enough to make Bayesian problems more tractable, before then,

there were still pockets of scientists using it great aplomb. Alan Turing famously used a Bayesian

approach to reduce the number of possible dials in his enigma machine he had to consider as

new information came in and Arthur Bailey used it to determine financial rates data (see,

McGrayne (2011) for details on both usages). In Astronomy and Cosmology itself, Bayesian

methods have seen a significant uptick of usage in recent decades (see Fig. 1 of Trotta (2008)).

For a more complete historical context, I refer the reader again to McGrayne (2011).

4.1.1 Interpretations of Probability

Before I can extend our discussion further, it is important first to denote what a probability is.

There are competing schools of thought here and even today the correct interpretation is the

subject of much debate. For much of history, the dominant interpretation of probability was

that of the ‘frequentist’ perspective. Within the frequentist framework, probability is defined

as the relative frequency of an event compared to the number of trials performed in a sequence

of repeated trials, in the limit where the number of trials tends to infinity. The typical example

used to exemplify this interpretation is that of flipping a coin. For the frequentist interpretation,

the probability of the coin toss being tails is given by the fraction of tosses that are tails in an

infinite sequence of tosses.

This differs from the Bayesian interpretation of probability which defines probability as the

‘degree of belief’ in an outcome. This interpretation of probability is noted to bypass some of

the pitfalls of the frequentist interpretation. One immediate consequence of this formulation is

that it does not require repeated trials, useful for situations where a trial cannot be repeated.

Perhaps the most relevant example of this is our Universe. There is only one universe so it

is difficult to answer, in a principled sense, questions of the kind “what is the probability our
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Universe is flat? ”. Furthermore, Trotta (2008) argues the frequentist definition can be circular

as it assumes a fixed probability in the repeated trials, which is difficult to justify as it is also

the same quantity we are trying to estimate. It also not clear often how many trials is sufficient

to get a valid estimate of the probability, since infinite trials is clearly not feasible.

4.1.2 Bayes’ Theorem

The Bayesian interpretation of probability views probability as a degree of belief about the

value of a parameter given our current state of information. In this context, parameters are

random variables that are conditional on our current state of knowledge and have their own

probability distributions which encode our uncertainty of the parameter’s value.

The Bayesian interpretation of probability can be shown to come about naturally while following

the axiomatic rules of probability related to conditional probability. Consider first, the event

A which has probability p(A) of occurring and the event B which has probability p(B) of

occurring. Here the notation writes p(x) as shorthand for p(X = x) which is the probability

that a random variable X has the value x. Where x is discrete (continuous), the function p(x)

is the probability mass function (probability density function), with the requirement that the

summation (integration) over the whole range of allowed values of x,
∑

i p(xi) (
∫
p(x)dx), is 1.

If you wanted to define the probability p(A|B), which is the probability of event A occurring

given the event B has happened, the multiplication law of probability allows you to define the

conditional probability as a function of the joint probability p(A,B) to give you

p(A|B) =
p(A,B)

p(B)
. (4.1)

It can be seen this is consistent with the Bayesian definition of probability wherein our knowl-

edge of A is conditionally dependent on information given by B and A is a random variable

given by a probability distribution
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Similarly p(B|A) can be defined as

p(B|A) = p(A,B)

(B)
. (4.2)

By noting the common term p(A,B) (which happens because of the transitivity rule p(A,B) =

p(B,A)) we can then combine both equations to get

p(A,B) =
p(A,B)

p(B)
=

p(A,B)

(B)
. (4.3)

This is easily rearranged to give the final Bayes’ Theorem equation

p(A|B) =
p(B|A)p(A)

p(B)
. (4.4)

The power in using Eq. (4.4) becomes apparent via a simple remapping of labels. Suppose

you had observed some data, d, and a hypothesis for a model, M , that takes in n parameters,

θ = {θ1, ..., θn}. A natural question you may wish to ask is “what is the probability of the

parameters θ given the observed data d?”. In other words, if one wishes to know p(θ|d). Via

the remapping A → θ and B → d, we can rewrite Bayes’ theorem as

p(θ|d) = p(d|θ)p(θ)
p(d)

(4.5)

which immediately gives us the answer we require provided we can define the three terms on

the right. It is also often common to make explicit here that our hypothesis on the parameters

θ depends on our model M by adding in this extra conditional to write

p(θ|d,M) =
p(d|θ,M)p(θ|M)

p(d|M)
. (4.6)

The term p(θ|d,M) is called the joint ‘posterior probability’ of the parameters θ and is the main

quantity of interest in the Bayesian approach. p(θ|M) is know as the ‘prior’ which denotes the
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prior belief one has about the parameters of the model before the data is observed (discussed

further in Section 4.1.3). p(d|θ,M) is known as the ‘Likelihood’ and is the probability of the

data occurring conditioned on the set of parameters θ and our model M . For the frequentist

approach, maximisation of this quantity is the main goal. It should be noted that the knowledge

provided from this likelihood quantity is different from what is typically the main quantity of

interest in scientific enquiries where inferring that a dataset would be unlikely under a particular

hypothesis is not the same as inferring how likely that hypothesis is, the latter of which lines

up more intuitively with what one would want as the result of a scientific enquiry and is given

by the Bayesian posterior density.

One feature of this Bayesian formulation is the ease by which one can marginalise out nuisance

parameters. Nuisance parameters are often labelled as such due to their ability to influence

data but being of no interest for inference. One of the most frequent examples in astrophysics

is the problem of dealing with background source counts, b, that makes the true source count

uncertain, s. Dealing with them within a Bayesian context is a simple process which involves

inferring the joint probability distribution of s and b, p(s, b), and then b can be removed from

the joint density via marginalisation.

The rules of marginalisation can be derived from the simple axioms of probability theory. The

marginalisation rule states

p(A) =
∑
i

p(A,Bi) (4.7)

where in the continuous limit this is

p(A) =

∫
p(A,B)dB. (4.8)

Here B can be considered the nuisance parameter and A the main parameter of interests. The

effect of B on the joint density can be removed by summing over all possible values of B as

described in Eq. (4.7) or Eq. (4.8) to get a probability density that only depends on A. This

integration is not always easy to perform over a large number of dimensions, though, as will

be discussed later, this is easy to do numerically when one has samples proportional to the
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joint density. One benefit of this process of marginalisation is that the uncertainty associated

with this unknown nuisance parameter is propagated onto the parameters of interest in the

posterior. Fixing the nuisance parameter to a reasonable value, as is common in some analyses,

will incorrectly account for the uncertainty by generally underestimating it and will lead to

a posterior that is narrow and an inaccurate representation of the state of knowledge of the

system.

One further feature of the Bayesian formulation is that in many cases it can be shown that the

frequentist results are a special case of the Bayesian case under some implicit assumed uniform

prior. The Bayesian formulation simply makes this implicit prior explicit.

4.1.3 Priors

As can be seen from equation Eq. (4.6), one of the vital ingredients for using Bayes’ formula is

p(θ|M). This quantity is called the ‘prior’ and denotes our prior belief about the parameter of

interest before the data has been seen and may even be informed by the results of a previous

experiment which is the cause of the famous quote by Lindley “yesterdays posterior is today’s

prior” (Lindley, 2000). The prior is the subject of much criticism of the Bayesian approach as

it implies the posterior is a consequence of a subjective state of knowledge as opposed to an

objective one and is therefore subjective itself. However, priors also allow us to restrict the

support for the likelihood to ‘sensible’ regions when there is relevant external information e.g.,

in an experiment where you are trying to determine the mass of an object, relevant external

information is that measured masses are positive. Furthermore, it can be shown under differ-

ent subjective prior assumptions, repeated application of Bayes’ theorem will cause asymptotic

convergence to a common posterior density which is objective as required (provided the ini-

tial prior is non-zero where the likelihood is large). Furthermore, under this asymptotic limit,

Bernstein-von Mises theorem states the posterior converges to a multivariate normal distribu-

tion centered on the Maximum Likelihood Estimate (MLE) (Vaart, 1998). One importance

of this is that, due to the asymptotic correctness, it links Bayesian and frequentist inference

together and given sufficient data, one can make valid frequentist statements about estimation
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and uncertainty on parameters from the Bayesian posterior distribution.

Another notion that is important for priors is the idea of ‘proper priors’. A valid probability

distribution is one where
∫
p(x)dx = 1. Priors that obey this rule are known as ‘proper priors’

and those that do not are ‘improper priors’ (Sivia & Skilling, 2006). For the purposes of model

comparison (discussed later in section 4.1.5), properly normalised priors are a requirement and

is also a prerequisite to having a properly normalised posterior density in Bayes’ formula.

Despite the subjectivity that can be involved in choosing priors, an attempt can be made

however to construct priors mathematically to make them minimally informative and remove

this subjectivity. Care needs to be taken here when constructing these uninformative priors.

While on an initial glance, a uniform prior may make for a suitably uninformative prior where

p(θ) ∝ 1, without upper and lower bounds on the prior, it does not have a finite integral and

therefore cannot be a proper prior. Imposing these lower and upper bounds however, makes

them no longer uninformative as the range of allowed values is now restricted. The uniform

prior is also parameterisation-dependent, so under a change of variables, say from θ to φ,

the prior on p(φ) can be informative if the transformation is non-linear. Finally, in a larger

number of dimensions, D, having a uniform prior on all the parameters will cause most of the

samples of the prior to concentrate in a D-dimensional shell with constant variance, causing

the ‘concentration-of-measure’ phenomenon. On the other hand, the volume is concentrated in

the corners of the hypercube meaning a high dimensional uniform prior can also end up highly

informative (see Trotta (2008) for more details).

One of the approaches to constructing priors that are uninformative was given by Jeffreys

(1939). These are sometimes called ‘Jeffrey’s priors’ where the prior on θ can be given by

p(θ) ∝
√
IF (θ) (4.9)

where IF (θ) is the Fisher Information and is given by

IF (θ) = −
∫ (

d2

d2θ
log p(d|θ,M

)
p(d|θ,M)dd (4.10)
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The Jeffrey’s prior has the property that it is invariant under reparameterisation which makes

them a common feature in Bayesian analysis. However, they are not always possible to normalise

so care needs to be taken when using them.

Another alternative set of priors called ‘reference priors’ have also been proposed (Bernardo,

1979) which is based on information theory. The method of constructing reference priors is such

that they maximise the gain in information gain as you update your prior from your posterior.

This information gain is frequently measured using the Kullback-Leibler (KL) divergence, DKL

(Kullback & Leibler, 1951), which is defined as

DKL[p(θ|M)||p(θ|d,M)] =

∫
p(θ|M) log

p(θ|M)

p(θ|d,M)
dθ. (4.11)

and is sometimes known as the ‘relative entropy’. However since the prior represents your

belief before you observe the data and the true posterior, one usually maximises instead the

expectation of the KL divergence between the posterior and prior when averaged over the data

distribution instead of using the data directly to maximises the information gain. In other

words,

I(p(θ|M)) =

∫
DKL[p(θ|M)||p(θ|d,M)]p(d)dd. (4.12)

The prior that maximises this quantity is the reference prior. Typically this can be difficult to

compute however due to the high-dimensionality of the integral, though numerical algorithms

exist that can reduce the dimensionality of the problem for efficient computation (see section

3 of Dey (2005)).

Certain combinations of likelihoods and priors that are ‘conjugate distributions’ can yield an-

alytical posterior distributions. This involves defining a ‘conjugate prior’. When combining a

conjugate prior with an appropriate likelihood, the posteriors of these models have the same

probability distribution as the prior, but with different hyperparameters. In this scenario, the

posterior and prior are referred to as conjugate distributions. This means we can analytically

write the posterior distributions in a closed form. Furthermore, for these distributions it is

usually easy to calculate summary statistics of interest such as the mean and variance which
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makes them useful. The downside is that one is restricted in their choice of likelihood and prior

which may not be suitable for modelling the problem of interest.

4.1.4 Parameter Inference

One of the most common uses of Bayes’ theorem is for parameter inference for a given model.

This could be for example, inferring the parameters that constrain a ΛCDM model. In this

scenario, if one is not interested in model comparison, one can usually drop the normalising

constant of Bayes’ Theorem and it is common to write it in the form

p(θ|d) ∝ p(d|θ)p(θ) (4.13)

where I have dropped the explicit conditioning on the model M for clarity and it is implicit

instead since for parameter inference purposes the model is fixed. A consequence of this is that

the right hand side of Eq. (4.13) may no longer integrate to unity and be a valid probability

density. For the purposes of parameter inference though, this is sufficient. Another consequence

of the fixed model is that the denominator p(d|M) is a constant which is why it can be neglected

in this form of Bayes’ theorem.

One can also combine independent probes of ΛCDM model, such as SNIa and weak lensing, by

taking the product of the likelihoods to create a joint likelihood, providing they are independent

probes and uncorrelated, or this correlation will need to be taken into account in the likelihood

(see Krause et al. (2017)).

With the likelihood and priors defined, parameter inference can be done. The process for

doing so usually involves drawing samples from the posterior or something proportional to the

posterior in the case of Eq. (4.13). The sampling used for such purposes are typically Markov

Chain Monte Carlo (MCMC) or Nested sampling schemes (discussed further in section 4.2).
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4.1.5 Bayesian Evidence and Model Comparison

One feature of Bayes’ theorem is that a simple route for model comparison is provided, where

model comparison is defined as computing the relative probability between two models. Unlike

in the case of parameter inference, the normalisation of the posterior needs to be computed

for model comparison. This requires the computation of the denominator in Eq. (4.6), p(d|M).

This term is usually referred to as the ‘Bayesian evidence’ or the ’model likelihood’ but can also

be known as the ‘marginal likelihood’ because it can be computed by taking the numerator of

Eq. (4.6), p(d|θ,M)p(θ|M), and marginalising out the dependence on θ such that

p(d|M) =

∫
p(d|θ,M)p(θ|M)dθ. (4.14)

This expression makes clear why the Bayesian evidence is the normalising constant to create a

valid posterior density, because it is the integral over the numerator. This allows the Bayesian

evidence to be thought of as the average of the likelihood over the prior space for the model

of choice. It is clear here the importance of the priors and how we choose them as it can have

a significant impact on the final value of the computed evidence. The integral in Eq. (4.14) is

in general difficult to compute numerically when the dimensionality of θ is high. Methods for

computing this quantity are discussed further in section 4.2.

The importance of this quantity in model comparison is the reason the normalising constant

can no longer be ignored like in parameter inference and the normalisation of the posterior is

required. To understand why, consider the probability of Mi being the true model conditioned

on the observed data d. This conditional probability can be given by application of the Bayes’

rule as

p(Mi|d) = p(d|Mi)p(Mi)

p(d)
. (4.15)

As before, we can rewrite the denominator by using the marginalisation rule to get

p(Mi|d) = p(d|Mi)p(Mi)∑
j p(d|Mj)p(Mj)

(4.16)
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where to compute the denominator in Eq. (4.16) we summed over all possible models Mj to

compute the normalising term p(d). However, the possible models to consider can be infinite

so computing this quantity is not practical in most scenarios. Instead, within the Bayesian

formulation the preferred route is to compare the ratio between the probability of two models

M1 and M2 conditioned on the observed data such that

p(M1|d)
p(M2|d) =

p(d|M1)p(M1)

p(d|M2)p(M2)
. (4.17)

In this scenario, the difficult to compute denominator from Eq. (4.16) has now cancelled, leaving

behind only the ratio of the model evidences (the normalising quantity in Eq. (4.6)) and the

ratio of the model priors. It is common to call the ratio of the model evidences the ‘Bayes

factor’, B12, where

B12 =
p(d|M1)

p(d|M2)
. (4.18)

In the scenario where each model is equally probably, the model prior ratio becomes unity.

Therefore, the relative probability of the of the models is given by this Bayes factor. The

quantity B12 then states the degree of support for M1 over M2. Often this is measured on a

qualitative scale known as the ‘Jeffrey’s Scale’ and is shown in Table 4.1

Table 4.1: Summary of the Jeffrey’s scale for evaluating the Bayes’ Factor. The table and
thresholds have taken from Trotta (2008). The odds indicate how favoured model M1 is over
M2.

|lnB12| Odds Strength of Evidence

< 1.0 � 3 : 1 Inconclusive
1.0 ∼ 3 : 1 Weak evidence
2.5 ∼ 12 : 1 Moderate evidence
5 ∼ 150 : 1 Strong evidence

One feature of this form of model comparison is its ability to quantify the quality of the

data fit, but also penalise the model complexity based on the number of free parameters to

reduce the chance of overfitting. Models with fewer parameters are preferred because more

parameters leads to a larger prior volume which reduces the average of the likelihood over the

prior space and therefore reduces value of p(d|M) when evaluating it. However, this only applies
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to parameters that can be constrained by the model. Parameters that are not constrained by

the model are not penalised in the Bayes’ Factor. This therefore requires the goodness-of-fit of

the data to be better if this more complex model is to be preferred over a simpler model with

fewer parameters. This is in accord with ‘Occams razor’ or the ‘principle of parsimony’ which

states that a simpler model should be preferred if it explains the data well (Sivia & Skilling,

2006; Ariew, 1976).

To remove the dependence on the model when inferring the posterior, p(θ|d,M), one can also

consider the idea of ‘model averaging’ (see Fragoso et al. (2017)) where the marginalisation rule

is used such that

p(θ|d) =
∑
i

p(θ|d,Mi)p(Mi|d). (4.19)

This implicitly assumes you have exhaustively summed over all possible models Mi and ensures

the uncertainty in the model is incorporated in the parameters of interest.

4.2 MCMC Algorithms and Nested Sampling

As discussed in Section 4.1.2, unless the posterior has a closed form solution, for example,

by using conjugate priors and likelihoods, then the posterior is usually inferred through some

sampling scheme. The literature on sampling schemes is extensive, but for the purposes of this

thesis I restrict the discussion to Markov Chain Monte Carlo (MCMC) schemes and Nested

sampling schemes which are the most common forms of sampling in Bayesian contexts and the

latter is of the type used in the research exhibited in this thesis. Many variants of MCMC

exists, each designed with different properties in mind. I outline below the salient properties

of MCMC schemes that are common to all.

In MCMC methods, the goal is to produce a series of samples that form what is called a

‘Markov chain’ that converges to an equilibrium distribution that matches that of our target

distribution, in this case, the posterior density p(θ|d,M).

A defining feature of a Markov chain is that is that it satisfies the Markov property. This
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property states that in a sequence of random variables X i for i = {1, .., N}, the next value in

the sequence only depends on the current value. In other words

p(X i|X1, ..., X i−1) = p(X i|X i−1). (4.20)

In the context of our Bayesian formulation, the MCMC chains takes steps in the parameter

space defined by θ whilst following this property. The step itself defined by the transition

probability T (θi, θi+1) which gives the probability of your next step θi+1 conditioned on the

current value θi.

To know when the Markov chain has converged and become stationary one necessary (but not

sufficient) condition is that the chain should obey the ‘detailed balance condition’ property

which states

p(θi)T (θi, θi+1) = p(θi+1)T (θi+1, θi). (4.21)

One of the properties of Markov chains is the ‘ergodic’ property which ensures that given a

sufficient number of samples, the chain should eventually converge to the target distribution.

For MCMC in practice, there are some numerical considerations that need to be heeded:

• While ergodicity of the chains guarantees that it will eventually converge to the target

distribution, if a poor starting point is chosen, the final chain can be unrepresentative

of the target distribution. As a remedy to this, some fractional percentage of the first

samples are discarded (South et al., 2021). This is frequently referred to as the ‘burn-in’

period.

• Successive chains in the sample are generally correlated because of the Markov property.

If independent samples are required, then a process known as ‘thinning’ can be used where

a sample is taken every n points (Gelman et al., 2013)

• If the posterior being sampled can have multiple peaks the chain can get stuck in a

local maxima. Different MCMC algorithms handle this in different ways, but in general,

proper exploration of the parameter space and experimentation with MCMC algorithms
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is required to get around this.

• Checking the chain has converged can in general be difficult to assess but several proce-

dures and tests exist (see Gelman et al. (2013) for more information).

Whereas usually the marginal distribution for a single parameter p(θi|d) is quite difficult to

obtain, having access to a set of samples from an MCMC chain makes this significantly easier.

Consider, if we wanted the marginal distribution p(θ1|d). One would need to perform the

following integral

p(θ1|d) =
∫

p(θ|d)dθ2dθ3...dθn (4.22)

This is numerically difficult for large n. As the Markov chain contains samples from the

full posterior, their density reflects the density of the full posterior. Therefore, the marginal

distribution for the parameters of interest can easily be obtained via numerical marginalisation

by binning θ1 from the chain and counting the number of samples for the relevant parameter

that fall in each bin to construct the density of p(θ1|d). A similar procedure can be used to

construct any m-dimensional marginal distribution where m < n.

Many implementations of MCMC schemes exist such as Metropolis-Hasting (Metropolis et al.,

1953; Hastings, 1970), Gibbs (Geman & Geman, 1984), Hamiltonian Monte Carlo (Duane et al.,

1987) and more.

4.2.1 Nested Sampling

While MCMC algorithms are prevalent in Bayesian analysis, for this thesis we use a sampling

algorithm that is not MCMC. Therefore, I limit our discussion here to the one primarily em-

ployed in the research presented in this thesis which is ‘Nested’ sampling (Skilling, 2006) and

one of its public implementations and variations of it, MultiNest (Feroz & Hobson, 2008; Feroz

et al., 2009). The MCMC implementations mentioned, are primarily targeted at parameter

inference as opposed to model comparison and are not suited to calculation of the Bayesian ev-

idence for model comparison and often extra computationally expensive steps are taken to do so.
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Examples of these steps include Thermodynamic integration with annealing, using the Laplace

approximation if the likelihood is unimodal, or the Savage-Dickey Density Ratio (SDDR) for

the case of nested models (see Annis et al. (2019); Heck (2018); Trotta (2008) for more detail).

In contrast to these methods, nested sampling follows an ‘evidence first’ approach whose pri-

mary goal is to compute the Bayesian evidence, but as a byproduct generates chains that can

also be used for parameter inference. I provide here a high level overview that is the core of

most nested sampling implementations and follows the procedure outlined by Skilling (2004,

2006).

Consider first a likelihood function L(θ), a prior distribution, π(θ), and Bayesian evidence, Z

which is the normalising constant of our posterior. This can be used to define the posterior

density function

p(θ|d) = L(θ)π(θ)
Z

. (4.23)

The method behind nested sampling involves reparameterising the evidence calculation in terms

of a new parameter X which denotes the fractional prior volume above some likelihood thresh-

old λ. For this purpose and ease of calculation, the likelihood is sorted to be monotonically

decreasing as a function of X which varies from 0 to 1. We can define this fractional volume as

X (λ) =

∫
L(θ)>λ

π(θ)dθ. (4.24)

The likelihood can then be rewritten as

L(X (λ)) ≡ λ. (4.25)

The result of this reparameterisation is that we can restate the evidence integral as

Z =

∫ 1

0

L(X )dX (4.26)

which is now a much simpler 1-dimensional integral as opposed to the potentially difficult to

compute multidimensional one in θ. The task here is now to approximate X (λ) in a computa-
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tionally efficient manner.

In nested sampling a set number of random points (sometimes known as the ‘live points’) are

drawn from the prior for which a corresponding value of X is calculated and the likelihood

for each point is evaluated. Then, the lowest likelihood point is discarded (but the value of

X is kept recorded) and a new point is sampled from the prior with the condition that its

likelihood has a greater value than the point discarded. Via this manner, X is probabilistically

and geometrically compressed from 1 to 0 and the sampling concentrates around regions with

the greatest likelihood. After some stopping criterion is reached (dependent on the implemen-

tation), the sampling is stopped and the integral is easily evaluated numerically, such as by

using a trapezoidal rule as initially done by Skilling (2004, 2006).

The main difficulty from the above procedure is sampling points from the prior with hard

likelihood constraint that the new likelihood is greater than a likelihood boundary (called an

iso-likelihood contour) set by the previously discarded point. As the scheme progresses, this

becomes exponentially harder if one samples naively from the prior as more samples from the

prior are discarded before a valid prior sample can be found. Efficient sampling to get around

this issue is what differentiates the different implementations of nested sampling.

We discuss here the specific of the algorithm associated with MultiNest (Feroz & Hobson,

2008; Feroz et al., 2009) which is employed for much of the analysis within this thesis. The

MultiNest sampler works by using ellipsoidal rejection sampling. The procedure for this works

by sampling from a restricted space formed by an ellipse around the current samples rather than

the prior itself. To not bias the sampling, a collection of ellipses approximating the likelihood

boundary are generated. This collection of ellipses is generated by using a k-means clustering

analysis on a set of the previous samples. New sample are drawn from these ellipses. Samples

are then rejected until the likelihood boundary is respected, replacing the lowest likelihood

point which is removed and stored as before in the general algorithm outline. Because of the

restricted sampling space created by these ellipsoids, this rejection occurs less frequently than

when compared to naively sampling the prior. An extra benefit of using multiple ellipsoids is

that the algorithm can naturally handle multimodal posteriors as each mode can be assigned
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different ellipsoids to sample from. This is a feature that traditional MCMC algorithms struggle

with as going from one mode to another requires the samples crossing a low-probability regions

between modes which is difficult to do.

Other popular implementations of nested sampling used in cosmological contexts include PolyChord

(Handley et al., 2015), DyNesty (Speagle, 2020), UltraNest (Buchner, 2021).

4.3 Bayesian Hierarchical Modelling of SNIa

The mechanics of how Bayesian models work mean that it is easy to propagate uncertainty

and correlations between parameters in a principled manner to the final inference and posterior

distribution. This opens up the avenue to do modelling at multiple levels, where the probability

distributions can be assigned at each level and uncertainty associated with parameters at each

level can be propagated forward to intermediate levels (which may not be of interest) and

the final level. In essence, a ‘hierarchy’ is built where each level has conditional distributions

dependent on the values of the previous level and this sort of model is known as a Bayesian

Hierarchical Model (BHM). The method takes advantage of the fact that hyperparameters of

our priors can have probability distributions assigned to them with hyperpriors to build the

‘hierarchy’.

One advantage of this hierarchical approach is that by using information across groups of

observations at different levels, inference about individual samples, or lower-level parameters,

can be informed by one another causing the marginal posteriors to tighten. This phenomenon

is often referred to as ‘shrinkage’ or ‘borrowing strength’ (Gelman et al., 2013) makes BHM’s

suitable for modelling populations. March et al. (2011) also shows that when the errors on

independent variables are large, and the sample size is relatively small, then BHM’s lead to

smaller biases in the inferred parameters compared to the frequentist methods.

However, one benefit of frequentist methods over the Bayesian method is their smaller computa-

tional requirements. Bayesian models are also typically more sensitive to the model description

and can be more biased if incorrect assumptions are used. One set of assumptions here is the
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priors which must be properly justified, especially when sample sizes are small owing to the

potentially large impact these have on the final posterior.

Bayesian hierarchical models are often presented as ‘Directed Acyclic Graphs’ (DAGs), which

are graphical diagrams that show the conditional dependence of parameters in the model. The

edges connecting two nodes (parameters) of the DAG show the two nodes are conditionally

dependent. As the graph is ‘directed’ this also shows which way the conditional dependence is.

This means DAG’s efficiently provide clarity on a model and its dependencies in visual manner

while also providing a logical structure that is easily interpreted by machines and programming

frameworks.

4.3.1 The χ2 Statistic

Before we discuss the BHM, BAHAMAS, that is used for SNIa analysis, a brief detour is taken to

discuss the χ2 based method that is also commonly used for inference as a comparison point.

As stated before, the likelihood is the probability of the data occurring conditioned on the set

of parameters θ and our model M . One of the most common forms of the likelihood that is

constructed in frequentist frameworks is the Gaussian likelihood. Consider a collection of N

measurements d̂ = {d̂1, ..., d̂n}, with an associated error matrix Σ which can be assumed to be

known and constant. Here in this thesis, variables with a hat symbol indicate it is a ‘measured’

value. Given that we have a model M and some model parameters θ = {θ1, ..., θN} that it takes

as input, we can define the probability of the data occurring under this model and parameters

i.e, the likelihood, constructed as a Gaussian as

p(d̂|θ) = 1

|2πΣ|−1/2
exp

(
−1

2
χ2

)
(4.27)

where the term is χ2 is

χ2 = (d̂− d(θ))TΣ−1(d̂− d(θ)) (4.28)

and d(θ) is the theoretical value of d expected for a given set of θ. Under frequentist frameworks,
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the general goal is the find the θ that maximises the likelihood, p(d̂|θ). For a constant error

matrix Σ, this is equivalent to minimising the value of χ2. The term χ2 follows the chi-square

distribution with ν degrees of freedom (d.o.f) (Wilks, 1938; Casella & Berger, 2001). ν is

defined as ν = n−N . It can be shown the mean of this chi-square distribution is ν. Values of θ

that are derived from fitting Eq. (4.28) is expected to fall close to the mean such that χ2/ν ≈ 1.

4.3.2 BAHAMAS

In this thesis, we adopt a BHM for the statistical analysis of SNIa data, called BAHAMAS (March

et al., 2011; Shariff et al., 2016). The model in this case is ‘hierarchical’ because it refers to a

layer of unobserved (so-called ‘latent’) variables for each SNIa, corresponding to the true value

of their light-curve-derived properties (as opposed to the noisy measured value). The latent

variables are marginalised over in the inference, and are constrained in virtue of the fact that

they are all generated from the same underlying population distribution, which is modelled

with a set of hyperparameters, themselves determined from the data.

This Bayesian methodology for SNIa analysis pioneered in Mandel et al. (2009); March et al.

(2011); Mandel et al. (2011) has been adopted and extended in several other papers, including

e.g., UNITY (Rubin et al., 2015), STEVE Hinton et al. (2018) and Simple-BayeSN (Mandel

et al., 2017) (see also Nielsen et al. (2016) for a profile likelihood interpretation). Here, we

briefly summarize BAHAMAS.

We denote with a hat symbol observed quantities, in order to distinguish them from the latent

(i.e., unobserved) variables in our model. For each SNIa i, the data di can be summarised by

a vector

di = {ẑi, ĉi, x̂1i , m̂Bi
, Ĉi}, (4.29)

where ẑi is the observed redshift, m̂Bi
is the observed peak B-band apparent magnitude, x̂1i

and ĉi are observed ‘stretch’ and ‘colour’ corrections, which are summary statistics of the

lightcurve of the SNIa obtained with the lightcurve fitter SALT2 (Guy et al., 2005; Guy et al.,

2007) during the standardization procedure. Furthermore, Ĉi = Cov(ĉi, x̂1i , m̂Bi
) is a 3 × 3
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variance-covariance matrix that describes the measurement error on the observables.

In BAHAMAS, latent variables for each SNIa are introduced, in order to model each source of un-

certainty according to its origin: measurement error, population scatter and intrinsic (residual)

variability. A probabilistic hierarchical model is built as follows: each SNIa has latent variables

M ε
i , x1i and ci, representing the objects’ ‘true’ (i.e., noiseless) absolute magnitude, stretch cor-

rection and colour correction, respectively. These latent variables follow normal distributions,

representing population variability of the SNe and parameterised by their means and variances:

x1i ∼ N (
x1	, R

2
x1

)
, (4.30)

ci ∼ N (
c	, R

2
c

)
, (4.31)

M ε
i ∼ N (

M ε
0, σ

2
res

)
(4.32)

where x1	, c	 and M ε
0 are the population means and R2

x1
, R2

c and σ2
res are the population vari-

ances, all of which are also estimated from the data. We collect the population-level pa-

rameters in a vector of variables ϑ ≡ {x1	, c	,M
ε
0, R

2
x1
, R2

c , σ
2
res}. The intrinsic magnitude

of each SNIa Mi, is modified by applying the linear ‘Tripp relation’ (Tripp, 1998), so that

Mi → M ε
i ≡ Mi + αx1i − βci, where the set of regression coefficients B = {α, β} are nuisance

parameters that control the slope of the stretch and colour correction, respectively. Therefore,

M ε
i is a linear function of Mi that features a lower population variance, represented by σ2

res. This

procedure is what allows us to standardise the SNIa ’s as mentioned in section 3.6 and reduce

sufficiently the residual standard deviation of their peak absolute magnitude so that they can

be used as luminosity distance indicators. Shariff et al. (2016) was able to apply BAHAMAS to

determine their SNIa data had a mean residual standard deviation around the peak absolute

magnitude of σres ∼ 0.1, similar to the results obtained by Riess et al. (1998); Perlmutter et al.

(1999). At the latent level, the apparent peak magnitude mBi is related to the standardised

intrinsic magnitude M ε
i via the distance modulus of Eq. (3.3):

mBi = μi(ẑi, �)− αx1i + βci +M ε
i . (4.33)
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Figure 4.1: The DAG showing the BAHAMAS model. Figure adapted from Shariff et al. (2016)

Finally, the observed values of {m̂Bi
, x̂1i , ĉi} are modelled as normally distributed around their

latent values, with variance-covariance matrix given by Ĉi. Additionally, a systematic errors

covariance matrix, Csyst, that correlates different SNIa (for example, because of calibration un-

certainties common between SNIa within the same survey) is included when available. Inference

is based on the marginal distribution of the quantities of interest, �, which includes uncertainty

at all levels of the hierarchy.

The DAG used by (Shariff et al., 2016) to depict the model is shown in Fig. 4.1. This DAG

also shows how BAHAMAS has a module for including a host galaxy mass-step correction with

the terms: M̂g,i, the host galaxy mass measurement, σg,i the measurement error, Mg,i the latent

unobserved mass. The population parameters defining the normal distribution the latent galaxy

mass is drawn from are Mg,	 and Rg. Shariff et al. (2016) showed that adding a mass-step or

a more general linear covariate as a function of host-galaxy mass has little impact on the
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ensuing cosmological parameters inference. Therefore, in this thesis we do not adopt a mass-

step correction.

We refer the reader to March et al. (2011) and Shariff et al. (2016) for the full mathematical

detail of the BAHAMAS model, marginalization procedure and algorithms used for sampling the

resulting posterior distribution. It is emphasised here that BAHAMAS is not a fully complete

BHM as it still lacks features that could account for effects in the data such as those due to

metallicity, host galaxy properties and selection effects (an issue which is addressed in Chapter

7) and thus requires traditional ‘ad-hoc’ corrections to the data still to account for these effects.

4.3.3 Comparison with the χ2 method

In terms of the traditional chi-squared approach that has been followed by many authors (Astier

et al., 2006; Kowalski et al., 2008; Amanullah et al., 2010; Conley et al., 2011), the quantity to

minimise is

χ2 =
N∑
i=1

μi(ẑi, �)− μ̂i

σ2
μi

(4.34)

Here σ2
μi

has three sources with

σz
μ,i = (σfit

μ,i )
2 + (σz

μ,i)
2 + σ2

res. (4.35)

These three sources are:

• σfit
μ,i which is the fitting error from the light curve fits. Typically computed as ΨTCiΨ

with Ψ = {−β, α, 1}. It is easy see from this definition that the global fit parameters α

and β therefore appear in both the numerator and denominator of Eq. (4.34).

• The redshift error, σz
μ,i, which is the measurement error of the redshift given by the

host galaxy and is usually comprised of error due to peculiar velocity uncertainty in

spectroscopic measurements.

• The residual dispersion, σres, that remains after corrections for stretch and colour. As

discussed in chapter 3.7.1, this residual dispersion can have many physical sources. It
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is important to note that this term is not known ‘a priori’ and is inferred during the

parameter estimation process (see Vishwakarma & Narlikar (2010)).

Inference in the χ2 approach involves minimising by sampling over the parameters space and

simultaneously attempting to fit the cosmological parameters of interest � and the global pop-

ulation parameters {α, β,Mo}.

This traditional approach however has been shown to have certain downsides which using a

BHM mitigates. In addition BAHAMAS exhibits extra advantageous properties. These downsides

of the traditional approach and the BHM advantages include

• The parameter estimation is usually iterative and involves trying to achieve χ2/d.o.f ≈ 1.

Authors such as Astier et al. (2006); Wang et al. (2006); Kowalski et al. (2008) realised

however this can lead to large biases in the recovered value of some parameters such

as β with the bias being as large as 6σ according to simulations (March et al., 2011).

The source of this bias has been traced to the observation that the error on the colour

correction parameter ci is as large as or larger than the width of the distribution of values

of ci especially for high-redshift SNe. This is solved by BAHAMAS because of its hierachical

model that propagates the errors properly at each level.

• The assumption of gaussianity behind the χ2 method is not always statistically justified.

A Bayesian model allows an easy breakaway from this assumption by simply modifying

the likelihood as required.

• The Tripp relation regression coefficients, α and β, appear in both the numerator and

denominator of the χ2 expression. Therefore there is a statistical problem with trying

to estimate both the location and variance of the population parameters for stretch and

colour.

• This approach has been shown to have better coverage statistics overall than the χ2

method traditionally employed, and leads to a reduction of mean squared errors for the

recovered cosmological parameters by a factor of ∼ 2 - 3 when deployed on simulated

data (March et al., 2011).
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• As part of the χ2 procedure σres is adjusted to obtain χ2/d.o.f ≈ 1. Adjusting σres to

obtain the goodness-of-fit makes it difficult to carry out further goodness-of-fit tests on

the model itself. The Bayesian version on the other hand provides an easy route for model

comparison via computation of the Bayesian evidence.

• The interpretation of the 95% credible interval in Bayesian methods is more statistically

justified compared to the 95% confidence interval quoted in frequentist limits which is

only valid in the limit where the number of times an experiment is repeated goes to

infinity, something that is not possible in cosmological contexts.

• The frequentist results can be recovered by Bayesian methods when using uniform priors

as in this case the posterior is proportional to the likelihood and therefore maximising the

the posterior is equivalent to maximising the likelihood as done in frequentist contexts.

It should be noted however, that despite extra model complexity involved in frequentist methods

to solve issues that have easy solutions in Bayesian contexts, computation is typically very quick

in a frequentist framework which is why it has been historically favoured. In Bayesian methods

the trade off is often the opposite where specifying a model in a principled manner is easier,

but the computation is harder. With recent advances in computation power this is less of an

issue these days however. Because of this, recently in the SNIa cosmology space, there has

been a great increase of Bayesian Hierarchical Models for SNIa cosmology. To name a few,

STEVE (Hinton et al., 2018), UNITY (Rubin et al., 2015), BEAMS (Kunz et al., 2007, 2013),

zBEAMS (Roberts et al., 2017), BayesSN (Mandel et al., 2011), Simple-BayeSN (Mandel et al.,

2017), BayeSN-SED (Mandel et al., 2021) and many more, each attempting to solve different

aspects of the pipeline such as cosmological fits, types of SNIa data, light curve fitting or

handling of non-SNIa contaminants.

An extra point of note here is that BAHAMAS in its current form neglects the effects of missing

data i.e., selection effects, caused by Malmquist bias (Malmquist, 1922). It relies on being given

data has that already corrected for this effect. A more complete description of selection effects

and accounting for it within BAHAMAS is provided in Chapter 7.



Chapter 5

New Constraints on Anisotropic

Expansion from SNIa

In this chapter, I show how BAHAMAS can be used to constrain potential anisotropies in our uni-

verse. I consider two possible forms this anisotropy can take, one which restricts the anisotropy

to a local redshift scale and one which is constant in redshift. In addition we consider con-

straining these anisotropies within two cosmological framework, the ΛCDM model as well the

model-independent ‘cosmographic expansion’ (Visser, 2004). The majority of the work pre-

sented here is based on the published work of Rahman et al. (2021) .

5.1 Introduction

A fundamental assumption underpinning the cosmological concordance model is the cosmologi-

cal principle, namely that the universe is homogeneous and isotropic on sufficiently large scales.

Given the ubiquity of the cosmological principle, an observational test of this assumption is an

important step towards validating our best description of the large scale universe. Testing of

homogeneity is hampered by the need of surveying extremely large scales (see Maartens (2011)),

although recent studies have found the transition to homogeneity at high (z ∼ 2) redshift con-

sistent with expectations from the ΛCDM cosmological concordance model (Gonçalves et al.,

78
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2018, 2020).

The assumption of isotropy has been tested over a range of redshifts and with many different

probes, from the relatively local universe out to the redshift of recombination. Analyses of Cos-

mic Microwave Background (CMB) anisotropies data obtained by the Wilkinson Microwave

Anisotropy Probe (WMAP) and the Planck satellite found up to ∼ 3σ evidence of breaches

of statistical isotropy in the form of power asymmetry between hemispheres, multipole align-

ments, anomalous clustering of directions, although the significance of these results is difficult

to assess, partially because of issues of a posteriori testing (Bennett et al., 2013; Akrami et al.,

2014; Schwarz et al., 2016; Planck Collaboration et al., 2016). Quasar polarization directions

also appear to be aligned along anomalous directions in the CMB (Hutsemékers et al., 2005)

and with coherence scales in excess of 500 Mpc (Hutsemékers, D. et al., 2014; Friday et al.,

2022), in potential disagreement with the cosmological principle. Investigating the distribution

of galaxies on large scales, Sarkar et al. (2019) found however good agreement between the

predictions of ΛCDM and the Sloan Digital Sky Survey data, with a transition to isotropy

observed beyond a length scale of 200h−1 Mpc (where h is the dimensionless Hubble-Lemaître

parameter). More recently, Secrest et al. (2020) reported a one-sided 4.9-σ rejection of the

hypothesis that the dipole in a sample of 1.3 million quasars is purely due to our motion with

respect to the CMB.

Supernovae Type Ia can be used to test the second expression of the cosmological princi-

ple, namely that the expansion of the universe is isotropic. SNe type Ia observations can

also be used to test the hypothesis of isotropy in the expansion of the universe underpinning

the Friedemann-Lemaître-Robertson-Walker (FLRW) metric of the concordance cosmological

model, which exhibits an isotropic scale factor a(t). To this end, various authors have analyzed

increasingly large SNIa compilations with different statistical approaches, often with sharply

discordant results.

After early works (Kolatt & Lahav, 2001; Schwarz & Weinhorst, 2007; Gupta et al., 2008), Cooke

& Lynden-Bell (2010) analysed a subset of 250 SNIa from the Union compilation (Kowalski

et al., 2008) with z > 0.2 with a maximum likelihood approach to constrain a dipolar mod-



80 Chapter 5. New Constraints on Anisotropic Expansion from SNIa

ulation to the luminosity distance, finding no significant deviation from isotropy. However,

Cai & Tuo (2012) claimed that the deceleration parameter shows a preferred direction in the

Union2 (Amanullah et al., 2010) compilation of 557 SNIa, a result corroborated by the analy-

sis of Antoniou & Perivolaropoulos (2010), who combined SNIa data with other cosmological

probes. Jiménez et al. (2015) analysed the same Union2 data, additionally including the SNLS3

data, and showed that previous claims of anisotropy disappear if one accounts for correlations

among the observations by including the full data covariance matrix in the analysis. Other null

results of anisotropic expansion include Heneka et al. (2014) and Lin et al. (2016a), who inves-

tigated the Joint Light-curve Analysis (JLA) compilation (Betoule et al., 2014) of 740 SNIa(see

also Sun & Wang (2019), who obtain discrepant results from three different compilations of

SNIa namely Union2.1, JLA and Constitution (Hicken et al., 2009b)). Similarly Andrade et al.

(2018a), find the JLA data prefers isotropy, with the results being inconclusive on the Union2.1

data. Javanmardi et al. (2015) however, finds that taking into account the inferred alignment

of the dipole on the Union2.1 data with the Cosmic Microwave Background (CMB) tempera-

ture anisotropy, then the null hypothesis of isotropy cannot be rejected at 95-99% level. An

important distinction between these data sets is that Union2/2.1 and Constitution have no

corrections for the peculiar velocities of the SNe host galaxies, whereas JLA does. Bernal et al.

(2017) found from Union2 and LOSS data potential differences between hemispheres in the

isotropy of the deceleration parameter. The situation becomes more confused when considering

the largest SNIa compilation to date, Pantheon, encompassing 1048 objects in the redshift range

0.01 < z < 2.3 (Scolnic et al., 2018b). A major hurdle to any re-analysis that uses Pantheon is

the lack of a publicly available full correlation matrix for its SNIa light curve standardisation

coefficients, which hampers a principled statistical approach. Nevertheless, several papers have

attempted to use Pantheon-derived measurements of the distance modulus as a function of

redshift to investigate potential deviations from an isotropic expansion, finding isotropy is still

favoured (Sun & Wang, 2018b; Soltis et al., 2019; Zhao et al., 2019; Andrade et al., 2018b).

Despite the existence of substantially larger compilations like Pantheon, the JLA remains a

useful data set for analyses of this kind, because all the necessary statistical and systematics

covariance matrices are publicly available, unlike e.g. the Pantheon set. Recently, Colin et al.
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(2019b) (henceforth C19) claimed 3.9σ evidence for a dipole in the deceleration parameter

from a maximum likelihood analysis of JLA data, leading to a lack of statistical evidence for

acceleration in the expansion. The claim was disputed by Rubin & Heitlauf (2020) (henceforth,

RH20), who pointed out the incorrect use of heliocentric redshifts in C19 and other technical

assumptions about selection effects which, when corrected, remove the preference for a dipole

and restore the high significance for an accelerated expansion. (See also the discussion in Rubin

& Hayden (2016), itself a rebuttal of Nielsen et al. (2016).) A further reply by Colin et al.

(2019a) appears to concede some technical points, but not the overall conclusion on the actual

lack of statistical significance for an accelerated expansion.

The aim of this work is to clarify the status of claims for a statistically significant dipole in

the accelerated expansion of the universe, especially in light of the ongoing controversy. In so

doing, we also revisit the important question of the level of statistical evidence in favour of the

accelerated expansion in an isotropic universe from SNIa data alone. We address the criticisms

of the published JLA data made by C19, who claimed that the peculiar velocity corrections made

to the JLA SNIa data based on local bulk flows are incorrect. In this chapter, we introduce a

state-of-the-art treatment of peculiar velocities, which are independently constrained using the

2M++ galaxy catalogue (Lavaux & Hudson, 2011; Boruah et al., 2020a; Boruah et al., 2020b),

re-derive correlated peculiar velocity uncertainties (both statistical and systematic) from a

fully consistent flow model, and upgrade the Bayesian hierarchical model BAHAMAS Shariff et al.

(2016) to include an new treatment of residual colour-based selection effects in SNIa data.

The remaining of this chapter is structured as follows: section 5.2 introduces the cosmological

model, the anisotropy model, our Bayesian framework, the data used, our new peculiar velocities

treatment and our new colour-based selection effects correction. Section 5.3 demonstrates the

performance of our method on simulated data. Our results from the JLA data, both in terms

of parameter inference and Bayesian model comparison, are presented in section 5.3.2. Our

conclusions are given in section 5.4.
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5.2 Methodology and Data

5.2.1 Cosmological model and dipole modulation

We investigate the isotropy of the expansion in both a model-specific and a model-independent

way: firstly, we consider the ΛCDM model for the underlying cosmology; secondly, we use the

so-called ‘Cosmographic expansion’ (i.e., a Taylor expansion of the scale factor as a function

in time) as a model-independent description of the underlying matter-energy density of the

universe.

For the purposes of this chapter, I modify our notation which is different from that introduced

in earlier chapters. I now define the ΛCDM model to have cosmological parameters P1 =

{Ωm,ΩΛ, H0}, where Ωm and ΩΛ have the same definitions as before; H0 is fixed to H0 = 72

km/s/Mpc, as it is exactly degenerate with the SNIa intrinsic magnitude. The curvature

parameter Ωκ then is given by

Ωκ = 1− Ωm − ΩΛ (5.1)

and we assume a universe with constant dark energy equation of state, w(z) = −1. We denote

by z̄ the redshift of a comoving galaxy seen by an observer who is also at rest w.r.t. to the CMB

restframe (i.e., the ‘cosmological’ redshift, with no peculiar velocities from either the source or

the observer) and by zhel the redshift for an observer in the Sun’s frame of reference1. The

measured redshift in our heliocentric frame of reference is given by ẑhel, and it differs from zhel

by measurement noise. The redshift in our heliocentric frame of reference, zhel, differs from the

redshift of a comoving observer, z̄, by virtue of peculiar velocities of the source and the observer,

and gravitational red/blueshifts due to the local gravitational potential at the location of the

source and observer. In the following, we neglect gravitational effects, which are subdominant

(see however Calcino & Davis (2017)) and focus instead on the impact of peculiar velocities.

The relationship between heliocentric redshift, zhel, and the redshift of a comoving galaxy as

1We neglect the distinction between geocentric and heliocentric frames of references (the difference due to
the ∼ 30 km/s orbital speed of the Earth is of order Δz ∼ 10−5), since redshift measurements are routinely
reported in the heliocentric frame and also already corrected for atmospheric refraction.
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seen by an observer at rest w.r.t. the CMB, z̄ is given by:

(1 + zhel) = (1 + zCMB)(1 + z�pec) (5.2)

(1 + zCMB) = (1 + z̄)(1 + zSNpec) (5.3)

where z�pec is the redshift induced by the peculiar velocity of the Solar System w.r.t. the CMB

restframe, while zSNpec is the redshift caused by the peculiar velocity of the SNIa w.r.t. the CMB

frame. The second equality introduces the redshift in the CMB restframe, zCMB, i.e., the frame

in which our motion w.r.t. the CMB has been removed2. With the above definitions, we can

write the luminosity distance to redshift z̄, as (Davis et al., 2011)

dL(z̄, z
�
pec, z

SN
pec,P1) =

c

H0

(1 + z̄)(1 + z�pec)(1 + zSNpec)
2√|Ωκ|
×

sinn

{√
|Ωκ|

∫ z̄

0

dz

E(z)

}
.

(5.4)

E(z) depends on our choice of cosmology and for the ΛCDM universe, is given by

E2(z) = ΩM(1 + z)3 + ΩΛ + Ωκ(1 + z)2. (5.5)

The sinn(x) function is defined as

sinn(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
x if Ωκ = 0

sin(x) if Ωκ < 0

sinh(x) if Ωκ > 0

. (5.6)

In our model-independent approach, we follow Visser (2004) and Taylor-expand the scale factor

2A source of confusion in the literature is the widespread use of the term ‘CMB restframe’ to denote what we
call z̄ (i.e., the cosmological redshift, with no peculiar motions from either source nor observer). This misleading
nomenclature is for example used by Betoule et al. (2014), as well as in the data products of the JLA data
release.
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of the FLRW metric up to third order in time around t0 (today), as:

a(t) = a0{1 +H0(t− t0)− 1

2
q0H

2
0 (t− t0)

2 +
1

3!
j0H

3
0 (t− t0)

3 +O([t− t0]
4)} (5.7)

where q0 is the dimensionless deceleration parameter, defined as

q0 = −1

a

d2a

dt2

[
1

a

da

dt

]−2

t=t0

(5.8)

and j0 is the so-called ‘jerk’,

j0 = +
1

a

d3a

dt3

[
1

a

da

dt

]−3

t=t0

, (5.9)

which is also dimensionless. This model-independent expansion only relies on the FLRW metric

but makes no assumption about the underlying matter-energy density, and leads to the following

form of the luminosity distance at redshift z̄:

dL(z̄, z
�
pec, z

SN
pec,P2) =

(1 + z�pec)(1 + zSNpec)
2

1 + z̄

cz̄

H0

×[
1 +

1

2
(1− q0)z̄ − 1

6
(1− q0 − 3q20 + j0 − Ωκ)z̄

2 +O(z̄3)

]
,

(5.10)

where c is the speed of light and the model-independent parameters are P2 = {H0, q0, j0,Ωκ}.
From expressions (5.4) or (5.10), we obtain the isotropic distance modulus, μI , using the stan-

dard formula

μI(z̄, z
�
pec, z

SN
pec,Pa) = 25 + 5 log10

dL(z̄, z
�
pec, z

SN
pec,Pa)

1 Mpc
, (5.11)

where a = 1, 2 depending on the chosen parameterization.

There are several different ways one can parameterize the possibility of anisotropic expansion,

depending on the underlying physical origin for the effect. A spherical harmonics expansion

introduces, to lowest order, a dipolar modulation in the direction of a SNIa situated at redshift z̄

and in direction nSN in the sky, with nSN a unit vector pointing from the centre of the coordinate

system (the Earth) to the location of the SNIa on the celestial sphere. Different authors have

taken different approaches in the literature, with no consensus as to which quantity should

be modulated: one could expand the scale factor a(t), the luminosity distance, the comoving
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distance, the Hubble parameter, the matter density, the cosmological constant density, or the

distance modulus. Each of these possibilities leads to a different anisotropic imprint onto the

Hubble-Lemaître law. A dipole moment that is constant with distance, r, in the peculiar

velocity field (i.e., a bulk flow) leads to

cz̄ ≈ H0r +Dv(ndip · nSN), (5.12)

By contrast, a constant dipole in either H0 or r leads to

cz̄ ≈ H0r +H0DHr(ndip · nSN), (5.13)

which increases linearly with distance. Another possibility is to modulate the distance modulus

directly:

μ = μI(z̄, zhel,Pa) (1 +DμF (z̄)(ndip · nSN)) , (5.14)

where F (z) is a function of redshift alone which can be used to localize the dipole at a given

length scale. Yet another approach, adopted by C19, is to model the dipole on the deceleration

parameter, q0, in a Cosmographic expansion:

q0(z) = qm +Dq0F (z̄)(ndip · nSN). (5.15)

In this work, we add the dipole to either the distance modulus, Eq. (5.14), or to the decelera-

tion parameter, Eq. (5.15), and consider both F (z) = 1 and, following C19, an exponentially

decaying function of redshift with characteristic scale given by the free parameter S, namely

F (z) = exp (−z/S). These two forms have the effect of either creating a dipole that is constant

in redshift or constrained to a local scale which could arise for reasons such as existing within

a cosmic void.

As noted in previous works, a phenomenological approach as the one taken here that perturbs

an underlying FLRW metric may not be entirely consistent. An alternative route would require

specifying a physical model for the anisotropy, and then derive the ensuing predictions for the
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distance modulus and compare those with observations, as done for example in the context

of an ellipsoidal universe from Bianchi type I models (Campanelli et al., 2011). However,

the advantage of a purely phenomenological approach is that it remains agnostic about the

underlying cause of any anisotropy, and it provides constraints on the level of anisotropy that

can then be applied to other models.

5.2.2 Bayesian Hierarchical Model

In this work, we improve on previous works constraining anisotropy from SNe data by adopting

the fully Bayesian hierarchical model BAHAMAS for the statistical analysis of SNIa data. See

section 4.3 for a full description of BAHAMAS.

To use BAHAMAS within the context of this work on anisotropy we redefine some key parameters.

As before, we still denote with a hat symbol observed quantities, in order to distinguish them

from the latent unobserved variables in our model.

For each SNIa i, the data di can be summarised by a vector

di = {ẑhel,i, ĉi, x̂1i , m̂Bi
, Ĉi}, (5.16)

where Ĉi, m̂Bi
,x̂1i and ĉi have their usual definitions as defined in section 4.3. ẑhel,i is the

observed heliocentric redshift. On the standard deviation scale, the measurement error for

redshift for SNIa with spectroscopic follow-up is σspSN
z ∼ 5×10−3 when the redshift is determined

from the SNIa spectrum alone, and σsphost
z ∼ 5 × 10−4 when it is obtained from host-galaxy

spectra (Zheng et al., 2008). The redshift measurements are independent from each other and

from all other observables. We discuss this uncertainty further in section 5.2.6. (See also

Calcino & Davis (2017) for the potentially important impact of systematic redshift errors as

small as Δz ∼ 10−4.)

The hierarchical modelling then proceeds as before and we can say at the latent level, the

apparent peak magnitude mBi is related to the standardised intrinsic magnitude M ε
i via the
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isotropic distance modulus of Eq. (5.11):

mBi = μI(zhel,i, z̄,i ,Pa)− αx1i + βci +M ε
i . (5.17)

This is then related to the observed values of {m̂Bi
, x̂1i , ĉi} and are modelled as normally dis-

tributed around their latent values, with variance-covariance matrix given by Ĉi. The system-

atics matrix Csyst is included as before as well. Inference is based on the marginal distribution

of the quantities of interest, Pa, which includes uncertainty at all levels of the hierarchy. An

extra note is added here to emphasise that our method is not fully Bayesian, as there are as-

pects of the data (discussed in the next section) which are not captured within our model such

as the selection effects on magnitude which are instead handled with ‘corrections’ that have

been applied to the data. This corrected data has BAHAMAS applied to it. Increasing the scope

of BAHAMAS to handle more data effects so these ad hoc corrections to the data are not required

is the subject of future work.

5.2.3 Data

The largest SNIa compilation to date is the ‘Pantheon sample’ (Scolnic et al., 2018a), which

contains 1048 spectroscopically confirmed SNIa. This compilation includes 279 new SNIa dis-

covered by the Pan-STARRS1 (PS1) Medium Deep Survey (Chambers et al., 2016) in addition

to the previous SNe discovered by previous catalogues to create the total.

The Pantheon sample only provides estimates (and associated uncertainties) of the distance

modulus for each SNIa but does not include the covariance matrices of either the measurement

error for each SNIa nor the systematic covariance matrix across the whole data set. Because our

Bayesian hierarchical model also requires these covariances over the light curve fit parameters

as opposed to the covariance over distance modulus provided by the Pantheon data, we instead

use the smaller ‘Joint Light-Curve Analysis’ (JLA) compilation (Betoule et al., 2014). The JLA

data contains 740 SNIa including 374 SNIa from the SDSS-II survey (Frieman et al., 2008; Sako

et al., 2018), 239 from SNLS (Conley et al., 2011; Sullivan et al., 2011), a low-z sample of 118
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Figure 5.1: A plot of the JLA SNe showing their location in the sky in galactic coordinates, as
well as the direction of the CMB dipole (left-pointing triangle) and bulk flow (right-pointing
triangle), as determined by Boruah et al. (2020a).

SNIa at z < 0.1 which comprises numerous smaller surveys, and nine Hubble Space Telescope

SNIa. These have been fit and standardised using the SALT2 Light-Curve Fitter (Guy et al.,

2007).

An overview of the distribution of JLA objects in the sky is provided in Fig. 5.1. The long stripe

in the lower left hemisphere is from the SDSS objects. It is clear to see that the distribution of

the JLA objects in the sky is highly anisotropic.

One way the sky coverage limits this project is that there has to be sufficient SNIa data in a

region around where the dipole points. This particularly applies to any dipole pointing along

the galactic plane as there is a dearth of SNIa along the region −15◦ < b < 15◦ owing to the

obscuring effect of the galactic plane.
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5.2.4 Accounting for Colour-dependent Selection Effects

Towards the high end of the redshift range of a given survey, SNe that are intrinsically brighter

(smaller Mi) or bluer (smaller ci) are more likely to be observed and to be followed up spec-

troscopically to confirm their type. This selection bias must be accounted for to avoid bias

in the estimates of the cosmological parameters. Ignoring magnitude-based selection effects

leads to estimates of the distance modulus that are biased low: at a given redshift, the average

observed magnitude is smaller (i.e., the observed peak flux brighter) than the population mean,

which leads to an estimated distance modulus that is biased low. This effect reduces or even

obliterates the preference for a non-zero cosmological constant. Traditionally, this has been

addressed by ‘correcting back’ the estimates of the distance modulus by the average bias in

each redshift bin, established with forward simulations of data subject to selection effects. This

approach is adopted e.g., by Betoule et al. (2014). More recently, this method has been ex-

tended and refined with the so-called ‘BEAMS with Bias Corrections’ (BBC) method (Kessler

& Scolnic, 2017). The JLA analysis only corrected for magnitude-based selection effects, con-

cluding that no additional correction were necessary for colour (Betoule et al. (2014), Fig. 11),

despite observing a downward trend in observed colour with redshift for SNSL and SDSS.

In the context of a Bayesian analysis, however, selection effects are treated differently: the

posterior is conditional on the observed data (Kelly, 2007), which leads to a re-weighing factor

increasing the statistical weight of SNe that are less likely to be observed (see Eq. (5.20) below).

Rubin et al. (2015) introduced a general formalism for the selection function that was further

developed by Hinton et al. (2018). In practice, however, this formalism typically requires

several simplifying assumptions that may be difficult to justify (e.g., a well-sampled SNIa

redshift distribution, a selection function that is described by a normal cumulative distribution

function (CDF), independence of the selection probability from the underlying cosmology). An

improved selection effects treatment is presented in Chapter 7. For now, we take the ad-hoc

correction applied to B-band apparent magnitude measurement in the JLA data as is and focus

instead on the potential residual corrections that need to be accounted for in colour.

Rubin & Hayden (2016) argue that uncorrected-for colour-dependent selection effects remaining
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in the JLA data (after bias correction of the data) should be addressed by introducing a

population colour mean that is both redshift- and survey-dependent. However, at the top

level of the BHM we would like a physically-meaningful population mean that describes the

underlying, population-level latent mean colour, itself a reflection of the physical properties

of the SNe. Such a colour mean can be a function of redshift, to reflect evolution in the

physical properties of SNe with lookback time, but it cannot be survey-dependent, for clearly

the latter dependency is caused by survey-specific selection effects and, in virtue of being

survey-specific, cannot be the consequence of changing underlying physical properties of the

SNe being observed. Thus, by using population-level variables to address a survey-induced

selection effect, the method advocated by Rubin & Hayden (2016) goes against the physical

interpretability of the BHM; we prefer the population-level variables to be tied to the physics of

the SNIa explosion mechanism rather than the survey-induced selection effects. While genuine

population level changes with redshift can be thought to occur owing to redshift related changes

associated with metallicity, star formation rate, and other galaxy covariates, to properly account

for any supposed drift in the population means with redshift and make it distinct from any

selection effects, the implemented model would need the drift parameters to be independent

of any selection effects/telescope parameters if it is to be principled. Something which is not

done in the case of Rubin & Hayden (2016). Furthermore, as pointed out by Dam et al. (2017),

modeling residual colour drift with redshift as advocated by Rubin & Hayden (2016) introduces

undesirable degeneracies with cosmological parameters in the cosmographic expansion.

Here, we account for residual colour-based selection effects with an approximate method that

captures the spirit of the correct Bayesian procedure (with the full treatment outline in Chapter

7). In general, we aim to base the likelihood function on the distribution of the data di for SNIa i

conditional on it having been observed, which is denoted by an indicator variable Ii = 1. (Ii = 0

would indicate that SNIa i is not observed.) Denote by D̂ = {d̂1, . . . , d̂n} a random sample of

SNe where all SNe have equal probability of being observed (i.e., there are no selection effects

in D̂). In the presence of selection effects, we observe a non-representative sample of nobs < n

SNe from D̂, whereby a SNIa i is observed with probability given by the selection function

p(Ii = 1|d̂i,Ψ), where d̂i are the observed (noisy) data, and Ψ are parameters describing the
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selection function (assumed known). The distribution of the observed d̂i, conditional on SNIa

i being observed, is given by

p(d̂i|Ii = 1,Ψ,Θ) =
p(Ii = 1|d̂i,Ψ)p(d̂i|Θ)

p(Ii = 1|Ψ,Θ)
, (5.18)

where Θ = {Pa, ϑ} are the parameters of the hierarchical model (including the parameteriza-

tion of the distance modulus, Pa, and the population-level distribution parameters, ϑ). We

assume that the selection probability conditional on the observed data, d̂i, i.e., p(Ii = 1|d̂i,Ψ)

in the numerator of Eq. (5.18), does not depend on Θ and thus is an ignorable constant if (as

we assume here) the selection function and its parameter Ψ are known. The quantity p(d̂i|Θ)

is the likelihood in the absence of selection effects, and the denominator gives the probability

of observing a SNIa, irrespective of the value of the data:

p(Ii = 1|Ψ,Θ) =

∫
dd̂ip(Ii = 1|d̂i,Ψ)p(d̂i|Θ). (5.19)

Omitting the ignorable multiplicative constants in the numerator of Eq. (5.18) yields the like-

lihood function of Θ including selection effects for a sample of nobs observed SNe, d̂obs ≡
{d̂1, . . . , d̂nobs

},
p(d̂obs|{Ii = 1}nobs

i=1 ,Ψ,Θ) ∝ p(d̂obs|Θ)

p(I = 1|Ψ,Θ)nobs
, (5.20)

where we have dropped the dummy index i in the denominator. Therefore, selection effects

are accounted for by dividing the likelihood function of the observed data, p(d̂obs|Θ), by a

‘correction factor’ that gives the probability of making nobs observations.

Thus far, we have been entirely general. Next we specify the form of the selection function,

p(Ii = 1|d̂i,Ψ), entering in Eq. (5.19). The probability of a SNIa being selected, and spectro-

scopically followed-up to determine its type, depends primarily on its magnitude and colour.

(SNe with larger stretch parameter x1 are slower declining and thus remain visible and poten-

tially detectable for longer, but this effect is subdominant.) The data correction procedure in

Betoule et al. (2014) should in principle account for both magnitude- and colour-based selec-

tion, but their discussion makes it clear that there are large uncertainties in the determination
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of the selection probability that enters their forward simulation of the data. For example,

Betoule et al. (2014) mention that the SDSS spectroscopic follow-up target selection favours

intrinsically bluer SNe, introducing complex colour-dependency in the selection function. In

light of such difficult-to-simulate selection effects, we advocate a method that estimates any

residual selection effect (after the data correction procedure of Betoule et al. (2014)) directly

from the observed data.

We wish to account for residual colour-based selection effects that may remain in the data.

Therefore, we assume that p(Ii = 1|d̂i,Ψ) depends only on ĉi and ẑhel,i, with the Ns redshift

bins for survey s chosen as discussed in section 5.2.3, and factorize both the selection function

and the likelihood in a product over redshift and survey bins, assumed independent of each

other. Within each redshift, and survey bin, we allow a different selection function, which is

derived below. With these assumptions, the probability of observing nobs SNe just depends on

the color data as (with the shorthand notation Inobs
= 1 denoting {I1 = 1, . . . , Inobs

= 1}):

p(Inobs
= 1|Ψ,Θ) =

4∏
s=1

Ns∏
j=1

(∫
dĉipsj(Ii = 1|ĉi,Ψ)psj(ĉi|Θ)

)Nsj

, (5.21)

where Ns is the number of bins for survey s and Nsj the number of observed SNe in bin

sj. Within each redshift bin for survey s, we parameterize the selection function as a normal

cumulative distribution function (CDF), and assume that we observe a SNIa i with colour ĉi

with probability:

psj(Ii = 1|ĉi,Ψ) = Φ

(
cobssj − ĉi

σobs
sj

)
, (5.22)

where

Φ(x) =

∫ x

−∞
Ny(0, 1)dy (5.23)

is the CDF of a standard normal, and Ny(μ, σ
2) is a Gaussian distribution in y with mean μ

and variance σ2. In Eq. (5.22), cobssj is the colour value at which there is a 50% probability of

observing a SNIa in redshift bin j and for survey s; σobs
sj denotes the width of the transition from

the regime where all objects are observed, i.e. for (cobssj − ĉi)/σ
obs
sj 	 0, to the regime where no

objects are observed, where (cobssj − ĉi)/σ
obs
sj 
 0, for the bin sj being considered. In Eqs. (5.28)-
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(5.29) below we show how to estimate the selection function parameters Ψ = {(cobssj , σobs
sj )}

(s = 1, . . . , 4, j = 1, . . . .Ns). As an approximation, we ignore uncertainty in the resulting

estimates and assume the parameters are known exactly3.

In principle, we would like to use the likelihood function of March et al. (2011) and Shariff et al.

(2016) as the second term of the integrand in Eq. (5.19). Since we only wish to account for

residual colour-based selection effects, however, we ignore the part of the BAHAMAS likelihood

that relates colour to magnitude via the Tripp linear relation (Eq. (C2) in March et al. (2011)),

and instead only consider the distribution of colour values that one would obtain when inte-

grating out the latent colour variables conditional on all other variables in the BHM, leading

to the simple expression for the likelihood entering into Eq. (5.21):

psj(ĉi|Θ) = Nĉi(c	, R
2
c + σ̄2

c,sj), (5.24)

where σ̄c,sj is the average colour measurement error for the nsj SNe in bin sj (for simplicity,

we assume all nsj SNe in bin sj have the same colour measurement error, given by σ̄c; we also

ignore correlation between colour and stretch and magnitude) Eq. (5.24) features a redshift-

independent conditional expectation of colour, described by c	. This formalizes the assumption

of Rubin & Hayden (2016) within BAHAMAS that the observed drift to bluer SNe with redshift

within a survey is a consequence of selection effects and not of a change in the underlying

population colour distribution with redshift.

With the above elements, we can compute the probability of observing SNIa i in redshift bin j

for survey s by integrating over its colour, ĉi, obtaining 4

psj(Ii = 1|Ψ,Θ) = Φ

⎛⎝ cobssj − c	√
(σobs

sj )2 +R2
c + σ̄2

c,sj

⎞⎠ . (5.25)

For a given sj bin, when c	 	 cobssj selection effects are irrelevant, because the survey is seeing

the entire colour population, and accordingly p(Ii = 1|Ψ,Θ) → 1 from Eq. (5.25). However,

3We ignore uncertainty in our estimates of Ψ, and we defer the evaluation of the impact of this approximation
to Chapter 7

4It is useful to recall that
∫∞
−∞ Φ

(
μ−x
σ

)Nx(ν, τ
2)dx = Φ

(
μ−ν√
σ2+τ2

)
.
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p(Ii = 1|Ψ,Θ) becomes smaller for values of c	 > cobssj , with the difference measured in units

of the total standard deviation, i.e., when the survey is preferentially seeing the bluer part of

the population because of colour-based selection bias. In this case, the observed distribution

of the Nsj objects in the sj bin deviates from the latent distribution, and the likelihood that

ignores selection effects would incorrectly penalize this value of c	. According to Eq. (5.20), the

correction factor in the denominator of Eq. (5.20) increases the weight given to observed SNe

with c	 > cobssj .

Finally, there remains the issue of determining the value of Ψ, the selection function parame-

ters. Ideally, one would do so from forward simulation of surveys, but this is unpractical for

our purposes, and unfeasible for the low-z sample, which is obtained from a collection of tele-

scopes with poorly understood selection functions. Furthermore, as noted earlier, colour-based

selection effects might escape ab initio modeling of this kind, as indicated in e.g. Betoule et al.

(2014). As an alternative, we estimate the value of Ψ in each redshift- and survey-bin sj, by

matching the first and second moment of the empirical colour distribution within the bin to

the marginal distribution of colour based on the right-hand-side of Eq. (5.20), understood as

a distribution over observed colour values ĉi within each bin. Let mC(t) denote the moment

generating function of the random variable C (the observed colour), defined as

mC(t) ≡
∫ ∞

−∞
etyfC(y)dy, (5.26)

where fC(c) in our case is given by (in the bin under consideration)

fC(c) =
Nc(c	, R

2
c + σ̄2

c,sj)Φ
(

cobssj −c

σobs
sj

)
psj(Ii = 1|Ψ,Θ)

, (5.27)

with denominator given by Eq. (5.25). Our strategy, known as the method of moments, is to an-

alytically compute the first two moments of the distribution, set them equal to the empirical mo-

ments, and solve the resulting system of equations to obtain estimates of the selection function

parameters in each survey and redshift bin, {cobssj , σobs
sj }. Details of the calculation are presented

in Appendix A, where we show that the moment generating function is given by Eq. (A.5),



5.2. Methodology and Data 95

its first moment, dMC(t)/dt|t=0, by Eq. (A.18), and its second moment, d2MC(t)/dt
2|t=0, by

Eq. (A.20). Specifically, in each bin, we set the first moment equal to the empirical mean, and

set the second central moment equal to the empirical variance:

dMC(t)

dt

∣∣∣
t=0

= 〈ĉi〉, (5.28)

d2MC(t)

dt2

∣∣∣
t=0

− dMC(t)

dt

∣∣∣2
t=0

=
1

1−Nsj

Nsj∑
i=1

(ĉi − 〈ĉi〉)2, (5.29)

where 〈ĉi〉 = 1
Nsj

∑Nsj

i=1 ĉi is the empirical mean. We set the population mean and standard

deviation to c	 = −0.0022 and Rc = 0.0758, the empirical mean and standard deviation from

the lowest two bins of the SDSS, SNLS and Low-z surveys, where colour-based selection effects

are expected to be negligible. We then solve the resulting coupled equations to determine

{cobssj , σobs
sj }. As an alternative one can also consider the method of maximum likelihood which

was found to give similar results to our moments method, albeit with a slightly slower runtime,

therefore we stick with the method of moments for this work.

In cases where Nsj is small (∼ 10) and the sample variance is small, the method of moments

yields an estimate of σobs
sj near or equal to zero. This is similar to a well-known pathology

in the estimation of the shape parameter in the skew-normal distribution (see e.g. Azzalini

& Arellano-Valle (2012)). A simple solution is to impose a lower cutoff to the value of σobs
sj .

We chose a cutoff value σobs
sj > 0.01, since any smaller value leads to a selection function

indistinguishable from a step function. Tests of our method of moments on simulated data are

provided in Appendix A.

Because our selection effect model assumes in Eq. (5.24) that the colour observations are in-

dependent, we set the corresponding covariances in the variance-covariance matrix for the sys-

tematic effects to zero. This has a minor effect on our estimates of the cosmological parameters,

as those terms are subdominant with respect to other off-diagonal terms.

We apply the method of moments to estimate Ψ to each of the four sub-surveys separately, and

we verify its accuracy by simulating colour observations from the model of Eq. (5.24), assuming a

Normal constant-in-redshift latent colour distribution with mean c	 = 0 and standard deviation
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Rc = 0.1. We then apply the reconstructed selection function in each redshift bin, and compare

the resulting distribution of simulated SNe with the observed sample within that bin. This

comparison is shown in Fig. 5.2. For the simulation study and the real JLA data in Section 5.3.2,

we divided each sub-survey in 5 approximately equal-spaced redshift bins, with the following

exceptions: the HST data is treated in one single bin owing to the the small number of SNIa in

HST. For the same reason, in the Low-z survey data, the two highest-redshift bins are combined

into a single bin. For the SDSS survey, the right edge of the 4th bin has its boundary shifted

0.015 in redshift space to the right, in order to account for a discontinuity in the data, where

the population of objects have a lower colour and are separated by a gap in redshift. The

agreement between real data and simulation is excellent, thus validating our approach.

5.2.5 A New Derivation of Peculiar Velocity Corrections

Our motion w.r.t. the CMB frame is measured precisely by the temperature dipole observed in

CMB anisotropies. The most accurate result is from Planck Collaboration et al. (2018), giving a

velocity v�−CMB = 369.82±0.11 km/s in the direction l = 264.021◦±0.011◦, b = 48.253◦±0.005◦.

This induces in the non-relativistic limit a redshift correction (Davis et al., 2011)

z�pec ≈ −v�−CMB

c
(nCMB · nSN) � 10−3, (5.30)

where nCMB is a unit vector in the direction of the CMB dipole and nSN is a unit vector in the

direction of the SNIa. Given the small uncertainties in the measurement for v�−CMB and the

CMB dipole direction, we can consider z�pec as known exactly, and thus neglect measurement

error on this quantity (as it is ∼ 3 × 10−7). Estimating zSNpec = vSNpec/c requires knowledge of

the peculiar velocity of the SNIa in the CMB frame, vSNpec. This can be measured either from

a peculiar velocity field survey (for example, by using the Fundamental Plane (FP) relation

or the Tully-Fisher (TF) relation to measure the distance to a galaxy, and then subtracting

from the observed velocity the expansion component obtained from the Hubble-Lemaître law)

or derived from linear perturbation theory applied to a smoothed density field. The latter

approach has a long history, originally having been used to predict the peculiar velocities of FP
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Figure 5.2: Colour-based selection function in binned JLA data, with redshift bins boundaries
indicated by the vertical black lines. The blue circles are the individual SNe, the blue errorbars
represent the data mean and standard deviation within each top-hat bin, while the orange
errorbars give the mean and standard deviation of simulated data from the model using the
reconstructed selection function in that bin (shifted horizontally for ease of comparison).
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and TF samples (Hudson, 1993; Strauss & Willick, 1995; Davis et al., 1996) but more recently

applied to peculiar velocity data that include SNe type Ia (Riess et al., 1997; Radburn-Smith

et al., 2004; Pike & Hudson, 2005; Neill et al., 2007; Turnbull et al., 2012; Carrick et al., 2015;

Boruah et al., 2020b; Lilow & Nusser, 2021; Stahl et al., 2021).

While the peculiar velocity of the SNIa becomes rapidly negligible for z � 0.1, it is important for

local objects (z 	 0.1), where it can be significant w.r.t. the expansion velocity (up to ∼ 30%)

and where it leads to much larger changes in the apparent magnitude, due to the steeper gradient

of the distance modulus at low redshift. For example, at z = 0.01 an uncorrected SNIa peculiar

velocity vSNpec induces a redshift systematic error δz = vSNpec/c, which corresponds to a significant

change in the theoretical distance modulus δμ ≈ dμ
dz
δz ≈ 5/ln(10)(δv/(cz)) = 0.14mag for

vSNpec = 200 km/s. To avoid difficulties with peculiar velocities, earlier SNIa cosmological analyses

routinely adopted a lower redshift cutoff zcut, removing SNe below zcut; for example, Kessler

et al. (2009) used zcut = 0.02; Riess et al. (2007) used zcut = 0.023. Recently, Huterer (2020)

estimated the impact of uncorrected peculiar velocities on the Pantheon sample from numerical

N-body simulations, and recommended a cutoff zcut = 0.02 to protect against significant bias

to cosmological parameters. However, a better way that does not discard useful data at low

redshift is to assign uncertainties that scale with distance, as we do here.

The JLA sample contains 37 SNe with zhel < 0.02, and 110 with zhel < 0.05, for which an

appropriate treatment of peculiar velocities is required if they are to be used in the cosmological

analysis – particularly in our case, where we wish to use them to constrain a local dipole in the

expansion. To first order in redshift Eq. (5.2) gives

z̄ = zhel − z�pec − zSNpec, (5.31)

meaning that the redshift of a comoving observer, z̄, is obtained from the measured heliocentric

redshift by subtracting our local dipole (z�pec) and the redshift due to the SNIa peculiar velocity,

zSNpec.

The model used in Betoule et al. (2014) to estimate zSNpec has been criticised by C19, who
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highlighted potential bulk flow velocity discontinuities at z = 0.04, pointed out that peculiar

velocity corrections arbitrarily disappear beyond 200/h Mpc (z ∼ 0.067, the limit of the galaxy

density field measurements from which the peculiar velocities were derived) and that the residual

uncorrelated velocity dispersion of σv = 150 km/s might be underestimated. While RH20

pointed out technical flaws with the analysis of C19, it is important in the light of this valid

criticism to revisit the issue of low-redshift peculiar velocity corrections here.

To this end, in this work we replace the peculiar velocity corrections used by Betoule et al.

(2014) – which rested on the IRAS PSCz catalogue from Branchini et al. (1999) – with the

more recent ones obtained by Carrick et al. (2015). We follow Boruah et al. (2020a); Boruah

et al. (2020b), who carried out a thorough comparison between density reconstruction from

galaxy redshift surveys and kernel smoothing of peculiar velocity data methods. We adopt

here their peculiar velocity field inferred from 69,160 galaxies from the 2M++ galaxy redshift

catalogue (Lavaux & Hudson, 2011). The catalogue covers almost the entire sky (with the

notable exception of the plane of the galaxy), is highly complete out to 200/h Mpc (z ∼ 0.067)

in the region covered by 6dF and SDSS, and out to 125/h Mpc (z ∼ 0.041) in the region covered

by 2MRS. We thus remove5 the SNIa peculiar velocity corrections for the low-z JLA sample

that are in common with the A2 sample of Boruah et al. (2020a) (107 objects), and replace

them with new values obtained as follows.

The radial peculiar velocity for a SNIa at comoving distance r and direction nSN is obtained

from the luminosity-weighted density field vgal as

vSNpec(r,nSN, θ) = nSN · (βvvgal(r,nSN) +Vext) (5.32)

where θ = {βv,Vext}, with a rescaling parameter βv = 0.411 ± 0.020 and external residual

bulk flow velocity (in Galactic Cartesian coordinates) Vext = [52±20,−163±21, 49±16] km/s

(how we treat and propagate the uncertainties in these values is addressed in section 5.2.6). We

follow the methodology of Boruah et al. (2020a), with the difference that we only use the SFI++

5Differently from C19, we do not remove the magnitude bias corrections made to the JLA SNe, as they are
important to account for selection effects, nor do we neglect the contribution of peculiar velocities uncertainty
to the covariance matrix, which we re-derive for our case.
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peculiar velocity sample (therefore not including A2 SNe data) in order to avoid circularity (i.e.

using SNe data to predict the peculiar velocity correction for the same SNe data).

We do not wish to use the distance modulus information from a SNIa at this stage of the

analysis, only its observed redshift in the CMB restframe, ẑCMB ≡ ẑhel − z�pec. Firstly, the

observed redshift in the CMB restframe is corrected to the average redshift of the group to

which the host galaxy belongs. Differently from JLA, we correct the CMB restframe redshift

for all host galaxies, including those in clusters and poorer groups. This is necessary to suppress

the highly non-linear velocity contribution to the observed redshift, and it leads to deviations

of a few percent in ẑCMB in most low-z SNe, compared with the value used by JLA, see Fig. 5.3.

However, there are 6 SNe that show much larger changes in their CMB frame redshift, up to

∼ 30% (highlighted in green in Fig. 5.3); two of them (sn2007ci and sn2001cz) are in common

with the outliers in peculiar velocity, identified in Fig. 5.4 and discussed below in this section.

It is emphasised here that no special treatment of these 6 outliers occurs in this work and they

are highlighted here for demonstration purposes.

Then, we compute the expected peculiar velocity by marginalizing over the unknown comoving

distance of the SNIa, r:

〈vSNpec〉 =
∫

drp(r|cẑCMB)v
SN
pec(r,nSN), (5.33)

where vSNpec is computed self-consistently from the flow model, Eq. (5.32), and p(r|ẑCMB) is the

probability density function (pdf) for r given the observed redshift. This can be linked via a

variable transformation to the pdf for the true (latent) CMB redshift of the SNIa, zCMB(r), via:

p(r|cẑCMB) = p(czCMB(r)|cẑCMB)

∣∣∣∣∂czCMB(r)

∂r

∣∣∣∣, (5.34)

where from Eq. (5.3)

zCMB(r) = z̄(r) + (1 + z̄(r))vSNpec(r,nSN)/c, (5.35)

and the cosmological redshift at comoving distance r, z̄(r), is computed for the ΛCDM con-

cordance model, with parameters as in Table 5.1. Note that the transformation between r and

zCMB may not be unique due to the existence of triple-valued regions from r being a cubic



5.2. Methodology and Data 101

function of zCMB. However, in practice we checked that the reconstructed velocity field indeed

leads to unique transformation between r and zCMB for the parameters under consideration.

Nevertheless, it can lead to ‘flat’ regions in redshift space (i.e., where ∂zCMB

∂r
≈ 0), which result

in large uncertainties in the expected peculiar velocity.

The 2M++ reconstruction employs linear perturbation theory to predict the velocities. As

shown in Carrick et al. (2015), this leads to an uncertainty due to non-linearities of σNL
v = 150

km/s. Therefore, assuming a Gaussian uncertainty, we can write the probability of the predicted

redshift in the CMB frame for a SNIa at comoving distance r given its observed redshift

transformed in the CMB frame in Eq. (5.34) as:

p(czCMB(r)|cẑCMB) = N (cẑCMB, (σ
NL
v )2) (5.36)

As a check for the robustness of our method, we also estimated the predicted peculiar velocity

using an iterative prescription. In this alternative method, we start from the observed CMB

restframe redshift as an initial, rough approximation for the comoving distance (under the

fiducial ΛCDM assumption), taking vSNpec = 0. In subsequent iterations, an updated estimate

for the comoving distance is obtained using Eq. (5.35) and the velocity estimate we get from the

reconstruction at the given comoving distance. This step is repeated until convergence. The

iterative method gives broadly consistent results as the marginalization-based method described

above. However, the iterative prescription may underestimate the uncertainty in the vicinity

of triple-valued regions, and therefore we elected to use the marginalization method instead.

Our new peculiar velocity corrections obtained from Eq. (5.33) are compared against those used

in Betoule et al. (2014) in Fig. 5.4, which are obtained from the JLA data products via6

vcorr,JLA = c

(
1 + zhel

(1 + z̄)(1 + z�pec)
− 1

)
. (5.37)

The correlation coefficient between our peculiar velocity corrections and that used in Betoule

6In Eq. (5.37) we use the notation introduced in this paper, but we notice that our z̄ is (confusingly) denoted
‘zCMB’ in the Betoule et al. (2014) and associated data products.
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Figure 5.3: Left panel: comparison of the CMB restframe redshift used in this work for the low-
redshift sample (horizontal axis, 107 SNe) with that of the JLA analysis (vertical axis). There
are 6 SNe (highlighted in green) with a difference exceeding 3 standard deviations around the
identity line (dashed). Right panel: the same comparison but showing the fractional differences
between redshifts on the vertical axis.

et al. (2014) is only ∼ 0.60. There are also 6 SNe (labeled in Fig. 5.4) that are more than 3

standard deviations of the sample away from the identity line. Several reasons can explain the

differences between our peculiar velocities and those used in JLA: firstly, the density field used

to predict peculiar velocities in JLA was based on the IRAS PSCz survey, which is likely to

be noisier than 2M++ everywhere. Secondly, in the JLA analysis only galaxies in rich clusters

are corrected to the mean redshift of the cluster, whereas here we correct the CMB restframe

redshift for all host galaxies, including those in clusters and poorer groups.

For SNe beyond z = 0.067 (in the SNLS, SDSS and high-z samples), the relative importance of

the peculiar velocity corrections diminishes as the recession velocity of the Hubble flow increases,

so the detailed treatment becomes less important. In the JLA analysis, peculiar corrections

have been set to 0 beyond redshift z ∼ 0.067, the limit of the galaxy survey from which said

corrections were derived. We do the same here, noting that beyond redshift z ∼ 0.067 the exact

treatment of peculiar velocity correction becomes less crucial since their relative importance

diminished quickly.
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this work. Outliers (defined as more than 3 standard deviations away from the dashed identity
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5.2.6 Peculiar Velocity Correction Uncertainties

As we have replaced the peculiar velocities of JLA with our own, new estimates, we also up-

date their error analysis associated with the peculiar velocities treatment. First, we remove

the diagonal term from the JLA statistical covariance matrix representing the uncertainty from

peculiar velocity corrections. We also remove the ‘pecvel’ contribution to the systematic covari-

ance matrix. We replace them with the following terms, flowing from our updated treatment

of peculiar velocity corrections.

From Eq. (5.31), the covariance of the cosmological redshift value for SNe i, j is given by

(without including the negligible error in z�pec) is given by:

Ξ2
z,ij = δKijσ

2
z,i + Σ2

z,ij, (5.38)

Σ2
z,ij = δKij

(
σ2
NL + σ2

2M++(zCMB) + σ2
v,i

)
/c2 + Cflow

ij /c2, (5.39)

where σz,i is the spectroscopic redshift measurement uncertainty, σNL = 150 km/s is the un-

certainty in the peculiar velocity due to non-linearities, σ2M++ is the redshift-dependent un-

certainty due to survey incompleteness, σv,i is the standard deviation of the average peculiar

velocity prediction, Eq. (5.33), and Cflow
ij is the correlated covariance coming from uncertainty

in the flow model (δKij is the Kronecker delta). We address each term in turn.

For the 107 low-z SNe in our analysis, the largest reported statistical uncertainty in their

redshift measurement in the JLA data release is maxi σ
JLA
z,i = 0.0014, corresponding to a velocity

uncertainty of 420 km/s. The JLA data release also has σJLA
z,i = 0 for 10 of the 107 low-z SNe

and σJLA
z,i < 0 for 42 SNIa. In order to resolve the issue of 0 or negative redshift uncertainties

and to be conservative, we adopt the following prescription for the standard deviation of the

spectroscopic uncertainty:

σz,i = max(σJLA
z,i , 5 · 10−4). (5.40)

where the floor value of 5 · 10−4 represents a conservative estimate of the spectroscopic redshift

determination from host galaxies spectra. For these 42 SNIa, the floor here translates to a value

of 150km/s, similar to the value of σNL. This conservative estimate of the uncertainty is used
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in the absence of better data, though it should be noted for some low-z objects the uncertainty

can be of the order 10’s of km/s. The conservative estimate can make it more difficult to detect

weak effects from having the uncertainties inflated. However, this impact is expected to be

minimal as the velocities from the heliocentric corrections dominate, since they are typically

greater than 150km/s and as high as 1000km/s (see Figure 2 of C19). Furthermore, this floor

only applies to the smaller subset of SN with incorrect errors.

The term σNL = 150 km/s represents uncertainty in the linear velocity prediction due to

unaccounted-for non-linearities, which we fix at the value recommended in Carrick et al.

(2015). However, the uncertainty in our reconstructed peculiar velocity increases with redshift,

an effect that was ignored in previous work: firstly, the predicted peculiar velocities for tracers

near the outer edge of the 2M++ catalogue (200 Mpc/h) have larger uncertainty because of

unaccounted-for structures outside of the survey limits, as well as because of lack of coverage

beyond 125 Mpc/h for part of the sky (Hollinger & Hudson, 2021); secondly, the noise increases

at larger distances due to the smaller number of galaxies with larger weights that are used to

represent the density field (Lilow & Nusser, 2021). We capture these effects via the redshift-

dependent term:

σ2M++(zCMB) =

⎧⎪⎪⎨⎪⎪⎩
σ1zCMB for zCMB < z400,

σ1z400 for zCMB ≥ z400,

(5.41)

where z400 = 0.138 is the redshift corresponding to a radial comoving distance of 400/h Mpc, and

σ1 is chosen so that the total peculiar velocity rms beyond z400, i.e. (σ2
NL+σ2

2M++(z400))
1/2, equals

380 km/s. This prescription also approximately matches the ΛCDM prediction at the 2M++

boundary, z = 0.067, where (σ2
NL + σ2

2M++(0.067))
1/2 = 227 (km/s). This is in contrast with

the original JLA analysis which uses a redshift-independent 150 km/s uncertainty throughout

the redshift range.

The term σ2
v,i is the variance of vSNpec under the distribution given by Eq. (5.34), i.e.

σ2
v,i = 〈(vSNpec)2〉 − 〈vSNpec〉2. (5.42)
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Finally, we translate the redshift covariance of Eq. (5.38) into a magnitude covariance via linear

propagation of errors using the isotropic distance modulus of Eq. (5.11), i.e.

σ2
m,ij = Σ2

z,ij

∂μI

∂z̄

∣∣∣∣zhel=ẑhel,i
z̄=z̄i

∂μI

∂z̄

∣∣∣∣zhel=ẑhel,j
z̄=z̄j

+ δKijσ
2
z,i

⎛⎝ ∂μI

∂zhel

∣∣∣∣zhel=ẑhel,i
z̄=z̄i

⎞⎠2

(5.43)

where z̄i is computed from Eq. (5.31), and the distance modulus derivatives are evaluated at

the fiducial cosmological parameter values given in Table 5.1.

So far, we have considered a fixed value for the flow parameters, θ = {βv,Vext} entering in

Eq. (5.32). The uncertainties in the inferred flow parameters lead to correlated uncertainties in

the peculiar velocities which needs to be accounted for, and that in previous work are usually

considered a source of systematic error. Our parameterised flow model allows us to translate

them into a statistical error, as follows. In order to estimate the covariance coming from

uncertainty in the flow model parameters, we draw 104 posterior samples of the flow parameters

θk (k = 1, . . . , 104) from the fitted flow model, using the method of Boruah et al. (2020b), and

we calculate the average peculiar velocity, 〈vSNpec,i 〉 for all the 107 SNe in our low-z sample from

those samples. We then estimate the covariance of the average peculiar velocity between SNIa

i and j as Cflow
ij = Cov(〈vSNpec,i〉, 〈vSNpec,j〉), where the covariance matrix is computed from the

k samples. Since the value of σv,i above varies among the k samples (although the variation

is small, � 10%), we use the average of σv,i from the 104 posterior samples. In accord with

terminology used in the literature, we call this term the ‘systematic uncertainty’, although as

noted above we have actually translated it into a statistical uncertainty. There are no changes

to the x1 and c terms of the covariance and these are left unchanged from the original JLA

analysis.

We show in the top panel of Fig. 5.5 the square root of the diagonal entries of the peculiar

velocities covariance matrix, translated into magnitude covariance,i.e. σm,ii in Eq. (5.43)). The

bottom panel shows the square root of the diagonal entries of the total magnitude covariance

matrix (including all other magnitude uncertainties). Our values are compared with the original

JLA values on the same figure. The largest difference in the total value of σm appears in the
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low redshift range, where our re-analysis modifies the associated peculiar velocities, which are

dominant in this redshift range. In general, the net effect is to increase the statistical uncertainty

while decreasing the systematic uncertainty with respect to the JLA analysis: at the median

redsfhit of the low-z sample, z = 0.0243, the average diagonal σm due to statistical uncertainty

in the peculiar velocities is 0.076 in our analysis (vs 0.045 JLA), while the average systematic

diagonal error is 0.020 in our work (vs 0.039 JLA). Overall, the total magnitude uncertainty due

to peculiar velocities is increased by ∼ 30% in our analysis (at the median redshift) compared

to JLA. In the bottom panel of Fig. 5.5, we compare the total uncertainties on the apparent

magnitude (including all statistical and systematic uncertainties) between this work and the

JLA analysis, showing that our magnitude uncertainties are generally larger, especially at low

redshifts where the new peculiar velocity uncertainties dominate the error budget.

5.2.7 Choice of Priors

As always in a Bayesian analysis, particular attention must be paid to priors, especially in the

present case where we are interested in performing not only parameter inference but also model

comparison (for an overview of the issue, see e.g. Trotta (2008)).

The priors for the cosmological parameters P1 and for the other parameters in the hierarchical

model are chosen as in Shariff et al. (2016), to which we refer for fuller details. A summary

is provided in Table 5.1. For the cosmographic expansion parameters P2, the Uniform(0, 2)

priors in Ωm,ΩΛ translate into the following non-uniform prior for the deceleration parameter

q0 = Ωm/2− ΩΛ:

p(q0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
3
(q + 2) for − 2 ≤ q0 < −1,

2/3 for − 1 ≤ q0 < 0,

2
3
(1− q) for 0 ≤ q0 ≤ 1,

0 otherwise.

(5.44)

Given that the likelihood’s support is almost entirely within the region −1.0 � q0 � 0, we

choose the slightly simplified, uniform prior q0 ∼ Uniform(−2, 1). Since the jerk j0 and spatial
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Figure 5.5: Top panel: statistical and systematic (diagonal entries of the covariance matrix
only) uncertainties in the apparent magnitude induced by peculiar velocity corrections for our
re-analysis compared with JLA. Bottom panel: total diagonal σm for our reanalysed and original
JLA data. These components include the statistical error from the SALT2 fits and peculiar
velocities as well systematics from several other components that are outlined in Betoule et al.
(2014).
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curvature Ωκ appear in the degenerate combination j0 − Ωκ in the second-order term in the

cosmographic expansion, Eq. (5.10), we adopt a uniform prior on this combination, with ranges

motivated by the range of physically plausible curvature values. This includes the fact that

some authors such as C19 report a recovery of j0 − ΩK that is less than 1 as expected in

ΛCDM and closer to zero so we center our prior around zero and set a uniform prior on this

combination at j0 − ΩK ∼ Uniform(−2, 2).

The dipole amplitude parameter, Dμ, is a positive quantity for which the obvious choices of

priors are a uniform or log-uniform prior. The lower boundary of the former is naturally 0,

while for the latter a lower cutoff must be imposed in order for the prior to be proper (i.e.,

normalizable). This however is problematic for the model selection outcome: as the likelihood

becomes flat (i.e., insensitive to the value of Dμ) once Dμ drops below a certain threshold, the

marginal posterior becomes equal to the marginal prior for arbitrarily lower values of Dμ with

a log-uniform prior. This has an influence on the Bayes factor, as a larger prior range (i.e., a

lower Dμ cut-off in a log-uniform prior) leads to a less favourable model selection outcome for

the anisotropic model. In order to avoid this difficulty, we choose a uniform prior on Dμ itself.

The upper prior cutoff is set by the characteristic scale expected by a dipole signal. This could

be gleaned from a theoretical model, or, in a phenomenological approach such as ours, guided

by the order of magnitude of previous upper limits on the parameter, which is of order ∼ 10−3

(see Table 5.4). Such upper limits can however be considerably relaxed in the case of a dipole

that is decaying with redshift, leading to upper limits of order ∼ 10−1 even when no dipole

is present (see our simulated case of Fig. 5.8). In order to accommodate such a scenario, we

choose a uniform prior Dμ ∼ Uniform(0, 0.2).

We choose to sample the area of the sky in a uninformative manner since we do not have any

prior belief of the directions a dipole might be pointing to. Requiring rotational invariance

on the surface of the 2-sphere leads to a uniform distribution on the Galactic longitude of the

dipole vector, ld ∼ Uniform(0, 2π) (in radians), and a uniform distribution on the cosine of the

latitude of the dipole vector, cos(bd) ∼ Uniform[0, 1], with bd ∈ [0, π/2]. Flipping the sign of

bd is equivalent to the transformation ld → ld + πmod 2π and Dμ → −Dμ. Hence in order to

cover the possibility of a dipole pointing in a direction in the southern Galactic hemisphere,
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we extend the dipole amplitude to negative values, and therefore our prior is modified to

Dμ ∼ Uniform(−0.2, 0.2). Similar considerations lead to a prior for the dipole amplitude on

the deceleration parameter Dq0 ∼ Uniform(−30, 30).

For the prior on the exponential scale parameter, S, we need to select a lower boundary (lest

Dμ becomes unidentifiable and to stop pathologies associated with S = 0), which we take to

be the scale of the lowest redshift SNe in our data, namely S = 0.01; for the upper boundary,

we take S = 0.1 as it is known that the bulk flow does not disappear at least out to z ∼ 0.067.

In summary, our prior is thus S ∼ Uniform[0.01, 0.1].

5.3 Simulations and Tests of Methodology

5.3.1 Simulated Data

To test the ability of our setup to recover the anisotropy parameters within the BAHAMAS frame-

work, we forward simulate data from our model in a similar manner to March et al. (2011),

adding however JLA-like Galactic coordinates to our simulated SNe in order to carry out infer-

ence on a potential dipole. The fiducial values for the parameters are listed in Table 5.1. We

consider a case with no dipole (Dμ = 0) and a case with a large dipole (Dμ = 0.02), pointing

in the approximate direction of the CMB dipole and with an exponential scale, S = 0.026,

matching the value preferred by the results of C19. The steps to generate the simulated data

are as follows:

1. Draw a value for the latent CMB restframe redshift, zCMB,i, for each SNIa. zhel is assumed

to equal this CMB redshift. We draw 740 objects at the same redshifts as the real

JLA data to ensure the binning of the data is the same when applying selection effects

correction on simulated data as it is on real data. Notice that our simulations do not

include the issue of peculiar velocity corrections, which are assumed to have already been

performed.
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2. Compute μi(ẑ,Θ) using the fiducial values for our chosen cosmology, whether ΛCDM or

the Cosmographic expansion.

3. Apply the dipolar modulation to the distance modulus using Eq. (5.14).

4. Draw the latent parameters x1i, ci and Mi from the normal distributions, x1i ∼ N(x∗, R2
x),

ci ∼ N(c∗, R2
c) and Mi ∼ N(M0, σres

2) respectively.

5. Compute mBi using x1i , ci, Mi and the Phillip’s relation equation in Eq. (5.11).

6. Draw the value of the standard deviations σx1i
, σci , and σmi

, from the appropriate normal

distributions fitted to the errors in the JLA data and use them to construct the 3 × 3

covariance matrix for each SNe as C = diag(σ2
ci
, σ2

x1i
, σ2

mi
).

7. Draw the observed SALT2 parameters from x̂1i ∼ N(x1i, σ
2
x1i

), ĉi ∼ N(ci, σ
2
ci) and m̂Bi ∼

N(mBi, σ
2
mi).

8. Apply the selection function on the colour values drawn in the previous step. We use the

values of σobs
sj and cobssj inferred from the real JLA data in section 5.2.4 for the redshift

bins the SNIa falls in. If a given SNIa is not selected, we cycle back to step (iv) and

redraw that SNIa. The process ends when all 740 objects are selected.

9. Generate positions for SNIa in the sky which match the positions of the JLA data. The

non-isotropic distribution of the data has an effect on our ability to constrain a dipole,

so it is important to match the real JLA SNIa positions for a realistic simulation.

An example of the simulated data, compared with the JLA dataset, is shown in Fig. 5.6 and

5.7, for a ΛCDM realisation. Some banding of the data can be seen of the plots for σx1 , σc,

and σmB
. This results from the different survey components comprising the JLA data. We

can see that our simulated data does not capture this banding in the errors because we draw

our errors from Gaussian distributions, but this approximation has little quantitative effect on

our simulations and our recovered biases are similar to that of March et al. (2011). The well

defined ‘stripe’ in the plot of the galactic coordinates of the data is from the SDSS component

of the JLA data.
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Figure 5.6: Simulated SNIa data generated using the JLA dataset as a reference point. The
simulations assume a ΛCDM model and no anisotropy in the distance modulus for the left most
model. A dipole of value Dμ = 0.02 is present for the second plot. The third plot also has this
value of the dipole, but restricted to a local scale (z ∼ 0.1) by multiplying the dipole term by
the function F (z) = exp (−z/0.026). For this third plot the redshift has been truncated to only
show the redshift range where the dipole is noticeable.

Figure 5.7: Simulated SNIa data generated using the JLA dataset as a reference point, as-
suming ΛCDM as a fiducial model: distribution of colour (c), stretch (x1) and the respective
standard deviation entering the observational error covariance matrix, as well as the SNIa’s sky
coordinates.
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We test the ability of our method to retrieve the true fiducial values listed in Table 5.1 from

the simulated data under the 7 different scenarios below:

1. ΛCDM-Isotropic simulates an isotropic universe (Dμ = 0) from ΛCDM and the infer-

ence also assumes a ΛCDM cosmology.

2. ΛCDM-D simulates a dipole (Dμ = 0.02) with F (z) = 1 from ΛCDM and the inference

also assumes a ΛCDM cosmology.

3. ΛCDM-D-exp simulates a dipole (Dμ = 0.02) with F (z) = exp (−z/S) from ΛCDM

and inference also assumes a ΛCDM cosmology, with the additional free parameter S.

4. Cosmographic-Isotropic simulates an isotropic universe (Dμ = 0) from a cosmographic

expansion and inference also assumes a cosmographic expansion.

5. Cosmographic-D simulates a dipole with F (z) = 1 from a cosmographic expansions

and inference also assumes a cosmographic expansion.

6. Cosmographic-D-exp simulates a dipole (Dμ = 0.02) with F (z) = exp (−z/S) and

inference also assumes a cosmographic expansion, with the additional free parameter S.

7. Cosmographic-D-exp* simulates data as in ΛCDM-D-exp but the reconstruction adopts

the cosmographic expansion instead. This serves to assess the bias in parameter re-

construction from the cosmographic expansion when the reconstruction model is miss-

specified.

For each parameterisation we generate 10 realisations of the data; each realisation contains 740

SNIa objects to be similar in size to the JLA data. The posterior results are averaged over the 10

realisations for each parameterisation when we reconstruct the parameters in section 5.3.2. We

do not use the Gibbs sampler of Shariff et al. (2016) for posterior sampling, but rather adopt

PyMultiNest (Buchner et al., 2014), an implementation of the Nested Sampling algorithm

Multinest (Feroz & Hobson, 2008; Feroz et al., 2009; Feroz et al., 2013). The benefit is that

we can also compute the Bayesian evidence which we will use for Bayesian model comparison

in section 5.3.4.
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5.3.2 Parameter Reconstruction from Simulations

We use BAHAMAS to construct posterior distributions (averaged over 10 data realizations) for

the set of cosmological parameters P1 (i.e., ΛCDM) or P2 (i.e., cosmographic expansion) and

anisotropy parameters {ld, bd, Dμ, S}. Although they are sampled over during reconstruction,

SNe population parameters and SALT2 coefficients are numerically marginalised over in corner

plots and not visualised as they are not the focus of this chapter. The difference between the

1D marginal posterior mean (averaged over realizations) and the true value of each parameter

is displayed in Table 5.2. We observe that in all cases except for the scenario Cosmographic-

D-exp* the difference is a fraction of a standard deviation, hence entirely within realization

and sampling noise. The model misspecification of Cosmographic-D-exp*, however, does lead

to shifts of up to ∼ 1.4σ in the reconstructed cosmographic parameters, a reflection of the

fact that the data have been generated under a different model, namely ΛCDM, than has been

assumed in the reconstruction. However, the difference for the anisotropy parameters remains

below 0.5σ.

It is instructive to investigate the expected constraints on the dipole amplitude when the

simulated data are from a isotropic universe (scenario ΛCDM-Isotropic), shown in Fig. 5.8. The

1-sided 95% upper limit we can place on Dμ for this simulated data is Dμ ≤ 8.08 × 10−4 (top

panel). When however we introduce the additional freedom of an exponential scale parameter

S, the constraints in Dμ degrade by two orders of magnitude, as a small value of S confines

any anisotropy to very small redshifts where the statistical power of our data is small and

therefore degenerate with many values of Dμ which leads to the entire prior space on Dμ being

well explored right up to the prior edge (bottom panels of Fig. 5.8.). The 95% upper bound

becomes Dμ < 4.36 × 10−2 and S < 4.56 × 10−2. Qualitatively similar results apply for the

Cosmographic expansion.

The above simulations do not include colour-based selection effects for simplicity. A simulation

study including colour-based selection appears in Appendix A (see Fig. A.2) and shows that

averaging the posterior distributions across replicates yields 2-dimensional and 1-dimensional

marginal distributions that are centered on the true values of the parameters.
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Figure 5.8: Posterior distributions from simulated JLA-like data, averaged over 10 data real-
izations. The simulations assume a ΛCDM isotropic universe (Dμ = 0); the reconstructions
allow for a dipole in the distance modulus with F (z) = 1 (left) and F (z) = exp (−z/S) (right).
Contours in 2D plots enclose joint 1, 2 and 3 σ highest posterior density (HPD) credible regions;
the vertical dashed line in the 1D marginals for Dμ and S delimits the 2σ upper limit. Notice
the different scales in the axis of Dμ between the two cases.
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5.3.3 Parameter Inference

We begin by presenting the impact of our new treatment of peculiar velocities and colour

selection effects correction on the constraints on Ωm,ΩΛ for the case of an isotropic universe,

as shown in Fig. 5.9. In the top panel, we compare the constraints using the old JLA peculiar

velocities and zCMB as in Betoule et al. (2014) (green) to the ones obtained using our new, group-

corrected values of the CMB restframe redshifts (blue) of the source SNIa with no correction or

peculiar velocities added for the observer, and additionally replacing the JLA observer peculiar

velocity corrections and uncertanties with our newly derived ones (orange). The constraints on

the parameters of our models from JLA data are summarised in Table 5.3, for both the ΛCDM

model and the Cosmographic expansion. In the top section we also investigate the impact of our

newly derived values for zCMB, peculiar velocity corrections and colour-based selection effects on

Ωm, ΩΛ constraints in an isotropic universe. Starting from the same treatment as Betoule et al.

(2014), we find Ωm = 0.306± 0.087, in good agreement with the value in Betoule et al. (2014),

Ωm = 0.295±0.034 but with significantly larger uncertainty, perhaps on account of the different

statistical approach. When replacing the CMB restframe redshifts used in Betoule et al. (2014)

with the ones presented here, we find Ωm = 0.253 ± 0.089, a shift of about half a standard

deviation according to our uncertainty, but of 1.5σ in units of the standard deviation quoted by

Betoule et al. (2014). The effect of using the new peculiar velocity corrections (with their newly

derived associated covariance matrix) while maintaining the value of CMB restframe redshift

from Betoule et al. (2014) results in a more modest shift, Ωm = 0.297 ± 0.089 (case 2M++,

old zCMB). When using both the new redshift values and our newly derived peculiar velocity

corrections in combination, we obtain Ωm = 0.273±0.090. All these results do not use our new

colour-based selection effects corrections; once those are included, the constraint on the matter

density shifts back to a value close to the original JLA analysis, namely Ωm = 0.290 ± 0.091

(but notice the larger uncertainty on our result).

In the bottom panel of Fig. 5.9, we observe a shift in the posterior towards lower ΩΛ and

larger Ωm when adding the systematic covariance matrix (including our new peculiar velocity

covariances) to the statistical covariance matrix, as already noticed by Shariff et al. (2016).
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Further adding the correction for colour selection effects shifts the posterior only slightly.

The second section of Table 5.3 presents our constraints on the distance modulus dipole pa-

rameters, also comparing the impact of using the colour selection effect correction (as indicated

in the third column), which is found to be quite minor on all constraints. Posterior 1D and

2D distributions are shown in Fig. 5.10 for the ΛCDM model and in Fig. 5.11 for the Cos-

mographic expansion. The posterior distribution for the dipole |Dμ| in the top panel of Fig.

5.10 for the ΛCDM model with F (z) = 1 peaks at 0, and we set a 1-tailed 95% upper bound

of |Dμ|< 5.93 × 10−4 (95.45% probability) – a factor of ∼ 2 tighter than the limits derived

by Lin et al. (2016a) from the same data, namely |Dμ|< 1.98 × 10−3. The dipole direction is

correspondingly unconstrained.

In the second case, shown in the bottom panel of Fig. 5.10, a scale function of the form

F (z) = exp (−z/S) is used to constrain the dipole to local region. As expected from our

simulations, we find a degeneracy between the dipole parameter and its scale, whose effect is

to degrade the upper limits on the dipole amplitude to |Dμ|< 1.05× 10−2 for the ΛCDM case.

We can see |Dμ| is well explored again, right up to its prior edge because of this degeneracy,

which contributes to these weaker constraints. The limits on the dipole scale S are also weak,

with the 1D marginal distribution stretching all the way to the prior boundary (S = 0.10), but

peaking near the lower prior boundary. The very weak preference for a non-zero dipole (seen

in the peak away from 0 in the 1D marginal distribution) could be an indication of a residual

effects of the bulk flow, which points broadly in the same direction as the more prominent

peak in the ld posterior distribution. Such departures from perfect isotropy are weak, and not

dissimilar from what we observed in our isotropic universe simulations (Fig. 5.8, bottom panel)

– hence they can be easily ascribed to the result of random noise. With regards to constraints

on cosmological parameters, with respect to the ΛCDM-Isotropic case, we observe only a very

mild shift in their value as a consequence of the introduction of a potential dipole in the model,

|ΔΩM |= 0.005 and |ΔΩΛ|= 0.006. Both are shifts of less than 0.1 standard deviations of the

posterior, and are similar in scale for the case with F (z) = 1. A similar result is seen in

the Cosmographic case with |Δq0|= 0.009 which is also quite minor relative to the posterior

standard deviation.
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Figure 5.9: Impact of our new treatment of peculiar velocities and colour selection effects
correction on the constraints on Ωm,ΩΛ for the case of an isotropic universe. Top panel:
comparison of marginal posteriors Ωm,ΩΛ for isotropic ΛCDM using the old JLA peculiar
velocity uncertainties and zCMB (green) to the ones obtained using our new, group-corrected
values of the CMB restframe redshifts (blue) of the source SNIa with no peculiar velocity
corrections added for the observer, and additionally replacing the JLA observer peculiar velocity
corrections and uncertainties with our newly derived ones (orange). Bottom panel: posterior
using only the statistical covariance matrix (green), adding the systematic covariance matrix
(including our new peculiar velocity covariances, blue) and further adding colour selection
effects corrections (orange). In this panel, we adopt our newly derived, group-corrected CMB
restframe redshifts.
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Figure 5.10: Posterior inference allowing for a distance modulus dipole from JLA data, assuming
the ΛCDM model with F (z) = 1 (left) and F (z) = exp (−z/S) (right), including colour-based
selection effects correction. Contours in 2D plots enclose joint 1, 2 and 3 σ HPD credible
regions; the vertical dashed line in the 1D marginals for Dμ and S delimits the 2σ upper limit.
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For the isotropic Cosmographic expansion, the posterior mean for the deceleration parameter

increases from q0 = −0.352± 0.092 when using the old PSCz velocity corrections and zCMB to

q0 = −0.302± 0.090 when updating both velocity corrections and CMB restframe redshifts to

the new values we derived here (the error indicates the standard deviation of the posterior, not

the uncertainty on the mean). When introducing the possibility of a dipole, the posterior mean

for q0 hovers around −0.30, depending on the dipole model and whether we adopt the colour

selection effects corrections. These values are quite a bit larger than the expectation under

ΛCDM, namely q0 = −0.55, but not as large as the results reported in Table 2 of Colin et al.

(2019b) (q0 = −0.157 in our notation), who ascribed the shift of the deceleration parameter

towards 0 to evidence for an anisotropic universe. Our analysis (with its improved treatments

of peculiar velocities and colour selection effects) disagrees with those conclusions: the marginal

posterior probability (obtained from our posterior samples, not a Gaussian approximation to

the posterior) for q0 ≥ 0 (i.e., no acceleration) for the F (z) = 1 case with selection effects

corrections and a distance modulus dipole is 9.3 × 10−4. We return on this question from the

point of view of Bayesian model comparison in section 5.3.4.

The constraints on the dipole parameters for the Cosmographic expansion model are qualita-

tively similar to those presented for the ΛCDM model, as shown in Fig. 5.11 and detailed in the

central two sections of Table 5.3. For the F (z) = 1 case, the posterior dipole amplitude peaks

at 0 and we set a 95% upper limit |Dq0 |< 6.32 × 10−4. There is no significant evidence for a

dipole moment in the Cosmographic expansion case under our data and models. A qualitatively

similar picture holds for the F (z) = exp (−z/S) case, albeit with weaker limits on the dipole

amplitude owing to the degeneracy with the scale parameter S.

For a more direct comparison with the results of C19, we have also investigated the same

model as C19, where the dipole modulation is applied to the deceleration parameter q0, as in

Eq. (5.15), rather than to the distance modulus μ. Differently from C19, we did not remove

the bias corrections to the magnitude, we kept the direction of the dipole free (as opposed to

being fixed in the CMB dipole direction), used our new peculiar velocity corrections and CMB

restframe redshifts (as opposed to heliocentric redshifts) and applied our new colour selection

effects. The resulting posteriors are shown in Fig. 5.12 and constraints presented in the bottom
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section of Table 5.3.

We see qualitatively similar results to the case where we model the dipole on q0 in the Cos-

mographic expansion. For the F (z) = 1 case, the posterior dipole amplitude again peaks at 0

and we set a 95% upper limit |Dq0 |< 6.29× 10−2. A qualitatively similar picture holds for the

F (z) = exp (−z/S) case with a preference for a small S value. This is in contrast with Colin

et al. (2019b), who saw a preference of a scale value S = 0.0262, a likely consequence of their

removal of peculiar velocity correction and the use of heliocentric redshifts.

It should be noted that the posteriors indicated in Figure 5.12 do cover a range that includes

the inferred value of the dipole amplitude detected by C19 at D = 8.03 for the case of the

exponential scale decay model. However, this should not be interpreted as evidence for their

dipole model as we will see by model comparison in section 5.3.4. Due to the nature of random

sampling and our prior constraints, there is a non zero probability that some part of the

posterior includes their value given enough samples, but also, from the shape of our posteriors

on the JLA data, it is clear the preference for a dipole amplitude of zero as it is not strongly

peaked at a value away from zero. Such behaviour can be seen in our plot of a simulation with

a diople present where the posterior is strongly peaked at the simulated dipole value in Fig. A.2

5.3.4 Bayesian Model Comparison

We compare the isotropic expansion model to the alternatives featuring a dipole via Bayesian

model comparison, and report the difference in the log of the Bayesian evidence (i.e., the log

of the Bayes factor) in Table 5.3:

Δ ln(Z) = lnBD − lnBI , (5.45)

where BI is the Bayesian evidence for the isotropic model (either ΛCDM or Cosmographic

expansion) and BD is the evidence for a model featuring a dipole, with priors as in. Table 5.1.

A value of Δ ln(Z) < 0 indicates a preference for the isotropic model. According to the

Jaynes’ scale for the strength of evidence, values of |Δ ln(Z)|= 2.5(5.0) correspond to moderate
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Figure 5.11: Posterior inference allowing for a distance modulus dipole from JLA data, assuming
the Cosmographic expansion model with F (z) = 1 (left) and F (z) = exp (−z/S) (right),
including colour-based selection effects correction. Contours in 2D plots enclose joint 1, 2 and
3 σ HPD credible regions; the vertical dashed line in the 1D marginals for Dμ and S delimits
the 2σ upper limit.
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Figure 5.12: Posterior inference allowing for a distance modulus dipole from JLA data, assuming
the Cosmographic expansion model with F (z) = 1 (left) and F (z) = exp (−z/S) (right),
including colour-based selection effects correction. Contours in 2D plots enclose joint 1, 2 and
3 σ HPD credible regions; the vertical dashed line in the 1D marginals for Dq0 and S delimits
the 2σ upper limit. The dipole here is modelled directly on the deceleration parameter rather
than the distance modulus, similar to C19.
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(strong) evidence for one of the models being compared. The Jaynes’ scale is only used here

as a qualitative description of the strength of evidence for a given model, but it is up to the

practitioner to decide what is sufficient evidence for making a decision based on the implied

relative probability between the models from the Bayes Factor. For equal prior probability for

the models, the quantity exp(Δ ln(Z)) = BD/BI gives the posterior odds between the isotropic

and the dipole expansion models, which are approximately 12:1 (150:1) for moderate (strong)

evidence (see Trotta (2008) and chapter 4 for details on Bayesian model comparison). When

considering the numerical odds derived from the Bayesian evidence, it is important to bear

in mind that these can be very sensitive to the choice of prior distribution, particularly the

prior on the parameters that only appears in the more complicated model (i.e., the model

featuring the dipole). While we believe that our choices of prior distributions are well justified

in Section 5.2.7, researchers that make other choices for their prior distributions may compute

odds ratios that differ from those that we report.

In Table 5.1 we only carry out pair-wise model comparisons between models that use the same

data and same treatment of colour selection effects, for comparing models with different data

and/or assumptions about the data generating process would be meaningless. The evidences

(and associated uncertainties) are estimated with PyMultinest, which was run with 400 live

points and an evidence tolerance of 0.5. We observe that the isotropic model is favoured over all

others: in the ΛCDM scenario, the constant dipole model is disfavoured with odds ranging from

900:1 to almost 6000:1, depending on the adoption of colour selection effects. The model with

a dipole falling off with redshift is also disfavoured, albeit with smaller odds ranging between

32:1 and 194:1.

A similar pictures holds for comparison between models in the Cosmographic expansion case.

Here, the odds against the anistropic models are generally smaller than in ΛCDM, owing to the

smaller parameter space volume ratio between posterior and prior, which control the strength of

the Occam’s razor effect in favour of the isotropic model. We also note that when introducing a

dipole scale parameter S, despite the larger number of free parameters in this model w.r.t. the

case where the dipole is constant in redshift, the Bayes factor against it is actually smaller than

the constant-in-redshift dipole case. This can be explained by noting that the introduction of
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S as a free parameter leads to much less stringent limits on the dipole amplitude because of the

degeneracy explained above. Since S itself is only weakly constrained, the Occam’s razor effect

for these two parameters is weakened, leading to a weaker preference for the isotropic model.

As a consequence, the Cosmographic-D-Exp model where the dipole is on the deceleration

parameter is only very mildly disfavoured (odds smaller than 5:1) w.r.t. the isotropic model

– a consequence of the fact that the additional parameters for this model cannot be strongly

constrained, and hence the posterior odds remain approximately equal to the prior odds.

As another case, we reproduce the setup used in C19, namely removing peculiar velocity cor-

rections entirely, using heliocentric redshifts (i.e., zhel instead of z̄ in Eq. (5.31), a choice that

imprints the dipole due to the solar system’s motion onto the data, as pointed out by Rubin

& Heitlauf (2020)) and removing from the covariance matrix all uncertainties associated with

peculiar velocity corrections. In this setup, we compare the evidence for an isotropic Cosmo-

graphic expansion with that of a dipolar modulation of the form F (z) = exp (−z/S) either on

the deceleration parameter, Eq. (5.15) (as in C19), or on the distance modulus, Eq. (5.14). We

adopt a Gaussian prior with a standard deviation of 10◦ on the dipole direction, centred on the

bulk flow direction from Boruah et al. (2020b), namely lbf = 301◦ ± 4◦, bbf = 0◦ ± 3◦ (in ex-

cellent agreement with the results of Said et al. (2020), obtained using the Fundamental Plane

relation, namely lbf = 304◦±4◦, bbf = 1◦±4◦). When the dipole is modelled on the deceleration

parameter, as in C19, the Cosmographic anisotropic model is still disfavoured with respect to

the isotropic one, with odds of approximately 17:1 (Δ ln(Z) = −2.84 ± 0.08). Although the

anisotropic model achieves a better quality of fit by absorbing the dipole in the data, from an

Occam’s razor persepective it remains disfavoured due to its additional, unwarranted model

complexity. We observe a similar effect (if stronger) when the dipole is modelled instead on

distance modulus μ, with odds of approximately 150:1 (Δ ln(Z) = 5.03± 0.03) in favour of the

isotropic model. We can repeat this comparison in the isotropic ΛCDM case and compare that

with an anisotropic ΛCDM model with F (z) = exp (−z/S), finding Δ ln(Z) = −4.92 ± 0.15,

which again favours the isotropic model with odds of 136:1.

It is interesting to view here the Bayes factors related to the simulated data. For this, we

simulate data sets with no dipole in both the Cosmographic and ΛCDM case and calculate the
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Bayes factors from comparing the evidences for an isotropic model and an anisotropic model

with the exponential scale decay. The Bayes factor in this scenario is computed as in 5.45 so

that a negative value of the Bayes factor favours the isotropic model and a positive value the

dipole model. We also simulate data that has a genuine dipole present in the Cosmographic

and ΛCDM case and compute the Bayes factors again as before. Each set of simulations and

inferences are run for 100 iterations using the steps and parameter values outlined in section

5.3.1.

The top of Figure 5.13 shows all Bayes factors computed prefer the isotropic model when no

dipole is present in the simulated data with a spread of values that is similar to the spread of

values seen in Table 5.3. The standard deviation of Δ lnZ in this case is 0.79 (ΛCDM) and 0.69

(Cosmographic). On the other hand, while the bottom of Figure 5.13 shows all computed Bayes

factors prefer the dipole model for data with a dipole present, the strength of the preference

is much higher with the computed Bayes factors being larger in magnitude but also variance,

with both sets of Δ lnZ having standard deviations of 7.5 (ΛCDM and Cosmographic).

The above further lends evidence to the isotropic model as the distribution of Bayes factors

unanimously favour the correct model in each set of simulations.

Another interesting question is the strength of evidence in favour of an accelerating universe

in the isotropic expansion case. The Bayes factor between the isotropic ΛCDM model and

an isotropic model with no dark energy (ΩΛ = 0) disfavours the latter with odds in excess

of 120:1 (including selection effects corrections). For completeness (and to compare the above

Bayesian model comparison results with a hypothesis testing approach), we have also computed

the log-likelihood difference for the best-fit parameter values:

Δ ln(L) = ln L̂ΩΛ=0 − ln L̂ΛCDM (5.46)

where L̂ΛCDM is the maximum likelihood value for the ΛCDM model and L̂ΩΛ=0 is the maximum

likelihood value for a universe with no dark energy. We find Δln(L) = −6.35 (with selection

effects correction), which we translate into a p-value using Chernoff theorem (as the hypothesis
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Figure 5.13: Top: The distribution of Bayes factors for simulated data with no dipole present.
Bottom: The distribution of Bayes factors for simulated data with an exponentially decaying
dipole present. In both of the above, plots the Bayes factor is computed such that negative
values prefer isotropic models and positive values favour the exponentially decaying dipole
model.
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being tested, ΩΛ = 0, lies on the boundary of the allowed parameter space). For the null

hypothesis of a ΩΛ = 0 universe which contains no dark energy, we obtain a p-value of 5.9×10−3

meaning such a universe as a null hypothesis is easily rejected under the common significance

threshold of 5%.

In the phenomenological Cosmographic expansion setting, the accelerating isotropic model, with

a uniform prior on q0 ∈ [−2, 0) is favoured with odds of approximately 26:1 when compared to

a coasting universe, i.e., q0 = 0. The accelerating universe is preferred with odds of almost ∼
1100:1 when compared with a decelerating model, i.e. one with a uniform prior q0 ∈ (0, 1].

5.4 Summary and Conclusions

We have revisited the question of a dipolar anisotropy in the expansion of the universe, and

derived new constraints on a possible dipolar modulation from SNIa data. Our approach

builds on the Bayesian hierarchical model BAHAMAS, which has been extended to include a

new approximate correction for residual colour-based selection effects. We have also upgraded

the treatment of peculiar velocities and host galaxy redshifts from the original JLA paper by

Betoule et al. (2014), by adopting state-of-the-art flow models constrained using the 2M++

galaxy catalogue. Finally, we have improved the treatment of both statistical and systematic

uncertainties pertaining to peculiar velocity corrections – the dominant source of error for

z � 0.1 SNIa, which are all-important for a robust, accurate and precise measurement of

anisotropy in the local expansion.

We did not find any evidence for a deviation from isotropy, either in the framework of ΛCDM or

in phenomenological Cosmographic expansion. We placed tight constraints on the amplitude

of a possible dipole both in the distance modulus and on the deceleration parameter. Our

upper bounds are more stringent by a factor of ∼ 2 than the results previously obtained from

the same data sets with a comparable approach. We note that all previous searches that have

claimed a significant detection of anisotropy have neglected peculiar velocity corrections.

We have used the framework of Bayesian model comparison to evaluate the Bayes factor between
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models featuring a dipole and an isotropically expanding universe (both in ΛCDM and in

the Cosmographic expansion). We found moderate to strong Bayesian evidence against an

anisotropic expansion. We have also evaluated the evidence in favour of acceleration, finding

that a non-zero cosmological constant is preferred, using JLA SNe alone, by odds of 120:1, a

result corroborated by a more traditional p-value approach based on a frequentist hypothesis

test, which rejects ΩΛ = 0 with a p-value of 5.9 × 10−3. In the Cosmographic expansion, a

decelerating universe is disfavoured with odds of almost 1100 : 1 w.r.t. an accelerating one. We

conclude that the preferred model remains the ΛCDM isotropically expanding model.

The effect of our peculiar velocity measurements on H0 measurements is difficult to quantify

within our Bayesian model as the parameter is exactly degenerate with the SNIa intrinsic

magnitude and hence is fixed H0 = 72km/s/Mpc in our analysis. However, we provide our

corrections to the JLA data publicly so others wishing to use it for studies relating to H0 can

do so.

In this work we adopted the JLA compilation since we were unable to use the most recent

Pantheon sample, owing to the full covariance matrix (including systematics) not being pub-

licly available. We plan to apply our new framework, including up-to-date peculiar velocity

corrections, to the Foundation sample (Foley et al., 2018; Jones et al., 2019), together with the

recent data release of the Dark Energy Survey (DES Collaboration et al., 2018). In the near

future, we expect to be able to obtain even tighter constraints on possible anisotropy in the

expansion from upcoming, larger SNIa surveys like the one that will be delivered by the Vera

Rubin Observatory Legacy Survey of Space and Time (LSST) (LSST Science Collaboration

et al., 2009). The data products generated from our analysis in this chapter is available from

https://zenodo.org/record/5854639.



Chapter 6

A Cosmological Model for Anisotropic

Expansion

Most studies looking into observational tests for isotropy do so with a parameterized model that

typically introduces a preferred direction in the expansion via a dipole term in either the lumi-

nosity distance, the distance modulus or the deceleration parameter as was done in Chapter 5.

One of the key questions from a physical point of view, however, is how to link any potential

deviation from isotropy at late times with the initially isotropic universe suggested by the CMB.

An attempt was made to do this also in Chapter 5 by restricting the modelled dipole to a local

scale. However, that chapter sought to do this under a standard ΛCDM context by simply

including a dipole term in the distance modulus and deceleration parameter without modi-

fying the underlying Friedmann-Lemaître-Robertson-Walker (FLRW) metric which assumed

isotropy. Here we instead take a more phenomenologically consistent route here by considering

a rescaling of the expansion in the FLRW metric that is time-dependent and then deriving the

corresponding luminosity distance modulus formulas that would arise. The simplest way to do

that is to suppose a regime change that occurs at some time before the current era, when both

homogeneity and isotropy are broken. One possible method of doing this is to associate this

regime change with the properties of dark energy, which might be something more complicated

than a cosmological constant, and hence might be inhomogeneous at later times leading to an

134
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anisotropic expansion. Therefore, I shall consider here a simple model, which can be thought of

as an extension of the ΛCDM model, where dark energy undergoes a phase transition around

the time of dark matter – dark energy equality, that is at approximately z ∼ 0.3, which leads

to isotropy-breaking and hence to a deviation from the Cosmological Principle at late times.

The aim of this chapter is to compare such a model with the ΛCDM istropic model, in order

to constrain any deviations from isotropy and compare this result with the analysis presented

in the previous chapter.

The structure of this chapter is the following. In Section 6.1 I present a simple model where

the universe undergoes a phase transition around the time of dark matter-dark energy equality,

leading to an anisotropic expansion rate, and compute the luminosity distance and distance

modulus in this model. In Section 6.2 we use the BAHAMAS Bayesian Hierarchical Model and

JLA SNIa data to constrain the parameters of our anisotropic model, and carry out Bayesian

model comparison with the ΛCDM model. Finally, I present my conclusions in Section 6.3.

Throughout the chapter we use the standard convention for the signature of the metric (−1, 1, 1, 1)

and work in units in which the speed of light is unity: c = 1.

6.1 A Simple Model for Anisotropic Expansion

With the aim of reconciling the strong constraints on anisotropies at early times from the CMB

while allowing for possible departures at late times, I conjecture here that dark energy could

source an anisotropic expansion. For the sake of simplicity, I consider a simple, one-parameter

model, where the universe expands at a different rate along one direction. I start by introducing

a Cartesian system of coordinates centred on the Sun, with the three axes labeled as u, v, w as

opposed to the standard x, y and z labels, in order to avoid confusion with redshift, which will be

denoted by z as usual. For now, we shall assume that the u, v directions expand isotropically,

while the w direction expands at a different rate (later, we generalize this to an arbitrary

direction in space). We work in a spatially flat FLRW metric, and introduce a time-dependent
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function ε(t) that rescales the expansion of the u− v plane::

ds2 = −dt2 + a2(t)[ε2(t)(du2 + dv2) + dw2]

= a2(η)[−dη2 + ε2(η)(du2 + dv2) + dw2]

= a2(η)ds̃2, (6.1)

where

ds̃2 = −dη2 + ε2(η)(du2 + dv2) + dw2

= ε2(τ)[−dτ 2 + du2 + dv2] + dw2

= ε2(τ)dŝ2 + dw2, (6.2)

and

dŝ2 = −dτ 2 + du2 + dv2

= −dτ 2 + dr2. (6.3)

Thus we have three metrics ds2, ds̃2 and dŝ2, related by conformal transformations. Let us

recall now that under a conformal transformation, ds2 = f 2(x)ds
′2, the luminosity distance

transforms as (Ivanov et al., 2018)

dL =
f 2
o

fs
d

′
L, (6.4)

where fo is the value of the conformal factor at the observer, and fs is the value of the conformal

factor at the source. Also, the luminosity distance in d+1 dimensions is related to the luminosity

distance in d dimensions by

d
(d+1)
L =

√
d
(d)2
L + w2. (6.5)

Now, using Eq. (6.4) and Eq. (6.5), we can derive the following expressions for the luminosity

distance in each of the three metrics:

d̂L = r, (6.6)
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d̃L =

√
ε4o
ε2s
r2 + w2, (6.7)

dL =
a2o
as

√
ε4o
ε2s
r2 + w2, (6.8)

where r is the radial distance in the u − v-plane with r2 = u2 + v2. Going now in spherical

coordinates, we write w = R cos θ and r = R sin θ, where R is radial comoving distance and θ

measures the angle from the North Galactic pole (the w axis), Eq. (6.8) simplifies to

dL(R, θ) =
a2o
as
R

√
ε4o
ε2s

sin2 θ + cos2 θ

= dL,FRW

√
ε4o
ε2s

sin2 θ + cos2 θ, (6.9)

where dL,FRW = a2o
as
R is the luminosity distance in a FLRW spacetime.

Eq. (6.9) assumed the anisotropy points along the w axis, which we can say is in the coordinate

frame S. To generalize it to the case where the anisotropic direction is nan = (θa, φa) in spherical

polars where θa and φa are measured in S, we can consider a rotation about the v axis of angle

θa with rotation matrix Rv(θa) followed by a rotation about the w axis of angle φa with rotation

matrix Rw(φa) to get the composite rotation

T (θa, φa) = Rw(φa)Rv(θa) =

⎡⎢⎢⎢⎢⎣
cos θa cosφa − sinφa sin θa cosφa

cos θa sinφa cosφa sin θa sinφa

− sin θa 0 cos θa

⎤⎥⎥⎥⎥⎦ . (6.10)

Under this rotation, the original coordinate frame, S, can then be transformed to another

coordinate frame S ′ where the symmetry of Eq. (6.9) holds. In doing so we can obtain the

following expression for the luminosity distance to an object in direction nobj = {θ, φ} by first
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defining the coordinates u′, v′, w′ in this new S’ frame as

⎡⎢⎢⎢⎢⎣
u′

v′

w′

⎤⎥⎥⎥⎥⎦ = T (θa, φa)

⎡⎢⎢⎢⎢⎣
R sin θ cosφ

R sin θ sinφ

R cosφ

⎤⎥⎥⎥⎥⎦ . (6.11)

We can therefore use Eq. (6.8) but with the substitution r → r′ and w → w′ where r′2 = u′2+v′2.

Following the derivation as normal then, the luminosity distance becomes

dL(nobj, R|nan) = dL,FRW

[ε4o
ε2s
(cos2 θ sin2 θa + 2 cos θa cos θ cosφ sin θa sin θ

+ sin2 θ cos2 θa cos
2 φ+ sin2 θ sin2 φ) + cos2 θa cos

2 θ

− 2 sin θa cos θa sin θ cos θ cosφ+ sin2 θa sin
2 θ cos2 φ

]1/2
. (6.12)

Notice that the luminosity distance depends only on θa, not on φa. This is expected since

isotropy is broken along a single axis in the new frame S ′ and the rotational symmetry we

see in Eq. (6.9) along the axis being rescaled is still preserved. Furthermore, a property of

rotation matrices is that the distance to a point from the origin obtained via the pythagorean

sum of the coordinates is preserved so we can ignore having to transform back to frame S as the

physical quantity we are interested in, the luminosity distance we will later use for parameter

inference, remains the same in either frame. Therefore, the anisotropy direction can be fully

specified by two parameters, θa and ε0 and we ignore entirely any dependence φa. Galactic

coordinates are used in this this work as they are a spherical coordinate system and supernovae

objects often have their positions given by galactic coordinates. However, if we wish to use

galactic coordinates such that nobj = (bsn, lsn) and nan = (ba, la), we must note galactic

coordinates measure the polar angle from the plane of the galaxy as so that the range of b is

−π/2 < b < π/2, compared to θa and θ that fall in the range 0 < θa, θ < π. To apply Eq. (6.12)

we must shift the galactic latitude coordinates such that it is in the correct range using the

relation θ = π/2 − bsn and θa = π/2 − ba (see Fig. 6.1 for details). The azimuth angles in

standard spherical coordinates are measured the same way as galactic longitude and therefore
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Figure 6.1: Diagram showing the difference between how b is measured in galactic coordinates
compared to θ in spherical coordinates.

φ = lsn. The luminosity distance can then be used to calculate a distance modulus as before

in previous chapters.

We can now design the function ε(t) so as to capture the behaviour described before: at early

times the universe is homogeneous and isotropic, and therefore ε → 1, while at late times

the isotropy may be broken and ε settles down to some value different from unity. Since we

conjecture this isotropy-breaking behaviour to be associated with dark energy, we model the

transition to occur roughly at the time of dark matter–dark energy equality, teq, and so to have

a typical time-scale equal to the time scale for the transition from matter domination to dark

energy domination, Teq. A simple form of ε(t) implementing such a behaviour is

ε(t) = −
(1
2
− ε0

2

)
tanh

(t− teq
Teq

)
+

1

2
+

ε0
2
, (6.13)

where 0 ≤ ε0 ≤ 1 is a free parameter determining the amount of isotropy breaking. Fig. 6.2

shows the evolution of ε as a function of time for ε0 = 0.60, ε0 = 0.85, and ε0 = 0.95. The

constant ε0 represents the maximal amount of isotropy breaking – it is equal to the value of ε

at future timelike infinity. The constant teq is specified by the physics at matter-dark energy

equality, as we will see later. The bottom plot of Fig. 6.2 also shows the evolution of the ratio

ε4o/ε
2(t) that is used to compute the luminosity distance in Eq. (6.9) where εo is evaluated at
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t = 0 for an observer located at our current location in time.

Figure 6.2: The function ε(t) and the ratio ε4(t = 0)/ε2(t) for ε0 = 0.60, 0.85, 0.95. The time
interval marked by the red dashed lines corresponds to Teq.

In order to rewrite Eq. (6.9) and Eq. (6.12) as functions solely of the redshift z and the polar

angles θ and φ, we need to express Eq. (6.13) as a function of redshift, z. For that we need

to solve for the evolution of the scale factor a(t) during the time when both matter and dark

energy are important, i.e. we need to solve the Friedmann equations with both matter and
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dark energy sources (we set k = 0)1. It should be noted, the set up here is similar to the

Bianch I class of anisotropic models which are allowed to vary at different rates in different

directions. However, we are unable to use ‘off the shelf’ pre-derived cosmologies associated

with this, as our cosmology has a time varying component that controls when the anisotropy

appears (around dark matter-dark energy equality). This necessitates the need to derive our

cosmological equations again using the derivation as follows:

( ȧ
a

)2

=
8πG

3
ρ, (6.14)

ä

a
= −4πG

3
(ρ+ 3P ), (6.15)

where ρ = ρm + ρΛ with

ρm =
1

2
ρeq

(aeq
a

)3

, ρΛ =
1

2
ρeq, (6.16)

where ρeq is the total density at the time of the equality and aeq is the scale factor at equal-

ity. While dark energy is not really a cosmological constant in the anisotropic model, it will

be approximately so, and therefore it is justified to treat it as a constant as a first-order ap-

proximation. Since our goal is to solve for t(z) in order to substitute it in Eq. (6.13), any

deviation from FLRW and a cosmological constant would appear as second-order in ε. Thus

we are allowed to estimate t(z) by assuming that the metric is FLRW. Using Eq. (6.16), the

first Friedmann equation (the constraint equation) becomes

ȧ2 =
4πG

3
ρeqa

3
eq

1

a
+

4πG

3
ρeqa

2, (6.17)

while the second Friedmann equation (the dynamical equation) is not independent anymore -

it can be derived from the first by differentiating with respect to t.

1If we wanted to be pedantic, we would have to solve Einstein’s Field equation with the metric ansatz
Eq. (6.1) and use the resulting equations instead of the Friedmann equations. However, this is unnecessary
since the Friedmann equations would still hold approximately if we assume that the effect of ε is very small,
which will certainly be true at late times.
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The solution of Eq. (6.17) with the initial condition a(t = 0) = 0 is

a = aeq

[
sinh

(3
2

√
4πG

3
ρeqt

)]2/3
, (6.18)

which can be easily verified by differentiating with respect to time. Inverting that, we get

t(a) =
2

3

(4πG
3

ρeq

)−1/2

arcsinh
[( a

aeq

)3/2]
=

2

3
Ω

−1/2
Λ,0 H−1

0 ln
[( a

aeq

)3/2

+

√
1 +

( a

aeq

)3]
, (6.19)

where to get to the second line we used that ρΛ,0 = ρΛ,eq = 1
2
ρeq and that arcsinh(x) =

ln(x+
√
x2 + 1). Using a = (1 + z)−1 (we set a0 = 1) this can be rewritten as

t(z) =
2

3

(
4πG

3
ρeq

)−1/2

arcsinh

[(
1 + zeq
1 + z

)3/2
]

=
2

3
Ω

−1/2
Λ,0 H−1

0 ln

⎡⎣(1 + zeq
1 + z

)3/2

+

√
1 +

(
1 + zeq
1 + z

)3
⎤⎦ . (6.20)

The time of equality is given by

teq =
2

3
Ω

−1/2
Λ,0 H−1

0 arcsinh[1] ≈ 7× 1017s. (6.21)

In addition, we can easily determine the redshift at equality zeq and the scale factor at equality

aeq, finding:

aeq = (1 + zeq)
−1 =

(
Ωm,0

ΩΛ,0

)1/3

. (6.22)

The time scale for the dark matter–dark energy transition Teq is given by the inverse of the

Hubble scale at the time of equality

Teq =
(a
ȧ

)
eq
=

1√
2
Ω

−1/2
Λ,0 H−1

0 ≈ 3.8× 1017s (6.23)

where the above values have been calculated for ΩM = 0.3 and ΩΛ = 0.7 to indicate their

representative values. By substituting t(z) from Eq. (6.20) into ε(t) from Eq. (6.13) we obtain
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ε(z), shown in Fig. 6.3. For larger redshifts (earlier times), ε(z) gets closer to the isotropic case

of ε0 = 1 as desired. We also in the same figure plot the evolution of the ratio ε4(z = 0)/ε2(z)

which used to compute the luminosity distance.

Substituting ε(z) in Eq. (6.9) leads to the luminosity distance function in the anisotropic model

dL,anis(z, θ) in the case where the w-direction is the direction of anisotropy.

dL,anis(z,nobj|nan) = dL,FRW (z)

√
ε(z = 0)4

ε2(z)
sin2 θ + cos2 θ. (6.24)

For the case of an arbitrary anisotropic direction, one obtains the luminosity distance by sub-

stituting ε(z) in Eq. (6.12). Eq.(6.24) describes a ‘squashed universe’ where the luminosity

distance is larger in the w direction compared to directions in the u − v plane, where the de-

viation from isotropy is largest. Fig. 6.4 shows a plot of Eq. (6.24) in the case of a test SNIa

object at θ = π/2 for different values of ε0 including for the ΛCDM model which we can see

corresponds exactly to anisotropic model with ε0 = 1 as expected. The test object being at

θ = π/2, means it lies along the u − v plane which is expanding at a slower rate than the w

direction so for smaller ε0 the luminosity distance is correspondingly smaller. In addition, in

the bottom plot of Fig. 6.4 we fix the test SNIa at redshift z = 0.5 and then we compute the

luminosity distance as the angle θ varies. As expected the the luminosity distance is minimised

as θ is increased until at reaches a minimum at an angle of π/2.

6.2 Constraints from JLA SNIa data

6.2.1 Overview of Statistical Model

In this section, we take the model derived in the previous section and now we use Type Ia SNe

to constrain anisotropies arising from Eq. (6.12) by performing a Bayesian parameter estima-

tion of all the parameters simultaneously, including standardization coefficients, cosmological

parameters and anisotropy parameters ε0, ba. We carry this parameter estimation out with the

Bayesian Hierarchical Model BAHAMAS.
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Figure 6.3: The function c and the ratio ε4(z = 0)/ε2(z) for ε0 = 0.60, 0.85, 0.95. The red
dashed line corresponds to ε(z) = 1 which is the case of perfectly isotropic cosmology as in
ΛCDM.
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Figure 6.4: The top plot shows the luminosity distance as a function of redshift for the ΛCDM
model (red), and for the anisotropic model for a test SNIa object at θ = π/2 for ε0 = 0.60 (blue),
ε0 = 0.85 (orange), ε0 = 0.95 (green), and ε0 = 1 (dashed black). We can see the anisotropic
model overlaps exactly with the ΛCDM model when ε0 = 1 as expected. In addition, the
bottom plot shows how the luminosity distance evolves with θ for a test SNIa object at redshift
z = 0.5 when the anisotropy is aligned along the w axis. As expected, the greatest effect (where
the luminosity distance is minimised) is felt at an angle π/2 to the w axis which is marked in
a black dashed line.

For this work, we modify BAHAMAS so that the luminosity distance is now of the form Eq. (6.12).

Since our model considers a flat universe, for which ΩΛ = 1 − ΩM , the inference is effectively
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only over ΩM and we can remove ΩΛ. Therefore, the final list of parameters BAHAMAS performs

parameter inference over encompasses the population hyperparameters, the SALT2 regression

coefficients, the cosmological parameter ΩM , the anisotropy direction parameter ba and the

isotropy breaking parameter ε0:

Θ = {c∗, Rc, x∗, Rx,M
ε
0, σres, α, β,ΩM , ba, ε0}. (6.25)

We follow the new treatment presented in the previous chapter and Rahman et al. (2021),

where we updated the peculiar velocity treatment of the low-z SNIa in the JLA catalogue and

introduced a new procedure to account for residual colour-based selection effects.

For our prior selection on the parameters of the BAHAMAS model, we use the same priors used

by the previous chapter and Shariff et al. (2016). The only new parameters to apply priors on

are on the galactic coordinate of the anisotropy direction, ba, and the transition parameter ε0

for which we use the uniform priors ba ∼ Uniform[−π/2, π/2] and ε0 ∼ Uniform[0, 1].

6.2.2 Tests on Simulated Data

To test the capability of BAHAMAS to perform parameter inference in the scenario considered in

this chapter, we forward simulate from the hierarchical model that BAHAMAS is based off using

a ΛCDM universe with ΩM = 0.3 and ΩΛ = 0.7. The population parameters used for these

simulations, such as for the SALT2 covariates are simulated using the population distributions

in 4.30, 4.31 and 4.32 with parameters as listed in Table 6.1 along with the priors used for them

during the inference step. We consider two simulated data sets. One where there is anisotropy

in the data with ε0 = 0.85 in the direction of ba = π/4 and one where there is no anisotropy

that corresponds to ε0 = 1. 740 objects were simulated in the same position in redshift and

galactic coordinates as the JLA objects. For each data set we construct 10 realisations of the

data.

In this chapter, the parameter inference is done using PyMultiNest (Buchner et al., 2014) as

before. Using this we can compute the Bayesian Evidence which we will use for model selection
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Table 6.2: Here we list the difference between the 1D marginal posterior mean and the true
value used to simulated JLA-like data i.e., the bias, averaged over 10 data realizations each.
Δx ≡ |xtrue− x̄| for each parameter x. In parenthesis, the difference is expressed in units of the
1D posterior standard deviation.The top row shows the case where ΛCDM with no anisotropy
(ε = 1) is used for the simulation; the bottom row assumes ΛCDM with anisotropy (ε = 0.85)
for the simulation.

Model ΔΩM Δba(rad) Δε0

(i) ΛCDM, ε0 = 0.85 0.01(0.28σ) 0.04(0.65σ) 0.02(0.14σ)
(ii) ΛCDM, ε0 = 1 0.01(0.35σ) Unconstrained < 0.951

and comparison in Section 6.2.3.

When performing the inference on the simulated data we recover the posteriors displayed in

Fig. 6.5. The grey solid lines indicate the values we used in simulations. The black solid line

is the average over the 10 data realisations of the recovered posterior. When calculating the

mean of the recovered posteriors and their bias we find, when averaged over 10 realisations,

the recovery has less than 1 sigma bias amongst all parameters as displayed in Table. 6.2. The

posterior is sufficiently well-formed and this indicates that BAHAMAS is able to sufficiently infer

the degree of anisotropy created by having ε0 = 0.85. However we wish to ascertain what the

posterior looks like when no anisotropy is present. This is shown in the bottom of Fig. 6.5.

The cosmological parameter ΩM is still faithfully recovered with less than 1 sigma bias, and we

see that ba is unconstrained, as one would expect for an isotropic universe. We also see that the

1D marginal posterior distribution for ε0 peaks at its true value of ε0 = 1, as expected. From

here, we place a 95% credible interval at ε0 ≥ 0.961 where 95% of the samples are greater than

this value.

6.2.3 Parameters Constraints and Model Selection from the JLA Data

Finally, we are in a position to deploy BAHAMAS on the real JLA data after verifying its parameter

recovery on simulated data. The posterior results for this are shown in 6.6. We can see similar

results to the simulated results at the bottom of Fig. 6.5, the 1D marginal distribution for ε0

peaks around 1 with 95% credible interval at ε0 > 0.970.
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Figure 6.5: Results from simulated data. The top figure is the data with ε0 = 0.85 in the
direction of ba = π/4. The bottom figure is for data with no anisotropy and ε0 = 1. The grey
solid lines indicate the values used in simulations. The black solid line is the average over the
10 data realisations of the recovered posterior. The bottom figure has a black dashed line in
the lower right of the corner plot at ε0 = 0.961 which indicates the credible interval where 95%
of the samples lay to the right.

The equivalent posterior plot for ba can be seen to have a peak, but the peak of the posterior

does not appear to be well-formed and is asymmetric. This, together with the lack of constraint
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Figure 6.6: Results on JLA data for the anisotropic model with a 95% lower bound for the
posterior plot on ε0 in dashed black at ε0 = 0.970.

on ε0 indicates a lack of evidence for significant detection in ba as well.

We compare the isotropic ΛCDM expansion model to the alternative anisotropic model consid-

ered in this chapter via Bayesian model comparison, and calculate the difference in the log of

the Bayesian evidence (i.e., the log of the Bayes factor) as

Δ ln(Z) = lnBA − lnBI , (6.26)

where BI is the Bayesian evidence for the isotropic model and BA is the evidence for the

anisotropic model, with priors as in Table 6.1. The quantity exp(Δ ln(Z)) = BA/BI gives the

posterior odds between the isotropic and the anisotropic expansion models. In this particular

case, Δ ln(Z) = −4.03 case which corresponds to odds of 56:1 for moderate to strong evidence

in favour of the isotropic model. The evidence is estimated with PyMultinest, which was run

with 400 live points and an evidence tolerance of 0.5.
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6.3 Summary and Conclusions

In this chapter, I tested whether there is a late-time anisotropy in the present universe by using

data from Supernovae Type Ia to serve as distance indicators. I have presented a simple model

where isotropy is broken along a single direction and where the amount of isotropy-breaking

is captured by two free parameters ba and ε0. This model was compared with the standard

ΛCDM cosmological model. I have shown that by applying the Bayesian Heirarchical Model

BAHAMAS we are unable to constrain any anisotropy using the JLA dataset. When comparing

the Bayesian Evidence, we find also that isotropic ΛCDM model is favoured over our anisotropic

model at odds of 56:1, indicating moderate to strong evidence in favour of the isotropic model

on the Jaynes scale. A 95% credible interval lower bound on ε0 is placed at 0.970. While the

size of the current datasets are not enough to disfavour our isotropic model, upcoming will be

aimed at seeing if datasets such as LSST can provide more decisive evidence in favour of or

against the cosmological model presented in this chapter. For this we will employ the expected

utility formalism of Trotta et al. (2011).



Chapter 7

Selection Effects

In this chapter, I build on the BAHAMAS formalism of March et al. (2011); Shariff et al. (2016),

to demonstrate how to include into the method, the treatment of general selection effects, i.e.,

the non-detection of data, that is present in SNIa datasets. This is done using a Bayesian

prescription so that it can combined with the cosmological inference step of BAHAMAS. The

approach is then tested on simulated SNIa-like standard candle data sets. I first present a

brief overview of selection effects in Supernovae data and current methods to handle this in

Section 7.1 and the Bayesian statistical approach of this chapter in Section 7.2. I discuss the

application of this Bayesian approach on SNIa-like simulated standard candles in 7.3 where I

also compare our approach with the methods of Rubin et al. (2015) (from henceforth referred

to as R15). Finally, I discuss my conclusions and future applications of this methodology in

Section 7.4.

7.1 Selection Effects Review

Selection effects in data is the effect of missing data which can happen in many scenarios that

are related to the data collection procedure. The data can be considered ‘censored’ where the

values of the missing data are unknown, for example, due to sample selection, but we do know

that they are missing. The data can also be ‘truncated’ where both the values and the number

152
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of missing data points are unknown and can occur, for example, due to a dependence on a

dependent variable being measured. In the latter case, the data collection procedure is not

random (see Kelly (2007) for more details).

Selection effects, and the associated bias they cause, can occur in many different fields such in

Learning-To-Rank (LTR) systems used for recommendation and search engines (Ovaisi et al.,

2020), accounting for survey bias in sociological and longitudinal studies (Nohr & Liew, 2018)

and biological data sets that are often truncated (Colchero & Clark, 2011). Outside of SNIa

cosmology but within astrophysics they are still heavily important in areas such as gravitational

waves (Messenger & Veitch, 2013), trans-neptunian objects (Loredo, 2004) and more.

Malmquist bias, is the name given to a type of selection bias that occurs when systematically

brighter objects are observed as distance increases (Malmquist, 1922). In SNIa cosmology,

as SNIa are dependent on being bright enough to be observed, it is usual that Malmquist

bias, is present in magnitude space for a SNIa sample from objects that are missed from not

being bright enough. This means selection effects in SNIa are from data truncation and non-

random. Malmquist bias appears in many areas of Astronomy and Astrophysics and has been

investigated in various forms (see Butkevich et al. (2005) for a full historical account).

The cause of Malmquist bias in SNIa datasets can be multi-faceted. In the case of SNIa, aside

from object brightness, they are subject to telescope sensitivity and environmental factors that

affect observing conditions. In addition, it can be shown that whether a SNIa is missed or

not can be caused by intrinsic variability in SNIa populations, with ‘bluer’ (smaller colour,

c) objects being brighter and more easily detected and ‘slower’ (larger stretch, x1) declining

objects staying above the detection threshold for longer increasing the likelihood they are

observed (Phillips, 1993; Hamuy et al., 1996; Phillips et al., 1999). Furthermore, box cuts are

often made on SNIa data based on limiting the values of the SALT2 summary statistics to be

within a given range and having a minimum number of observations within a set number of

days before and after the observed peak of SNe. For example, cuts are often made such that

|c− 0.1|< 0.4 and |x1|< 3 (see Kessler & Scolnic (2017); Scolnic & Kessler (2016)). Figures 7.2

and 7.1 displays what effect the selection efficiency has on the distribution of the data based
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on a simulation of the kind employed in this work (discussed further in Section 7.3).

Applying cosmological fits on data with Malmquist bias can significantly impact cosmological

inference (see, for example, Betoule et al. (2014), where the bias correction on JLA data which

is dominated by selection effects accounts for ∼ 16% of the uncertainty on ΩM). We also show

in Section 7.2, if it is completely ignored, severe biases appear in the inference of cosmological

parameters. One workaround to this is to use complete data in a lower redshift regime which

does not suffer from magnitude limited selection effects, but then there will be a loss of high

redshift information. It would be more appropriate to come up with a model for the missing

data so that all the information in the observed data can be fully utillised. Before we discuss

this works’ method for doing this, I briefly summarise the procedure used in traditional analysis

to correct for selection bias.

7.1.1 Previous Approaches to Handling Selection Effects

Many attempts have been made to attempt to correct for this selection bias with procedures

that encompass, both, Bayesian and non-Bayesian methods. The most notable method being

the BBC (BEAMS with Bias Corrections) (Scolnic & Kessler, 2016; Kessler & Scolnic, 2017)

a non-Bayesian method. Here we refer to BBC as non-Bayesian as the step we are primarily

interested in, correcting for selection effects (as well as cosmological inference), is done in a

non Bayesian manner. However, there is a Bayesian component within BBC where they use

Bayesian Estimation for Multiple Species (BEAMS) (Kunz et al., 2007) to estimate probability

of an object being of Type Ia which is used in their analysis. For the treatment of selection

effects, BBC applies a correction method to the likelihood to ‘correct back’ data to account

for the average of both magnitude and colour-induced selection effects. This method relies on

simulating data to correct the observations, however, the correction is not applied to individual

SNIa but rather apparent magnitude corrections are made to redshift ‘bins’ of data to account

for the bias from missing data and then propagating the uncertainty to a systematics covariance

matrix. In particular, BBC uses a five dimensional model bias model that depends on redshift,

color, stretch and the nusiance parameters α and β. The main downsides associated with
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simulation based methods however is that the simulations have to assume a cosmology which

could bias inferences if our real cosmology does not closely match the simulated data. It can also

be difficult propagate the uncertainty associated with these corrections and correlations these

corrections have with other parameters unless it is known a-priori. Furthermore, if one now

attempts to fit a cosmological model different from ΛCDM or wCDM as is typically assumed in

this correction, this is difficult to do in a way that makes the resultant parameter inference valid.

In the case of model comparison between exotic cosmological models such as those considered in

Chapter 6 it is also not clear using data that applies these adhoc corrections can be sufficiently

justified on a principled level. Therefore, having a procedure that infers these selection bias

corrections during the cosmological fitting procedures is of high importance.

Some authors have attempted to include the modelling of selection effects within Bayesian

methods as we do in this chapter. One of the notable examples of which is UNITY by Rubin

et al. (2015). Unity extends the BHM of March et al. (2011) and also attempts to include many

sources of systematics into the model, including selection effects. The method of including

selection effects in UNITY makes approximations on the missing data distributions that can

lead to severe biases in special cases (as demonstrated later in Section 7.2 and 7.3). STEVE

by Hinton et al. (2018) is also a similar BHM that builds off the model of March et al. (2011)

and similar to UNITY includes many sources of systematics and attempts to improve on the

modelling of these systematics and SNIa populations with respect to UNITY, but still makes

the same simplifying assumptions as UNITY in its treatment of Malmquist bias that can lead

to severe biases in the final parameter inference. March et al. (2018) attempts to do away with

the simplifying approximations of UNITY/STEVE, but uses a selection function based on a

hard-cut threshold, which is unrealistic compared to the real-life smooth probabilistic transition

around the threshold of observation that is expected. In the work presented in this chapter,

our formalism improves upon each of the downsides presented in previous works.
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7.2 A Bayesian Formalism for Selection Effects

Since this chapter is focused on presenting the conceptual methodology to implementing selec-

tion effects in the hierarchical model of BAHAMAS, in the following we simplify our statistical

model and formalism by removing the colour and stretch corrections. In practice, this can be

achieved by replacing the intrinsic scatter of the absolute magnitudes, Mi, with the residual

intrinsic scatter after colour and stretch corrections for standardizable candles, M ε
i which is

given by Eq. (3.7). The inclusion of Phillips corrections in our formalism is straightforward,

and is presented in Appendix B.4 for completeness. In the following, we perform numerical tests

of our method on simulations from the true model, which does not include here the Phillips

corrections. We demonstrate that even in this simplified scenario, our proposed method is

superior to other approaches of implementing selection effects in a Bayesian hierarchical frame-

work. We also ignore the systematic covariance matrix, and take each SNIa measurement to be

independent from all the others. An implementation of our method on realistic SNANA sim-

ulations, including the full Phillips corrections and realistic selection effects, will be presented

in an upcoming work.

March et al. (2011) have shown that when using spectroscopic redshifts, the latent (true)

redshift value can be safely replaced by its observed value, ẑi, as the difference is negligible

when compared with other sources of uncertainty in the analysis. However, for the purposes

of accounting for selection effects keeping track of redshift information is crucial for a correct

treatment, as we demonstrated below. Hence, in our simplified model we re-introduce explicitly

redshift as one of the latent variables, zi, with a corresponding measured value ẑi. For our

simplified model without stretch and colour correction, but with the explicit addition of redshift,

the data is assumed to be drawn from the distribution

[m̂B,i, ẑi] ∼ N ([mB,i, zi], Ĉi), (7.1)

where Ĉi = diag(σ̂2
mB,i

, σ̂2
zi
). We denote the measured data as D̂obs, i := {m̂B,i, ẑi, Ĉi}.

The statistical model further has population SNIa parameters Φ = {M ε
0, σint}, where M ε

0 is
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the mean absolute magnitude of the SNIa population, which is here understood to be after

Phillips corrections, and intrinsic residual scatter σint. The latent (i.e., before measurement

noise) apparent magnitude mi of SNIa i is drawn from

mi|zi,C ,Φ ∼ N (μ(C , zi) +M ε
0, σ

2
int). (7.2)

In terms of the notation we use for this chapter, the quantity we are interested in for inference

is the posterior pdf for the parameters, which, in the absence of selection effects is given by,

via Bayes’ theorem:

p(C ,Φ|D̂obs) =
p(D̂obs|C ,Φ)p(C ,Φ)

p(D̂obs)
(7.3)

where p(D̂obs|C ,Φ) is the likelihood, p(C ,Φ) is the prior and p(D̂obs) is an irrelevant (for our

purposes) normalization constant. Here D̂obs is our data, C , are the cosmological params of

interest, and Φ the population parameters that govern how the data is generated. We now turn

to the modeling of selection effects.

To account for selection effects, we firstly introduce the notion of complete data D, namely, the

data that would be observed if there were no selection effects. In the presence of selection effects,

the observed data are a subset of the complete data: D̂obs ⊂ D. Selection effects are survey-

dependent, so in the following our formalism is understood to apply to a given survey. The

total data vector of observed SNIa’s is D̂obs = {D̂obs,1, . . . , D̂obs,Nobs
} (of dimension Nobs),

while the complete data, including both observed and unobserved SNIa’s, is D = {D1, . . . ,Dn},
with unknown n > Nobs. For each SNIa i, we adopt an indicator variable describing whether

the associated data point is observed:

Ii :=

⎧⎪⎪⎨⎪⎪⎩
1 if Di is observed

0 if Di is unobserved.

The probability of it being observed, i.e., the selection function, can be parameterized in two

different ways: the first is conditional on the noisy value of the observables, D̂i, which is what
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happens in practice when a decision is made whether or not to observe a given object (for

example, when the signal-to-noise is too low because of the large apparent magnitude of the

object). Notice that we distinguish here explicitly between D̂i, representing the noisy values

of the observables but without the condition that these have actually been observed (i.e.,

selected), and D̂obs,i, which denote observable, noisy values which have also been selected.

Formally, D̂obs,i = D̂i|Ii = 1. In the following, we call D̂i “the observable data” (i.e., including

measurement noise) and D̂obs,i “the observed” data (i.e., actually selected).

The selection function conditional on the observable data is written as

p(Ii = 1|D̂i,Ψnoisy) (7.4)

parameterized by a set of hyperparameters Ψnoisy, which describe the selection function as a

function of the observable data. For example, a simple selection function is a normal CDF as a

function of the observed apparent magnitude, m̂i, with parameters Ψnoisy = {mnoisy
cut , σ

noisy
cut },

so that

p(Ii = 1|m̂i,Ψnoisy) = CDFN
(
m

noisy
cut − m̂i, σ

noisy
cut

)
. (7.5)

This selection function tends to 1 for m̂i 	 m
noisy
cut (i.e., SNIa much brighter than m

noisy
cut are

observed) and to 0 for mi 
 m
noisy
cut (i.e., SNIa much dimmer than m

noisy
cut are missed). The

parameter σnoisy
cut controls the width of the transition. More sophisticated distributions can be

obtained numerically from simulations, the subject of a future work.

The second way of parameterizing the selection function is conditional on the latent values of

the data (i.e., before observation noise). This is convenient because in SNANA1 simulations one

has easy access to latent values for all SNIa’s, but only selected SNIa’s are given measurement

noise. Hence it is difficult to derive from such simulations a selection function of the form given

by Eq. (7.5). In this approach, the selection function is written as

p(Ii = 1|Di,Ψ), (7.6)

1SNANA (SuperNova ANAlysis) is a widely used tool for simulating SNe - https://snana.uchicago.edu/
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which is now conditional on the latent variables, Di, and parameterized with a set of parameters

Ψ whose numerical value differs from Ψnoisy. For a normal CDF selection function, this leads

to

p(Ii = 1|mi,Ψ) = CDFN (mcut −mi, σcut) . (7.7)

The two expressions for the selection function, Eq. (7.5) and Eq. (7.7) are related by:

p(Ii = 1|mi,Ψ) =

∫
dm̂ip(Ii = 1, m̂i|mi,Ψ) (7.8)

=

∫
dm̂ip(Ii = 1|m̂i,Ψnoisy)p(m̂i|mi). (7.9)

This shows that the selection function over the latent variables, p(Ii = 1|mi,Ψ), is the convolu-

tion of the selection function over observable data, p(Ii = 1|m̂i,Ψnoisy), and the measurement

noise, p(m̂i|mi) = Nm̂i
(mi, σ̂

2
m,i). As such, the selection function over the latent variables

has a less sharp transition between 1 and 0, as the scale of the transition region is of order

σ2
cut ≈ σ

noisy
cut

2

+ σ̂2
m,i to account for the uncertainty about the value of the latent variables. It

should be noted here that the value of σ̂2
m,i in general differs from SNIa to SNIa meaning that

when parameterized on the latent values, the selection function has a different shape depending

on measurement noise and is not a universal function to be applied to each SNe. Therefore one

needs to marginalise out the unknown value of σ̂2
m,i which is dependent on the latent magnitude

to perform the integration over the dummy SNe such that

p(Ii = 1|mi,Ψ) =

∫
dm̂i

∫
dσ̂m,ip(Ii = 1|m̂i,Ψnoisy)p(m̂i|mi, σ̂m,i)p(σ̂m,i|mi). (7.10)

The functional form of the observational error model p(σ̂m,i|mi) is instrument dependent. As

the observing instruments for various surveys are well studied, their observational error model

is usually available a-priori.

It should be noted this does not mean one can freely swap mi and m̂i in Eq. (7.8) and Eq. (7.9).

While the two forms can be related, to invert the relation, Bayes’ theorem is needed as the

two selection functions on either the observed data or latent variables are different and not

equivalent. If the variables are naively swapped rather than properly inverting with Bayes’
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theorem, the width of the selection function will be incorrect. Related to this, one needs to

be careful during forward simulations in latter sections that the selection function applied,

p(Ii = 1|m̂i,Ψnoisy) or p(Ii = 1|mi,Ψ), is consistent with your choice of parameterisation and

applied on the right variables in the hierarchy. For this work, I choose to parameterise my

selection function on the noisy observed data.

In terms of the BAHAMAS DAG in Figure 4.1, Ψ is associated with the top level of our DAG,

together with the cosmological and population parameters from its dependence on the ob-

served data and latent variables. The exact conditional dependence is decided by whether one

parameterized on the observed data or latent variables.

Similar to equation Eq. (7.3), we now seek to find the posterior distribution for the parameters,

conditional on the observed data, D̂obs.

p(C |D̂obs) =
∫

dΦdΨp(C ,Φ,Ψ|D̂obs)

=

∫
dΦdΨ

p(D̂obs|C ,Ψ,Φ)

p(D̂obs)
p(C )p(Ψ)p(Φ)

(assuming separable priors for C ,Φ,Ψ)

We now turn our attention on the observed data likelihood, Lobs = p(D̂obs|C ,Ψ,Φ). This

can be obtained from the complete data likelihood, p(D|C ,Ψ,Φ), via explicit marginalization

over the missing data. The details of the calculation are presented in Appendix B.2, where our

method is compared in detail with that in R15. More simply, the final result can be obtained

via a straightforward application of Bayes’ theorem as follows. Let D̂obs,i be the observed data

for a randomly selected SNIa from the complete data D. In the absence of selection effects, the

observed data would be a random subsample of size Nobs from the complete data, i.e.

D̂obs,i ∼ p(D|C ,Φ), i = 1, . . . , Nobs. (7.11)

However, we only observe a SNIa with probability given by either Eq. (7.5) or Eq. (7.7). Since
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D̂obs,i = D̂i|Ii = 1, it follows from Bayes’ theorem that

p(D̂i|Ii = 1,C ,Φ,Ψ) =
p(Ii = 1|D̂i,Ψnoisy)p(D̂obs,i|C ,Φ)

p(Ii = 1|C ,Φ,Ψ)
. (7.12)

Further assuming that the SNIa observations are independent2, we obtain

Lobs = p(D̂obs|C ,Φ,Ψ) ∝
Nobs∏
i=1

p(Ii = 1|D̂i,Ψ)p(D̂obs,i|C ,Φ)

p(I1 = 1|C ,Φ,Ψ)Nobs
, (7.13)

where the numerator is a product of the selection model Eq. (7.5) and the standard likelihood

ignoring selection effects, p(D̂obs,i|C ,Φ). Notice that, if the selection function parameters, Ψ,

are known, then the first term in the numerator is a constant (independent of C ), and can

thus be dropped. However, this is no longer true in when there is uncertainty in the selection

function parameters – a case we will return to below.

The denominator of Eq. (7.13) is no longer ignorable, as it depends on the parameters being

inferred and it represents the probability of making an observation. Its calculation is generally

difficult, for it requires marginalization over all latent variables, including redshift (which does

not appear in the denominator, an important point we will discuss more fully below). This

marginalization can be expressed in two different ways, as either a function of the noisy or

latent variables with

p(I1 = 1|C ,Φ,Ψ) = (7.14)∫
dD̂1p(I1 = 1|D̂1,Ψnoisy)p(D̂1|C ,Φ) (7.15)∫
dD̂1p(I1 = 1|D̂1,Ψnoisy)

∫
dD1p(D̂1|D1)p(D1|C ,Φ) (7.16)∫

dD1p(I1 = 1|D1,Ψ)p(D1|C ,Φ), (7.17)

where in the last equality we have used the relationship given by Eq. (7.8). If ones chooses to

2This is not necessarily always true and testing the efficacy of our formalism on realistic data with potential
correlations between SNIa from simulations by SNANA is the subject of future work
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evaluate the integral Eq. (7.17), it is required to have a formulation of the selection function as

the probability of observation as a function of the latent variables. This is usually accessible

via numerical forward simulation as in simulated data (such as those from SNANA), we know

what the latent variable values are. It should be noted here, if one chooses to parameterize

with the latter expression which marginalises over the latent variables one would also require a

likelihood over the latent variables as opposed to the noisy data.

R15 derive an observed data likelihood that in our notation reads

LR15 ∝
nobs∏
i=1

p(Ii = 1|D̂obs,i,Ψ)p(D̂obs,iC ,Φ)

p(Ii = 1|ẑobs,i, σ̂2
zi
,C ,Φ,Ψ)

(7.18)

which is very similar to our Eq. (7.13), except it conditions on the observed redshift values in

the denominator, while our likelihood does not. A similar expression to Eq. (7.18) appears in

Hinton et al. (2018). We now show below that it is incorrect to include this conditional if one

wishes to calculate p(D̂obs|C ,Φ,Ψ).

R15 present an expression for p(D̂obs|C ,Φ,Ψ, n) that is identical to our Eq. (B.9), but without

the marginalization over n. In order to then carry out the marginalization over n, R15 make

the crucial assumption that each unobserved SNIa has a redshift that can be approximated by

the redshift of an observed SNIa. This represents an a-priori assumption that the missing data

and observed data follow the same distribution in redshift which is evidently not true (see the

outcome of simulations in Fig. 7.2). To do this, they make the assumption that:

p(ni)∝ 1

ni

,

where ni is the number of unobserved SNIa at redshifts laying in a bin that can be approximated

by zobs,i. Our own assumption, that p(n) ∝ 1/n, is instead an uninformative prior on the total

number of unobserved SNe in each survey, without making unwarranted assumptions about

their redshift distribution.

We show in Appendix B.3 that the relation between our observed data likelihood and the
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expression presented in R15, LR15, is given by

p(D̂obs|C ,Φ,Ψ) = LR15p(ẑobs|C ,Φ,Ψ).

This shows that the likelihood in R15, LR15, is missing some information, namely the con-

ditional distribution of observed redshifts, ẑobs, given the cosmological parameters, the SNIa

population parameters and the selection function parameters, p(ẑobs|C ,Φ,Ψ). Since this is a

function of the parameters of interest, it cannot be ignored. The reader is referred to Appendix

B.2 and B.3 for further discussion on why this term cannot be ignored.

We demonstrate that our observed data likelihood correctly recovers unbiased parameter esti-

mates (differently from the expression used in Rubin et al. (2015); Hinton et al. (2018)) in the

next section.

7.3 Applications to the SNIa-like Standard Candles

Here, we demonstrate our method on a simplified cosmological example, employing SNIa-like

standard candles rather than standardizable candles meaning they require no extra corrections

for stretch and colour. Extension of this work to the realistic case where the SNIa are standard-

ized via linear correlations with observed quantities is straightforward and will be addressed in a

future, dedicated work. though the general methodology for doing so is outlined in Section B.4.

7.3.1 Known Selection Function and No Measurement Error

Let us consider first the case where the parameters of the selection function are known exactly3,

and measurement error is negligible (we relax these assumptions later). We wish to compare

our likelihood with R15’s, as well as with the standard method for dealing with selection effects,

3One caveat of this method however is that it assumes the functional form of the selection function is correct.
For example, at lower redshift, saturation issues can be present and some authors find it more appropriate to
use a skew normal function instead of a normal CDF as in STEVE for these data points. When applied to
realistic datasets, one should always check if the functional form of the selection function is appropriate.
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namely, taking the likelihood that ignore selection effects, Lign, and apply it to data that have

been “corrected back” as follows. The observed magnitudes, mobs,i in a given redshift bin are

shifted by the difference Δ(mobs) computed from a large simulated data set, between the means

of the simulated, complete data in that redshift bin and the mean of the observed magnitudes in

the bin. The naive likelihood, which ignores selection effects, follows the BAHAMAS methodology

wherein the parameters not of interest are marginalized out.

The likelihood ignoring selection effects is given by

Lign ∝
∏
i

p(mi = mobs,i|zi = zobs,i,C ,Φ) (7.19)

where

p(mi = mobs,i|zi = zobs,i,C ,Φ) ∝
∏
i

N (mobs,i − [μ(C , zobs,i) +M0], σ
2
int) (7.20)

and the standard method applies this likelihood to the data after they have been “corrected

back":

Lah = Lign(mobs,i → mobs,i +Δ(mobs,i)), (7.21)

where the redshift bins used to determine Δ are logarithmically spaced with widths, in log(z)-

space

λlog(z) =0.1. (7.22)

R15’s likelihood reads

LR15 ∝
Lign∏

i p(Ii = 1|zi = zobs,i,C ,Φ,Ψ)
, (7.23)
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where

p(Ii = 1|zi = zobs,i,C ,Φ,Ψ)

=CDFN (mcut − [μ(C , zobs,i) +M0], σ)

σ :=
√
(σint)2 + (σcut)2.

Our likelihood, derived in Appendix B.2, modifies the likelihood that ignores selection effects

by re-weighting it with a C ,Φ (and Ψ)-dependent term, reading:

Lobs ∝
Lign

p(I1 = 1|C ,Φ,Ψ)nobs
, (7.24)

where p(I1 = 1|C ,Φ,Ψ) is the probability of observing a SNIa in the survey irrespective of its

latent redshift or magnitude given cosmological parameters C , population parameters Φ and

selection function parameters Ψ, and nobs is the number of SNIae observed in the survey. In

the above equation, we have dropped ignorables constants.

The denominator in Eq. (7.24) cannot be calculated analytically due to the non-uniform dis-

tribution of the independent variable z, which needs to be marginalized over. We take the

z-distribution of the SNIae to be proportional to their volumetric rate:

p(zi) ∝(1 + zi)
γ (7.25)

with γ = 1.5 from Dilday et al. (2008). The denominator of Eq. (7.24) can then be calculated

by marginalizing out z:

p(I1 = 1|C ,Φ,Ψ)

=

∫
dz1 p(I1 = 1|z1,C ,Φ,Ψ)p(z1),

which can be done with a simple 1 dimensional trapezoidal integration.
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The priors we adopt are as follows:

ΩM ,ΩΛ ∼U(0, 1) (7.26)

h ∼N (0.72, 0.12) (7.27)

M0 ∼N (−19.3, 0.52) (7.28)

log σint ∼U(−5, 0). (7.29)

A realization of the data with

ΩM =0.3, ΩΛ =0.7, h =0.72,

M0 =− 19.3, σint =0.1,

mcut =24, σcut =0.5 (7.30)

is shown in the top panel of Fig. 7.1, where we have chosen the selection function parameters so

as to give a number of observed SNIa (∼ 1000) similar in size to current compilation of surveys

(such as Pantheon and JLA). Typically, approximately 20% of SNIa are selected based on our

selection function parameterization so to ensure approximately 1000 objects are detected we

simulate 5000 objects for each realisation of data before applying a selection function on them

to decide what is observed. For clarity of visualisation however, we have further thinned this by

a factor of 5 so that only 1000 objects in total between observed and unobserved are displayed.

Fig. 7.2 shows histograms of the complete and observed simulated data sets, as well as the

residuals after the standard data correction procedure is carried out.

To perform our inference on these simulated datasets we use Multinest as before with 400 live

points and an evidence tolerance of 0.5. In Fig. 7.3 we compare the posterior distributions

when using our likelihood, R15’s likelihood, as well as a likelihood ignoring selection effects but

adopting corrected data using the standard method. The chains are ‘averaged’ over 100 data

realizations by concatenating all 100 chains. The result is such that if each chain has n samples

for a parameter w, then the final concatenated chain has 100 ∗ n samples for the parameter

w and is used to generate the posterior plots. As each realisation of the data set generates
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Figure 7.1: A Simulated data set of 5000 SNIa for simplified standard candles, without mea-
surement errors. 219 observed SNIa are shown in orange and 781 unobserved SNIae are shown
in blue after the data has been randomly thinned by a factor of 5 for visual clarity. An example
visualisation before thinning is presented in Appendix B.1. The standard method corrects for
selection effects by shifting the observed apparent magnitudes mobs,i to the values shown in
red crosses, then ignores selection effects in the likelihood. In the bottom chart the value of
μ(�, zi)+M0 is subtracted off for clarity. The top chart also has a line in green which represents
the fiducial ΛCDM value expected as a function of redshift.
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Figure 7.2: Top: Histogram of the complete (red) and observed (green) simulated SNIae.
Middle and bottom: difference between binned means of the complete dataset’s apparent mag-
nitudes, m, and the observed apparent magnitudes, mobs, before and after selection effects
correction. The bins have width Eq. (7.22) in log(z)-space with the right-most edge determined
by max(msim,obs).
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a random bias in the parameter inference, plotting this concatenated chain averages this bias

such that the posteriors are appropriately centered on their true value. Of course, we only

have one data set in real life so this averaging of the realisation noise is not possible for the

real universe, and mainly serves to diagnose the efficacy of our model in its ability to recover

unbiased posteriors under simulation on average. For the case where the selection function is

known and measurement error is negligible, the averaged posteriors for R15 and this works

methods are very similar, with the data correction method’s posterior being biased low in the

cosmological parameters. It is interesting to note, this bias is in the the opposite direction to

the naive likelihood. This could be a feature of the fact that sometimes adhoc bias correction

can can cause a magnitude bias in the opposite direction to the pre-correction bias (see Fig. 7.2

bottom panel).

The above analysis represents an ideal scenario where the selection function is exactly known.

Knowing the selection model parameters exactly however is not a realistic assumption. In

reality, simulations of the observations (e.g. via the SNANA package) can only deliver an

approximation of the selection effects model, which may be biased or otherwise inaccurate.

Thus, we also wish to understand how inferences on the parameters of interest might be biased

when assuming incorrect values for the selection effects model.

Testing this is easily done by substituting biased values of Ψ into equations Eq. (7.19)-(7.24).

As a test we assume a value for mcut that is biased high by 0.2 mag, a reasonable value in

consideration of the intrinsic dispersion of SNIa magnitudes being of order 0.1 mag and the

magnitude bias in some bins being as high as 0.1 mag owing to selection effects (see bottom

panel of Fig. 7.7). The results wrongly assuming a known (but incorrect) value for mcut are

shown in Fig. 7.4. When using biased values of mcut, our likelihood and the likelihood of R15

recover significantly biased ΩM ,ΩΛ. It can be see here also, using our likelihood tends to bias

the posterior in the opposite direction compared to using the likelihood of R15. The ad hoc

likelihood gives even more strongly biased reconstructions of the cosmological parameters.

With the consideration that potential biases can be present if the parameters of the selection

function are fixed a-priori then the reasonable course of action is to include the selection function
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Figure 7.3: Mean over 100 reconstructions for the cosmological example, comparing the naive
BAHAMAS likelihood, Rubin’s, and this works’ likelihood assuming no measurement error and
a known selection function. The vertical and horizontal line show the true underlying parameter
values.
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Figure 7.4: Biased parameter reconstruction for the cosmological example, when wrongly as-
suming a known (but incorrectly too high) value for mcut by 0.2 mag. The vertical and horizontal
lines denote the values used to simulate the data
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parameters as part of the list of parameters to infer over rather than keep them fixed4.

In this case, inferring the value of Ψ requires modifying the likelihoods Eq. (7.23) and Eq. (7.24)

by a multiplicative factor

∏
i

p(Ii = 1|mi = mobs,i,Ψ)

which is no longer an ignorable constant. Additionally to the priors of Eqs. (7.26)-(7.29), we

now also have the following priors for Ψ5:

mcut ∼U(21, 27)

log σcut ∼U(−3, 2).

The results of keeping the selection parameters free to infer over is shown in Fig. 7.5. Our

likelihood appears to recover approximately unbiased posteriors. In contrast, the R15 likelihood

is not able to meaningfully constrain any of the cosmological parameters of interest (Note that

the M0 and h values should already be well constrained by the priors.) and for the selection

function parameters, while the peaks can be seen to be close to truth values in R15’s case, the

posteriors are significantly wider and asymmetric compared to our constraints.

7.3.2 Including Measurement Noise

To be more realistic, we now add an additional layer to the hierarchy, distinguishing the la-

tent, unobserved variables {z,m}, from the observable (though not necessarily observed) data,

which include measurement noise, {m̂, ẑ}, where the measurement uncertainties are given by,

{σmeas
z,i , σmeas

m,i }. In order to include measurement errors in our analysis, we draw the measure-

4I add here also that the proposed methodology of R15 is to approximate the values of Ψ a-priori using
simulations from SNANA and then keeping them fixed in the inference

5These priors can often be made more informative for realistic datasets by using SNANA simulations to
approximate the selection parameters.
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Figure 7.5: Parameter reconstructions averaged over 100 data realizations where we also simul-
taneously infer the selection parameters mcut and σcut. Assumes no measurement error.
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ment errors σmeas
z,i , σmeas

m,i from

log σmeas
z,i |zi ∼N (tz(zi − uz), sz) (7.31)

log σmeas
m,i |mi ∼N (tm(mi − um), sm). (7.32)

The measured values m̂i, ẑi are then normal-distributed around the latent variables mi, zi

m̂i|mi, σ
meas
m,i ∼N (mi, σ

meas
m,i ) (7.33)

ẑi|zi, σmeas
z,i ∼N (zi, σ

meas
z,i ) (7.34)

where σmeas
m,i and σmeas

z,i is given by Eq. (7.32) and Eq. (7.31) respectively. The selection model

is now a function of the measured values m̂i

p(Ii = 1|m̂i,Ψ) =CDFN (mcut − m̂i, σ
cut). (7.35)

A realization of the simulated dataset is shown in Figures 7.6 and 7.7 with noise parameters

tz =0.5, uz =11.5, sz =0.2,

tm =0.1, um =56, sm =0.6. (7.36)

Notice how Fig. 7.6 exhibits greater dispersion in the bottom panel compared to Fig. 7.1 because

of the measurement error. Similarly the bias caused by selection effects in Fig. 7.7 is larger in

magnitude than Fig. 7.2, including after applying an ad hoc data correction.
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Figure 7.6: A Simulated data set of 5000 SNIa for simplified standard candles, with measure-
ment errors. 262 observed SNIa are shown in orange and 738 unobserved SNIae are shown in
blue after the data has been thinned randomly by a factor of 5 for visual clarity. An example
visualisation before thinning is presented in Appendix B.1. The vertical bars on the data points
represents the measurement error. The standard method corrects for selection effects by shift-
ing the observed apparent magnitudes mobs,i to the values shown in red crosses, then ignores
selection effects in the likelihood. In the bottom chart the value of μ(�, zi) +M0 is subtracted
off for clarity. The top chart also has a line in green which represents the fiducial lcdm value
expected as a function of redshift.
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Figure 7.7: Top: Histogram of the complete (red) and observed (green) simulated SNIa with
measurement error. Middle and bottom: difference between binned means of the complete
dataset’s apparent magnitudes, m, and the observed apparent magnitudes, mobs, before and
after selection effects correction. The bins have width Eq. (7.22) in log(z)-space with the
right-most edge determined by max(msim,obs).
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We must modify the likelihoods Lign,LR15,Lobs to reflect these changes. Firstly,

Lign =
∏
i

p(Di = Dobs,i|C ,Φ)

=
∏
i

∫
dzi dmi p(Di = Dobs,i|mi, zi)p(mi|zi,C ,Φ)p(zi) (7.37)

∝
∏
i

∫
dzi dmi N

(
ẑobs,i − zi, σ

meas
z,i

)
(7.38)

×N (
m̂obs,i −mi, σ

meas
m,i

)
(7.39)

×N (
log σmeas

z,i − tz(zi − uz), sz
)

(7.40)

×N (
log σmeas

m,i − tm(mi − um), sm
)

(7.41)

×N (
mi − [μ(C , zi) +M0], σ

int) (1 + zi)
γ (7.42)

∝
∏
i

∫
dziN

(
ẑobs,i − zi, σ

meas
z,i

)
(7.43)

×N (
log σmeas

z,i − tz(zi − uz), sz
)

(7.44)

×N
(
mi − [μ(C , zi) +M0],

√
(σint)2 + (σm,i)2

)
(7.45)

× (1 + zi)
γ, (7.46)

where

mi =
(σmeas

m,i )2
(

log σmeas
m,i

tm
+ um

)
+
(

sm
tm

)2

m̂obs,i

(σmeas
m,i )2 +

(
sm
tm

)2

σ2
m,i =

(σmeas
m,i )2 · (sm/tm)2

(σmeas
m,i )2 + (sm/tm)2

.

To evaluate the integral over zi, we will assume that σmeas
z,i is small. Then expanding log(1+ zi)

about ẑobs,i gives

(1 + zi)
γ

≈ exp

{
γ

[
log(1 + ẑobs,i) +

zi − ẑobs,i

1 + ẑobs,i
− (zi − ẑobs,i)

2

2(1 + ẑobs,i)2

]}
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and hence

N (
ẑobs,i − zi, σ

meas
z,i

)
(1 + zi)

γ

∝∼N (z̃i − zi, σ̃z,i) (7.47)

N (
ẑobs,i − zi, σ

meas
z,i

)
(1 + zi)

γ

×N (
log σmeas

z,i − tz(zi − uz), sz
)

∝∼N (zi − zi,σz,i)

where

z̃i =ẑobs,i +
(1 + ẑobs,i)γ(σ

meas
z,i )2

(1 + ẑobs,i)2 + γ(σmeas
z,i )2

σ̃2
z,i =

(1 + ẑobs,i)
2(σmeas

z,i )2

(1 + ẑobs,i)2 + γ(σmeas
z,i )2

zi =
(σ̃z,i)

2
(

log σmeas
z,i

tz
+ uz

)
+
(

sz
tz

)2

z̃i

(σ̃z,i)2 +
(

sz
tz

)2

σ2
z,i =

(σ̃z,i)
2 · (sz/tz)2

(σ̃z,i)2 + (sz/tz)2
.

By linearizing μ about zi similar to what was done in March et al. (2011), we consequently

have

Lign ∝∼
∏
i

N
(
mi − [μ(C , zi) +M0],

√
(σint)2 + [∂zμ(C , zi)σz,i]2 + (σm,i)2

)
, (7.48)

where the derivative of μ(C , zi) is given by

∂zμ(C , z) =
5

log 10
· ∂zDL(C , z)

DL(C , z)

∂zDL(C , z) =
DL(C , z)

1 + z

+
10−5c(1 + z)

h
H(C , z) cosh

[√
Ωκ

∫ z

0

dz′H(C , z′)
]
.
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In the standard, ad hoc procedure one attempts to correct for selection effects by shifting the

m̂obs in redshift bins

Lah =Lign(m̂obs,i → m̂obs,i +Δ(m̂obs,i)). (7.49)

R15’s likelihood in the presence of measurement errors becomes

LR15 ∝ Lign
∏
i

p(Ii = 1|m̂i = m̂obs,i,Ψ)

p(Ii = 1|ẑi = ẑobs,i, σmeas
z,i , σmeas

m,i ,Φ,C ,Ψ)
, (7.50)

where the denominator can be obtained as

p(Ii = 1|ẑi = ẑobs,i, σ
meas
z,i , σmeas

m,i ,Φ,C ,Ψ)

≈CDFN

⎛⎝ mcut − [μ(C , zi) +M0]√
(σcut)2 + (σint)2 + [∂zμ(C , zi)σz,i]2 + (σmeas

m,i )2

⎞⎠ .

Our likelihood is given by:

Lobs ∝ Lign

∏
i p(Ii = 1|m̂i = m̂obs,i,Ψ)

p(I1 = 1|Φ,C ,Ψ)nobs
. (7.51)

Again, the denominator

p(I1 = 1|Φ,C ,Ψ)

=

∫
dm̂1

∫
dσmeas

m,1

∫
dm1

∫
dz1 p(I1 = 1|m̂1,Ψ)

× p(m̂1|m1, σ
meas
m,1 )p(σmeas

m,1 |m1)p(m1|z1,Φ,C )p(z1)

=

∫
dσmeas

m,1

∫
dm1

∫
dz1 CDFN

⎛⎝ mcut −m1√
(σcut)2 + (σmeas

m,1 )2

⎞⎠
× p(σmeas

m,1 |m1)p(m1|z1,Φ,C )p(z1). (7.52)

requires Monte Carlo integration where we:

1. draw a large sample of z1 from Eq. (7.25) and draw a corresponding sample of m1 from



180 Chapter 7. Selection Effects

Eq. (7.2) using the values of Φ and C conditioned upon in the denominator of Lobs,

2. draw a sample of σmeas
m,1 from Eq. (7.32) using the sample of m1, and finally

3. estimate p(I1 = 1|Φ,C ,Ψ) to be the mean of the CDFN in Eq. (7.52) computed over the

m1, σ
meas
m,1 samples.

Notice also, in the presence of measurement errors, we also have to marginalize out the un-

known measurement error of the dummy SNIa we integrate over which is done numerically. We

choose not to do an analytic marginalization as the error model is dependent on the observing

instrument so our analytic marginalisation may not be valid for realistic data. Future work

will aim to use realistic simulations from SNANA to determine an error model and check if this

realistic error model can be analytically marginalised out.

The posteriors resulting from using the likelihoods Lign, LR15,Lah and Lobs are compared

in Figure 7.8, where the cut parameters are inferred along with the other model parameters.

As before, the naive likelihood ignoring selection effects leads to greatly biased reconstructions.

When the cut parameters need to be inferred, using LR15 produces highly unconstrained

posteriors. On the other hand, Lobs produces reasonably unbiased and constrained results.

Summary statistics of the mean bias and mean squared error are displayed Table. 7.1. It

can easily be seen that our method shows the smallest biases compared to the adhoc and

unity likelihood with all parameters recovered with less than 1 sigma bias unlike the other

two. In addition, our method shows smaller or similar mean squared error in all parameters

of interest. Overall therefore, our method demonstrates superior performance. Our formalism

is easily extended to include the remaining linear Phillips corrections to be more realistic (see

Appendix B). Applying this extension is left to future work where it will be applied to realistic

data sets as the focus of this chapter was to only outline the methodology for the inclusion of

selection effects.

In all previous plots, one could have also considered sampling over the variable M = M0 −
5 log10 h or leaving one of the parameters fixed (as in Chapter 5 where h was kept fixed). As

the degeneracy cannot be broken broken between M0 and h with just supernovae alone, these
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Figure 7.8: Parameter reconstructions averaged over 100 data realizations. Measurement error
exists and cut parameters are inferred along with other model parameters, using the likelihoods
Eq. (7.49), Eq. (7.50), and Eq. (7.51). The vertical and horizontal lines denote the values used
to simulate the data.
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parameters were not of primary focus in this paper. Furthermore, as sampling and inference is

relatively quick in our toy single parameter model (less than one minute for our sample plots)

There is little efficiency in sampling gain from switching to this sampling over M or keeping

one parameter, like h, fixed. Therefore, I did not proceed with such a mechanism. This will be

revisited during future works on realistic data.

7.4 Summary and Conclusion

In this chapter, we have a presented a complete formalism for handling selection effects in a

Bayesian way. The efficacy of our method was compared with the methodology of R15 and an

adhoc correction procedure similar to what is traditionally employed and we found our method

exhibited superior performance in terms of mean bias and mean squared error in both cases.

With this methodology in hand, future work will attempt to apply this formalism to realistic

datasets such as SNANA simulations, DES (DES Collaboration et al., 2018) and LSST (Ivezić

et al., 2019a) data. In addition, the formalism presented here includes the uncertainty related

to redshift errors, a concern that will be relevant in future surveys when photometric redshifts

are only available from larger surveys such as LSST which have comparatively larger errors

compared to spectroscopic errors which are typically negligible. Finally, by bypassing the use

of an adhoc correction procedure and using a Bayesian formalism, we can more appropriately

apply model selection mechanisms to discriminate between various cosmologies.
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Chapter 8

Conclusion

8.1 Summary of Thesis Achievements

Here I outline the the main achievements of this thesis in the context of the motivations and

objectives stated in Chapter 1.

In this thesis, I have provided an extensive literature view surveying the current state of SNIa

cosmology. In Chapters 2, 3 and 4, I provided a background that outlines the context in which

we analyse SNIa in a Bayesian formalism and our Bayesian Hierarchical Model BAHAMAS. This

context sets the stage of thesis by surmising the current issues in the field of SNIa cosmology

as well as future problems that will arise which are used to justify the motivation behind the

work presented in this thesis.

After this review, I have conducted two investigations into the anisotropic expansion of the

universe using the standardisable candles, Supernovae Type Ia, as well as how to account for

Malmquist bias caused by selection effects in SNIa datasets within a Bayesian formalism.

In the first investigation into the anisotropic expansion, I explored the question of a dipolar

anisotropy in the expansion of the universe, and derived new constraints on a possible dipolar

modulation from SNIa data by building on BAHAMAS and extending it to include a new ap-

proximate correction for residual colour-based selection effects. As part of this analysis, the

184
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treatment of peculiar velocities and host galaxy redshifts of SNIa from the original JLA paper

by Betoule et al. (2014) were updated by adopting state-of-the-art flow models constrained

using the 2M++ galaxy catalogue. Finally, I improved the treatment of both statistical and

systematic uncertainties pertaining to peculiar velocity corrections – the dominant source of

error for z � 0.1 SNIa, which are crucial for a robust, accurate and precise measurement of

anisotropy in the local expansion.

No evidence for a deviation from isotropy, either in the framework of ΛCDM or in the phe-

nomenological Cosmographic expansion could be found. Tight constraints were placed on the

amplitude of a possible dipole both in the distance modulus and on the deceleration parameter.

The upper bounds on any possible anisotropy are more stringent by a factor of ∼ 2 than the

results previously obtained from the same data sets with a comparable approach.

Bayesian model comparison was used to evaluate the Bayes factor between models featuring a

dipole and an isotropically expanding universe (both in ΛCDM and in the Cosmographic expan-

sion). We found moderate to strong Bayesian evidence against an anisotropic expansion. We

have also evaluated the evidence in favour of acceleration, finding that a non-zero cosmological

constant is preferred, using JLA SNe alone, by odds of 120:1, a result corroborated by a more

traditional p-value approach based on a frequentist hypothesis test, which rejects ΩΛ = 0 with

a p-value of 5.9× 10−3. In the Cosmographic expansion, a decelerating universe is disfavoured

with odds of almost 1100 : 1 w.r.t. an accelerating one.

For the second investigation into anisotropic expansion, in Chapter 6, I further expanded on

the works of Chapter 5, but this time I breakaway from analysing within a ΛCDM context

and consider instead a phenomenological model that naturally allows for anisotropic expansion

that occurs based on a transition period that occurs around dark matter–dark energy equality

in redshift. From constructing the luminosity distance within this model, we find again this

phenomenological model is not preferred over ΛCDM but neither is it decisively discarded

based on the Bayes factor between the models. Current work is underway to apply a Bayesian

forecasting method based on the expected utility formalism of Trotta et al. (2011) to determine

the efficacy with which future surveys can provide more discriminating evidence to decide
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between the models.

Finally, in Chapter 7, I outline the Bayesian formalism to fully account for selection effects

caused by Malmquist bias in SNIa datasets. I also indicate the flaw in reasoning when Rubin

et al. (2015) used a similar formalism for their selection effects model in their BHM, UNITY.

Notably, I show in the realistic case where the selection function applied on to SNIa data is

unknown, the formalism presented in this thesis recovered the selection function parameters

with superior performance compared to UNITY/STEVE in terms of the mean bias and mean

squared error of the recovered parameters. In addition, the model includes how to handle red-

shift uncertainties to make it suitable for the future of SNIa cosmology where large photometric

samples will be available where the uncertainty in the measurements are no longer negligible

in comparison to their spectroscopic samples.

8.2 Future Work

To handle the future of SNIa cosmology, there are still many areas to be improved upon

within the BAHAMAS model. Future work will focus on accounting for the contamination of

non-SNIa in data that can occur due to the lack of spectroscopic confirmation of their typing.

One methodology to this, is using the Bayesian Estimation For Multiple Species (BEAMS)

formalism (Kunz et al., 2007). BEAMS is designed to reduce biased parameter estimates made

from contaminant supernovae in data that are not of Type Ia. This is especially important for

future survey data from the Large Synoptic Survey Telescope (LSST) where multiple types of

objects are observed and can not reliably have their object type determined from the photometry

alone. The lack of spectroscopic follow up to confirm the typing of the object is due to the

large volumes of potential SNIa candidates LSST is expected to observe (∼ 104− 105 per year)

such that it becomes infeasible for every object to have a spectroscopic confirmation.

As input, BEAMS requires classification probabilities for an object being an SNIa or not.

The Type Ia probability is expected to be sourced from either extensions to the STACCATO

algorithm by Revsbech et al. (2018), which currently does binary classification or another
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algorithm. In particular, we are interested in algorithms that provide classification probabilities

for objects expected to be observed by LSST. Many potential candidates have appeared after

the end of the Kaggle PLaSTiCC competition (The PLAsTiCC team et al., 2018) such as

AVOCADO by Boone (2019) which shares many similarities with STACCATO and RAPID by

Muthukrishna et al. (2019) where both are designed to work with LSST-like data.

Our analysis of future data will also be affected by systematics which will require more precise

modelling to resolve. For future work, improving our modelling will involve accounting for and

investigating the effect of non-gaussianities such as in the colour population of SNIa. Another

aspect of investigating the population distributions which the SALT2 summary statistics are

drawn from is the potential redshift dependency they may have as claimed by Rubin & Hayden

(2016). Based on this analysis, appropriate modifications to BAHAMAS may need to be made.

In addition, there are currently available datasets such as the low redshift Foundation sample

Foley et al. (2018); Jones et al. (2019) which we will seek to analyse within our Bayesian

formalism. At the low redshifts of the Foundation sample, peculiar velocity uncertainty is one

of the dominant systematics. Dam (2020) illustrates a way to infer peculiar velocity corrections

in the context of a BHM to allow propagation of correlations with cosmological parameters, a

novelty that can also be pursued within BAHAMAS. For testing our selection effects formalism,

other higher redshift samples such as those from DES (DES Collaboration et al., 2018) will also

be used as well as realistic simulations from SNANA.

In closing, this is certainly an exciting transition point in cosmology, where the statistical power

from future surveys is expected to provide a significant leap in our understanding of cosmology

where we can delve deep into unravelling the mysteries behind our Universe and discriminate

between the many proposed explanations for it.



Appendix A

Derivation and Test of Method of

Moments

We present here the derivation of the the first and second moment of the moments generating

function. We also demonstrate that our method of moments correctly recovers the selection

function from simulations and that inference from replica of the data under the model is unbi-

ased.

Consider the distribution of the random variable C, denoting the observed colour within a

single survey and redshift bin sj. From Eqs. (5.26) and (5.27), we wish to compute the moment

generating function,

MC(t) =

∫ ∞

−∞
etĉfC(ĉ)dĉ (A.1)

=
1

p(I = 1|Ψ,Θ)
×∫ ∞

−∞
etĉ.

1√
2πσ2

e−
1

2σ2 (ĉ−c�)2 .Φ

(
cobssj − ĉ

σobs
sj

)
dĉ. (A.2)

where σ2 ≡ R2
c + σ2

ĉ , and σĉ is the average measurement noise for colour observations (which

we approximate as being the same for all data points in a given survey and redshift bin).
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The above can be recast as:

MC(t) =
ec�t+

1
2
σ2t2

p(I = 1|Ψ,Θ)
×∫ ∞

−∞

1√
2πσ2

e−
1

2σ2 (ĉ−(c�+σ2t))2Φ

(
cobssj − ĉ

σobs
sj

)
dĉ (A.3)

=
ec�t+

1
2
σ2t2

p(I = 1|Ψ,Θ)

∫ ∞

−∞
Nĉ(c	 + σ2t, σ2).Φ

(
cobssj − ĉ

σobs
sj

)
dĉ (A.4)

=
ec�t+

1
2
σ2t2

p(I = 1|Ψ,Θ)
Φ

⎛⎝cobssj − (c	 + σ2t)√
σ2 + σobs

sj
2

⎞⎠ . (A.5)

We now compute the first and second moments, set h(t) ≡ ec�t+
1
2
σ2t2 and g(t) =

cobssj −(c�+σ2t)√
σ2+σobs

sj
2

.

A dash (′) symbol indicates a derivative with respect to t. Hence:

dMC(t)

dt

∣∣∣
t=0

=
1

p(I = 1|Ψ,Θ)

d

dt
[h(t)Φ(g(t))]t=0

=
1

p(I = 1|Ψ,Θ)
[h′(t)Φ(g(t)) + h(t)Φ′(g(t))]t=0 (A.6)

and

d2MC(t)

dt2

∣∣∣
t=0

=
1

p(Ii = 1|Ψ,Θ)
×

[h′′(t)Φ(g(t)) + 2h′(t)Φ′((g(t)) + h(t)Φ′′(g(t))]t=0 (A.7)

We derive each of the terms h(t), h′(t), h′′(t), Φ(g(t)), Φ′(g(t)) and Φ′′(g(t) evaluated at t = 0:

h(0) = 1. (A.8)

h′(0) = h(t)(c	 + σ2t)|t=0= c	. (A.9)

h′′(0) = h(t)σ2 + h′(t)(c	 + σ2t)|t=0= σ2 + c2	. (A.10)

To determine Φ′(g(t)) and Φ′′(g(t)) we use the Leibniz rule for differentiating under an integral

(the CDF). As a reminder, our CDF is from the integral of Nx(0, 1) from −∞ up to g(t) with
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cobssj and σobs
sj used to control the width as opposed to the normal distribution hyperparameters.

This gives:

Φ(g(t = 0)) =

∫ g(0)

−∞

1√
2π

.e−
1
2
x2

dx (A.11)

Φ′(g(t = 0))| = d

dt

[∫ g(t)

−∞

1√
2π

.e−
1
2
x2

dx

]
t=0

(A.12)

=
1√
2π

.e−
1
2
g(t)2 .g′(t)|t=0 (A.13)

= − σ2

√
2π
√
σ2 + σobs

sj
2
e
− 1

2

(cobssj −c�)
2

σ2+σobs
sj

2

(A.14)

where g(0) =
cobssj −c�√
σ2+σobs

sj
2

and g′(t)|t=0= − σ2√
σ2+σobs

sj
2
|t=0= − σ2√

σ2+σobs
sj

2
. Finally,

Φ′′(t = 0) =
1√
2π

.e−
1
2
g(t)2 .− g(t).g′2(t) +

1√
2π

.e−
1
2
g(t)2g′′(t)|t=0 (A.15)

=
1√
2π

.e−
1
2
g(t)2

(
g′′(t)− g(t)g′2(t)

) ∣∣∣
t=0

. (A.16)

Given that, g′′(t)|t=0= 0, this reduces to

Φ′′(g(t))|t=0= − 1√
2π

.e−
1
2
g(0)2

(
g(0)g′2(0)

)
. (A.17)

This leads to the first and second moments:

dMC(t)

dt

∣∣∣
t=0

=
1

p(I = 1|Ψ,Θ)

⎛⎝c	Φ(g(0))− σ2

√
2π
√

σ2 + σobs
sj

2
e
− 1

2

(cobssj −c�)
2

σ2+σobs
sj

2

⎞⎠ (A.18)

d2MC(t)

dt2

∣∣∣
t=0

=
1

p(I = 1|Ψ,Θ)
× (A.19)⎛⎝(σ2 + c2	)Φ(g(0))−

2c	σ
2

√
2π
√

σ2 + σobs
sj

2
e
− 1

2

(cobssj −c�)
2

σ2+σobs
sj

2 − σ4

√
2π

e
− 1

2

(
(cobssj −c�)

2

σ2+σobs
sj

2

)(
cobssj − c	

(σ2 + σobs
sj

2
)3/2

)⎞⎠
(A.20)
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where the normalization constant is given by Eq. (5.25).

We tested our method of moments to reconstruct the selection function on a suite of simu-

lations, with c	 = 0.0, Rc = 0.1, and three different choices of selection function parameters:

{cobssj , σobs
sj } = {[−0, 1, 0.02], [−0.1, 0.10], [0.0, 0.06]}, chosen the span the parameter space of

interest in our application. We show the results of the reconstructed selection function for

Nsj = 30, 50, 200 (from top to bottom) in Fig. A.1. The results show that the reconstruction,

when averaged over realizations, is extremely close to the underlying true selection function,

thus validating the method.

We tested parameter inference in the presence of residual colour-based selection effects data

simulated according to the method presented in section 5.3.1, with colour-based selection effects

as described in section 5.2.4, with selection function parameters for each survey being:

SDSS = {(-0.5, 3.4), (-0.5, 0.57), (-0.35, 0.29), (0.20, 0.20), (0.20, 0.20) },

SNLS = {(0.20, 0.20), (-0.50, 1.17), (0.14, 0.17), (-0.06, 0.13), (-0.18, 0.14)},

Low-z = {(-0.50, 2.95), (-0.50, 4.47), (0.09, 0.01), (0.017, 0.01)},

HST = {(-0.01, 0.12)}, where each tuple gives the values of (cobssj , σobs
sj ) in order from lowest

redshift bin to highest within each survey. In the reconstruction, we estimate the selection

function parameters as described above, and present 1- and 2-D marginal posteriors on all

parameters in Fig. A.2. The posterior distributions have been averaged over N = 100 replicas.

We observe that the posterior for all of the parameters has a mode very close to the true value,

thus validating our methodology.
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Figure A.1: Reconstructions of the selection function from the two first moments of the moment
generating function from simulated data: we show three representative choices for the selection
function parameters, cobssj , σobs

sj (columns) and three different sample sizes (SNe per bin, Nsj =
30, 50, 100, top to bottom in rows). Blue lines are the individual reconstruction from each of
Nsim = 100 simulations and solid red is the true selection function.
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Figure A.2: Posterior marginal distributions on simulated data with colour-based selection
effects, and a simulated dipole, averaged over N = 100 data realizations. The posterior includes
a correction for colour-based selection effects according to our method. Vertical lines give the
true value of the parameters.
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Selection Effects for SNIa

B.1 Simulations of Standard Candles

Here, I provide supplementary plots that indicate what a sample standard candle simulation

looks like before they were thinned by a factor of 5 for clarity in Figs. 7.1 and 7.6. Figs. B.1

and B.2 show the charts for simulations without and with measurement errors respectively

B.2 Derivation of the Observed Data Likelihood

We write the observed data likelihood, p(Dobs|�,Φ,Ψ), as a marginalization over the unknown

total number of SNIa, n:

p(Dobs|�,Φ,Ψ) =
∞∑
n=0

p(Dobs, Dobs|�,Φ,Ψ, n)p(n). (B.1)

Here, Dobs is the objects that are not observed. To compute p(Dobs|�,Φ,Ψ, n), we introduce

the indicator variable I (linking Dobs to D) and marginalize it out:

p(Dobs|�,Φ,Ψ, n) =
∑
I

p(Dobs, I|�,Φ,Ψ, n).
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Figure B.1: A Simulated data set of 5000 SNIa for simplified standard candles, without mea-
surement errors. 1038 observed SNIa are shown in orange and 3962 unobserved SNIae are
shown in blue. The standard method corrects for selection effects by shifting the observed
apparent magnitudes mobs,i to the values shown in red crosses, then ignores selection effects
in the likelihood. In the bottom chart the value of μ(�, zi) + M0 is subtracted off for clarity.
The top chart also has a line in green which represents the fiducial ΛCDM value expected as a
function of redshift.
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Figure B.2: A Simulated data set of 5000 SNIa for simplified standard candles, with measure-
ment errors. 1153 observed SNIa are shown in orange and 3847 unobserved SNIae are shown
in blue. The standard method corrects for selection effects by shifting the observed apparent
magnitudes mobs,i to the values shown in red crosses, then ignores selection effects in the like-
lihood. In the bottom chart the value of μ(�, zi) + M0 is subtracted off for clarity. The top
chart also has a line in green which represents the fiducial ΛCDM value expected as a function
of redshift.



B.2. Derivation of the Observed Data Likelihood 197

But, for a given number of observed SNIa, nobs (which is determined by the length of Dobs and

the parameters �,Φ, andΨ) and a given n, the indicator variable I only chooses which of the

slots in D are filled by Dobs. Thus, the summand is 0 if I is not compatible with Dobs and n;

otherwise, the summand is independent of I. Hence,

p(Dobs|�,Φ,Ψ, n)

=

[∏
k

(
nk

nobs,k

)]
p(Dobs, I = 1nobs |�,Φ,Ψ, n)

where 1nobs is the choice of I that is 1 in the first nobs entries of each survey (indexed by k)

and 0 elsewhere. We can rewrite this as:

p(Dobs, I = 1nobs |D,Ψ) (B.2)

=

[∏
k

nobs,k∏
i=1

δ(Dki −Dobs,ki)

]
p(I = 1nobs |D,Ψ). (B.3)

We now introduce and marginalize out the complete data, D:

p(Dobs|�,Φ,Ψ, n) =

∫
dDp(Dobs, D|�,Φ,Ψ, n)p(D|�,Φ,Ψ, n), (B.4)

and the delta-functions appearing in Eq. (B.3) fill in the nobs,k observed values, Dki, for each

survey k, thus reducing the integration to be only over the remaining unobserved data:
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p(Dobs|�,Φ,Ψ, n) (B.5)[∏
k

(
nk

nobs,k

)]∫
dD p(Dobs, I = 1nobs |D,Ψ)p(D|�,Φ,Ψ, n)

=

[∏
k

(
nk

nobs,k

)]∫
dDobs

[
p(I = 1nobs |D = (Dobs, Dobs),Ψ)p(D = (Dobs, Dobs)|�,Φ,Ψ, n)

]

=
∏
k

{(
nk

nobs,k

)[
nobs,k∏
i=1

p(Iki = 1|Dki = Dobs,ki,Ψk)p(Dki = Dobs,ki|�,Φ)
]

×
∫

dDobs

⎡⎣ nk∏
j=nobs,k

p(Ikj = 0|Dkj = Dobs,kj,Ψk)p(Dkj = Dobs,kj|�,Φ)
⎤⎦

︸ ︷︷ ︸
Ik,obs

}
(B.6)

where in the last line we have used the fact that observed and unobserved data are independent.

The integral over unobserved data can be computed as follows:

Ik,obs =

nk∏
j=nobs,k

[∫
dDobs,kjp(Ikj = 0, dDobs,kj|�,Φ,Ψk)

]
(B.7)

=p(IkJk
= 0|�,Φ,Ψk)

nk−nobs,k (B.8)

where the last equality follows from the fact that the integral does not depend on the SNIa

index j (as it should, since these SNIae are unobserved) and hence we can replace the SNIa

index j by a common value Jk (say, 1) for survey k. Notice that here the unobserved data

contain all latent variables describing the unobserved SNIae, including in particular redshift

(an important point we will return to later). Using this result in Eq. (B.6) and plugging the

resulting expression into (B.1), we obtain for p(Dobs|�,Φ,Ψ):

p(Dobs|�,Φ,Ψ) =
∏
k

{[
nobs,k∏
i=1

p(Iki = 1|Dki = Dobs,ki,Ψk)p(Dki = Dobs,ki|�,Φ)
]

×
⎡⎣ ∞∑
nk=nobs,k

(
nk

nobs,k

)
p(IkJk

= 0|�,Φ,Ψk)
nk−nobs,kp(nk)

⎤⎦}, (B.9)
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The convenient choice of a uniform-log prior p(nk) ∝ 1/nk for the total (unobserved) number

of SNIae in each survery k renders the summand into an unnormalized negative binomial

distribution. This can be seen by writing, with p ≡ p(IkJk
= 0|�,Φ,Ψk):

∞∑
nk=nobs,k

(
nk

nobs,k

)
pnk−nobs,k

1

nk

(B.10)

=
∞∑

nk=nobs,k

(
nk − 1

nobs,k

)
pnk−nobs,k

(1− p)nobs,k

(1− p)nobs,k
(B.11)

=(1− p)−nobs,k

∞∑
l=0

(
l + r − 1

r

)
pl(1− p)r (B.12)

=(1− p)−nobs,k (B.13)

where we have defined l = nk − nobs,k, r = nobs,k and the last equality follows from the

normalization property of the negative binomial distribution for the number of successes, l, in a

sequence with r failures (where p is the probability of success). Since 1−p = p(IkJk
= 1|�,Φ,Ψk)

is the probability that a SNIa is observed in survey k, we obtain for the likelihood:

p(Dobs|�,Φ,Ψ) ∝

∏
k

∏nobs,k
i=1

p(Iki = 1|Dki = Dobs,ki,Ψk)
× p(Dki = Dobs,ki|�,Φ)

p(Ik1 = 1|�,Φ,Ψk)nobs,k
, (B.14)

where the numerator is a product of the selection model and the standard likelihood ignoring

selection effects.

B.3 Connection Between our Result and R15

Here we show that the likelihood in R15 approximates the quantity

LR15 ∝∼p(Dobs|ẑobs, �,Φ,Ψ) �∝ p(Dobs|�,Φ,Ψ) (B.15)
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(where zobs, as nobs-length array, should be understood as containing the information determin-

ing nobs).

To see this, consider the expression for p(ẑobs|�,Φ,Ψ), analogous to (B.9):

p(ẑobs|�,Φ,Ψ) ∝
∏
k

nobs,k∏
i=1

[p(Iki = 1|ẑki = ẑobs,ki, �,Φ,Ψk)p(ẑki = ẑobs,ki, |�,Φ,Ψk)]

× p(Ik1 = 1|�,Φ,Ψk)
−nobs,k . (B.16)

We now additionally assume that p(ẑki = ẑobs,ki|�,Φ,Ψ) is independent of �,Φ,Ψ. This is saying

that, if one only knows that the (k, i)th SN exists and the values of the parameters �,Φ,Ψ,

then values of ẑki are unaffected. However, p(ẑobs|�,Φ,Ψ) is not independent of �,Φ,Ψ, since

knowing �,Φ,Ψ should significantly constrain the length nobs of the arrays ẑobs (see derivation

in Appendix B.2).

With this (incorrect) assumption, we have

p(Iki = 1|ẑki = ẑobs,ki, �,Φ,Ψ) ∝ p(Iki = 1, ẑki = ẑobs,ki|�,Φ,Ψ).

Combining this with (B.16) and Rubin’s likelihood (7.18) gives

p(ẑobs|�,Φ,Ψ)LR15

∝
∏
k

∏nobs,k
i=1

p(Iki = 1|Dki = Dobs,ki,Ψk)
× p(Dki = Dobs,ki|�,Φ)

p(Ik1 = 1|�,Φ,Ψk)nobs,k

=p(Dobs|�,Φ,Ψ),

giving (B.15). If p(ẑobs|�,Φ,Ψ) is conditionally independent on �,Φ,Ψ (which we argued is

generally not the case), then R15’s likelihood and our likelihood are proportional to each other.
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B.4 Including Phillips’ Corrections

To generalize our selection effects model to include the remaining Phillips’ corrections, let us

suppose that the latent colour, stretch, and apparent magnitude, di = (ci, xi,mi), are drawn

from

(ci, xi,Mi)|Φ ∼N ((c∗, x∗,M0),COV(c, x,M)), (B.17)

p(mi|ci, xi,Mi, zi, �) =δ [μ(�, z) +M − αx1i + βci −mi] , (B.18)

where � = (C , α, β) now includes the Tripp coefficients α, β. The measured values d̂i =

(ĉi, x̂i, m̂B,i) are then drawn from a normal distribution centered about di with some mea-

surement covariance Σmeas
i . Instead of (7.32), we require that Σmeas

i be drawn from some

di-dependent distribution for positive definite matrices p(Σmeas
i |di), e.g. a Wishart distribution

with suitable parameters.

We also generalize the selection function appearing in our likelihood (7.13), making the prob-

ability for selection dependent on ĉi, x̂i:

p(Ii = 1|Di = Dobs,i,Ψ)

=CDFN

(
mcut − (m̂i + acutx̂1i − bcutĉi)

σcut

)
,

where acut, bcut are constant cut parameters included in Ψ = (acut, bcut,mcut, σcut).

The naive part is the regular likelihood from March et al. (2011); Shariff et al. (2016) that

ignores selection effects and is given by

Lign =
∏
i

p(Di = Dobs,i|�,Φ)

=
∏
i

∫
(dzi)(d

3di)p(Di = Dobs,i|di, zi)p(di|zi, �,Φ)p(zi) (B.19)
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where in BAHAMAS p(Di = Dobs,i|di, zi) is approximated as

p(Di = Dobs,i|di, zi) ∝∼ p(d̂i = d̂obs,i, ẑi = ẑobs,i|di, zi,Σmeas
i , σmeas

i ). (B.20)

Finally, the denominator of our likelihood (7.13) reads

p(I1 = 1|Φ, �,Ψ)

=

∫
(d3d̂1)(dΣ

meas
1 )(d3d1)(dz1) p(I1 = 1|d̂1,Ψ)

× p(d̂1|d1,Σmeas
1 )p(Σmeas

1 |d1)p(d1|z1,Φ, �)p(z1)

=

∫
(dΣmeas

1 )(d3d1)(dz1)

× CDFN

(
mcut − ψ · d1√

(σcut)2 + ψTΣmeas
1 ψ

)

× p(Σmeas
1 |d1)p(d1|z1,Φ, �)p(z1), (B.21)

where

ψ =

⎡⎢⎢⎢⎢⎣
−bcut

acut

1

⎤⎥⎥⎥⎥⎦ .

Computation of (B.21) requires Monte Carlo integration, as in the simplified standard candle

case (7.52):

1. draw a large sample of z1 from (7.25) and draw a corresponding sample of d1 from

(B.17),(B.18) using the values of Φ and � conditioned upon in the denominator of Lobs,

2. draw a sample of Σmeas
1 from p(Σmeas

1 |d1) , and finally

3. estimate p(I1 = 1|Φ, �,Ψ) to be the mean of the CDFN in (B.21) computed over the

d1,Σ
meas
1 samples.
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