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In many areas of industry and society, including energy, healthcare, and logistics, agents
collect vast amounts of data that are deemed proprietary. These data owners extract
predictive information of varying quality and relevance from data depending on quantity,
inherent information content, and their own technical expertise. Aggregating these data
and heterogeneous predictive skills, which are distributed in terms of ownership, can
result in a higher collective value for a prediction task. In this paper, a platform for
improving predictions via the implicit pooling of private information in return for
possible remuneration is envisioned. Specifically, a wagering-based forecast elicitation
market platform has been designed, in which a buyer intending to improve their
forecasts posts a prediction task, and sellers respond to it with their forecast reports
and wagers. This market delivers an aggregated forecast to the buyer (pre-event) and
allocates a payoff to the sellers (post-event) for their contribution. A payoff mechanism
is proposed and it is proven that it satisfies several desirable economic properties,
including those specific to electronic platforms. Furthermore, the properties of the
forecast aggregation operator and scoring rules are discussed in order to emphasize
their effect on the sellers’ payoff. Finally, numerical examples are provided in order to
illustrate the structure and properties of the proposed market platform.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Forecasting plays a central role in planning and
ecision-making; as a result, it has always received sub-
tantial attention from researchers and practitioners. For a
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comprehensive review of forecasting and methodological
advances, an encyclopedic article by Petropoulos et al.
(2022) can be referred to. To produce high-quality predic-
tions, forecasters rely on high-quality data and sophisti-
cated mathematical models. Often, data are collected and
held by different owners at different locations; namely,
relevant data are distributed both in terms of geography
and ownership. The pooling of these distributed data can
generate additional value. For example, logistics compa-
nies can exchange their data on consumer behavior to
improve their forecasting of future inventory demand.
Such a forecast improvement by combining or access-
ing more data from distributed sources is demonstrated
in several studies; see Andrade and Bessa (2017) and
Messner and Pinson (2019) for an example in energy
for trading forecasts: A wagering mechanism. International Journal of

applications. The general result such that forecasts can
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be improved through combination is already well known
within the forecasting community. However, in practice,
the data owned by firms or individuals are perceived to
have a cost when exposed. For businesses, this cost can
be incurred in terms of a loss of competitive advantage,
for instance, and for individuals it occur through a loss
of privacy. Therefore, in order to incentivize generating
value from distributed data, the aim of this work is to
design platforms for the pooling of predictive information.
Such platforms allow for a monetary transfer from a
buyer to sellers, who are then compensated for the costs
incurred in data collection, processing, modelling, and
so forth, without the explicit exposure of their private
data. Because of the market context, in this work, the
infrastructural costs associated with the data are not
considered.

Our work centers around the area of market-based
nalytics, which can be broadly categorised into data mar-

kets and information markets depending on whether the
traded product is raw data or extracted information. Both
types of platforms have received increasing attention in
the last few decades. In data markets, the key task is
the valuation of data based on the contribution of each
data seller to a learning task posted by a data buyer
(the client), typically through a central platform (Agar-
wal, Dahleh, & Sarkar, 2019; Ghorbani & Zou, 2019). The
market platform determines the monetary compensation
that corresponds to the data value. Another significant
factor in designing data markets is the cost of a seller’s
privacy loss (Ghosh & Roth, 2011), which plays an im-
portant role in determining the value of data; see Spiek-
ermann, Acquisti, Böhme, and Hui (2015) and Acemoglu,
Makhdoumi, Malekian, and Ozdaglar (2022). For details
on data markets, a comprehensive review by Bergemann
and Bonatti (2019) can be referred to. Data markets em-
power data owners (sellers) to have control over the
exposure of their private resources and allow buyers to
obtain high-quality training data for their learning al-
gorithms and prediction tasks. Despite their huge po-
tential, data markets are not free from limitations and
challenges. First, determining the contribution of a partic-
ular data set for a buyer is, in principle, a combinatorial
problem because of the possible overlap of information
among the data sets (Agarwal et al., 2019). Therefore,
the computational requirements for data valuation grow
exponentially with an increase in the number of sellers
and, consequently, the requirements for the evaluation of
remuneration. Second, each seller may regard their data
privacy with different levels of sensitivity, which makes
designing a privacy-preserving mechanism a challenge.
Both of these issues can be addressed, to some extent, by
so-called information markets.

Information markets (Linde & Stock, 2011) encompass
the trade of a much broader category of information items
such as news, translations, legal information, and so forth.
Taking this into consideration, prediction markets gained
popularity beyond academic circles (Berg, Nelson, & Rietz,
2008; Wolfers & Zitzewitz, 2006), and, based on dispersed
information, generate aggregate forecasts for uncertain
future events by utilizing the notion of the ‘‘wisdom of
crowds’’. For example, in a prediction market designed
2

to forecast the result of an election, the share price of
political candidates indicates the aggregate opinion on the
probability of a candidate’s win. In contrast to the struc-
ture of prediction markets, an information market for the
improvement of a buyer’s forecast is designed. This im-
provement offered by the forecasters is remunerated via
a mechanism with formal mathematical guarantees con-
cerning desirable economic properties such as the balance
of a budget, truthfulness, and so forth (Kilgour & Gerchak,
2004). Consequently, in terms of design, this nature of
this work is closer to the markets proposed for forecast
elicitation with formal guarantees. In these works, typi-
cally, the sellers report their beliefs concerning a future
event. Then, after the event occurs, the sellers are ranked
according to the quality of their forecasts, evaluated by a
scoring rule (Gneiting & Raftery, 2007; Kilgour & Gerchak,
2004). One approach that differs from contribution-based
rewards such as the ‘‘winner takes it all" is proposed
in Witkowski, Freeman, Vaughan, Pennock, and Krause
(2018). It is of interest to note that rewarding the best
encompasses many real-world forecasting settings. For
example, Netflix offered 1M USD to the teamwith the best
prediction of how users would rate movies (Witkowski
et al., 2018). Despite being popular in forecasting com-
petitions, the ‘‘winner takes it all" approach ignores the
fact that forecasts other than the best one can still provide
additional information. Therefore, in line with the idea
of pooling the distributed information, mechanisms that
aggregate information provided by all sellers are pursued
and rewarded according to their quality.

Here, inspiration is taken from the self-financedwager-
ing market setup of Lambert et al. (2008), which features
a weighted-score mechanism, and it is used as a starting
point. In their setup, each player posts a prediction report
for an event and wagers a positive amount of money into
a common pool. After the occurrence of the event, the wa-
ger pool is redistributed among the players according to
their relative individual performance. The payoff function
is a weighted mixture of strictly proper scoring functions
that satisfies several desirable economic properties. Such
self-financed mechanisms yield competition in terms of
forecast skill. However, since it does not include criteria
related to the use of the forecasts, it then ignores their
value with regard to a particular application or observer;
in other words, there is no external agent that aggregates,
utilizes, or is rewarded by the resulting forecast based
on the utility it generates. Thus, their setup cannot allow
for a utility-driven improvement of the client’s forecasts.
In this paper, and in contrast to the setup of Lambert
et al. (2008), a mechanism is designed and analyzed that
considers both the forecast skill of the players and the
utility of the forecasts for a decision-maker.

A situation is considered whereby a client (follow-
ing the terminology of Kilgour & Gerchak, 2004) posts a
forecasting task on the market platform, along with the
monetary reward they are willing to pay for an improve-
ment in their own belief. In response, the sellers report
their forecasts along with their wagers. A central operator
then aggregates these forecasts, considering the wagers
as corresponding weights, in order to yield the final fore-

casts that are passed on to the client. It should be noted
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that, unlike prediction markets, where their mechanism
inherently elicits aggregated information in terms of stock
prices, the aggregation of forecasts here has to be per-
formed methodically (Winkler, Grushka-Cockayne, Licht-
endahl, & Jose, 2019). Therefore, our first goal is to select
a suitable aggregation method that reflects players’ wa-
gers into the aggregated forecast. Next, a central operator
evaluates the quality and contribution of each reported
forecast and their corresponding payoffs. Our framework
requires a payoff function with a utility component that
rewards a contribution to the forecast improvement and a
competitive component that evaluates the relative perfor-
mance of sellers so as to reward or penalize accordingly.
As a result, our second goal is to design a collective payoff
function, with utility and competitive components that
have desirable economic properties.

Our core contribution is to propose a marketplace for
ggregate forecast elicitation using a wagering mecha-
ism that is focused on improving the client’s utility in
erms of an improvement in their forecast. The proposed
arket model (Section 3.1.3) is general and history-free;

t is general in the sense that tasks from any application
rea can be posted in the form of binary, discrete, or con-
inuous random variables. History-free implies that past
ata on sellers’ performance or market outcome are not
tilized; namely, each instance of the market is set up in-
ependently. Then, the requirements for the aggregation
f forecast reports are provided by utilizing correspond-
ng wagers, and the quantile averaging is compared with
he linear pooling method as an example (Section 3.2.1).
inally, a payoff function is designed that rewards the skill
f forecasters relative to each other as well as their con-
ribution to the improvement of the utility of the client.
t is shown that the proposed payoff function satisfies the
esirable economic properties (Section 3.2.3). The remain-
er of this paper is organized as follows: following the
reliminaries covered in Section 2, the proposed market
s described in 3. Illustrative examples in Section 4 are
sed to show and discuss the workings of our approach,
hile an energy forecasting application and case study are
vailable in Section 5. Conclusions and perspectives for
uture work are finally gathered in Section 6.

. Preliminaries

.1. Forecasting task

Forecasting is a key requisite for decision-making and
lanning. It is employed in diverse situations such as
redicting a candidate’s probability of winning an elec-
ion, projecting the economic condition of a country,
usinesses forecasting their sales growth for production
lanning, renewable energy producers making an energy
eneration forecast for bidding in the market, and so
orth. The diverse processes involved in forecasting also
ranslates into the types of forecasting tasks that are
ncountered by a decision-maker. Broadly speaking, fore-
asts can be categorized into point forecasts, probabilistic
orecasts, and scenarios (Gneiting, 2011; Morales, Conejo,
adsen, Pinson, & Zugno, 2014).
3

Point forecasts do not communicate the uncertainty
associated with the possible outcomes of an event; conse-
quently, an incomplete picture is delivered to a decision-
maker. This shortcoming of point forecasts is resolved
by probabilistic forecasts, which provide decision-makers
with comprehensive information about potential future
outcomes; therefore, in this paper, a focus is placed on
probabilistic forecasts. A probabilistic forecast consists
of a prediction of the probability distribution function
(PDF) or of some summary measures of a random vari-
able Y . These summary measures can be quantile fore-
casts or prediction intervals (Gneiting & Katzfuss, 2014).
The market framework proposed in this paper covers all
types of probabilistic forecasts, given that the forecast
evaluation method satisfies the property of being strictly
proper. However, in what follows, a focus is placed on
forecasting tasks in terms of PDFs for better exposition,
and single-category, multi-category, and continuous fore-
casting tasks are considered. Mathematically, these types
of forecasts relate to the forecasting of binary, discrete,
and continuous random variables, respectively. Therefore,
these cases are sufficient for covering most forecasting
tasks that are found in practice. These forecasting tasks
will now be described for uncertain events and relevant
examples will be provided.

A single-category task covers binary events where the
probability of an event happening is forecast. For exam-
ple, a hedge fund predicting a return from a prospec-
tive investment has a single category forecasting task;
i.e., whether the quarterly growth of a prospective in-
vestment will be greater than x%. In the probabilistic
forecasting framework, the task will translate into ‘‘the
probability of the quarterly growth being greater than
x%’’. A multi-category forecast can be exemplified with a
farming company that wants to predict seasonal rainfall
in light, moderate, and heavy categories. Here, the fore-
cast takes the form of a discrete probability distribution;
for example, the rainfall in the upcoming season being
{light, moderate, heavy} has the probability distribution
{0.2, 0.5, 0.3}. Even more comprehensive probabilistic in-
formation can be obtained by forecasting an event in
terms of a continuous probability distribution. For ex-
ample, a wind energy producer bidding in an electricity
market can obtain the whole uncertainty associated with
the day-ahead energy generation event by obtaining a
forecast in terms of a probability density function (Pinson,
2012; Zhou et al., 2013).

In all of the above three forecasting forms, decision-
makers, such as the hedge fund, the farming company, or
the energy producer, can also have the in-house capability
of forecasting. However, they expect that additional data
and expertise can help them improve the quality of their
forecasts for better planning and decision-making, which
in turn can lead to a higher utility. One way to achieve
such a quality improvement is by designing a forecasting
market platform where the data and the expertise of ex-
pert forecasters can be pooled in return for a competitive
reward, depending on the contribution of each expert.
When a decision-maker utilizes such a platform for the
improvement of a forecast, they expect experts to report
their beliefs truthfully instead of gaming the market for
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higher rewards. Furthermore, the decision-maker requires
the improvement offered by the experts to be measur-
able by formalized criteria. Both the guaranteed truthful
reporting and a numeric evaluation of the quality of any
probabilistic forecast can be achieved by so-called scoring
rules.

2.2. Quality, skill, and scoring

At a forecast pooling platform, a scoring rule is re-
quired in order to quantify the improvement in the fore-
cast to be used by the decision-maker. Furthermore, it
allows us to rank the forecasters and to assign rewards
according to their contributions. It should be noted that
this assessment is performed in an ex-post sense; namely,
after the event has occurred.

Definition 1 (Scoring Rule). Let r be a reported proba-
bilistic forecast and ω represent the event observed even-
tually. Then, a scoring rule s : (r, ω) → R provides a
ummary measure that assigns a real value for the evalu-
tion of a probabilistic forecast r in view of the realization
.

In the context of a marketplace in which forecasts are
licited, the role of the scoring rule s(r, ω) is to encourage
layers to do their best when it comes to generating
aluable predictive information, as well as in incentivizing
heir honest reporting. These tasks can be achieved by se-
ecting scoring rules that satisfy certain properties. Next,
he properties of the scoring rules required in this work
re discussed.

.2.1. Properties of scoring rules
First, we can incentivize the forecasters to report their

eliefs truthfully by rewarding them according to a strictly
roper scoring rule (Gneiting & Raftery, 2007).

efinition 2 (Strictly Proper Scoring Rule). Let a player
eport a probabilistic forecast r of an uncertain event Y .
et an outcome ω of an event be distributed according to
he probability distribution p. Then, a real-valued function
(·, ω) is called strictly proper when

p[s(r, ω)] < Ep[s(p, ω)], for all r ̸= p.

ere, let ϱ be the support of p and fPDF be the probability
ensity function. Then, Ep[s(p, ω)] =

∫
ϱ
s(p, ω)fPDF (p)dp.

Later, a strictly proper scoring rule is utilized for our
payoff criteria in order to measure the quality of the
probabilistic forecasts and reward the players accordingly.
There are many such rules reported in the literature;
for instance, the Brier score, logarithmic score, quadratic
score, and so on (Winkler et al., 1996). In principle, a
scoring rule is chosen based on the properties that are
suitable for the application. Here, for a strictly proper
score rule, two more properties are considered; namely,
non-local and sensitivity to distance (Gneiting & Raftery,
2007). These properties consider a complete PDF while
ranking, and allocate a higher reward to a forecaster that
concentrates the probability more around the realized
event. This corresponds to rewarding a higher forecasting
 t

4

skill on a forecaster’s behalf. Next, two other properties
of scoring rules are described, which are later referred to
in order to demonstrate the effect of the choice of scoring
rules on the payoff mechanism. This choice is important
for implementing our proposed market design in practical
scenarios.

Definition 3 (Non-Local Scoring (Winkler et al., 1996)).
Let the forecasters report a PDF of an event Y and the
corresponding outcome ω is observed. Then, a scoring rule
is called local if the score depends only on the probability
(for a categorical event) or likelihood (for a continuous
variable), assigned to ω. Conversely, the rule is not local
f it depends on the entire reported PDF.

efinition 4 (Sensitivity to Distance (Jose, Nau, & Winkler,
009)). Let r be a predictive PDF and R the corresponding
umulative distribution function (CDF). Then, a CDF R′ is
more distant from the value x than R if R′

̸= R, R′(y) ≥

R(y) for y ≤ x, and R′(y) ≤ R(y) for y ≥ x. Consequently,
scoring rule s is said to be sensitive to distance if, for a
iven ω, s (r, ω) > s

(
r ′, ω

)
whenever R′ is more distant

rom R.

In other words, a scoring rule that is sensitive to dis-
ance allocates a higher score to the player who assigned
higher probability to the values closer to the observa-

ion as compared with the probability assignment to the
alues farther away (Winkler et al., 1996). Later, in Sec-
ion 4.4, the properties of locality and sensitivity to dis-
ance are numerically illustrated in order to build a better
ntuition and provide a comparison between scoring rules.

. Proposed forecast elicitation market design

A setting of a market with a single buyer and multiple
ellers is considered for eliciting a probabilistic forecast
n the form of a probability distribution of an uncertain
uture event. In our setting, a buyer is referred to as a
lient and sellers as players or forecasters. A client posts
forecasting task on the market platform and announces
rate of monetary compensation for any improvement

n their own belief. Players with resources and expertise
n forecasting the posted task respond by reporting their
orecasts along with the wagers. The market then aggre-
ates the received information and delivers it to the client.
his aggregated forecast, in turn, is expected to generate
utility for a client in terms of operational improvement.
he resulting utility, considering the announced reward
ate, is then distributed among the players such that it
orresponds to their contribution. It should be noted that
he proposed mechanism can generally be used for the
licitation of forecasts of any event that can generate
tility, such as the movement of a stock. Next, our market
odel is formally described, and later the properties of

he corresponding payoff distribution function are shown.

.1. Market model and participants

.1.1. Client
Let there be a client ic who is interested in improv-

ng their forecast (for example, a generation forecast for
heir renewable energy asset). A client is parameterized

hrough the following quantities:
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• Forecasting task Y , an uncertain event that the client
wishes to better predict;

• Forecast report rc , a client’s own forecast, which is
used as a reference for improvement;

• Reward rate φ > 0, a monetary value that the client
offers for per-unit improvement in the prediction.

A client can post a task Y in the form of a single category
forecast (for instance, the probability of energy generation
being [0.4, 0.6] per unit), a multi-category forecast (for
instance, the discrete probability distribution of energy
generation in the intervals {[0.4, 0.6], (0.6, 0.8]} per unit),
nd a continuous forecast (for instance, the probability
ensity function of energy generation). It should be noted
hat the market design can also accommodate reports in
he form of cumulative distribution functions. In what
ollows, the forecast reports of all three forms are rep-
esented by r in order to primarily maintain a focus on
he proposed mechanism, which holds for all forms of
redictive distributions.

.1.2. Players
Let I = {1, . . . ,N} be the set of players that are the

orecasting experts in the area of a prediction task. A
layer is parameterized through the following quantities:

• Forecast report ri, a prediction of a forecasting task
Y generated using a player i’s data resources and
expertise; players try to improve rc in return for a
monetary reward;

• Wager mi > 0, which accompanies the report ri and
expresses a player i’s confidence in their forecast.

wager is associated with the player’s confidence be-
ause it decides the level of impact that their predic-

ion has on the resulting forecast. Furthermore, in the F

5

roposed payoff function, wagers also influence the re-
ard (penalty) for the players. Here, a penalty implies the
artial or complete loss of the amount wagered.

.1.3. Market operator
A central market operator manages the platform, where
client and the players arrive with respective param-

ters. This operator is also responsible for maintaining
ransparency in the market process and is assumed to be
onest. The functions of a market operator are:

• evaluation of an aggregated forecast r̂(m, r), where
r represents a set of predictive distributions {ri}Ni=1
posted by the players and m is the vector of corre-
sponding wagers;

• evaluation of the score s(ri, ω) of each player i ∈ I,
after observing the outcome ω;

• evaluation of the utility U that corresponds linearly,
by assumption, to the improvement in a client’s
forecast; therefore, in the case of an improvement
in the utility U ∝ φ(s(r̂, ω) − s(rc, ω)), and is zero
otherwise.

• evaluation of the payoff Π̂i of each player i ∈ I.

ere, after the occurrence of the event, the market oper-
tor observes the true outcome ω and evaluates the score
(ri, ω) of each player i ∈ I, which shows how ‘‘good’’ the
orecast reported by the player i was. Then, the operator
valuates the utility U(s(r̂, ω), s(rc, ω), φ) allocated by the
lient and distributes it among the players that have
ontributed to the improvement. For transparency, the
arket operator publicly posts the reward rate, forecast
ggregation method, scoring rule, and utility evaluation
ethod, in accordance with the client. The individual
redictions posted by the players can be kept private and
nly an aggregated forecast is delivered to the client. In
ig. 1, the schematic structure of the proposed market
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with all participants and stages is shown. Note that the
allocated utility U depends on the improvement that a
client has made and, for the purposes of this work, is
treated as an exogenously specified value. Further details
on the forecast aggregation methods, the payoff function,
and their properties are discussed in what follows.

Remark 1. An important benefit of the proposed market
architecture is that the client cannot access the underlying
features; instead, they only receive an aggregated fore-
cast. This mitigates a key challenge faced by data markets
where sellers are hesitant to release their proprietary data
streams since they are freely replicable.

The mechanism design of this market model requires
three main components: (i) an aggregation operator (to
combine forecasts), (ii) a scoring rule, and (iii) a payoff
allocation mechanism. Our goal is to design a history-free
mechanism; that is, a mechanism that does not require
the past data or reputation of the players in order to
compute a solution. This allows our market to be kept
general, where clients can post diverse tasks in various
forms without an assumption of a repetitive market with
a pre-specified task. It should be noted that, in what
follows, the arguments from the notations are used and
dropped depending on what is necessary. The compo-
nents of our market mechanism will now be presented
and their properties will be discussed.

3.2. Mechanism design

3.2.1. Aggregation operator
After the players have submitted their reports and

wagers, in response to the client’s forecasting task, the
market operator issues a collective forecast r̂ using an
aggregation operator. Then, the client utilizes the result-
ing aggregated forecast for the decision-making process,
which in turn generates some utility. An improvement in
the client’s forecast rc is rewarded at a pre-announced
rate φ by the client. Therefore, the selection of the forecast
aggregation operator constitutes an important part of the
mechanism design.

The combining of probabilistic forecasts can be
achieved through the weighted averaging of predictive
distributions. In this method, a weight assigned to a
prediction reflects its relative quality determined by his-
torical data (Knüppel & Krüger, 2022). In other words,
the predictions of players are weighted by their historical
performance and have a corresponding impact on the
evaluation of an aggregated forecast. Although logical,
such methods are not useful for history-free mechanisms.
Therefore, in our proposed mechanism, the performance
of a player is associated with their confidence in the
reported prediction. Here, the players quantify this con-
fidence through a wagering amount. This enables the
assignment of an appropriate weighting to the individual
forecasts while combining, which can improve the quality
of an aggregated forecast. It also allows our mechanism
to penalize (reward) forecasters for low-quality (high-
quality) predictions, proportional to their influence on the
aggregated forecast via wagers. This penalizing property
of the payoff function, referred to as stimulant, is referred
to in what follows.
6

Definition 5 (Aggregation Operator). An aggregation oper-
tor A : (r,m) → r̂ takes a set of predictive reports {ri}Ni=1

and a vector of corresponding wagers m ∈ RN as inputs
in order to evaluate a combined prediction r̂ .

Two candidate methods that fulfill the criteria of an
aggregation operator are the so-called linear opinion pool
(LOP) and quantile averaging (QA). In terms of distribu-
tional forecasts, the linear averaging of probability
forecasts can be regarded as vertically combining, and
averaging the quantiles can be regarded as horizontally
combining (Lichtendahl, Grushka-Cockayne, & Winkler,
2013). Therefore, these two methods can be regarded as
two extreme cases in averaging. The first method (LOP) is
the most widely used in the literature (Knüppel & Krüger,
2022), as well as in practice. It has several extensions;
for instance, the weighted linear opinion pool and the
optimally weighted linear opinion pool.

Definition 6 (Linear Opinion Pool). Let I = {1, . . . ,N}

be a set of players. Let ri be the forecast report of player
∈ I and mi be the corresponding wager. Then, the LOP is
erely an average of all the reports weighted by wagers
s
∑

i m̂iri where m̂i =
mi∑
j∈I mj

.

For the optimally weighted extension, the weights
mi for all i ∈ I, are evaluated by setting up an op-
timization problem that considers past data from the
same market. However, even with optimized weights, the
LOP suffers from the problem of over-dispersed (under-
confident) forecasting, meaning that the aggregate fore-
cast evaluated through the LOP has a higher dispersion
than the individual reports (Ranjan & Gneiting, 2010).
The authors in Ranjan and Gneiting (2010) proposed a
re-calibration method to improve the combined forecast
that results from the LOP, where the re-calibration pa-
rameters are evaluated by utilizing past data. Thus, this
re-calibration method is not suitable for our history-
free market mechanism. Next, the quantile averaging is
explored, which, interestingly, also corresponds to the
Wasserstein barycenter (Agueh & Carlier, 2011) of the
reported forecasts.

Definition 7 (Quantile Averaging). Let I = {1, . . . ,N} be a
set of players. For each player i ∈ I, let ri be the forecast
report in terms of the probability distribution function
and Ri be the corresponding cumulative distribution func-
tion. Then, the average quantile forecast is given by r̂QA =∑

i m̂iR−1
i with m̂i as in Definition 6.

In Fig. 2, an illustration is presented that shows a com-
parison of the aggregate forecasts obtained through LOP
and QA with equal weights (wagers). Individual forecast
reports take the form of Gaussian distributions with dif-
ferent mean and variance values. This illustration provides
an idea of how the QA maintains the shape of individ-
ual reported forecasts; for instance, here, since individual
forecast reports are Gaussian, the aggregated forecast is
also Gaussian. This is not the case when using the LOP
approach since the resulting aggregate forecast becomes
multi-modal. A forecast aggregation based on a QA ap-
proach can consequently provide more meaningful ag-

gregated forecasts to decision-makers. Lichtendahl et al.
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Fig. 2. Comparison of LOP and quantile averaging/Wasserstein barycenter as an aggregation operator.
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2013) extensively covered the useful properties of an
ggregated forecast obtained using a QA approach. For
nstance, an aggregated forecast attained by QA is sharper
han that by LOP, and each of its even central moments
s less than or equal to those of the LOP (Lichtendahl
t al., 2013, Prop. 8). In a memory-free market such as the
ne being proposed, a prediction that is sharper around
he observation can provide more valuable information to
he decision-maker and, if probabilistically calibrated, can
hus be regarded as being of a higher quality.

It should be noted that the QA can also be inter-
reted as the report that minimizes the Wasserstein dis-
ance W (·, ·) from all the forecast reports; that is, r̂ =

inr
∑N

i=1 W (r, ri). This then corresponds to the Wasser-
tein barycenter. Further details on the Wasserstein dis-
ance and barycenter can be found in Agueh and Carlier
2011).

emark 2. The preference for one forecast aggregation
ethod over another is primarily an empirical design
hoice that is largely application dependent.

.2.2. Scoring rules
In this subsection, a scoring function s(r, ω) is specified

n order to evaluate the quality of a forecast in an ex-post
ense. The continuous ranked probability score (CRPS) is
eintroduced, which is a strictly proper score function
or the elicitation of a forecast expressed in terms of a
robability density function (or, alternatively, a cumu-
ative distribution function). CRPS is non-local and sen-
itive to distance (see Section 2.2). For single-category
nd multi-category prediction tasks, scores are presented
ith similar properties in Appendix A. In order to remain
onsistent with the relevant scientific literature, scoring
ules are defined as negatively-oriented; that is, the lower
he better. However, in our payoff function design, which
ill be presented later, positively oriented scoring will
e required. Thus, in what follows, scoring rules may be
eoriented for our illustrative examples.
7

Definition 8 (Continuous Ranked Probability Score). For
an event of interest x, let r be the forecast report of a
given player and let ω be the event that actually occurred;
let R denote the cumulative distribution. The continuous
ranked probability score (CRPS) is defined as:

CRPS (R, ω) =

∫
∞

−∞

[Rr (x) − Rω(x)]2 dx (1)

where

Rω(x) =

{
0 if x < ω

1 if x ≥ ω

n other words, the CRPS provides an assessment of the
istance between the forecast report r and the observa-
ion ω.

Note that the CRPS can be conveniently reoriented
epending on the application. For example, renewable en-
rgy production can be normalized to obtain a continuous
andom variable Pg ∈ [0, 1]. Then, the scoring function
can be can reoriented by defining s(r, ω) = 1 − CRPS and
onsequently s(r, ω) ∈ [0, 1]. With all the components de-
ined, a wagering-based payoff mechanism and its desired
conomic properties can now be proposed.

.2.3. Payoff allocation mechanism
A payoff function is central to the design of a market

echanism as it distributes the pool of wagers
∑

j mj
nd the generated utility U among the market players
ccording to their performance. Therefore, it is critical
or the design of a payoff function that it encourages
arket participation, on the one hand by clearly reflect-

ng the player’s relative contribution and on the other
y enabling the delivery of valuable information to the
lient. The payoff functions are characterized by several
esirable properties that can be proven mathematically;
or example, budget balance, individual rationality, and so
orth.

With regard to the design of a payoff function, inspira-
ion has been taken from Lambert et al. (2008), where the
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authors present a self-financed wagering mechanism for
the elicitation of competitive forecasts. The payoff func-
tion in Lambert et al. (2008) rewards the skill of the player
relative to the other players by re-distributing the wagers
and is shown to satisfy several interesting properties.
Such self-financed markets do not involve one particular
client with a specific task; as a result, the payoff is only
based on the forecast skill of the players and does not
involve any utility component. In other words, a player is
rewarded for being better than other players regardless of
the value or utility of their forecast for a decision-maker.
However, our market model in Section 3.1.3 involves a
client with a specified task and, therefore, our model
involves an external payment associated with the utility
of the client. Consequently, a payoff function is required
that distributes the utility generated by the forecast; that
is, a monetary gain corresponding to an improvement in
the client’s operational decisions apart from rewarding
the forecast skill of the players. In practice, the incen-
tive from the client can implicitly help in improving the
forecast quality and in growing the size of the market.
For instance, a player who believes their competitors are
better informed than them will not enter a market with
only a skill payoff, as in Lambert et al. (2008). On the
other hand, if the same player believes that their data can
provide valuable information and insights to the client in
terms of a probabilistic forecast, they will be encouraged
to enter our market considering the reward from a utility
component. A payoff function shall first be proposed and
then its desirable economic properties will be presented.

The payoff function is divided into two parts: one rep-
esenting the allocation from the wager pool and another
rom the client’s allocated utility. The former evaluates
he relative forecasting skill of a player and the latter
ompensates for their contribution to an improvement in
he client’s utility U . Let the wager payoff of a player i be

i(r,m, ω) := mi

(
1 + s (ri, ω) −

∑
j s
(
rj, ω

)
mj∑

j mj

)
. (2)

This term evaluates the relative performance of the
players, considering the relative quality of the forecasts
and the amounts wagered. It shows that the reward of
player i, namely Πi(r,m, ω) − mi, equals the difference
between its performance (confidence and quality) and the
average performance of the players. It should be noted
that wager payoff can also generate a loss for the players
such that they can lose the amount wagered. This is
referred to as a penalty to players for posting low-quality
forecasts, which plays an important role in showing that
our payoff criterion incentivizes truthful reporting by the
participants. Now, let us define an indicator 1{a>b} that
akes a value of 1 if a > b and 0 otherwise. Then, the
verall payoff is given by

ˆ i = Πi
skill component

+ 1{U>0}

(
s̃ (ri, ω)mi∑
j s̃
(
rj, ω

)
mj

U

)
  , (3)
utility component

8

where s̃(ri, ω) = 1{s(ri,ω)>s̄}s(ri, ω) and s̄ := s(rc, ω). Here,
he utility component depends on an improvement of-
ered by the player beyond the client’s own forecast re-
ort rc . Therefore, in order to be eligible for a share of an
llocated utility U , there should first be an improvement
n the client’s resulting forecast; namely, U > 0, and
econd, the score of player i, s(ri, ω) should be greater
han the score of the client. Here, the utility payoff of a
layer is always non-negative, but a skill component can
lso yield a net loss; that is, Πi − mi < 0 is possible.
he possibility of a loss encourages players to compete
n improving the forecast by employing better models
nd acquiring more meaningful data. It should be noted
hat the client can achieve negative utility as well; that
s, the forecast becomes worse than their own prediction.
owever, again, with a penalty imposed by the wagering
art of the payoff function, it is expected that risk-averse
layers report high-quality forecasts. Next, a brief expla-
ation of some desirable properties of a payoff function is
rovided.
Desirable properties: The properties are adapted from

ambert et al. (2008) and their explanations are included
ere in the context of the payoff function in (3).

(i) Budget-balance: A mechanism is budget-balanced if
the market generates no profit and no loss; that is,∑

i∈I Π̂i =
∑

i∈I mi +U . In other words, the gener-
ated utility and the wager pool must be completely
distributed, as a payoff, among the players.

(ii) Anonymity: A mechanism satisfies anonymity if the
payoff received by a player does not depend on
their identity; instead, it depends only on the fore-
cast reports and the realization of an uncertain
event. Formally, for any permutation σ of I, the
payoff Π̂i ((ri) , (mi) , ω,U) = Π̂σ (i)

( (
rσ−1(i)

)
,(

mσ−1(i)
)
, ω,U

)
for all i ∈ I.

(iii) Individually rational: Let the belief of a player i ∈ I
about an event be p. Then, a mechanism is individ-
ually rational if for any wager mi > 0 there exists
r∗

i such that an expected profit of a player is non-
negative; that is, Ep[Π̂i((r−i, r∗

i ),m, ω,U)−mi] ≥ 0
for any vector of wagers m−i and reports r−i.
Individual rationality encourages the participation
of players by ensuring a non-negative expected
profit according to their beliefs.

(iv) Sybilproofness: A truthful mechanism is sybilproof
if the players cannot improve their payoff by cre-
ating fake identities and copies of their identities.
Formally, let the reports r and vectors of wagers
m and m′ be such that for a subset of players
S ⊂ I the reports ri = rj for i, j ∈ S, the
wagers mi = m′

i for i /∈ S, and that
∑

i∈S mi =∑
i∈S m

′

i . Then, the sybilproofness implies that for
all i /∈ S, Π̂i(r,m, ω,U) = Π̂i

(
r,m′, ω,U

)
and that∑

i∈S Π̂i(r,m, ω,U) =
∑

i∈S Π̂i
(
r,m′, ω,U

)
.

It should be noted that the Shapley value, a solution
used to evaluate data in a market setting, suffers
the drawback of being prone to replication; that is,
players can increase their payoff by creating fake
copies of themselves (Agarwal et al., 2019). This

consideration takes special importance in markets
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that deal with forecasts as the data are a freely
replicating good.

(v) Conditionally truthful for players: A mechanism is
conditionally truthful if the player does not have
enough information or influence over the payoff
function to manipulate it for their own benefit.
Therefore, reporting their true belief becomes the
best strategy for a risk-averse player.
This definition of conditional truthfulness considers
practical situations for the players and the market
operation. Truthfulness of a mechanism encourages
the players to post their true beliefs on the mar-
ket platform, thus fulfilling the client’s expectation
of having access to honest assessments from the
experts about an event.

(vi) Truthful for the client: A mechanism is truthful for
a client, in terms of a reported prediction, if the
client’s expected payment (allocated utility U) is
minimized by reporting their true belief p as their
own forecast; that is, Ep

[
U(s(r̂, ω), s(rc, ω), φ)

]
>

Ep
[
U(s(r̂, ω), s(p, ω), φ)

]
is satisfied for all rc ̸=

p. It should be noted that the truthfulness of the
client concerns the prediction report rc and not the
reward rate φ. With our single-buyer design, it is
not possible to elicit their true willingness to pay.

(vii) Stimulant: Let a player i’s payoff be the sum of skill
and utility components; that is,
πi (r, (m−i,mi) , ω,U) = π s

i (r, (m−i,mi) , ω) +

πu
i (r, (m−i,mi) , ω,U). Let the wager be m′

i > mi;
then, this payoff is monotonic if it holds that for the
skill component, either

0 < Ep
[
π s
i (r, (m−i,mi) , ω) − mi

]
< Ep

[
π s
i

(
r,
(
m−i,m′

i

)
, ω
)
− m′

i

]
or

0 > Ep
[
π s
i (r, (m−i,mi) , ω) − mi

]
> Ep

[
π s
i

(
r,
(
m−i,m′

i

)
, ω
)
− m′

i

]
.

In other words, a mechanism is monotonic if a
player’s expected profit, as well as the loss from the
skill component, increases by increasing the wager.
Now, with regard to the utility factor, let U > 0 and
s(ri, ω) > s̄. Then,

πu
i (r, (m−i,mi) , ω) < πu

i

(
r,
(
m−i,m′

i

)
, ω
)
.

These properties encourage the players to post
higher wagers considering their confidence in their
forecasts; as a result, they are referred to as stim-
ulants. Importantly, it also justifies weighting the
forecasts by the corresponding wagers while creat-
ing an aggregate forecast. It should be noted that,
for real-world applications, the market operator
can place lower and upper bounds on the amounts
of wagers considering the viability of the market.

Now, it is shown that the proposed payoff criterion in
(3) satisfies all the desirable properties described above.

Theorem 1 (Characteristics of Payoff Allocation). Let s(r, ω)

∈ [0, 1] be a strictly proper score function. Then, the payoff r

9

function

Π̂i = mi

(
1 + s (ri, ω) −

∑
j s
(
rj, ω

)
mj∑

j mj

)

+ 1{U>0}

(
s̃ (ri, ω)mi∑
j s̃
(
rj, ω

)
mj

U

)
is (i) budget-balanced, (ii) anonymous, (iii) individually ra-
ional, (iv) sybilproof, (v) conditionally truthful for players,
vi) truthful for the client, and (vii) a stimulant.

Proof for this theorem has been placed in an Appendix
n order to improve flow of this paper.

. Illustrative examples

In this section, several illustrative examples are out-
ined in order to provide some information about the
roposed market model and to numerically demonstrate
he properties of the proposed payoff function in (3).
or all the illustrations, a beta distribution is used, with
arameters (α, β) as a base predictive density. Then, its
arameters are varied in order to simulate potential fore-
ast reports from different players. It has been acknowl-
dged that these reports might not represent a real-world
cenario; however, these examples are sufficient for il-
ustrating and discussing the interesting properties of the
ayoff function.

.1. Effect of wager amount

Let a client post a prediction task for a random variable
∈ [0, 1] on a market platform along with their own

orecast report that has a score of 0.5; that is, s(rc, ω) =

.5. In response, let the players I = {1, 2, 3} post their
orecast reports as predictive densities that are a random
ariable Y , as shown in Fig. 3. In real-world cases, it
s expected that the reports by expert forecasters are
oncentrated around nearby values, but here an extreme
ase is considered in order to emphasize our observations.
irst, the players’ payoff for equal wagers is evaluated, and
he wager of player 3 is then increased so as to underline
he stimulant property of the payoff function, which is
efined in Section 3.2.3. It is supposed that the market
perator announces a cap on the wager amount; namely,
he maximum value a player can wager, m̄ = 500. The
ase of equal wagers in Table 1a shows a loss for player
, taken from their wager, for posting a sharp predictive
ensity concentrated far from the realized event, ω =

.8. The corresponding aggregate prediction r̂a, shown in
ig. 3, has a score of 0.867. Here, the score of player 3 is
ower than the client’s score, and as a result it does not
eceive any share of the utility payoff. It should be noted
hat the score from each player is provided by a positively
riented scoring rule (1-CRPS), and the utility of a client
s assumed to be specified exogenously. Next, in the case
rom Table 1b, the wager of player 3 is increased to the
aximum acceptable value, which results in an increase

n their loss. This implies that showing more confidence
y means of a higher wager, albeit in a ‘‘bad’’ forecast, will

esult in a higher loss. This is an important consequence
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a

Fig. 3. The top plot shows the reports for density forecasts of a random variable Y ∈ [0, 1] by market participants, and the bottom plot shows
ggregate density forecasts for wagering cases (a) and (b) as in Table 1a and 1b, respectively. The vertical line is at the realization, ω = 0.8.
Fig. 4. Plots of aggregate predictive densities obtained through quantile averaging r̂QA and linear opinion pooling r̂LOP in an equal wagering case.
Table 1
Profit (payoff - wager) evaluation for forecast reports in
Fig. 3 and its sensitivity to wagers.
(a) Equal wagers

Players 1 2 3

Wager 100 100 100
Scores 0.9430 0.8450 0.4830
Profit 546 481.39 −27.40

(b) Different wagers

Players 1 2 3

Wager 100 100 500
Scores 0.9430 0.8450 0.4830
Profit 552.85 488.24 −41.10

for player 3, though also resulting in a reduced quality
in the aggregated prediction r̂b, as shown in Fig. 3, with
s(r̂b, ω) = 0.822. This example illustrates the justification
for using wagers as weights in the aggregation method.
It also shows how using a wager in line with a player’s
confidence results in a fair penalty or reward for them.
10
4.2. Comparison of QA and LOP

In Fig. 4, a comparison of aggregate predictive dis-
tributions obtained via quantile averaging r̂QA and linear
pooling r̂LOP is provided. It is evident how r̂LOP can be
problematic for a decision-maker. The loss of sharpness
also translates into lower scores for the linear opinion
pool, where s(r̂LOP , ω) = 0.817 compared with s(r̂QA, ω) =

0.867. Furthermore, for commonly used parametric dis-
tributions, quantile averaging maintains the shape of the
distribution, while linear pooling does not.

4.3. Demonstration of sybilproofness

Now, the property of sybilproofness (see Section 3.2.3)
is illustrated, which in truthful mechanisms prevents play-
ers from manipulating identities. The sybilproofness of
the payoff function is especially important in electronic
platforms. Table 2a shows the profit and scores of two
players with reported predictive densities r1 and r2, as
in Fig. 3. Now, let the player 2 create a fake identity
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Table 2
Sybilproofness of profit (payoff - wager) in the proposed
mechanism.
(a) Real identities

Players 1 2

Wager 100 100
Scores 0.9430 0.8450
Profit 532.30 467.69

(b) Fake identities

Players 1 2(a) 2(b)

Wager 100 40 60
Scores 0.9430 0.8450 0.8450
Profit 532.30 187.07 280.61

and appear in the market as 2(a) and 2(b) with different
wagers, as reported in Table 2b. It can be seen that, even
after identity manipulation, the collective profit for both
identities of player 2 remained the same as that of the
true identity. Consequently, it does not affect the player
1 as well.

4.4. Sensitivity of scoring rules

Various properties of scoring rules are demonstrated
in order to emphasize their effect on the design of a
payoff function. Generally, the choice of a scoring rule
depends on the application area of the prediction task.
Therefore, these illustrations are important for provid-
ing useful insights into the practitioners when adopting
the proposed mechanism to a particular application. The
choice of scoring rules can also affect the willingness of
players to participate, and constitute an important part of
the design.

4.4.1. Local vs. non-local scoring
Different scoring rules differ in their sensitivity to the

variation in prediction quality. For applications where
sharp predictions are required because of high stakes,
scoring rules with a higher sensitivity may perform better.
Let us now compare the sensitivity of CRPS and the log
score by varying parameters (α, β) of predictive densities.
In order to illustrate these effects across the variation in
a single parameter α, the mean of the densities is fixed
and β is then evaluated as β =

α(1−mean)

mean . It should
be noted that in the parametric case, the variation in
parameters simulates the varying quality or features uti-
lized to construct the predictive densities. In Fig. 5(b),
the predictive beta distributions for different values of α
and the corresponding CRPS and log scores are shown. As
the log score depends only on the realization ω, it has
a considerable variation for given predictive densities. In
contrast, CRPS takes complete information into account
and thus varies slightly with the slight change in densities.
The scoring rules are selected essentially by considering
the nature of the prediction task at hand. It should be
noted that our results hold for all strictly proper scoring
rules, including the normalized log score.

4.4.2. Sensitivity to distance
In this example, the impact of the scoring rules’ sensi-
tivity to distance is illustrated (see Definition 4). Let the

11
three forecasters E1, E2 and E3 provide normalized multi-
category probabilistic forecasts of the energy generation
y of a wind producer for intervals {[0 − 0.2], (0.2 −

0.4], (0.4 − 0.6], (0.6 − 0.8], (0.8 − 1]} per-unit rep-
resented by {1, 2, 3, 4, 5}. Let the reported probabilis-
tic forecasts of E1, E2 and E3 be {0.1, 0.1, 0.6, 0.1, 0.1}
, {0, 0.2, 0.6, 0.2, 0} and {0.2, 0, 0.6, 0, 0.2}, respectively.
It is supposed that the actual wind production is observed
in the third interval; namely, y = 3. Let us now assess
the quality of the forecasts using quadratic and ranked
probability scoring (RPS) rules (see Winkler et al., 1996
and Appendix A for mathematical expressions). Here, E1
receives a quadratic score of 0.8, while E2 and E3 receive
0.76. It was first observed that all three forecasters had
assigned a probability of 0.6 to the realized value of y.
Next, it was noted that E2 assigned the remaining proba-
bility of 0.4 to the intervals 2 and 4, which are adjacent to
the realized interval; that is, 3, while E3 assigned it to the
most distant intervals. This probability assignment shows
comparatively a better forecasting skill on behalf of E2.
However, their scores are the same, which shows that the
quadratic scoring is not sensitive to distance. In compar-
ison, RPS assigns 0.975, 0.98 and 0.96 to the predictions
of E1, E2 and E3, respectively. It should be noted that RPS
acknowledges the concentration of probability around the
observation and assigns the highest score to E2. Therefore,
RPS is sensitive to the distance, which can be important
for practitioners while designing a payoff function.

5. Wind energy forecasting: A case study

In this section, an energy forecasting application of the
proposed market mechanism is presented. Here, forecast-
ers are differentiated based on their forecasting skills and
resourcefulness. In the former case (that is, differentiation
in terms of forecast skill), the players utilize the same data
but different models to construct predictive densities, and
vice versa in the latter case (that is, differentiation in
terms of access to data). This differentiation allows an
important feature of the market to be showcased, which is
that it yields a competition for both resourcefulness (data)
and forecasting skill among the players. The aim of this
case study is then to illustrate how the compensation is
allocated by our market mechanism to the various play-
ers based on their private information and skills. Elicited
forecasts are eventually aggregated and delivered to the
client.

5.1. Simulation setup

Here, a wind energy producer is considered as an
example: it wishes to improve its generation forecasting
and make more informed bids in an electricity market,
thereby avoiding a penalty for causing an imbalance. For
this purpose, the energy producer arrives at the wagering-
based forecasting market, described in Section 3, as a
client. It is assumed that the client submits the task of
forecasting the next 24 h of wind energy generation. In
response, let the forecasters I submit the probabilistic
forecasts along with their wagers. The market operator

evaluates the scores of submitted forecasts on an hourly
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Fig. 5. (a) Predictive beta distributions with the same mean = 0.25, where for each given α, β =
α(1−mean)

mean . (b) Comparison of scores assigned to
redictive distributions via CRPS and log-score.
asis and compensates accordingly. For our case study, an
pen data set from the Global Energy Forecasting Compe-
ition 2014, GEFcom2014 (Hong et al., 2016), and an open-
ource toolkit ProbCast by Browell and Gilbert (2020) are
sed. The wind power measurements are normalized and
hus take values of [0, 1]. For the market setup, a fixed
tility U is assumed, which is offered by the client, in
rder to analyze scores and the share of each player’s
ayoff Π̂i in

∑
i mi +U . It should be noted that, in reality,

the compensation provided by the client depends on the
operational benefits that they receive through an im-
provement in their forecast. Next, a simpler case of wind
energy forecasting is first presented, with two players
evaluating the resulting payoff allocation, as in (3), and
later more extensive cases are analyzed.

5.2. Forecasting market with two players

Let the players I = {1, 2} provide a wind energy
generation forecast for the next 24 h. Here, it is assumed
that both forecasters have the same data but they utilize

different models to generate predictive densities for wind

12
energy forecasting. The selection of a particular forecast-
ing model can be seen as a forecasting skill of a player;
therefore, the players have different forecasting skills.
In this case, player 1 provides their wager m1 and the
forecast report r1 as a parametric distribution; that is,
an inflated beta distribution as proposed by Ospina and
Ferrari (2010) generated by using a generalised additive
model GAMLSS. In contrast, player 2 utilizes gradient
boosted regression trees to generate non-parametric pre-
dictive densities and submits the forecast report r2 along
with the wager m2. Let the market operator announce
wager bounds such that m1,m2 ∈ [10, 100]. It is assumed
that the score of the client’s own forecast is constant
at 0.5 for all 24 h. Such a low score shows that the
client has a low-quality forecast and, consequently, for
our data, the players will be eligible for utility payoff at
each hour. After receiving the reports, the market oper-
ator evaluates an aggregate forecast r̂ and delivers it to
the wind energy producer (client), who in turn uses it for
operational planning. Figs. 6(a) and 6(b) show the reports
of player 1 and player 2; that is, r1 and r2, respectively.

The hourly observations represent the realization ω; that
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Fig. 6. (a) Wind energy generation forecast reported by player 1 via an inflated beta distribution; that is, r1 . (b) Wind energy generation forecast
eported by player 2 via non-parametric predictive density, that is, r2 . Observations represent realization ω.
s, the actual wind energy generation during the corre-
ponding hour. After the forecasting period has passed,
he market operator evaluates the score of each player
nd that of an aggregate forecast. Fig. 7 shows the scores
CRPS) of r1, r2 and r̂ . It has been noted that the aggregate
orecast r̂ evaluated via quantile averaging, as in Defini-
ion 7, depends on the wagers of the players, and Fig. 7
s the case of equal wagers. The difference in the scores
13
of both players is not much since their reported predic-
tive densities follow a similar trend. Though the score
rank of players varies at different hours, the parametric
forecaster performs slightly better in a cumulative sense
for this particular instance of a market. If this variation
in score rank is considerable, the aggregate forecast can
score better than both players. This fact is illustrated later
in our case study. Next, players’ total payoffs for 24 h
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Fig. 7. CRPS of forecasts reported by player 1 (r1), player 2 (r2), and an aggregate forecast r̂ .
Fig. 8. Players’ total payoff of 24 h as a share of money pool
∑

i mi + U for different wagers.
are shown as a share of the money pool
∑

i mi + U .
The payoff, as in (3), also depends on wagers mi, and
in the case of equal wagers, it corresponds directly to
the scores. In order to observe the effect of a wager, in
Fig. 8, a payoff is plotted across different wager pairs.
Since both players offer an improvement and the scores
of both players do not differ much, the stimulant property
of our payoff function explained in Section 3.2.3 allocates
a higher payoff to high-wagering players.

5.3. Forecasting market with four players

Now, it is supposed that two more players join the
market and are referred to as player 3 and player 4. It is
assumed that these new players have the same forecast-
ing skill; that is, both players utilize the same forecasting
method. However, the data held or collected by the play-

ers are different. Player 3 holds data on wind forecasts, as

14
Table 3
Total score (CRPS) of reported forecasts over a 24-h period.
Report r1 r2 r3 r4 r̂

Total score 21.0480 20.6978 20.6090 20.2514 21.0074

a predictor, at a height of 10 m above the ground, whereas
player 4 has data on wind forecasts at 100 m above the
ground. Wind forecast, being a key predictor, affects the
quality of energy generation forecasts. The quality of all
four reports is evaluated by CRPS and is presented in
Fig. 9 along with the score of an aggregate forecast. In
Table 3, the total scores of all forecast reports over a
24-hour period have been reported. Interestingly, in this
market instance, the score of the aggregate forecast s(r̂, ω)
is higher than those of the individual forecast reports of
all the players.
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Fig. 9. CRPS of forecasts reported by players (r1 , r2 , r3 and r4) and an aggregate forecast r̂ .
Fig. 10. Players’ hourly payoff as a share of the money pool
∑

i mi + U , assuming equal wagers.
In order to analyze the hourly payoff allocation when
the client has a forecast report of a reasonable quality, it
is assumed that player 4 is the client; that is, rc = r4,
as in (3). Consequently, according to the proposed payoff
function in (3), a player becomes eligible for a utility
payoff only when it offers an improvement to the client;
that is, scores that are higher than the client. Assuming
a fixed utility payoff U , players’ payoff allocations are
presented in Fig. 10. It can be observed that for the first
three hours, the score of the client’s forecast report (r4)
in Fig. 9 is higher than the players; therefore, the payoff
distribution occurs only from the wager pool

∑
i mi. As a

fixed utility component U is considered, there remains an
unallocated utility payoff component, which is returned
back to the client. In contrast, if the utility component
depends on the forecast improvement of the client, then
U = 0 in the case of the first three hours. Next, it was
observed that at the 12th hour, only player 2 offered a

slight improvement; namely, scores higher than the client

15
(see Fig. 9). As a result, they received the whole offered
utility payoff.

6. Conclusions

A marketplace has been designed for the purpose of re-
vealing an aggregate forecast by eliciting truthful individ-
ual forecasts from a group of forecasters. In the proposed
model, a client with a prediction task calls for forecasts
on a market platform and announces a monetary reward
for it. The forecasters respond with predictive reports
and wagers showing their confidence. The platform aggre-
gates the forecasts and delivers them to the client. Here,
the utilized aggregation criteria allow us to make our
mechanism a one-shot history-free method that does not
account for the forecaster’s performance in the past. Next,
upon the realization of the event, it allocates payoffs to
the forecasters depending on the quality of their forecasts.
A payoff function has been proposed with skill and utility

components that depend on the relative forecast quality
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of a forecaster and their contribution to improving the
forecast of the client, respectively. It has been shown
that the proposed payoff allocation satisfies several de-
sirable economic properties, including budget balance,
anonymity, conditional truthfulness, sybilproofness, indi-
vidual rationality, and stimulant. The simplicity of the
scoring-based market design with a wagering mechanism
allows it to cater to diverse forecasting tasks with fore-
casting reports taking forms of discrete to continuous
probability distributions.

With the success story of platforms such as NUMERAI
NUMERAI, 2022), there is a real potential for real-world
ggregative forecasting marketplaces. Different from cur-
ent implementations, the mechanism proposed in this
aper is designed for the improvement of predictions and
rovides theoretical guarantees on the monetary compen-
ation, which can encourage and retain the participation
f experts. Next, a competition platform has been envi-
ioned in order to test the performance of the proposed
arket model and the behavior of players in practical
cenarios. Such an experimental setup would help us gain
urther insights for any real-world implementation. Fur-
hermore, our market setup opens several paths for the
pplied modeling of information eliciting platforms and
heir analysis. An important step is to design a mechanism
or online predictions based on streaming data and, in
urn, analyze whether it maintains the economic proper-
ies discussed in this paper. Another interesting research
venue is to design models that also value the reputation
f forecasters (historical credits).
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ppendix A. Scoring rules

Let us present strictly proper scoring rules for single-
ategory and multi-category reporting that are non-local
nd sensitive to distance (see Section 2.2). A strictly proper
coring rule which is non-local and can be used for elicit-
ng a single-category forecast for binary events is the Brier
core.

efinition 9 (Brier Score). Let the probability of an occur-
ence of an event x, reported by a player, be r , and let ω
be the actual outcome. Then, the Brier score is given as

BS = (r − ω)2 . (A.1)

Interestingly, a generalization of the Brier score known
as the ranked probability score (RPS), which is also non-
local and sensitive to distance, can be used for multi-
category forecasting tasks where the reports are in the
form of discrete probability distributions.

Definition 10 (Ranked Probability Score). Let the multi-
category forecasting task have J categories. Let r(i) be the

forecast probability of an outcome i, and ω(j) represents

16
whether the category j has occurred. Then, the ranked
probability score is defined as

RPS =

J∑
i=1

(R(i) − O(i))2 (A.2)

with R(i) =
∑i

j=1 r(j) and O(i) =
∑i

j=1 ω(j).

ppendix B. Proof of Theorem 1

Let us now provide the proof of the properties men-
ioned in Theorem 1.

1. Budget balance: For any vector of reports r , wagers
m, and an outcome ω,∑

i

Π̂i =

∑
i

Πi(r,m, ω) +

∑
i

s̃ (ri, ω)mi∑
j s̃
(
rj, ω

)
mj

U

=

∑
i

mi +
∑

i

s (ri, ω)mi

−

(∑
i

mi

)(∑
j s
(
rj, ω

)
mj∑

j mj

)

+

∑
i

s̃ (ri, ω)mi∑
j s̃
(
rj, ω

)
mj

U

=

∑
i

mi + U .

2. Anonymous: Let σ be any permutation of I. For any
r,m, ω, and i,

Π̂σ (i)

((
rσ−1(j)

)
j∈I ,

(
mσ−1(j)

)
j∈I , ω,U

)
= mσ−1(σ (i))

(
1 + s

(
rσ−1(σ (i)), ω

)
−

∑
j s
(
rσ−1(j), ω

)
mσ−1(j)∑

j mσ−1(j)

+
s
(
rσ−1(σ (i)), ω

)∑
j s
(
rσ−1(j), ω

)
mσ−1(j)

U
)

= mi

(
1 + s (ri, ω) −

∑
j s
(
rj, ω

)
mj∑

j mj

+
s (ri, ω)∑
j s
(
rj, ω

)
mj

U
)

= Π̂i

((
rj
)
j∈I ,

(
mj
)
j∈I , ω,U

)
.

3. Individually rational: The skill factor Πi of the payoff
function in (3) is individually rational according to
Theorem 1 in Lambert et al. (2008), and the utility
factor is always non-negative. As a result, the payoff
Π̂i is individually rational; that is, E[Π̂i − mi] ≥ 0.

4. Sybilproofness: Let a vector of reports r and vectors
of wagersm andm′ such that for a subset of players
S ⊂ I the reports ri = rj for i, j ∈ S, the wagers
mi = m′

i for i /∈ S, and that
∑

i∈S mi =
∑

i∈S m
′

i .
Let players i ∈ S post a common forecast report r;
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then, for any i /∈ S,

Π̂i(r,m, ω,U) =

mi

(
1 + s (ri, ω) −

∑
j/∈S s

(
rj, ω

)
mj + s(r, ω)

∑
j∈S mj∑

j/∈S mj +
∑

j∈S mj

+
s̃ (ri, ω)∑

j/∈S s
(
rj, ω

)
mj + s(r, ω)

∑
j∈S mj

U
)

= m′

i

(
1 + s (ri, ω) −

∑
j/∈S s

(
rj, ω

)
m′

j + s(r, ω)
∑

j∈S m
′

j∑
j/∈S m

′

j +
∑

j∈S m
′

j

+
s̃ (ri, ω)∑

j/∈S s
(
rj, ω

)
m′

j + s(r, ω)
∑

j∈S m
′

j

U
)

= Π̂i(r,m′, ω,U).

Additionally, for all i ∈ S∑
i∈S

Π̂i(r,m, ω,U) =

∑
i∈S

mi

(
1 + s(r, ω) −

∑
j/∈S s

(
rj, ω

)
mj + s(r, ω)

∑
j∈S mj∑

j/∈S mj +
∑

j∈S mj

)
+

∑
i∈S

s̃ (r, ω)mi∑
j/∈S s

(
rj, ω

)
mj + s(r, ω)

∑
j∈S mj

U

=

(∑
i∈S

mi

)(
1 + s(r, ω) −

∑
j/∈S s

(
rj, ω

)
mj + s(r, ω)

∑
j∈S mj∑

j/∈S mj +
∑

j∈S mj

)
+

s̃ (r, ω)
∑

i∈S mi∑
j/∈S s

(
rj, ω

)
mj + s(r, ω)

∑
j∈S mj

U

=

(∑
i∈S

m′

i

)(
1 + s(r, ω) −

∑
j/∈S s

(
rj, ω

)
m′

j + s(r, ω)
∑

j∈S m
′

j∑
j/∈S m

′

j +
∑

j∈S m
′

j

)
+

s̃ (r, ω)
∑

i∈S m
′

i∑
j/∈S s

(
rj, ω

)
m′

j + s(r, ω)
∑

j∈S m
′

j

U

=

∑
i∈S

Π̂i
(
r,m′, ω,U

)
.

5. Conditionally truthful for players: The skill factor Πi
of the payoff function in (3) is truthful according
to Theorem 1 in Lambert et al. (2008). Further-
more, for U > 0, utility becomes proportional
to the strictly proper score function given that
U ∝ φ(s(r̂, ω) − s(rc, ω)). As a result, players
can maximize utility by reporting their true be-
lief p; that is, Ep [U(s(A(p,m), ω), s(rc, ω), φ)] >

Ep [U(s(A(r,m), ω), s(p, ω), φ)] is satisfied for all
r ̸= p. Finally, a player does not have enough in-
formation and influence on the term

(
s̃(ri,ω)mi∑
j s̃(rj,ω)mj

)
in (3) to obtain a beneficial arbitrage between skill
and utility factors. Therefore, it has been concluded
that the payoff Π̂i is conditionally truthful in prac-
tical situations.

6. Truthful for client: With regard to the design of
utility; namely, U ∝ φ(s(r̂, ω) − s(rc, ω)), it is pro-
portional to the strictly proper score function. Fur-
thermore, the predictions of forecasters ri, for all i
∈ I are independent of the original forecast report
of the client. Writing rc the client forecast report,
it can consequently be seen that the expected pay-
ment of the client (allocated utility U) is minimized
17
when the client posts their true belief p; that is,

Ep
[
U(s(r̂, ω), s(rc, ω), φ)

]
> Ep

[
U(s(r̂, ω), s(p, ω), φ)

]
,

∀rc ̸= p ,

and
p = rc H⇒ Ep

[
U(s(r̂, ω), s(rc, ω), φ)

]
= Ep

[
U(s(r̂, ω), s(p, ω), φ)

]
.

7. Stimulant: For a player i ∈ I, the skill factor Πi
of the payoff function in (3) is monotone according
Theorem 1 in Lambert et al. (2008), and the utility
factor is proportional to the wager mi; therefore,
the payoff Π̂i is stimulant. ■
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