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Abstract

Thread annular injection is a minimally invasive technique that entails transporting
medical implants into the body via a thread moving through a fluid. It is desirable for
this flow to remain laminar so as to ensure that the flow remains predictable and the
thread does not suffer any lateral deviations. It is thus of practical interest to determine
the range of Reynolds numbers for which this flow is stable. This flow can be modelled
by annular Poiseuille-Couette flow (APCF), which is the flow driven by an axial pressure
gradient through the annular region between a stationary outer cylinder and a sliding
inner cylinder.

In this thesis, the linear stability properties of APCF to infinitesimal, axisymmetric
disturbances are studied when the inner cylinder possesses a degree of flexibility. A
cylindrical version of the Orr-Sommerfeld equation is derived with appropriate boundary
conditions that encompass the compliance of the cylinder. This forms the foundation of
our numerical studies at finite Reynolds numbers. It is found that there exist modes of
instabilities that are not present in the case of a rigid inner cylinder.

At large Reynolds numbers, an asymptotic approach is used to gain insights into the
different physical balances that give rise to neutrally stable modes. Distinguished scalings
are found, including those that have no counterpart for a rigid inner cylinder. These
asymptotic results are compared to those from our numerical studies.

The inviscid linear stability of this problem is also studied, and analogues to classical
inviscid theorems for planar flow over rigid boundaries are provided.

In the final chapter of this thesis, our stability analysis focuses on vortex-wave interaction
for planar Couette flow when the lower wall is modelled as compliant. The nonlinear
equations governing this interaction are solved numerically, and finite-amplitude solutions
are found.
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Chapter 1

Introduction

A rich field central to fluid dynamics, hydrodynamic stability is concerned with whether
a laminar flow is susceptible to the development of instabilities and, if so, how the flow
eventually transitions to a turbulent state or a different laminar state [3, 4]. Laminar
and turbulent flows exhibit different characteristics. The unsteady, irregular motion of
a turbulent flow makes it preferable in certain applications, whilst disadvantageous in
others. For example, a turbulent flow is more effective at mixing fluid than a comparable
laminar flow [5], as is seen by Reynolds’ [6] experiments.

Reynolds [6] performed a series of pioneering experiments that investigated the laminar-
turbulent transition of the Hagen-Poiseuille flow through a pipe of circular cross-section.
Adding dyed water to clear water flowing through three pipes of different diameters,
Reynolds observed that the streak of dyed water extended in a straight line for sufficiently
low flow velocities. Increasing the velocity incrementally, the dyed water mixed with
the surrounding water. These experiments showed that increasing the dimensionless
parameter

V a

ν

beyond a critical value led to the breakdown of the laminar flow. Here V is defined to
be the maximum velocity of the water in the pipe, a is the pipe radius and ν is the
kinematic viscosity of water at the appropriate temperature. This important parameter
is now known as the Reynolds number, and is a measure of the ratio of inertial forces to
viscous forces in a fluid.

It is worth remarking that Hagen-Poiseuille flow through a circular pipe is known to be
linearly stable. Furthermore, experiments have also shown transition in other linearly
stable flows; the linear stability of plane Couette flow has been established by Romanov
[7], though Tillmark and Alfredson [8] experimentally determine the transitional Reynolds
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1.1. LINEAR STABILITY OF PARALLEL FLOWS

number to be R ≈ 360, with R based on the channel half-width and half the velocity
difference between the walls.

Experimental results also demonstrate that transition to turbulence for linearly unstable
flows often occurs at Reynolds numbers much lower than the critical linear Reynolds
number found theoretically for the flow. For example, Orszag [9] used a Chebyshev
spectral method to numerically solve the Orr-Sommerfeld equation and determine the
linear critical Reynolds number Rc of plane Poiseuille flow to be Rc = 5772.2, where the
Reynolds number here is based on the channel half-width and centre-stream velocity.
Despite this, transition in plane Poiseuille flow has been observed to occur for Reynolds
numbers slightly greater than 1000 (Carlson et al. [10]) using the same basis for the
Reynolds number.

The linear stability of a laminar flow can be determined by considering the evolution
of an infinitesimal disturbance superimposed on the flow. If the disturbance grows in
amplitude so that the flow does not return to its original laminar state, the flow is
deemed to be linearly unstable. On the other hand, if the flow returns to its original
laminar state with respect to every superimposed disturbance, the flow is linearly stable.

1.1 Linear stability of parallel flows

Expressing conservation of momentum and mass laws for a fluid, the Navier-Stokes
equations are a set of nonlinear partial differential equations that govern the motion of a
viscous flow. Let us consider a Cartesian coordinate system with (x∗, y∗, z∗) measuring
distance in the streamwise, normal and spanwise directions, and denote the corresponding
flow velocity components as (u∗, v∗, w∗). Let p∗ denote the pressure of the flow and t∗

denote time. For an incompressible fluid with constant density ρ and kinematic viscosity
ν, the Navier-Stokes equations are given by

∂u∗

∂x∗ + ∂v∗

∂y∗ + ∂w∗

∂z∗ = 0, (1.1.1)

∂u∗

∂t∗ + u∗ ∂u∗

∂x∗ + v∗ ∂u∗

∂y∗ + w∗ ∂u∗

∂z∗ = −1
ρ

∂p∗

∂x∗ + ν

[
∂2u∗

∂x∗2 + ∂2u∗

∂y∗2 + ∂2u∗

∂z∗2

]
, (1.1.2)

∂v∗

∂t∗ + u∗ ∂v∗

∂x∗ + v∗ ∂v∗

∂y∗ + w∗ ∂v∗

∂z∗ = −1
ρ

∂p∗

∂y∗ + ν

[
∂2v∗

∂x∗2 + ∂2v∗

∂y∗2 + ∂2v∗

∂z∗2

]
, (1.1.3)

∂w∗

∂t∗ + u∗ ∂w∗

∂x∗ + v∗ ∂w∗

∂y∗ + w∗ ∂w∗

∂z∗ = −1
ρ

∂p∗

∂z∗ + ν

[
∂2w∗

∂x∗2 + ∂2w∗

∂y∗2 + ∂2w∗

∂z∗2

]
, (1.1.4)

in the absence of an external body force. These are to be solved subject to appropriate
boundary conditions.
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1.1. LINEAR STABILITY OF PARALLEL FLOWS

Introducing a characteristic length scale L and velocity scale V with which to non-
dimensionalise equations (1.1.1), we may write

(x∗, y∗, z∗) = L(x, y, z), (u∗, v∗, w∗) = V (u, v, w), p∗ = ρV 2p, t∗ = L

V
t.

(1.1.5)
Substitution of (1.1.5) into (1.1.1) yields the Navier-Stokes equations in the dimensionless
form,

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (1.1.6)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −∂p

∂x
+ 1

R

[
∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

]
, (1.1.7)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −∂p

∂y
+ 1

R

[
∂2v

∂x2 + ∂2v

∂y2 + ∂2v

∂z2

]
, (1.1.8)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −∂p

∂z
+ 1

R

[
∂2w

∂x2 + ∂2w

∂y2 + ∂2w

∂z2

]
, (1.1.9)

where the Reynolds number R has been defined as

R = V L

ν
. (1.1.10)

We see that R represents the ratio of inertial to viscous forces, as remarked upon earlier.

Assume that the set of equations (1.1.6) admits a steady solution,

u = U(x, y, z), v = V (x, y, z), w = W (x, y, z), p = P (x, y, z), (1.1.11)

which is known as our base flow. To study the linear stability of this flow, we study the
evolution of an infinitesimal disturbance superimposed on (1.1.11). This is a complicated
problem; we will make progress by considering a particular class of flows, namely those
of the form

u = U(y), v = 0, w = 0, p = P (x). (1.1.12)

These are called parallel flows.

We consider the linear stability of a two-dimensional parallel shear flow between two
plane boundaries at y = −1 and y = 1, with the basic flow given by (1.1.12). We will
assume the two plane boundaries are rigid, so the base flow must satisfy the appropriate
no-slip conditions given by

U = 0 on y = ±1. (1.1.13)

Squire’s theorem [11] states that if there exists a growing three-dimensional perturbation
in a parallel flow, there exists a two-dimensional perturbation with a higher growth rate.
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1.1. LINEAR STABILITY OF PARALLEL FLOWS

Furthermore, this two-dimensional perturbation becomes unstable at a lower Reynolds
number than its three-dimensional counterpart. This theorem allows us to restrict
our attention to two-dimensional perturbations, which simplifies the problem greatly.
Perturbing our base flow (1.1.12) with a small amplitude two-dimensional disturbance,
the flow velocities are

(u, v, w, p) = (U(y), 0, 0, P (x)) + ∆(ũ, ṽ, 0, p̃), ∆ ≪ 1. (1.1.14)

We will seek solutions of travelling-wave form, so that

ũ = û(y)eiα(x−ct) + c.c, v = v̂(y)eiα(x−ct) + c.c, p = p̂(y)eiα(x−ct) + c.c, (1.1.15)

where α is the streamwise wavenumber and c is the wavespeed of the mode. In a temporal
stability analysis, α is assumed to be real and c taken to be complex-valued. Writing
c = cr + ici, modes with ci < 0 (ci > 0) decay (grow) in time. If there exists a mode
with ci > 0, the flow is said to be linearly unstable.

Substituting (1.1.14) and (1.1.15) into (1.1.6) leads us to the linearised disturbance
equations

iαû + dv̂

dy
= 0, (1.1.16a)

iα (U − c) û + v̂
dU

dy
= −iαp̂ + 1

R

[
d2û

dy2 − α2û

]
, (1.1.16b)

iα (U − c) v̂ = −dp̂

dy
+ 1

R

[
d2v̂

dy2 − α2v̂

]
. (1.1.16c)

These are to be solved with the no-slip conditions

û = 0, v̂ = 0 on y = ±1. (1.1.17)

After manipulation, (1.1.16) leads us to the result known as the Orr-Sommerfeld equation:

(U − c)
(

d2v̂

dy2 − α2v̂

)
− d2U

dy2 v̂ = 1
iαR

(
d4v̂

dy4 − 2α2 d2v̂

dy2 + α4v̂

)
. (1.1.18)

A fourth order differential equation, (1.1.18) requires four boundary conditions. Using
the continuity equation (1.1.16a) and the boundary conditions (1.1.17), we can formulate
the boundary conditions of the Orr-Sommerfeld problem in terms of v̂ and its derivative
with respect to the wall normal coordinate:

v̂ = dv̂

dy
= 0 on y = ±1. (1.1.19)
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1.2. INVISCID LINEAR STABILITY OF PARALLEL FLOWS

Equations (1.1.18), (1.1.19) pose an eigenvalue equation that encapsulates the linear
stability problem for parallel viscous flows. The locus of points in the (R, α) plane where
there exists a mode with ci = 0 form neutral stability curves.

1.2 Inviscid linear stability of parallel flows

For many flows of interest, the Reynolds number is large. The majority of the flow
can then be modelled as inviscid, with viscous effects being confined to the flow in the
vicinity of a boundary. In the limit

R → ∞, α = O(1), c = O(1), (1.2.1)

the Orr-Sommerfeld equation (1.1.18) reduces to the Rayleigh equation:

(U − c)
(

d2v̂

dy2 − α2v̂

)
− d2U

dy2 v̂ = 0. (1.2.2)

This is to satisfy impermeability conditions at the rigid boundaries, so that

v̂ = 0 on y = ±1. (1.2.3)

This equation (1.2.2), introduced by Rayleigh [12], was found prior to the Orr-Sommerfeld
equation.

Another early contribution to inviscid linear stability theory is Rayleigh’s inflection-point
theorem, which necessitates an inflection point in the base velocity profile in order
for instability to exist. Fjørtoft’s [3] theorem extends this result, providing a stronger
condition for instability. Adding to this is Howard’s [13] semicircle theorem, which
bounds the wavespeeds of unstable modes with a semicircle in the complex c-plane.

For a neutrally stable mode with purely real wavespeed cr, the Rayleigh equation (1.2.2)
has a regular singular point y = yc where U ′′(yc) ̸= 0 and the base flow is equal to the
wavespeed of the perturbation, so that U(yc) = cr.

Near the critical point y = yc, the method of Frobenius gives two linearly independent
solutions to the Rayleigh equation,

v̂1 = (y − yc) + · · · , v̂2 = 1 + · · · + U
′′
c

U ′
c

v̂1 log(y − yc) + · · · . (1.2.4)

These are known as Tollmien’s inviscid solutions ([14], cited in [3]). The second solution
v̂2 (1.2.4) contains a logarithmic singularity at the critical point. In order to smooth out
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1.3. VORTEX-WAVE INTERACTION

this singularity, viscous effects can be incorporated in a region near the critical point
(Lin [15], Stuart [16], Reid [17]). This analysis demonstrates that there is a phase change
of magnitude π across this region, which we call a critical layer. If U ′(yc) > 0, we are to
take

ln(y − yc) = ln |y − yc| for y > yc, (1.2.5)

ln(y − yc) = ln |y − yc| − iπ for y < yc. (1.2.6)

The critical layer singularity has been treated using other approaches, including the
incorporation of nonlinear effects (for example, by Benney and Bergeron [18], and Davis
[19]). Haberman [20] links the nonlinear and viscous critical layer theories.

1.3 Vortex-wave interaction

As mentioned earlier, linear stability theory is unable to explain transition for a number
of flows, such as plane Couette flow and plane Poiseuille flow. The existence of exact
coherent structures plays a key role in understanding transition. These structures
include three-dimensional steady state or travelling-wave solutions of the Navier-Stokes
equations.

By using a homotopy continuation method to numerically track three-dimensional
solutions from Taylor-Couette flow with a narrow gap, Nagata [21] discovered the
existence of steady three-dimensional finite-amplitude solutions in plane Couette flow.
Other states have been found, including travelling-wave solutions in channel flow [22, 23]
and three-dimensional steady states in plane Couette flow [22] by Waleffe.

Waleffe [24] proposed a mechanism for generating these structures in the form of a
self-sustaining process. This theory, consisting of three interacting components, was
developed through a series of papers, including those of Waleffe, Kim and Hamilton [25],
Hamilton, Kim and Waleffe [26] and Waleffe [27]. Rolls in the cross-stream plane induce
spanwise fluctuations in the streamwise velocity, leading to the formation of a streak flow.
The spanwise inflections of the streak lead to an instability in which three-dimensional
travelling waves develop. These waves then interact nonlinearly and reenergise the roll
flow. There has since been further success. For example, Faisst and Eckhardt [28] and
Wedin and Kerswell [29] followed the continuation technique proposed by Waleffe and
obtained travelling-wave solutions in pipe flow.
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1.4. PREVIOUS STABILITY STUDIES

This theory was established independently for asymptotically large Reynolds numbers,
where it is often referred to as vortex-wave interaction. The framework was developed
by Hall and Smith [30, 31, 32, 33], Bennett, Hall and Smith [34], Smith and Walton
[35], Walton and Smith [36]. In vortex-wave interaction, the streak and roll flow are
together referred to as a vortex flow. The wave may be governed by either inviscid or
viscous dynamics, the former of which has been studied by Hall and Sherwin [37] in the
context of Couette flow. An example of the latter is given by Dempsey and Walton [38]
in their study of vortex/Tollmien-Schlichting wave interaction in the asymptotic suction
boundary layer. In this thesis, we consider only the viscous wave situation.

1.4 Previous stability studies

The pressure-gradient-driven flow through the annular region formed by two concentric
and stationary cylinders, annular Poiseuille flow (APF), can be characterised by the ratio
of the radii of the inner cylinder to the outer cylinder, δ. An early study of the stability
of concentric APF to infinitesimal, axisymmetric disturbances was conducted by Mott
and Joseph [39]. They considered two stationary cylinders, focusing on the effect of the
ratio of cylinder radii on linear stability. Their results from finite-difference techniques
are presented for 0.3 ≲ δ ≤ 1. Mott and Joseph found that the critical Reynolds number
increases monotonically with decreasing radius ratio, noting an increased skewing of
the base velocity profile towards the inner cylinder as the radius ratio decreases. In
the narrow-gap limit for which δ → 1, they show the critical Reynolds number of APF
approaches that of plane Poiseuille flow (PPF).

Extending the work of Mott and Joseph, Mahadevan and Lilley [40] considered also
the linear stability of APF to asymmetric disturbances with azimuthal wavenumbers
n = 1, 2 and 3. For δ ≲ 0.8, they found that these asymmetric modes were less stable
than the axisymmetric mode.

Heaton [41] found that APF is linearly unstable to axisymmetric disturbances for all
0 < δ ≤ 1 and additionally concluded that asymmetric disturbances (with azimuthal
wavenumbers n = 1, 2 and 3) become stable at all Reynolds numbers for δ less than
critical finite values.

Before we consider the stability properties of this flow when the inner cylinder moves
axially, we turn to the case of plane Poiseuille Couette flow (PPCF). The stability of
this flow has been studied using asymptotic methods by Potter [42], who found that
the superposition of a Couette component on PPF generally has a stabilising effect. In
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fact, the flow was found to be linearly stable for all Reynolds numbers when the plate
velocity exceeded 70% of the maximum velocity of the Poiseuille component of the flow.
Subsequent studies on the stability of PPCF were carried out by Hains [43], Reynolds
and Potter [44] and Cowley and Smith [45].

An asymptotic study carried out by Cowley and Smith [45] explored the linear and
weakly nonlinear stability of PPCF for various relative sliding velocities. When the
relative sliding velocity V is zero, the problem reduces to PPF, for which there exists one
linear neutral stability curve [45]. Increasing V soon results in the appearance of two
additional neutral curves, one of which disappears when V becomes slightly larger. We
are eventually left with no neutral curves once V has been increased beyond a particular
cut-off velocity that Cowley and Smith determine through the use of asymptotic methods.

Some years later, Sadeghi and Higgins [46] investigated the linear stability of concentric
annular Poiseuille-Couette flow (APCF) to axisymmetric and asymmetric disturbances.
For a fixed radius ratio of δ = 0.5, they found that the sliding motion of the inner
cylinder had an overall stabilising effect on the flow with respect to the neutral stability
curves studied. Their numerical work illustrates that this increase in stability is not
necessarily monotonic with the sliding velocity; for example, there are ranges of V in
which an increase in sliding velocity is destabilising for the axisymmetric mode. For
this choice of radii ratio, Sadeghi and Higgins additionally discovered that there exists a
cut-off velocity for each mode studied, that is, a sliding velocity beyond which the mode
is completely stabilised. Gittler [47] later illustrated the existence of multiple neutral
curves in the (R, α) plane for δ = 0.5 when analysing the linear stability of APCF to
axisymmetric disturbances.

More recently, Walton [1] provided a thorough account of the axisymmetric linear stability
of APCF. An asymptotic analysis was performed at high Reynolds numbers, the results
of which were subsequently compared to numerical finite-Reynolds-number calculations.
Obtaining the scalings of Cowley and Smith [45], Walton predicted the existence of
multiple regions of instability and discussed the ultimate fate of the neutral modes found.
He confirmed the existence of multiple neutral curves for certain choices of δ and V

and studied how the neutral stability curves are modified as the inner cylinder sliding
velocity is increased. The nonlinear stability of APCF has also been considered. In
particular, an asymptotic study at high Reynolds numbers by Walton [48] demonstrates
that finite-amplitude asymmetric neutral waves can be supported by basic thread-annular
flow.
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1.5 Previous stability studies with compliant
surfaces

Thread-annular injection is a minimally invasive technique to transport medical implants
into the body [48, 49]. With this application in mind, Frei, Lüscher and Wintermantel
[49] conducted an experimental study of APCF, where a thread moved axially through a
steel pipe. This motivates our work here in exploring the effects of compliance on linear
stability.

Motivated by the experiments of Krämer [50], an early investigation on the effect of
a flexible wall on the hydrodynamic stability of boundary layer flow was carried out
by Benjamin [51]. He found that the Tollmien-Schlichting instability was stabilised
by wall compliance, but destabilised by the dissipation in the wall. Benjamin [51, 52]
and Landahl [53] categorise disturbances into three classes. Class A disturbances are
destabilised by dissipation in the wall, and include the modified Tollmien-Schlichting
waves. Conversely, class B waves are stabilised by the dissipation in the wall. Finally,
class C are of a Kelvin-Helmholtz-type instability.

Carpenter and Garrad [54, 55] used a different classification, considering two types of
instabilities for a passive surface: those which could not exist without viscosity (termed
Tollmien-Schlichting type instabilities) and those that depend on the surface flexibility
(termed flow-induced surface instabilities). They remark that this distinction may be
artificial, particularly as the instabilities arise from the coupled system of the flow and
compliant surface. Flow-induced surface instabilities include travelling wave flutter and
static divergence [54]. It is possible for some instabilities to interact or coalesce with
each other. For example, Carpenter, Gaster and Willis [56] identified modal coalescence
between travelling wave flutter and Tollmien-Schlichting instabilities.

In their study, Carpenter and Garrad [54] modelled a Kramer-type compliant surface as
spring-backed plate. An elastic plate is supported by an array of springs that rests on a
rigid surface. A viscous fluid substrate also backs the plate. This model has been used
extensively in various forms [57, 58, 59, 60]. For example, Gajjar and Sibanda [61] use a
spring-backed plate model to investigate the stability of channel flow between one rigid
wall and one compliant wall at large Reynolds numbers. They find an increase in wall
damping to be destabilising on the Tollmien-Schlichting instability.

In this thesis we use a spring-backed plate model, but we note that viscoelastic continuum
models for flexibility are used by, among others, Kumaran, Fredrickson and Pincus [62],
Kumaran [63], and Shankar and Kumaran [64].
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1.6 Thesis summary

The overall aim of this thesis is to develop an understanding of the effects of flexibility
on the stability of annular flow. We are interested in exploring new instabilities that
arise, in addition to exploring how instabilities of the rigid scenario are modified in the
presence of a flexible wall.

In Chapter 2, we formulate the linear stability problem for annular Poiseuille-Couette flow
when the inner cylinder is flexible, restricting our attention to axisymmetric disturbances.
Using the linearised disturbance equations in cylindrical coordinates, we derive the
circular Orr-Sommerfeld equation and its appropriate boundary conditions. Chapter 3
considers this linear stability problem at finite Reynolds numbers. We adopt a numerical
approach to find the eigenvalues of the Orr-Sommerfeld equation and determine the
stability regions of the flow in the (R, α) plane. Comparisons to the scenario of a rigid
cylinder are made. Chapter 4 explores the circular Orr-Sommerfeld equation (pertaining
to compliant APCF) in the long-wave limit, with the aim of finding the critical Reynolds
number of the neutral curve as α → 0.

Before we move on to investigating the stability of compliant APCF at large Reynolds
numbers, we focus on providing inviscid linear stability results in Chapter 5. Influential
results due to Rayleigh [12], Fjørtoft [3], Howard [13], Høiland [65] are adapted for an
annular flow over a flexible boundary following the methods of Yeo and Dowling [66],
Yeo [67], Kumaran [68], and Shankar and Kumaran [69].

Chapters 6-8 study the linear stability of compliant APCF at high Reynolds numbers
asymptotically. As in previous chapters, we focus only on axisymmetric disturbances.
We use the method of matched asymptotics and a ‘maximal interactions’ approach to
arrive at distinguished scalings for the different structures that arise for neutral modes
in the flow. Chapter 9 provides a comparison of our numerical work at finite Reynolds
numbers and our asymptotic results at large Reynolds numbers.

In Chapter 10, our focus shifts from compliant APCF to planar Couette flow with a
lower flexible boundary. In the earlier chapters of this thesis, we conducted a linear
stability analysis and therefore neglected terms that were nonlinear with respect to the
disturbances. In this chapter, we determine the size of the disturbance that allows the
flow to sustain a vortex-wave interaction at high Reynolds numbers. We formulate the
equations that govern this interaction and discuss the numerical methods employed to
solve these equations. We will then illustrate the co-existence of two finite-amplitude
states with different flow structures.
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Chapter 2

Linear stability of annular
Poiseuille-Couette flow with a

compliant inner cylinder: problem
formulation

2.1 Governing equations

We consider an incompressible flow in the annular region between two infinitely long
cylinders, where the ratio of radii of the undisturbed inner to outer cylinder is given
by δ such that 0 < δ < 1. We use asterisks to denote dimensional quantities in what
follows. With horizontally orientated cylinders that are concentric, the geometry of this
problem naturally lends itself to the use of a cylindrical coordinate system whose axial
axis aligns with that of the cylinders; we let x∗, r∗ and θ be measured in the axial, radial
and azimuthal directions respectively. The dimensional velocity components in these
directions are given by u∗, v∗ and w∗ respectively.

The outer cylinder of radius a∗ is rigid, while the inner cylinder possesses a degree of
flexibility that we describe using the spring stiffness of its material. We use a spring-
backed plate model for the compliant inner cylinder [57, 55], which we allow to flex
only radially so as to preserve the axisymmetry of the problem. Additionally, the
inner cylinder moves in the axial direction at a constant velocity V ∗, maintaining its
concentricity with the outer cylinder. Driven by a constant axial pressure gradient −4g∗,
this incompressible flow of fluid with kinematic viscosity ν∗ and constant density ρ∗

is subject to no-slip conditions on the outer (inner) wall of the inner (outer) cylinder.
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2.1. GOVERNING EQUATIONS

Dimensional time and fluid pressure are measured by t∗ and p∗ respectively. We neglect
the effects of gravity on our flow, and adopt the non-dimensionalisation used by Walton
[1]:

x∗ = a∗x, r∗ = a∗r, (2.1.1a)

u∗ = g∗a∗2

ρ∗ν∗ u, v∗ = g∗a∗2

ρ∗ν∗ v, V ∗ = g∗a∗2

ρ∗ν∗ V, (2.1.1b)

t∗ = ρ∗ν∗

g∗a∗ t, p∗ = g∗2a∗4

ρ∗ν∗2 p. (2.1.1c)

The axisymmetry of this problem makes it reasonable to focus on flows with no azimuthal
dependence. We further impose that there is no swirl in the flow, that is, the azimuthal
component of our flow velocity is zero. With these simplifications, the unsteady non-
dimensional Navier-Stokes and continuity equations that govern our fluid are reduced to

∂u

∂x
+ 1

r

∂(rv)
∂r

= 0, (2.1.2a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂r
= −∂p

∂x
+ 1

R

[
∂2u

∂x2 + 1
r

∂

∂r

(
r

∂u

∂r

)]
, (2.1.2b)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂r
= −∂p

∂r
+ 1

R

[
∂2v

∂x2 + 1
r

∂

∂r

(
r

∂v

∂r

)
− v

r2

]
, (2.1.2c)

where the Reynolds number, R, is a dimensionless parameter given by

R = g∗a∗3

ρ∗ν∗2 . (2.1.3)

This form of the Reynolds number encapsulates the effects of a change in external axial
pressure gradient, and is thus particularly relevant to thread-injection; for example, a
decrease in g∗ corresponds to an increased significance of the viscous terms in (2.1.2).

The system of partial differential equations (2.1.2) is to be solved in conjunction with
no-slip conditions on the cylinder walls. On the outer cylinder, the fluid particles are at
rest:

u = 0, v = 0 on r = 1. (2.1.4)

It is less straightforward to formulate the boundary conditions on our inner cylinder,
which flexes radially and axisymmetrically. The effect of compliance on the cylinder’s
radial boundary can be expressed as a physical displacement to its unperturbed radius,
so we write

r∗
s(x∗, t∗) = a∗δ + η̃∗(x∗, t∗), (2.1.5)

where r∗
s(x, t) is the dimensional radial boundary of the inner cylinder and η̃∗(x∗, t∗)

represents a small dimensional perturbation in the radial direction.
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2.1. GOVERNING EQUATIONS

Letting η̃∗(x∗, t∗) = a∗η̃(x, t), this can be non-dimensionalised as

rs(x, t) = δ + η̃(x, t). (2.1.6)

The flexibility of the cylinder affects only the radial velocity component of particles on
the wall, and fluid particles on the cylinder wall must remain on the wall. Therefore we
must have

u = V, v = ∂η̃

∂t
+ u

∂η̃

∂x
on r = rs, (2.1.7 a, b)

where the latter condition is the kinematic condition. Using a spring-backed plate model
[54, 57] (see figure 2.1.1), we consider a balance of forces acting on the cylinder wall:
the rate of change of momentum is balanced by a resistive force described by Hooke’s
law and forces due to perturbations in the fluid pressure p̃∗ and viscous shear stress. We
neglect forces due to damping and plate tension. We also take the flexural rigidity of
the inner cylinder to be zero, in order to maintain the axisymmetry of the problem. The
wall motion is then governed by

m∗ ∂2η̃∗

∂t∗2 = −p̃∗ + 2µ∗ ∂ṽ∗

∂r∗ − K∗η̃∗ on r∗ = r∗
s . (2.1.8)

Here, the dimensional quantities m∗ and K∗ are respectively the mass per unit area and
spring constant per unit area. The dynamic viscosity of the fluid µ∗ is given by ρ∗ν∗.
Using the non-dimensionalisation

m∗ = ρ∗a∗m, K∗ = ρ∗ν∗2

a∗3 K, (2.1.9)

we obtain the non-dimensional dynamic condition

m
∂2η̃

∂t2 = −p̃ + 2
R

∂ṽ

∂r
− K

R2 η̃ on r = rs. (2.1.10)

We have assumed here that the effect of the base pressure gradient on the displacement
of the inner cylinder wall can be ignored. Alternatively, we may assume that body forces
have been prescribed in the wall to balance the effect of the pressure gradient [57]. In
their study of instabilities in a plane channel flow between compliant walls, Davies and
Carpenter [57] explain that these assumptions are required in order to ensure a solution
to the fluid/wall equations when the base flow is unperturbed. Like many others, they
omit the contribution of the normal viscous stress, which should become negligible at
large Reynolds numbers. This contribution is included by Nagata and Cole [58], and is
also included in our wall equation (2.1.8) here. However, we do find that the viscous
stress can be neglected at leading order in our asymptotic analysis for R ≫ 1 in the
later chapters of this thesis.
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2.2. BASIC FLOW

Figure 2.1.1: A depiction of the spring-backed plate model, shown in the planar case for
clarity.

2.2 Basic flow

Our base flow is taken to be the steady, axial flow between the two cylinders, (u, v) =
(U0(r), 0). Assumed to be unaffected by the inner cylinder’s compliance, the base flow
satisfies the no-slip conditions

U0 = 0 on r = 1, U0 = V on r = δ, (2.2.1)

and is given by

U0(r) = 1 − r2 + (V − 1 + δ2)
log δ

log r, δ ≤ r ≤ 1. (2.2.2)

This is an exact solution of the Navier-Stokes equations (2.1.2).

Assuming the pressure constant p0 is the value of the non-dimensional pressure at x = 0,
our base pressure p = P (x) is given by

P (x) = p0 − 4x

R
. (2.2.3)

Figure 2.2.1 illustrates the basic velocity profile for various sliding velocities V and radii
ratio δ. Before we embark on studying the linear stability of this flow, we close this section
by commenting on the maximum value of the base flow. When V < 1 − δ2 + 2δ2 log δ,
the base flow attains its maximum value in the interior of the flow, say at rm such that
δ < rm < 1. When V ≥ 1 − δ2 + 2δ2 log δ, the maximum value of U0 is achieved on the
inner cylinder wall where U0 = V.
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Figure 2.2.1: Depiction of the basic Poiseuille-Couette flow for various sliding velocities
V and radii ratio δ.

2.3 Linearised disturbance equations

Our linear stability analysis focuses solely on swirl-free, axisymmetric perturbations of
infinitesimal amplitude. To this end, we superimpose our base velocity and pressure
field with travelling-wave disturbances of axial wavenumber α and wavespeed c:

u = U0(r) + ∆û(r)eiα(x−ct) + c.c, v = ∆v̂(r)eiα(x−ct) + c.c, (2.3.1a)

p = p0 − 4x

R
+ ∆p̂(r)eiα(x−ct) + c.c, (2.3.1b)

where ∆ ≪ 1 is a non-dimensional amplitude and û(r), v̂(r), p̂(r) are disturbance shape
functions. Specifically investigating temporal stability, the wavenumber α and the
wavespeed c are assumed to be real and complex respectively.

To study the evolution of these perturbations in time, we substitute (2.3.1) into the
non-dimensional Navier-Stokes equations (2.1.2). At order ∆, this yields the linearised
disturbance equations

iαû + dv̂

dr
+ v̂

r
= 0, (2.3.2a)

iα (U0 − c) û + v̂
dU0

dr
= −iαp̂ + 1

R

[
d2û

dr2 + 1
r

dû

dr
− α2û

]
, (2.3.2b)

iα (U0 − c) v̂ = −dp̂

dr
+ 1

R

[
d2v̂

dr2 + 1
r

dv̂

dr
− v̂

r2 − α2v̂

]
. (2.3.2c)

This system is to be paired with a set of linearised boundary conditions.

29



2.3. LINEARISED DISTURBANCE EQUATIONS

Conditions (2.1.4) indicate that on the outer cylinder, we must have

û = 0, v̂ = 0 on r = 1. (2.3.3)

Before we linearise conditions (2.1.7), we impose that our perturbation η̃ takes the
waveform

η̃(x, t) = ∆η̂eiα(x−ct) + c.c, (2.3.4)

so our radial boundary (2.1.6) is now described by

rs(x, t) = δ + ∆η̂eiα(x−ct) + c.c. (2.3.5)

We now consider a Taylor expansion of the axial velocity component about r = δ,
obtaining

u(rs) = V + ∆eiα(x−ct)

û(δ) + η̂
dU0

dr

∣∣∣∣∣∣
r=δ

+ O(∆2). (2.3.6)

Since u (rs) = V (2.1.7), this indicates that we must have

û(δ) + η̂U ′
0(δ) = 0. (2.3.7)

Primes (′) denote derivatives with respect to r. Turning our attention to the kinematic
condition (2.1.7b), a Taylor expansion about r = δ divulges the relation

v̂(δ) = iα(V − c)η̂. (2.3.8)

It is convenient to eliminate η̂ using (2.3.7), and this provides us with our third boundary
condition:

iα(V − c)û(δ) + v(δ)U ′
0(δ) = 0. (2.3.9)

In a similar manner to above, we linearise the dynamic condition (2.1.10) and eliminate
η to obtain

p̂(δ) = 2
R

v̂′(δ) +
(

−α2c2m + K

R2

)
û(δ)
U ′

0(δ) , V ̸= 1 − δ2 + 2δ2 log δ. (2.3.10)

We impose this restriction on V as this form of the dynamic condition requires that we
have U ′

0(δ) ̸= 0.
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In summary, to investigate the linear stability of APCF with a flexible inner cylinder,
we seek a solution to the equations (2.3.2) subject to the boundary conditions (2.3.3),
(2.3.9), (2.3.10), repeated below for convenience:

iαû + dv̂

dr
+ v̂

r
= 0, (2.3.11a)

iα (U0 − c) û + v̂
dU0

dr
= −iαp̂ + 1

R

[
d2û

dr2 + 1
r

dû

dr
− α2û

]
, (2.3.11b)

iα (U0 − c) v̂ = −dp̂

dr
+ 1

R

[
d2v̂

dr2 + 1
r

dv̂

dr
− v̂

r2 − α2v̂

]
. (2.3.11c)

subject to
û(1) = 0, v̂(1) = 0, (2.3.12)

iα(V − c)û(δ) + v(δ)U ′
0(δ) = 0, (2.3.13)

p̂(δ) = 2
R

v̂′(δ) +
(

−α2c2m + K

R2

)
û(δ)
U ′

0(δ) , (2.3.14)

where V ̸= 1 − δ2 + 2δ2 log δ. The base flow U0 is given by (2.2.2).

If there exists a perturbation with Im(c) > 0, then the perturbation grows in time and
our flow is linearly unstable. On the other hand, if all perturbations have Im(c) < 0, all
perturbations decay in time and our flow returns to its base state; in this case, we say
our flow is linearly stable to axisymmetric disturbances.

At large Reynolds numbers, we analyse the problem asymptotically. This approach makes
apparent the physical balances in the flow that give rise to different distinguished scalings
for neutral modes. We discuss this in the later chapters of this thesis. Our approach at
finite Reynolds numbers hinges on manipulating the system (2.3.11, 2.3.12-2.3.14) to
form the cylindrical version of the Orr-Sommerfeld equation, which we describe below.

2.4 Circular Orr-Sommerfeld equation

The linearised disturbance equations (2.3.11) and boundary conditions (2.3.12-2.3.14)
result in a generalised eigenvalue problem for the wavespeed c. Introducing the function

ϕ(r) = rv̂(r), (2.4.1)

the continuity equation (2.3.11a) reveals that

ϕ′(r) = −iαrû(r). (2.4.2)
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2.4. CIRCULAR ORR-SOMMERFELD EQUATION

Differentiating the axial momentum equation (2.3.11b) with respect to r and using the
radial momentum equation (2.3.11c) to eliminate the pressure disturbance p̂, we obtain
the following circular version of the Orr-Sommerfeld equation after much manipulation:

(U0 − c)
(

ϕ′′ − ϕ′

r
− α2ϕ

)
+ ϕ

(
U ′

0
r

− U ′′
0

)

= 1
iαR

(
ϕ(4) − 2ϕ(3)

r
+
( 3

r2 − 2α2
)

ϕ′′ +
(

2α2

r
− 3

r3

)
ϕ′ + α4ϕ

)
. (2.4.3)

It now remains to pose the boundary conditions with which to solve (2.4.3). Using
the forms of ϕ(r) (2.4.1) and ϕ′(r) (2.4.2), the no-slip conditions on the outer cylinder
(2.3.12) reveal

ϕ(1) = 0, ϕ′(1) = 0, (2.4.4)

and the kinematic condition (2.3.13) for the inner cylinder gives

(c − V ) ϕ′(δ) + U ′
0(δ) ϕ(δ) = 0. (2.4.5)

Forming the dynamic condition is less straightforward owing to the presence of the
pressure term on the right hand side of (2.3.14). We begin by seeking an expression for
p̂(δ) in terms of ϕ(δ) and higher derivatives. Evaluating the linearised axial momentum
equation (2.3.11b) at r = δ, we notice the left hand side of (2.3.11b) is zero as a result
of the kinematic condition (2.3.13). We can therefore write

iαp̂(δ) = 1
R

(
û′′(δ) + û′(δ)

δ
− α2û(δ)

)
. (2.4.6)

Using the expression (2.4.2) to eliminate û, this reveals

p̂(δ) = 1
α2R

(
ϕ′′′(δ)

δ
− ϕ′′(δ)

δ2 + ϕ′(δ)
δ3 − α2 ϕ′(δ)

δ

)
. (2.4.7)

It will also be helpful to note that differentiation of (2.4.1) gives

v̂′(δ) = ϕ′(δ)
δ

− ϕ(δ)
δ2 . (2.4.8)

The final boundary condition for (2.4.3) now follows from substitution of (2.4.7) into
(2.3.14) and use of (2.4.2), (2.4.5), (2.4.8):
[2iα

R

(3
2U ′

0(δ) + c − V

δ

)
−
(

K

R2 − α2c2m
)]

ϕ′(δ) = iU ′
0(δ)

αR

[
ϕ(3)(δ) − ϕ′′(δ)

δ
+ ϕ′(δ)

δ2

]
.

(2.4.9)

32



2.4. CIRCULAR ORR-SOMMERFELD EQUATION

The circular Orr-Sommerfeld equation (2.4.3) with boundary conditions (2.4.4, 2.4.5,
2.4.9) is an eigenvalue problem in c that can be solved numerically at various (R, α)
combinations. Once we obtain the eigenvalues of the problem for a given pair of R and
α, we consider the signs of the imaginary parts of the complex-valued wavespeeds. If a
wavespeed has negative imaginary part, the associated mode of disturbance will decay
in time. If there exists a wavespeed with positive imaginary part, the associated mode
of disturbance will grow in time and the flow is linearly unstable. Finally, a mode with
a purely real wavespeed, a so-called neutral mode, propagates with constant amplitude.

This motivates our next chapter, where we solve this Orr-Sommerfeld problem numerically
using a Chebyshev collocation method and determine the linear stability regions for the
flow in the (R, α) plane.
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Chapter 3

Finite-Reynolds-number numerical
computations

An early investigation of the effects of wall compliance on the stability of plane Poiseuille
flow was carried out by Hains and Price [70]. The walls of the channel were assumed to
be stretched flexible membranes with tension and damping. When damping was taken
to be zero, flexibility was found to result in the formation of closed neutral stability
curves and a reduced region of instability in comparison to the rigid-walled case. The
region of instability becomes smaller and eventually disappears entirely as flexibility is
increased, though it is noted that the low tension required for complete stability may
not be easily attainable in practice. Further work was undertaken by Green and Ellen
[71], who display a distorted Tollmien-Schlichting neutral curve joining onto the neutral
curve of a higher-wavenumber region of instability. These two sections of the neutral
curve exhibit different properties.

Davies and Carpenter [57] model the compliant walls of the channel as spring-backed
plates that are constrained to move only in the vertical direction. Motivated by the
stabilising effect of wall compliance on Tollmien-Schlichting waves, they focus their
attention on symmetric disturbances. For untensioned spring-backed plates with no
internal damping, increasing flexibility was found to shrink the neutral curve associated
with the Tollmien-Schlichting instability into a closed curve that eventually disappears for
sufficiently low values of plate flexural rigidity and spring stiffness. They also identified
flow-induced surface instabilities termed divergence and travelling wave flutter. Nagata
and Cole [58] supplement this work by considering the stability of plane Poiseuille
flow without imposing predefined symmetry on the disturbances. They also use a
spring-backed plate model, though include the contribution of viscous stress in their
wall equation. In addition to neutral curves for the Tollmien-Schlichting and symmetric
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travelling wave flutter modes, Nagata and Cole depict neutral curves for an antisymmetric
travelling wave flutter mode. The authors illustrate that the critical Reynolds number
of this antisymmetric disturbance can be lower than that of the symmetric disturbances.
In the limit α → 0, the critical Reynolds number for the antisymmetric travelling wave
flutter mode depends only on the spring stiffness of the walls.

In this chapter, we study the temporal linear stability of compliant annular Poiseuille-
Couette flow to axisymmetric disturbances numerically. The linear stability of APCF in
the context of two rigid cylinders has been studied extensively by Walton [1, 72], who
investigated the effect of the sliding velocity on the stability of the flow both numerically
and asymptotically for different cylinder radius ratios. He presents neutral stability
curves in the (R, α) plane, finding parameter combinations of δ and nonzero V for
which multiple neutral curves coexist. This is a more intricate situation than that of
a stationary inner cylinder (APF), for which there exists a unique neutral curve. We
anticipate that the introduction of wall compliance complicates the situation further.

3.1 Numerical method

In preparation of our numerical work, we restate for convenience the circular Orr-
Sommerfeld problem (2.4.3) and associated boundary conditions (2.4.4, 2.4.5, 2.4.9)
formulated in Section 2.4.

With the base flow U0 (2.2.2) being given by

U0(r) = 1 − r2 + (V − 1 + δ2)
log δ

log r, δ ≤ r ≤ 1, (3.1.1)

we wish to solve the eigenvalue problem

(U0 − c)
(

ϕ′′ − ϕ′

r
− α2ϕ

)
+ ϕ

(
U ′

0
r

− U ′′
0

)

= 1
iαR

(
ϕ(4) − 2ϕ(3)

r
+
( 3

r2 − 2α2
)

ϕ′′ +
(

2α2

r
− 3

r3

)
ϕ′ + α4ϕ

)
(3.1.2)
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subject to the boundary conditions

ϕ(1) = 0, (3.1.3a)

ϕ′(1) = 0, (3.1.3b)

(c − V ) ϕ′(δ) + U ′
0(δ) ϕ(δ) = 0, (3.1.3c)[2iα

R

(3
2U ′

0(δ) + c − V

δ

)
−
(

K

R2 − α2c2m
)]

ϕ′(δ) = iU ′
0(δ)

αR

[
ϕ(3)(δ) − ϕ′′(δ)

δ
+ ϕ′(δ)

δ2

]
,

(3.1.3d)

where m and K are respectively the non-dimensional mass and spring stiffness of the
inner cylinder per unit area.

Prompted by the methods of Nagata and Cole [58], we use the kinematic condition
(3.1.3c) to reformulate the dynamic condition (3.1.3d) so that it is linear in c, and we
write

K

R2 − α2c2m = K

R2 − α2c

(
V ϕ′(δ) − U ′

0(δ)ϕ(δ)
ϕ′(δ)

)
m. (3.1.4)

A generalised eigenvalue problem for c, the system (3.1.2, 3.1.3a-c, 3.1.4) can be solved
numerically by adopting a Chebyshev collocation method. This method is discussed in
depth by Schmid and Henningson [4], and we provide a brief description here.

Introducing a linear transformation to map the domain from r ∈ [δ, 1] to ξ ∈ [−1, 1], the
function ϕ is approximated as a series of (N + 1) Chebyshev polynomials Tn, so that

ϕ =
N∑

n=0
anTn(ξ), r = 1

2 [(1 + δ) − (1 − δ)ξ] , (3.1.5)

where Tn(ξ) = cos(n cos−1(ξ)) and ξ is evaluated at the extrema of the N th Chebyshev
polynomial. Known as the Gauss-Lobatto points, these are given by

ξj = cos
(

πj

N

)
, j = 0, ..., N. (3.1.6)

After performing a change of variables from r to ξ in the Orr-Sommerfeld equation
(3.1.2), we substitute expression (3.1.5) and require that the resulting equation holds
at the interior Gauss-Lobatto points j = 2, ..., N − 2. To supplement this, the four
boundary conditions (3.1.3a-c, 3.1.4) are also expressed in Chebyshev form, with the
inner and outer cylinders corresponding to ξ = ξ0 and ξ = ξN respectively.

36



3.2. NUMERICAL RESULTS

This results in a system of (N + 1) equations that can be written as an eigenvalue
problem

Aa = cBa, a = (a0, ..., aN)T , (3.1.7)

where the eigenvector a contains the coefficients of the Chebyshev polynomials in (3.1.5).
The square matrices A and B are of the dimension (N + 1) × (N + 1) and depend on α

and R, in addition to the cylinder properties δ, V, K and m. The first and last two rows
of A and B have been chosen to enforce the boundary conditions, while the intermediate
rows are used to describe the Orr-Sommerfeld equation at the interior Gauss-Lobatto
points. Though this is a natural arrangement for A and B, it is possible to interchange
the rows so that, for example, the boundary conditions occupy the first four rows of the
matrices.

The matrix equation (3.1.7) is solved using a QZ algorithm via a built-in MATLAB
function. We are particularly interested in the sign of the imaginary part of the wavespeed
for various combinations of wavenumber and Reynolds number, recalling that modes
with Im(c) > 0 are unstable. Having determined the eigenvalues, we are able to depict
the stability regions of the flow in the (R, α) plane, which we will illustrate shortly.

It is also worth mentioning that the form of our matrix equation (3.1.7) hinges on our
use of the dynamic condition (3.1.4) that is linear in c. Implementation of our original
condition (3.1.3d) would have resulted in a polynomial eigenvalue problem that is more
computationally expensive, owing to the presence of the quadratic c2 term.

3.2 Numerical results

Using the methods outlined above, we illustrate the linear stability features of compliant
APCF as we vary properties of the inner cylinder. There exists a copious number of
parameter combinations one could explore. For the purposes of this thesis, we choose to
display a carefully chosen selection that captures the effect of compliance.

Before continuing, we provide a preliminary check of our methods by comparing our
results with those in previous literature. In figure 3.2.1a, we present the neutral stability
curve obtained by Walton (see figure 18(a) of [1]) for a rigid inner cylinder with δ = 0.55
and V = 0. Figure 3.2.1b depicts the corresponding neutral curve obtained from our
computations. The two figures show good agreement. Figure 3.2.1c shows our neutral
curve (black solid line) overlaid with data points from Walton’s neutral curve (shown
in pink asterisks). This was done using a web-based plot digitiser [2]. We remark that
the boundary conditions (3.1.3c) and (3.1.3d) were replaced by ϕ(δ) = 0 and ϕ′(δ) = 0
when running our rigid computations.
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Figure 3.2.1: Neutral stability curve for a rigid inner cylinder with δ = 0.55 and V = 0. A
comparison between the reprinted results of Walton [1] (figure (a)) and our computations
(figure (b)). Figure (c) overlays Walton’s results (pink asterisks) onto our results (black
line) using a web-based plot digitiser [2].

Varying spring stiffness

In order to determine the effect of flexibility and sliding velocity, we begin by considering
the simplest case of a rigid inner cylinder at rest. The shaded area in figure 3.2.2a
corresponds to the linearly unstable region of the flow with δ = 0.7. We find exactly one
unstable mode in this shaded region. Persisting in the absence of the compliant wall,
this mode will be referred to as a flow-based instability.

Figure 3.2.2a shows growth contours of the unstable mode, whilst figure 3.2.2b displays
contours of Re(c) of the unstable mode relative to the maximum value of the base flow.
We observe that Re(c) of the unstable mode becomes larger as we approach the nose of
the unstable region, but does not attain the maximum value of the base flow, max(U0).
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(a) Contours of Im(c) (b) Contours of Re(c)/ max(U0)

Figure 3.2.2: Stability properties for the flow with a rigid inner cylinder with δ =
0.7, V = 0.

Figure 3.2.3 explores the effect of the inner cylinder’s spring stiffness by considering a
stationary inner cylinder with radius ratio δ = 0.7 and mass m = 0.1. We focus on four
spring stiffness values (K = 5 × 1011, K = 1 × 1011, K = 5 × 109, K = 5 × 108) and
note that a lower spring stiffness indicates a more flexible cylinder. We remark that our
choices of K are larger than those typically used by other authors. We choose these
values so that we can see how the linear instabilities of the rigid case are modified as
flexibility is increased.

The stability region plots shown in figure 3.2.3 reveal the number of unstable modes
present for each (R, α) combination. The shaded regions correspond to the flexible case,
whilst the dashed grey curves represent the neutral curve of the rigid case. Regions shaded
in blue contain one linearly unstable mode, whilst red regions indicate the presence of
two unstable modes. For the range of Reynolds numbers depicted, comparison with
the dashed curve reveals that the band of unstable wavenumbers associated with the
flow-based mode of figure 3.2.2 sinks lower as the spring stiffness decreases to K ≈ 5×109.
As K decreases further, this effect becomes more localised to nearer the nose of the
unstable region, which exists at a lower Reynolds number than its rigid counterpart. Note
the range of Reynolds numbers illustrated is much smaller in figures 3.2.3d and 3.2.3e,
and the figure corresponding to K = 5 × 109 has been repeated for ease of comparison.

It is apparent that the flexibility of the cylinder has resulted in the emergence of a second
instability, which has a much broader band of unstable wavenumbers than the modified
flow-based mode. As the cylinder becomes more flexible, this instability materialises
from the α = 0 axis at lower Reynolds numbers, and also eventually engulfs the modified
flow-based mode.
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To provide a more complete picture of the nature of these instabilities, we supplement
figure 3.2.3 with illustrations of the strength of the instabilities (figure 3.2.4) and
illustrations of the real part of the wavespeed of instabilities (figure 3.2.5). Where there
are two unstable modes, the contour pertains to the most unstable mode.

There is a stark contrast in the real parts of the wavespeed of the most unstable
compliance-related and flow-based modes, which can be seen by the discontinuity in
figures 3.2.5a and 3.2.5b. These discontinuities make apparent where strongest instability
switches from being flow-based to compliance-related. Whilst there is a small region
where the flow-based mode is more unstable for K = 5 × 1011 (figure 3.2.5a) and
K = 1 × 1011 (figure 3.2.5b), generally the compliance-related mode attains much higher
growth rates, as seen in figures 3.2.4a and 3.2.4b. In the region depicted, the compliance-
related mode also has a much larger Re(c) than the flow-based mode and, in particular,
achieves values greater than the maximum of the base flow.

(a) K = 5 × 1011 (b) K = 1 × 1011 (c) K = 5 × 109

(d) K = 5 × 109 (repeated) (e) K = 5 × 108

Figure 3.2.3: Shaded areas display the stability regions for δ = 0.7, V = 0, m = 0.1, and
varying K. Plots (d) and (e) depict a smaller range of Reynolds numbers than (a)-(c).
Grey dashed curves depict the neutral curves of the rigid cases. Red regions contain two
unstable modes, while blue regions contain only one unstable mode.
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(a) K = 5 × 1011 (b) K = 1 × 1011 (c) K = 5 × 109

Figure 3.2.4: Shaded areas display the stability regions for δ = 0.7, V = 0, m = 0.1, and
varying K. Black curves display contours of Im(c).

(a) K = 5 × 1011 (b) K = 1 × 1011 (c) K = 5 × 109

Figure 3.2.5: Shaded areas display the stability regions for δ = 0.7, V = 0, m = 0.1, and
varying K. Black curves display contours of Re(c)/ max(U0).

Varying mass

Thus far, we have explored the stability properties of a stationary cylinder with fixed
mass m = 0.1. Figures 3.2.6, 3.2.7 and 3.2.8 illustrate the effect of increasing the cylinder
mass when δ = 0.7, V = 0 and K = 5 × 1011, with the scale of the Reynolds number
on these plots being larger than on figure 3.2.3. As shown in figure 3.2.6, an increase
in mass causes the upper branch of the flow-based mode to sink to lower values of α.
The nose of the flow-based mode aligns with that of the rigid neutral curve for each
of the masses considered. Though the compliance-related instability extends to lower
Reynolds numbers as the mass increases, we notice that the critical Reynolds number
Rc in the long-wave limit appears to be largely unaffected by a change in mass and
remains at Rc ≈ 5.95 × 106. We explore this analytically in Chapter 4. This behaviour
is reminiscent of the findings of Nagata and Cole [58], who noted the antisymmetric
travelling wave flutter mode depended only on spring stiffness in the limit α → 0 in the
case of plane Poiseuille flow between two compliant walls.
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In figure 3.2.7, we see that the change in mass causes a distortion in the shape of the
stability contours of the most unstable mode. Further, despite the depicted region
of instability becoming larger as the mass is increased, the strength of instability has
weakened for many (R, α) combinations.

The influence of mass is also seen through Re(c) of the most unstable mode (see figure
3.2.8). At large Reynolds number and large wavenumber in the regions depicted, Re(c)
decreases as the mass becomes larger. Despite the surprising shape of the contour
corresponding to Re(c)/max(U0) = 0.15 when m = 2 (see figure 3.2.8c), we note that the
analogous contour does not occur in the regions depicted for m = 0.1 and m = 0.5. It is
therefore not possible to comment on whether the specific contour has been deformed
due to the increase in mass, or has simply shifted into the depicted region.

From the discontinuity in Re(c), which is where the most unstable mode transitions
from being the flow-based mode to the compliance-related mode, we also observe that
the region in which the flow-based mode dominates becomes smaller with an increase in
mass.

(a) m = 0.1 (b) m = 0.5 (c) m = 2

Figure 3.2.6: Stability regions for the case δ = 0.7, V = 0, K = 5 × 1011 with mass (a)
m = 0.1, (b) m = 0.5, (c) m = 2. Grey dashed curves depict the neutral curves of the
rigid cases. Red regions contain two unstable modes, while blue regions contain only
one unstable mode.

(a) m = 0.1 (b) m = 0.5 (c) m = 2

Figure 3.2.7: Contours of Im(c) in regions of instability for the case δ = 0.7, V = 0, K =
5 × 1011 with mass (a) m = 0.1, (b) m = 0.5, (c) m = 2.
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(a) m = 0.1 (b) m = 0.5 (c) m = 2

Figure 3.2.8: Contours of Re(c)/ max(U0) in regions of instability for the case δ =
0.7, V = 0, K = 5 × 1011 with mass (a) m = 0.1, (b) m = 0.5, (c) m = 2.

Varying sliding velocity

The effect of the sliding velocity on the stability properties for a rigid inner cylinder with
δ = 0.55 was studied extensively by Walton [1], and we briefly recount the results here.
There exists a single neutral curve when V = 0. As V is increased slightly, this curve is
sliced from right to left by a stable intrusion forming two distinct neutral curves (see the
dashed curve in figure 3.2.9b). Increasing V further, the top curve becomes thinner and
closes at finite R. Eventually, at a slightly higher V , the top curve disappears entirely. V

is eventually increased to a particular ‘cut-off’ velocity where the lower curve retreats to
infinity. Beyond this cut-off velocity, the flow is linearly stable for all Reynolds numbers.

In figure 3.2.9, the grey dashed curves represent neutral curves of the rigid case. Where
we have chosen the same sliding velocities as Walton [1], our curves show good agreement
with his results.

Now we explore the effect of varying the sliding velocity of a flexible cylinder. Similar to
the rigid case, the modified flow-based mode is sliced from right to left (figure 3.2.9b) and
eventually splits into two distinct closed regions (figure 3.2.9c). By V = 0.01, the upper
region has entirely disappeared, though its rigid counterpart still exists at this sliding
velocity. Increasing the velocity to V = 0.03, the lower region shrinks and we observe
that an additional two modes of instability have emerged (see figures 3.2.9e, 3.2.9f).
These modes do not seem to have rigid counterparts. Though we are not completely
confident in the resolution of the stability regions beyond R = 4 × 107, our asymptotic
analysis in later chapters leads us to believe that the mode (shown in red) in the upper
right corner of figure 3.2.9f exists.

Through this progression from V = 0 to V = 0.03, the stability region of the compliance-
related instability already present in figure 3.2.9a when V = 0 seems to have remained
unchanged.
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Before exploring the strength of the unstable region, we make a few comments on the
differences between the rigid and compliant cases. The upper region of the modified
flow-based mode in the compliant case disappears at a lower velocity value than its
analogue in the rigid case. Furthermore, as V is increased in the compliant case, the lower
region does not retreat to infinity, but instead closes up and shrinks at finite Reynolds
numbers before disappearing entirely. The main difference, however, lies in the number
of unstable modes present; in total, we observe the existence of three compliance-related
instabilities in the flow. Though we notice two of these additional instabilities only as V

is increased, it is important to note that these figures do not allow us to rule out their
presence for smaller values of V, or even V = 0. They may exist in a region of the (R, α)
plane not shown here.

In figures 3.2.10 and 3.2.11 respectively, the contours of Im(c) and Re(c)/ max(U0) of the
(most) unstable compliance-related mode seem largely unchanged with an increase in V.

We do note, though, that the depicted region for V = 0.03 attains a stronger instability
than the regions for smaller V.
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(a) V = 0 (b) V = 0.005

(c) V = 0.008 (d) V = 0.01

(e) V = 0.03 (f) V = 0.03 (repeated)*

Figure 3.2.9: Stability regions for the case δ = 0.55, K = 5 × 1012, m = 0.1 with sliding
velocity (a) V = 0, (b) V = 0.005, (c) V = 0.008, (d) V = 0.01, (e) V = 0.03 and
(f) V = 0.03 (repeated). Grey dashed curves depict the neutral curves of the rigid
cases. Red regions contain two unstable modes, while blue regions contain only one
unstable mode. *We illustrate the stability regions for V = 0.03 over a larger range of
Reynolds numbers. We are less confident in the resolution of the stability regions beyond
R = 4 × 107, but we choose to include this figure so as to showcase the emergence of a
new mode in the top right corner of the figure.
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(a) V = 0 (b) V = 0.005

(c) V = 0.008 (d) V = 0.01

(e) V = 0.03

Figure 3.2.10: Contours of Im(c) in regions of instability for the case δ = 0.55, K =
5 × 1012, m = 0.1 with sliding velocity (a) V = 0, (b) V = 0.005, (c) V = 0.008, (d)
V = 0.01 and (e) V = 0.03.
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(a) V = 0 (b) V = 0.005

(c) V = 0.008 (d) V = 0.01

(e) V = 0.03

Figure 3.2.11: Contours of Re(c)/ max(U0) in regions of instability for the case δ =
0.55, K = 5×1012, m = 0.1 with sliding velocity (a) V = 0, (b) V = 0.005, (c) V = 0.008,
(d) V = 0.01 and (e) V = 0.03.
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3.3 Summary

To summarise, the aim of this chapter has been to study the effect of compliance on
the linear stability of APCF at finite Reynolds numbers. To this end, we solved the
circular Orr-Sommerfeld problem (3.1.2) using a Chebyshev collocation method and
plotted regions of instability in the (R, α) plane.

For a rigid inner cylinder that is stationary and has δ = 0.7, we find exactly one unstable
mode for any given (R, α) combination inside the unstable region depicted in figure 3.2.2.
We refer to this as a flow-based instability. When the inner cylinder possesses a degree
of flexibility, we notice the existence of a so-called compliance-related mode of instability
in addition to the now modified flow-based instability. As flexibility is increased, the
critical Reynolds number of this compliance-related mode in the limit α → 0 is found
to decrease, and the band of unstable wavenumbers pertaining to the flow-based mode
becomes thinner.

The stability region diagrams become more complicated as we allow the inner cylinder
to move axially with a strictly positive sliding velocity V (see figure 3.2.9). We see the
appearance of additional compliance-related instabilities as V is increased, though we
acknowledge that we have not determined whether these additional instabilities exist at
smaller values of V (or even V = 0) outside of the (R, α) region shown.

Having now explored the linear stability problem of compliant APCF numerically, we
seek to gain further insight into the stability properties of the flow through the use of
analytic techniques. We recall that the critical Reynolds number in the limit α → 0
seems to be unaffected by the mass of the inner cylinder (see figure 3.2.6), and expect
that an examination of the Orr-Sommerfeld problem (3.1.2, 3.1.3) in the long-wave limit
also elucidates this behaviour.
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Chapter 4

The Orr-Sommerfeld equation in
the long-wave limit

To gain a more comprehensive understanding of the stability regions obtained in Chapter
3, it is useful to explore properties of the neutral curve that can be deduced analytically.
We are particularly motivated by the set of figures 3.2.6, where the critical Reynolds
number of the compliance-related mode along α = 0 seems unaffected by the mass of
the inner cylinder. Aiming to corroborate our numerical findings, we seek an analytical
expression for the critical Reynolds number in the long-wave limit, α → 0.

To this end, in this chapter we study the Orr-Sommerfeld equation at finite Reynolds
number with ϕ = O(1) as α → 0. The sliding velocity V , spring stiffness K and mass m

of the inner cylinder are taken to be order one quantities. Focusing on the neutral curve,
we seek a solution for modes with Im(c) = 0. We recall that, as an eigenfunction, ϕ is
defined up to some normalisation. We may therefore impose the normalisation condition
ϕ(δ) = 1 without loss of generality.

Before continuing, we restate the circular Orr-Sommerfeld equation (2.4.3) and its
associated boundary conditions (2.4.4, 2.4.5, 2.4.9) here for convenience:

(U0 − c)
(

ϕ′′ − ϕ′

r
− α2ϕ

)
+ ϕ

(
U ′

0
r

− U ′′
0

)

= 1
iαR

(
ϕ(4) − 2ϕ(3)

r
+
( 3

r2 − 2α2
)

ϕ′′ +
(

2α2

r
− 3

r3

)
ϕ′ + α4ϕ

)
, (4.0.1)
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subject to the boundary conditions

ϕ(1) = 0, (4.0.2a)

ϕ′(1) = 0, (4.0.2b)

(c − V ) ϕ′(δ) + U ′
0(δ) ϕ(δ) = 0, (4.0.2c)[2iα

R

(3
2U ′

0(δ) + c − V

δ

)
−
(

K

R2 − α2c2m
)]

ϕ′(δ) = iU ′
0(δ)

αR

[
ϕ(3)(δ) − ϕ′′(δ)

δ
+ ϕ′(δ)

δ2

]
,

(4.0.2d)

where V is chosen so that U ′
0(δ) ̸= 0. Primes (′) denote differentiation with respect to r.

The base flow U0 (2.2.2) is given by

U0(r) = 1 − r2 + (V − 1 + δ2)
log δ

log r, δ ≤ r ≤ 1. (4.0.3)

Expanding
R = R0 + · · · , ϕ = ϕ0 + αR0 ϕ1 + · · · , (4.0.4)

the Orr-Sommerfeld equation (4.0.1) suggests the leading order balance

ϕ′′′′
0 − 2

r
ϕ′′′

0 + 3
r2 ϕ′′

0 − 3
r3 ϕ′

0 = 0. (4.0.5)

As a fourth-order differential equation, this requires four boundary conditions in order
to solve for ϕ0. The boundary conditions (4.0.2a), (4.0.2b), (4.0.2d) give

ϕ0(1) = 0, ϕ′
0(1) = 0, ϕ′′′

0 (δ) − ϕ′′
0(δ)
δ

+ ϕ′
0(δ)
δ2 = 0. (4.0.6)

For the fourth condition, we invoke the normalisation condition to yield

ϕ0(δ) = 1. (4.0.7)

This allows us to uniquely determine ϕ0 as

ϕ0 = r2(2 log r − 1) + 1
δ2(2 log δ − 1) + 1 , (4.0.8)

which we notice is independent of V, K and m. Writing

c = c0 + αc1 + · · · , (4.0.9)

and substituting (4.0.7) into the kinematic condition (4.0.2c) reveals

(c0 − V )ϕ′
0(δ) + U ′

0(δ) = 0, (4.0.10)
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which, upon use of (4.0.8), gives

c0 = (1 − δ2 + 2δ2 log δ)2 − V (1 − δ2 + 2δ2 log δ) + 4V (δ log δ)2

4(δ log δ)2 . (4.0.11)

This expression reveals that the leading order wavespeed of the neutral mode is unaffected
by the mass and stiffness of the inner cylinder, but does in fact depend on the sliding
velocity. Recalling that the sliding velocity is chosen such that U ′

0(δ) ̸= 0, the condition
(4.0.10) requires that c0 ̸= V . Repeated application of L’Hôpital’s rule on (4.0.11) allows
us to determine the limiting behaviour of c0 with respect to δ. In the narrow-gap limit
δ → 1, we see that c0 → V

2 . As δ → 0, we have c0 → +∞ for V < 1, whilst c0 → −∞
for V > 1. We will later see that choosing V = 1 does not admit any solutions to our
problem in the limit δ → 0.

At order α, substitution of (4.0.4) into the Orr-Sommerfeld equation (4.0.1) shows that
ϕ1 satisfies a forced analogue of (4.0.8). Specifically,

ϕ′′′′
1 − 2

r
ϕ′′′

1 + 3
r2 ϕ′′

1 − 3
r3 ϕ′

1 = i(U0 − c0)
(

ϕ′′
0 − ϕ′

0
r

)
+ i

(
U ′

0
r

− U ′′
0

)
ϕ0. (4.0.12)

Seeking a neutral disturbance, we require that the wavespeed c is purely real. In
Appendix B, we demonstrate that it must thus be the case that c1 = 0. With this in
mind, equation (4.0.12) is solved subject to

ϕ1(1) = 0, ϕ′
1(1) = 0, ϕ1(δ) = 0, (c0 − V ) ϕ′

1(δ) + U ′
0(δ)ϕ1(δ) = 0. (4.0.13)

The first and second of these conditions correspond to the boundary conditions on the
outer cylinder (4.0.2a), (4.0.2b). The third condition imposes the normalisation we have
chosen for ϕ, whilst the fourth condition arises from the kinematic condition on the inner
cylinder (4.0.2c). Though written in this form for clarity, we note that the kinematic
condition reduces to ϕ′

1(δ) = 0 in view of the third condition as c0 ̸= V .

It is possible to find a closed-form analytical expression for the purely imaginary ϕ1. We
note that (4.0.12) is a third-order differential equation for ϕ′

1, and begin by solving the
homogeneous analogue of (4.0.12) for the complementary solution of ϕ′:

ϕ′
1

(CF ) = a1r
3 + a2r + a3r log r (4.0.14)

where a1, a2 and a3 are constants of integration. Using a variation of parameters approach,
we seek a particular solution of the form

ϕ′
1

(P S) = A(r)r3 + B(r)r + C(r)r log r (4.0.15)
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and obtain

A′(r) = M(r)
4r

, B′(r) = −M(r)
4 r(1 − 2 log r), C ′(r) = −M(r)

2 r, (4.0.16)

where M(r) has been defined as the right-hand side of (4.0.12),

M(r) = i(U0 − c0)
(

ϕ′′
0 − ϕ′

0
r

)
+ i

(
U ′

0
r

− U ′′
0

)
ϕ0. (4.0.17)

The functions A(r), B(r), C(r) can be found by integration of (4.0.16) using, for example,
MAPLE. The constants of integration that arise can be absorbed into the homogeneous
solution (4.0.14), and so are taken to be zero without loss of generality.

Integrating the sum of (4.0.14) and (4.0.15) gives the general solution for ϕ1 to be

ϕ1
(GS) =

∫ (
A(r)r3 + B(r)r + C(r)r log r

)
dr + a1

4 r4 + a2

2 r2 − a3

4 r2(1 − 2 log r) + a4,

(4.0.18)
where the constants a1, a2, a3, a4 are determined by imposing the boundary conditions
(4.0.13). The integral on the right-hand side was evaluated using MAPLE and is fully
known, with the resulting constant of integration accounted for in a4. While independent
of K and m, ϕ1 does depend on the sliding velocity of the inner cylinder.

With ϕ1 fully determined, the dynamic condition (4.0.2d) provides us with a solvability
condition for the problem. For prescribed δ, V and K, the neutral-mode solution exists
for R0 such that

K

R0
2 = − iU ′

0(δ)
ϕ′

0(δ)

(
ϕ′′′

1 (δ) − ϕ′′
1(δ)
δ

)
, (4.0.19)

provided the right-hand side of (4.0.19) is real and positive. We emphasise that R0 is
dependent on the sliding velocity via U0 and ϕ1.

Introducing ϕ1 such that ϕ1 = iϕ1, rearrangement of (4.0.19) gives

R0
2 = ϕ′

0(δ)
U ′

0(δ)

ϕ
′′′
1 (δ) − ϕ

′′
1(δ)
δ

−1

K, (4.0.20)

where δ and V are such that

ϕ′
0(δ)

U ′
0(δ)

ϕ
′′′
1 (δ) − ϕ

′′
1(δ)
δ

−1

> 0 (4.0.21)

so as to ensure (4.0.20) admits a real solution for R0.
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Figure 4.0.1: Illustrations showing how c0 (left) and R0 (right) vary with δ for V =
0, K = 5 × 109. The solid black lines depict the behaviour as governed by the analytical
expressions (4.0.11) and (4.0.20), whilst the blue asterisks represent numerical solutions
to the Orr-Sommerfeld equation when α ≈ 2 × 10−6. For the numerical results, we have
taken m = 0.02.

By examining expression (4.0.20), we see that the limit of the Reynolds number as α → 0
along the neutral curve is independent of the mass of the inner cylinder, confirming
our expectations from the numerical results in Chapter 3. Whilst it is apparent that
R0 is proportional to

√
K, the behaviour of R0 as we vary δ is more complicated and

is illustrated in figure 4.0.1 for a stationary inner cylinder with stiffness K = 5 × 109.
We remark that the inequality (4.0.21) holds for V = 0 and 0 < δ < 1, so an admissible
solution for R0 exists for these parameters. As the radius ratio increases from δ = 0.1 to
δ = 0.9 for this choice of V and K, the leading order wavespeed c0 of the neutral mode
decreases and the instability sets in at increasingly larger R0.

Solving the Orr-Sommerfeld problem (4.0.1, 4.0.2), we use a continuation technique
(adapted from Walton [1]) to numerically compute the eigenvalues and eigenfunctions
of the neutral mode as α → 0. We modify the normalisation condition of Walton [1],
instead imposing that ϕ(δ) = 1 for ease of comparison with our analytical solution.

For a stationary inner cylinder with δ = 0.6, m = 0.02 and K = 5 × 109, our numerical
results show R ≈ 36240 and c ≈ 0.19719 when α = α̃ ≈ 2.6778 × 10−6. This is consistent
with our analytical findings; figure 4.0.1 shows good agreement between our analytical
and numerical solutions for c0 and R0 for various radius ratios with V = 0, K = 5 × 109

and m = 0.02. Though the analytical solution is independent of the cylinder mass, we
note that the numerical computations require an input value for m. Figure 4.0.2 compares
our analytical and numerical solutions for ϕ, and suggests that our second-order analytic
approximation appropriately captures the behaviour of the neutral mode in the limit
α → 0.
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Figure 4.0.2: Illustration of ϕ for δ = 0.6, V = 0 and K = 5 × 109. We take m = 0.02
for our numerical solution. For our analytical solution, we plot ϕ ∼ ϕ0 + α̃R0ϕ1, using
(4.0.8), (4.0.20), (4.0.12) and α̃ = 2.6777... × 10−6.

The variation of R0 with V is also of interest. With the application of thread-annular
injection in mind, we focus only on non-negative values of V . For a given δ, our system
only admits solutions for values of V such that the inequality (4.0.21) is satisfied. To
find these values of V , we first analyse each factor on the left-hand side of (4.0.21)
individually.

Differentiating ϕ0 (4.0.8) with respect to r and evaluating the resulting derivative at
r = δ, we have

ϕ′(δ) = 4δ log δ

2δ2 log δ − δ2 + 1 , (4.0.22)

which is negative for 0 < δ < 1. With the base flow defined in (4.0.3), we determine

U ′
0(δ) = −2δ + V − 1 + δ2

δ log δ
, (4.0.23)

so that
U ′

0(δ) < 0 for V > 1 − δ2 + 2δ2 log δ (4.0.24)

and
U ′

0(δ) > 0 for V < 1 − δ2 + 2δ2 log δ. (4.0.25)

After much manipulation, consideration of ϕ1 (4.0.18) enables us to writeϕ
′′′
1 (δ) − ϕ

′′
1(δ)
δ

−1

= χ0(δ)
χ1(δ) + χ2(δ)V (4.0.26)

where

χ0(δ) = 12δ (log δ)2
(
δ2 − 1

) (
2δ2 log δ − δ2 + 1

) (
δ2 log δ − δ2 + log δ + 1

)
, (4.0.27)
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χ1(δ) =
(
20 δ8 − 12 δ6 + 36 δ4 − 44 δ2

)
(log δ)3+

(
−54 δ8 + 18 δ6 + 126 δ4 − 90 δ2

)
(log δ)2

+
(
39 δ8 − 126 δ6 + 144 δ4 − 66 δ2 + 9

)
log δ + 12 (δ2 − 1)4, (4.0.28)

χ2(δ) =
(
36 δ6 + 24 δ4 + 60 δ2

)
(log δ)3 +

(
−90 δ6 − 36 δ4 + 126 δ2

)
(log δ)2

+
(
63 δ6 − 135 δ4 + 81 δ2 − 9

)
log δ + 12 (δ2 − 1)3. (4.0.29)

While χ0 > 0 and χ1 < 0 for 0 < δ < 1, the behaviour of χ2 is more complicated. We
define δc to be such that χ2(δc) = 0, which gives δc ≈ 0.5076 upon use of a root-solving
algorithm in MATLAB. We have χ2 > 0 for δ < δc, whereas χ2 < 0 for δ > δc.

In order to determine the behaviour of (4.0.26), it is convenient to consider the cases
δ < δc, δ = δc and δ > δc separately.

For δ < δc, ϕ
′′′
1 (δ) − ϕ

′′
1(δ)
δ

−1

> 0 for V > −χ1

χ2
(4.0.30)

and ϕ
′′′
1 (δ) − ϕ

′′
1(δ)
δ

−1

< 0 for V < −χ1

χ2
(4.0.31)

When δ = δc, (4.0.26) is independent of V andϕ
′′′
1 (δ) − ϕ

′′
1(δ)
δ

−1

< 0. (4.0.32)

Finally, we consider the case δ > δc, for which χ2 < 0. Restricting our attention to
non-negative V , we haveϕ

′′′
1 (δ) − ϕ

′′
1(δ)
δ

−1

< 0 for V ≥ 0. (4.0.33)

It now remains to combine the analysis of the individual factors in (4.0.21) to determine
the values of δ and V for which there exists an admissible solution for R0 (4.0.19).

For δ < δc, consideration of (4.0.24, 4.0.25, 4.0.30, 4.0.31) indicates a neutral mode
solution exists for

V < 1 − δ2 + 2δ2 log δ or V > −χ1

χ2
. (4.0.34)
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Here we have made use of the inequality

1 − δ2 + 2δ2 log δ < −χ1

χ2
for 0 < δ < δc. (4.0.35)

Finally, for δ ≥ δc we require

V < 1 − δ2 + 2δ2 log δ, (4.0.36)

which follows from (4.0.25), (4.0.32), (4.0.33).

The inequalities in (4.0.34) confirm that we require V ̸= 1 in the limit δ → 0, as remarked
upon earlier.

The regions described by (4.0.34) and (4.0.36) are depicted in the (δ − V ) plane in figure
4.0.3, where the shaded areas represent regions in which a neutral solution in the limit
α → 0 exists. As we approach the boundaries of these regions from inside the shaded
areas, R becomes asymptotically large. Increasing V from zero for a given a radius ratio,
there exists a threshold velocity at which the solution ceases to exist. This threshold
velocity approaches zero (from above) as δ → 1. For values of δ < δc, expression (4.0.20)
predicts a subsequent re-emergence of the neutral solution once V has been sufficiently
increased beyond the appropriate threshold value. As the radius ratio increases, the
widening gap between the velocities at which the neutral mode disappears and re-emerges
becomes infinitely large as δ → δc.

The inequalities (4.0.34) and (4.0.36) are independent of the mass and stiffness of the
inner cylinder, illustrating that the threshold velocities (and re-emergence velocities for
δ < δc) depend only on the radius ratio of the inner cylinder.

In figure 4.0.4, we illustrate how R0 varies with increasing V for fixed δ. For δ = δc and
δ = 0.7, R0 approaches infinity as V approaches the corresponding threshold velocities,
V ≈ 0.393 and V ≈ 0.160 respectively. A similar phenomena occurs for δ = 0.3, however
here we additionally have R0 reappearing once V has increased beyond V ≈ 1.507. R0

decreases from infinity as V is increased further. For a given sliding velocity, it appears
that cylinders with a larger radius ratio have a higher critical Reynolds number in the
long-wave limit, provided that a solution exists.

For δ = 0.7, the predicted threshold velocity is V ≈ 0.1605. We plot the stability regions
corresponding to an inner cylinder that moves with V = 0.16 and V = 0.161 in figure
4.0.5. In agreement with figure 4.0.5a, our expression for R0 (4.0.20) predicts that
R0 ≈ 9.38 × 106 when V = 0.16 and K = 5 × 109. From our analytical work, we expect
no neutral mode solution in the limit α → 0 for V = 0.161. This is consistent with figure
4.0.5b, where we have not found the neutral curve extending to α = 0.
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Figure 4.0.3: Shaded areas depict regions in the (δ − V ) plane for which a long-wave
neutral mode solution exists. For δ < δc, the upper shaded region extends to infinite V .
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Figure 4.0.4: Solid lines illustrate how R0 varies with increasing V for three fixed δ
values, namely δ = 0.3, δ = δc, and δ = 0.7. Dashed lines represent the corresponding
cut-off velocities as predicted by (4.0.34), (4.0.36).
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(a) (b)

Figure 4.0.5: Numerically determined neutral curves for an inner cylinder with δ =
0.7, K = 5 × 109, m = 0.2. The shaded regions are unstable. The cylinder has sliding
velocities V = 0.16 (left) and V = 0.161 (right).

In this chapter, we examined the circular Orr-Sommerfeld problem (4.0.1, 4.0.2)
pertaining to APCF with a flexible inner cylinder using asymptotic techniques. We
deduced a mass-independent expression for the leading order critical Reynolds number
of a compliance-related instability in the limit α → 0. This corroborated our findings in
Chapter 3, where we found the critical Reynolds number in the long-wave limit was
largely unaffected by a change in cylinder mass for the parameters δ = 0.7, V = 0 and
K = 5 × 1011 (see figure 3.2.6).

In addition, we determined sliding velocities V (as a function of radius ratio δ) for which
a neutral solution exists in the limit α → 0. Where a solution exists, we studied the
behaviour of R0 with increasing V for selective values of δ.

Having analytically explored the neutral curve in the long-wave limit at finite Reynolds
numbers, we aim to gain a fuller picture of the linear instabilities of compliant APCF by
understanding the behaviour of neutral modes at high Reynolds numbers. In particular,
we are interested in how the flow-based instability of the rigid case is modified in the
presence of compliance. As a prelude to our high-Reynolds-number analysis, in the next
chapter we seek to gain insights into the inviscid linear stability of compliant APCF.
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Chapter 5

Inviscid linear stability of
annular flow with a compliant

inner cylinder

An inviscid analysis can often provide valuable insights into a viscous problem at large
Reynolds numbers. In particular, inviscid results may act as guides for numerical
computations, which often result in the existence of spurious modes of instability. With
this in mind, our goal in this chapter is to derive modifications to classical inviscid
theorems so as to account for the flexibility of our inner cylinder. Using the spring-backed
plate model [54, 55], we will incorporate the effects of mass, spring stiffness and damping.

General criteria for the instability of inviscid parallel two-dimensional flows between two
rigid boundaries have been obtained by Rayleigh [12] and Fjørtoft [3], both of whom
provide necessary, but not sufficient, conditions for the instability of such flows.

Consider a two-dimensional planar inviscid flow with base velocity profile U(y) in the
streamwise direction, bounded by rigid boundaries at y = y1 and y = y2. Rayleigh’s
inflection-point theorem states that if the flow is unstable, there must be an inflection
point in the base velocity profile U(y) somewhere in the flow. Fjørtoft extended this
theorem, providing a stronger condition for instability: if the flow is unstable, it is
necessary that U ′′(U − UI) < 0 somewhere in the flow, where UI = U(yI) and yI is such
that U ′′(yI) = 0.

Rayleigh also restricted the admissible complex-valued eigenvalues of the problem by
stipulating that cr lies within the range of U(y) for modes with ci ̸= 0 [73]. Howard’s
semicircle theorem [13] adds to this result: the wavespeeds c of unstable modes are
bounded by a semicircle that is located in the upper-half complex c-plane with diameter
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5.1. PROBLEM FORMULATION

(maxy U − miny U) and centre on the real axis at cr = 1
2(maxy U + miny U). Høiland [65]

complements these theorems with an inequality relating the wavenumber of a disturbance
with the imaginary part of its wavespeed.

The proofs of these theorems involve integrating over the region between the two plane
rigid boundaries. In the case of rigid boundaries, the boundary terms that arise from an
integration by parts have zero contribution as the inviscid impermeability conditions
require the normal velocity of the disturbance to decrease to zero on the boundary.
Along a compliant boundary, however, this normal velocity need not be zero and so
these classical theorems do not readily apply to flows over a compliant surface.

The analysis that follows is closely related to the works of Yeo and Dowling [66], Yeo
[67], Kumaran [68], and Shankar and Kumaran [69]. Yeo and Dowling [66] studied
incompressible semi-bounded inviscid parallel flows over compliant walls and produced
counterparts to well-known results by Rayleigh, Howard and Høiland. Yeo [67] provided
further criteria for instability, including a modified Fjørtoft-type criterion. Building on
this work, Kumaran [68] shows that classical results can be adapted to an inviscid flow
in a flexible tube, both for axisymmetric and highly non-axisymmetric perturbations.
Shankar and Kumaran [69] strengthen this work and generalise the inviscid results for
non-axisymmetric perturbations for arbitrary n, where n is the azimuthal wavenumber
of the perturbation.

In the remainder of this chapter, we study the inviscid stability of an axisymmetric flow
through the annular region between two concentric cylinders. We begin our analysis by
formulating the linear stability problem for this flow, and then consider the cylindrical
analogue of Rayleigh’s inflection point theorem when the cylinders are rigid. We
subsequently modify classical stability theorems for the case of a flexible inner cylinder
and apply these results to a base flow of the form (2.2.2). The results we discuss below
are adaptations of those found in the above studies and we use similar methods to these
authors.

5.1 Problem formulation

Consider an incompressible flow through the annular region between two concentric
cylinders. The outer cylinder of radius 1 is stationary, while the inner cylinder of radius
δ moves with axial velocity V ≥ 0. Imposing that this inviscid flow is swirl-free, the
governing Euler equations are

∂u

∂x
+ 1

r

∂(rv)
∂r

= 0,
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂r
= −∂p

∂x
,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂r
= −∂p

∂r
. (5.1.1)
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When both cylinders are rigid, the typical no-normal-flow conditions are expressed as

v(δ) = v(1) = 0. (5.1.2)

All quantities are assumed to be suitably non-dimensionalised. We will discuss the
boundary conditions for a flexible inner cylinder shortly.

The base pressure is taken to be a constant, P0. The unidirectional base flow, described
by (u, v) = (U(r), 0), then satisfies the Euler equations (5.1.1) and is assumed to be
inviscid, steady and axisymmetric. The base flow is such that U(δ) = V and U(1) = 0.

We superimpose our base flow with axisymmetric travelling-wave disturbances of
infinitesimal amplitude, and write

u = U(r) + ∆û(r)eiα(x−ct) + c.c, v = ∆v̂(r)eiα(x−ct) + c.c, (5.1.3a)

p = P0 + ∆p̂(r)eiα(x−ct) + c.c, (5.1.3b)

where ∆ ≪ 1 is a non-dimensional amplitude and û(r), v̂(r), p̂(r) are disturbance shape
functions. Specifically investigating temporal stability, the wavenumber α and the
wavespeed c are assumed to be real and complex respectively.

At order ∆, substitution of (5.1.3) into (5.1.1) leads to the inviscid linearised disturbance
equations

iαû + dv̂

dr
+ v̂

r
= 0, iα (U − c) û + v̂

dU

dr
= −iαp̂, iα (U − c) v̂ = −dp̂

dr
.

(5.1.4 a,b,c)

For the scenario of two rigid cylinders, (5.1.2) and (5.1.3) give the conditions

v̂(δ) = v̂(1) = 0. (5.1.5)

Introducing the function ϕ(r) = rv̂, the equations (5.1.4) can be manipulated to form
the circular Rayleigh equation

(U − c)
[

d
dr

(
ϕ′

r

)
− α2ϕ

r

]
− d

dr

(
U ′

r

)
ϕ = 0, (5.1.6)

which is to be solved subject to

ϕ(δ) = ϕ(1) = 0 (5.1.7)

when both cylinders are rigid.

In what follows, the complex conjugate of ϕ is denoted as ϕ∗.
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5.2 Inviscid annular flow between two rigid
cylinders

When the outer and inner cylinders are rigid, typical no-normal-flow conditions (5.1.7)
apply on both cylinder walls. Multiplying (5.1.6) by ϕ∗/(U−c) and integrating across the
annulus, we find that

∫ 1

δ

{
|ϕ′|2

r
+ α2|ϕ|2

r
+ |ϕ|2

U − c

d
dr

(
U ′

r

)}
dr = 0 (5.2.1)

after performing an integration by parts for the first term. Taking the imaginary part of
this equation,

ci

∫ 1

δ

d
dr

(
U ′

r

)
|ϕ|2

|U − c|2
dr = 0. (5.2.2)

For an unstable flow, the quantity d
dr

(
U ′

r

)
must change sign somewhere in the interval

δ ≤ r ≤ 1. This result for an annular region is analogous to Rayleigh’s inflection-point
theorem.

For a base flow of the form (2.2.2),

U0(r) = 1 − r2 + (V − 1 + δ2)
log δ

log r, δ ≤ r ≤ 1, (5.2.3)

we determine
d
dr

(
U ′

0
r

)
= −2 (V − 1 + δ2)

r3 log δ
. (5.2.4)

For fixed V and δ, this quantity does not change sign in the interval r ∈ [δ, 1]. It is
therefore not possible for the flow (5.2.3) to support linearly unstable inviscid modes
when the inner cylinder is rigid, in view of equation (5.2.2). We note that the choice
V = 1 − δ2 yields ϕ(r) = 0, which can be seen from equation (5.2.1) directly.

The results of Walton [1] show that viscous APCF subject to no-slip conditions is linearly
unstable to axisymmetric disturbances at finite Reynolds numbers. In Chapter 3, we
also illustrate neutral curves arising from solving the Orr-Sommerfeld problem (3.1.2) in
the rigid scenario. Consider the case of a stationary inner cylinder. At asymptotically
large Reynolds numbers, the upper and lower branches of the neutral curve are described
by α ∼ R−1/11 and α ∼ R−1/7 respectively [1]. For a given positive value of α, we see
that increasing the Reynolds number eventually leads us into a region of linear stability.
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5.3 Inviscid annular flow with a flexible inner
cylinder

Having examined the inviscid stability properties of a flow through two rigid concentric
cylinders, we now explore the effect of compliance. We begin by forming the appropriate
boundary conditions on the cylinder walls.

On the rigid outer cylinder, the inviscid impermeability condition gives

ϕ(1) = 0. (5.3.1)

In contrast to the rigid scenario, we do not impose zero normal flow on the inner cylinder
wall. The boundary of the inner cylinder is expressed as

rs(x, t) = δ + η̃(x, t). (5.3.2)

where η̃ is a small displacement due to compliance and points radially outwards from
the inner cylinder. The perturbation η̃ takes the waveform (2.3.4)

η̃(x, t) = ∆η̂eiα(x−ct) + c.c. (5.3.3)

With the inner cylinder moving radially, we impose the kinematic condition

v = ∂η̃

∂t
+ u

∂η̃

∂x
on r = rs, (5.3.4)

as seen in equation (2.3.9) of Chapter 2. A Taylor expansion of (5.3.4) about r = δ then
yields

v̂(δ) = iα(V − c)η̂ (5.3.5)

upon use of (5.1.3), (5.3.3), as we have U(δ) = V.

Since ϕ = rv̂, the inviscid flow condition at the wall of the inner cylinder can now be
expressed as

ϕ(δ) = iαδ (V − c) η̂. (5.3.6)

Using the spring-backed plate model [54, 55], consideration of the forces acting on the
flexible cylinder leads to the relation

p̂(δ) =
(
α2c2m̌ + iαcĎ − Ǩ

)
η̂, (5.3.7)

where m̌, Ď and Ǩ are non-dimensional constants that are associated with the mass,
damping and spring stiffness of the system respectively. Naturally, these quantities do
not correspond to the non-dimensionalisation described in (2.1.9), as viscosity is not a
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parameter in the inviscid problem. In what follows, m̌, Ď and Ǩ are taken to be strictly
positive constants unless stated otherwise.

When adapting the classical inviscid theorems to account for a flexible boundary, it will
be useful to have expressions for the derivatives of ϕ on the cylinder walls. To this end,
we use the continuity equation (5.1.4a) to find

ϕ′(1) = −iαû(1), ϕ′(δ) = −iαδû(δ). (5.3.8 a,b)

To find û(δ), we evaluate the axial momentum equation (5.1.4b) at r = δ, obtaining

û(δ) = −
[

α2c2m̌ + iαcĎ − Ǩ

V − c
+ U ′(δ)

]
η̂ (5.3.9)

upon substitution of (5.3.5) and (5.3.7).

In view of (5.3.8) and (5.3.9), it can now be shown that the derivative of ϕ on the inner
cylinder wall is given by

ϕ′(δ) = iαδ

[
α2c2m̌ + iαcĎ − Ǩ

V − c
+ U ′(δ)

]
η̂. (5.3.10)

We are now well-equipped to prove the following theorems for an inviscid flow between
two concentric cylinders, where the inner flexible cylinder moves axially with constant
velocity V and the outer rigid cylinder is stationary.

We strive for necessary conditions for instability involving the basic velocity profile to
complement Rayleigh’s inflection point theorem and Fjørtfort’s theorem. Owing to the
presence of non-zero boundary terms, we anticipate that the conditions found will be
weaker than their rigid counterparts.

Theorem 1. Let V be strictly positive. A temporally unstable axisymmetric mode with
cr ≤ 0, cr ≥ 2V , or ci ≥ cr ≥ V may exist only if (U − V ) d

dr

(
U ′

r

)
is negative somewhere

in the flow.

Theorem 2. Let V = 0. A temporally unstable axisymmetric mode may exist only if
U d

dr

(
U ′

r

)
is negative somewhere in the flow.

Theorem 3. Let V = 0. A neutrally stable axisymmetric mode with cr ̸= 0 cannot exist
if Ď is strictly positive.

We begin by considering an inner cylinder that moves axially with velocity V ≥ 0 and
later consider the cases V > 0 and V = 0 separately.
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The following proof closely follows that of Rayleigh’s inflection-point theorem. We first
multiply the Rayleigh equation (5.1.6) by ϕ∗/(U−c) and then integrate from r = δ to
r = 1 : ∫ 1

δ

|ϕ′|2

r
+ |ϕ|2

[
α2

r
+ 1

U − c

d
dr

(
U ′

r

)]
dr =

[
ϕ∗ϕ′

r

]1

δ

. (5.3.11)

Differing from the scenario of rigid cylinders, the right-hand side of (5.3.11) is non-zero.
Instead, the boundary terms (5.3.6) and (5.3.10) can be used to show that[

ϕ∗ϕ′

r

]1

δ

= α2δ|V − c|2
(

−α2c2m̌ + iαcĎ − Ǩ

(V − c)2 − U ′(δ)
V − c

)
|η̂|2. (5.3.12)

Substituting this into (5.3.11) and multiplying by (V − c), we obtain

∫ 1

δ

(V − c)|ϕ′|2

r
+ |ϕ|2

[
α2(V − c)

r
+ V − c

U − c

d
dr

(
U ′

r

)]
dr =

δα2|V − c|2
[
−α2c2m̌ + iαcĎ − Ǩ

V − c
− U ′(δ)

]
|η̂|2. (5.3.13)

The imaginary part of this equation yields

ci

∫ 1

δ

|ϕ′|2

r
+ |ϕ|2

[
α2

r
+ U − V

|U − c|2
d
dr

(
U ′

r

)]
dr =

δα2
[
−α2m̌

(
|c|2 − 2crV

)
ci − αĎ

(
|c|2 − crV

)
− Ǩci

]
|η̂|2. (5.3.14)

To analyse this expression and establish Theorems 1 and 2, we consider the cases V > 0
and V = 0 separately.

Case 1: V > 0. In this scenario, the inner cylinder moves in the positive axial direction
at a constant velocity. Before continuing, we briefly state our aims. We wish to prove
that the right-hand side of (5.3.14) is negative for unstable modes with cr ≤ 0, cr ≥ 2V

or ci ≥ cr ≥ V . If this is the case, the left hand side of (5.3.14) must also be negative
and we would require (U − V ) d

dr

(
U ′

r

)
to be negative somewhere in the flow. This would

prove our theorem.

We will consider each of the cases cr ≤ 0, cr ≥ 2V or ci ≥ cr ≥ V individually.

(i). For an unstable mode with cr ≤ 0, it can be seen that

|c|2 − 2crV > 0 and |c|2 − crV > 0. (5.3.15)

Since ci > 0, it follows that the right-hand side of (5.3.14) is negative for such a mode.
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(ii). Now we consider an unstable mode with cr ≥ 2V. Let us first deduce the sign of(
|c|2 − 2crV

)
, which can be expanded as

(
|c|2 − 2crV

)
= c2

i + c2
r − 2crV. (5.3.16)

Since cr is strictly positive, we have

c2
r ≥ 2crV, (5.3.17)

so we can write

c2
i + c2

r − 2crV ≥ c2
i + 2crV − 2crV = c2

i > 0. (5.3.18)

This shows that (
|c|2 − 2crV

)
> 0. (5.3.19)

Adding (crV ) to both sides of (5.3.19), it also follows that(
|c|2 − crV

)
> 0. (5.3.20)

In view of this, the right hand side of (5.3.14) must be negative.

(iii). Finally, we turn our attention to the condition ci ≥ cr ≥ V . These restrictions give

c2
i ≥ crV and c2

r ≥ crV, (5.3.21)

so that

|c|2 − 2crV = c2
i + c2

r − 2crV ≥ crV + crV − 2crV = 0. (5.3.22)

It also follows that
|c|2 − crV > |c|2 − 2crV ≥ 0. (5.3.23)

Thus the right hand side of (5.3.14) is negative.

To summarise, we have shown that for each of the cases (i)-(iii), the right-hand side of
(5.3.14) is negative. It is thus necessary for the left-hand side of (5.3.14) to be negative.
Therefore the existence of such instabilities requires that (U − V ) d

dr

(
U ′

r

)
is negative

somewhere in the flow. This completes the proof of Theorem 1.

Case 2: V = 0. Under this restriction, (5.3.14) reduces to

ci

∫ 1

δ

|ϕ′|2

r
+ |ϕ|2

[
α2

r
+ U

|U − c|2
d
dr

(
U ′

r

)]
dr = δα2|η̂|2

[
−α2|c|2m̌ci − α|c|2Ď − Ǩci

]
.

(5.3.24)
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This equation is independent of the sign of cr; this enables us to make a stronger
statement than that of Theorem 1.

For an unstable mode, the right-hand side of (5.3.24) is negative. Therefore, the left-hand
side must also be negative. This is only possible if the expression U d

dr

(
U ′

r

)
is negative

somewhere in the flow. This proves Theorem 2.

We are able to deduce further results from equation (5.3.24). Assume that the damping
coefficient Ď is strictly positive and that we have a neutrally stable mode with cr ̸= 0.
Then the left-hand side of (5.3.24) is zero, whilst the right-hand side is strictly negative.
This is a contradiction, showing that the existence of neutrally stable modes with cr ̸= 0
is not possible in the presence of damping. This leads us to Theorem 3.

We can combine Theorems 2 and 3 to form a stronger statement:

Corollary 1. Let V = 0. Assume that U d
dr

(
U ′

r

)
≥ 0 everywhere in the flow, and that

Ď > 0. Then all axisymmetric modes with cr ̸= 0 must be temporally damped.

Under these assumptions, Theorem 2 allows us to conclude that there does not exist
an unstable mode. Since Ď > 0, we further deduce that there exist no neutrally stable
modes with cr ̸= 0 by Theorem 3. Therefore a mode with cr ̸= 0 must be damped. This
proves Corollary 1.

In the special case Ď = 0, equation (5.3.24) simplifies to

ci

∫ 1

δ

|ϕ′|2

r
+ |ϕ|2

[
α2

r
+ U

|U − c|2
d
dr

(
U ′

r

)]
dr = δα2|η̂|2

[
−α2|c|2m̌ − Ǩ

]
ci. (5.3.25)

From this we are able to deduce the following corollary:

Corollary 2. Let V = 0. Assume that U d
dr

(
U ′

r

)
≥ 0 everywhere in the flow, and that

Ď = 0. Then all axisymmetric modes must be neutrally stable.

For such a flow, Theorem 2 implies that there exist no modes with ci > 0. Suppose there
exists a mode with ci < 0. Then the left-hand side of (5.3.25) is strictly negative, while
the right-hand side is strictly positive. This is a contradiction. Thus all modes must be
neutrally stable, which is the statement of Corollary 2.

In the remainder of the analysis, we assume the damping coefficient Ď is strictly positive.

The subsequent two theorems are reminiscent of the cylindrical analogue of Rayleigh’s
inflection-point theorem (see Section 5.2), albeit being much weaker.
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Theorem 4. Let V > 0. If we have U ′(δ) ≤ 0, a temporally unstable axisymmetric
mode with cr < 0 or cr = V is only possible if d

dr

(
U ′

r

)
> 0 somewhere in the flow.

Theorem 5. Let V = 0. If we have U ′(δ) ≤ 0, a temporally unstable axisymmetric mode
with cr < 0 can exist only if d

dr

(
U ′

r

)
> 0 somewhere in the flow. A similar result can be

found for flows with U ′(δ) ≥ 0.

Following the proof of Rayleigh’s inflection point theorem, we multiply the Rayleigh
equation (5.1.6) by ϕ∗/(U − c) and integrate from r = δ to r = 1. This yields (5.3.11),
into which we substitute (5.3.12). Thus far, this is identical to our proof of Theorems
1-3.

Now taking the imaginary part of the resulting equation, we obtain

ci

∫ 1

δ

|ϕ|2

|U − c|2
d
dr

(
U ′

r

)
dr =

−α2δ|η̂|2
[
α2m̌

(
2ciV (crV − |c|2)

|V − c|2

)
+ αĎ

(
cr(V 2 + |c|2) − 2V |c|2

|V − c|2

)
− 2Ǩci(V − cr)

|V − c|2
+ U ′(δ)ci

]
.

(5.3.26)

Case 1: V > 0. We first consider the case of a strictly positive sliding velocity. It will
be useful to note that when cr < 0,

crV − |c|2 < 0 and cr(V 2 + |c|2) − 2V |c|2 < 0. (5.3.27)

In addition, when cr = V ,

crV − |c|2 = crV − c2
r − c2

i = −c2
i < 0 (5.3.28)

and

cr(V 2 + |c|2) − 2V |c|2 = V (V 2 + |c|2) − 2V |c|2 = V 3 − V |c|2 = −V c2
i < 0. (5.3.29)

For a flow with U ′(δ) ≤ 0, we use the inequalities (5.3.27)-(5.3.29) to deduce that an
unstable mode with cr < 0 or cr = V results in the right-hand side of (5.3.26) being
positive. Therefore such an instability can exist only if d

dr

(
U ′

r

)
is positive somewhere in

the flow.

It is less straightforward to comment on flows with U ′ (δ) ≥ 0 without making assumptions
on the parameters, so we now let V = 0.

68



5.3. INVISCID ANNULAR FLOW WITH A FLEXIBLE INNER CYLINDER

Case 2: V = 0. For a stationary inner cylinder, (5.3.26) can be simplified to

ci

∫ 1

δ

|ϕ|2

|U − c|2
d
dr

(
U ′

r

)
dr = −α2δ|η̂|2

[
αĎcr + 2Ǩcicr

|c|2
+ ciU

′(δ)
]

. (5.3.30)

For a flow with U ′(δ) ≤ 0, an unstable mode with cr < 0 is only possible if d
dr

(
U ′

r

)
> 0

somewhere in the flow. We make a similar deduction for flows with U ′(δ) ≥ 0; for a flow
with U ′(δ) ≥ 0, an unstable mode with cr > 0 is only possible if d

dr

(
U ′

r

)
< 0 somewhere

in the flow.

We also note that if U ′(δ) is strictly positive (negative), then an unstable mode with
cr = 0 is only possible if d

dr

(
U ′

r

)
is strictly negative (positive) somewhere in the flow.

This completes the proofs for Theorems 4 and 5.

Another useful theorem for inviscid parallel flows over rigid boundaries includes Rayleigh’s
restriction for the real part of wavespeeds to lie in the range of the basic velocity when
ci ̸= 0 [73]. We seek a similar result for inviscid annular flow with a flexible inner
cylinder, obtaining:

Theorem 6. Let V ≥ 0. All temporally unstable axisymmetric modes must have cr such
that

UL < cr < UU ,

where
UL = min[Umin, 0], UU = max[Umax, 0]

and
Umin = min

r∈[δ,1]
U, Umax = max

r∈[δ,1]
U.

To prove this theorem, we introduce a function g such that

g = ϕ

U − c
. (5.3.31)

We may then write the Rayleigh equation (5.1.6) in terms of g, obtaining

d
dr

(
(U − c)2 g′

r

)
− α2(U − c)2g

r
= 0. (5.3.32)

Upon multiplying this by g∗ and integrating across the annular region, we have

∫ 1

δ

(U − c)2

r

(
|g′|2 + α2|g|2

)
dr =

[
(U − c)2g∗g′

r

]1

δ

. (5.3.33)
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From our boundary conditions (5.3.1), (5.3.6), (5.3.8a), (5.3.10), we deduce that

g(1) = 0, g′(1) = iαû(1)
c

, (5.3.34a)

g(δ) = iαδη̂, g′(δ) =
iαδ

(
α2c2m̌ + iαcĎ − Ǩ

)
η̂

(V − c)2 . (5.3.34b)

using the definition of g (5.3.31). Substituting these into (5.3.33) and defining a real,
positive function Q such that Q = |g′|2 + α2|g|2 yields

∫ 1

δ

(U − c)2

r
Q dr = −α2δ

(
α2c2m̌ + iαcĎ − Ǩ

)
|η̂|2. (5.3.35)

The imaginary part of this equation,

2ci

∫ 1

δ

(U − cr)
r

Q dr = α2δcr

(
2α2m̌ci + αĎ

)
|η̂|2, (5.3.36)

reveals bounds on the wavespeeds of temporally unstable modes. We make the following
observations:

i. Say Umax > 0. Suppose there exists an unstable mode with cr ≥ Umax. This means
U − cr ≤ 0 throughout the flow, so the left-hand side of (5.3.36) is non-positive.
However the right-hand side of (5.3.36) is positive. This gives a contradiction.
Therefore, an unstable mode must have cr < Umax.

ii. Say Umax ≤ 0. Suppose there exists an unstable mode with cr ≥ 0. Since U(r)
is not identically zero, U must be strictly negative somewhere in the flow. Thus
the left-hand side of (5.3.36) is negative. On the other hand, the right-hand side
of (5.3.36) must be non-negative since cr ≥ 0. This leads to a contradiction.
Therefore, an unstable mode must have cr < 0.

iii. Now consider the situation where Umin ≥ 0. Suppose there exists an unstable mode
with cr ≤ 0. Assuming U(r) is not zero throughout the flow, the left-hand side
must be positive. However, the right-hand side of (5.3.36) is non-positive. This is
a contradiction. Therefore, an unstable mode must have cr > 0.

iv. Finally, consider Umin < 0. Suppose there exists an unstable mode with cr ≤ Umin.
Then U − cr ≥ 0 throughout the flow. Thus, the left-hand side of (5.3.36) is
non-negative. However, since cr < 0, the right-hand side of (5.3.36) is negative.
We again have a contradiction. Therefore, an unstable mode must have cr > Umin.
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Considering these together, we arrive at the conclusion that all unstable modes must be
such that

min[Umin, 0] < cr < max[Umax, 0], (5.3.37)

which we note is the statement of Theorem 6.

Before progressing to our next theorem, we briefly comment on how this result differs
from its rigid counterpart by Rayleigh, which would bound cr in the range of U so that
Umin < cr < Umax.

Consider a flow with Umin > 0 and Umax > 0. According to Theorem 6, the resulting
bound for an unstable mode is 0 < cr < Umax. We therefore have not ruled out unstable
modes with 0 < cr ≤ Umin. In this sense, Theorem 6 is weaker than its rigid analogue.

A natural next step is to seek a modification of Howard’s semicircle theorem [13].

Theorem 7. Let V ≥ 0. If U ≥ 0 everywhere (and U > 0 somewhere), all temporally
unstable axisymmetric modes must satisfy |c|2 − cr maxr∈[δ,1] U < 0.

We begin by formulating expressions that will be useful in our proof of Theorem 7.
Rearrangement of (5.3.36) allows us to write

∫ 1

δ

U Q

r
dr = α2δ|η̂|2

(
α2m̌ + αĎ

2ci

)
cr +

∫ 1

δ

cr Q

r
dr. (5.3.38)

Taking the real part of (5.3.35), we obtain

∫ 1

δ

[
(U − cr)2 − c2

i

]
Q

r
dr = −α2δ|η̂|2

(
α2m̌

(
c2

r − c2
i

)
− αĎci − Ǩ

)
. (5.3.39)

Expanding the left-hand side of (5.3.39) gives

∫ 1

δ

[
(U − cr)2 − c2

i

]
Q

r
dr =

∫ 1

δ

U2Q

r
dr − 2cr

∫ 1

δ

UQ

r
dr + c2

r

∫ 1

δ

Q

r
dr − c2

i

∫ 1

δ

Q

r
dr.

(5.3.40)
Upon simplification, substituting (5.3.38) for the second integral on the right-hand side
of (5.3.40) reveals

∫ 1

δ

[
(U − cr)2 − c2

i

]
Q

r
dr =∫ 1

δ

U2Q

r
dr − 2α2δ|η̂|2

(
α2m̌ + αĎ

2ci

)
c2

r − c2
r

∫ 1

δ

Q

r
dr − c2

i

∫ 1

δ

Q

r
dr, (5.3.41)
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which can be written as

∫ 1

δ

[
(U − cr)2 − c2

i

]
Q

r
dr =

∫ 1

δ

U2Q

r
dr − 2α2δ|η̂|2

(
α2m̌ + αĎ

2ci

)
c2

r − |c|2
∫ 1

δ

Q

r
dr.

(5.3.42)

Together with (5.3.39), this gives

∫ 1

δ

U2 Q

r
dr = α2δ|c|2|η̂|2

(
α2m̌ + αĎ

ci

+ Ǩ

|c|2

)
+
∫ 1

δ

|c|2 Q

r
dr. (5.3.43)

after some manipulation. We will find the relations (5.3.38) and (5.3.43) helpful in what
follows.

Letting Umax = maxr∈[δ,1] U and Umin = minr∈[δ,1] U , it is evident that
∫ 1

δ
(U − Umax) (U − Umin) Q

r
dr ≤ 0. (5.3.44)

since Q is positive.

This is possible if and only if∫ 1

δ

(
U2 − UmaxU + Umin (Umax − U)

)
Q

r
dr ≤ 0, (5.3.45)

which can be written as
∫ 1

δ

U2Q

r
− Umax

UQ

r
+ Umin (Umax − U) Q

r

 dr ≤ 0. (5.3.46)

Upon rearrangement, substitution of (5.3.43) and (5.3.38) into the first two terms yields

∫ 1

δ

Q

r

(
|c|2 − crUmax

)
dr + α2δ|η̂|2

[
α2m̌

(
|c|2 − crUmax

)
+ αĎ

ci

(
|c|2 − crUmax

2

)]
+

α2δ|η̂|2Ǩ + Umin

∫ 1

δ
(Umax − U) Q

r
dr ≤ 0. (5.3.47)

We will focus on flows with U ≥ 0 everywhere (and U > 0 somewhere), so that Umin ≥ 0
and Umax > 0. Suppose that we have a temporally unstable mode with

|c|2 − crUmax ≥ 0. (5.3.48)

From Theorem 6, we know that cr > 0. This means

|c|2 − 1
2crUmax > |c|2 − crUmax (5.3.49)
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and so, in view of (5.3.48),
|c|2 − 1

2crUmax > 0. (5.3.50)

This leads us to a contradiction, as it suggests that the left hand side of (5.3.47) is
strictly positive. Therefore, we require that all unstable modes satisfy

|c|2 − crUmax < 0, (5.3.51)

which is equivalent to writing
(

cr − Umax

2

)2
+ c2

i <
(

Umax

2

)2
. (5.3.52)

This concludes the proof of Theorem 7.

The result (5.3.52) is analogous to Howard’s semicircle theorem for parallel flows over
rigid boundaries, which states that unstable modes satisfy(

cr − 1
2 (Umin + Umax)

)2
+ c2

i <
(1

2 (Umax − Umin)
)2

. (5.3.53)

Recall that our criteria accounting for flexibility considers basic flows with the property
U ≥ 0. When Umin = 0, the inequalities for the rigid (5.3.53) and flexible (5.3.52) cases
both offer the same restriction. In the case Umin > 0, however, the semicircle described
for the rigid case (5.3.53) has a smaller radius than that of (5.3.52).

Theorems 6 and 7 lead us to the following corollary:

Corollary 3. Let V ≥ 0. For a flow with U ≥ 0 everywhere (and U > 0 somewhere),
all temporally unstable axisymmetric modes must satisfy |c|2 < (maxr∈[δ,1] U)2.

Since U > 0 somewhere in the flow, we have Umax > 0. Using Theorem 6, we then
deduce that an unstable mode has cr < Umax. This means

crUmax < (Umax)2. (5.3.54)

Using Theorem 7 (specifically inequality (5.3.51)), we have

|c|2 < crUmax. (5.3.55)

By transitivity, combining (5.3.54) and (5.3.55) gives

|c|2 < (Umax)2, (5.3.56)

completing the proof of Corollary 3.
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We are able to establish a stronger version of this corollary that does not restrict the
base profile U(r) to be positive. This forms our next theorem.

Theorem 8. Let V ≥ 0. For a flow such as this, an unstable axisymmetric mode must
have a wavespeed c such that |c|2 < (max |U |)2 .

To prove this theorem, we will draw upon equations we have derived previously.
Multiplying (5.3.36) and (5.3.39) by cr and ci respectively, and subsequently adding the
resulting equations, yields

ci

∫ 1

δ

(
U2 − |c|2

) Q

r
dr = α2δ|η̂|2|c|2

(
α2m̌ci + αĎ + Ǩci

|c|2

)
(5.3.57)

For an unstable mode,

ci

∫ 1

δ

(
U2 − |c|2

) Q

r
dr ≤ ci

∫ 1

δ

(
max

(
U2
)

− |c|2
) Q

r
dr, (5.3.58)

which, in view of (5.3.57), implies that

ci

(
max

(
U2
)

− |c|2
) ∫ 1

δ

Q

r
dr ≥ α2δ|η̂|2|c|2

(
α2m̌ci + αĎ + Ǩci

|c|2

)
. (5.3.59)

Since ci is assumed to be positive, the right-hand side of (5.3.59) is strictly positive. The
left-hand side must thus also be strictly positive, and so we conclude that

|c|2 < max
(
U2
)

, (5.3.60)

as desired. This completes the proof of Theorem 8.

As expressed by Drazin and Howard [73], a result due to Høiland relates the wavenumber
of a disturbance to the imaginary part of its wavespeed:

αci ≤
maxr∈[δ,1] |U ′|

2 . (5.3.61)

In the subsequent theorems, we strive to relate the wavenumber of an unstable mode
with the strength of its instability when the basic velocity is not constant.

Theorem 9. Let V = 0. Assume U(r) is not constant. Temporally unstable axisymmetric
modes must satisfy αci <

maxr∈[δ,1] |U ′|
2 .

Theorem 10. Let V > 0. Assume U(r) is not constant. A temporally unstable
axisymmetric mode with cr > 2V must satisfy αci <

maxr∈[δ,1] |U ′|
2 .
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Following the methods in Drazin and Howard [73], we introduce a function G such that

G = ϕ

(U − c)1/2 . (5.3.62)

Upon use of the Rayleigh equation (5.1.6), we can form a differential equation in G:

d
dr

 (U − c) G′

− (U − c)G′

r
+ U ′ G

2r
− G

[
U ′′

2 + α2(U − c) + (U ′)2

4(U − c)

]
= 0. (5.3.63)

Multiplying by G∗

r
and integrating across the annular region reveals

∫ 1

δ

(U − c) |G′|2

r
dr −

∫ 1

δ

U ′ |G|2

2r2 dr +
∫ 1

δ

|G|2

r

(
U ′′

2 + α2 (U − c) + (U ′)2

4 (U − c)

)
dr =G∗G′ (U − c)

r

1

δ

. (5.3.64)

The boundary conditions (5.3.1), (5.3.6), (5.3.8a), (5.3.10) can be used to findG∗G′ (U − c)
r

1

δ

= −α2δ|η̂|2|V − c|
(

α2c2m̌ + iαcĎ − Ǩ

V − c
+ U ′(δ)

2

)
. (5.3.65)

We substitute (5.3.65) into (5.3.64), take the imaginary part of the resulting equation
and multiply by ci. This gives

c2
i

∫ 1

δ

|G′|2

r
dr + c2

i

∫ 1

δ

α2|G|2

r
dr − c2

i

4

∫ 1

δ

|G|2

r

(U ′)2

|U − c|2
dr

= −α2δ|η̂|2ci

|V − c|
[
α2m̌ci

(
|c|2 − 2V cr

)
+ αĎ

(
|c|2 − crV

)
+ Ǩci

]
. (5.3.66)

Since
|U − c|2 = (U − cr)2 + c2

i ≥ c2
i , (5.3.67)

we may write ∫ 1

δ

|G|2

r

(U ′)2

|U − c|2
dr ≤ (max |U ′|)2

c2
i

∫ 1

δ

|G|2

r
dr. (5.3.68)

Using (5.3.66), this gives

∫ 1

δ

|G|2

r

(
α2c2

i − (max |U ′|)2

4

)
dr

≤ −α2δ|η̂|2ci

|V − c|
(
α2m̌ci

(
|c|2 − 2V cr

)
+ αĎ

(
|c|2 − crV

)
+ Ǩci

)
. (5.3.69)
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Case 1: V = 0. Let us first look at the case of two stationary cylinders. In this scenario,
(5.3.69) simplifies to

∫ 1

δ

|G|2

r

(
α2c2

i − (max |U ′|)2

4

)
dr ≤ −α2δ|η̂|2|c|

(
α2m̌ci + αĎ + Ǩci

|c|2

)
ci. (5.3.70)

For an unstable mode, the right-hand side of (5.3.70) is strictly negative. The left-hand
side must also then be strictly negative, and so we deduce that

αci <
max |U ′|

2 , (5.3.71)

as stated in Theorem 9.

Case 2: V > 0. We now look for a bound on ci when the inner cylinder moves. Suppose
we have an unstable mode with cr > 2V . Then

|c|2 − 2crV > 0 and |c|2 − crV > 0, (5.3.72)

and the right-hand side of (5.3.69) is strictly negative. We thus require that

αci <
max |U ′|

2 , (5.3.73)

which proves Theorem 10.

Having derived modified versions of classical inviscid theorems to account for a flexible
inner cylinder, it is worthwhile to see what stability properties we can learn about a
base flow of the form (2.2.2).

5.4 Applying the modified inviscid theorems

Armed with the theorems above, we can make some statements regarding the inviscid
instability of a base flow of the form (2.2.2), repeated below:

U0(r) = 1 − r2 + (V − 1 + δ2)
log δ

log r, δ ≤ r ≤ 1.

For this base flow,
d
dr

(
U ′

0
r

)
= −2 (V − 1 + δ2)

r3 log δ
. (5.4.1)

We explore the flexible case for different choices of V, noting that U0 is a flow that is
non-negative everywhere, and strictly positive somewhere.
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Case 1: V = 0. For a stationary inner cylinder, U0
d
dr

(
U ′

0
r

)
= 2U0

(
1−δ2

r3 log δ

)
< 0 for

r ∈ (δ, 1). Using Theorems 6, 7 and 9, we deduce all temporally unstable modes must
be such that

0 < cr < Umax, |c|2 − crUmax < 0, αci <
maxr∈[δ,1] |U ′

0|
2 , (5.4.2)

where
Umax = U0(r1), r1 =

√
δ2 − 1
2 log δ

. (5.4.3)

Case 2: 0 < V < 1 − δ2 + 2δ2 log δ. For this range of V , the quantity d
dr

(
U ′

0
r

)
is negative

throughout the flow. The maximum value of U0 is greater than V, so there is a region in
the flow where (U0 − V ) is positive. Therefore, (U0 − V ) d

dr

(
U ′

0
r

)
is negative somewhere

in the flow. Theorems 6 and 7 allow us to conclude that all unstable modes must be
such that

0 < cr < Umax, |c|2 − crUmax < 0, (5.4.4)

where
Umax = U0(r2), r2 =

√
V + δ2 − 1

2 log δ
. (5.4.5)

Further to this, unstable modes with cr > 2V must satisfy

αci <
maxr∈[δ,1] |U ′

0|
2 (5.4.6)

in line with Theorem 10.

Case 3: V ≥ 1 − δ2 + 2δ2 log δ. The base velocity attains its maximum value at the
wall of the inner cylinder, so Umax = V . In such a case, any instability must be such
that 0 < cr < V to comply with Theorem 6. In this scenario, Theorem 10 does not shed
more light on the problem, as we know unstable modes cannot have cr > 2V .

In contrast to the scenario involving both a rigid inner and rigid outer cylinder, we are
unable to rule out inviscid instability when the inner cylinder is flexible. However, we
have been able to provide bounds for the wavespeeds of unstable modes (provided they
exist).
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5.5 Summary

In summary, this chapter explored the inviscid linear stability of axisymmetric, swirl-free
flows through an annular region between a flexible inner cylinder and rigid outer cylinder.
Following the work of previous literature [66, 67, 68, 69] to account for the presence
of a flexible inner cylinder, we derived theorems reminiscent of Rayleigh’s inflection
point theorem and Fjørtfot’s theorem. We also modified results such as Rayleigh’s
wavespeed restriction for non-neutral modes, Howard’s semi-circle theorem and Høiland’s
theorem. Owing to our boundary conditions, our results are weaker than their classical
counterparts. To conclude the chapter, we applied these theorems to a base flow that
pertains to APCF.

Having studied the inviscid problem, we return to the full viscous problem (2.3.11, 2.3.12-
2.3.14) and seek to understand the behaviour of neutral modes at asymptotically large
Reynolds numbers. Though the bulk of the flow will be dominated by inertial forces, we
will incorporate the effects of viscosity near the cylinder walls.
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Chapter 6

An asymptotic approach at large
Reynolds numbers: a lower-branch

analysis

Smith and Cowley [45] conducted an asymptotic analysis into the linear and weakly
non-linear stability of plane Poiseuille-Couette flow, noting that the linear lower-branch
neutral mode of plane Poiseuille flow has a wavenumber that is such that α = O(R−1/7)
when the Reynolds number becomes asymptotically large. This has previously been
shown by Lin [74], who studied the asymptotic behaviour of the neutral curve by direct
consideration of the Orr-Sommerfeld equation, and has also been demonstrated by
Cowley and Wu [75].

In their account detailing the use of asymptotic linear theory as a means to understand
transition, Cowley and Wu [75] discuss how to arrive at distinguished scalings for the
lower and upper branch of the neutral curve. They adopt a ‘maximal-interactions’
approach when considering the different processes that occur in the flow, and explain
that the different structures for a lower and upper branch mode are indicative of the
different physical balances in the flow for each mode. This guides our analysis below.

Walton [48] used asymptotic methods to study the stability of APCF when the inner
cylinder is rigid. He provided a detailed analysis of the lower-branch and upper-branch
scalings of the neutral curve at large Reynolds numbers, in addition to studying what
he has termed a hybrid scaling. In this thesis, we adapt this work to account for the
flexibility of the inner cylinder, and seek new scalings that arise as a result of the
cylinder flexibility. This chapter is concerned with lower-branch scalings and, and in
later chapters, we explore upper-branch and the hybrid scalings.
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Before commencing our analysis, it will be helpful to briefly revisit the linearised
disturbance equations (2.3.11) of Chapter 2, which are repeated here for convenience.

We superimpose our base velocity and pressure field with travelling-wave disturbances of
axial wavenumber α and wavespeed c,

u = U0(r) + ∆û(r)eiα(x−ct) + c.c, v = ∆v̂(r)eiα(x−ct) + c.c, (6.0.1a)

p = p0 − 4x

R
+ ∆p̂(r)eiα(x−ct) + c.c, ∆ ≪ 1, (6.0.1b)

where the base flow (2.2.2) is given by

U0(r) = 1 − r2 + (V − 1 + δ2)
log δ

log r, δ ≤ r ≤ 1. (6.0.2)

We have seen that the disturbance shape functions û(r), v̂(r) and p̂(r) are governed by
the linearised disturbance equations (2.3.11),

iαû + dv̂

dr
+ v̂

r
= 0, (6.0.3a)

iα (U0 − c) û + v̂
dU0

dr
= −iαp̂ + 1

R

[
d2û

dr2 + 1
r

dû

dr
− α2û

]
, (6.0.3b)

iα (U0 − c) v̂ = −dp̂

dr
+ 1

R

[
d2v̂

dr2 + 1
r

dv̂

dr
− v̂

r2 − α2v̂

]
, (6.0.3c)

subject to
û(1) = 0, v̂(1) = 0, (6.0.4)

iα(V − c)û(δ) + v̂(δ)U ′
0(δ) = 0, (6.0.5)

p̂(δ) = 2
R

v̂′(δ) +
(

−α2c2m + K

R2

)
û(δ)
U ′

0(δ) , (6.0.6)

where V ̸= 1 − δ2 + 2δ2 log δ.

Seeking the behaviour of a neutrally stable disturbance, we take c to be real in what
follows.
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6.1 Lower-branch analysis I: a mode with
α = O

(
R−1/7

)

At asymptotically large Reynolds numbers, we anticipate that the bulk of the flow is
dominated by inertial forces. Near the cylinder walls, however, viscous forces become
significant and there is a balance between the inertial, pressure and viscous terms in
the governing linear disturbance equations. For sufficiently small sliding velocities,
we anticipate that the lower-branch mode behaviour will be captured by a three-zone
structure (see figure 6.1.1) consisting of an inviscid core surrounded by viscous wall
layers. Critical layers are situated where the basic velocity is equal to the wavespeed of
the mode. A critical layer is assumed to be embedded in the upper viscous layer and, if
the sliding velocity of the inner cylinder is smaller than the disturbance wavespeed of
the lower-branch mode, the lower viscous wall layer.

O
(
R−2/7)

O(1)

O
(
R−2/7)

Viscous wall layer

û = O(1), v̂ = O(R−3/7), p̂ = O(R−2/7)

Inviscid core

û = O(1), v̂ = O(R−1/7), p̂ = O(R−2/7)

Viscous wall layer

û = O(1), v̂ = O(R−3/7), p̂ = O(R−2/7)

Rigid outer cylinder, r = 1

Compliant inner cylinder, r = δ

Figure 6.1.1: Schematic of the asymptotic structure of the lower-branch mode with
α = O

(
R−1/7

)
and c = O

(
R−2/7

)
. The cylinder properties are V = O

(
R−2/7

)
,

K = O
(
R12/7

)
and m = O

(
R4/7

)
.

We will seek a solution to the disturbance equations for asymptotically large Reynolds
numbers and small sliding velocities V such that

V = ϵ2V0, ϵ ≪ 1, (6.1.1)

where ϵ is a small parameter that will be determined in terms of the Reynolds number.

The base velocity (6.0.2) may now be expressed as

U0 = U00 + ϵ2 U01, (6.1.2a)

81



6.1. LOWER-BRANCH ANALYSIS I: A MODE WITH α = O
(
R−1/7

)

with

U00 = 1 − r2 − (1 − δ2) log r

log δ
and U01 = V0

log r

log δ
. (6.1.2b)

Much of the analysis that follows will focus on near-wall dynamics. To facilitate this,
we preemptively explore here the behaviour of the base velocity U0 near the cylinder
walls by performing Taylor expansions of (6.1.2b) about r = 1 and r = δ. Near the outer
cylinder, where r → 1−,

U00 ∼ λ
(0)
+ (1 − r) + λ

(10)
+ (1 − r)2, U01 ∼ λ

(1)
+ (1 − r), (6.1.3a)

and near the inner cylinder, where r → δ+,

U00 ∼ λ
(0)
− (r − δ) + λ

(10)
− (r − δ)2, U01 ∼ V0 + λ

(1)
− (r − δ), (6.1.4a)

where

λ
(0)
+ = 2 + (1 − δ2)

log δ
, λ

(10)
+ = −1 + (1 − δ2)

2 log δ
, λ

(1)
+ = − V0

log δ
, (6.1.5a)

λ
(0)
− = −2δ − (1 − δ2)

δ log δ
, λ

(10)
− = −1 + (1 − δ2)

2δ2 log δ
, λ

(1)
− = V0

δ log δ
. (6.1.5b)

The core region

It seems natural to begin by considering the size of the lower-branch disturbance in the
bulk of the flow. As the Reynolds number becomes asymptotically large, the wavenumbers
on the lower branch of our neutral stability curve in the (R, α) plane become small. With
this in mind, we write α = O(ϵ). We also suppose that c is small, so that c = O(q) where
q ≪ 1 will be determined during the course of our analysis. Numerical computations
provide motivation for these choices for α and c.

Seeking a linear disturbance, we let û = O(1) without loss of generality. The linearised
continuity equation (6.0.3a) then suggests that v̂ = O(ϵ). The basic flow is much larger
than c in this region, and we anticipate p̂ = O(ϵ2) so as to preserve the inertia and
pressure terms in the linearised radial momentum equation (6.0.3c). Our disturbance
expansion to leading order is thus

û = F0 + · · · , v̂ = ϵG0 + · · · , p̂ = ϵ2P0 + · · · , α = ϵα0 + · · · , c = qc0 + · · · .

(6.1.6a)
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Substituting these expansions into the governing linearised disturbance equations (6.0.3),
we find to leading order the inviscid system

iα0F0 + dG0

dr
+ G0

r
= 0, iα0U00F0 + G0

dU00

dr
= 0, iα0U00G0 + dP0

dr
= 0.

(6.1.7a,b,c)

We can manipulate these equations to form a first order separable differential equation
for G0, specifically

dG0

dr
+
(

1
r

− 1
U0

dU0

dr

)
G0 = 0. (6.1.8)

This has the solution
G0 = −iα0A0

U0

r
, (6.1.9)

where A0 is an unknown constant. F0 and P0 are now straightforward to find; upon
rearrangement of the continuity equation (6.1.7a) and integration of the radial momentum
equation (6.1.7c), we obtain

F0 = A0U
′
00

r
and P0 = P̂0 + α2

0A0I(r), (6.1.10)

where P̂0 is a constant and

I(r) =
∫ 1

r

U00
2

r̃
dr̃. (6.1.11)

It is useful to examine the behaviour of the disturbance as we approach the cylinder
walls as this will motivate our scalings in the viscous regions. As r → 1−,

F0 → −A0λ
(0)
+ , G0 ∼ −iα0A0λ

(0)
+ (1 − r) , P0 → P̂0, (6.1.12)

and as r → δ+,

F0 → A0λ
(0)
−

δ
, G0 ∼ − iα0A0λ

(0)
−

δ
(r − δ) , P0 → P̂0 + α2

0A0I(δ). (6.1.13)

The upper viscous wall layer

Assuming that the thickness of the viscous wall layer is given by h, we write r = 1 − hy+,
where h is to be determined and y+ is an order one variable. The behaviour of the
disturbance in the core as it approaches the outer cylinder guides our scalings in the
upper viscous wall layer; we observe that F0 = O(1), G0 = O(h) and P0 = O(1) as we
approach the outer cylinder, suggesting the scalings û = O(1), v̂ = O(ϵh) and p̂ = O(ϵ2)
for the disturbance in the wall layer.
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A critical layer is embedded within the upper viscous wall layer, requiring that U0 ∼ c.

The behaviour of U0 near the outer cylinder is described by (6.1.3a) and can be written
as

U0 = λ
(0)
+ hy+ + · · · = O(h). (6.1.14)

Hence we observe that the wavespeed must be of the same magnitude as the thickness of
the wall layer, that is, c = O(h). It now remains to find a relationship between ϵ and h.

In the viscous region, we seek a balance between the inertia, pressure and viscous terms
in the axial momentum equation (6.0.3b):

iα (U0 − c) û ∼ iαp̂ ∼ 1
R

d2û

dr2 =⇒ ϵh ∼ ϵ3 ∼ R−1h−2. (6.1.15)

From this we deduce that the thickness h of the layer is of the order ϵ2, where

ϵ = R−1/7, (6.1.16)

and we can write
α = R−1/7α0 + · · · , c = R−2/7c0 + · · · . (6.1.17)

Using the above considerations, we have to leading order

û = u+ + · · · , v̂ = −ϵ3v+ + · · · , p̂ = ϵ2p+ + · · · , α = ϵα0 + · · · , c = ϵ2c0 + · · · ,

(6.1.18a)

U0 = ϵ2λ
(0)
+ y+ + · · · , r = 1 − ϵ2y+. (6.1.18b)

Substituting these expansions into the governing linearised system (6.0.3), we find that
the disturbance must satisfy to leading order

iα0u+ + dv+

dy+
= 0, (6.1.19a)

iα0
(
λ

(0)
+ y+ − c0

)
u+ + λ

(0)
+ v+ = −iα0p+ + d2u+

dy2
+

, (6.1.19b)

dp+

dy+
= 0, (6.1.19c)

subject to the no-slip conditions (6.0.4) on the outer cylinder, which give

u+ = v+ = 0 on y+ = 0. (6.1.20)

Matching the core solution, the disturbance must satisfy

p+ = P̂0 for all y+, (6.1.21)

and
u+ → −A0λ

(0)
+ as y+ → ∞ (6.1.22)
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in view of (6.1.12). We differentiate the axial momentum equation (6.1.19b), and upon
simplification with the continuity equation (6.1.19a), obtain

d3u+

dy3
+

− iα0
(
λ

(0)
+ y+ − c0

) du+

dy+
= 0. (6.1.23)

We reduce the order of this differential equation by introducing a new variable τ+(y+)
such that τ+(y+) = du+

dy+
, and then apply the linear transformation ξ+ = a+y+ +b+, where

a+ =
(
iα0λ

(0)
+

)1/3
and b+ = − iα0c0(

iα0λ
(0)
+

)2/3
. (6.1.24)

The evolution of τ+ with respect to ξ+ is described exactly by the Airy equation

d2τ+

dξ2
+

− ξ+τ+ = 0, (6.1.25)

the solutions of which are well-known. Hence we have

τ+ = C1Ai (ξ+) + C2Bi (ξ+) , (6.1.26)

where Ai (ξ+) and Bi (ξ+) are the linearly independent Airy functions of the first and
second kind respectively, and C1 and C2 are constants to be determined. The asymptotic
behaviour of the Airy functions are well-known [76]. It is reasonable to require that τ+

remains bounded as y+ → ∞, so we impose C2 = 0. Integrating (6.1.26) with respect to
y+ yields

u+(y+) = C1

a+

∫ ξ+

b+
Ai (ξ+) dξ+ (6.1.27)

upon using our condition (6.1.20) and performing a change of variables. It remains to
find the constant C1. Letting ξ+ → ∞, we see that

u+ → C1

a+

∫ ∞

b+
Ai (ξ+) dξ+. (6.1.28)

In order to satisfy the condition u+ = −A0λ
(0)
+ as ξ+ → ∞ (6.1.22), we demand that

C1 = −A0λ
(0)
+ a+

κ(b+) , where we have defined κ(b+) =
∫ ∞

b+
Ai (ξ+) dξ+. (6.1.29)

This leads us to

u+(y+) = −A0λ
(0)
+

κ(b+)

∫ ξ+

b+
Ai (ξ+) dξ+. (6.1.30)
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It now remains to find an expression for P̂0. We evaluate the leading order axial
momentum equation (6.1.19b) on y+ = 0. Recalling that u+ = v+ = 0 on y+ = 0 (6.1.20)
and p+ = P̂0 (6.1.21), we have

d2u+

dy2
+

∣∣∣∣∣∣
y+=0

= iα0P̂0. (6.1.31)

Substituting our expression (6.1.30) for u+ and rearranging yields

P̂0 =
A0
(
iλ(0)

+

)5/3
Ai′(b+)

α
1/3
0 κ(b+)

. (6.1.32)

This is our first pressure-displacement relation.

The lower viscous wall layer

The analysis in this region closely follows that of the upper viscous wall layer, however
there is a key difference: the inner cylinder boundary is compliant. The effect of this will
be seen through the boundary conditions of our system. Following the scaling arguments
in the upper layer, the appropriate expansions in this region are

û = u− + · · · , v̂ = ϵ3v− + · · · , p̂ = ϵ2p− + · · · , α = ϵα0 + · · · , c = ϵ2c0 + · · · ,

(6.1.33a)

U0 = ϵ2
(
λ

(0)
− y− + V0

)
+ · · · , r = δ + ϵ2y−, (6.1.33b)

where y− is an order one variable. Substituting these expansions into the linearised
disturbance equations (6.0.3), we find that the leading order terms must satisfy

iα0u− + dv−

dy−
= 0, (6.1.34a)

iα0
(
λ

(0)
− y− + V0 − c0

)
u− + λ

(0)
− v− = −iα0p− + d2u−

dy2
−

, (6.1.34b)

dp−

dy−
= 0, (6.1.34c)

subject to matching the core. Consideration of the conditions (6.1.13) reveals that

u− → A0λ
(0)
−

δ
as y− → ∞, (6.1.35)

and, in combination with (6.1.34c), that

p− = P̂0 + α2
0A0I(δ) for all y−. (6.1.36)

86



6.1. LOWER-BRANCH ANALYSIS I: A MODE WITH α = O
(
R−1/7

)

Recalling that p+ = P̂0 (6.1.21), we are able to rewrite this to show that the behaviour
of p+ and p− are connected through the relation

p− = p+ + α2
0A0I(δ). (6.1.37)

We remark that the effects of compliance have not yet entered our analysis of the
lower-branch structure. We see presently that the cylinder flexibility influences the
structure through the boundary conditions on the inner cylinder.

We recall the dynamic condition (6.0.6):

p̂(δ) = 2
R

v̂′(δ) +
(

−α2c2m + K

R2

)
û(δ)
U ′

0(δ) . (6.1.38)

We are interested in exploring the situation where changing the spring stiffness and mass
of our inner cylinder has a leading order effect on the system. With this in mind, we
seek to establish a balance between p̂(δ) and the second term on the right-hand side of
(6.1.38). Since α = O(ϵ), c = O(ϵ2), p̂(δ) = O(ϵ2) (6.1.33a) and R−1 ∼ ϵ7 (6.1.16), we
prescribe

K = O
(
ϵ−12

)
, m = O

(
ϵ−4

)
. (6.1.39)

Using (6.0.5) and (6.0.6), the boundary conditions to be satisfied may now be expressed
as

λ
(0)
− v− + iα0 (V0 − c0) u− = 0 on y− = 0, (6.1.40a)

p− = K̃ u−

λ
(0)
−

on y− = 0, (6.1.40b)

where we have defined
K̃ = K0 − α2

0 c2
0 m0. (6.1.41)

K0 and m0 are order one quantities defined such that K0 = ϵ12K and m0 = ϵ4m.

We seek a solution for u− (y−) following the same methods as in the upper viscous region,
finding

u−(y−) =
λ

(0)
−

(
P̂0 + α2

0A0I(δ)
)

K̃
+ λ

(0)
−

κ(b−)

[
A0

δ
− P̂0 + α2

0A0I(δ)
K̃

] ∫ ξ−

b−
Ai(ξ−)dξ−.

(6.1.42)
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Here, we have introduced

ξ− = a−y− + b−, a− =
(
iα0λ

(0)
−

)1/3
, b− = − iα0(c0 − V0)(

iα0λ
(0)
−

)2/3
, (6.1.43)

κ(b−) =
∫ ∞

b−
Ai (ξ−) dξ−. (6.1.44)

Our objective now is to find another expression for P̂0. Turning our attention back to
the axial momentum equation (6.1.34b) and evaluating this at y− = 0, we have

d2u−

dy2
−

∣∣∣∣∣∣
y−=0

= iα0
(
P̂0 + α2

0A0I(δ)
)

. (6.1.45)

With our solution for u−(y−) in (6.1.42), this leads us to the pressure-displacement
relation

P̂0 + α2
0A0I(δ) = a2

−Ai′(b−)A0λ
(0)
− K̃

δλ
(0)
− a2

−Ai′(b−) + iα0δK̃κ(b−)
. (6.1.46)

Our aim now is to use (6.1.32) and (6.1.46) to form an eigenrelation for the lower-branch
mode.

Lower-branch eigenrelation

We begin by defining a function g such that

g(s) = i5/3 Ai′(−i1/3s)
κ(−i1/3s) , (6.1.47)

and introducing variables s+ and s−, where

s+ = α0c0(
α0λ

(0)
+

)2/3
and s− = α0 (c0 − V0)(

α0λ
(0)
−

)2/3
, (6.1.48)

so that
b+ = −i1/3s+ and b− = −i1/3s−. (6.1.49)

Details on calculating g(s) are found in Appendix A. Figure A.0.1 illustrates how the
complex-valued function g(s) varies with s.
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Subtracting the pressure-displacement relation (6.1.32) from (6.1.46) and making use of
(6.1.43), (6.1.47), (6.1.48) and (6.1.49) allows us to form the eigenrelation

(
λ

(0)
−

)5/3
g(s−)

K̃

[
α

7/3
0 I(δ) +

(
λ

(0)
+

)5/3
g(s+)

]
=

α
1/3
0

α
7/3
0 I(δ) +

(
λ

(0)
+

)5/3
g(s+) +

(
λ

(0)
−

)5/3
g(s−)

δ

 . (6.1.50)

It will be useful to remove the explicit dependence on α0 here, and so we manipulate
(6.1.48) to yield the relation

α0
1/3V0 =

(
λ

(0)
+

)2/3
s+ −

(
λ

(0)
−

)2/3
s−. (6.1.51)

Multiplying (6.1.50) by V0
8 and using (6.1.51) results in the eigenrelation

t(s+, s−)
[
(t(s+, s−))7I(δ) + 1

δ
V0

7
(
λ

(0)
−

)5/3
g(s−) + V0

7
(
λ

(0)
+

)5/3
g(s+)

]
−

1
K̃

[
(t(s+, s−))7I(δ)V0

(
λ

(0)
−

)5/3
g(s−) + V0

8
(
λ

(0)
+

)5/3 (
λ

(0)
−

)5/3
g(s+)g(s−)

]
= 0, V0 ̸= 0,

(6.1.52)
where we have introduced

t(s+, s−) =
(
λ

(0)
+

)2/3
s+ −

(
λ

(0)
−

)2/3
s−. (6.1.53)

Using the definition of s+ (6.1.48) and t(s+, s−) (6.1.53), K̃ can be written in terms of
s+ and s− as

K̃ = K0 −
s+

2
(
λ

(0)
+

)4/3
(t(s+, s−))4

V0
4 m0, (6.1.54)

upon recollection that K̃ = K0 − α2
0 c2

0 m0 (6.1.41).

A complex-valued relation, eigenrelation (6.1.52) forms a system of two real equations
that can be solved numerically for s+ and s−, given V0, K0, m0 and δ. The wavespeed
and wavenumber of the neutral mode along the lower-branch can then be determined
through the use of (6.1.48).
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In the rigid limit K̃ → ∞ with α0 = O(1) and c0 = O(1), the eigenrelation (6.1.52)
collapses to((

λ
(0)
+

)2/3
s+ −

(
λ

(0)
−

)2/3
s−

)7
I(δ) + V0

7
(1

δ

(
λ

(0)
−

)5/3
g(s−) +

(
λ

(0)
+

)5/3
g(s+)

)
= 0,

(6.1.55)
which is precisely the lower-branch eigenrelation found by Walton [1] for the case of a
rigid inner cylinder.

To find pairs of solutions s+ and s− of the eigenrelation (6.1.52), we follow the approach
used by Walton [1] in the rigid case. We plot contours of the real and imaginary parts of
the left-hand side of (6.1.52). Where the zero-level contours intersect, we have solutions
s+ and s− of our neutral mode.

Since we are considering only non-negative sliding velocities, examination of (6.1.51)
reveals that

s+ ≥

λ
(0)
−

λ
(0)
+

2/3

s−. (6.1.56)

We therefore restrict ourselves to the region in the (s+, s−) plane described by (6.1.56).

For a rigid inner cylinder with δ = 0.7, Walton [1] finds a unique solution until V0 is
increased to V0 ≈ 0.6. Two additional modes then form, one of which has a shortening
wavelength as V0 → ∞. The solution of the rigid problem, described by (6.1.55), is
illustrated in figures 6.1.2 and 6.1.3. Once close approximations to s+ and s− have been
found via our contour plots (figure 6.1.2), we use a solver in MATLAB to refine our
solutions and determine α0 and c0 using (6.1.48).

Figure 6.1.3 illustrates how the ‘rigid’ wavenumber varies with V0. For δ = 0.7, we see
that there are three branches of solutions. The curve corresponding to Root 1 exists for
all sliding velocities V0 ≥ 0. Roots 2 and 3 appear at a larger sliding velocity, emerging
from the same solution at V0 ≈ 0.6. As V0 → ∞, Root 3 behaves in such a way that s+

becomes large while s− remains order one (figure 6.1.2).
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Figure 6.1.2: Solutions of the rigid eigenrelation (6.1.55) for δ = 0.7 and various V : (a)
V = 0.5, (b) V = 0.7, (c) V = 1, (d) V = 2.5. Note Root 3 exists beyond the values of
s+ shown in figure (d).

Figure 6.1.3: Solutions of the rigid eigenrelation (6.1.48) and (6.1.55) for δ = 0.7 as V0
varies.
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In figures 6.1.4 and 6.1.5 we investigate the effect of compliance on the leading order
wavenumber. For simplicity, the mass of the cylinder is taken to be m0 = 0. Whilst
Root 3 still exists at large sliding velocities for K0 = 0.5 and K0 = 2, Roots 1 and 2 now
merge and disappear at a finite sliding velocity, say V0 = V0

(1,2). This means the range
of sliding velocities for which all three solutions coexist is dramatically reduced. As the
spring stiffness of our inner cylinder decreases, V0

(1,2) also decreases. In addition to these
changes, figure 6.1.4f showcases the emergence of two additional neutral modes once V0

is sufficiently increased. These emerge from the same solution. As the sliding velocity is
increased further to V0 = 5, the wavenumber of Root 4 decreases with dα0

dV0
becoming less

negative (figure 6.1.6). We emphasise we have not found analogous roots to Roots 4 and
5 in the rigid case with δ = 0.7.

We look at the effect of compliance on each of Roots 1, 2 and 3 separately. In figure
6.1.5a, the compliant curves describing Root 2 intersect their rigid counterpart, though
we note that this intersection does not necessarily occur at the same sliding velocity for
each K0. This means that, for each K0, there exists a sliding velocity for which that
particular spring stiffness does not influence the leading order wavenumber obtained
from Root 2. Beyond the intersection, the effect of compliance becomes more prominent
as V0 is increased to V0

(1,2).

We now focus on the first root, shown in figure 6.1.5a. For small values of V0, a more
compliant cylinder yields a lower leading order wavenumber. This trend does not
continue, and eventually compliance results in a wavenumber that is larger than its rigid
counterpart. As in Root 2, the deviation from the rigid scenario is more pronounced as
V0 increases to V0

(1,2).

A lower spring stiffness results in a lower wavenumber for Root 3, though the difference
between the rigid and compliant cases seem to become less apparent as the sliding
velocity increases (see figure 6.1.5b). This is unlike the cases for Roots 1 and 2.

92



6.1. LOWER-BRANCH ANALYSIS I: A MODE WITH α = O
(
R−1/7

)

(a) V = 0.5 (b) V = 0.85

(c) V = 0.95 (d) V = 1

(e) V = 1.5 (f) V = 2

Figure 6.1.4: Solutions of the flexible eigenrelation (6.1.48) and (6.1.52) for δ = 0.7 and
various V . Note Root 3 exists beyond the values of s+ shown in figures (e) and (f).
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(a) Depiction of Roots 1 (green) and 2 (orange). (b) Depiction of Root 3.

Figure 6.1.5: Solutions of the eigenrelation (6.1.48) and (6.1.52) in the flexible case, for
K0 = 0.5 and K0 = 2 with m0 = 0. The rigid solution is plotted for reference. The
labelling of the roots follows figure 6.1.3, with Root 3 plotted separately to Roots 1 and
2.

Figure 6.1.6: Solutions of the eigenrelation (6.1.48) and (6.1.52) in the flexible case, for
K0 = 0.5 with m0 = 0. Depiction of Roots 4 and 5.
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Motivated by the rigid scenario, we seek the limiting behaviour for Root 3 in the limit
V0 → ∞ with s+ → ∞ and s− = O(1) and explore the effect of the introduction of
compliance. In this limit, use of (6.1.51) shows that(

λ
(0)
+

)2/3
s+ ∼ α0

1/3V0. (6.1.57)

To find the behaviour of α0 and c0 as V0 → ∞, we revisit the eigenrelation (6.1.50),
which we rewrite here
(
λ

(0)
−

)5/3
g(s−)

K0

[
α

7/3
0 I(δ) +

(
λ

(0)
+

)5/3
g(s+)

]
=

α
1/3
0

α
7/3
0 I(δ) +

(
λ

(0)
+

)5/3
g(s+) +

(
λ

(0)
−

)5/3
g(s−)

δ

 (6.1.58)

for a massless inner cylinder. The behaviour of g(s) is given by

g(s) ∼ s + eiπ/4s−1/2 (6.1.59)

in the limit s → ∞ [1]. Considering (6.1.60) for s+ → ∞ and s− = O(1) then leads to
the balance(

λ
(0)
−

)5/3
g(s−)

K0

[
α

7/3
0 I(δ) −

(
λ

(0)
+

)5/3
s+

]
∼ α

1/3
0

[
α

7/3
0 I(δ) −

(
λ

(0)
+

)5/3
s+

]
. (6.1.60)

We first consider the balance

α
1/3
0 ∼

(
λ

(0)
−

)5/3
g(s−)

K0
(6.1.61)

and demonstrate that this is not possible. Since α0 is real, we require the right-hand
side of (6.1.61) to be real. The unique root of Im g(s−) = 0 for s− = O(1) is given by
s− = s0 ≈ 2.2972. From figure A.0.1, we see that Re(g(s0)) is negative. Since K0 and
λ

(0)
− are positive, this leads to a contradiction.

We deduce that we must instead have

α
7/3
0 I(δ) ∼

(
λ

(0)
+

)5/3
s+, (6.1.62)

which, upon consideration of (6.1.57), gives

α0 ∼

 λ
(0)
+

I(δ)

1/2

V0
1/2 as V0 → ∞, (6.1.63)
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which is independent of the spring stiffness of the cylinder. This is in agreement with
our findings in figure 6.1.5b. Since s− is order one, we find the leading order wavespeed
to be such that

c0 ∼ V0 as V0 → ∞. (6.1.64)

As V0 increases, we expect that the upper critical layer of the structure moves away from
the outer cylinder whilst the lower critical layer remains in the viscous wall layer. We
discuss the structure that arises in Chapter 8.

Importance of mass

We see in this section that the introduction of K̃ provides valuable insights into our
problem. Focusing on the case V = 0 to highlight the role of K̃, we wish to determine
the leading order wavenumber and wavespeed for a stationary inner cylinder at various
values of K̃. We make use of (6.1.48) to write s− in terms of α0 and s+. Substituting
this form of s− into the eigenrelation (6.1.50) yields a relation in s+ and α0, which we
solve using MATLAB. Once s+ and α0 are known, we are able to make use of (6.1.48) to
find c0. Figure 6.1.7 illustrates how the scaled wavenumbers of the lower-branch neutral
modes vary with K̃. We note that it does not pose a problem to prescribe K̃ despite its
dependence on the wavenumber and wavespeed; once α0 and c0 have been determined,
it is possible to choose K0 and m0 appropriately so as to yield the prescribed K̃.

There exists only one neutral mode for positive K̃ in figure 6.1.7, and the wavenumber
in the rigid limit is approached from below as K̃ is increased. As K̃ is decreased, the
wavenumber of this mode decreases and eventually becomes very small at large negative
K̃.

The situation when K̃ is negative is made more interesting by the existence of a second
neutral mode, whose presence seems to be attributed to the flexibility of the inner
cylinder. This ‘elastic’ mode possesses an ever-increasing wavenumber as K̃ → 0−.

A massless inner cylinder would be characterised by a positive value of K̃. The
incorporation of mass as a descriptor for our inner cylinder allows K̃ to acquire negative
values, and thus also allows for the existence of the elastic mode described above.

Figure 6.1.7 hints at the possibility of there being two structures that more intricately
describe the lower-branch mode, specifically when K̃ → −∞ with α0 → 0+ and when
K̃ → 0− with α0 → ∞. The former limit corresponds to c0 → ∞ and the latter limit,
which we explore in the next section, is associated with c0 → 0.
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Figure 6.1.7: Solutions α0 of the lower-branch eigenrelation for various K̃ = K0−α0
2c0

2m0
and fixed δ = 0.5, V = 0.

6.1.1 Large-wavenumber limit of the lower-branch mode

We begin by considering the lower-branch eigenrelation in the limit K̃ → 0− and α0 → ∞.
Later we explore how the structure changes in this limit, and we will find a distinguished
scaling for K̃ and α0 in terms of the Reynolds number.

A numerical investigation into how s+ and s− (6.1.48) vary along each curve illustrated
in figure 6.1.7 suggests that we look for a structure in which s+ and s− remain order
one quantities. We rewrite the eigenrelation (6.1.50) in a form that lends itself to the
subsequent analysis:α

1/3
0 −

(
λ

(0)
−

)5/3
g(s−)

K̃

(α
7/3
0 I(δ) +

(
λ

(0)
+

)5/3
g(s+)

)
+ α

1/3
0

(
λ

(0)
−

)5/3
g(s−)

δ
= 0.

(6.1.65)
We note that this form of the eigenrelation holds for V0 ≥ 0. In the limit α0 → ∞, with
s+ = O(1), s− = O(1) and K̃ → 0−, the dominant balance in this equation must be

α
1/3
0 ∼

(
λ

(0)
−

)5/3
g(s−)

K̃
. (6.1.66)

Introducing a small, positive parameter Ψ, we therefore take K̃ ∼ −k0Ψ and α0 ∼ α0Ψ−3

for positive k0 and α0. Since α0 is real, we must have that Im(g(s−)) = 0 for relation
(6.1.66) to hold.
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Under these deductions, the eigenrelation (6.1.65) reduces to

α0 = −λ
(0)
−

5
(g(s0))3

k0
3 , s0 ≈ 2.2972, (6.1.67)

where s0 is such that Im (g(s0)) = 0. Figure A.0.1 demonstrates that g(s0) is negative,
so we conclude that the right-hand side of (6.1.67) is positive.

Recalling the definitions of s+ and s− (6.1.48),

s+ = α0
1/3c0(

λ
(0)
+

)2/3
and s− = α0

1/3 (c0 − V0)(
λ

(0)
−

)2/3
. (6.1.68)

Since s+ remains order one, we require that
(
α

1/3
0 c0

)
= O(1). This prompts the scaling

c0 ∼ c0 Ψ. We would like the sliding velocity to have a leading order effect in our
structure, so turning to the expression for s−, we take V0 ∼ V 0 Ψ. Under these scalings,
a rearrangement of the definition of s− leads to

c0 = − s0k0

λ
(0)
− g(s0)

+ V 0. (6.1.69)

With c0 becoming smaller as K̃ → 0−, we expect the critical layer in the upper viscous
wall layer to move closer to the outer cylinder. We use the above scalings to guide us in
our search for a new structure.

In what follows, we try to discern how the lower-branch structure changes in the ‘large-α0,
small-K̃’ limit described above. As suggested by the analysis in 6.1.1, we suppose that

α0 ∼ α0 K̃−3, c0 ∼ c0 K̃, V0 ∼ V 0 K̃, K̃ → 0−. (6.1.70)

Recalling the definition of K̃ as

K̃ = K0 − α2
0 c2

0 m0, (6.1.71)

we take
K0 ∼ K0 K̃, m0 ∼ m0 K̃5, (6.1.72)

in order to preserve the effect of spring stiffness and mass in this limit.

We emphasise that K̃ is negative here, meaning α0, c0, V 0, K0 and m0 are also negative.

Exploring the lower-branch structure in this limit, we seek scalings on the flow quantities
that enable us retain as many terms as possible in the Reynolds-number-independent
equations governing the core region (6.1.7), upper wall layer (6.1.19) and lower wall layer
(6.1.34).
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The core region

The analysis in this region is based on the expansions (6.1.6) and equations (6.1.7).

Beginning with the core region, we seek a scaling for our disturbance quantities F0, G0

and P0, as defined in (6.1.9), (6.1.10). We take P0 = O(1) without loss of generality
and, in what follows, determine the sizes of A0 and P̂0. It is apparent from (6.1.9) and
(6.1.10) that

F0 = O(A0 F 0), G0 = O(A0 G0K̃
−3). (6.1.73)

Balancing the radial momentum equation (6.1.7c) then gives us A0 = O(K̃6), so that

F0 = O
(
K̃6
)

, G0 = O
(
K̃3
)

. (6.1.74)

Substituting
F0 ∼ K̃6 F 0, G0 ∼ K̃3 G0, P0 ∼ P 0 (6.1.75)

into the core equations (6.1.7), we obtain

iα0F 0 + dG0

dr
+ G0

r
= 0, iα0U00F 0 + G0

dU00

dr
= 0, iα0U00G0 + dP 0

dr
= 0. (6.1.76a)

These equations are identical to those in (6.1.7), though with the use of barred quantities
instead. Examining the disturbance behaviour as we approach the inner cylinder, (6.1.13)
suggests

F0 = O
(
K̃6
)

, G0 = O
(
K̃3(r − δ)

)
, P0 = O(1). (6.1.77)

As we approach the outer cylinder, (6.1.12) gives

F0 = O
(
K̃6
)

, G0 = O
(
K̃3(1 − r)

)
, P0 → O

(
P̂0
)

, (6.1.78)

where the size of P̂0 will be determined.

The upper viscous wall layer

In this region, our analysis relates to the expansions (6.1.18) and equations (6.1.19). We
have r = 1 − ϵ2y+, where y+ will be determined in terms of K̃.

To match the core, we take u+ ∼ K̃6 u+ here in view of (6.1.78). Balancing the terms
in the axial momentum equation (6.1.19b) reveals that P̂0 = O

(
K̃7
)

and

v+ ∼ v+ K̃4, p+ ∼ p+ K̃7, y+ ∼ y+ K̃. (6.1.79)

99



6.1. LOWER-BRANCH ANALYSIS I: A MODE WITH α = O
(
R−1/7

)

In this region, the basic velocity (6.1.18b) behaves as U0 ∼ λ
(0)
+ K̃ y+ and is of the same

size as the disturbance wavespeed, supporting the existence of a critical layer in this
region. Using (6.1.79), the equations (6.1.19) become

iα0u+ + dv+

dy+
= 0, (6.1.80a)

iα0
(
λ

(0)
+ y+ − c0

)
u+ + λ

(0)
+ v+ = −iα0p+ + d2u+

dy2
+

, (6.1.80b)

dp+
dy+

= 0. (6.1.80c)

These are subject to no-slip conditions on the outer cylinder, and the disturbance
quantities must match the core as y+ → ∞.

Lower wall layer

The analysis here pertains to the expansions (6.1.33) and equations (6.1.34). We have
r = δ + ϵ2y−, where y− is to be determined in terms of K̃.

As K̃ becomes small, the lower viscous wall layer splits into an upper inviscid layer that
matches to the core region and a lower viscous layer. This is depicted in figure 6.1.8. In
the analysis of both layers below, u−, v−, p− and y− are as in the expansions (6.1.33).

Inviscid layer. To match the core solution, we expect from (6.1.77) that

u− ∼ u
(I)
− K̃6, p− ∼ p−. (6.1.81)

Balancing the inertia and pressure terms in the axial momentum equation (6.1.34b), we
take y− ∼ y

(I)
− K̃−6 and v− ∼ v

(I)
− K̃−3 in this region. With these scalings, the equations

(6.1.34) reduce to

du
(I)
−

dy
(I)
−

= 0,
dp−

dy
(I)
−

= 0, λ
(0)
−

(
iα0y

(I)
− u

(I)
− + v

(I)
−

)
= −iα0p−. (6.1.82)

As y− → ∞, the disturbance quantities are required to match the core. The expansions
in this inviscid layer do not allow for the boundary conditions (6.1.40) to be satisfied,
nor do they account for the critical layer in the original structure. This highlights the
need for the viscous layer that is described below.
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Viscous layer. Anticipating that the pressure disturbance is constant across this layer
in accordance with (6.1.34c), we take

p− ∼ p− (6.1.83)

to match the inviscid layer above. Recalling the scalings (6.1.70), the boundary conditions
(6.1.40) on the inner cylinder then propose that

u− ∼ K̃−1 u
(II)
− , v− ∼ K̃−3 v

(II)
− . (6.1.84)

A balance in the continuity equation (6.1.34a) gives the thickness of the layer to be

y− ∼ y
(II)
− K̃. (6.1.85)

This means that this viscous wall layer becomes thinner in the limit K̃ → 0−. Using
(6.1.33) and (6.1.70), we see that this scaling on y− maintains the balance of the base
velocity and the disturbance wavespeed, which is consistent with the existence of a
critical layer in this region.

With consideration of (6.1.83)-(6.1.85), the equations (6.1.34) become

iα0u
(II)
− + dv

(II)
−

dy
(II)
−

= 0, (6.1.86a)

iα0
(
λ

(0)
− y

(II)
− + V 0 − c0

)
u

(II)
− + λ

(0)
− v

(II)
− = −iα0p− + d2u

(II)
−

dy
(II)
−

2 , (6.1.86b)

dp−

dy
(II)
−

= 0, (6.1.86c)

where the disturbance quantities are subject to matching the inviscid layer as y
(II)
− → ∞

and, using (6.1.40),

λ
(0)
− v

(II)
− + iα0

(
V 0 − c0

)
u

(II)
− = 0 on y

(II)
− = 0, (6.1.87a)

p− =

(
K0 − α2

0c
2
0m0

)
u

(II)
−

λ
(0)
−

on y
(II)
− = 0. (6.1.87b)

Figure 6.1.8 encapsulates the behaviour of the lower-branch mode in the limit K̃ → 0−.

We observe that the size of the inviscid layer becomes comparable to that of the core
when K̃ decreases to an order of R−1/21. When this occurs, the equations that govern
the dynamics of the core change and the inviscid layer merges with this ‘new’ core. In
addition, the size of wavenumber increases to α0 = O(R1/7) while that of the wavespeed
decreases to c0 = O(R−1/21). We discuss in more depth the changes that occur when
K̃ = O(R−1/21) in the following section.
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O
(

R−2/7K̃
)

O(1)

O
(

R−2/7K̃−6
)

O
(

R−2/7K̃
)

Viscous wall layer

û = O(K̃6), v̂ = O(R−3/7K̃4), p̂ = O(R−2/7K̃7)

Inviscid core

û = O(K̃6), v̂ = O(R−1/7K̃3), p̂ = O(R−2/7)

Inviscid layer

û = O(K̃6), v̂ = O(R−3/7K̃−3), p̂ = O(R−2/7)

Viscous wall layer

û = O(K̃−1), v̂ = O(R−3/7K̃−3), p̂ = O(R−2/7)

Rigid outer cylinder, r = 1

Compliant inner cylinder, r = δ

Figure 6.1.8: Schematic of the asymptotic structure of the lower-branch mode in the
limit K̃ → 0−, where α = O

(
R−1/7K̃−3

)
, c = O

(
R−2/7K̃

)
and V = O

(
R−2/7K̃

)
.

To summarise our findings here, we briefly revisit the original expansions of the lower-
branch structure. Using (6.1.1), (6.1.17), (6.1.16), (6.1.39), we recall the mode has

α = R−1/7α0 + · · · , c = R−2/7c0 + · · · (6.1.88)

with the inner cylinder properties

V = R−2/7V0, K = R12/7K0, m = R4/7m0. (6.1.89)

In the limit K̃ → 0−, we have seen that we may take

α0 = O(K̃−3), c0 = O(K̃), V0 = O(K̃), K0 = O(K̃), m0 = O(K̃5) (6.1.90)

as in (6.1.70), (6.1.72), so that

α = O(R−1/7K̃−3), c = O(R−2/7K̃), (6.1.91)

V = O(R−2/7K̃), K = O(R12/7K̃), m = O(R4/7K̃5). (6.1.92)

As discussed above, once K̃ has decreased to an order of R−1/21, this original lower-branch
structure breaks. When this occurs, the scalings (6.1.91) become

α = O
(
R−1/7R1/7

)
, c = O

(
R−2/7R−1/21

)
, (6.1.93a)

V = O
(
R−2/7R−1/21

)
, K = O

(
R12/7R−1/21

)
, m = O

(
R4/7R−5/21

)
, (6.1.93b)
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and we anticipate a new structure with the scalings

α = O (1) , c = O
(
R−1/3

)
, (6.1.94a)

V = O
(
R−1/3

)
, K = O

(
R5/3

)
, m = O

(
R1/3

)
. (6.1.94b)

This structure will be the focus of our next section.

6.2 Lower-branch analysis II: a mode with
α = O(1)

O
(
R−1/3)

O(1)

O
(
R−1/3)

Viscous wall layer

û = O(R−1/3), v̂ = O(R−2/3), p̂ = O(R−2/3)

Inviscid core

û = O(R−1/3), v̂ = O(R−1/3), p̂ = O(R−1/3)

Viscous wall layer

û = O(1), v̂ = O(R−1/3), p̂ = O(R−1/3)

Rigid outer cylinder, r = 1

Compliant inner cylinder, r = δ

Figure 6.2.1: Schematic of the asymptotic structure of the lower-branch Rayleigh mode,
where α = O(1) and c = O(R−1/3). The cylinder properties are V = O

(
R−1/3

)
,

K = O
(
R5/3

)
and m = O

(
R1/3

)
.

In this section, we discuss the emergence of a lower-branch mode when the cylinder
properties are such that

K − α2 c2 m < 0. (6.2.1)

Guided by the analysis above, we anticipate a three-zone structure: an inviscid core
surrounded by viscous wall layers of thickness R−1/3.

We also expect
α = α0 + · · · , c = R−1/3 c0 + · · · , (6.2.2)

where the cylinder properties are

V = R−1/3V 0, K = R5/3 K0, m = R1/3 m0. (6.2.3)
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We depict our new regime in figure 6.2.1, where we have included the scalings of our
flow quantities in each region. We remark that we have rescaled the linear disturbance
suggested by figure 6.1.8 so that the pressure disturbance in the core has size R−1/3.

The Rayleigh core

In the core region, we may write

û = R−1/3F 0 + · · · , v̂ = R−1/3G0 + · · · , p̂ = R−1/3P 0 + R−2/3P 1 + · · · . (6.2.4)

Substitution of (6.2.2) and (6.2.4) into the linearised disturbance equations (6.0.3) yields
the governing equations

iα0F 0 + dG0

dr
+ G0

r
= 0, iα0U00F 0 + G0

dU00

dr
= −iα0P 0, iα0U00G0 + dP 0

dr
= 0.

(6.2.5a,b,c)

We note the existence of a pressure term on the right-hand side of the axial momentum
equation (6.2.5b), which is not present in the core equation (6.1.7b) of our previous
lower-branch structure.

The equations (6.2.5) can be manipulated to form the Rayleigh pressure equation with
zero wavespeed:

P 0
′′(r) +

(
1
r

− 2U00
′(r)

U00(r)

)
P 0

′(r) − α2
0 P 0(r) = 0. (6.2.6)

A linear equation, (6.2.6) admits any multiple of P 0 as a solution. Therefore we prescribe
P 0(δ) = 1 without loss of generality. To match the upper viscous layer, we also require

P 0 to decay as r → 1. Therefore, we solve (6.2.6) subject to

P 0(δ) = 1, P 0(1) = 0. (6.2.7)

We employ the Frobenius method to find series solutions of P 0 near r = 1 and r = δ.
These series solutions then enable us to also express F 0 and G0 as we approach the
viscous layers. Near r = δ, we find

P 0 = 1−α0
2

2 (r−δ)2+· · · , G0 = − iα0

λ
(0)
−

+· · · , F 0 = 1
λ

(0)
−

2λ
(10)
−

λ
(0)
−

− 1
δ

 log(r − δ)+· · · .

(6.2.8)
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Near r = 1, we have

P 0 = A(r − 1)3 + · · · , G0 = i3A(1 − r)
α0λ

(0)
+

+ · · · , F 0 = 3A

α0
2λ

(0)
+

+ · · · , (6.2.9)

where A is a constant to be determined. At the next order, we must have

P 1 = P̂ 0 + · · · (6.2.10)

near r = 1, where P̂ 0 is also an undetermined constant.

Upper viscous wall layer

In this region, the disturbance quantities to leading order are

û = R−1/3u+, v̂ = −R−2/3v+, p̂ = R−2/3p+, r = 1 − R−1/3y+. (6.2.11)

Substituting these expansions into the linearised disturbance equations (6.0.3) gives the
governing equations

iα0u+ + dv+

dy+
= 0, (6.2.12a)

iα0
(
λ

(0)
+ y+ − c0

)
u+ + v+λ

(0)
+ = −iα0p+ + d2u+

dy2
+

, (6.2.12b)

dp+
dy+

= 0. (6.2.12c)

These are subject to no-slip conditions on the outer cylinder (6.0.4) and matching
conditions as we approach the core. In view of (6.2.9), these are expressed as

u+ = v+ = 0 on y = 0, (6.2.13a)

u+ → 3A

α0
2λ

(0)
+

as y → ∞. (6.2.13b)

The radial momentum equation (6.2.12c) reveals that the pressure is constant in ȳ+. To
match the pressure disturbance (6.2.10) in the core, we must have

p+ = P̂ 0. (6.2.14)

Solving (6.2.12a,b) subject to (6.2.13), the axial disturbance is found to be

u+
(
y+

)
= 3A

α0
2λ

(0)
+

1
κ(b+)

∫ ∞

b+
Ai
(
ξ+

)
dξ+, (6.2.15)
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where

ξ+ = a+y+ + b+, a+ =
(
iα0λ

(0)
+

)1/3
, b+ = − iα0c0(

iα0λ
(0)
+

)2/3
, (6.2.16)

κ(b+) =
∫ ∞

b+
Ai
(
ξ+

)
dξ+. (6.2.17)

Evaluating the axial momentum equation (6.2.12b) at y+ = 0 and using (6.2.15), we
find the relation

−α0
7/3
(
λ

(0)
+

)1/3
P̂ 0 = 3A g(s+), (6.2.18)

where we have defined
s+ = α0c0(

α0λ
(0)
+

)2/3 . (6.2.19)

Lower viscous wall layer

Here, the expansions to leading order are

û = u−, v̂ = R−1/3v−, p̂ = R−1/3p−, U0 = R−1/3
(
λ

(0)
− y− + V 0

)
, r = δ+R−1/3y−.

(6.2.20)
with

V = R−1/3V 0, K = R5/3K0, m = R1/3m0, (6.2.21)

Whilst û is of order one in this region, we recall that the axial disturbance in the
core (6.2.4, 6.2.8) approaches the lower viscous wall layer with an amplitude of order
R−1/3 log R. We expect, then, for û in this viscous layer to decay as we approach the
core. Substitution of (6.2.20) into the linearised disturbance equations (6.0.3) shows
that the leading order dynamics in this layer are governed by

iα0u− + dv−

dy−
= 0, (6.2.22a)

iα0
(
λ

(0)
− y− + V 0 − c0

)
u− + λ

(0)
− v− = −iα0p− + d2u−

dy2
−

, (6.2.22b)

dp−
dy−

= 0. (6.2.22c)

subject to the boundary conditions (6.0.5) and (6.0.6), which give

iα0
(
V 0 − c0

)
u− + λ

(0)
− v− = 0 on y− = 0, (6.2.23a)

p− =

(
K0 − α0

2c0
2m0

)
u−

λ
(0)
−

on y− = 0. (6.2.23b)
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As discussed above, we must also have that

u− → 0 as y− → ∞. (6.2.24)

in order to be able to match the core solution.

It can be seen from (6.2.22c) that p− is constant across this layer. Matching the pressure
solution (6.2.8) in the core, we must have p− = 1. This allows us to write the dynamic
condition (6.2.23b) as

u− = λ
(0)
−

K0 − α0
2c0

2m0
on y− = 0. (6.2.25)

Solving (6.2.22a,b) subject to (6.2.23a), (6.2.25) , we obtain the axial disturbance

u−(y−) = λ
(0)
−

K0 − α0
2c0

2m0

(
1 − 1

κ(b−)

∫ ξ−

b−
Ai
(
ξ−

)
dξ−

)
, (6.2.26)

where

ξ− = a−y− + b−, a− =
(
iα0λ

(0)
−

)1/3
, b− = −

iα0
(
c0 − V 0

)
(
iα0λ

(0)
−

)2/3
, (6.2.27)

κ(b−) =
∫ ∞

b−
Ai
(
ξ−

)
dξ−. (6.2.28)

Now, evaluating the axial momentum equation (6.2.22b) on y− = 0 gives

d2u−

dy2
−

∣∣∣∣∣∣
y−=0

= iα0 (6.2.29)

where we have made use of the kinematic condition (6.2.23a) to simplify the resulting
expression.

After some manipulation, substitution of (6.2.26) into (6.2.29) reveals

α0
1/3 =

(
λ

(0)
−

)5/3

K0 − α0
2c0

2m0
g(s), (6.2.30)

where the function g is defined as

g(s) = i5/3 Ai′(−i1/3s)
κ(−i1/3s) , (6.2.31)

and the variable s as

s =
α0
(
c0 − V 0

)
(
α0λ

(0)
−

)2/3
, (6.2.32)
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so that
b− = −i1/3s. (6.2.33)

To gain more insight into relation (6.2.30), we make use of the fact that the wavenumber
must be real and positive. We notice that the left-hand side of (6.2.30) is real. Therefore,
the right-hand must also be real. The unique finite root of Im(g(s)) = 0 is given by
s = s0, where

s0 ≈ 2.2972. (6.2.34)

Figure A.0.1 illustrates that Re(g(s0)) is negative, and so we also require that

K0 − α0
2 c0

2 m0 < 0 (6.2.35)

in order for the right-hand side of (6.2.30) to be positive.

Combining this together, we find that the leading order wavenumber of the neutral mode
is found by solving

α0
1/3 =

(
λ

(0)
−

)5/3

K0 − α0
2c0

2m0
g(s0), (6.2.36)

for given V 0, K0, m0, provided (6.2.35) holds. We will soon see that, so long as m0 is
nonzero, we are able to find a solution to (6.2.36) that has (6.2.35).

We note that (6.2.36) is in agreement with the eigenrelation (6.1.67) we found in the
limit α0 → ∞, K̃ → 0− of the α = O

(
R−1/7

)
structure.

The relation (6.2.36) can be manipulated to form a seventh degree polynomial equation
in α0

1/3,

m0V0
2
α

7/3
0 +2m0V0λ

(0)
−

2/3
s0α0

2 +m0λ
(0)
−

4/3
s0

2α
5/3
0 −K0α0

1/3 +λ
(0)
−

5/3
g (s0) = 0. (6.2.37)

This has at least one real solution for α0 > 0 when m0 > 0. When m0 is zero, the
polynomial equation yields no admissible solutions, as expected by the requirement that
K0 − α0

2 c0
2 m0 < 0.

Paired with a rearrangement of the definition of s (6.2.32),

c0 = V 0 + λ
(0)
−

2/3
s0

α0
1/3 , (6.2.38)

it can be shown that the relation (6.2.37) provides us with a unique solution for the
leading order wavenumber and wavespeed given K0, V 0 and non-zero m0.
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It is also illuminative to prescribe K̃, where

K̃ = K0 − α2
0 c2

0 m0, (6.2.39)

and solve (6.2.36) and (6.2.38) for the leading order wavenumber and wavespeed. For
a stationary inner cylinder with δ = 0.7, figure 6.2.2 illustrates that as |K̃| becomes
increasingly small, α0 grows without bound, while c0 approaches zero linearly with
respect to K̃.
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Figure 6.2.2: Illustration of the behaviour of the (a) leading order wavenumber and (b)
leading order wavespeed as we vary with K̃ for a stationary inner cylinder with δ = 0.7.

Before moving on from this structure, we consider it worthwhile to examine more closely
the pressure disturbance in the core region.

Pressure in the Rayleigh core

We remind ourselves that the Rayleigh pressure equation governing the core, and its
associated boundary conditions, are given by (6.2.6), (6.2.7):

P 0
′′(r) +

(
1
r

− 2U00
′(r)

U00(r)

)
P 0

′(r) − α2
0 P0(r) = 0, (6.2.40)

P 0(δ) = 1, P 0(1) = 0. (6.2.41)

Using the method of Frobenius, the behaviour of P 0 as we approach the outer cylinder
from within the core is captured by the infinite series

P 0 = A(r − 1)3 − 3A

4λ
(0)
+

(
λ

(0)
+ + 2λ

(10)
+

)
(r − 1)4 + ..., (6.2.42)

where A is an undetermined constant.
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As we approach the inner cylinder instead, we have

P 0 = 1− α2
0

2 (r−δ)2− α0
2(2δλ

(10)
− − λ

(0)
− )

3δλ
(0)
−

(r−δ)3 log(r − δ)+M(r−δ)3+..., (6.2.43)

where M is an undetermined constant.

We use a matching procedure to determine the behaviour of the leading order pressure
perturbation in the core. This entails an initial guess, say A1 and M1, for A and M .
We can now use the first 20 terms in our series expansion (6.2.43) to evaluate P 0 and
P

′
0 very close to the inner cylinder wall, say at r = δ + ϵ for ϵ small and positive. This

provides the initial values in our subsequent Runge-Kutta procedure: we march from
r = δ + ϵ using the Rayleigh equation (6.2.40), finally obtaining values for P 0 and its
derivative at r = r−

1 , where we have taken r1 = 1/2 + δ/2. A similar procedure is carried
out to approximate P 0 and its derivative at r = r+

1 using the expansion (6.2.42) and
marching from r = 1 − ϵ. Newton’s method allows us to iterate on A1 and M1 until

P 0(r−
1 ) = P 0(r+

1 ) and P
′
0(r−

1 ) = P
′
0(r+

1 ).

Once A and M are determined, our Runge-Kutta solutions together form a smooth
solution for P 0 across the core. F 0 and G0 can then be found via manipulation of (6.2.5).
These solutions are depicted in figure 6.2.3 for α0 = 1.5, δ = 0.2.

Figure 6.2.3: Illustration of the disturbance quantities P 0, G0 and F 0 in the core for
α0 = 1.5, δ = 0.2. Recall the core is situated at a distance of O

(
R−1/3

)
from the walls.
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We can study the behaviour of the pressure disturbance as α0 becomes small by solving
(6.2.40), (6.2.41) in the limit α0 → 0. In this limit, the problem reduces to

P 0
′′(r) +

(
1
r

− 2U00
′(r)

U00(r)

)
P 0

′(r) = 0, P 0(δ) = 1, P 0(1) = 0.

This has the solution
P 0 = I(r)

I(δ) , I(r) =
∫ 1

r

U00
2

r̃
dr̃, (6.2.44)

which behaves as

P 0 = − λ
(0)
+

2

3I(δ)(r − 1)3 + · · · near r = 1. (6.2.45)

Comparing this to (6.2.42) reveals that

lim
α0→0

A = − λ
(0)
+

2

3I(δ) . (6.2.46)

Figure 6.2.4 illustrates this relation; we plot A (as found by our matching procedure
for solving (6.2.40), (6.2.41)) as α0 → 0 and notice that the graph approaches the value
on the right-hand side of (6.2.46). This value can be used as an initial guess for the
matching procedure described above.

Figure 6.2.4: Plot of A as α0 → 0 for δ = 0.2.
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6.3 Summary

Before continuing, we summarise our work in this chapter. To begin, we were motivated
by the existence of a lower-branch mode of wavenumber α = O(R−1/7) in rigid APCF,
and we sought to incorporate the effects of compliance into this structure. For the
cylinder properties studied, we observed the existence of two neutral modes that were
not present in the rigid case.

We also found it fruitful to study this structure in various limits. As has been done by
Walton [48] in the rigid case, we examined the α = O(R−1/7) lower-branch structure as
the scaled sliding velocity became large. We found that the upper critical layer moves
away from the outer cylinder in this limit. The resulting structure is discussed in Chapter
8.

Later exploring the large-wavenumber limiting behaviour of the α = O(R−1/7) lower-
branch structure, we found a distinguished scaling for a neutral mode with α = O(1). A
key component of this new structure is that it hinges on the cylinder and wave properties
being such that

K − α2c2m < 0 (6.3.1)

and, as such, has no rigid counterpart. We emphasise that it is necessary for the mass of
the inner cylinder to be non-zero in order for the inequality (6.3.1) to hold, since K is a
positive quantity.

In the next chapter, we seek to understand the behaviour of upper-branch neutral modes.

112



Chapter 7

An asymptotic approach at large
Reynolds numbers: an
upper-branch analysis

7.1 Upper-branch structure I: two critical
layers

As with the lower-branch analysis at asymptotically large Reynolds numbers, the effects
of viscosity are confined to near the cylinder walls. A key difference here, however, is that
the magnitude of the disturbance wavespeed on the upper branch is typically greater
than that on the lower branch, which gives rise to critical layers that are not embedded
within the viscous wall layers. This upper-branch mode behaviour is encapsulated in the
intricate, nine-zone asymptotic structure described below (see also figure 7.1.1).

The bulk of the fluid is modelled by an inviscid core. Surrounding this core on both
sides are inviscid shear layers where the base velocity is of the same order as that of
the disturbance wavespeed. A viscous critical layer forms in these regions to smooth
out the singularity that arises where the base velocity exactly equals the disturbance
wavespeed. Lastly, close to the cylinder walls, we have thin viscous wall layers that
modify the disturbance behaviour so that the appropriate boundary conditions on the
cylinder walls are satisfied.

113



7.1. UPPER-BRANCH STRUCTURE I: TWO CRITICAL LAYERS

As in the lower-branch analysis, we seek a disturbance solution for V ≪ 1. With this in
mind, we write

V = ϵ2 V0, U0 = U00 + ϵ2U01 (7.1.1)

where ϵ is a small parameter that will be determined in the analysis that follows. The
base quantities U00 and U01 are defined in (6.1.2b), and their near wall behaviour is
given by (6.1.3a)-(6.1.5).

O(R−4/11)

O(R−2/11)

O(1)

O(R−2/11)

O(R−4/11)

Viscous wall layer III+

û = O(1), v̂ = O(R−5/11), p̂ = O(R−2/11)

Inviscid core I

û = O(1), v̂ = O(R−1/11), p̂ = O(R−2/11)

Viscous critical layer

Viscous critical layer

Inviscid shear layer II+
û = O(1), v̂ = O(R−3/11), p̂ = O(R−2/11)

Inviscid shear layer II-
û = O(1), v̂ = O(R−3/11), p̂ = O(R−2/11)

Viscous wall layer III-

û = O(1), v̂ = O(R−3/11), p̂ = O(R−2/11)

r = 1

r = δ

Figure 7.1.1: Schematic of the asymptotic structure of the upper-branch mode, where
α = O(R−1/11) and c = O(R−2/11). The cylinder properties are V = O

(
R−2/11

)
,

K = O
(
R20/11

)
and m = O

(
R4/11

)
.
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Inviscid core I

Following the scaling arguments of the lower-branch analysis in Chapter 6, Section 6.1,
we begin by investigating the disturbance behaviour in the inviscid core and expand our
flow quantities as follows:

û = F0 + ϵ2F1 + · · · , v̂ = ϵG0 + ϵ3G1 + · · · , p̂ = ϵ2P0 + ϵ4P1 + · · · , (7.1.2a)

α = ϵα0 + ϵ3α1 + · · · , c = ϵ2c0 + ϵ4c1 + · · · . (7.1.2b)

We note that the small parameter ϵ here is not the same as that of the lower-branch
analysis in Section 6.1. For the present structure, we will determine ϵ in terms of the
Reynolds number in the analysis that follows.

Upon substituting the expansions (7.1.2) into the linearised disturbance equations
(2.3.11), we focus on the leading order dynamics to obtain

iα0F0 + dG0

dr
+ G0

r
= 0, iα0U00F0 + G0

dU00

dr
= 0, iα0U00G0 + dP0

dr
= 0.

(7.1.3a,b,c)

Requiring that we have zero normal velocity on the outer cylinder wall, we recall that
this is exactly the system studied in the inviscid core region of the lower-branch mode in
Section 6.1. The solutions are thus

F0 = A0

r

dU00

dr
, G0 = − iα0A0

r
U00, P0 = P̂0 + α2

0A0I(r), (7.1.4)

where I(r) is as defined in (6.1.11). Without loss of generality, we assume the phase of
F0, G0 and P0 is such that A0 is real, noting that (F0, G0, P0)eiθ is a solution of (7.1.3)
for any θ ∈ R.

At the next order, substitution of the expansions (7.1.2) into the linearised disturbance
equations (2.3.11) gives

iα0F1 + iα1F0 + dG1

dr
+ G1

r
= 0, (7.1.5a)

iα0U00F1 + iα0(U01 − c0)F0 + iα1U00F0 + G0
dU01

dr
+ G1

dU00

dr
= −iα0P0, (7.1.5b)

iα0U00G1 + iα0(U01 − c0)G0 + iα1U00G0 = −dP1

dr
. (7.1.5c)

Using the solutions for the leading order terms (7.1.4), we find G1 and P1 to be

G1(r) = −iα0A1
U00

r
+imaginary terms, P1(r) = P

(1)
+ +α2

0A1I(r)+real terms, (7.1.6)

where A1 and P
(1)
+ are unknown complex constants.
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It will be useful to note the behaviour of û, v̂ and p̂ as we approach each cylinder. As
r → 1−,

F0 → −A0λ
(0)
+ , G0 ∼ −iα0A0λ

(0)
+ (1 − r), P0 → P̂0, (7.1.7a)

Re{G1} ∼ α0 Im{A1}λ
(0)
+ (1 − r), Im{P1} → Im

{
P

(1)
+

}
. (7.1.7b)

Similarly, as r → δ+,

F0 → A0λ
(0)
−

δ
, G0 ∼ − iα0A0λ

(0)
−

δ
(r − δ), P0 → P̂0 + α2

0A0I(δ), (7.1.8a)

Re{G1} ∼ α0 Im{A1}λ
(0)
−

δ
(r − δ), Im{P1} → Im

{
P

(1)
+

}
+ α2

0 Im{A1}I(δ). (7.1.8b)

We will see that these matching conditions provide us with an insight into how to
formulate the appropriate scalings for the disturbance field in the neighbouring regions.

Inviscid shear layer II+

In this region, the basic velocity is of the same order as that of the disturbance wavespeed.
Near r = 1, we recall that the basic velocity expands as in (6.1.3a), which gives

U0 = λ
(0)
+ (1 − r) + λ

(10)
+ (1 − r)2 + ϵ2λ

(1)
+ (1 − r) + · · · (7.1.9)

with λ
(0)
+ , λ

(10)
+ and λ

(1)
+ as defined in (6.1.5). With (7.1.2b), we also have that

c = O(ϵ2). (7.1.10)

Hence we require that (1 − r) = O(ϵ2) and we write

r = 1 − ϵ2Y+ where Y+ = O(1). (7.1.11)

Turning our attention back to the matching conditions (7.1.7), we see the disturbance in
the core approaches this region as

F0 → −A0λ
(0)
+ = O(1), G0 ∼ −iϵ2α0A0λ

(0)
+ Y+ = O(ϵ2), P0 → P̂0 = O(1). (7.1.12)

In view of (7.1.2a), this suggests that the appropriate scalings for the disturbance
quantities in the inviscid shear region are û = O(1), v̂ = O(ϵ3) and p̂ = O(ϵ2).
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We thus write the flow expansions as

U0 = ϵ2λ
(0)
+ Y+ + ϵ4

(
λ

(10)
+ Y 2

+ + λ
(1)
+ Y+

)
+ · · · , r = 1 − ϵ2Y+, (7.1.13a)

û = u
(0)
+ + ϵ2u

(1)
+ · · · , v̂ = −ϵ3v

(0)
+ − ϵ5v

(1)
+ − · · · , p̂ = ϵ2p

(0)
+ + ϵ4p

(1)
+ + · · · ,

(7.1.13b)

α = ϵα0 + ϵ3α1 + · · · , c = ϵ2c0 + ϵ4c1 + · · · . (7.1.13c)

Substituting these expansions into the disturbance equations (2.3.11), we find to leading
order

iα0u
(0)
+ + dv

(0)
+

dY+
= 0, (7.1.14a)

iα0
(
λ

(0)
+ Y+ − c0

)
u

(0)
+ + λ

(0)
+ v

(0)
+ + iα0p

(0)
+ = 0, (7.1.14b)

dp
(0)
+

dY+
= 0. (7.1.14c)

Differentiation of the axial momentum equation (7.1.14b) with respect to Y+ and use of
the continuity equation (7.1.14a) gives

iα0(λ(0)
+ Y+ − c0)

du
(0)
+

dy
= 0. (7.1.15)

Solving equations (7.1.14a), (7.1.14c) and (7.1.15) subject to the matching conditions
(7.1.12) illustrates that, at leading order, the disturbance quantities û and p̂ exhibit
constant behaviour (with respect to Y+) across the extent of region II+ whilst v̂ decreases
linearly in Y+ as we approach the outer cylinder. More specifically, we have

u
(0)
+ = −A0λ

(0)
+ , v

(0)
+ = iα0A0

(
λ

(0)
+ Y+ − c0

)
− iα0P̂0

λ
(0)
+

, p
(0)
+ = P̂0. (7.1.16)

In an inviscid flow, there is no normal flow at the surface of the outer cylinder and it
is therefore reasonable to expect that v

(0)
+ → 0 as r → 1. To satisfy this, the following

pressure-displacement relation must hold true:

A0c0 + P̂0

λ
(0)
+

= 0. (7.1.17)
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At the next order, the dynamics become more complicated. From substitution of (7.1.13a)
into (2.3.11), the governing equations are

iα1u
(0)
+ + iα0u

(1)
+ + dv

(1)
+

dY+
− v

(0)
+ = 0, (7.1.18a)

iα0
(
λ

(10)
+ Y 2

+ + λ
(1)
+ Y+ − c1

)
u

(0)
+ +

(
λ

(0)
+ Y+ − c0

) (
iα0u

(1)
+ + iα1u

(0)
+

)
+(

2λ
(10)
+ Y+ + λ

(1)
+

)
v

(0)
+ + λ

(0)
+ v

(1)
+ + iα1p

(0)
+ + iα0p

(1)
+ = 0,

(7.1.18b)

dp
(1)
+

dY+
= 0. (7.1.18c)

Equation (7.1.18c) demonstrates that p
(1)
+ is constant with respect to Y+, and we write

p
(1)
+ = P+. (7.1.19)

To match the core pressure as Y+ → ∞, the behaviour in (7.1.7b) shows it must be the
case that

Im{P+} = Im{P
(1)
+ }. (7.1.20)

Introducing the variable ζ+ = λ
(0)
+ Y+ − c0, we find that

v
(1)
+ = iα0A

(1)
+ ζ+− iα0P+

λ
(0)
+

− iα0P̂0

λ
(0)
+

2λ
(10)
+

λ
(0)
+

2 + 1
λ

(0)
+

 ζ+ log (ζ+)+imaginary terms, ζ+ ̸= 0,

(7.1.21)
where A

(1)
+ is an unknown complex constant. A thin linear critical layer manifests where

the base velocity equals the wavespeed (ζ+ = 0) to smooth out the singularity arising
in the log term of v

(1)
+ . As we cross the layer, there exists a jump in velocity which we

express by writing log (ζ+) = log |ζ+| for ζ+ > 0, and log (ζ+) = log |ζ+| − iπ for ζ+ < 0.
The details of such layers have been studied by, for example, Lin [15], Stuart [16], and
Reid [17].

Our aim now is to uncover a relation between the constants of integration A
(1)
+ and A1.

Matching the real part of v
(1)
+ (7.1.21) as Y+ → ∞ in the shear region with the real part

of G1 as r → 1 in the core region (7.1.7b), we obtain

Im
{
A

(1)
+

}
= Im{A1}. (7.1.22)

We conclude this section by considering the disturbance behaviour as we approach the
viscous wall layer, that is, as Y+ → 0. It is important to acknowledge that ζ+ → −c0

and becomes negative as Y+ → 0, so we must account for the phase shift of −π here.
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In the limit ζ+ → −c0, the solutions (7.1.16) give

u
(0)
+ = −A0λ

(0)
+ (7.1.23a)

p
(0)
+ = P̂0. (7.1.23b)

Using (7.1.22) to eliminate A
(1)
+ , consideration of (7.1.16) and (7.1.21) in the limit

ζ+ → −c0 gives

v
(0)
+ → iα0A0λ

(0)
+ Y+, (7.1.24a)

Re
{
v

(1)
+

}
→ α0c0 Im{A1} + α0c0P̂0

λ
(0)
+

 1
λ

(0)
+

+ 2λ
(10)
+

λ
(0)
+

2

 π +
α0 Im

{
P

(1)
+

}
λ

(0)
+

. (7.1.24b)

These expressions provide us with the matching conditions to be satisfied by the
disturbance quantities in the viscous wall layer, and indicate to us the possible scalings
in this region. We now investigate this in more detail.

Viscous wall layer III+

Our initial motive here is to determine the thickness of the upper viscous wall layer,
which we will denote as q. In view of the behaviour (7.1.23), it is evident that û = O(1)
and p̂ = O(ϵ2) as Y+ → 0 in the inviscid shear region. This drives the scalings for the
disturbance quantities in this upper viscous region to be û = O(1) and p̂ = O(ϵ2). We
will determine the scaling for v̂ presently.

From the continuity equation (2.3.11a), we expect

iαû ∼ dv̂

dr
, (7.1.25)

which gives O(v̂) = ϵq. Matching this to v
(1)
+ (7.1.21) as Y+ → 0 in the inviscid shear

region, we require the balance ϵq ∼ ϵ5. This determines the thickness of the layer to be

q ∼ ϵ4. (7.1.26)

In this region, the basic velocity is of order ϵ4 and is much smaller than the wavespeed.
The axial momentum equation (2.3.11b) enables us to find ϵ in terms of the Reynolds
number. We expect the dominant balance in (2.3.11b) to be given by

iαcû ∼ 1
R

d2û

dr2 , (7.1.27)

from which we deduce ϵ3 ∼ R−1q−2 since α = O(ϵ) and c = O(ϵ2) (7.1.2b).
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Using the relationship between q and ϵ in (7.1.26), this reveals

ϵ ∼ R−1/11. (7.1.28)

We note that this is the upper-branch scaling deduced by Lin [74] for plane Poiseuille
flow.

We now write the expansions in this region as

û = ū+ + · · · , v̂ = −ϵ5v̄+ − · · · , p̂ = ϵ2p̄+ + · · · , (7.1.29a)

U0 = ϵ4λ
(0)
+ ȳ+ + · · · , r = 1 − ϵ4ȳ+. (7.1.29b)

Substituting (7.1.29) into the linearised disturbance equations (2.3.11), we seek a solution
to the leading order equations

iα0ū+ + dv̄

dȳ+
= 0, (7.1.30a)

d2ū+

dȳ2
+

+ iα0c0ū+ − iα0p̄+ = 0, (7.1.30b)

dp̄+

dȳ+
= 0, (7.1.30c)

subject to the matching conditions (7.1.23) and the viscous no-slip condition ū+ = v̄+ = 0
on y+ = 0. We find that

ū+ = P̂0

c0
[1 − exp (−m+ȳ+)] , v̄+ = − iα0P̂0

c0

[
ȳ+ + exp (−m+ȳ+)

m+
− 1

m+

]
,

p̄+ = P̂0, m+ = (1 − i)
(

1
2α0c0

)1/2
.

(7.1.31)

For the normal disturbance to be continuous across the annular region, we require that
the real part of v̂ as we approach the inviscid shear layer from the viscous layer is equal
to the real part v̂ as we approach the viscous layer from the inviscid shear layer, that is

lim
ȳ+→∞

Re{v̂(ȳ+)} = lim
Y+→0

Re{v̂(Y+)}.

Taking the real part of v̄+ as ȳ+ → ∞ and using (7.1.24) elicits a second pressure-
displacement relation,

− P̂0

c0 (2α0c0)1/2 = c0 Im{A1} +
Im
{
P

(1)
+

}
λ

(0)
+

+ P̂0

λ
(0)
+

2λ
(10)
+

λ
(0)
+

2 + 1
λ

(0)
+

 πc0. (7.1.32)

This completes the analysis for the upper layers. We expect that the lower layers will be
influenced by the sliding velocity, spring stiffness and mass of the inner cylinder, and we
explore this in what follows.
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Lower inviscid shear layer II-

The analysis for the lower inviscid shear layer follows closely that of the upper inviscid
shear layer. With a critical layer in this region, we must again have that the size of
the disturbance wavespeed c is of the same order as the basic flow U0. We assume
(c0 − V0) = O(1) with c0 > V0 and, upon recalling the near wall behaviour of U0 (6.1.4),
(6.1.5), we write

U0 − c ∼ λ
(0)
− (r − δ) − ϵ2(c0 − V0) + · · · . (7.1.33)

For these two terms to be in balance, we require (r − δ) = O(ϵ2). Thus we write
r = δ + ϵ2Y− for an order one variable Y−. In view of the matching conditions (7.1.8)
and core expansions (7.1.2a), we see that the disturbance quantities in the core approach
the inner cylinder with û = O(1), v̂ = O(ϵ(r − δ)) and p̂ = O(ϵ2). We anticipate the
expansions in this lower shear region are then

U0 = ϵ2
(
V0 + λ

(0)
− Y−

)
+ ϵ4

(
λ

(10)
− Y 2

− + λ
(1)
− Y−

)
+ · · · , r = δ + ϵ2Y−, (7.1.34a)

û = u
(0)
− + ϵ2u

(1)
− + · · · , v̂ = −ϵ3v

(0)
− − ϵ5v

(1)
− − · · · , p̂ = ϵ2p

(0)
− + ϵ4p

(1)
− + · · · ,

(7.1.34b)

α = ϵα0 + ϵ3α1 + · · · , c = ϵ2c0 + ϵ4c1 + · · · . (7.1.34c)

Substituting these expansions into the linearised disturbance equations (2.3.11), we see
that the leading order terms are governed by

dv
(0)
−

dY−
− iα0u

(0)
− = 0, (7.1.35a)

iα0
(
λ

(0)
− Y− + V0 − c0

)
u

(0)
− + iα0p

(0)
− − λ

(0)
− v

(0)
− = 0, (7.1.35b)

dp
(0)
−

dY−
= 0. (7.1.35c)

Solving (7.1.35c) subject to the matching condition (7.1.8a) reveals that

p
(0)
− = P̂0 + α2

0A0I(δ). (7.1.36)

Turning now to the velocity disturbances, the matching condition for u
(0)
− (7.1.8a) can

be expressed as

u
(0)
− → A0λ

(0)
−

δ
as Y− → ∞. (7.1.37)

Writing ζ− = λ
(0)
− Y− + V0 − c0, the solutions for (7.1.35a) and (7.1.35b) are found to be

u
(0)
− = A0λ

(0)
−

δ
, v

(0)
− = iα0A0

δ
ζ− + iα0

λ
(0)
−

(
P̂0 + α2

0A0I(δ)
)

. (7.1.38a)
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A distinguishing feature between the analysis here and in the upper inviscid shear region
is the lack of a ‘no normal flow’ condition as r → δ. This is due to the compliant nature
of the inner cylinder.

At the next order, substitution of the expansions (7.1.34) into (2.3.11) yields

iα1u
(0)
− + iα0u

(1)
− − dv

(1)
−

dY−
− v

(0)
−

δ
= 0, (7.1.39a)

iα0
(
λ

(10)
− Y 2

− + λ
(1)
− Y− − c1

)
u

(0)
− +

(
λ

(0)
− Y− + V0 − c0

) (
iα0u

(1)
− + iα1u

(0)
−

)
−
(
2λ

(10)
− Y− + λ

(1)
−

)
v

(0)
− − λ

(0)
− v

(1)
− + iα1p

(0)
− + iα0p

(1)
− = 0,

(7.1.39b)

dp
(1)
−

dY−
= 0. (7.1.39c)

From (7.1.39c), we see the pressure term is constant and may be written as

p
(1)
− = P

(1)
− , (7.1.40)

where we determine

Im
{
P

(1)
−

}
= Im

{
P

(1)
+

}
+ α2

0 Im{A1}I(δ) (7.1.41)

upon matching (7.1.40) to the core using (7.1.8b).

Solving (7.1.39) for v
(1)
− , we find that the normal velocity disturbance exhibits a singularity

where ζ− = 0. This term can be expressed as

v
(1)
− = iα0

λ
(0)
−

2λ
(10)
−

λ
(0)
−

2 − 1
δλ

(0)
−

(P̂0 + α2
0A0I(δ)

)
ζ− log (ζ−) − iα0A

(1)
− ζ− + iα0P

(1)
−

λ
(0)
−

+

imaginary terms, ζ− ̸= 0, (7.1.42)

As in the upper shear layer, a critical layer smooths out this behaviour and when crossed,
there exists a phase jump of magnitude π. We write log (ζ−) = log |ζ−| for ζ− > 0 and
log (ζ−) = log |ζ−| − iπ for ζ− < 0 ([15], [16], [17]).

In order to relate the constants A
(1)
− and A1, we match expression (7.1.42) in the limit

ζ− → ∞ to the core using (7.1.8b). This gives the relation

Im
{
A

(1)
−

}
= −Im{A1}

δ
. (7.1.43a)
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To complete this section, we study the disturbance behaviour as we approach the viscous
wall layer. As r → δ, we have ζ− → V0 − c0 and we find

u
(0)
− = A0λ

(0)
−

δ
, v

(0)
− → iα0A0

δ
(V0 − c0) + iα0

λ
(0)
−

(
P̂0 + α2

0A0I(δ)
)

, (7.1.44a)

p
(0)
− = P̂0 + α2

0A0I(δ), p
(1)
− = P

(1)
− . (7.1.44b)

Since (V0 − c0) < 0, we have log ζ− → log (c0 − V0) − iπ as r → δ, so finally, we also have

Re
{
v

(1)
−

}
→ α0

λ
(0)
−

2λ
(10)
−

λ
(0)
−

− 1
δλ

(0)
−

(P̂0 + α2
0A0I(δ)

)
(V0 − c0)π−

α0(V0 − c0)
Im {A1}

δ
−

α0 Im
{
P

(1)
−

}
λ

(0)
−

. (7.1.45)

We reiterate that the leading order normal velocity term is not presumed to vanish in
this limit. The normal velocity here thus motivates us to take v̂ = O (ϵ3) in the lower
viscous wall layer. In contrast, we had v̂ = O(ϵ5) in the upper viscous layer. We now
look at the lower layer in more depth.

Viscous wall layer III-

We repeat the analysis performed for the upper viscous layer, highlighting the differences
that arise from being near a compliant, non-stationary cylinder.

The behaviour of the disturbance as we approach the viscous wall layer (as seen in (7.1.44))
proposes that we take û = O(1) and p̂ = O(ϵ2). With these scalings, consideration of a
dominant balance between

iα(U0 − c)û ∼ iαp̂ ∼ R−1û′′ (7.1.46)

in the axial momentum equation (2.3.11b) suggests that the thickness q− of the viscous
wall layer is found to be of order ϵ4. We note that the upper viscous wall layer also
endorses a balance between the inertial, pressure and viscous terms in the axial momentum
equation, and has a thickness of ϵ4.

One key difference between the upper and lower viscous layers is the size of v̂, which was
of order ϵ5 in the upper layer. The matching condition (7.1.44) suggests that v̂ = O(ϵ3)
here. Since αû = O(ϵ), the continuity equation (2.3.11a) then reveals the leading order
term of v̂ must be constant with respect to Y−. We see this presently.
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The expansions in the viscous wall layer near r = δ are given by

U00 = ϵ4λ
(0)
− ȳ + ϵ8λ

(10)
− ȳ2 + · · · , U01 = V0 + ϵ4λ

(1)
− ȳ + · · · , r = δ + ϵ4ȳ−, (7.1.47a)

û = ū
(0)
− + ϵ2ū

(1)
− · · · , v̂ = −ϵ3v̄

(0)
− − ϵ5v̄

(1)
− − · · · , p̂ = ϵ2p̄

(0)
− + ϵ4p̄

(1)
− · · · , (7.1.47b)

α = ϵα0 + ϵ3α1 + · · · , c = ϵ2c0 + ϵ4c1 + · · · . (7.1.47c)

Substituting these expansions into the linearised disturbance equations (2.3.11), the
leading order equations governing the dynamics in this layer are

dv̄
(0)
−

dȳ−
= 0, (7.1.48a)

d2ū
(0)
−

dȳ2 − iα0 p̄
(0)
− + λ

(0)
− v̄

(0)
− − iα0 (V0 − c0) ū

(0)
− = 0, (7.1.48b)

dp̄
(0)
−

dȳ−
= 0. (7.1.48c)

Enforcing a match with the inviscid shear layer above using (7.1.44), the solutions are

ū
(0)
− = Ã exp(−m−ȳ) + A0λ

(0)
−

δ
, (7.1.49a)

v̄
(0)
− = iα0

A0 (V0 − c0)
δ

+ P̂0 + α2
0A0I(δ)

λ
(0)
−

 , (7.1.49b)

p̄
(0)
− = P̂0 + α2

0A0I(δ), (7.1.49c)

where m− = 1√
2(1 − i)

√
α0 (c0 − V0) and Ã is a constant to be determined.

To find Ã, we turn to the boundary conditions on the inner cylinder. We recall the
dynamic condition (2.3.14) is

p̂(δ) = 2
R

v̂′(δ) +
(

−α2c2m + K

R2

)
û(δ)
U ′

0(δ) , (7.1.50)

where ′ denotes differentiation with respect to r. Upon use of (7.1.47), we notice that

û(δ) = O(1), p̂(δ) = O(ϵ2), 2
R

v̂(δ) = O(ϵ12), (7.1.51)

α2c2m = O(ϵ6m) K

R2 = O(ϵ22K) (7.1.52)

since ϵ = R−1/11 (7.1.28).
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Invoking a balance between the pressure terms and the term pertaining to the cylinder’s
compliance in (7.1.50) so that

p̂(δ) ∼ R−2Kû(δ) ∼ α2c2mû(δ), (7.1.53)

we prescribe that
K = O(ϵ−20), m = O(ϵ−4). (7.1.54)

We note that these are the scalings used by Gajjar and Sibanda [61] in their upper-branch
analysis of channel flow with compliant boundaries.

Writing K = ϵ−20K0 for K0 = O(1) and m = ϵ−4m0 for m0 = O(1), from (7.1.50) we
obtain to leading order

p̄
(0)
− = K̃ ū

(0)
−

λ
(0)
−

, (7.1.55)

where K̃ = K0 − α0
2c0

2m0. We substitute our solutions (7.1.49) into (7.1.55), obtaining
an expression for Ã that incorporates the compliance of the inner cylinder. We find

Ã = −λ
(0)
−

(
A0

δ
− P̂0 + α2

0A0I(δ)
K̃

)
. (7.1.56)

The second condition to be imposed on the boundary r = δ is the kinematic condition
(2.3.13),

iα (V − c) û(δ) + v̂(δ)dU0

dr
= 0. (7.1.57)

Using our expansions (7.1.47), to leading order this condition is expressed as

iα0ū
(0)
− (V0 − c0) − λ

(0)
− v̄

(0)
− = 0. (7.1.58)

This gives us a second expression for Ã upon substitution of (7.1.49):

Ã = P̂0 + α2
0A0I(δ)

V0 − c0
. (7.1.59)

Combining (7.1.56) and (7.1.59) enables us to form a pressure-displacement relation
between A0 and P̂0:

A0 (V0 − c0)
δ

+
(
P̂0 + α2

0A0I(δ)
) 1

λ
(0)
−

− V0 − c0

K̃

 = 0. (7.1.60)
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Turning to the dynamics at the next order, substitution of the expansions (7.1.47) into
(2.3.11) gives the equations

iα0ū
(0)
− − dv̄

(1)
−

dȳ−
= 0, (7.1.61a)

(V0 − c0)
(
iα1ū

(0)
− + iα0ū

(1)
−

)
+ iα0

(
λ

(0)
− ȳ− − c̄1

)
ū

(0)
− − λ

(1)
− v̄

(0)
− − λ

(0)
− v̄

(1)
−

+ iα0p̄
(1)
− + iα1p̄

(0)
− − d2ū

(1)
−

dȳ2
−

= 0,
(7.1.61b)

dp̄
(1)
−

dȳ−
= 0. (7.1.61c)

Using our solution for ū
(0)
− (7.1.49), the continuity equation (7.1.61a) reveals that the

normal velocity possesses the solution

v̄
(1)
− = iα0

A0λ
(0)
− ȳ−

δ
− P̂0 + α2

0A0I(δ)
m− (V0 − c0)

exp (−m−ȳ−)
+ iα0D̃, (7.1.62)

where D̃ is a complex-valued constant of integration. In the limit ȳ− → ∞,

Re
{
v̄

(1)
−

}
→ −α0 Im

{
D̃
}
. (7.1.63)

Applying the matching condition

lim
ȳ−→∞

Re{v̂(ȳ−)} = lim
Y−→0

Re{v̂(Y−)},

we equate expressions (7.1.63) and (7.1.45) to acquire the relation

Im
{
D̃
}

= P̂0 + α2
0A0I(δ)

λ
(0)
−

2λ
(10)
−

λ
(0)
−

− 1
δλ

(0)
−

 (c0 −V0)π +(c0 −V0) Im
{
A

(1)
−

}
+

Im
{
P

(1)
−

}
λ

(0)
−

.

(7.1.64)

In what follows, we seek to form a pressure-displacement relation independent of D̃. In
the upper viscous layer, where the nearby cylinder was rigid, it was sufficient to impose
the condition of no normal flow in order to determine the constant of integration that
arose in v̄+. The boundary conditions on a compliant cylinder are not so straightforward
and require us to seek solutions at the next order for û and p̂.

Solving (7.1.61c) and enforcing a match to the inviscid shear layer using (7.1.44b), we
find the pressure disturbance is given by

p̄
(1)
− = P

(1)
− . (7.1.65)
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Using our known solutions (7.1.49), (7.1.62), (7.1.65), we solve (7.1.61b) for ū
(1)
− . We

ensure that ū
(1)
− remains finite as ȳ− → ∞ and apply the kinematic condition (7.1.57) at

order O(ϵ5), which is

iα0 (c0 − V0) ū
(1)
− + [iα0c1 + iα1 (c0 − V0)] ū

(0)
− + λ

(1)
− v̄

(0)
− + λ

(0)
− v̄

(1)
− = 0 on ȳ− = 0.

(7.1.66)
This leads us to the solution

ū
(1)
− = −C(ȳ−) exp (−m−ȳ−) + B, (7.1.67)

where C(ȳ−) is a second order polynomial in ȳ− and B is a constant such that

Im{C} =
Im
{
P

(1)
−

}
c0 − V0

+
λ

(0)
−

(
P̂0 + α2

0A0I(δ)
)

(c0 − V0)2
√

2α0(c0 − V0)
on ȳ− = 0, (7.1.68a)

Im{B} =
Im
{
P

(1)
−

}
− λ

(0)
− Im

{
D̃
}

c0 − V0
. (7.1.68b)

Combining these provides us with an expression for the imaginary part of ū
(1)
− on ȳ− = 0.

Using the expansions (7.1.47), we turn our attention to the dynamic condition (7.1.50)
and obtain at second order

λ
(0)
− p̄

(1)
−

K̃
= ū

(1)
− − λ

(1)
− ū

(0)
−

λ
(0)
−

on ȳ− = 0. (7.1.69)

Setting ȳ− = 0 in (7.1.49a) and using expression (7.1.59) for Ã, we may write

ū
(0)
− (0) = P̂0 + α2

0A0I(δ)
V0 − c0

+ A0λ
(0)
−

δ
. (7.1.70)

From this, we observe that ū
(0)
− is purely real on ȳ− = 0.

Taking the imaginary part of (7.1.69) and substituting our expressions for p̄
(1)
− (7.1.65)

and ū
(1)
− (7.1.67), we learn that

Im
{
D̃
}

= −
Im

{
P

(1)
−

}
K̃

(c0 − V0) − P̂0 + α2
0A0I(δ)

(c0 − V0)
√

2α0(c0 − V0)
, (7.1.71)

after some manipulation and use of (7.1.68).
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We close this section by combining expressions (7.1.64) and (7.1.71) to eliminate D̃ and
form the relation

P̂0 + α2
0A0I(δ)

(c0 − V0)
√

2α0 (c0 − V0)
= Im{A1}

δ
(c0 − V0) − Im

{
P

(1)
−

} 1
λ

(0)
−

+ c0 − V0

K̃

−

P̂0 + α2
0A0I(δ)

λ
(0)
−

2λ
(10)
−

λ
(0)
−

2 − 1
δλ

(0)
−

 (c0 − V0) π. (7.1.72)

We use this pressure-displacement relation to form an eigenrelation for the upper-branch
mode.

Forming the upper eigenrelation

Our aim here is to solve for the leading order disturbance wavenumber and wavespeed.
Using (7.1.17) to eliminate A0, rearrangement of (7.1.60) yields an expression for α0

2 :

α0
2 = (c0 − V0) γ

δI(δ) + c0λ
(0)
+

I(δ) , (7.1.73)

where

γ =
 1

λ
(0)
−

+ c0 − V0

K̃

−1

. (7.1.74)

Upon simplification using (7.1.17), (7.1.41) and (7.1.60), a linear combination of (7.1.32)
and (7.1.72) results in a second relation between α0 and c0,

λ
(0)
+

c0
√

2α0c0
− γ

(c0 − V0)
√

2α0 (c0 − V0)

1 − α0
2I(δ)

c0λ
(0)
+



− γ

λ
(0)
−

1 − α0
2I(δ)

c0λ
(0)
+

2λ
(10)
−

λ
(0)
−

2 − 1
δλ

(0)
−

 (c0 − V0) π +
2λ

(10)
+

λ
(0)
+

2 + 1
λ

(0)
+

 c0π = 0.

(7.1.75)

Two equations with two unknowns, (7.1.73) and (7.1.75) can be solved numerically using
MATLAB. Recalling that α0 is non-negative, we find that there is a unique solution for
α0 and c0 for prescribed values of V0, K̃ and δ.

We verify that in the rigid limit where K̃ → ∞ (with α0, c0, V0 = O(1)), we have γ → λ
(0)
−

and the resulting eigenrelation,
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λ
(0)
+

c0
√

2α0c0
− λ

(0)
−

(c0 − V0)
√

2α0 (c0 − V0)

1 − α0
2I(δ)

c0λ
(0)
+



−

1 − α0
2I(δ)

c0λ
(0)
+

2λ
(10)
−

λ
(0)
−

2 − 1
δλ

(0)
−

 (c0 − V0) π +
2λ

(10)
+

λ
(0)
+

2 + 1
λ

(0)
+

 c0π = 0, (7.1.76)

is exactly that which was derived by Walton [1] for the rigid case.

In figure 7.1.2, we illustrate solutions α0 (left) and (c0 − V0) (right) of the eigenrelations
(7.1.73), (7.1.75) as V0 varies. For all choices of K̃ in figure 7.1.2, it is evident that the
wavenumber increases with the sliding speed. However, the curve representing K̃ = 0.1
increases with an increasing gradient near V0 = 0, whereas the second derivative of α0

with respect to V0 is negative near V0 = 0 for the curves corresponding to other choices
of K̃. We see that for a given V0 ≲ 2, a smaller K̃ yields a lower wavenumber. This
influence of compliance on α0 appears greatest at small sliding velocities, and becomes
less prominent as V0 increases. In fact, we see that all the curves eventually merge at
large V0. We speculate that the leading order wavenumber is independent of the spring
stiffness at large sliding velocities, and investigate this in the following section.

To explore the wavespeed of the neutral mode as V0 increases, we find it more illustrative
to plot (c0 − V0) against V0 (figure 7.1.2). For very small sliding velocities, we observe the
largest wavespeed is associated with the smallest value of K̃ and the smallest wavespeed
is associated with the rigid case. As V0 is increased beyond V0 ≈ 0.2, this situation
reverses. For our choices of K̃, we observe that (c0 − V0) decreases with an increase in
sliding velocity. In fact, as V0 becomes large, we find the quantity (c0 − V0) approaches
zero. This motivates our analysis in the next section.

Figure 7.1.2: Fixing δ = 0.3, this figure describes the solutions α0 (left) and (c0 − V0)
(right) of the eigenrelations (7.1.73), (7.1.75) as V0 varies. This is done for K̃ = 0.1, K̃ =
1, and K̃ = 2. The rigid solution is included for comparison.
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7.1.1 Upper-branch structure in the limit V0 → ∞

It is interesting to explore the behaviour of the disturbance wavespeed and wavenumber
as V0 becomes large. In figure 7.1.2, we illustrated solutions to the upper-branch
eigenrelations (7.1.73), (7.1.75) as V0 varies. We observed that the quantity (c0 − V0)
approaches zero as V0 becomes large. In view of this finding, we anticipate

c0 ∼ V0 (7.1.77)

when V0 is asymptotically large.

Motivated by the rigid scenario in which γ remains order one as V0 → ∞, we will
demand that γ (7.1.74) in our flexible scenario also remains an order one quantity as V0

becomes large. With α0 assumed to be positive, we suppose that α0 ∼ β0V
ρ0

0 for β0 > 0.
Investigating relation (7.1.73) in the limit V0 → ∞, it becomes apparent that we must
have

β2
0V 2ρ0

0 ∼ V0λ
(0)
+

I(δ) =⇒ ρ0 = 1
2 , β0 =

 λ
(0)
+

I(δ)

1/2

. (7.1.78)

Proceeding onto the higher order terms in the expansions of α0 and c0, we write

α0 ∼

 λ
(0)
+

I(δ)

1/2

V
1/2

0 + β̃1V
ρ1

0 , c0 ∼ V0 + β̃2V
ρ2

0 as V0 → ∞, (7.1.79)

where β̃1, β̃2, ρ1 and ρ2 are to be determined in the analysis that follows. Before we
substitute these expansions into the upper-branch eigenrelation (7.1.75), we stipulate
that the term encompassing the inner cylinder’s compliance scales appropriately with
V0 so as to be retained in γ; this requires K̃ = O (V ρ2

0 ) and we let K̃ ∼ k0V
ρ2

0 for some
quantity k0. With this, the expression for γ (7.1.74) suggests

γ ∼ k0λ
(0)
−

k0 + β̃2λ
(0)
−

as V0 → ∞. (7.1.80)

In light of the expansions (7.1.79), we turn again to (7.1.73). This suggests the balance

2δ
(
λ

(0)
+ I(δ)

)1/2
β̃1V

ρ1+1/2
0 ∼

 k0λ
(0)
−

k0 + λ
(0)
− β̃2

+ δλ
(0)
+

 β̃2V
ρ2

0 , (7.1.81)

which evokes the relation
ρ1 + 1

2 = ρ2. (7.1.82)
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Equating the coefficients of the terms in (7.1.81) reveals

λ
(0)
+ λ

(0)
−

k0
β̃2

2 +

λ
(0)
−

δ
+ λ

(0)
+ − 2λ

(0)
− I(δ)1/2λ

(0)
+

1/2
β̃1

k0

 β̃2 − 2I(δ)1/2λ
(0)
+

1/2
β̃1 = 0. (7.1.83)

Now we turn to the upper-branch eigenrelation. Letting V0 become asymptotically large,
we study each term in (7.1.75) individually and find

λ
(0)
+

c0 (2α0c0)1/2 = O
(
V

−7/4
0

)
, (7.1.84a)

γ

(c0 − V0)
√

2α0 (c0 − V0)

1 − α0
2I(δ)

c0λ
(0)
+

 = O
(
V

−(2ρ2+5)/4
0

)
, (7.1.84b)

− γ

λ
(0)
−

1 − α0
2I(δ)

c0λ
(0)
+

2λ
(10)
−

λ
(0)
−

2 − 1
δλ

(0)
−

 (c0 − V0) π = O
(
V −1

0

)
, (7.1.84c)

2λ
(10)
+

λ
(0)
+

2 + 1
λ

(0)
+

 c0π = O (V0) . (7.1.84d)

Since terms (7.1.84a) and (7.1.84c) become negligible, we must have a balance between
terms (7.1.84b) and (7.1.84d). This results in ρ2 = −9/2, and hence ρ1 = −5 as a result
of (7.1.82). Defining B2 = β̃2

1/2, the eigenrelation (7.1.75) suggests that

λ
(0)
−

2
+ πδ

√
2
 λ

(0)
+

I(δ)

1/42λ
(10)
+

λ
(0)
+

+ 1

B2 + 2

λ
(0)
−

k0

B2
3 +

λ
(0)
−

k0

2

B2
5

 = 0

(7.1.85)
in the limit V0 → ∞. It can be shown that this quintic in B2 admits only one real root.

It is natural to expect that the disturbance wavespeed we seek here collapses into the
disturbance wavespeed of the rigid analogue to our problem as k0 → ∞. The asymptotics
of the rigid case, as studied by Walton [1], are

α0,R ∼

 λ
(0)
+

I(δ)

1/2

V
1/2

0 + β1,RV −5
0 , c0,R ∼ V0 + β2,RV

−9/2
0 as V0 → ∞, (7.1.86)

where β1,R and β2,R are constants given by

β1,R = − λ
(0)
−

2
λ

(0)
+

16π2δ6 log δ

(
1 − δ2 + 2δ2 log δ

)2
, (7.1.87)

β2,R = I(δ)1/2λ
(0)
−

2
λ

(0)
+

3/2

8π2 (1 − δ2)2 δ4

(
1 − δ2 + 2δ2 log δ

)2
. (7.1.88)
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We verify that equations (7.1.83) and (7.1.85), in the limit k0 → ∞, elicit the behaviour
described in (7.1.86) and (7.1.87).

We anticipate the real solution of (7.1.85) will be of the form B2 = ϕβ2,R
1/2, where ϕ

is a real and unique function of k0 and δ, and is such that ϕ → 1 in the rigid limit.
Substitution into (7.1.85) illustrates that ϕ must satisfy

ϕ5 + 2
A

ϕ3 + 1
A2 ϕ − 1

A2 = 0, (7.1.89)

where

A = λ
(0)
−

5

2π2δ2k0

2λ
(10)
+

λ
(0)
+

+ 1
−2I(δ)

λ
(0)
+

1/2

∈ IR>0. (7.1.90)

We confirm that (7.1.89) has only one real solution for A as described in (7.1.90). Since
A becomes small as the inner cylinder becomes rigid, (7.1.89) confirms that

ϕ → 1 as k0 → ∞. (7.1.91)

Having established that there exists a solution B2 = ϕβ2,R
1/2, where ϕ satisfies (7.1.89)

and obeys the property outlined in (7.1.91), we can write down explicit forms for β̃1 and
β̃2. Since β̃2 = B2

2, we have
β̃2 = ϕ2β2,R (7.1.92)

and so

β̃2 = I(δ)1/2λ
(0)
−

2
λ

(0)
+

3/2

8π2 (1 − δ2)2 δ4

(
1 − δ2 + 2δ2 log δ

)2
ϕ2. (7.1.93)

Rearranging (7.1.83) to isolate β̃1,

β̃1 =

(
λ

(0)
+ I (δ)

)−1/2

2 · k0

λ
(0)
− β̃2 + k0

λ
(0)
+ λ

(0)
−

k0
2 β̃2

2 − (1 − δ2)2

δ2 log δ
β̃2

 . (7.1.94)

These expressions allow us to see that in the rigid limit, α0 and c0 behave precisely as
α0,R and c0,R (7.1.86, 7.1.87), as expected.

To summarise, we recall (7.1.79) and describe the upper-branch mode behaviour with

α0 ∼

 λ
(0)
+

I(δ)

1/2

V
1/2

0 + β̃1V
−5

0 , c0 ∼ V0 + β̃2V
−9/2

0 as V0 → ∞, (7.1.95)

where β̃1 and β̃2 are as in (7.1.94) and (7.1.93).

Before we approach the end of this analysis, we determine the appropriate sizes for K0

and m0. Recall that ρ2 = −9/2 and that K̃ = O(V ρ2
0 ) to preserve the effect of compliance.
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Then the definition of K̃,
K̃ = K0 − α0

2 c0
2 m0,

suggests that we take

K0 = O(V −9/2
0 ), m0 = O(V −15/2

0 ) as V0 → ∞. (7.1.96)

in view of the scalings for α0 and c0 (7.1.95).

At increasingly large sliding velocities, c0 → V +
0 and we expect the lower critical layer

to move closer to the wall of the inner cylinder, eventually into the lower viscous wall.
Whilst the lower layers now resemble the lower-branch mode, the upper layers are
largely unaffected by V0 becoming asymptotically large. We expect that they retain the
upper-branch structure, though perhaps not with the same thicknesses deduced above.

We anticipate that this coalescence of structures naturally gives rise to a mode that
encompasses characteristics of both the upper- and lower-branch modes. In Chapter 8,
we deduce the magnitude of V at which the new structure forms and study the behaviour
of the resulting mode. We will refer to this as a ‘hybrid’ mode, following the terminology
of Walton [1].

Having studied the upper-branch structure in the limit V0 → ∞, we now investigate the
behaviour of the structure in the limit K̃ → 0−.

7.1.2 Upper-branch structure in the limit K̃ → 0−

As in the lower-branch analysis, we consider the upper-branch structure in the limit
K̃ → 0−. To emphasise the effect of compliance, we concentrate on the dynamics of a
stationary cylinder.

To begin, we examine the upper-branch eigenrelation (7.1.75) in the limit K̃ → 0−,
α0 → ∞ and c0 → 0. This will help us to later find a distinguished scaling for K̃ in
terms of the Reynolds number.

The upper-branch eigenrelation for a stationary inner cylinder is given by (7.1.75) with
V0 = 0, that is

λ
(0)
+

c0
√

2α0c0
− γ

c0
√

2α0c0

1 − α0
2I(δ)

c0λ
(0)
+


− γ

λ
(0)
−

1 − α0
2I(δ)

c0λ
(0)
+

2λ
(10)
−

λ
(0)
−

2 − 1
δλ

(0)
−

 c0π +
2λ

(10)
+

λ
(0)
+

2 + 1
λ

(0)
+

 c0π = 0. (7.1.97)
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This is to be solved with (7.1.73) and (7.1.74), where we again let V0 = 0:

α0
2 = c0γ

δI(δ) + c0λ
(0)
+

I(δ) , γ =
 1

λ
(0)
−

+ c0

K̃

−1

. (7.1.98)

Since we consider the limit in which α0 grows and c0 decays with K̃ → 0−, it must be
the case that γ grows with decreasing K̃. We have omitted the details here, however a
balance of the terms in the eigenrelation (7.1.97), along with a consideration of (7.1.98),
reveals that

α0 ∼ −λ
(0)
−

7

2π2

2λ
(10)
−

λ
(0)
−

2 − 1
δλ

(0)
−

−2

K̃−5, (7.1.99a)

c0 ∼ − 1
λ

(0)
−

K̃ − 4π4

δI(δ)λ(0)
−

15

2λ
(10)
−

λ
(0)
−

2 − 1
δλ

(0)
−

4

K̃12. (7.1.99b)

We use the above scalings to guide us in our search for a new structure.

Large-wavenumber limit of the upper-branch mode

Here, we try to discern how the upper-branch structure changes in the ‘large-α0, small-K̃’
limit described above. As suggested by the scalings (7.1.99), we suppose that

α0 ∼ α0 K̃−5, c0 ∼ c0 K̃, K̃ → 0−. (7.1.100)

We will seek scalings on the flow quantities that enable us retain as many terms as
possible in the Reynolds-number-independent equations governing the core region (7.1.3),
inviscid shear layers (7.1.14), (7.1.35) and viscous wall layers (7.1.30), (7.1.48) of the
upper-branch structure.

In what follows, the inner cylinder is taken to be stationary (V = 0).

Core region

Beginning with the core region, the analysis here corresponds to expansions (7.1.2) and
equations (7.1.3). We seek a scaling for our disturbance quantities F0, G0 and P0, as
defined in (7.1.4). We take P0 = O(1) without loss of generality and, in what follows,
determine the sizes of A0 and P̂0.
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It is apparent from (7.1.4) that

F0 = O(A0), G0 = O(A0K̃
−5). (7.1.101)

Balancing the radial momentum equation (7.1.3c) gives us A0 ∼ A0 K̃10, so that

F0 = O
(
K̃10

)
, G0 = O

(
K̃5
)

. (7.1.102)

Substituting
F0 = K̃10F 0, G0 = K̃5G0, P0 = P 0, (7.1.103)

into the core equations (7.1.3), the governing equations for these barred disturbance
quantities are

iα0F 0 + dG0

dr
+ G0

r
= 0, iα0U00F 0 + G0

dU00

dr
= 0, iα0U00G0 + dP 0

dr
= 0. (7.1.104a)

These equations are unchanged from (7.1.3). Examining the disturbance behaviour as
we approach the inner cylinder,

F 0 = O
(
K̃10

)
, G0 = O

(
K̃5(r − δ)

)
, P 0 = O(1). (7.1.105)

As we approach the outer cylinder,

F 0 = O
(
K̃10

)
, G0 = O

(
K̃5(1 − r)

)
, P 0 → O

(
P̂0
)

, (7.1.106)

where the size of P̂0 is not yet determined.

Upper inviscid shear layer

Following the expansions in (7.1.13a), here we take (1 − r) = ϵ2Y+, where the size of Y+

is to be determined in terms of K̃. In what follows, u
(0)
+ , v

(0)
+ , p

(0)
+ refer to the quantities

introduced in (7.1.13b), though they are no longer assumed to be of size order one.
Anticipating that u

(0)
+ = O(K̃10) in order to match the core (7.1.106), we note that a

balance in the continuity equation (7.1.14a) is achieved with v
(0)
+ = O(K̃5 Y+). This is

consistent with (7.1.106). A balance in the axial momentum equation (7.1.14b) requires
that Y+ = O(K̃) and P̂0 = O(K̃11). Therefore in this region, we write

u
(0)
+ = K̃10 u

(0)
+ , v

(0)
+ = K̃6 v

(0)
+ , p

(0)
+ = K̃11 p

(0)
+ , (1−r) = ϵ2K̃ Y +. (7.1.107)
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Upon substitution in the inviscid shear equations (7.1.14), we obtain

iα0u
(0)
+ + dv

(0)
+

dY +
= 0, (7.1.108a)

iα0
(
λ

(0)
+ Y + − c0

)
u

(0)
+ + λ

(0)
+ v

(0)
+ + iα0p

(0)
+ = 0, (7.1.108b)

dp
(0)
+

dY +
= 0. (7.1.108c)

We remark that this set of equations is unchanged from (7.1.14).

Matching the core, the barred quantities u
(0)
+ and p

(0)
+ are constant throughout this

region. Therefore u
(0)
+ and p

(0)
+ approach the outer cylinder wall with sizes K̃10 and K̃11

respectively. The radial velocity term v
(0)
+ depends linearly on Y +, and the unbarred

v
(0)
+ approaches the upper viscous wall layer with v

(0)
+ = O(K̃6 Y +).

These scalings are in agreement with the existence of a critical layer in this region.

Upper viscous wall layer

The quantities ū+, v̄+, p̄+ in the analysis of this layer refer to the leading order terms in
the expansions (7.1.29). In this region we have (1 − r) = ϵ4ȳ+, where the size of ȳ+ is to
be determined in terms of K̃. Taking ū+ = K̃10 Ū+ and p̄+ = K̃11 P̄+ here to match
the inviscid shear layer (7.1.107), balancing the terms in the axial momentum equation
(7.1.30b) reveals that ȳ+ = K̃2Ȳ+. The continuity equation (7.1.30a) then gives us that
v̄+ = K̃7V̄+.

Substituting these scalings into the viscous wall layer equations (7.1.30), we find the
governing equations

iα0Ū+ + dV̄+

dȲ+
= 0, (7.1.109a)

d2Ū+

dȲ 2
+

+ iα0c0Ū+ − iα0P̄+ = 0, (7.1.109b)

dP̄+

dȲ+
= 0. (7.1.109c)

These are subject to no-slip conditions on the outer cylinder, and the disturbance
quantities must match the inviscid shear layer as Ȳ+ → ∞. These equations are also
unchanged (7.1.30).
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Lower inviscid shear layer

The analysis in this region relates to the expansions (7.1.34) and equations (7.1.35).

In this region, we have (r − δ) = ϵ2Y−, where Y− will be determined in terms of K̃. As
K̃ becomes small, the lower inviscid layer splits into two inviscid regions with different
dominant balances. The size of Y− will be determined for each sub-layer.

Upper inviscid region: inviscid shear layer II(a)-. To match the core solution
(7.1.105), we expect that

u
(0)
− = u

(0)
− K̃10, p

(0)
− = p

(0)
− . (7.1.110)

Seeking to retain as many terms as possible in the continuity (7.1.35a) and axial
momentum (7.1.35b) equations, we see that these scalings suggest that

v
(0)
− = K̃−5 v

(0)
− , Y− = K̃−10Y −. (7.1.111)

Substituting these scalings, along with (7.1.110) into (7.1.35), we learn that the equations
that govern this layer are

iα0u
(0)
− − dv

(0)
−

dY −
= 0, iα0λ

(0)
− Y −u

(0)
− − λ

(0)
− v

(0)
− + iα0p− = 0,

dp
(0)
−

dY −
= 0. (7.1.112)

Note the second equation here differs from (7.1.35b). As y− → ∞, the disturbance
quantities are required to match the core. It can be seen that u

(0)
− and p

(0)
− are constant

throughout this region, whilst v
(0)
− varies linearly with Y −.

The expansions in this inviscid layer do not account for the critical layer present in the
original structure. This highlights the need for the second layer described below.

Lower inviscid region: inviscid shear layer II(b)-. Anticipating that the pressure
and axial velocity disturbances are constant (in Y−) across this layer in accordance
with (7.1.35), we take p

(0)
− = p

(0)
− and u

(0)
− = K̃10 u

(0)
− to match the inviscid layer above.

The existence of a critical layer proposes that Y− = K̃ Y 2− since c0 = O(K̃) (7.1.100).
The axial momentum equation (7.1.35b) then suggests that v

(0)
− = K̃−5 v

(0)
2−. Upon

substitution of these scalings into (7.1.35), we obtain

dv
(0)
2−

dY 2−
= 0,

dp
(0)
−

dY 2−
= 0, λ

(0)
− v

(0)
2− − iα0p

(0)
− = 0. (7.1.113)

These equations differ from (7.1.35). It is evident that v
(0)
2− is constant in this region and

must approach the lower viscous wall layer with order K̃−5.
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Lower viscous wall layer

The analysis of this region follows the expansions (7.1.47) and is based on the equations
(7.1.48). In this region, we have (r − δ) = ϵ4ȳ− where ȳ− will be determined in terms of
K̃. As K̃ becomes small, the lower viscous layer also splits into two regions. These are
described below.

Upper viscous sub-layer: viscous wall layer III(a)-. Here, ū
(0)
− , v̄

(0)
− , p̄

(0)
− refer

to the leading order quantities in the expansions (7.1.47b). To match the inviscid
layer above, we expect that ū

(0)
− = K̃10Ū− and p̄

(0)
− = P̄−. We take v̄

(0)
− = K̃−5V̄− and

y− = K̃15/2 Ȳ− to retain as many terms as possible in the axial momentum equation
(7.1.48b). Substitution of these scalings into (7.1.48) yields

dV̄−

dȲ−
= 0, −λ

(0)
− V̄− = −iα0P̄− + d2Ū−

dȲ 2
−

,
dP̄−

dȲ−
= 0. (7.1.114)

The second equation here differs from (7.1.48b). The expansions in this region do not
allow for the boundary conditions on the inner cylinder to be satisfied. This leads us to
the layer described below.

Lower viscous sub-layer: viscous wall layer III(b)-. Assuming that the leading
order pressure term is constant in this layer, in accordance with (7.1.48c), we take
p̄

(0)
− = P̄−. The boundary conditions (7.1.55) and (7.1.58) on the inner cylinder propose

that
ū

(0)
− = K̃−1 Ū

(2)
− , v

(0)
− = K̃−5 V̄

(2)
− . (7.1.115)

A balance in the axial momentum equation (7.1.48b) requires that y− = K̃2 Ȳ
(2)

− . This
means that our viscous wall layer becomes thinner in the limit K̃ → 0−.

Substituting these scalings into the equations (7.1.48), we find

dV̄
(2)

−

dȲ
(2)

−
= 0, (7.1.116a)

iα0c0Ū
(2)
− + λ

(0)
− V̄

(2)
− − iα0P̄− + d2Ū

(2)
−

dȲ
(2)

−
2 = 0, (7.1.116b)

dP̄−

dȲ
(2)

−
= 0, (7.1.116c)

where the disturbance quantities are subject to matching the viscous layer above as
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y2− → ∞ and

λ
(0)
− V̄

(2)
− − iα0 c0 Ū

(2)
− = 0 on Ȳ

(2)
− = 0, (7.1.117a)

P̄− = Ū
(2)
−

λ
(0)
−

on Ȳ
(2)

− = 0. (7.1.117b)

Figure 7.1.3 encapsulates the behaviour of the upper-branch mode in the limit K̃ → 0−.

O(R−4/11K̃2)

O(R−2/11K̃)

O(1)

O(R−2/11K̃−10)

O(R−2/11K̃)

O(R−4/11K̃15/2)

O(R−4/11K̃2)

Viscous wall layer III+

û = O(K̃10), v̂ = O(R−5/11K̃7), p̂ = O(R−2/11K̃11)

Inviscid core I

û = O(K̃10), v̂ = O(R−1/11K̃5), p̂ = O(R−2/11)

Viscous critical layer

Viscous critical layer

Inviscid shear layer II+
û = O(K̃10), v̂ = O(R−3/11K̃6), p̂ = O(R−2/11K̃11)

Inviscid shear layer II(a)-
û = O(K̃10), v̂ = O(R−3/11K̃−5), p̂ = O(R−2/11)

Inviscid shear layer II(b)-
û = O(K̃10), v̂ = O(R−3/11K̃−5), p̂ = O(R−2/11)

Viscous wall layer III(a)-
û = O(K̃10), v̂ = O(R−3/11K̃−5), p̂ = O(R−2/11)

Viscous wall layer III(b)-

û = O(K̃−1), v̂ = O(R−3/11K̃−5), p̂ = O(R−2/11)

r = 1

r = δ

Figure 7.1.3: Schematic of the asymptotic structure of the upper-branch mode in the
limit K̃ → 0− with α = O

(
R−1/11K̃−5

)
and c = O

(
R−2/11K̃

)
. The inner cylinder is

stationary (V = 0) and has properties K = O
(
R20/11K̃

)
and m = O

(
R4/11K̃9

)
.
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It is of interest to determine the size of K̃ at which this structure breaks down. To this
end, we look at the dynamics of Inviscid shear layer II-(a) more closely here.

Recalling the expansions (7.1.34) in the lower inviscid shear layer, the radial velocity
disturbance in this region can be written as

v̂ = −R−3/11v
(0)
− − R−5/11v

(1)
− , (7.1.118)

where we have used that ϵ = R−1/11. In view of (7.1.111), we observe that v
(0)
− = O

(
K̃−5

)
in the limit K̃ → 0−. It is also of interest to consider the size of v

(1)
− in this limit.

The solution for v
(1)
− was found to be (7.1.42), which we repeat here for convenience:

v
(1)
− = iα0

λ
(0)
−

2λ
(10)
−

λ
(0)
−

2 − 1
δλ

(0)
−

(P̂0 + α2
0A0I(δ)

)
ζ− log (ζ−) − iα0A

(1)
− ζ− + iα0P

(1)
−

λ
(0)
−

+

imaginary terms, ζ− ̸= 0, (7.1.119)

where ζ− = λ
(0)
− Y− − c0 for a stationary inner cylinder. In our analysis of the Inviscid

shear layer II(a)-, we found that Y− = K̃−10 Y − (7.1.111). It is also helpful to recall
that we have found A0 = O(K̃10), P̂0 = O(K̃11) in the limit K̃ → 0− during our
analysis of the core region and upper inviscid layer in Section 7.1.2. In addition, we have
α0 = O(K̃−5), c0 = O(K̃) from (7.1.100).

With these scalings, the first term of v
(1)
− (7.1.119) is expected to grow as K̃ → 0−. We

see

iα0

λ
(0)
−

2λ
(10)
−

λ
(0)
−

2 − 1
δλ

(0)
−

(P̂0 + α2
0A0I(δ)

)
ζ− log (ζ−) = O

(
K̃−15 log

(
K̃−10

))
. (7.1.120)

Therefore we write the expansion (7.1.118) as

v̂ = −R−3/11K̃−5 v
(0)
− − R−5/11K̃−15 log

(
K̃−10

)
v

(1)
− , (7.1.121)

where v
(0)
− and v

(1)
− are of order one in the limit K̃ → 0−. We consider whether this

asymptotic expansion is well-ordered in this limit and note that when K̃−10 ∼ R2/11

log(R2/11) ,

we have K̃−10 log
(
K̃−10

)
∼ R2/11 and the two terms in (7.1.121) become comparable in

size. The structure thus no longer holds when

K̃ ∼
(

log R

R2/11

)1/10

. (7.1.122)
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This completes the analysis of the upper-branch structure in the limit

α0 ∼ α0 K̃−5, c0 ∼ c0 K̃, K̃ → 0−. (7.1.123)

We will not explore the new structure that is expected to arise. Instead, in the next
section we investigate an upper-branch mode with our original scalings

α = R−1/11α0, c = R−2/11c0, V = R−2/11V0, (7.1.124)

where we now stipulate that c < V so that there exists only one critical layer in the
structure.
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7.2 Upper-branch structure II: one critical
layer

O(R−4/11)

O(R−2/11)

O(1)

O(R−2/11)

O(R−4/11)

Viscous wall layer III+

û = O(1), v̂ = O(R−5/11), p̂ = O(R−2/11)

Inviscid core I

û = O(1), v̂ = O(R−1/11), p̂ = O(R−2/11)

Viscous critical layer

Inviscid shear layer II+
û = O(1), v̂ = O(R−3/11), p̂ = O(R−2/11)

Inviscid shear layer II-
û = O(1), v̂ = O(R−3/11), p̂ = O(R−2/11)

Viscous wall layer III-

û = O(1), v̂ = O(R−3/11), p̂ = O(R−2/11)

r = 1

r = δ

Figure 7.2.1: Schematic of the asymptotic structure of the upper branch mode with one
critical layer, where α = O

(
R−1/11

)
and c = O

(
R−2/11

)
. The cylinder properties are

V = O
(
R−2/11

)
, K = O

(
R20/11

)
and m = O

(
R4/11

)
.

In Section 7.1, we investigated an upper-branch structure that consisted of two critical
layers, each situated in an inviscid shear layer that neighbours the core region. However
it is possible to have a structure with only one of these critical layers, specifically the
critical layer closer to the outer cylinder. Depicted in figure 7.2.1, it is this structure
that we discuss in the remainder of this section.

The crucial element in this analysis is that the disturbance wavespeed c is less than
sliding velocity V of the inner cylinder. This ensures that there is no critical layer near
the inner cylinder (see figure 7.2.2). In Chapter 9, we will see an example of a numerical
stability curve corresponding to this structure.
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Figure 7.2.2: Depiction of the base flow U0(r) for δ = 0.2, V = 0.2.

This structure is largely similar to that which is described in Section 7.1, with the
scalings in each region being unchanged. In fact, the dynamics of the core region, upper
inviscid shear layer, and upper viscous wall layer are entirely unchanged. The analysis
of the lower layers closely resembles that of Section 7.1, though there are distinguishing
features that differentiate between the two structures.

We omit details of the analysis here, but instead briefly describe the disturbance solutions
in each region so as to emphasise the similarities and differences between an upper-branch
structure with one critical layer and two critical layers.

As in the previous upper branch structure (Chapter 7, Section 7.1), we scale the inner
cylinder properties as

V = ϵ2 V0, K = ϵ−20K0, m = ϵ−4m0 (7.2.1)

where ϵ = R−1/11. The disturbance wavenumber and wavespeed expand as in (7.1.2b)

α = ϵα0 + ϵ3α1 + · · · , c = ϵ2c0 + ϵ4c1 + · · · . (7.2.2)

The inviscid core region I

In this region, the disturbance expansions are given by (7.1.2),

û = F0 + ϵ2F1 + · · · , v̂ = ϵG0 + ϵ3G1 + · · · , p̂ = ϵ2P0 + ϵ4P1 + · · · , (7.2.3)

and the governing leading order equations by (7.1.3),

iα0F0 + dG0

dr
+ G0

r
= 0, iα0U00F0 + G0

dU00

dr
= 0, iα0U00G0 + dP0

dr
= 0.

(7.2.4a,b,c)
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These are solved to yield (7.1.4),

F0 = A0

r

dU00

dr
, G0 = − iα0A0

r
U00, P0 = P̂0 + α2

0A0I(r), (7.2.5)

where I(r) is as defined in (6.1.11) and A0 is taken to be real.

The solutions for G1 and P1 are as in (7.1.5),

G1(r) = −iα0A1
U00

r
+imaginary terms, P1(r) = P

(1)
+ +α2

0A1I(r)+real terms, (7.2.6)

where A1 and P
(1)
+ are unknown complex constants.

Inviscid shear layer II+

This layer contains a critical layer where the base velocity is equal to the wavespeed of
the neutral mode. The expansions in this region are given by (7.1.13a),

U0 = ϵ2λ
(0)
+ Y+ + ϵ4

(
λ

(10)
+ Y 2

+ + λ
(1)
+ Y+

)
+ · · · , r = 1 − ϵ2Y+, (7.2.7a)

û = u
(0)
+ + · · · , v̂ = −ϵ3v

(0)
+ − ϵ5v

(1)
+ + · · · , p̂ = ϵ2p

(0)
+ + ϵ4p

(1)
+ + · · · . (7.2.7b)

The leading order equations to be solved, subject to matching the core, are identical to
(7.1.14),

iα0u
(0)
+ + dv

(0)
+

dY+
= 0, (7.2.8a)

iα0
(
λ

(0)
+ Y+ − c0

)
u

(0)
+ + λ

(0)
+ v

(0)
+ + iα0p

(0)
+ = 0, (7.2.8b)

dp
(0)
+

dY+
= 0. (7.2.8c)

These have solutions (7.1.16):

u
(0)
+ = −A0λ

(0)
+ , v

(0)
+ = iα0A0

(
λ

(0)
+ Y+ − c0

)
− iα0P̂0

λ
(0)
+

, p
(0)
+ = P̂0. (7.2.9)

Enforcing the inviscid impermeability condition, we obtain the pressure-displacement
relation (7.1.17),

A0c0 + P̂0

λ
(0)
+

= 0. (7.2.10)
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The equations describing the dynamics at the next order are provided in (7.1.18). With
ζ+ = λ

(0)
+ Y+ − c0, (7.1.21) gives

v
(1)
+ = iα0A

(1)
+ ζ+− iα0P

(1)
+

λ
(0)
+

− iα0P̂0

λ
(0)
+

2λ
(10)
+

λ
(0)
+

2 + 1
λ

(0)
+

 ζ+ log (ζ+)+imaginary terms, ζ+ ̸= 0.

(7.2.11)
Matching this to the core region (7.2.6),

Im
{
A

(1)
+

}
= Im{A1}. (7.2.12)

Viscous wall layer III+

The expansions in this region are as in (7.1.29), with

û = ū+ + · · · , v̂ = −ϵ5v̄+ − · · · , p̂ = ϵ2p̄+ + · · · , (7.2.13a)

U0 = ϵ4λ
(0)
+ ȳ+ + · · · , r = 1 − ϵ4ȳ+. (7.2.13b)

and we seek a solution to the leading order governing equations (7.1.30)

iα0ū+ + dv̄+

dȳ+
= 0, (7.2.14a)

d2ū+

dȳ2
+

+ iα0c0ū+ − iα0p̄+ = 0, (7.2.14b)

dp̄+

dȳ+
= 0. (7.2.14c)

The flow quantities must satisfy no-slip conditions on the outer cylinder and must match
the inviscid shear region, and thus must be of the form (7.1.31)

ū+ = P̂0

c0
[1 − exp (−m+ȳ+)] , v̄+ = − iα0P̂0

c0

[
ȳ+ + exp (−m+ȳ+)

m+
− 1

m+

]
,

p̄+ = P̂0, m+ = (1 − i)
(

1
2α0c0

)1/2
.

(7.2.15)

Matching the real part of the normal velocity disturbance to the inviscid shear layer, we
obtain the same pressure-displacement relation as in (7.1.32):

− P̂0

c0 (2α0c0)1/2 = c0 Im{A1} +
Im
{
P

(1)
+

}
λ

(0)
+

+ P̂0

λ
(0)
+

2λ
(10)
+

λ
(0)
+

2 + 1
λ

(0)
+

 πc0. (7.2.16)

We reiterate that, thus far, the analysis has been identical to that in the previous upper
branch structure consisting of two critical layers. We now move onto the lower layers.
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Inviscid shear layer II-

The vital difference in this upper-branch structure is the behaviour of the normal velocity
in this layer as we approach the inner cylinder. Unlike in Section 7.1, we take (V0−c0) > 0,
so we will not have a critical layer in this region. We will later see that this stipulation
is supported by the solutions c0 of our resulting eigenrelation.

Using the principle of maximal interactions, we balance the inertial and pressure terms in
the axial momentum equation (2.3.11b) of the linearised disturbance equations (2.3.11),

iα(U0 − c)û ∼ αp̂, (7.2.17)

and deduce that (r − δ) = O(ϵ2). Thus we write r = δ + ϵ2Y− for an order one variable
Y−. Motivated by matching the solutions of the core (7.2.5), the expansions in this lower
shear region are the same as in (7.1.34),

U0 = ϵ2
(
V0 + λ

(0)
− Y−

)
+ ϵ4

(
λ

(10)
− Y 2

− + λ
(1)
− Y−

)
+ · · · , r = δ + ϵ2Y−, (7.2.18a)

û = u
(0)
− + · · · , v̂ = −ϵ3v

(0)
− − ϵ5v

(1)
− + · · · , p̂ = ϵ2p

(0)
− + ϵ4p

(1)
− + · · · . (7.2.18b)

These satisfy the leading order equations described in (7.1.35),

dv
(0)
−

dY−
− iα0u

(0)
− = 0, (7.2.19a)

iα0
(
λ

(0)
− Y− + V0 − c0

)
u

(0)
− + iα0p

(0)
− − λ

(0)
− v

(0)
− = 0, (7.2.19b)

dp
(0)
−

dY−
= 0, (7.2.19c)

subject to matching the core, and have solutions (7.1.36) and (7.1.38)

u
(0)
− = A0λ

(0)
−

δ
, v

(0)
− = iα0A0

δ
ζ− + iα0

λ
(0)
−

(
P̂0 + α2

0A0I(δ)
)

, p
(0)
− = P̂0 + α2

0A0I(δ)

(7.2.20)

for ζ− = λ
(0)
− Y− + V0 − c0. At the next order, the disturbance quantities are governed by

(7.1.39). The pressure p
(1)
− term is given by (7.1.40),

p
(1)
− = P

(1)
− (7.2.21)

where
Im
{
P

(1)
−

}
= Im

{
P

(1)
+

}
+ α2

0 Im{A1}I(δ) (7.2.22)

upon matching (7.2.21) to the core using (7.2.6). This relation is identical to (7.1.41).
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The normal velocity v
(1)
− is described by (7.1.42),

v
(1)
− = iα0

λ
(0)
−

2λ
(10)
−

λ
(0)
−

2 − 1
δλ

(0)
−

(P̂0 + α2
0A0I(δ)

)
ζ− log (ζ−) − iα0A

(1)
− ζ−

+ iα0P
(1)
−

λ
(0)
−

+ imaginary terms, (7.2.23)

where we recall ζ− = λ
(0)
− Y− + V0 − c0. The normal velocity disturbance does not exhibit

a singularity in the log term as ζ− > 0 throughout this region (since c0 − V0 > 0).
We emphasise that this is the crucial difference between this analysis and that of the
upper-branch structure with two critical layers.

As we approach the inner cylinder then, we have

Re
{
v

(1)
−

}
→ −α0(V0 − c0)

Im {A1}
δ

−
α0 Im

{
P

(1)
−

}
λ

(0)
−

(7.2.24)

instead of (7.1.45). We note the absence of the term involving π, which had arisen due
to the phase shift upon crossing the lower critical layer in the upper-branch structure of
Section 7.1.

Viscous wall layer III-

The thickness of this layer can be determined by requiring a balance in the inertial
term iα(U0 − c)û and viscous term R−1û′′ in the linearised axial momentum equation
(2.3.11b). We find

(r − δ) = O(ϵ4). (7.2.25)

The expansions here are the same as in (7.1.47),

U00 = ϵ4λ
(0)
− ȳ + ϵ8λ

(10)
− ȳ2 + · · · , U01 = V0 + ϵ4λ

(1)
− ȳ + · · · , r = δ + ϵ4ȳ−, (7.2.26a)

û = ū
(0)
− + ϵ2ū

(1)
− · · · , v̂ = −ϵ3v̄

(0)
− − ϵ5v̄

(1)
− − · · · , p̂ = ϵ2p̄

(0)
− + ϵ4p̄

(1)
− · · · . (7.2.26b)

The leading order terms satisfy equations (7.1.48),

dv̄
(0)
−

dȳ−
= 0,

d2ū
(0)
−

dȳ2 − iα0 p̄
(0)
− + λ

(0)
− v̄

(0)
− − iα0 (V0 − c0) ū

(0)
− = 0,

dp̄
(0)
−

dȳ−
= 0,

(7.2.27a,b,c)
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and have solutions similar to those of (7.1.49); we note that m− has been modified from
Section 7.1 to account for c0 being less than V0 in this structure. The solutions are thus

p̄
(0)
− = P̂0 + α2

0A0I(δ), v
(0)
− = iα0

A0 (V0 − c0)
δ

+ P̂0 + α2
0A0I(δ)

λ
(0)
−

 , (7.2.28)

u
(0)
− = Ã exp(−m−ȳ) + A0λ

(0)
−

δ
, (7.2.29)

where Ã is defined in (7.1.59), (7.1.56) and m− = 1√
2(1 + i)

√
α0 (V0 − c0). The dynamic

and kinematic boundary conditions applied on the inner cylinder remain unchanged
from (7.1.55) and (7.1.58) respectively.

The pressure-displacement relation (7.1.60) is unchanged from Section 7.1, and we have

A0 (V0 − c0)
δ

+
(
P̂0 + α2

0A0I(δ)
) 1

λ
(0)
−

− V0 − c0

K̃

 = 0. (7.2.30)

where K̃ = K0 − α0
2 c0

2 m0.

At the next order, the governing equations are identical to those of (7.1.61). The normal
velocity at the next order possesses the solution (7.1.62),

v̄
(1)
− = iα0

A0λ
(0)
− ȳ−

δ
− P̂0 + α2

0A0I(δ)
m− (V0 − c0)

exp (−m−ȳ−)
+ iα0D̃, (7.2.31)

where Im(D̃) will now reflect the lack of a lower critical layer in this structure. Im(D̃) is
found by matching to the inviscid shear region (7.2.24), and in this structure, is given by

Im
{
D̃
}

= (V0 − c0)
Im {A1}

δ
+

Im
{
P

(1)
−

}
λ

(0)
−

, (7.2.32)

the analogous result to (7.1.64). We remark that (7.1.64) includes a term involving π;
this term is not present in (7.2.32) due to the lack of a lower critical layer here. As in
Section 7.1, we find a solution for the next order axial velocity term ū

(1)
− subject to the

boundary conditions (7.1.66) and (7.1.69) on the inner cylinder. The details are the
same as in (7.1.67)-(7.1.70), so we include only the key results here.

We obtain a second expression for Im(D̃) (corresponding to (7.1.71)):

Im
{
D̃
}

=
Im

{
P

(1)
−

}
K̃

(V0 − c0) − P̂0 + α2
0A0I(δ)

(V0 − c0)
√

2α0(V0 − c0)
. (7.2.33)

This is largely the same as (7.1.71), but reflects the modification to m− in this structure.
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Together, the expressions (7.2.32) and (7.2.33) for Im(D̃) yield the pressure-displacement
relation

P̂0 + α2
0A0I(δ)

(V0 − c0)
√

2α0 (V0 − c0)
= −Im{A1}

δ
(V0 − c0)+Im

{
P

(1)
−

}V0 − c0

K̃
− 1

λ
(0)
−

 , (7.2.34)

an adaptation of (7.1.72). With these modified pressure-displacement relations, we now
seek an upper-branch eigenrelation corresponding to the structure one critical layer.

The relations (7.2.10) and (7.2.30) are unchanged from Section 7.1 and yield

α0
2 = (c0 − V0) γ

δI(δ) + c0λ
(0)
+

I(δ) , γ =
 1

λ
(0)
−

+ c0 − V0

K̃

−1

, (7.2.35 a, b)

which are identical to (7.1.73) and (7.1.74).

A linear combination of (7.2.16) and (7.2.34) elicits the eigenrelation

− λ
(0)
+

c0
√

2α0c0
+ γ

(V0 − c0)
√

2α0 (V0 − c0)

1 − α0
2I(δ)

c0λ
(0)
+

 =
2λ

(10)
+

λ
(0)
+

2 + 1
λ

(0)
+

 c0π, (7.2.36)

upon manipulation using with (7.2.10), (7.2.22) and (7.2.30).

As expected, this eigenrelation bears great similarity to (7.1.75). The term on the
right-hand side of (7.2.36) is associated with the phase shift that arises as we cross the
critical layer near the outer cylinder. Unlike (7.1.75), here we have no term associated
with a lower critical layer.

Equations (7.2.35) and (7.2.36) can be solved for α0 and c0 numerically using MATLAB.
Figure 7.2.3 illustrates a solution for the eigenrelation for varying K̃ with fixed δ = 0.5
and V0 = 0.2. Increasing K̃ from zero, we observe there exists a critical value K̃c beyond
which the solution ceases to exist. For our choice of δ and V0 here, it appears that
K̃c ≈ 0.2328. As K̃ approaches this critical value from below, the wavespeed c0 of the
neutral mode becomes small and tends to zero, whilst the wavenumber becomes large.
Our numerical investigations also show γ → −∞ in this limit. It is worth remarking
that this cut-off for K̃ demonstrates that there is no analogous mode in the rigid case.
We also note that figure 7.2.3 supports our earlier assumption that c0 < V0.
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Figure 7.2.3: Illustration of the behaviour of the leading order wavenumber (left) and
leading order wavespeed (right) as we vary K̃ for an inner cylinder with δ = 0.5 and
V0 = 0.2. The asymptote at K̃ = K̃c is located at K̃c ≈ 0.2328.

Behaviour of the upper-branch mode near the critical stiffness when
V0 = O(1)

We briefly consider the behaviour of the upper-branch structure (with only one critical
layer) when V0 is an order one quantity and K̃ approaches from below the critical value
beyond which the upper-branch eigenrelations (7.2.35, 7.2.36) have no solution.

Our expression for γ (7.2.35b) can be written as

γ = λ
(0)
− K̃

K̃ − λ
(0)
− V0 + λ

(0)
− c0

. (7.2.37)

Our numerical results suggest that, near the critical stiffness with V0 = O(1), we have
α0 → ∞, c0 → 0 and γ → −∞. Upon use of (7.2.37), these considerations indicate that
K̃ is an order one quantity such that

K̃ = K̃c + · · · , K̃c = λ
(0)
− V0 (7.2.38)

with
K̃ − K̃c → 0− (7.2.39)

as we approach the critical stiffness. It is convenient to introduce a small positive
parameter κ and write

κ = −
(
K̃ − K̃c

)
, κ → 0+. (7.2.40)

Consideration of γ using (7.2.37) reveals that

γ = −λ
(0)
− K̃c κ−1 + · · · . (7.2.41)
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We have assumed here that κ is larger than c0, and we will later show this is consistent
with the analysis that follows.

The quadratic in α0 (7.2.35a) elicits the balance

α0
2 ∼ λ

(0)
− V0 K̃c

δI(δ) κ−1, (7.2.42)

which reveals that α0 = O(κ−1/2) with

α0 =

√√√√λ
(0)
− V0 K̃c

δI(δ) κ−1/2 + · · · . (7.2.43)

We now focus our attention on the eigenrelation (7.2.36) to learn about the behaviour
of c0. We will consider each term in (7.2.36) individually. Using (7.2.43), the first term

− λ
(0)
+

c0
√

2α0c0
= O

(
c0

−3/2 α0
−1/2

)
= O

(
c0

−3/2 κ1/4
)

. (7.2.44)

The second term can be rewritten using (7.2.35a), and we see that

γ

(V0 − c0)
√

2α0 (V0 − c0)

1 − α0
2I(δ)

c0λ
(0)
+

 = γ2

δc0λ
(0)
+

√
2α0 (V0 − c0)

= O
(
c−1

0 κ−7/4
)

(7.2.45)
upon recollection of (7.2.43). Finally, consideration of the third term illustrates2λ

(10)
+

λ
(0)
+

2 + 1
λ

(0)
+

 c0π = O (c0) . (7.2.46)

Recalling that we seek a solution that has c0 → 0 and γ → −∞, it is apparent that the
second term (7.2.45) becomes large and the third term (7.2.46) decays. We thus expect
a balance between the first (7.2.44) and second (7.2.45) terms, which gives

c0 = O(κ4) (7.2.47)

and, in particular,

c0 = λ
(0)
+

4
δ2 V0

λ
(0)
−

4
K̃4

c

κ4 + · · · (7.2.48)

after some manipulation. We remark that this is consistent with our earlier assumption
that c0 is smaller than κ.
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It is of interest to compare the limiting behaviour found here to our solutions of the full
eigenrelation (7.2.36) in figure 7.2.3. For the cylinder properties δ = 0.5 and V0 = 0.2,
the expansion (7.2.38) gives K̃ ≈ 0.2328 near the critical stiffness. This is consistent
with our analysis of the full problem, where we observed K̃c ≈ 0.2328 (see figure 7.2.3).

In order to illustrate the wave behaviour near the critical stiffness, we plot the leading
order behaviour of the expansions

α0 =

√√√√λ
(0)
− V0 K̃

δI(δ) κ−1/2 + · · · , c0 = λ
(0)
+

4
δ2 V0

λ
(0)
−

4
K̃4

κ4 + · · · (7.2.49)

as κ → 0+ (that is, as K̃ approaches K̃c from below).

The orange dotted lines in figure 7.2.4 illustrate how the near-critical-stiffness wavenumber
and wavespeed described in (7.2.49) vary with K̃ as κ → 0. The blue lines represent
solutions α0 and c0 to the full eigenrelations (7.2.35), (7.2.36). As expected, agreement
between the two approaches increases as K̃ approaches the critical stiffness.

Figure 7.2.4: Illustration of the behaviour of the leading order wavenumber (left) and
leading order wavespeed (right) as we vary K̃ for an inner cylinder with δ = 0.5 and
V0 = 0.2. Orange dotted lines represent the limiting behaviour described in (7.2.49).
Blue lines represent solutions to the full eigenrelations (7.2.35), (7.2.36). The critical
stiffness is located at K̃c ≈ 0.2328.

Behaviour of the upper-branch mode as near the critical stiffness when
V0 becomes large

It is also of interest to examine the behaviour of the one-critical-layer upper-branch
structure as K̃ approaches its critical value K̃c when V0 is not constrained to be order
one. Numerical investigations suggest that, in this limit, we have α0 → ∞, c0 → 0 and
γ → −∞.
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In view of this, we introduce a positive parameter Γ ≫ 1 and let

γ ∼ −γ0Γ, γ0 > 0. (7.2.50)

Examining the expression for γ (7.2.35b) suggests that we take

K̃c = λ
(0)
− V0 (7.2.51)

with
V0 ∼ V̄0Γa + V̄1Γa−1, K̃ ∼ λ

(0)
− V̄0Γa − K̄1Γa−1 (7.2.52)

where K̄1 + V̄1 > 0 and a will be determined in the analysis that follows. We assume
c0 = o(Γa−1) and confirm this during the course of our analysis. Using this, we find that
γ0 can be expressed as

γ0 = λ
(0)
−

2
V̄0

K̄1 + V̄1
. (7.2.53)

Balancing the terms in the relation (7.2.35a) in the limit Γ → ∞, we see the leading
order wavenumber behaves as

α0 ∼
(

γ0V̄0

δI(δ)

)1/2

Γ
a+1

2 . (7.2.54)

It now remains to determine a. Substituting (7.2.35) into the eigenrelation (7.2.36), we
write the eigenrelation as

− λ
(0)
+√

2α0c0
+ γ2√

2α0 (V0 − c0)
1

δλ
(0)
+

=
2λ

(10)
+

λ
(0)
+

2 + 1
λ

(0)
+

 πc2
0 (7.2.55)

Note that this equation is exact. We write the eigenrelation in this form to more easily
identify the sizes of each term.

A balance between all three terms requires that

Γ− a+1
4 c

−1/2
0 ∼ Γ

7−3a
4 ∼ c0

2, (7.2.56)

which gives a = 39/11 and
c0 ∼ Γ−5/11c̄0. (7.2.57)

Substitution of our expansions (7.2.50), (7.2.52), (7.2.53), (7.2.54) and (7.2.57) into the
eigenrelation (7.2.55) reveals that c̄0 can be obtained by solving

π

2λ
(10)
+

λ
(0)
−

+ 1
(2ᾱ0V̄0

)1/2
c̄

5/2
0 − γ2

0
δ

c̄
1/2
0 + λ

(0)
−

2
V̄

1/2
0 = 0. (7.2.58)

153



7.2. UPPER-BRANCH STRUCTURE II: ONE CRITICAL LAYER

In the limit Γ → ∞, we thus have

α0 ∼ Γ25/11ᾱ0, c0 ∼ Γ−5/11c̄0, V0 ∼ Γ39/11V̄0, K̃ ∼ Γ39/11λ
(0)
− V̄0. (7.2.59)

7.2.1 Upper-branch structure in the limit γ → −∞

The above analysis alludes to the existence of a new structure in the limit γ → −∞, and
we now seek to determine the size of γ at which the upper-branch structure described in
Section 7.2 breaks down. Guided by the behaviour in (7.2.59), we adopt the scalings

α0 ∼ Γ25/11α0, c0 ∼ Γ−5/11c0, (7.2.60)

V0 ∼ Γ39/11V 0, K̃ ∼ Γ39/11K, γ ∼ −γ0Γ, Γ → ∞. (7.2.61)

Upon recollection that K̃ = K0 − α0
2c0

2m0, we take

K0 = O(Γ39/11), m0 = O(Γ−1/11) (7.2.62)

in order to preserve both the spring stiffness and mass of the inner cylinder in the
quantity K̃.

To facilitate our understanding of the new structure that arises, we identify scalings (in
terms of Γ) for the disturbance quantities in the upper-branch structure. We endeavour
to retain as many terms as possible in the Reynolds-number-independent equations
governing the core region (7.2.4), inviscid shear layers (7.2.8), (7.2.19) and viscous wall
layers (7.2.14), (7.2.27).

The inviscid core region I

In this region, our analysis pertains to the expansions (7.2.3), equations (7.2.4) and
solutions F0, G0, P0 in (7.2.5).

The linearity of the problem allows us to begin by taking F0 = O(1) in this region. In
view of the solution for F0, this determines A0 to be such that A0 = O(1). A balance in
the continuity equation (7.2.4a) with iα0F0 ∼ G0

′(r) then requires G0 = O(Γ25/11). The
radial momentum equation (7.2.4c) yields P0 = O(Γ50/11) upon enforcing the balance
iα0U00G0 ∼ P0

′(r).
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Writing F0 = F 0, G0 = Γ25/11G0 and P0 = Γ50/11P 0, the equations (7.2.4) give

iα0F 0 + dG0

dr
+ G0

r
= 0, (7.2.63a)

iα0U00F 0 + G0
dU00

dr
= 0, (7.2.63b)

iα0U00G0 + dP 0

dr
= 0. (7.2.63c)

These balances are identical to those in (7.2.4), though with barred variables now.

As we approach the outer cylinder, consideration of (7.2.5) shows

F0 = O(1), G0 = O(Γ25/11(1 − r)), P0 = O(P̂0), (7.2.64)

where the size of P̂0 will be determined in the analysis that follows. As r → δ,

F0 = O(1), G0 = O(Γ25/11(r − δ)), P0 = O(Γ50/11). (7.2.65)

Inviscid shear layer II+

In this layer, our flow quantities correspond to the expansions (7.2.7), equations (7.2.8)
and solutions (7.2.9). We have (1 − r) = ϵ2Y+, where Y+ is to be determined in terms of
Γ.

To match with the core (7.2.64), we take u+ = O(1) in this region. This region contains
a critical layer, so we balance the base velocity with the wavespeed. This reveals the
thickness of the layer to be

(1 − r) = O(R−2/11Γ−5/11) (7.2.66)

so that in this region, Y+ = Γ−5/11Y +. This layer becomes thinner in the limit Γ → ∞.

Preserving the terms in the axial momentum equation (7.2.8c), we take v
(0)
+ = O(Γ20/11)

and p
(0)
+ = O(Γ−5/11). We substitute

u
(0)
+ = u

(0)
+ , v

(0)
+ = Γ20/11v

(0)
+ , p

(0)
+ = Γ−5/11p

(0)
+ , (7.2.67)
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into (7.2.8), and the resulting leading order equations are

iα0u
(0)
+ + dv

(0)
+

dY +
= 0, (7.2.68a)

iα0
(
λ

(0)
+ Y + − c0

)
u

(0)
+ + λ

(0)
+ v

(0)
+ + iα0p

(0)
+ = 0, (7.2.68b)

dp
(0)
+

dY +
= 0, (7.2.68c)

subject to matching the core. These balances are the same as in (7.2.8), with barred
variables instead.

Before we move onto the upper viscous layer, we comment on the size of P̂0. From
(7.2.68c), it is apparent that p

(0)
+ is constant with respect to Y +. Since the pressure

disturbance must match the core (7.2.64), we require that P̂0 = O(Γ−5/11).

Viscous wall layer III+

Our analysis in this layer focuses on the expansions (7.2.13) and equations (7.2.14). Here
we have (1 − r) = ϵ4ȳ+, where ȳ+ is to be determined in terms of Γ.

In this region, the pressure is constant (7.2.14c) and must match inviscid shear layer
(7.2.67), so we take p̄+ = O(Γ−5/11). With ū+ = O(1) to match the inviscid layer (7.2.67),
we turn to the axial momentum equation (7.2.14b).

Striking the balance
d2ū+

dȳ2
+

∼ iα0c0ū+ ∼ iα0p̄+

gives the thickness of the layer to be (1 − r) = O(R−4/11Γ−10/11) with ȳ+ = Γ−10/11Y +

upon recollection that α0 = O(Γ25/11) and c0 = O(Γ−5/11) (7.2.60). This layer becomes
thinner in the limit Γ → ∞.

The continuity equation (7.2.14a) then suggests that v̄+ = O(Γ15/11). We thus write

ū+ = U+, v̄+ = Γ15/11V +, p̄+ = Γ−5/11P +, ȳ+ = Γ−10/11Y +, (7.2.69)
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which, upon substitution into (7.2.14), reveals the equations

iα0U+ + dV +

dY +
= 0, (7.2.70a)

d2U+

dY
2
+

+ iα0c0U+ − iα0P + = 0, (7.2.70b)

dP +

dY +
= 0, (7.2.70c)

subject to no-slip conditions on the outer cylinder and matching the inviscid shear layer.
We note that these equations contain the same balances as in (7.2.14).

Inviscid shear layer II-

In this layer, we concentrate on the expansions (7.2.18) and equations (7.2.19). We have
r = δ + ϵ2Y−, where the size of Y− will be determined in terms of Γ.

We expect that u
(0)
− = O(1) and p

(0)
− = O(Γ50/11), as suggested by the matching conditions

from the core (7.2.65). Recalling that we have α0 = O(Γ25/11) (7.2.60), we balance
the inertia and pressure terms in the axial momentum equation (7.2.19b) to obtain
Y− = O(Γ50/11) and v

(0)
− = O(Γ75/11).

In consideration of these scalings, as well as those in (7.2.60) and (7.2.61), we substitute

u
(0)
− = u−, v

(0)
− = Γ75/11v−, p

(0)
− = Γ50/11p−, Y− = Γ50/11Y − (7.2.71)

α0 = Γ25/11α0, c0 = Γ−5/11c0, V0 = Γ39/11V 0, (7.2.72)

into the equations (7.2.19).

This gives

dv−

dY −
− iα0u− = 0, (7.2.73a)

iα0λ
(0)
− Y −u− + iα0p− − λ

(0)
− v− = 0, (7.2.73b)

dp−

dY −
= 0, (7.2.73c)

which are to be solved in conjunction to matching the core (7.2.65). Note that this layer
becomes thicker in the limit Γ → ∞. We see that these equations are not identical to
(7.2.19); specifically, the sliding velocity V0 and wavespeed c0 have not been retained in
the axial momentum equation (7.2.73b).
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7.2. UPPER-BRANCH STRUCTURE II: ONE CRITICAL LAYER

Viscous wall layer III-

In this layer, our analysis pertains to the expansions (7.2.26) and equations (7.2.27). We
have r = δ + ϵ4ȳ− where the size of ȳ− is to be determined in terms of Γ.

We anticipate p̄
(0)
− = Γ50/11P − and v̄

(0)
− = Γ75/11V − to match the inviscid shear layer

(7.2.71), and expect both quantities to be constant in this layer in view of the solutions
(7.2.28).

With K̃ = Γ39/11K (7.2.61), the dynamic boundary condition (7.1.55) suggests that
ū

(0)
− = Γ U− so that

P − = K

λ
(0)
−

U−. (7.2.74)

The kinematic condition (7.1.58) reduces to

iα0V 0U− − λ
(0)
− V − = 0 (7.2.75)

in view of the scalings (7.2.60) and (7.2.61), which show α0 = Γ25/11α0, c0 = Γ−5/11c0

and V0 = Γ39/11V 0.

To incorporate the inertial, pressure and viscous terms in the axial momentum equation
(7.2.27c), we require ȳ− = Γ−32/11Y −.

Substituting

ū
(0)
− = Γ U−, v̄

(0)
− = Γ75/11V −, p̄

(0)
− = Γ50/11P −, ȳ− = Γ−32/11Y − (7.2.76)

into (7.2.27), the governing equations in this limit are

dV −

dY −
= 0,

∂2U−

∂Y −
2 − iα0P − + λ

(0)
− V − − iα0V 0U− = 0,

dP −

dY −
= 0. (7.2.77)

We note the wavespeed c0 is not retained in these equations, though the sliding velocity
is included. The layer becomes thinner in the limit Γ → ∞.

Structure breakdown

We illustrate the regions described above in figure 7.2.5. A natural next step is to
investigate the size of Γ for which this structure breaks down.

To this end, we turn our attention back to the lower inviscid shear region, which becomes
thicker in the limit Γ → ∞. We specifically concentrate on the radial velocity disturbance
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in our expansions (7.2.18), where we recall ϵ = R−1/11 so that

v̂ = −R−3/11v
(0)
− − R−5/11v

(1)
− + · · · . (7.2.78)

During the course of our analysis, we determined that v
(0)
− = O(Γ75/11) (7.2.71) in the

limit Γ → ∞. It is worthwhile to also consider the expected size of v
(1)
− in this limit.

The solution to v
(1)
− is given by (7.2.23), which is

v
(1)
− = iα0

λ
(0)
−

2λ
(10)
−

λ
(0)
−

2 − 1
δλ

(0)
−

(P̂0 + α2
0A0I(δ)

)
ζ− log (ζ−) − iα0A

(1)
− ζ−

+ iα0P
(1)
−

λ
(0)
−

+ imaginary terms, (7.2.79)

where we recall ζ− = λ
(0)
− Y− + V0 − c0. We focus on the first term of this solution.

In the lower inviscid shear layer, we found that Y− = Γ50/11Y − (7.2.71). It is also helpful
to recall that we have found A0 = O(1), P̂0 = O(Γ−5/11) in the limit Γ → ∞ during our
analysis of the core region and upper inviscid layer in Section 7.2.1. In addition, we have
α0 = O(Γ25/11), c0 = O(Γ−5/11), V0 = O(Γ39/11) from (7.2.60), (7.2.61).

Using this, we observe that the first term of v
(1)
− (7.2.79) behaves as

iα0

λ
(0)
−

2λ
(10)
−

λ
(0)
−

2 − 1
δλ

(0)
−

(P̂0 + α2
0A0I(δ)

)
ζ− log (ζ−) = O(Γ125/11 log Γ) (7.2.80)

We therefore expect the normal velocity v
(1)
− to become larger in the limit Γ → ∞. The

expansion (7.2.78) can now be written as

v̂ = −R−3/11Γ75/11v− − R−5/11Γ125/11 log Γ v
(1)
− (7.2.81)

where v− and v
(1)
− are order one in the limit Γ → ∞.

We see that this expansion for v̂ (7.2.81) is no longer well-ordered when

Γ = R1/25

(log R)11/50 . (7.2.82)

At this size of Γ, our upper-branch structure no longer holds and

α = O

(
1√

log R

)
, c = O

( R√
log R

)−1/5
 . (7.2.83)
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O(R−4/11Γ−10/11)

O(R−2/11Γ−5/11)

O(1)

O(R−2/11Γ50/11)

O(R−4/11Γ−32/11)

Viscous wall layer III+

û = O(1), v̂ = O(R−5/11Γ15/11), p̂ = O(R−2/11Γ−5/11)

Inviscid core I

û = O(1), v̂ = O(R−1/11Γ25/11), p̂ = O(R−2/11Γ50/11)

Viscous critical layer

Inviscid shear layer II+
û = O(1), v̂ = O(R−3/11Γ20/11), p̂ = O(R−2/11Γ−5/11)

Inviscid shear layer II-
û = O(1), v̂ = O(R−3/11Γ75/11), p̂ = O(R−2/11Γ50/11)

Viscous wall layer III-

û = O(Γ), v̂ = O(R−3/11Γ75/11), p̂ = O(R−2/11Γ50/11)

r = 1

r = δ

Figure 7.2.5: Schematic of the asymptotic structure of the upper branch mode with
one critical layer, where α = O

(
R−1/11Γ25/11

)
and c = O

(
R−2/11Γ−5/11

)
. The cylinder

properties are V = O
(
R−2/11Γ39/11

)
, K = O

(
R20/11Γ39/11

)
and m = O

(
R4/11Γ−1/11

)
.
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7.3. SUMMARY

7.3 Summary

We began this chapter by studying an upper-branch structure with two critical layers
(Section 7.1). We explored the influence of flexibility on this neutral mode, and found
that this influence diminished as the sliding velocity of our inner cylinder was increased.
This motivated us to investigate the structure in the limit V0 → ∞ (Section 7.1.1). Our
results from this analysis suggested that the lower critical layer moves closer to the
wall of the inner cylinder at increasingly large sliding velocities. We expect that the
upper layers of this structure retain an upper-branch-type structure, while the lower
layers become of a lower-branch-type structure. We will explore this in more depth in
the next chapter. In Section 7.1.2, we went on to study the upper-branch mode in the
large-wavenumber limit with K̃ → 0−.

In Section 7.2, we considered an upper-branch structure with the same scalings as in
Section 7.1, but with the stipulation that the disturbance wavespeed is smaller than the
sliding velocity of the inner cylinder. This means that there does not exist a critical
layer near the inner cylinder wall. We found that this structure has a critical value
K̃c beyond which there exists no neutral mode, and as such, there is no rigid analogue
to this structure. In Chapter 9, we will see an example of a numerical stability region
corresponding to this structure. Examining the eigenrelations (7.2.35) and (7.2.36), we
briefly explored the behaviour of the neutral mode when K̃ is near the critical value K̃c

and V0 is of order one. We also analysed the one-critical-layer upper-branch structure
when K̃ ∼ K̃c and V0 becomes large.
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Chapter 8

An asymptotic approach at large
Reynolds numbers: a hybrid

analysis

Cowley and Smith [45] explored the stability properties of plane Poiseuille Couette flow
at large Reynolds numbers using asymptotic techniques, and determined the scalings
for a neutral mode that exhibits properties pertaining to both the lower-branch and
upper-branch structures. In his detailed study of annular Poiseuille Couette flow, Walton
[1] also investigated this neutral mode at large Reynolds numbers, coining the term
‘hybrid’ to describe such a structure.

Following the analysis of Walton [1], in Section 7.1.1 we considered an upper-branch
structure in the limit V0 → ∞, where we recall that V0 is such that V = R−2/11V0. We
briefly revisit our findings here. When V0 is increased sufficiently, we expect that the
upper-branch structure breaks down with the critical layer in the lower inviscid shear
layer (see figure 7.1.1) moving into the lower viscous wall layer, so that the lower layers
form a lower-branch-type structure. We expect that the upper layers, however, remain
unaffected and retain their upper-branch-type structure.

To enable us to find the scalings for the hybrid mode, we consider this new mode as
an extension of the upper-branch mode with V = R−2/11V0 in the limit V0 → ∞. We
emphasise that consideration of the limit V0 → ∞ will not pertain to a large sliding
velocity V , owing to the scaling V = R−2/11V0. We confirm this in the subsequent
analysis, where we determine the order of V0 at which the upper-branch mode breaks
down and find a distinguished scaling for the hybrid mode.
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In view of this objective, we restate the limiting behaviour of the upper-branch mode as
V0 → ∞, as found in (7.1.95), (7.1.96) (Chapter 7, Section 7.1.1):

α ∼ R−1/11α0, c ∼ R−2/11c0, K = R20/11K0, m = R4/11K0, V = R−2/11V0,

(8.0.1)
where

α0 ∼

 λ
(0)
+

I(δ)

1/2

V
1/2

0 , c0 ∼ V0+β̃2V
−9/2

0 , K0 ∼ k0V
−9/2

0 , m0 ∼ m0V
−15/2

0 , V0 → ∞,

(8.0.2)
with β̃2 > 0 defined in (7.1.93).

When the scaled sliding velocity in the upper branch structure, V0, becomes sufficiently
large, we see from the asymptotic behaviour (8.0.2) that c0 becomes very close to V0. As
this happens, we expect the lower critical layer of the upper-branch structure to move
closer to the inner cylinder wall and eventually be situated in the lower viscous wall
layer, whose thickness we will denote by q in the limit V0 → ∞.

The existence of a critical layer near the inner wall requires the basic velocity to be equal
to the disturbance wavespeed in the vicinity of r = δ. With the basic velocity expanding
as

U0 = V + λ
(0)
− (r − δ) + ... as r → δ, (8.0.3)

we have
U0 − c ∼ λ

(0)
− (r − δ) + R−2/11V0 − R−2/11c0 (8.0.4)

in view of the upper-branch scalings (8.0.1). In the limit V0 → ∞, this gives

U0 − c ∼ λ
(0)
− q − R−2/11β̃2V

−9/2
0 (8.0.5)

upon use of (8.0.2) and thus, in order to have a critical layer, we require

q = O
(
R−2/11V

−9/2
0

)
. (8.0.6)

With viscosity playing an important role in this region, we also expect a balance between
the inertial and viscous terms of the linearised axial momentum equation (2.3.11b). For
sufficiently large V0, we have

α = O(R−1/11V
1/2

0 ) and U0 − c = O(R−2/11V
−9/2

0 ) (8.0.7)

in consideration of (8.0.1), (8.0.2) and (8.0.5), (8.0.6) respectively. Therefore the balance

iα(U0 − c)û ∼ 1
R

d2û

dr2 (8.0.8)

163



requires
R−1/11V

1/2
0 R−2/11V

−9/2
0 ∼ R−1

(
R−2/11V

−9/2
0

)−2
. (8.0.9)

This is achieved when
V0 = O(R4/143). (8.0.10)

Recalling the scalings (8.0.2), we see then that our new structure arises when the
disturbance wavespeed and wavenumber are of the size

α0 = O
(
V

1/2
0

)
= R2/143, c0 = O (V0) = R4/143. (8.0.11)

For the spring stiffness and mass described by (8.0.2), we have

K0 = O
(
V

−9/2
0

)
= R−18/143, m0 = O

(
V

−15/2
0

)
= R−30/143, (8.0.12)

which indicates that the inner cylinder has become more flexible.

In light of (8.0.11), (8.0.12) and the upper-branch scalings (8.0.1), the upper-branch
structure transforms into a new regime in which

α = O
(
R−1/11R2/143

)
, c = O

(
R−2/11R4/143

)
, (8.0.13a)

V = O
(
R−2/11R4/143

)
, K = O

(
R20/11R−18/143

)
, m = O

(
R4/11R−30/143

)
.

(8.0.13b)

This can be written as

α = O
(
R−1/13

)
, c = O

(
R−2/13

)
, (8.0.14a)

V = O
(
R−2/13

)
, K = O

(
R22/13

)
, m = O

(
R2/13

)
. (8.0.14b)

Following the terminology of Walton [1], these will be known as our hybrid scalings and
we convey this behaviour through the expansions

V = ϵ2V 0, α = ϵα0 + ϵ3α1, c = ϵ2c0 + ϵ4c1, c0 = V 0, K = ϵ−22K0, m = ϵ−2m0,

(8.0.15)
where we have introduced order one barred variables and the small parameter ϵ is now
given by

ϵ = R−1/13. (8.0.16)

We remark that these are the scalings found by Cowley and Smith [45] in the planar
case.

We now move onto analysing the flow quantities in each region of the hybrid structure.
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O(R−5/13)

O(R−2/13)

O(1)

O(R−4/13)

Viscous wall layer III+

û = O(1), v̂ = O(R−6/13), p̂ = O(R−2/13)

Inviscid core I

û = O(1), v̂ = O(R−1/13), p̂ = O(R−2/13)

Viscous critical layer

Inviscid shear layer II+
û = O(1), v̂ = O(R−3/13), p̂ = O(R−2/13)

Viscous wall layer III-

û = O(1), v̂ = O(R−5/13), p̂ = O(R−2/13)

r = 1

r = δ

Figure 8.0.1: Schematic of the asymptotic structure of the hybrid mode, where α =
O
(
R−1/13

)
and c = O

(
R−2/13

)
. The cylinder properties are V = O

(
R−2/13

)
, K =

O
(
R22/13

)
and m = O

(
R2/13

)
.

The core region

The dynamics that govern this region are identical to those in the core regions of the
upper and lower branch structures with α = O(R−1/11) and α = O(R−1/7) respectively.
Chapters 6 and 7 contain details of the analysis in this region, but we include the
solutions here for completeness.

The expansions in this region are given by

û = F0 + · · · , v̂ = ϵG0 + ϵ3G1 + · · · , p̂ = ϵ2P0 + ϵ4P1 + · · · . (8.0.17a)

Substituting these into the linearised disturbance equations (2.3.11) yields the governing
equations (7.1.3) and (7.1.5) with α0 replaced by α0.
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These have solutions

F0 = A0

r

dU00

dr
, (8.0.18a)

G0 = −iα0A0
U00

r
, G1 = −iα0A1

U00

r
+ purely imaginary terms, (8.0.18b)

P0 = P̂0 + α2
0A0I(r), P1 = P

(1)
+ + α2

0A1I(r) + purely real terms, (8.0.18c)

where A0 is a real constant, A1 and P
(1)
+ are unknown complex constants, and I(r) is as

defined in (6.1.11). We reiterate that these disturbance solutions (8.0.18) are identical
to those of the upper-branch core (7.1.4, 7.1.6), with α0 replaced by α0.

The behaviour of these quantities as we approach the inner and outer cylinders provide
matching conditions for the flow expansions in the neighbouring layers. As r → 1−,

F0 → −A0λ
(0)
+ , G0 ∼ −iα0A0λ

(0)
+ (1 − r), P0 → P̂0, (8.0.19a)

Re{G1} ∼ α0 Im{A1}λ
(0)
+ (1 − r), Im{P1} → Im

{
P

(1)
+

}
. (8.0.19b)

Similarly, as r → δ+,

F0 → A0λ
(0)
−

δ
, G0 ∼ − iα0A0λ

(0)
−

δ
(r − δ), P0 → P̂0 + α2

0A0I(δ), (8.0.20a)

Re{G1} ∼ α0 Im{A1}λ
(0)
−

δ
(r − δ), Im{P1} → Im

{
P

(1)
+

}
+ α2

0 Im{A1}I(δ). (8.0.20b)

Upper inviscid shear layer

The inviscid shear region here is largely the same as its analogue in the upper branch
structure (see figure 7.1.1 of Section 7.1).

In order to have a critical layer in this region, the basic velocity must be of the same
order as the disturbance wavespeed. Since U0 ∼ λ

(0)
+ (1 − r) here and c = O(ϵ2) (8.0.15),

we require (1 − r) = O(ϵ2) and write r = 1 − ϵ2Y+. In view of the matching conditions
(8.0.19), the flow quantities are then expanded as

û = u
(0)
+ + · · · , v̂ = −ϵ3v

(0)
+ − ϵ5v

(1)
+ + · · · , p̂ = ϵ2p

(0)
+ + ϵ4p

(1)
+ + · · · . (8.0.21)

Substituting the expansions (8.0.21) into (2.3.11), to leading order our governing
equations are given by (7.1.14), with α0 and c0 replaced with α0 and c0 respectively.
Solving these subject to matching the core (8.0.19), we find that the expansion terms
are given by

u
(0)
+ = −A0λ

(0)
+ , v

(0)
+ = iα0A0

(
λ

(0)
+ Y+ − c0

)
− iα0P̂0

λ
(0)
+

, p
(0)
+ = P̂0. (8.0.22)
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We apply a condition of zero normal flow as Y+ → 0, and consequently obtain our first
displacement-pressure relationship,

A0c0 + P̂0

λ
(0)
+

= 0. (8.0.23)

Since u
(0)
+ and p

(0)
+ are constant with respect to Y+, these quantities remain order one as

we approach the outer cylinder.

At the next order, the substitution of (8.0.21) into (2.3.11) yields the governing equations
(7.1.18), where α0, α1, c0 and c1 are replaced with analogous barred variables. Taking
into account the matching conditions (8.0.19), we introduce ζ+ = λ

(0)
+ Y+ − c0 and obtain

the solutions

p
(1)
+ = P+, (8.0.24a)

v
(1)
+ = iα0A

(1)
+ ζ+ − iα0P+

λ
(0)
+

− iα0P̂0

λ
(0)
+

2λ
(10)
+

λ
(0)
+

2 + 1
λ

(0)
+

 ζ+ log (ζ+) + imaginary terms, ζ+ ̸= 0

(8.0.24b)

where A
(1)
+ is an unknown complex constant and

Im(P+) = Im
{
P

(1)
+

}
. (8.0.25)

A critical layer manifests where ζ+ = 0 to smooth out the singularity that arises in the
logarithmic term of v

(1)
+ . As we cross the critical layer, there exists a phase jump of

magnitude π in the logarithmic term. We express this by writing log (ζ+) = log |ζ+| for
ζ+ > 0, and log (ζ+) = log |ζ+| − iπ for ζ+ < 0. The details of such layers have been
studied by, for example, Lin [15], Stuart [16] and Reid [17].

In order to find a relation between the constants A1 and A
(1)
+ , we impose matching

between the real part of G1 as r → 1 in the core (8.0.19b) and the real part of v
(1)
+

(8.0.24b) as Y+ → ∞ in the inviscid shear layer. This gives

Im
{
A

(1)
+

}
= Im{A1}. (8.0.26)

It will be useful to determine the behaviour of v
(1)
+ as we approach the outer cylinder.
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In consideration of (8.0.26) and the phase shift mentioned above, we find that

Re
{
v

(1)
+

}
→ α0c0P̂0

λ
(0)
+

2λ
(10)
+

λ
(0)
+

2 + 1
λ

(0)
+

 π + α0c0 Im{A1} +
α0 Im

{
P

(1)
+

}
λ

(0)
+

as Y+ → 0.

(8.0.27)

Thus far, our analysis has not differed from that of the upper-branch structure. This
will no longer be the case in the upper viscous wall layer, which we study presently.

Upper viscous wall layer

The quantities û and p̂ approach the viscous layer with orders 1 and ϵ2 respectively, as
seen from the expansions (8.0.21) and solutions (8.0.22). Motivated by this, we take
û = O(1) and p̂ = O(ϵ2) in this region.

We also enforce a dominant balance between the inertia and viscous terms in the axial
momentum equation (2.3.11b). Letting q̃ denote the thickness of the layer, we see that

iα (U0 − c) û ∼ 1
R

d2û

dr2 (8.0.28)

gives
q̃ ∼ ϵ5 (8.0.29)

since α = O(ϵ), c = O(ϵ2) (8.0.15) and the base velocity is much smaller than the
disturbance wavespeed in this region. The wall layer here is thus thinner than the upper
viscous wall layer of the upper-branch structure, which had thickness R−4/11 (see figure
7.1.1). The continuity equation (2.3.11a) then suggests that αû ∼ v̂/q̃, yielding

v̂ ∼ ϵ6. (8.0.30)

Under consideration of (8.0.21) and (8.0.27), it may appear that the normal velocity in
the inviscid shear layer approaches the viscous layer with an order of ϵ5. To resolve the
mismatch of scalings as suggested by (8.0.30), it must be the case that Re

{
v

(1)
+

}
→ 0 as

Y+ → 0 in the inviscid shear region. Thus we have

c0P̂0

λ
(0)
+

2λ
(10)
+

λ
(0)
+

2 + 1
λ

(0)
+

 π + c0 Im{A1} +
Im
{
P

(1)
+

}
λ

(0)
+

= 0 (8.0.31)

upon use of (8.0.27). This expression provides us with our second displacement-pressure
relationship.

This completes our analysis for the upper layers of the hybrid structure.
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Next, we explore the lower viscous layer and seek further relations relating the unknown
constants P̂0, P

(1)
+ , A0 and A1.

Lower viscous wall layer

We will see that the dynamics of this viscous layer will have some resemblance to the
lower-branch structure. In this region, we have

U0 − c ∼ λ
(0)
− (r − δ) + ϵ2

(
V 0 − c0

)
− ϵ4c1. (8.0.32)

Recalling that V 0 = c0 (8.0.15), the existence of a critical layer requires that (r − δ) =
O(ϵ4) and so we write r = δ + ϵ4y− for an order one variable y−. This is as expected
from (8.0.6) and (8.0.10). To enable us to find the disturbance expansions in this region,
we recall the behaviour of the core disturbance as r → δ (8.0.20):

F0 → A0λ
(0)
−

δ
, G0 ∼ −ϵ4 iα0A0λ

(0)
−

δ
y−, P0 → P̂0 + α0

2A0I(δ). (8.0.33a)

In view of the core expansions (8.0.17), this motivates the scalings

û = u
(0)
− , v̂ = ϵ5v

(0)
− , p̂ = ϵ2p

(0)
− + ϵ4p

(1)
− , (8.0.34)

which evoke the dominant balances iαû ∼ v̂′ in the continuity equation (2.3.11a) and
α(U0 − c)û ∼ R−1û′′ in the momentum equation (2.3.11b). Substituting (8.0.34) into
the linearised disturbance equations (2.3.11) gives

p
(0)
− = 0 (8.0.35)

and, upon matching with the core (8.0.33), unveils the relation

P̂0 = −α0
2A0I(δ). (8.0.36)

In conjunction with (8.0.23), the relation (8.0.36) explicitly relates α0 to c0, and defines
the leading order wavenumber term to be

α0 =
c0λ

(0)
+

I(δ)

1/2

. (8.0.37)

Since c0 = V 0 (8.0.15), we can write

α0 =
V 0λ

(0)
+

I(δ)

1/2

, c0 = V 0. (8.0.38)
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This is consistent with the upper-branch behaviour (8.0.2) in the limit V0 → ∞. We
remark that the leading order disturbance wavenumber and wavespeed are independent
of the cylinder compliance, and the expressions (8.0.38) are identical to that which was
found in the rigid case by Walton [1].

We now seek to understand how compliance affects the hybrid structure, and we aim for
an eigenrelation for the wavespeed correction c1.

From substitution of (8.0.34) into the linearised disturbance equations (2.3.11), we
further learn that the next order pressure term p

(1)
− does not vary in y−. Matching to

the core disturbance (8.0.20b), we specifically have

Im
{
p

(1)
−

}
= Im

{
P

(1)
+

}
+ α0

2 Im{A1}I(δ). (8.0.39)

Before continuing, it is worthwhile to rewrite Im
{
p

(1)
−

}
using (8.0.31) and (8.0.38). After

some manipulation, we obtain

Im{p
(1)
− } = −P̂0V 0

2λ
(10)
+

λ
(0)
+

2 + 1
λ

(0)
+

 π. (8.0.40)

Using (8.0.36) to write P̂0 in terms of A0, this reveals

Im{p
(1)
− } = α0

2I(δ)V 0A0

2λ
(10)
+

λ
(0)
+

2 + 1
λ

(0)
+

 π. (8.0.41)

In the analysis that follows, we will seek a second relation between Im{p
(1)
− } and A0.

The substitution of (8.0.34) into (2.3.11) also elicits the pair of coupled equations

iα0u
(0)
− + dv

(0)
−

dy−
= 0, (8.0.42a)

iα0
(
λ

(0)
− y− − c1

)
u

(0)
− + λ

(0)
− v

(0)
− = −iα0p

(1)
− + d2u

(0)
−

dy2
−

, (8.0.42b)

which are reminiscent of the lower-branch analysis and enable us to find the leading order
velocity terms. With (8.0.33) in mind, these are to be solved subject to the matching
condition

u
(0)
− → A0λ

(0)
−

δ
as Y+ → ∞. (8.0.43)

After some manipulation, the coupled equations (8.0.42) can be combined to yield a
third-order differential equation given by

d3u
(0)
−

dy3
−

− iα0
(
λ

(0)
− y− − c1

) du
(0)
−

dy−
= 0. (8.0.44)
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Upon making the substitution τ = du
(0)
−

dy−
, this reduces to a second-order equation in τ.

Next, we perform a linear change of variables with ξ = ay− + b, where

a =
(
iα0λ

(0)
−

)1/3
and b = − iα0c1(

iα0λ
(0)
−

)2/3 . (8.0.45)

Under this transformation, (8.0.44) becomes the well-known Airy equation,

d2τ

dξ2 − ξτ = 0. (8.0.46)

It is reasonable to expect that τ remains bounded as ξ → ∞, and this leads us to the
solution

du
(0)
−

dy−
= C · Ai(ξ), (8.0.47)

where C is a constant to be determined and Ai is the Airy function of the first kind.
Integrating this differential equation with respect to y− and subsequently imposing the
matching condition (8.0.43) reveals that

C = a

κ(b)

A0λ
(0)
−

δ
− u

(0)
− (0)

 , (8.0.48)

and hence u
(0)
− is found to possess the solution

u
(0)
− (y−) = 1

κ(b)

A0λ
(0)
−

δ
− u

(0)
− (0)

∫ ξ

b
Ai(ξ)dξ + u

(0)
− (0), κ(b) =

∫ ∞

b
Ai(ξ)dξ.

(8.0.49)
Differentiating this twice with respect to y−, we note that

d2u
(0)
−

dy2
−

=

(
iα0λ

(0)
−

)2/3

κ(b)

A0λ
(0)
−

δ
− u

(0)
− (0)

Ai′(ξ). (8.0.50)

Thus far, the effects of flexibility have not entered the hybrid structure. The boundary
conditions (2.3.13, 2.3.14) on the inner cylinder, which are

iα (V − c) û(δ) + v̂(δ)U ′
0(δ) = 0, (8.0.51a)

p̂(δ) = 2
R

v̂′(δ) +
(

−α2c2m + K

R2

)
û(δ)

U0
′(δ) , (8.0.51b)

allow us to determine the sizes of K and m that enable the compliance of the cylinder
to penetrate the structure at leading order. We wish to evoke the balance

p̂(δ) ∼ R−2Kû(δ) ∼ α2c2mû(δ) (8.0.52)

in (8.0.51b).
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From the scalings (8.0.15), (8.0.16) and (8.0.34), we note that R−2 = ϵ26, α2c2 = O(ϵ6),
û = O(1) and p̂ = O(ϵ4), since p

(0)
− = 0 (8.0.35). We therefore prescribe

K = O(ϵ−22), m = O(ϵ−2), (8.0.53)

which is as suggested in (8.0.15), and write K = ϵ−22K0 and m = ϵ−2m0 for order one
quantities K0 and m0. With this scaling, the conditions (8.0.51) at leading order are
expressed as

u
(0)
− (0) = λ

(0)
−

K
p

(1)
− , (8.0.54a)

−iα0c1u
(0)
− (0) + λ

(0)
− v

(0)
− (0) = 0, (8.0.54b)

with K = K0 − α2
0 c2

0 m0. Recall that p
(1)
− is constant in y−, so that p

(1)
− (0) = p

(1)
− . The

axial momentum equation (8.0.42b) evaluated at y− = 0 allows us to form another
relationship on the boundary:

−iα0c1u
(0)
− (0) + λ

(0)
− v

(0)
− (0) = −iα0p

(1)
− + d2u

(0)
−

dy2
−

∣∣∣∣∣∣
y−=0

(8.0.55a)

Using the kinematic condition (8.0.54b) and our expression for the second derivative of
u

(0)
− (8.0.50), this simplifies to

iα0p
(1)
− =

(
iα0λ

(0)
−

)2/3

κ(b)

A0λ
(0)
−

δ
− u

(0)
− (0)

Ai′(b). (8.0.56)

We introduce a variable s− such that b = −i1/3s− and recall the function g(s−) is defined
as

g(s−) = i5/3 Ai′(−i1/3s−)
κ(−i1/3s−) . (8.0.57)

Expressing u
(0)
− (0) in terms of p

(1)
− using (8.0.54a), we now write (8.0.56) as

p
(1)
−

λ
(0)
−

5/3

K
g(s−) − α0

1/3

 = λ
(0)
−

5/3
A0

δ
g(s−) (8.0.58)

upon use of (8.0.57) and rearrangement of the resulting relation.

We recall that we have an expression that relates the imaginary part of p
(1)
− with A0

(8.0.41). Our goal now is to use (8.0.58) to form a second such relation, also without
the involvement of the real part of p

(1)
− . To this end, we let

Z1 = p
(1)
− , Z2 = λ

(0)
−

5/3

K
g(s−) − α0

1/3, Z3 = λ
(0)
−

5/3
A0

δ
g(s−), (8.0.59)
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and we rewrite equation (8.0.58) in the form

Z1Z2 = Z3. (8.0.60)

We take the real and imaginary parts of this complex equation to form two separate
real-valued equations. An appropriate linear combination of these allows us to form the
relation

Im{Z1} Re{Z2} +
(

Re{Z3} + Im{Z1} Im{Z2}
Re{Z2}

)
Im{Z2} = Im{Z3}, (8.0.61)

which is independent of Re{Z1}, as desired. Before continuing, we revisit our expression
for Im{p

(1)
− } (8.0.41) to write

Im{Z1} = α0
2I(δ)V 0A0

2λ
(10)
+

λ
(0)
+

2 + 1
λ

(0)
+

 π. (8.0.62)

Substitution of the expressions (8.0.59) and (8.0.62) into (8.0.61) culminates in the
hybrid eigenrelation

V
2
0π

2λ
(10)
+

λ
(0)
+

+ 1

λ

(0)
−

10/3

K
2 (Im{g(s−)})2 +

λ
(0)
−

5/3

K
Re{g(s−)} −

 λ
(0)
+

I(δ)

1/6

V
1/6
0


2

+ λ
(0)
−

5/3

δ
Im{g(s−)}V

1/6
0

 λ
(0)
+

I(δ)

1/6

= 0 (8.0.63)

after simplification with (8.0.38), with g(s−) defined in (8.0.57) and

K = K0 − λ
(0)
+ V

3
0

I(δ) m0. (8.0.64)

Fixing V 0, K0, m0 and δ, we wish to solve the above relation numerically for s−. To
achieve this, we plot the left-hand side of (8.0.63) as a function of s− and graphically
determine for which approximate values of s− the left-hand side of (8.0.63) is zero. These
provide initial guesses for the roots of the eigenrelation, and we refine these using a
MATLAB solver.

Once we have obtained the roots s− of (8.0.63), we are able to find the wavespeed
correction c1 as follows. Recalling that b = −i1/3s−, with b defined in (8.0.45), s− takes
the form

s− = α0c1(
α0λ

(0)
−

)2/3 . (8.0.65)
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Rearranging this and using (8.0.38), we find the wavespeed correction c1 to be

c1 = s−λ
(0)
−

2/3

α0
1/3 = s−λ

(0)
−

2/3

V 0
1/6

I(δ)
λ

(0)
+

1/6

. (8.0.66)

To obtain the rigid analogue of eigenrelation (8.0.63), we examine the relation as K → ∞
with α0 = O(1), c1 = O(1) and V 0 = O(1). In this limit, (8.0.63) reduces to

V
13/6
0 = −

 λ
(0)
+

I(δ)

−1/6
λ

(0)
−

5/3

πδ

2λ
(10)
+

λ
(0)
+

+ 1
−1

Im(g(s−)) (8.0.67)

upon rearrangement, which is precisely that which was found in the rigid case by Walton
[1].

For fixed δ = 0.6, figure 8.0.2 depicts solutions c1 of the rigid eigenrelation (8.0.66),
(8.0.67) as V 0 varies. For comparison, we also illustrate solutions c1 of the flexible
eigenrelation (8.0.63), (8.0.66) against V 0 for the values K = 5 and K = 10. For the
rigid case, Walton [1] found that there exists a critical value of V 0, say V c, beyond which
there exist no solutions for the hybrid mode. Below this velocity, there typically exists
two solutions for c1, though there is a small range of V 0 where four solutions exist. We
observe that the general structure of the solution is unchanged as we decrease K from
the rigid limit, however the critical velocity V c decreases with K. We emphasise that
we have considered only positive values of K here.

Figure 8.0.2: Fixing δ = 0.6, each curve in this figure depicts solutions of the eigenrelation
(8.0.63) for fixed K as V 0 varies. This is done for two choices of K. The rigid solution
is included for comparison.
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In summary, we have considered a so-called hybrid asymptotic structure whose lower and
upper layers are reminiscent of a lower-branch-type and an upper-branch-type structure
respectively. To conclude this chapter, we recall that the compliance of the inner cylinder
does not affect the leading order wavenumber or wavespeed of neutral modes belonging
to this hybrid structure. This is unlike the situation with the lower-branch and upper-
branch modes. We did find, however, that the critical value V c below which there exists
a solution on this scaling is influenced by the value of K.

In the next chapter, we will compare results from the asymptotic analysis in Chapters 6-8
with stability regions obtained numerically from the circular Orr-Sommerfeld equation
(2.4.3).
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Chapter 9

Comparisons of numerical and
asymptotic results

In this chapter, we compare the results from our asymptotic analysis with those from
our numerical computations, anticipating that agreement between the two approaches
improves as the Reynolds number R becomes large. We begin by reviewing our asymptotic
findings and then discuss how these can be used to predict neutral curves in the (R, α)
plane for a given radius ratio δ, sliding velocity V , spring stiffness K and mass m.

9.1 Summary of asymptotic results

To recapitulate the work done in Chapters 6-8, we have established five distinguished
scalings for the wavenumber α and wavespeed c associated with the linearised disturbance
problem (2.3.11) subject to the flexibility conditions (2.3.12, 2.3.13, 2.3.14). We briefly
recollect these below.

S1. (Chapter 6, Section 6.1). The three-zone lower-branch scaling with

α = R−1/7α0 + · · · , c = R−2/7c0 + · · · , (9.1.1a)

V = R−2/7V0, K = R12/7K0, m = R4/7m0, (9.1.1b)
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9.1. SUMMARY OF ASYMPTOTIC RESULTS

has the associated eigenrelation (6.1.50), which we repeat below:

(
λ

(0)
−

)5/3
g(s−)

K̃

[
α

7/3
0 I(δ) +

(
λ

(0)
+

)5/3
g(s+)

]
=

α
1/3
0

α
7/3
0 I(δ) +

(
λ

(0)
+

)5/3
g(s+) +

(
λ

(0)
−

)5/3
g(s−)

δ

 , (9.1.2)

with K̃ defined as
K̃ = K0 − α2

0 c2
0 m0, (9.1.3)

and the function g defined in (6.1.47) as

g(s) = i5/3 Ai′(−i1/3s)
κ(−i1/3s) . (9.1.4)

The variables s+ and s− are given by (6.1.48),

s+ = α0c0(
α0λ

(0)
+

)2/3
and s− = α0 (c0 − V0)(

α0λ
(0)
−

)2/3
. (9.1.5)

For V ̸= 0, it is convenient to write this in the form (6.1.52), which is

t(s+, s−)
[
(t(s+, s−))7I(δ) + 1

δ
V0

7
(
λ

(0)
−

)5/3
g(s−) + V0

7
(
λ

(0)
+

)5/3
g(s+)

]
=

1
K̃

[
(t(s+, s−))7I(δ)V0

(
λ

(0)
−

)5/3
g(s−) + V0

8
(
λ

(0)
+

)5/3 (
λ

(0)
−

)5/3
g(s+)g(s−)

]
, V0 ̸= 0,

(9.1.6)
where

t(s+, s−) =
(
λ

(0)
+

)2/3
s+ −

(
λ

(0)
−

)2/3
s− (9.1.7)

and

K̃ = K0 −
s+

2
(
λ

(0)
+

)4/3
(t(s+, s−))4

V0
4 m0. (9.1.8)

The rigid analogues of (9.1.2) and (9.1.6) are respectively given by

α
7/3
0 I(δ) +

(
λ

(0)
+

)5/3
g(s+) +

(
λ

(0)
−

)5/3
g(s−)

δ
= 0, (9.1.9)

and, with V0 ̸= 0,((
λ

(0)
+

)2/3
s+ −

(
λ

(0)
−

)2/3
s−

)7
I(δ) + V0

7
(1

δ

(
λ

(0)
−

)5/3
g(s−) +

(
λ

(0)
+

)5/3
g(s+)

)
= 0,

(9.1.10)
as seen in Walton [1].
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9.1. SUMMARY OF ASYMPTOTIC RESULTS

S2. (Chapter 6, Section 6.2). A three-zone lower-branch structure emerges for neutral
modes with K − α2c2m < 0. This has the scalings

α = α0 + · · · , c = R−1/3 c0 + · · · , V = R−1/3 V 0, K = R5/3 K0, m = R1/3 m0.

(9.1.11a)

The leading order wavenumber and wavespeed can be determined through the relations
(6.2.36), (6.2.38):

α0
1/3 =

(
λ

(0)
−

)5/3

K0 − α0
2c0

2m0
g(s0), c0 = V 0 + λ

(0)
−

2/3
s0

α0
1/3 , (9.1.12)

where s0 ≈ 2.2972 is such that Im(g(s0)) = 0.

S3. (Chapter 7, Section 7.1). The five-zone upper-branch structure consisting of two
critical layers has c > V with the scalings

α = R−1/11α0 + · · · , c = R−2/11c0 + · · · , (9.1.13a)

V = R−2/11V0, K = R20/11K0, m = R4/11m0. (9.1.13b)

The eigenrelation arising from this structure is given by

λ
(0)
+

c0
√

2α0c0
− γ

(c0 − V0)
√

2α0 (c0 − V0)

1 − α0
2I(δ)

c0λ
(0)
+


− γ

λ
(0)
−

1 − α0
2I(δ)

c0λ
(0)
+

2λ
(10)
−

λ
(0)
−

2 − 1
δλ

(0)
−

 (c0 − V0) π +
2λ

(10)
+

λ
(0)
+

2 + 1
λ

(0)
+

 c0π = 0,

(9.1.14)

which is to be solved in conjunction with the relation

α0
2 = (c0 − V0) γ

δI(δ) + c0λ
(0)
+

I(δ) , (9.1.15)

where

γ =
 1

λ
(0)
−

+ c0 − V0

K̃

−1

, K̃ = K0 − α2
0c2

0m0. (9.1.16)

These are equations (7.1.73), (7.1.74) and (7.1.75) of Section 7.1. In the rigid scenario,
the appropriate relations to solve are detailed by Walton [1], and are given by (9.1.14)
and (9.1.15) with γ now defined as

γ = λ
(0)
− . (9.1.17)
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9.1. SUMMARY OF ASYMPTOTIC RESULTS

S4. (Chapter 7, Section 7.2). Similar to structure S3, this upper-branch structure also
comprises of five zones. The distinguishing feature between the two structures is the
size of the disturbance wavespeed in relation to the cylinder sliding velocity. For this
structure with only one critical layer, we have c < V . The scalings are unchanged from
S3, so we have

α = R−1/11α0 + · · · , c = R−2/11c0 + · · · , (9.1.18a)

V = R−2/11V0, K = R20/11K0, m = R4/11m0. (9.1.18b)

The eigenrelation pertaining to this structure is a modification of that of S3, owing to
the lack of a critical layer near the inner cylinder. The leading order wavenumber and
wavespeed are related by the equations

− λ
(0)
+

c0
√

2α0c0
+ γ

(V0 − c0)
√

2α0 (V0 − c0)

1 − α0
2I(δ)

c0λ
(0)
+

 =
2λ

(10)
+

λ
(0)
+

2 + 1
λ

(0)
+

 c0π (9.1.19)

and

α0
2 = (c0 − V0) γ

δI(δ) + c0λ
(0)
+

I(δ) , (9.1.20)

where

γ =
 1

λ
(0)
−

+ c0 − V0

K̃

−1

, K̃ = K0 − α2
0 c2

0 m0. (9.1.21)

These are equations (7.2.36) and (7.2.35) of Section 7.2. As discussed in Section 7.2,
this structure has no rigid counterpart.

S5. (Chapter 8). The last of our discussed structures, the hybrid structure, was found
to have scalings

α = R−1/13 α0 + · · · , c = R−2/13 c0 + R−4/13 c1 + · · · , (9.1.22a)

V = R−2/13 V 0, K = R22/13 K0, m = R2/13 m0. (9.1.22b)

The leading order wavenumber and wavespeed are given by

α0 =
V 0λ

(0)
+

I(δ)

1/2

, c0 = V 0. (9.1.23)

Introducing

K = K0 − λ
(0)
+ V

3
0

I(δ) m0, (9.1.24)
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9.2. APPLICATION OF ASYMPTOTIC RESULTS

the wavespeed correction c1 can be found by solving

V
2
0π

2λ
(10)
+

λ
(0)
+

+ 1

λ

(0)
−

10/3

K
2 (Im{g(s−)})2 +

λ
(0)
−

5/3

K
Re{g(s−)} −

 λ
(0)
+

I(δ)

1/6

V
1/6
0


2

= −λ
(0)
−

5/3

δ
Im{g(s−)}V
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for s− and subsequently applying the relation

c1 = s−λ
(0)
−

2/3

V 0
1/6

I(δ)
λ

(0)
+

1/6

. (9.1.26)

These relations are (8.0.38), (8.0.63) and (8.0.66) of Chapter 8.

The rigid analogue of the hybrid structure is given by (9.1.23) and (9.1.26) with

V
13/6
0 = −

 λ
(0)
+

I(δ)

−1/6
λ

(0)
−

5/3

πδ

2λ
(10)
+

λ
(0)
+

+ 1
−1

Im(g(s−)), (9.1.27)

as found by Walton [1].

9.2 Application of asymptotic results

Given a cylinder of radius ratio δ, sliding velocity V , spring stiffness K and mass m, we
compute the leading order wavenumber and wavespeed of our neutral disturbance(s) at
a specified Reynolds number using the relevant eigenrelation from structures S1 - S5
(Section 9.1). We repeat this for various large Reynolds numbers, eventually forming a
predicted neutral curve in the (R, α) plane. We illustrate this by way of an example,
beginning with a stationary cylinder.

Consider the numerically obtained stability regions of a rigid inner cylinder with the
properties δ = 0.7 and V = 0, as depicted by the shaded region in figure 9.2.1a. At large
Reynolds numbers, the lower and upper branches of the neutral curve are governed by
the rigid analogues of structures S1 and S3 respectively. The relevant eigenrelations
are thus (9.1.5, 9.1.10) and (9.1.14, 9.1.15, 9.1.17), with αR1/7 and αR1/11 tending to
constants on the lower and upper branches respectively [1]. When V = 0, the lower and
upper eigenrelations admit a unique solution [1].
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9.2. APPLICATION OF ASYMPTOTIC RESULTS

(a) Rigid cylinder with δ = 0.7, V = 0. (b) Flexible cylinder with δ = 0.7, V = 0, K =
5 × 1011 and m = 0.1.

Figure 9.2.1: Comparison of numerical stability regions (shaded) with asymptotic results
(pink and green curves).

In the scenario of a flexible cylinder, eigenrelations (9.1.6) and (9.1.14) describe the lower
and upper branches of the neutral curve of the modified flow-based mode shown in figure
9.2.1b. The asymptotic curves pertaining to this mode when K = 5 × 1011 with m = 0.1
are illustrated in figure 9.2.1b. When solving eigenrelations (9.1.6) and (9.1.14) for a
cylinder with given K and m, it is important to note that K0 and m0 vary along the
neutral curve, according to K0 = R−12/7K and m0 = R−4/7m along the lower branch and
K0 = R−20/11K and m0 = R−4/11m along the upper branch. As anticipated, agreement
between the numerical and asymptotic computations increases as the Reynolds numbers
becomes larger.

We note that the lower-branch asymptotic curve provides a considerably superior
approximation than the upper-branch asymptotic curve. We remark that this does not
seem unreasonable. In his study of the stability of plane Poiseuille flow, Reid [17]
noticed the existence of a ‘kink’ in the upper branch of the neutral curve at a
well-defined Reynolds number. He also found a similar kink in the neutral curve for the
asymptotic suction boundary layer profile. Some years later, Healey [77] found the
presence of a kink in the upper branch of the neutral curve describing the linear
stability of a flat-plate boundary layer. It is possible that such a kink exists in
compliant APCF too, say at R = R∗, in which case we would expect that the
upper-branch asymptotic structure S3 describes the upper branch of the neutral curve
for Reynolds numbers greater than R∗.
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(a) (b) (c)

Figure 9.2.2: Comparison of numerical stability regions (blue and red shading) with
asymptotic results from S1 and S3 (pink and green curves). The inner cylinder is
stationary, with δ = 0.7, m = 0.1 and (a) K = 5 × 1011, (b) K = 1 × 1011, (c)
K = 5 × 109.

Depicted in figure 9.2.2 are the stability regions corresponding to a stationary cylinder
with δ = 0.7 and varying K. As the spring stiffness decreases, we expect from our
numerical computations that the band of unstable wavenumbers pertaining to the
modified flow-based mode sinks in α. Figure 9.2.2 shows that this behaviour is indeed
captured by our asymptotic results.

When V increases, the situation becomes more complicated. For a flexible inner cylinder
with δ = 0.7, K = 5 × 1011 and m = 0.1, we solve the lower-branch eigenrelation (9.1.6)
of S1 at various Reynolds numbers for V = 0.0025, V = 0.005 and V = 0.01. As the
Reynolds number increases along a lower branch neutral curve for a given δ, V, K and
m, the appropriate V0 with which to solve the eigenrelation (9.1.6) increases, whilst the
appropriate K0 and m0 decrease.

Solving (9.1.6) with δ = 0.7, V0 = R2/7V, K0 = R−12/7K and m0 = R−4/7m as the
Reynolds number ranges from R = 1 × 107 to R = 5 × 107 culminates in the solutions for
s+ and s− depicted in figures 9.2.3(a,b), 9.2.4(a,b) and 9.2.5(a,b). With K̃ as defined in
(9.1.3), solutions marked with a cross (×) have K̃ < 0, whilst solutions marked with a
filled circle (•) have K̃ > 0. At a given Reynolds number, solutions s+ and s− belonging
to the same solution pair (s+, s−) are plotted in the same colour.

Using the definitions of s+ and s− (9.1.5), we are able to solve for α0 and form curves
in the (R, α) plane. These curves are shown in figures 9.2.3c, 9.2.4c and 9.2.5c. The
colour of each curve illustrates from which pair of solutions (s+, s−) the curve arises. For
example, the green asymptotic curve of figure 9.2.3c corresponds to the green solutions
for s+ and s− in figures 9.2.3(a,b).
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9.2. APPLICATION OF ASYMPTOTIC RESULTS

In figure 9.2.3, we see the lower-branch eigenrelation admits two solutions for the
Reynolds numbers shown when V = 0.0025 (and δ = 0.7, K = 5 × 1011, m = 0.1). The
solutions depicted in blue crosses have K̃ < 0. The corresponding asymptotic curve
exists in the (R, α) plane at wavenumbers larger than those displayed in 9.2.3c, and so
is not shown.

(a) Solutions s+ of S1 (b) Solutions s− of S1

(c) Asymptotic curve of S1

Figure 9.2.3: The inner cylinder has properties δ = 0.7, K = 5 × 1011, m = 0.1 and
V = 0.0025. Figures (a) and (b) illustrate solutions s+ and s− of (9.1.6) for various
Reynolds numbers. At a given Reynolds number, solutions s+ and s− belonging to
the same solution pair (s+, s−) are plotted in the same colour. Solutions marked with
a cross (x) have K̃ < 0, whilst solutions marked with a filled circle (•) have K̃ > 0.
Figure (c) shows a comparison of numerical stability regions (blue and red shading) with
asymptotic results. The green asymptotic curve in figure (c) corresponds to the green
solution pairs (s+, s−) in figures (a) and (b).
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Once V increases to V = 0.005, we see that the behaviour of the solution with K̃ > 0
changes considerably. In particular, s− becomes negative beyond R ≈ 3.1 × 107 (see
figure 9.2.4b). From the definition of s− (9.1.5), this means that we must have c0 < V0.
For solutions with s− < 0, the lower-branch structure S1 consists of only one critical
layer, which is embedded in the viscous wall layer near the outer cylinder.

The change in behaviour in our asymptotic results is also reflected in the numerical
computations, where it appears that the red region, which contains two unstable modes,
is splitting (figure 9.2.4c). As before, the neutral curve corresponding to the solutions
(s+, s−) depicted in blue crosses exist at wavenumbers beyond the scope of figure 9.2.4c.

(a) Solutions s+ of S1 (b) Solutions s− of S1

(c) Asymptotic curves of S1

Figure 9.2.4: The inner cylinder has properties δ = 0.7, K = 5 × 1011, m = 0.1 and
V = 0.005. Figures (a) and (b) illustrate solutions s+ and s− of (9.1.6) for various
Reynolds numbers. At a given Reynolds number, solutions s+ and s− belonging to
the same solution pair (s+, s−) are plotted in the same colour. Solutions marked with
a cross (x) have K̃ < 0, whilst solutions marked with a filled circle (•) have K̃ > 0.
Figure (c) shows a comparison of numerical stability regions (blue and red shading) with
asymptotic results. The green asymptotic curve in figure (c) corresponds to the green
solution pairs (s+, s−) in figures (a) and (b).
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Increasing V further to V = 0.01, we find the existence of many more pairs of solutions
(s+, s−). These are shown in figures 9.2.5a and 9.2.5b. We observe that the red and
orange solutions merge and subsequently disappear as R is increased. It is interesting
to observe that this is reflected in our numerical results (figure 9.2.5c), which reveal a
closed stability region where R < 1 × 107. The red and orange asymptotic curves in the
(R, α) plane (figure 9.2.5c) describe this closed stability region, and meet at R ≈ 1 × 107.

The significance of the grey and black solution pairs (s+, s−) (figures 9.2.5a, 9.2.5b) is
unclear from looking at the numerical stability regions of figure 9.2.5c. However, our
asymptotic results are only valid for R ≫ 1 and it is possible that we are simply not at
high enough Reynolds numbers to appropriately capture these modes. In figure 9.2.5c,
we have opted not to illustrate the asymptotic curves corresponding to these solutions.

In figures 9.2.5a and 9.2.5b, the solutions in green emerge at R ≈ 1.6 × 107. With
s− < 0, these solutions correspond to neutral modes with c0 < V0. As seen by the
green asymptotic curve in figure 9.2.5c, these solutions seem to accurately predict the
emergence and subsequent behaviour of the corresponding numerically obtained stability
region.

In light blue crosses, we illustrate a lower-branch mode with K̃ < 0 and s− deviating
from s− ≈ 2.2972 as the Reynolds number becomes larger. We see evidence for this
mode at larger wavenumbers, which we anticipate has moved off the scaling of S2 and
onto that of S1 as the Reynolds number increases. To explore this further, we plot
the asymptotic curve of S2 (see the pink curve in figure 9.2.5c) and observe the curve
deviates from the numerical results as R becomes larger. In contrast, the asymptotic
curve corresponding to the light blue solutions shows consistently excellent agreement
with the numerical results shown. Though there is some doubt in the numerical stability
calculations for modes with large wavenumbers, we opted to illustrate stability regions for
α ≤ 10 for this choice of V . This is to showcase the asymptotic solutions that describe
the upper unstable region in red.

In addition to these lower-branch solutions, we seek solutions of the upper-branch
eigenrelation (9.1.19) belonging to structure S4 for the range 2 × 107 < R < 5 × 107.
These solutions are shown by the yellow curve in figure 9.2.5c. We recall the structure
S4 has only one critical layer, and has no rigid counterpart. The agreement between the
asymptotic curve and numerical results increases as R becomes larger.
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(a) Solutions s+ of S1 (b) Solutions s− of S1

(c) Asymptotic curves of S1 − S4

Figure 9.2.5: The inner cylinder has properties δ = 0.7, K = 5 × 1011, m = 0.1 and
V = 0.01. Figures (a) and (b) illustrate solutions s+ and s− of (9.1.6) for various
Reynolds numbers. At a given Reynolds number, solutions s+ and s− belonging to
the same solution pair (s+, s−) are plotted in the same colour. Solutions marked with
a cross (x) have K̃ < 0, whilst solutions marked with a filled circle (•) have K̃ > 0.
Figure (c) shows a comparison of numerical stability regions (blue and red shading) with
asymptotic results. The orange, red, green and light blue asymptotic curves in figure (c)
respectively correspond to the orange, red, green and light blue solution pairs (s+, s−)
in figures (a) and (b).
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9.3 Summary

To summarise the work in this chapter, we have seen numerical evidence for neutral
modes belonging to structures S1-S4. We found that the asymptotic results of structures
S1 and S3 appropriately captured the numerical behaviour of the flow-based mode as
K was decreased for a stationary inner cylinder (figure 9.2.2).

Increasing the sliding velocity of the inner cylinder, the situation became more
complicated. Our asymptotic results accurately reflected the ‘splitting’ of the red
stability region (figure 9.2.4c) when V = 0.005. Increasing V further, we found the
existence of additional asymptotic solutions.

In general, we have found good agreement between the asymptotic and numerical results.
It remains to understand the significance of the lower-branch solutions depicted in grey
and black in figures 9.2.5a and 9.2.5b. It would also be of interest to compare results
from our numerical method with those from our hybrid structure S5.

Thus far, we have explored the stability properties of compliant APCF with respect to
infinitesimal disturbances of amplitude ∆. In the next chapter, we increase the size of
the disturbance so that nonlinear terms of order O(∆2) may no longer be neglected. We
will move away from the cylindrical geometry of APCF and will investigate vortex-wave
interaction in planar Couette flow when the lower wall is flexible.
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Chapter 10

Vortex-wave interaction in planar
Couette flow with a flexible

lower wall

The framework of vortex-wave interaction theory was developed by Hall and Smith
[30, 31, 32, 33], Bennett, Hall and Smith [34], Smith and Walton [35], Walton and Smith
[36]. The contribution from the waves may be of either the inviscid Rayleigh-type or the
viscous Tollmien-Schlichting-type.

An example of the former has been considered by Hall and Sherwin [37] in plane Couette
flow. The interaction involving waves of a Tollmien-Schlichting-type has been studied by
Hall and Smith [31] in incompressible boundary layers and Blackaby [78] in compressible
boundary layer flows. Other works include those by Walton and Smith [79] for the
boundary layer over a flat surface, and more recently, Dempsey and Walton [38] in the
case of the asymptotic suction boundary layer.

Vortex-wave interaction is a rich field that has been the subject of much research. The
list of works given above is by no means exhaustive.

10.1 Problem Formulation

In this chapter, we consider the flow of an incompressible fluid through a region bounded
by an upper rigid wall and lower flexible wall. The upper and lower walls of the channel
move in the streamwise direction with constant velocity V ∗ and −V ∗ respectively. The
fluid has kinematic viscosity ν∗ and constant density ρ∗. Unlike in the previous chapters,
there is no external pressure gradient applied to the flow.
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This flow is readily described by a Cartesian coordinate system with (x∗, y∗, z∗)
measured in the streamwise, normal and spanwise directions respectively. The
dimensional flow velocities in these respective directions are given by (u∗, v∗, w∗). We
denote the dimensional pressure of the fluid by p∗.

The upper wall is located at y∗ = h∗. We use the spring-backed plate model to describe
the flexibility of the lower wall, which we assume flexes only in the normal direction.
The position of the lower wall y∗

s is given by

y∗
s = −h∗ + η∗(x∗, z∗, t∗), (10.1.1)

where y∗ = −h∗ is the position of the lower wall when unflexed, and η∗ is the displacement
of the wall due to its flexibility. The displacement η∗ is dependent on the streamwise
and spanwise positions along the wall, and also on the time t∗.

We non-dimensionalise our lengthscales using the undisturbed channel half-width, and
our velocities using the streamwise velocity of the upper wall:

(x∗, y∗, z∗) = h∗(x, y, z), η∗ = h∗η, (u∗, v∗, w∗) = V ∗(u, v, w). (10.1.2)

Our pressure and time are non-dimensionalised as

p∗ = ρ∗V ∗2p, t∗ = h∗

V ∗ t. (10.1.3)

Using the non-dimensionalisation (10.1.2) and (10.1.3), the Navier Stokes equations
governing our flow are

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (10.1.4a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −∂p

∂x
+ 1

R

[
∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

]
, (10.1.4b)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −∂p

∂y
+ 1

R

[
∂2v

∂x2 + ∂2v

∂y2 + ∂2v

∂z2

]
, (10.1.4c)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −∂p

∂z
+ 1

R

[
∂2w

∂x2 + ∂2w

∂y2 + ∂2w

∂z2

]
, (10.1.4d)

where the Reynolds number R is defined as

R = V ∗h∗

ν∗ . (10.1.5)

The flow quantities are to satisfy appropriate no-slip conditions on the channel walls.
On the upper wall, these are expressed by

u = 1, v = 0, w = 0 on y = 1. (10.1.6)
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We now seek to form boundary conditions on the lower wall, which has the non-
dimensional position

ys(x, z, t) = −1 + η(x, z, t), (10.1.7)

as seen from (10.1.1) and (10.1.2). Since the wall flexes only in the normal direction,
the streamwise and spanwise velocities are simply

u = −1, w = 0 on y = ys. (10.1.8)

We revisit the kinematic and dynamic conditions of Chapter 2 (see equations (2.1.7b)
and (2.1.10)), adapting them to the planar flow of interest here. The kinematic boundary
condition allows us to relate the motion of the fluid with the motion of the wall, and we
have

v = ∂η

∂t
+ u

∂η

∂x
+ w

∂η

∂z
on y = ys. (10.1.9)

The final condition we apply on the lower wall is the dynamic condition, which we obtain
by balancing the forces acting on the wall. The use of a spring-backed plate model
[54, 55] proposes

m
∂2η

∂t2 = −p + 2
R

∂v

∂y
− 1

R2 Kη, (10.1.10)

where m and K are the non-dimensional mass and spring constant (by Hooke’s law) per
unit area. We have made use of the non-dimensionalisation

m∗ = ρ∗h∗m, K∗ = ρ∗ν∗2

h∗3 K. (10.1.11)

Before we study the existence of vortex-wave interaction in our flow, we consider the
nature of the base flow in the absence of any external disturbances. We suppose that the
flexibility of the lower wall does not affect the base flow, denoted by (ub, vb, wb). Under
this assumption, the base flow satisifies

ub = 1, vb = 0, wb = 0 on y = 1, (10.1.12a)

ub = −1, vb = 0, wb = 0 on y = −1. (10.1.12b)

An exact solution of the Navier-Stokes equations (10.1.4) subject to (10.1.12) is provided
by the unidirectional flow known as plane Couette flow:

ub = y, vb = 0, wb = 0. (10.1.13)

In the previous chapters of this thesis, we conducted a linear stability analysis and
perturbed our base flow with infinitesimal disturbances of amplitude ∆. Nonlinear terms
of order ∆2 were thus assumed to be negligible. In this chapter, we consider the flow at
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asymptotically large Reynolds numbers and increase the amplitude of our disturbance so
that nonlinear terms can no longer be neglected. We determine the size of ∆ at which
the nonlinear self-interaction of the wave induces an order one perturbation to our basic
state via a self-sustaining process.

Known as vortex-wave interaction at high Reynolds numbers, this process comprises
three interacting components: travelling waves, a roll flow, and a streak flow. Three-
dimensional travelling waves propagating in the streamwise direction nonlinearly self-
interact to force a flow in the cross-stream plane, which we call the roll flow. The rolls
in turn drive a flow in the streamwise direction, the streak. As we will see later, this
streak then supports the existence of neutrally stable travelling waves, and the process
continues.

The roll and streak flows are steady and independent of the streamwise distance. Together,
the roll/streak flow is referred to as a vortex flow. We assume the vortex flow, denoted
by (Uv, Vv, Wv), satisfies the conditions

Uv = 1, Vv = 0, Wv = 0 on y = 1, (10.1.14a)

Uv = −1, Vv = 0, Wv = 0 on y = −1. (10.1.14b)

The streak flow, with both normal and spanwise dependencies, is taken to be an order
one quantity.

10.2 Derivation of vortex-wave interaction
equations

We investigate the existence of a vortex-wave interaction in this flow by examining
three regions of the flow in which different physical processes dominate: a core region
surrounded by two viscous wall layers. Before we begin our analysis, we briefly describe
our approach.

We consider the vortex flow (Uv(y, z), Vv(y, z), Wv(y, z)) superimposed with travelling
waves of amplitude ∆,

∆q̂(y, z)eiα(x−ct) + c.c. (10.2.1)

Our objective is to identify, in terms of the Reynolds number, the critical size of ∆ that
leads to the self-sustaining vortex/wave interaction described above. To enable this, we
seek the required scalings of the vortex and wave in each asymptotic region, emphasising
that the size of ∆ is chosen so as to induce order one spanwise fluctuations in the streak.
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Assuming that the streak flow Uv found in the core behaves regularly as we approach
the channel walls, we have

Uv = 1 + λ+(z) (y − 1) + · · · , Uv = −1 + λ(z) (y + 1) + · · · (10.2.2a)

near the upper and lower walls respectively, where

λ+(z) = ∂Uv

∂y

∣∣∣∣∣∣
y=1

, λ(z) = ∂Uv

∂y

∣∣∣∣∣∣
y=−1

. (10.2.3)

The scalings for the wave component in our interaction are motivated by the analysis of
our lower branch structure where α = O(1) (see Chapter 6, Section 6.2). With this in
mind, we take the wavenumber and wavespeed to be

α = α0 + · · · , c = −1 + R−1/3c0 + · · · . (10.2.4)

where α0 and c0 are order one quantities.

The lower wall layer

We commence our analysis in the layer near the lower flexible wall. As mentioned above,
the work in the lower branch structure where α = O(1) (Section 6.2) guides our scalings
here. The wave quantities (uw, vw, ww, pw) thus expand as

uw ∼ ∆u−eiα(x−ct) + c.c, vw ∼ ∆R−1/3v−eiα(x−ct) + c.c,

ww ∼ ∆w−eiα(x−ct) + c.c, pw ∼ ∆R−1/3p−eiα(x−ct) + c.c. (10.2.5)

with
y = ys + R−1/3ȳ, (10.2.6)

and
K = R5/3K0, m = R1/3m0. (10.2.7)

We also assume that the displacement η(x, z) to the lower wall assumes a normal-mode
form,

η(x, z) = ∆η̂(z)eiα(x−ct) + c.c, (10.2.8)

where we have assumed that ∆ ≪ R−1/3 so that the perturbation is much smaller than
the thickness of this layer.
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We anticipate the wave self-interacts to force the roll/streak flow (Uv, Vv, Wv) and thus
enforce the balances

vw
∂w∗

w

∂y
∼ R−1 ∂2Uv

∂y2 , uw
∂w∗

w

∂x
∼ R−1 ∂2Wv

∂y2 (10.2.9)

in the streamwise (10.1.4b) and spanwise (10.1.4d) momentum equations respectively.
With use of (10.2.5) and (10.2.6), this leads to the scalings

Uv = −1 + R−1/3λ(z)ȳ + · · · + ∆2R1/3uv + · · · , Wv = ∆2R1/3wv + · · · . (10.2.10)

The first two terms in the expansion for U v account for the contribution of the streak
flow from the core, as expressed in (10.2.2).

Finally, the continuity equation (10.1.4a) suggests we take

∂Vv

∂y
∼ ∂Wv

∂z
, (10.2.11)

which gives
Vv = ∆2vv (10.2.12)

after consideration of (10.2.6) and (10.2.10).

The expansions in this region are thus

u = −1 + R−1/3λ(z)ȳ + ∆ u−(y, z) eiα(x−ct) + · · · + ∆2R1/3 uv(y, z) + · · · + c.c,

(10.2.13a)

v = ∆R−1/3 v−(y, z) eiα(x−ct) + · · · + ∆2 vv(y, z) + · · · + c.c, (10.2.13b)

w = ∆ w−(y, z) eiα(x−ct) + · · · + ∆2R1/3 wv(y, z) + · · · + c.c, (10.2.13c)

p = ∆R−1/3 p−(y, z) eiα(x−ct) + · · · + ∆2R−2/3 pv(y, z) + · · · + c.c. (10.2.13d)

With the assumption ∆ ≪ R−1/3, substitution into the Navier-Stokes equations (10.1.4)
shows that the wave equations in this region are identical to those of Smith [80], and are
given by

iα0u− + ∂v−

∂ȳ
+ ∂w−

∂z
= 0, (10.2.14a)

iα0u− (λ(z)ȳ − c0) + λ(z)v− + λ′(z)ȳw− = −iα0p− + ∂2u−

∂ȳ2 , (10.2.14b)

∂p−

∂ȳ
= 0, (10.2.14c)

iα0w− (λ(z)ȳ − c0) = −dp−

dz
+ ∂2w−

∂ȳ2 . (10.2.14d)
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From these equations, we see how the shear imparted by the streak flow drives the wave.
The boundary conditions (10.1.8), (10.1.9) and (10.1.10) reveal that the wave satisfies
the following boundary conditions on the compliant wall situated at ȳ = 0:

u−(0, z) + η̂(z)λ(z) = 0, (10.2.15a)

v−(0, z) = −iα0c0η̂(z), (10.2.15b)

w−(0, z) = 0, (10.2.15c)

p−(0, z) =
(
α2

0 m0 − K0
)

η̂(z). (10.2.15d)

Manipulating these to eliminate η̂, we obtain

iα0c0u−(0, z) − λ(z)v−(0, z) = 0, (10.2.16a)

w−(0, z) = 0, (10.2.16b)

p−(0, z) = 1
λ(z)

(
K0 − α0

2m0
)

u−(0, z). (10.2.16c)

It is reasonable to impose that

u−(y, z) → 0, w−(y, z) → 0 as y → ∞, (10.2.17)

and this will match the core behaviour described later.

Our goal now is to form a differential equation for the wave pressure p−(z). The subsequent
analysis follows the work of Smith [80]. From the pressure wave equation (10.2.14c), it
is clear that

p− = p−(z). (10.2.18)

Introducing
ξ = (iα0λ)1/3 ȳ − iα0c0

(iα0λ)2/3 , (10.2.19)

we may write the spanwise wave momentum equation (10.2.14d) as a non-homogeneous
Airy differential equation, specifically

∂2w−

∂ξ2 − ξw− = 1
(iα0λ)2/3

dp−

dz
. (10.2.20)

After imposing conditions (10.2.16b) and (10.2.17), we find the solution for w− to be

w− = 1
(iα0λ)2/3

dp

dz

[
L(ξ) − L(ξ0)

Ai(ξ0)
Ai(ξ)

]
, ξ0 = − iα0c0

(iα0λ)2/3 , (10.2.21)
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where L has the form

L(ξ) = Ai(ξ)
∫ ξ

0

1
Ai2(q)

∫ q

∞
Ai(q1)dq1dq (10.2.22)

and is a particular solution of the forced Airy equation

L′′(ξ) − ξL(ξ) = 1. (10.2.23)

Differentiating the streamwise wave momentum equation (10.2.14b) with respect to ȳ

and using the continuity equation (10.2.14a) to eliminate v−, we obtain

iα0 (λ(z)ȳ − c0)
∂u−

∂ȳ
− ∂3u−

∂ȳ3 = λ(z)∂w−

∂z
− dλ

dz

(
w− + ȳ

∂w−

∂ȳ

)
. (10.2.24)

Upon substitution of the solution for w− (10.2.21), and subsequent manipulation, we
may write(

∂2

∂ξ2 − ξ

)
∂u−

∂ξ
= (iα0λ)−1/3

[
C0L(ξ) + C1Ai(ξ) + 4C2ξL′(ξ) + C3ξAi′(ξ)

]
, (10.2.25)

where

C0 = −(iα0λ)−4/3
(

λ
d2p−

dz2 − 5
3

dλ

dz

dp−

dz

)
, (10.2.26a)

C1 = −C0
L(ξ0)
Ai(ξ0)

− 2
3(iα0λ)−4/3 dλ

dz

dp−

dz
ξ0

(
L′(ξ0)
Ai(ξ0)

− L(ξ0)
Ai(ξ0)2 Ai′(ξ0)

)
, (10.2.26b)

C2 = 1
6(iα0λ)−4/3 dλ

dz

dp−

dz
, (10.2.26c)

C3 = −4C2
L(ξ0)
Ai(ξ0)

. (10.2.26d)

To help us in solving (10.2.25), we use the properties of Ai(ξ) and L(ξ) to obtain the
results(

d2

dξ2 − ξ

)
Ai′(ξ) = Ai(ξ),

(
d2

dξ2 − ξ

)(
ξ2Ai(ξ)

4 − Ai′(ξ)
2

)
= ξAi′(ξ), (10.2.27a)(

d2

dξ2 − ξ

)
L′(ξ) = L(ξ),

(
d2

dξ2 − ξ

)
(ξL′′(ξ) − 2L′(ξ)) = 4ξL′(ξ). (10.2.27b)
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In view of these relations, we find

∂u−

∂ȳ
= C0L

′(ξ) + C1Ai′(ξ) + C2 [ξL′′(ξ) − 2L′(ξ)] +

C3

[
ξ2

4 Ai(ξ) − 1
2Ai′(ξ)

]
+ (iα0λ)1/3C4Ai(ξ), (10.2.28)

where C4 is unknown.

Evaluating the streamwise momentum equation (10.2.14b) at ȳ = 0 and applying the
boundary conditions (10.2.16a), (10.2.16b) reveals that

∂2u−

∂ȳ2 = iα0p−(z) on ȳ = 0. (10.2.29)

Upon differentiation of (10.2.28), this gives

iα0p−(z)
(iα0λ)1/3 = C0L

′′(ξ0) + C1Ai′′(ξ0) + C2 [ξ0L
′′′(ξ0) − L′′(ξ0)] +

1
4C3ξ0

2Ai′(ξ0) + (iα0λ)1/3C4Ai′(ξ0). (10.2.30)

The subsequent part of this analysis differs from the work of Smith [80] as we do not
impose that the streamwise velocity is zero on the wall ȳ = 0. As we will see, this leads
to an additional term in the wave pressure equation. Integrating (10.2.28) with respect
to ξ between ξ0 and infinity, we use the behaviour of Ai(ξ), L(ξ) and their derivatives as
ξ → ∞ to simplify the resulting expression. The boundary condition (10.2.16c) then
illustrates that

(iα0λ)1/3 λp−(z)
K0 − α02m0

= C0L(ξ0) + C1Ai(ξ0) + C2 [ξ0L
′(ξ0) − 3L(ξ0)] +

C3

[
ξ0

4 Ai′(ξ0) − 3
4Ai(ξ0)

]
− (iα0λ)1/3C4κ(ξ0). (10.2.31)

It is useful to note that

d
dξ

[
Ai(ξ)L′(ξ) − L(ξ)Ai′(ξ)

]
= Ai(ξ), (10.2.32)

which can be established using the equations for Ai(ξ) and L(ξ). Upon integration,
(10.2.32) yields

Ai(ξ0)L′(ξ0) − L(ξ0)Ai′(ξ0) = −κ(ξ0). (10.2.33)

196



10.2. DERIVATION OF VORTEX-WAVE INTERACTION EQUATIONS

Eliminating C4 from (10.2.30) and (10.2.31), and making use of relation (10.2.33), we
see that the wave pressure satisfies

d2p−

dz2 − 1
λ(z)

dλ

dz
F (s)dp−

dz
+
−α0

2 + (α0λ(z))5/3

K0 − α02m0
g(s)

 p−(z) = 0, (10.2.34)

where g(s) and F (s) are defined as

g(s) = i5/3 Ai′(−i1/3s)
κ(−i1/3s) , F (s) = 3

2 + −i1/3s

2Ai(−i1/3s)
(
−i1/3sκ(−i1/3s) + Ai′(−i1/3s)

)
,

(10.2.35)
with s = i5/3ξ0 and ξ0 defined in (10.2.21). We impose that the wave pressure is 2π

periodic in z, so that

p−(0) = p−(2π), dp−

dz

∣∣∣∣∣∣
z=0

= dp−

dz

∣∣∣∣∣∣
z=2π

. (10.2.36)

We remark that (10.2.34) illustrates the effect of the streak on the wave via the shear
term, λ(z).

Before we examine the roll/streak behaviour in the lower layer, we determine the
behaviour of the wave as we approach the core. In the limit ȳ → ∞, the spanwise wave
equation (10.2.14d) evokes the balance

iα0w−λ(z)ȳ ∼ −dp−

dz
,

which, upon rearrangement, reveals that

w− ∼ i
α0λ(z)

dp−

dz

1
ȳ

. (10.2.37)

This behaviour can be verified using our solution for w−, shown in (10.2.21). Striking
the balance

iα0u− ∼ −∂w−

∂z

in the continuity equation (10.2.14a) then yields

u− ∼ − 1
α02λ(z)2

(
λ(z)d2p−

dz2 − dλ

dz

dp−

dz

)
1
ȳ

. (10.2.38)
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Finally, the streamwise momemtum equation (10.2.14b) with the balance

λ(z)v− ∼ −iα0p− − dλ

dz
ȳ w− − iα0u−λ(z)ȳ

elucidates the behaviour

v− ∼ i
α0λ(z)

(
d2p−

dz2 − 2
λ(z)

dλ

dz

dp−

dz
− α0

2p−(z)
)

(10.2.39)

as we approach the core.

Substituting the flow expansions (10.2.13) into the Navier-Stokes equations (10.1.4), we
observe the wave self-interacts to force a roll/streak flow governed by

∂vv

∂ȳ
+ ∂wv

∂z
= 0, (10.2.40a)

v−
∂u∗

−
∂ȳ

+ v∗
−

∂u−

∂ȳ
+ λ(z)vv + w−

∂u∗
−

∂z
+ w∗

−
∂u−

∂z
+ dλ

dz
ȳ wv = ∂2uv

∂ȳ2 , (10.2.40b)

iα0u
∗
−v− − iα0u−v∗

− + v−
∂v∗

−
∂ȳ

+ v∗
−

∂v−

∂ȳ
+ w−

∂v∗
−

∂z
+ w∗

−
∂v−

∂z
= ∂2vv

∂ȳ2 − ∂pv

∂ȳ
, (10.2.40c)

iα0u
∗
−w− − iα0u−w∗

− + v−
∂w∗

−
∂ȳ

+ v∗
−

∂w−

∂ȳ
+ w−

∂w∗
−

∂z
+ w∗

−
∂w−

∂z
= ∂2wv

∂ȳ2 . (10.2.40d)

It now remains to ascertain the behaviour of the roll as we approach the core. Considering
the spanwise roll equation (10.2.40d) in conjunction with the wave behaviour as ȳ → ∞
(10.2.37)-(10.2.39), we obtain

∂2wv

∂ȳ2 ∼ − q

ȳ2 as ȳ → ∞, (10.2.41)

after considerable algebra, where

q = 1
α02λ(z)2

[
α0

2 d
dz

(
p−p∗

−

)
+ d

dz

(
dp−

dz

dp∗
−

dz

)]
. (10.2.42)

From this, we observe that we may take

wv ∼ −q log ȳ as ȳ → ∞. (10.2.43)

so that the compliance of the lower wall has a leading order effect on the core forcing.

In view of the scalings (10.2.6) and (10.2.10), the spanwise roll Wv thus approaches the
core region with the behaviour

Wv ∼ −q

3∆2R1/3 log R. (10.2.44)

198



10.2. DERIVATION OF VORTEX-WAVE INTERACTION EQUATIONS

To conclude this section, we remark that the roll solution in the lower layer should latch
onto that in the core; it is this imposition that allows for the nonlinear self-interaction
of the wave in the lower layer to affect the core via a boundary forcing, and hence
determines the size of ∆.

The core region

As an initial step in determining the flow behaviour, we seek to establish the roll/streak
and wave equations that govern this region. The limiting behaviour of the wave (10.2.37)-
(10.2.39) in the lower viscous layer as we approach the core suggests that our wave
components expand as

uw ∼ ∆R−1/3F0eiα(x−ct) + c.c, vw ∼ ∆R−1/3G0eiα(x−ct) + c.c,

ww ∼ ∆R−1/3H0eiα(x−ct) + c.c, pw ∼ ∆R−1/3P0eiα(x−ct) + c.c. (10.2.45)

In this region, we expect the roll flow (Vv, Wv) to be such that nonlinear terms in the
streamwise momentum equation (10.1.4b) become significant at leading order. With the
streak Uv being order one, we enforce the balance

Vv
∂Uv

∂y
∼ Wv

∂Uv

∂z
∼ R−1 ∂2Uv

∂y2 , (10.2.46)

obtaining Wv = O(R−1) and Vv = O(R−1). A balance between the pressure and nonlinear
inertia terms in the spanwise momentum equation (10.1.4d) yields

Wv
∂Wv

∂z
∼ ∂Pv

∂z
, (10.2.47)

so that Pv = O(R−2). Writing

Uv = uv + · · · , Vv = R−1vv(y, z) + · · · , (10.2.48)

Wv = R−1wv(y, z) + · · · , Pv = R−2pv(y, z) + · · · , (10.2.49)

the flow expansions in the core region are thus

u = uv(y, z) + · · · + ∆R−1/3 F0(y, z) eiα(x−ct) + · · · + c.c, (10.2.50a)

v = R−1vv(y, z) + · · · + ∆R−1/3 G0(y, z) eiα(x−ct) + · · · + c.c, (10.2.50b)

w = R−1wv(y, z) + · · · + ∆R−1/3 H0(y, z) eiα(x−ct) + · · · + c.c, (10.2.50c)

p = R−2pv(y, z) + · · · + ∆R−1/3 P0(y, z) eiα(x−ct) + · · · + c.c. (10.2.50d)
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Upon substitution of (10.2.50) into the Navier-Stokes equations (10.1.4), we obtain
equations encapsulating the wave behaviour:

iα0F0 + ∂G0

∂y
+ ∂H0

∂z
= 0, (10.2.51a)

iα0F0(uv + 1) + G0
∂uv

∂y
+ H0

∂uv

∂z
= −iα0P0, (10.2.51b)

iα0G0(uv + 1) = −∂P0

∂y
, (10.2.51c)

iα0H0(uv + 1) = −∂P0

∂z
. (10.2.51d)

These can be manipulated to form the equation

∂2P0

∂y2 + ∂2P0

∂z2 − α0
2P0 = 2

uv(y, z) + 1
∂uv

∂y

∂P0

∂y
+ 2

uv(y, z) + 1
∂uv

∂z

∂P0

∂z
, (10.2.52)

a three-dimensional generalisation of the Rayleigh pressure equation that shows the wave
pressure is being driven by the streak.

This to be solved subject to the typical inviscid impermeability condition

G0 = 0 on y = 1, (10.2.53)

which, using (10.2.51c), is equivalent to

∂P0

∂y
= 0 on y = 1. (10.2.54)

We look for solutions to the wave equations (10.2.51a), (10.2.52) near y = 1, obtaining

P0 ∼ P+(z) + 1
2
(
α0

2P+(z) − P ′′
+(z)

)
(y − 1)2,

F0 ∼ −P+(z)
2 , G0 ∼ i

2α0

(
α0

2P+(z) − P ′′
+(z)

)
(y − 1), H0 ∼ i

2α0
P ′

+(z). (10.2.55)

P+(z) is the wave pressure at y = 1. These form the matching conditions for the upper
wall layer, which we will discuss shortly.
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As we approach the lower wall, we have

P0 ∼ p−(z) + 1
2

(
p′′

−(z) − 2λ′(z)
λ(z) p′

−(z) − α0
2p−(z)

)
(y + 1)2, (10.2.56a)

F0 ∼ − 1
α2

0λ(z)2

(
λ(z)p′′

−(z) − λ′(z)p′
−(z)

) 1
y + 1 , (10.2.56b)

G0 ∼ i
α0λ(z)

(
p′′

−(z) − 2λ′(z)
λ(z) p′

−(z) − α0
2p−(z)

)
, (10.2.56c)

H0 ∼
ip′

−(z)
α0λ(z)

1
y + 1 , (10.2.56d)

where p−(z) has been taken to be the wave pressure at y = −1 to match the lower viscous
layer. These are consistent with the limiting behaviour shown in (10.2.37)-(10.2.39).

Moving onto the roll/streak flow, substitution of the expansions (10.2.50) into the
Navier-Stokes equations (10.1.4) yields the governing equations

∂vv

∂y
+ ∂wv

∂z
= 0, (10.2.57a)

vv
∂uv

∂y
+ wv

∂uv

∂z
= ∂2uv

∂y2 + ∂2uv

∂z2 , (10.2.57b)

vv
∂vv

∂y
+ wv

∂vv

∂z
= −∂pv

∂y
+ ∂2vv

∂y2 + ∂2vv

∂z2 , (10.2.57c)

vv
∂wv

∂y
+ wv

∂wv

∂z
= −∂pv

∂z
+ ∂2wv

∂y2 + ∂2wv

∂z2 . (10.2.57d)

In view of the presumed behaviour (10.2.2), these are to be solved subject to

uv → 1, wv → 0, vv → 0 as y → 1. (10.2.58a)

uv → −1, vv → 0 as y → −1. (10.2.58b)

The boundary condition for wv on the lower wall is less straightforward, and requires an
examination of the roll behaviour in the lower viscous layer as we approach the core. In
particular, we turn our attention to the matching condition (10.2.44).

Our initial goal is to determine the appropriate size of ∆. Having established the core
roll is such that Wv = R−1wv, the required balance (10.2.44) reveals that

R−1wv ∼ −q

3∆2R1/3 log R. (10.2.59)
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This pins down ∆ to be

∆ ∼ R−2/3
√

log R
, (10.2.60)

and supplies the spanwise roll boundary condition

wv → −q(z)
3 as y → −1. (10.2.61)

where q is defined in (10.2.42) with

λ(z) = ∂uv

∂y

∣∣∣∣∣∣
y=−1

. (10.2.62)

With this choice of ∆, the influence of the wave in the lower layer is transmitted to the
core region through the roll forcing described in (10.2.61). The roll flow then drives a
streak with cross-stream dependence, as seen in (10.2.57b). The spanwise variation in
the shear of the streak then feeds into the wave, the impact of which is highlighted in
the wave pressure equation (10.2.34) of the lower layer. If a solution to (10.2.34) exists,
we can see that it is possible to sustain this vortex/wave interaction. Before we seek
such a solution, we study the behaviour of the flow near the upper wall for completeness,
though this behaviour plays no role in the vortex-wave interaction at leading order.

The upper Stokes layer

To identify the flow dynamics in the region, we first describe the behaviour of the flow
quantities in the core as we approach the upper wall. The streak and roll solutions found
in the core satisfy the required no-slip conditions on the upper wall. Performing Taylor
expansions of the core quantities about y = 1 and subsequently substituting these into
the continuity equation (10.1.4a) allows us to see the roll/streak behaviour in this Stokes
layer:

Uv = 1 + λ+(z) (y − 1) + · · · , (10.2.63a)

Vv = −R−1

2 ω′(z)(y − 1)2 + · · · , Wv = R−1ω(z)(y − 1) + · · · , (10.2.63b)

where

ω(z) = ∂wv

∂y

∣∣∣∣∣∣
y=1

. (10.2.64)

The purpose of this Stokes layer then is to reduce the wave velocities to zero on the upper
wall. Denoting the thickness of this layer by h, we anticipate that the wave quantities
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have sizes

uw = O

(
R−1

√
log R

)
, vw = O

(
R−1h√
log R

)
, ww = O

(
R−1

√
log R

)
, pw = O

(
R−1

√
log R

)
.

(10.2.65)
as a result of the matching conditions (10.2.55) from the core.

In this layer, we seek a balance between the inertial and viscous wave contributions in
the streamwise momentum equation (10.1.4b):

∂uw

∂t
+ Uv

∂uw

∂x
∼ R−1 ∂2uw

∂y2 . (10.2.66)

This requires that R−1h−2 = O(1), and gives the thickness of the layer to be of the order
R−1/2.

Writing

uw = R−1
√

log R
u+, vw = R−3/2

√
log R

v+, ww = R−1
√

log R
w+, (10.2.67a)

pw = R−1
√

log R
p+, y = 1 − R−1/2 ȳ+, (10.2.67b)

our expansions in this region are taken to be

u = 1 − R−1/2 ȳ λ
(0)
+ (z) + · · · + R−1

√
log R

u+(y, z)eiα(x−ct) + · · · + c.c, (10.2.68a)

v = R−3/2
√

log R
v+(y, z)eiα(x−ct) + · · · + c.c, (10.2.68b)

w = R−1
√

log R
w+(y, z)eiα(x−ct) + · · · + c.c, (10.2.68c)

p = R−1
√

log R
p+(y, z)eiα(x−ct) + · · · + c.c. (10.2.68d)

Substituting these expansions into the Navier-Stokes equations (10.1.4), we obtain the
wave equations

iα0u+ − ∂v+

∂ȳ+
+ ∂w+

∂z
= 0, (10.2.69a)

∂2u+

∂ȳ2
+

− 2iα0u+ = iα0p+, (10.2.69b)

p+ = p+(z), (10.2.69c)
∂2w+

∂ȳ2
+

− 2iα0w+ = dp+

dz
. (10.2.69d)
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These are solved subject to no-slip conditions on ȳ+ = 0 and matching conditions
(10.2.55) as ȳ+ → ∞, giving

u+ = −P+(z)
2

(
1 − e−mȳ+

)
, v+ = i

2α0

(
P ′′

+(z) − α2
0P+(z)

)(
ȳ+ + e−mȳ+

m
− 1

m

)
,

w+ = iP ′
+(z)
2α0

(
1 − e−mȳ+

)
, p+ = P+(z), (10.2.70a)

m = √
α0(1 + i).

This completes the formulation of the three-zone asymptotic structure, and we now
concentrate on finding solutions to the vortex-wave interaction equations, which we
restate here for convenience.

We seek a solution to the core vortex equations (10.2.57),

∂vv

∂y
+ ∂wv

∂z
= 0, (10.2.71a)

vv
∂uv

∂y
+ wv

∂uv

∂z
= ∂2uv

∂y2 + ∂2uv

∂z2 , (10.2.71b)

vv
∂vv

∂y
+ wv

∂vv

∂z
= −∂pv

∂y
+ ∂2vv

∂y2 + ∂2vv

∂z2 , (10.2.71c)

vv
∂wv

∂y
+ wv

∂wv

∂z
= −∂pv

∂z
+ ∂2wv

∂y2 + ∂2wv

∂z2 . (10.2.71d)

which are to be solved subject to (10.2.58),

uv → −1, vv → 0, wv → −q(z)
3 as y → −1. (10.2.72)

The wave influences the spanwise roll flow through the boundary conditions (10.2.72),
with q(z) being defined in (10.2.42):

q = 1
α02λ(z)2

[
α0

2 d
dz

(
p−p∗

−

)
+ d

dz

(
dp−

dz

dp∗
−

dz

)]
. (10.2.73)

The wave pressure p− is governed by the the pressure equation (10.2.34)

d2p−

dz2 − 1
λ(z)

dλ

dz
F (s)dp−

dz
+ p−(z)

−α0
2 + (α0λ(z))5/3

K0 − α02m0
g(s)

 = 0, (10.2.74)

with s = i5/3ξ0 and ξ0 defined in (10.2.21). The functions g(s) and F (s) are defined in
(10.2.35). The pressure equation (10.2.74) is to be solved subject to periodic boundary
conditions

p−(0) = p−(2π), dp−

dz

∣∣∣∣∣∣
z=0

= dp−

dz

∣∣∣∣∣∣
z=2π

. (10.2.75)
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We see (10.2.74) is influenced by the streak flow via the presence of the shear term λ(z),

λ(z) = ∂uv

∂y

∣∣∣∣∣∣
y=−1

. (10.2.76)

We make initial progress in solving these interactive equations by assuming that the
wave forcing is small. We then turn to numerical methods to obtain a solution when the
size of this forcing is gradually increased.

10.3 An analytic approach: small wave expansion

Our focus lies in solving the core roll equations (10.2.57) subject to the conditions
(10.2.58b) and (10.2.61), where q is defined in (10.2.42) and p− is a solution to the
pressure equation (10.2.34). This solution is influenced by the streak flow, which in turn
is forced by the roll.

It is a difficult task to solve this interactive system analytically. We make progress by
considering a wave forcing in the lower layer that has small amplitude and is of the form

p−(z) = δp0 cos(βz) + · · · , (10.3.1)

where δ is small, p0 is a complex constant and β is real.

Since δ is small, we anticipate that the streak will be a perturbation to planar Couette
flow, so that uv = y + · · · . The shear term λ(z) is thus taken to be unity at leading
order. Writing

α0 = α0 + · · · , c0 = c0 + · · · , λ(z) = 1 + · · · , s = s0 + · · · , (10.3.2)

an order of magnitude analysis of the pressure wave equation (10.2.34) results in the
following relation for the leading order wavenumber:

−α2
0 + α

5/3
0 g(s0)

K0 − α2
0 m0

= β2. (10.3.3)

We remark that the middle term on the left-hand side of (10.2.34) does not contribute
at leading order.
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Figure 10.3.1: Depiction of α0 (left) and c0 (right) as K0 varies, for fixed m0 = 0.5 and
β = 1.

In order for relation (10.3.3) to hold, we require g(s) (10.2.35) to be real at leading order,
so that Im(g(s0)) = 0. This reveals that s0 ≈ 2.2972 (see figure A.0.1). It is possible to
write (10.3.3) as a 12th order polynomial in α0

1/3, specifically

m0α
4
0 + (β2m0 − K0)α2

0 + g(s0)α5/3
0 − β2K0 = 0. (10.3.4)

This can thus be readily solved using a polynomial root solver, and we find that there
exists at least one positive solution for α

1/3
0 , and hence α0. Recalling s = i5/3ξ0 for ξ0

defined in (10.2.21), s is given by

s = α0c0

(α0λ)2/3 . (10.3.5)

We use this to solve for c0 and obtain

c0 = s0

α
1/3
0

. (10.3.6)

In figure 10.3.1, we illustrate solutions of (10.3.3) and (10.3.6) for the leading order
wavenumber and wavespeed when K0 varies with fixed m0 = 0.5 and β = 1. We see that
α0 increases as the lower plate becomes more rigid, whilst c0 appears to decrease.

In the remainder of this section, we will focus on a pressure disturbance wave with
spanwise wavenumber β = 1, that is

p−(z) = δp0 cos(z) + · · · , (10.3.7)

and investigate the vortex-wave interaction that arises.
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To leading order, this form of p− yields

q(z) = δ2q0 sin(2z) + · · · , q0 = |p0|2 (1 − α2
0)

α2
0

(10.3.8)

upon recollection of the definition of q(z) (10.2.42).

We investigate how this forcing drives the roll/streak solution in the core. In light of
the boundary condition (10.2.61), the scaling of q(z) suggests that the core quantity
wv is such that wv = O(δ2). The continuity equation (10.2.71a) then indicates that
vv = O(δ2), and after considering the streak equation (10.2.57b), we take uv = y + O(δ2).
Finally, the normal momentum equation (10.2.57c) suggests pv = O(δ2).

We thus write

uv = y + δ2u1(y, z) + · · · , vv = δ2v1(y, z) + · · · , (10.3.9)

wv = δ2w1(y, z) + · · · , pv = δ2p1(y, z) + · · · . (10.3.10)

Substituting these scalings into the core equations (10.2.57), the leading order roll/streak
equations governing the core region are the linear equations

∂v1

∂y
+ ∂w1

∂z
= 0, (10.3.11a)

∂2u1

∂y2 + ∂2u1

∂z2 = v1, (10.3.11b)

∂2v1

∂y2 + ∂2v1

∂z2 = ∂p1

∂y
, (10.3.11c)

∂2w1

∂y2 + ∂2w1

∂z2 = ∂p1

∂z
. (10.3.11d)

These are subject to the matching conditions (10.2.58) and (10.2.61), giving

u1 → 0, v1 → 0, w1 ∼ −1
3 |p0|2

(
1
α2

0
− 1

)
sin(2z) as y → −1 (10.3.12)

as we approach the flexible surface, and

u1 → 0, v1 → 0, w1 → 0 as y → 1 (10.3.13)

as we approach the rigid surface.

The form of q (10.3.8) suggests an ansatz for w1(y, z) that behaves as

w1 = −1
3 |p0|2

(
1
α2

0
− 1

)
dF

dy
sin(2z), (10.3.14)
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where F (y) is to be determined. The continuity equation (10.3.11a) then requires

v1 = 2
3 |p0|2

(
1
α2

0
− 1

)
F (y) cos(2z). (10.3.15)

Cross-differentiation of (10.3.11c) and (10.3.11d) to eliminate the roll pressure results in
the third order partial differential equation

∂3v1

∂z3 + ∂3v1

∂y2∂z
− ∂3w1

∂y∂z2 − ∂3w1

∂y3 = 0. (10.3.16)

Substituting w1 and v1, we obtain a fourth order homogeneous differential equation for
F (y), namely

d4F

dy4 − 8d2F

dy2 + 16F (y) = 0. (10.3.17)

The boundary conditions (10.3.12) and (10.3.13) necessitate that

F (−1) = 0, F (1) = 0, F ′(−1) = 1, F ′(1) = 0. (10.3.18)

Solving for F (y), we find

F (y) = C1e2y + C2e−2y + C3ye2y + C4ye−2y, (10.3.19)

where

C1 = − 9 − e−8

e6 − 66e−2 + e−10 , C2 = 1 + 7e−8

e2 − 66e−6 + e−14 ,

C3 = 7 + e−8

e6 − 66e−2 + e−10 , C4 = 1 − 9e−8

e2 − 66e−6 + e−14 . (10.3.20)

The roll flow forces the streak, as described by the streak equation (10.3.11b). Solving
(10.3.11b) subject to (10.3.12) and (10.3.13), we then have

u1 = −1
3 |p0|2

(
1
α2

0
− 1

)
R(y) cos(2z), (10.3.21)

where

R(y) = C5e2y + C6e−2y +
[
−C3

4 y2 +
(

C3

8 − C1

2

)
y
]

e2y +
[
C4

4 y2 +
(

C4

8 + C2

2

)
y
]

e−2y,

(10.3.22)

C5 = − 39 + 90e−8 − e−16

8 (e6 − 67e−2 + 67e−10 − e−18) , C6 = 3 + 130e−8 − 5e−16

8 (e2 − 67e−6 + 67e−14 − e−22) .

(10.3.23)
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We are now able to determine the behaviour of λ1(z) as

λ1(z) = ∂u1

∂y

∣∣∣∣∣∣
y=−1

= λ1 cos(2z), (10.3.24)

where
λ1 = −1

3 |p0|2
(

1
α2

0
− 1

)(
1
8 − 24 + 40e−8

e8 − 67 + 67e−8 − e−6

)
. (10.3.25)

A maximal-interactions approach when exploring the pressure wave equation (10.2.34)
suggests the expansions

α0 = α0 + δ2α1 + · · · , c0 = c0 + δ2c1 + · · · , (10.3.26a)

p−(z) = δp0 cos(z) + δ3p
(1)
− (z) + · · · . (10.3.26b)

Upon substitution of (10.3.26), the pressure equation (10.2.34) yields at the next order

p
(1)′′
− (z) + p

(1)
− (z) = L1 sin(2z) sin(z) + L2 cos(z) + L3 cos(2z) cos(z) (10.3.27)

where
L1 = 2p0F (s0)λ1, (10.3.28)

L2 = −p0

− 2α0 α1 + 2m0

(K0 − α2
0m0)2 g(s0)α8/3

0 α1

+ 1
K0 − α2

0m0
α

5/3
0 g′(s0)

(
α

1/3
0 c1 + c0 α1

3α
2/3
0

)
+ 5

3(K0 − α2
0m0)

g(s0)α2/3
0 α1

, (10.3.29)

L3 = −p0λ1

3(K0 − α2
0m0)

5g(s0)α5/3
0 − 2g′(s0)α2

0c0

, (10.3.30)

with g(s) and F (s) defined in (10.2.35).

The corrections α1 and c0 are determined by imposing the appropriate boundary
conditions on p

(1)
− (z). Since the pressure equation (10.2.34) is linear, we may take

p−(0) = p−(2π) = δp0 (10.3.31)

without loss of generality. We also require p′
1(z) to be periodic. Therefore we impose

p
(1)
− (0) = p

(1)
− (2π) = 0, p

(1) ′
− (0) = p

(1) ′
− (2π). (10.3.32)
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We seek an even solution to (10.3.27), which leads us to

p
(1)
− (z) = L3 − L1

16 (cos(z) − cos(3z)) , (10.3.33)

where we have enforced
L1 + 2L2 + L3 = 0. (10.3.34)

in order to satisfy the conditions (10.3.32).

This complex-valued equation is linear in α1 and c1. For a fixed spring stiffness and
mass, the relation (10.3.34) provides us with two equations that can be solved uniquely
for α1 and c1. These solutions are depicted in figure 10.3.2 for various K0 and fixed
m0 = 0.5, p0 = 1 and β = 1. Both α1 and c1 are negative for small values of K0, and
eventually become positive as K0 is increased.

Figure 10.3.2: Depiction of α1 (left) and c1 (right) as K0 varies, for fixed p0 = 1, m0 = 0.5
and β = 1.

The pressure solution (10.3.33) enables us to determine the forcing q at the subsequent
order:

q = δ2q0 sin(2z) + δ4 (q11 sin(2z) + q12 sin(4z)) + · · · , (10.3.35)

with

q11 = (L3 − L1)p∗
0 + (L∗

3 − L∗
1)p0

4α2
0

− 2|p0|2 α1

α3
0

, (10.3.36a)

q12 = λ1|p0|2
(

1 − 1
α2

0

)
+ (L3 − L1)p∗

0
8

(
1 − 3

α2
0

)
+ (L∗

3 − L∗
1)p0

8

(
1 − 3

α2
0

)
. (10.3.36b)

Guided by the matching condition (10.2.61) between the core and lower wall layer, we
anticipate that wv = δ2w1(y, z) + δ4w2(y, z) + · · · . It is possible to repeat the process
carried out above to obtain higher order terms in our roll/streak expansions.
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10.4 Numerical Investigations

The analytical work in the previous section guides our numerical exploration of the
self-sustaining processes in the flow.

We briefly give an overview of our numerical method here, and discuss each step in
more detail in the subsequent sections. Our procedure involves iterating over the core
region’s boundary forcing q(z) for a fixed spring stiffness and mass. Given an initial
guess q(z), the nonlinear core roll equations (10.2.71, 10.2.72) are solved using a fixed
point iteration scheme. This is done via a Fourier decomposition of the flow components
in z, and a finite differencing method in y. Once we have the roll solution, we are able
to determine the behaviour of the streak and thus find λ(z) through use of (10.2.76).
This is fed into the wave pressure equation (10.2.74). We now look for α0 and c0 such
that equation (10.2.74) admits an even, periodic solution for the wave pressure in the
lower wall layer with p−(0) = δ for some fixed real δ. This solution to p−(z) is used to
calculate an updated q(z) using (10.2.73), and we repeat this procedure until q converges.
This process comprises of a fixed point iteration scheme for q(z).

For small values of δ, the initial guess used for q is provided by our small amplitude
analysis in Section 10.3, specifically expression (10.3.8) with use of (10.3.4). For larger
δ, a more appropriate initial guess is the converged q(z) from the solution for a slightly
smaller value of δ. This procedure forms a continuation in δ.

10.4.1 Core roll/streak solution

This section details the procedure for solving the core roll equations (10.2.71), which we
repeat here for ease:

∂vv

∂y
+ ∂wv

∂z
= 0, (10.4.1a)

vv
∂uv

∂y
+ wv

∂uv

∂z
= ∂2uv

∂y2 + ∂2uv

∂z2 , (10.4.1b)

vv
∂vv

∂y
+ wv

∂vv

∂z
= −∂pv

∂y
+ ∂2vv

∂y2 + ∂2vv

∂z2 , (10.4.1c)

vv
∂wv

∂y
+ wv

∂wv

∂z
= −∂pv

∂z
+ ∂2wv

∂y2 + ∂2wv

∂z2 . (10.4.1d)
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These are to be solved subject to the conditions (10.2.72)

uv → −1, wv → −q(z)
3 , vv → 0 as y → −1, (10.4.2a)

uv → 1, wv → 0, vv → 0 as y → 1, (10.4.2b)

where q(z) is considered to be a prescribed function here.

We first describe how we solve for the roll flow, and subsequently detail the solution
procedure for the streak flow.

Calculating the roll flow

With some manipulation, cross-differentiation of (10.4.1c) and (10.4.1d) to eliminate the
roll pressure and subsequent use of the continuity equation (10.4.1a) results in

vv
∂2vv

∂y∂z
+ wv

∂2vv

∂z2 − vv
∂2wv

∂y2 − wv
∂2wv

∂y∂z
= 2 ∂3vv

∂y2∂z
+ ∂3vv

∂z3 − ∂3wv

∂y3 . (10.4.3)

We begin by expanding the flow components in Fourier series:

uv = y + Ũ0(y) +
N∑

n=1
Un(y) einz +

N∑
n=1

U∗
n(y) e−inz, (10.4.4a)

vv = V0(y) +
N∑

n=1
Vn(y) einz +

N∑
n=1

V ∗
n (y) e−inz, (10.4.4b)

wv = W0(y) +
N∑

n=1
Wn(y) einz +

N∑
n=1

W ∗
n(y) e−inz, (10.4.4c)

pv = P0(y) +
N∑

n=1
Pn(y) einz +

N∑
n=1

P ∗
n(y) e−inz. (10.4.4d)

The behaviour of the 0th harmonic V0(y) can be determined analytically, and then used
to simplify our expressions for the higher harmonics. We therefore begin by seeking a
solution for V0. Substituting the decomposition (10.4.4b) into the continuity equation
(10.4.1a) and matching condition (10.4.2a), the behaviour V0 is found to be governed by

dV0

dy
= 0, V0(−1) = 0, (10.4.5a)

which reveals that V0 ≡ 0 for −1 ≤ y ≤ 1.
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With this simplification, substitution of (10.4.4c) into (10.4.1d) gives

d2W0

dy2 =
N∑

n=1
V ∗

n

dWn

dy
+ c.c.. (10.4.6)

The boundary conditions for W0 will be specified shortly.

Substitution of (10.4.4) into (10.4.1a) and (10.4.3) results in the following set of nonlinear
partial differential equations for the higher harmonics in the roll flow. The appropriate
boundary conditions arise from (10.4.2). The higher harmonics are governed by

dVn

dy
+ inWn(y) = 0 (n = 1, · · · , N), (10.4.7a)

d3Wn

dy3 − inW0
dWn

dy
− 2ind2Vn

dy2 − n2W0Vn − d2W0

dy2 Vn + in3Vn

+
n−1∑
k=1

{
i(n − k)Vk

dVn−k

dy
− (n − k)2Vn−kWk − Vk

d2Wn−k

dy2 − i(n − k)Wk
dWn−k

dy

}

+
N∑

k=n+1

{
−i(k − n)Vk

dV ∗
k−n

dy
− (k − n)2V ∗

k−nWk − Vk
d2W ∗

k−n

dy2 + i(k − n)Wk
dW ∗

k−n

dy

}

+
N−n∑
k=1

{
i(k + n)V ∗

k

dVk+n

dy
− (k + n)2Vk+nW ∗

k − V ∗
k

d2Wk+n

dy2 − i(k + n)W ∗
k

dWk+n

dy

}
= 0,

(n = 2, ..., N − 1) (10.4.7b)

The equations encapsulating the behaviour of W1 and WN are respectively given by

d3W1

dy3 − iW0
dW1

dy
− 2id

2V1

dy2 + iV0
dV1

dy
− W0V1 − d2W0

dy2 V1 + iV1+

N∑
k=2

{
−i(k − 1)Vk

dV ∗
k−1

dy
− (k − 1)2V ∗

k−1Wk − Vk
d2W ∗

k−1
dy2 + i(k − 1)Wk

dW ∗
k−1

dy

}
+

N−1∑
k=1

{
i(k + 1)V ∗

k

dVk+1

dy
− (k + 1)2Vk+1W

∗
k − V ∗

k

d2Wk+1

dy2 − i(k + 1)W ∗
k

dWk+1

dy

}
= 0,

(10.4.8a)

d3WN

dy3 − iNW0
dWN

dy
− 2iN d2VN

dy2 − N2W0VN − d2W0

dy2 VN + iN3VN

+
N−1∑
k=1

{
i(N − k)Vk

dVN−k

dy
− (N − k)2VN−kWk − Vk

d2WN−k

dy2 − i(N − k)Wk
dWN−k

dy

}
= 0.

(10.4.8b)
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This system of equations is subject to

Vn(−1) = 0, Vn(1) = 0 (n = 1, ..., N), (10.4.9a)

Wn(−1) = −1
3qn, Wn(1) = 0 (n = 0, ..., N), (10.4.9b)

where qn is the amplitude of the nth harmonic of q(z). Specifically,

q = q0 +
N∑

n=1
qneinz +

N∑
n=1

q∗
ne−inz. (10.4.10)

Discretising the domain in the wall normal direction with J equally-spaced points, we
define

yj = −1 + (j − 1)h, h = 2
J − 1 (j = 1, ..., J). (10.4.11)

With this discretisation, y1 corresponds to the lower compliant wall and yJ to the upper
rigid wall. The boundary conditions (10.4.9) thus become

Vn(y1) = 0, Vn(yJ) = 0 (n = 1, ..., N), (10.4.12a)

Wn(y1) = −1
3qn, Wn(yJ) = 0 (n = 0, ..., N), (10.4.12b)

We use a second-order finite differencing method to approximate the derivatives in
(10.4.6)-(10.4.8). A central difference scheme was used for interior points, whilst a
one-sided scheme was used for points near the boundaries when appropriate.

Moving all nonlinear terms in these discretised equations to the right-hand side, we can
transform our system into the matrix equation

Ax = f(x), (10.4.13)

where the vector x has length 2(N + 1)J and contains the unknowns of our system:

x2nJ+j = Vn(yj), x2nJ+J+j = Wn(yj) n = 0, .., N, j = 1, ..., J. (10.4.14)

The square matrix A of order 2(N + 1)J is fully known and pertains only to the linear
terms in our discretised equations. Of length 2(N + 1)J , the vector f(x) contains the
nonlinear terms of the equations. We briefly detail their composition here. Rows (2nJ +1)
and (2nJ + J) correspond to the boundary conditions for Vn at y = y1 and y = yJ

respectively. The intermediate rows (i.e rows (2nJ + j) for j = 2, ..., J − 1) correspond
to the nth harmonic discretised continuity equation at y = yj. The remaining rows are
associated with the spanwise harmonics in a similar manner, with rows (2nJ + J + 1)
and (2nJ + J + J) being reserved for the boundary conditions of Wn at y = y1 and
y = yJ respectively. Rows (2nJ + J + j) for j = 2, ..., J − 1 correspond to the discretised
equations governing Wn at y = yj.
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Along each row of the matrix A, the coefficient of Vn(yj) in the appropriate discretised
equation belongs in column 2nJ + j and similarly, the coefficient of Wn(yj) belongs in
column 2nJ + J + j.

We solve for the roll flow using a fixed point iteration method so that at each iteration
k, we have

Ax(k) = f(x(k−1)), k = 1, 2, ... (10.4.15)

We use an inbuilt MATLAB function to solve (10.4.15) for x(k). One possible choice for
the initial guess x(0) is given by neglecting all non-linear terms and solving Ax(0) = b,
where b is a vector containing information only about the roll boundary conditions.
Specifically, we have

b2nJ+J+1 = −1
3qn (10.4.16)

with all other entries being zero. If the value of δ is not small, it is reasonable to use the
converged roll solution for a slightly smaller value of δ as the initial guess x(0).

At the kth iteration, we calculate the energy

E(k)(yj) =
N∑

n=0

{∣∣∣V (k)
n (yj)

∣∣∣2 +
∣∣∣W (k)

n (yj)
∣∣∣2} , j = 1, .., J − 1 (10.4.17)

and continue iterating on the roll flow solution until the quantity

max
1≤j≤J−1

E(k)(yj) − E(k−1)(yj)
E(k−1)(yj)

(10.4.18)

is below a desired tolerance.

Once this fixed-point iteration scheme converges, we have a solution for the roll flow
and can seek the behaviour of the streak flow. Typically, less than 10 iterations were
required for convergence.

Calculating the streak flow

To determine the streak behaviour, it is convenient to define the sums

S1(n; y) =
n−1∑
k=1

{
−Vk

dUn−k

dy
− i(n − k)WkUn−k

}
, (10.4.19a)

S2(n; y) =
N∑

k=n+1

{
−Vk

dU∗
k−n

dy
+ i(k − n)WkU∗

k−n

}
, (10.4.19b)

S3(n; y) =
N−n∑
k=1

{
−V ∗

k

dUk+n

dy
− i(k + n)W ∗

k Uk+n

}
. (10.4.19c)
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Using this, upon substitution of the Fourier decomposition (10.4.4a) into the core streak
equation (10.4.1b), we find that the streamwise harmonics are governed by

d2Ũ0

dy2 + S2(0; y) + S3(0; y) = 0, (10.4.20a)

d2U1

dy2 − U1 − iW0U1 − V1
dŨ0

dy
+ S2(1; y) + S3(1; y) = V1, (10.4.20b)

d2Un

dy2 − n2Un − inW0Un − Vn
dŨ0

dy
+ S1(n; y) + S2(n; y) + S3(n; y) = Vn (n = 2, ..., N − 1)

(10.4.20c)
d2UN

dy2 − N2UN − iNW0UN − VN
dŨ0

dy
+ S1(N ; y) = VN . (10.4.20d)

The corresponding boundary conditions are found by substitution of (10.4.4a) into
(10.4.2):

Ũ0(1) = Ũ0(−1) = 0, Un(1) = Un(−1) = 0 (n = 1, ..., N). (10.4.21)

Since the roll flow is now fully known, these (N + 1) equations are linear in the unknown,
streak harmonics. We therefore use a different method to that used for the roll flow.

In order to accommodate the conjugated Un in our numerical method, we consider this as a
system containing (2N +2) unknowns to be found, namely Ũ0, U1, ..., UN , Ũ∗

0 , U∗
1 , ..., U∗

N .
Solving for both Un and U∗

n allows us to conveniently form a matrix equation that
accommodates the coefficients of Un and U∗

n in equations (10.4.20). We will discuss this
matrix equation shortly.

We therefore need to supplement our system with another (N + 1) equations, along with
the appropriate boundary conditions. These can be found by taking the conjugate of
equations (10.4.20) and conditions (10.4.21):

d2Ũ0
∗

dy2 + S∗
2(0; y) + S∗

3(0; y) = 0, (10.4.22a)

d2U∗
1

dy2 − U∗
1 + iW ∗

0 U∗
1 − V ∗

1
dŨ0

∗

dy
+ S∗

2(1; y) + S∗
3(1; y) = V ∗

1 , (10.4.22b)

d2U∗
n

dy2 − n2U∗
n + inW ∗

0 U∗
n − V ∗

n

dŨ0
∗

dy
+ S∗

1(n; y) + S∗
2(n; y) + S∗

3(n; y) = V ∗
n (n = 2, ..., N − 1)

(10.4.22c)
d2U∗

N

dy2 − N2U∗
N + iNW ∗

0 U∗
N − V ∗

N

dŨ0
∗

dy
+ S∗

1(N ; y) = V ∗
N . (10.4.22d)

Ũ0
∗(1) = Ũ0

∗(−1) = 0, U∗
n(1) = U∗

n(−1) = 0 (n = 1, ..., N). (10.4.23)
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We again use a second-order finite difference method, opting to use a central scheme for
interior points and one-sided schemes near the boundaries. We discretise our domain
1 ≤ y ≤ 1 using the same normal locations yj (10.4.11) as used when solving for our roll
flow. This choice ensures that the roll flow is known at the appropriate locations and no
interpolation is necessary.

Upon finite differencing (10.4.20)-(10.4.23), we can write down the system as the matrix
equation

Su = t. (10.4.24)

Here, S is a known square matrix of size 2(N + 1)J , whose structure we discuss shortly.
The vector of unknowns u is of length 2(N + 1)J and is such that

uj = Ũ0(yj), u(N+1)J+j = Ũ∗
0 (yj), (10.4.25a)

unJ+j = Un(yj), u(N+1)J+nJ+j = U∗
n(yj) (10.4.25b)

for n = 1, ..., N, j = 1, ..., J. A fully known vector of length 2(N + 1)J , t is given by

tj = 0, t(N+1)J+j = 0, (10.4.26a)

tnJ+j = Vn(yj), t(N+1)J+nJ+j = V ∗
n (yj) (10.4.26b)

for n = 1, ..., N, j = 1, ..., J.

Turning back to the matrix S, rows (nJ + 1) and (nJ + J) correspond to the boundary
conditions for Un (10.4.21), whilst rows (J(N + 1) + nJ + 1) and (J(N + 1)nJ + J)
correspond to the boundary conditions for U∗

n (10.4.23). The equations (10.4.20) and
(10.4.22) are described in the intermediate rows (nJ + j) and (J(N + 1) + nJ + j)
respectively. Finally, entries in the (nJ + j) and (J(N + 1) + nJ + j) columns correspond
to coefficients of Un(yj) and U∗

n(yj) in the appropriate equation or boundary condition.

With S and t defined, we may now solve for u using an in-built MATLAB solver.

Once we have the solution for the streak, we can calculate λ(z) using (10.2.76), which
we recall is given by

λ(z) = ∂uv

∂y

∣∣∣∣∣∣
y=−1

. (10.4.27)

Linking the roll/streak and wave flows, this key equation yields

λ(z) = 1 + Ũ0
′(−1) +

N∑
n=1

U ′
n(−1)einz +

N∑
n=1

U∗
n

′(−1)e−inz. (10.4.28)
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10.4.2 Solving the pressure wave equation

In this section, we discuss how to determine α0 and c0 such that the pressure wave
equation (10.2.74) admits an even, 2π periodic solution. We restate the equation
governing the wave pressure, along with the associated boundary conditions, for ease.
Having defined

g(s) = i5/3 Ai′(−i1/3s)
κ(−i1/3s) , F (s) = 3

2 + −i1/3s

2Ai(−i1/3s)
(
−i1/3sκ(−i1/3s) + Ai′(−i1/3s)

)
,

(10.4.29)
we are to solve

d2p−

dz2 − dp−

dz

λ′(z)
λ(z) F (s) + p−

−α0
2 + (α0λ(z))5/3

K0 − α02m0
g(s)

 = 0, (10.4.30)

subject to the periodic boundary conditions

p−(0) = p−(2π), dp−

dz

∣∣∣∣∣∣
z=0

= dp−

dz

∣∣∣∣∣∣
z=2π

. (10.4.31)

Since (10.4.30) is linear in p−(z), we impose that

p−(0) = δ (10.4.32)

where δ is real, without loss of generality. Recall that we seek an even solution for p−(z),
so that p−(z) = p−(−z). Using the chain rule,

p′
−(z) = −p′

−(−z). (10.4.33)

Evaluating this at z = 0 implies that we must have

p′
−(0) = 0. (10.4.34)

Before demonstrating our numerical procedure, we reformulate our aims here: we seek
α0 and c0 such that equation (10.4.30) admits a solution in the domain 0 ≤ z ≤ π with
initial conditions (10.4.32) and (10.4.34), such that the constraint p′

−(π) = 0 is satisfied.
We may then reflect this solution (about z = π) to obtain the continuous behaviour of
the pressure from z = π to z = 2π. Imposing this reflection about z = π assures that
the periodic boundary conditions (10.4.31) are satisfied and that the pressure is even
about z = 0:

p−(z) = p−(2π + z) = p−(π + (π + z)) = p−(π − (π + z)) = p−(−z), (10.4.35)

where the first equality follows from the periodicity of p−, and the third from the evenness
of p− about z = π.
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Having posed our problem, we detail our numerical procedure. We begin by choosing an
initial guess for α0 and c0. For small δ, an appropriate initial guess arises from solving
the analytical small-δ equations (10.3.3) and (10.3.6) with β = 1. Over the domain
0 ≤ z ≤ π, we then solve the pressure equation (10.4.30) with initial conditions

p−(0) = δ, p′
−(0) = 0 (10.4.36)

using a 4th order Runge-Kutta method, which we describe shortly. Once we have a
solution for p−, we calculate the values

Σ1(α0, c0) = Re(p′
−(π)), Σ2(α0, c0) = Im(p′

−(π)). (10.4.37)

We repeat this procedure, iterating over α0 and c0 using the Newton-Raphson method
until the values Σ1 and Σ2 are sufficiently close to zero so that we have achieved p′

−(π) = 0
to within some specified tolerance.

The Newton-Raphson method makes use of a Jacobian of derivatives. We do not describe
the method here, but we provide an example of how we approximate these derivatives:

∂Σ1

∂α0
(ᾱ0, c̄0) ≈ Σ1 (ᾱ0 + ∆α0, c̄0) − Σ1 (ᾱ0, c̄0)

∆α0
(10.4.38)

where ∆α0 is a small perturbation to ᾱ0.

We now briefly discuss how we solve (10.4.30) subject to (10.4.36). A second order
differential equation for p−, we introduce the substitution

r1(z) = p−(z), r2(z) = p′
−(z) (10.4.39)

to convert (10.4.30) into a system of two first order differential equations,

r′
1(z) = r2(z), r′

2(z) = λ′(z)
λ(z) F (s) r2 −

−α0
2 + (α0λ(z))5/3

K0 − α02m0
g(s)

 r1, (10.4.40)

with initial conditions arising from (10.4.36)

r1(0) = δ, r2(0) = 0. (10.4.41)

Discretising our spanwise domain 0 ≤ z ≤ π using M intervals of equal length, the
distance between each point is given by

h = π

M
(10.4.42)

and we have
zm = m · h, m = 0, ..., M. (10.4.43)
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We then use a 4th order Runge-Kutta method to march r1(z) and r2(z) from z = 0 to
z = π, according to the equations (10.4.40). This entails evaluating λ(z) and λ′(z) at
the points z = zm and z = zm + h

2 . From our solution of the roll flow, we have λ(z) in
the form of a Fourier decomposition (10.4.28), and we are able to calculate the sum on
the right hand side of (10.4.28) for various z.

It is also worth noting that s is dependent on λ(z), with

s(z) = α
1/3
0 c0

λ(z)2/3 . (10.4.44)

Therefore F (s) and g(s) must also be evaluated at the relevant spanwise locations. In
order to do this, we formulate differential equations that govern F (s) and g(s) (see
appendix A). Defining

smax = max
m=0,..,M

s(zm), (10.4.45)

we solve these equations over the interval 0 ≤ s ≤ smax and interpolate the solutions to
s = s(zm) and s = s(zm + h

2 ).

Finally, to complete this section, we discuss how to obtain the forcing q. Once we have
reflected the solutions r1 and r2 about z = π, we acquire solutions for the wave pressure
and its derivative over the interval 0 ≤ z ≤ 2π. We can then ascertain the values of q at
the spanwise locations

zm = m · h for h = π

M
, m = 0, ..., 2M (10.4.46)

by using the relation (10.2.42)

q = 1
α02λ(z)2

[
α0

2 d
dz

(
p−p∗

−

)
+ d

dz

(
dp−

dz

dp∗
−

dz

)]
. (10.4.47)

This forcing will be fed into our roll flow solver, which requires q to be in the form of a
Fourier decomposition,

q = q0 +
N∑

n=1
qneinz +

N∑
n=1

q∗
ne−inz. (10.4.48)

To manipulate q into the appropriate form, we calculate the Fourier coefficients using

q0 = 1
2π

∫ 2π

0
q(z)dz, qn = 1

2π

∫ 2π

0
q(z)e−inzdz. (10.4.49)

We approximate these integrals using Simpson’s rule. For example,

q0 ≈ h

6π

q(z0) + q(z2M) + 4
M∑

j=1
q(z2j−1) + 2

M−1∑
j=1

q(z2j)
 . (10.4.50)

The qn are computed in a similar manner.
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10.4.3 Numerical results

Having detailed each aspect of our numerical procedure, we now illustrate numerical
solutions to the vortex-wave interaction equations (10.2.71)-(10.2.76). Our focus lies in
investigating how the roll/streak flow is influenced by increasing the amplitude δ of the
wave pressure p−(z), where we recall

p−(0) = p−(2π) = δ. (10.4.51)

For our numerical method, we use N harmonics in our Fourier decomposition of the
vortex flow, where N = 20 unless otherwise stated. This was found to sufficiently
resolve the solutions shown here. We find two families of solutions, each with different
characteristics. We are able to categorise the solutions as emerging from either zero
amplitude (δ = 0) or finite amplitude (say, δ = δe). We will refer to these as Type I and
Type II solutions respectively.

Consider a lower wall with the properties K0 = 1 and m0 = 0.1. In figure 10.4.1,
we compare Type I solutions α0 and c0 from our numerical computations with the
results from our small-δ expansion (Section 10.3) as δ increases. We see good agreement
between the two approaches when δ is small. While the magnitudes of the maximum
and minimum values of the shear λ(z) and boundary forcing q(z) increase considerably
with increasing δ, they both broadly appear to retain their shape (figure 10.4.2). A
similar trend occurs in the normal roll and streak flow: the magnitude of vortex flow has
been greatly amplified, but the rolls and streak remain regularly spaced in the spanwise
direction as δ increases to δ = 1.7 (see figures 10.4.3 and 10.4.4). We remark that the
roll flow is concentrated towards the lower flexible wall. We are unable to continue this
solution of the vortex-wave interaction equations to larger values of δ for these particular
wall properties. We do, however, find the existence of a Type II solution for these same
wall properties. We will see shortly that, for certain values of δ, the Type I and Type II
solutions co-exist.
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Figure 10.4.1: Comparison of Type I numerical and ‘small-δ’ solutions of α0 (left) and
c0 (right) as δ varies. The cylinder properties are K0 = 1, m0 = 0.1. For the small-δ
expansion, we take p0 = 1 without loss of generality and β = 1.

Figure 10.4.2: Type I solution. Plots of the (numerically obtained) shear λ(z) (left) and
q(z) (right) for various δ. The cylinder properties are K0 = 1, m0 = 0.1.

(a) δ = 0.1 (b) δ = 1.7

Figure 10.4.3: Type I solution. Plots of the (numerically obtained) normal roll flow
for various δ. The cylinder properties are K0 = 1, m0 = 0.1. Note the colourmaps are
different for each figure.
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(a) δ = 0.1 (b) δ = 1.7

Figure 10.4.4: Type I solution. Plots of (numerically obtained) streak flow for various δ.
Specifically, we plot (Uv − y). The cylinder properties are K0 = 1, m0 = 0.1. Note the
colourmaps are different for each figure.

Before continuing, it is worth remarking that the pressure equation (10.2.74) admits the
solution

p− ≡ δ for 0 ≤ z ≤ 2π (10.4.52)

with α0 and c0 satisfying

−α0
2 + α0

5/3

K0 − α02m0
g(s0) = 0, c0 = s0

α
1/3
0

, s0 ≈ 2.2972, (10.4.53)

where s0 is such that
Im g(s0) = 0. (10.4.54)

This solution, as described by (10.4.52) and (10.4.53), does not generate a roll/streak
flow.

The Type II solution found for the cylinder properties K0 = 1 and m0 = 0.1 appears to
bifurcate from the solution p− ≡ δ (10.4.52) at finite amplitude (δe ≈ 1.3), and is shown
in figure 10.4.5. The maximum magnitude of λ(z) and q(z) increase significantly as δ is
increased (figure 10.4.6). This solution is vastly different to the Type I solution. We see
that the Type II-associated λ(z) and q(z) have no even or odd symmetry about z = π/2
or z = 3π/2, and the peak of the Type II shear does not exceed the value 1.

We observe that the roll flow is concentrated towards the lower wall more so than the
streak, as seen in figures 10.4.7 and 10.4.8. We also notice fewer rolls than in the Type I
solution (see figure 10.4.3) for the same wall properties. Furthermore, the Type II rolls
appear to extend closer to the lower flexible wall than the Type I rolls for the values of
δ shown.
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As δ increases, the Type II-associated q′(z) becomes closer to zero at z = π (figure
10.4.6). The roll centred about z = π begins to ‘split’ into two distinct rolls that have
increasing intensity (figure 10.4.7). In figure 10.4.8, we see the contours in the most
negative region of the streak flow begin to pull apart and the spanwise variations in the
streak become more intense.

Figure 10.4.5: Type II solution. The black curves depict solutions α0 and c0 to the
vortex-wave interaction equations when the cylinder properties are K0 = 1, m0 = 0.1.
The green dashed line represents the constant pressure wave solution (10.4.52) with α0
and c0 as in (10.4.53).

Figure 10.4.6: Type II solution. Plots of the (numerically obtained) shear λ(z) (left)
and q(z) (right) for various δ. The cylinder properties are K0 = 1, m0 = 0.1.
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(a) δ = 1.3 (b) δ = 1.5

(c) δ = 3 (d) δ = 4

Figure 10.4.7: Type II solution. Plots of the (numerically obtained) normal roll flow for
various δ. The cylinder properties are K0 = 1, m0 = 0.1.

(a) δ = 1.3 (b) δ = 1.5

(c) δ = 3 (d) δ = 4

Figure 10.4.8: Type II solution. Plots of (numerically obtained) streak flow for various δ.
Specifically, we plot (Uv − y). The cylinder properties are K0 = 1, m0 = 0.1.
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Increasing the mass of the flexible lower wall, we explore the vortex flow for a wall with
the properties K0 = 1 and m0 = 1. Figures 10.4.9-10.4.12 depict Type I solutions to the
vortex-wave interaction equations (10.2.71)-(10.2.76). These originate at zero amplitude,
δ = 0. We see good agreement with results from the ‘small δ’ expansion when δ is small.
Unlike the case m0 = 0.1, α0 and c0 now decrease with increasing δ.

As δ increases in figure 10.4.10, we see that the shape of q(z) deviates from what is
expected by our ‘small-δ’ expansion. This is particularly noticeable around z = π.

In figure 10.4.11, the spanwise variation of the roll flow increases near the lower wall as
δ is increased; the negative roll centred at z = π appears to change shape and to spread
over a larger spanwise extent. In addition to this, an increase in δ results in the positive
rolls becoming more concentrated towards the lower wall. By δ = 3, the roll solution has
become highly disturbed. Though the streak flow increases in intensity with increasing
δ, its shape remains largely unaffected (see figure 10.4.12).

Figure 10.4.9: Comparison of Type I numerical and ‘small-δ’ solutions of α0 (left) and
c0 (right) as δ varies. The cylinder properties are K0 = 1, m0 = 1.

Figure 10.4.10: Type I solution. Plots of the (numerically obtained) shear λ(z) (left)
and q(z) (right) for various δ. The cylinder properties are K0 = 1, m0 = 1. *We have
used N = 24 harmonics for δ = 3 so as to ensure adequate resolution.
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(a) δ = 0.1 (b) δ = 2.5

(c) δ = 3∗

Figure 10.4.11: Type I solution. Plots of the (numerically obtained) normal roll flow
for various δ. The cylinder properties are K0 = 1, m0 = 1. *We have used N = 24
harmonics to generate this figure so as to ensure adequate resolution.

(a) δ = 0.1 (b) δ = 2.5

(c) δ = 3∗

Figure 10.4.12: Type I solution. Plots of (numerically obtained) streak flow for various
δ. Specifically, we plot (Uv − y). The cylinder properties are K0 = 1, m0 = 1. *We have
used N = 24 harmonics to generate this figure so as to ensure adequate resolution.
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A Type II solution emerges at finite amplitude, with δe ≈ 3.25. It is thus evident that δe

is dependent on the mass of the lower wall. Figure 10.4.13 shows that the shapes of λ(z)
and q(z) at δ = 4.25 are very dissimilar to those of the Type II solution corresponding
to m = 0.1 (figure 10.4.6). In this case, the shear term λ(z) has only one trough and
no peaks. In addition, the forcing q(z) has a steepening gradient near z = π with an
increase in δ. These differences are reflected in the vortex flow, which is illustrated in
figures 10.4.14 and 10.4.15. In contrast with the Type II rolls when m0 = 0.1, we do not
see a roll ‘splitting’ into two distinct rolls here (m0 = 1).

We consider again figures 10.4.14 and 10.4.15 for K0 = 1 and m0 = 1. As δ is increased
to δ = 4.25, the rolls are no longer equally spaced along the spanwise direction, with
the positive roll becoming more localised around z = π. The effect of increasing δ is
less prominent on the shape of the streak, but we note that its intensity has increased
greatly and the negative region appears slightly more concentrated about z = π.

Figure 10.4.13: Type II solution. Plots of the (numerically obtained) shear λ(z) (left)
and q(z) (right) for various δ. The cylinder properties are K0 = 1, m0 = 1.
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(a) δ = 3.25 (b) δ = 4.25

Figure 10.4.14: Type II solution. Plots of the (numerically obtained) normal roll flow
for various δ. The cylinder properties are K0 = 1, m0 = 1. Note the colourmaps are
different for each figure.

(a) δ = 3.25 (b) δ = 4.25

Figure 10.4.15: Type II solution. Plots of (numerically obtained) streak flow for various
δ. Specifically, we plot (Uv − y). The cylinder properties are K0 = 1, m0 = 1. Note the
colourmaps are different for each figure.

In summary, we have seen the existence of highly nonlinear solutions to the vortex-wave
interaction equations (10.2.71)-(10.2.76). Generally, we have found that the roll flow
Vv(y, z) is concentrated towards the lower flexible wall, and is more greatly affected by
an increase in δ than the streak flow. We have seen two families of solutions. Type I
solutions emerge from zero amplitude (δ = 0) and behave as expected from our ‘small-δ
analytical results (Section 10.3) when δ is small. In contrast, Type II solutions emerge
at finite amplitude (δ = δe). The Type II solution appears to be immensely affected by
the mass of the flexible wall. The effect of varying the spring stiffness of the wall has
not been studied here, though it is of interest.
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10.5 Summary

We give a brief overview of this chapter, which focuses on vortex-wave interaction in
planar Couette flow with a lower flexible wall. During the course of our analysis, we
have seen that the nonlinear self-interaction of the wave in the lower viscous wall layer
affects the core region via a boundary forcing for the roll flow. This roll flow drives a
streak flow, and the spanwise variation in this streak flow influences the wave in the
lower viscous layer.

The vortex-wave interaction equations (10.2.71)-(10.2.76) that govern this self-sustaining
process are difficult to solve analytically. In order to make analytical progress, we
assumed that the wave has small amplitude in the lower viscous wall layer and we
subsequently found leading order solutions for the roll and streak flow. This work partly
guided our numerical investigation of the equations (10.2.71)-(10.2.76), which illustrated
the co-existence of two families of finite-amplitude solutions with different flow structures.
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Chapter 11

Conclusions and Future Work

The focus of this thesis has broadly been concerned with two areas: the linear stability
of annular Poiseuille-Couette flow (APCF) to axisymmetric disturbances when the inner
cylinder is flexible (Chapters 2-9), and vortex-wave interaction in planar Couette flow
with a lower flexible wall (Chapter 10).

In Chapter 2, we formulated the linear stability problem of APCF, modelling the flexible
inner cylinder using a spring-backed plate model [55]. We subsequently formed the
linearised disturbance equations, and the cylindrical version of the Orr-Sommerfeld
problem on which our numerical computations in Chapter 3 hinged.

In Chapter 3, we presented neutral stability curves of compliant APCF for various
inner cylinder properties, such as spring stiffness, mass, radius ratio and sliding velocity.
For a stationary inner cylinder, we found that an increase in flexibility caused the
‘flow-based instability’ present in the rigid case to have a narrower band of unstable
wavenumbers. Our numerical calculations also show the presence of a compliance-related
mode that is nonexistent in the scenario of a rigid inner cylinder. The situation becomes
more complicated with increasing sliding velocity, where we see the existence of further
compliance-related instabilities. We remark, however, that this does not mean these
instabilities do not exist for a stationary flexible cylinder. Our investigations also suggest
that the critical Reynolds number of the flow in the limit α → 0 is unaffected by the
cylinder mass.

Motivated by our numerical findings, in Chapter 4 we explored the circular
Orr-Sommerfeld equation and determined the values of δ and V for which a
compliance-related instability exists in the long-wave limit. Where this is the case, we
were able to calculate the critical Reynolds number of the instability in this limit, which
we analytically confirmed is independent of the cylinder mass.
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In Chapter 5, we followed the methods of Yeo and Dowling [66], Yeo [67], Kumaran
[68] and Shankar and Kumaran [69] to prove theorems pertaining to the inviscid linear
stability of compliant APCF. We provided necessary conditions for instability, in addition
to wavespeed bounds for unstable modes. As a result of our boundary conditions, our
theorems are weaker than their classical counterparts for the planar flow over rigid
boundaries.

In Chapters 6-8, we studied the linearised disturbance equations for asymptotically
large Reynolds numbers. We discussed the effects of flexibility on the lower-branch,
upper-branch and hybrid modes of the rigid case, which was studied by Walton [1]. In
addition to these, we found the existence of structures that do not have rigid counterparts.
Chapter 9 compares results from this analysis to our numerical computations at finite
Reynolds numbers, and we generally found good agreement between the two approaches.

Finally, in Chapter 10, we moved away from the cylindrical geometry used thus far, and
turned our attention to planar Couette flow with a flexible lower wall. The amplitude of
a three-dimensional travelling wave perturbation was increased to a critical size so as to
alter our basic flow to a streaky flow. We demonstrated that the nonlinear self-interaction
of the wave forces a roll flow, which in turn drives a streak flow that supports the existence
of neutrally stable waves. After deriving the vortex-wave interaction equations, we used
a numerical approach to illustrate the co-existence of two finite-amplitude states with
different flow structures.

There are many more avenues to explore with this research. For example, our research has
been concerned with the linear stability of compliant APCF to axisymmetric disturbances.
With Squire’s theorem not applicable to our annular flow, it would be insightful to
consider also stability with respect to non-axisymmetric disturbances.

Our spring-backed plate model for a flexible surface constrains motion due to flexibility
to the normal direction. Shankar and Kumaran [81] have demonstrated that the inclusion
of tangential motion can induce instability in wall modes that is not captured by a
wall that moves only normally. Though the spring-backed plate model has been used
extensively, more sophisticated models have also been used to describe wall deformability.
These include linear and neo-Hookean viscoelastic solid models, the latter of which has
been used by Gaurav and Shankar [82] and Patne and Shankar [83, 84] in the case of
pressure-driven flow through a channel with deformable walls. It would be interesting to
see the effect of using these models for APCF with a flexible inner cylinder.
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We investigated the inviscid linear stability of compliant APCF as a means to understand
the viscous problem at large Reynolds numbers. Synge [85] provides eigenvalue bounds
for solutions to the Orr-Sommerfeld equation for planar flow over rigid boundaries. These
results were extended by Joseph [86, 87], who also considered the stability of parallel
flow in round pipes. More recently, Pavithra and Subbiah [88] found eigenvalue bounds
for axial flows through an annular region between two cylinders. The formulation of
these bounds for the case of a flexible inner cylinder would be a worthwhile pursuit.

The end of our thesis pertained to vortex-wave interaction in planar Couette flow with
a lower flexible wall. In view of the work carried out in our earlier chapters, a natural
next step would be to consider vortex-wave interaction in the cylindrical geometry of
compliant APCF and to see whether the non-uniqueness found in the planar case is also
present in the more complicated geometry.
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Appendix A

Governing equations for g(s) and F (s)

Following the methods of Walton and Patel [89], we calculate values of the functions
g(s) and F (s) appearing the pressure wave equation (10.2.74) by forming and solving
the differential equations described below.

The function g(s) has been defined as

g(s) = i5/3 Ai′(−i1/3s)
κ(−i1/3s) , (A.0.1)

where
κ(−i1/3s) =

∫ ∞

−i1/3s
Ai (ξ−) dξ−. (A.0.2)

In figure A.0.1 we illustrate how the real and imaginary parts of g(s) vary with s.

Differentiating (A.0.1) using the chain and product rules, it can be shown with some
manipulation that

i5/3g′(s) = Ai(−i1/3s)
κ(−i1/3s) (s + g(s)) . (A.0.3)

Upon differentiation, this leads to a second order differential equation for g(s) after
further simplification:

g′′(s) = −i (s + g(s)) g(s) + 2 (g′(s))2 + g′(s)
s + g(s) . (A.0.4)

Using (A.0.1) and (A.0.3), we are able to form two initial conditions subject to which
(A.0.4) should be solved.

Noting that
κ(0) =

∫ ∞

0
Ai(ξ)dξ = 1

3 , (A.0.5)
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we find

g(0) = −3Ai′(0)
i1/3 , g′(0) = 9 Ai′(0) Ai(0). (A.0.6a)

The equation (A.0.1) can be solved subject to (A.0.6) using, for example, a Runge-Kutta
method.

In some parts of this thesis, we have calculated g(s) by direct integration of κ (A.0.2)
using MATLAB’s vpaintegral function.

(a) Plot of Re(g(s)) against s

(b) Plot of Im(g(s)) against s

Figure A.0.1: Illustration of Re(g(s)) and Im(g(s)) against s. For these figures, g(s) was
calculated by direct integration of κ (A.0.2) using MATLAB’s vpaintegral function.

235



Now we consider the function F (s),

F (s) = 3
2 + −i1/3s

2Ai(−i1/3s)
(
−i1/3sκ(−i1/3s) + Ai′(−i1/3s)

)
, (A.0.7)

Following Walton and Patel [89], we introduce a function h(s) such that

F (s) = 3
2 + s h(s). (A.0.8)

With differentiation and manipulation, it can be shown that h(s) satisfies

h′′(s) = 2h′(s)
[

s h′(s) − h(s)
s h(s) + 1/2

]
+ i

(1
2 + s h(s)

)
(A.0.9)

subject to

h(0) = −i1/3Ai′(0)
2Ai(0) , h′(0) = i2/3

2

 1
3Ai(0) −

(
Ai′(0)
Ai(0)

)2
 . (A.0.10)

This system can also be solved for h(s) using a Runge-Kutta method, and the solution
can then be used to find F (s) using (A.0.8).
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Appendix B

Wavespeed expansion for a neutral disturbance in
the long-wave limit

In Chapter 4, we sought a neutral-mode solution to the Orr-Sommerfeld problem (4.0.1
4.0.2) in the limit α → 0. In this appendix, we examine the second order term in the
wavespeed expansion (4.0.9) and demonstrate that a neutral disturbance in the long-wave
limit must have c1 = 0.

For convenience, we restate the relevant Orr-Sommerfeld problem below:

(U0 − c)
(

ϕ′′ − ϕ′

r
− α2ϕ

)
+ ϕ

(
U ′

0
r

− U ′′
0

)

= 1
iαR

(
ϕ(4) − 2ϕ(3)

r
+
( 3

r2 − 2α2
)

ϕ′′ +
(

2α2

r
− 3

r3

)
ϕ′ + α4ϕ

)
, (B.0.1)

is to be solved subject to the boundary conditions

ϕ(1) = 0, (B.0.2a)

ϕ′(1) = 0, (B.0.2b)

(c − V ) ϕ′(δ) + U ′
0(δ) ϕ(δ) = 0, (B.0.2c)[2iα

R

(3
2U ′

0(δ) + c − V

δ

)
−
(

K

R2 − α2c2m
)]

ϕ′(δ) = iU ′
0(δ)

αR

[
ϕ(3)(δ) − ϕ′′(δ)

δ
+ ϕ′(δ)

δ2

]
,

(B.0.2d)

where V is chosen so that U ′
0(δ) ̸= 0. Primes (′) denote differentiation with respect to r.

The base flow U0 (2.2.2) is given by

U0(r) = 1 − r2 + (V − 1 + δ2)
log δ

log r, δ ≤ r ≤ 1. (B.0.3)
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We recall that the eigenfunction ϕ has been normalised so that ϕ(δ) = 1. Following the
expansions (4.0.4) and (4.0.9), we write

R = R0 + · · · , ϕ = ϕ0 + αR0 ϕ1 + · · · , c = c0 + αc1 + · · · . (B.0.4)

In Chapter 4, we determined that ϕ0 and c0 are given by (4.0.8) and (4.0.11) respectively.
We then commented that we must have c1 = 0, and used this assumption to determine
ϕ1 and R0. Our goal here is to prove that c1 is indeed zero.

Substitution of the expansions (B.0.4) into the kinematic boundary condition (B.0.2c)
results in

(c0 − V ) ϕ′
1(δ) + c1ϕ

′
0(δ) + U ′

0(δ) ϕ1(δ) = 0. (B.0.5)

Taking the real part of (B.0.5) gives

(c0 − V ) Re{ϕ′
1(δ)} + Re{c1}ϕ′

0(δ) + U ′
0(δ) Re{ϕ1(δ)} = 0, (B.0.6)

where Re{·} denotes the real part. If ϕ1 is purely imaginary, equation (B.0.6) indicates
that c1 must have zero real part since ϕ′

0(δ) is non-zero. With this in mind, we seek to
understand the behaviour of ϕ1.

Recalling that ϕ1 is described by the inhomogenous differential equation given in (4.0.12),
we write

ϕ′′′′
1 − 2

r
ϕ′′′

1 + 3
r2 ϕ′′

1 − 3
r3 ϕ′

1 = i M(r) (B.0.7)

where M(r) is a purely real function given by

M(r) = (U0 − c0)
(

ϕ′′
0 − ϕ′

0
r

)
+
(

U ′
0

r
− U ′′

0

)
ϕ0. (B.0.8)

As a fourth order differential equation, (B.0.7) requires four boundary conditions. Upon
substitution of the expansions (B.0.4) into the boundary conditions (B.0.2a), (B.0.2b)
and (B.0.2d), we see that ϕ1 must satisfy

ϕ1(1) = 0, (B.0.9a)

ϕ′
1(1) = 0, (B.0.9b)

i K

R2 ϕ′
0(δ) = U ′

0(δ)
[
ϕ

(3)
1 (δ) − ϕ1

′′(δ)
δ

+ ϕ′
1(δ)
δ2

]
. (B.0.9c)

We also impose the normalisation condition ϕ(δ) = 1, which gives the fourth condition

ϕ1(δ) = 0. (B.0.10)
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Assuming ϕ1 is a complex-valued function, we write

ϕ1 = η + iµ (B.0.11)

for real-valued functions η and µ.

With the goal of determining η, we take the real part of (B.0.7) and see that η is governed
by the equation

η′′′′ − 2
r

η′′′ + 3
r2 η′′ − 3

r3 η′ = 0. (B.0.12)

The real parts of (B.0.9) and (B.0.10) give the boundary conditions

η(1) = 0, η′(1) = 0, η′′′(δ) − η′′(δ)
δ

+ η′(δ)
δ2 = 0, η(δ) = 0. (B.0.13)

Solving (B.0.12) subject to (B.0.12) leads to

η ≡ 0. (B.0.14)

This demonstrates that ϕ1 has no real part. Let us now investigate the wavespeed c1.
The kinematic condition (B.0.6) reveals that

Re{c1} = 0. (B.0.15)

As we are seeking a description of a neutral mode disturbance, we must also have
Im{c} = 0 and hence Im{c1} = 0. Paired with equation (B.0.15), this indicates that we
have c1 = 0.
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