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A B S T R A C T   

The changing probabilities of extreme climate and weather events, in terms of frequency, intensity, spatial 
extent, duration, and timing is one of the most noticeable and damaging manifestations of human-induced 
climate change. During the March-April-May (MAM) rainfall season of 2012, 2016 and 2018, Kenya experi-
enced high rainfall that caused both widespread and localised flooding, resulting in human and livestock deaths, 
destruction of infrastructure and property, bursting of riverbanks, submerging of farmlands and emergence of 
isolated cases of water-borne diseases. Here, we aim to quantify how the magnitude of heavy rainfall during 
these seasons may have been altered by human-induced climate change. We undertake a probabilistic attribution 
analysis using three different approaches utilising two observational datasets and two independent climate 
model experiment set-ups. We analyse three different seasonal heavy rainfall indices, maximum consecutive 5- 
day, 10-day, and 20-day rainfall, to compare the magnitude of maxima recorded in MAM 2012, 2016 and 2018 
with the magnitude of maxima in a pre-industrial climate (with little or no anthropogenic influence). We find a 
shift towards intensification of extreme rainfall in today’s climate, although these increases are not in all cases 
statistically distinguishable from our estimates of magnitudes in the preindustrial climate. Although we find no 
significant anthropogenic climate change influence, the intensification of extreme rainfall amid the observed 
drying trend and the projected increases in rainfall in the MAM season in Kenya, leave the already vulnerable 
societies with uncertainties about how to prepare for a changing climate. This study, therefore, provides a basis 
for an in-depth assessment of current and future trends of extreme rainfall in East Africa in adapting to changing 
climate risks for sustainable development in the already vulnerable and less resilient society.   

1. Introduction 

The Greater Horn of Africa has experienced a number of extreme 
weather and seasonal climate events over the past two decades (Lieb-
mann et al., 2014; Philippon et al., 2015; Hoell et al., 2017; Uhe et al., 
2018; Funk et al., 2018; Kilavi et al., 2018). While droughts have pre-
dominated, several heavy precipitation events with devastating impacts 
on agricultural systems, infrastructure, settlements, property, and life 
have also been recorded. During the March-April-May (MAM) “long 
rains” seasons of 2012, 2016, and 2018, several parts of Kenya experi-
enced extremely high rainfall causing widespread flooding and land-
slides (Fig. 1). In MAM 2018 all meteorological stations in the country 

recorded rainfall exceeding the long-term mean, and at many stations, 
that season has turned out to be the wettest MAM on operational record 
so far. By 7 May 2018, at least 311,164 people had been displaced by 
floods across the country, at least 132 had died, and a further 33 were 
injured (OCHA, 2018; Kenya Govt, 2018). Additionally, 47 deaths were 
reported after Solai Dam in Nakuru County could not withstand the 
floods and burst on 9 May. Very heavy rainfall was also recorded over 
several periods during the MAM seasons in 2016 and 2012 across the 
country, but the severity was not as high as in 2018. Many stations 
recorded seasonal rainfall above their long-term means, especially in the 
central and western parts of the country. In 2012, at least 8,450 acres of 
farmland were submerged following bank bursting along the Tana, 
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Fig. 1. Spatial distribution of season total rainfall anomalies during the MAM 2018, 2016, and 2012 seasons and the recorded impacts of associated flood events in 
Kenya. Anomalies in seasonal mean rainfall based on Kenya Meteorological Department (KMD) station data (a), CHIRPS gridded dataset (b) (see description, sec-
tion2.1) in reference to the 1981–2016 climatological period and their associated impacts (c). In (a), the size of the circle corresponds to the maximum 10-day 
consecutive rainfall (Rx10d) amount, while the colour shows the seasonal anomaly. For (c), the circle size corresponds to the number of reported cases of flood 
impacts while the colour saturation shows the level of severity. Due to an unavailability of monetary values of impact losses, the impacts are rated on a scale of 1–10 
based on the following criteria: we consider reported deaths, landslides, river/dam bursts and displacement of people as the most severe with a rating of 7–10; 
isolated cases of water-borne diseases and submerged farmlands as of moderate severity with a rating of 4–6; and impassable roads as of minimal severity with a 
rating of 1–3. Boxes in (b) show the region(s) of study for each year. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 
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Ewaso Nyiro, Yala, and Nyando rivers, and some bridges were swept 
away, rendering roads impassable (OCHA, 2012). In 2016, an estimated 
total of 34,129 people were affected by the floods, with informal set-
tlements in the Nairobi metropolitan area being the worst impacted, 
including the collapse of a residential building on 29 April 2016 that 
caused 16 fatalities (IFRC, 2016). 

A number of previous studies have investigated whether and to what 
extent human-induced climate change played a role in recent weather 
and climate extremes in East Africa, but these focused on drought and 
the observed long-term drying trend of the long rains (Funk et al., 2013, 
2018; Lott et al., 2013; Funk and Hoell, 2015; Liebmann et al., 2014; 
Marthews et al., 2015; Uhe et al., 2018).The answer to these attribution 
questions depends strongly on the framing (Otto et al., 2016). Hoell et al. 
(2017) and Funk et al. (2018) linked the increasing frequency of drier 
MAM seasons in the period 1981–2016 to warming Indo-Pacific Sea 
surface temperatures (SSTs), with strong anthropogenic influence on the 
north-western Pacific associated with intensification of Indian Ocean 
branch of the Walker Circulation. Similarly, Liebmann et al. (2014) 
linked the observed MAM 1979–2012 drying trend to the sensitivity of 
weather systems to increased zonal SST gradient between Indonesia and 
the central Pacific, which was attributable to climate change. Lott et al. 
(2013) concluded that human influence on climate enhanced the 
probability of rainfall anomalies at least as dry as that of the MAM 2011 
drought in East Africa by a small factor. On the other hand, Lyon 2014, 
linked the post-1998 decline in MAM rainfall to natural multidecadal 
variability in the tropical Pacific rather than human-induced climate 
change. Marthews et al. (2015) and Uhe et al. (2018) found no 
anthropogenic influence on the likelihood of low rainfall observed 
during the 2014 MAM and 2016 October-November-December (OND) 
‘short rains’ respectively, although they could not rule out the influence 
on other variables like surface air temperature and net incoming radi-
ation at the surface. Kew et al. (2021) repeated several of the previous 
studies with multiple models, and investigated the role of soil moisture 
and evaporation, concluding there was an absence of a statistically 
significant human-influenced climate signal in the periods of lower 
rainfall. They pointed out that finding whether climate change exacer-
bated the droughts depends on which methods are used to calculate 
water demand as a function of moisture availability and evaporative 
demand. 

The influence of climate change on the severity of recent extreme 
flood events amid the general drying trend remains even more uncer-
tain. Several studies have looked at the dynamics associated with 
interannual and intraseasonal variability of the long rains (Camberlin 
and Okoola, 2003; Pohl and Camberlin, 2006a; Hastenrath et al., 2010; 
Omondi et al., 2012; Hogan et al., 2015; Vellinga and Milton, 2018) but 
only a handful have investigated the possible influence of climate 
change on the processes, dynamics, and drivers. So far, there have not 
been any heavy rainfall attribution studies in the region. The main 
drivers of MAM rainfall variability are related to zonal wind anomalies, 
zonal propagation of convection, advection of moisture and SST 
anomalies in the Indian and the Pacific Oceans (Pohl and Camberlin, 
2011; Vigaud et al., 2016; Nicholson, 2017). The ‘East African climate 
paradox’ (Rowell et al., 2015) where an increased frequency of droughts 
and a general drying trend has been observed since the early 1990s (e.g., 
Funk et al., 2008; Nicholson, 2016a) while global climate model pro-
jections show increases in rainfall (Meehl et al., 2007; Otieno and 
Anyah, 2012) has spawned scientific interest. Few hypotheses have been 
presented to explain this paradox. Giannini et al. (2018), argued that 
confidence and reliance in projections of future increase in rainfall in 
East Africa is limited due to substantial biases in simulations of the 
regional climate, and discrepancy in the modelled versus observed 
tropical Pacific and Indian SST trends. They pointed out the role and 
effect of the complex East African topography in the advection of 
moisture from the Indian Ocean and Congo Basin, and whether the 
current cooling of the tropical eastern Pacific is due to internal vari-
ability alone or partly attributable to evolving La Niña-like conditions 

due to increasing GHGs in the atmosphere. Tierney et al. (2015) 
demonstrated how simulated El-Niño-like shifts tend to unrealistically 
increase annual rainfall through the effects of overestimated short rains 
since most models misrepresent the annual and seasonal cycle by 
overestimating the short rains and underestimating the long rains. 

In principle, every extreme event is unique and usually results from a 
combination of external drivers, natural and anthropogenic, as well as 
climate system internal (random or unresolved) variability (Stott et al., 
2016). The presence of an external driver like human-induced climate 
change can alter the likelihood of occurrence of an extreme weather or 
climate event. This study aims to investigate the contribution of 
anthropogenic forcing of climate on the magnitude of the 
flood-producing rainfall during the 2012, 2016, and 2018 MAM seasons 
in Kenya. Focusing on three different MAM seasons allows for investi-
gation of a wider set of cases in the possible responses to anthropogenic 
forcing and natural variability, thus enhancing confidence in the attri-
bution results. The focus is on the sub-seasonal characteristics of heavy 
rainfall associated with the surface flooding rather than the overall trend 
in the MAM rains. The scientific question we pose is: has the magnitude 
of 2012, 2016, and 2018 MAM heavy rainfall that occurred at the time of 
widespread flooding in Kenya been altered by anthropogenic climate 
change? We focus on three heavy rainfall indices, the 5-day, 10-day and 
20-day seasonal maxima, which capture a range of possible 
flood-inducing rainfall processes, from shorter intense events to longer 
more persistent rainfall that leads to flooding through saturation of the 
soil. This paper is structured as follows: section 2 describes the obser-
vational data and model simulations used in the study, and the analysis 
methods including model evaluation and the attribution approach(es); 
the results of model evaluation and attribution analysis are provided in 
Section 3, together with synthesised results; a discussion and conclu-
sions are given in section 4. 

2. Data and methods 

Flood events can arise from different forms of rainfall extremes; short 
intense events or longer events resulting from multi-day accumulations. 
To classify the three MAM events, we define the heavy rainfall in a way 
that best represents what caused the impacts and reflects the extremity 
of the meteorological event, to guide the statistical analysis of the ob-
servations and model experiments (NAS, 2016; Otto, 2017). In the case 
of flood events considered here, there is no clear definition of what as-
pects of the observed rainfall events (e.g., duration and intensity) caused 
any single flood. Therefore, we chose to assess three different heavy 
rainfall indices: maximum consecutive 5-day, 10-day, and 20-day pre-
cipitation (Rx5d, Rx10d, and Rx20d) (Zhang et al., 2011; Sillmann et al., 
2013). We then employ the multi-method multi-model event-attribution 
approach (Hegerl and Zwiers, 2011; Otto et al., 2016; NAS, 2016; 
Hannart et al., 2016) applied routinely to attribution studies (e.g., Van 
Oldenborgh et al., 2016; Haustein et al., 2016; Uhe et al., 2018; Sun and 
Miao, 2018; Herring et al., 2018; Philip et al., 2019) to estimate changes 
in magnitudes of these indices that are attributable to human-induced 
climate change. We use two different observational data sets and mul-
tiple climate model simulations of varied experimental setups, in each 
case independently applying an experiment-specific attribution meth-
odology. This multi-method and multi-model approach is geared to-
wards enhancing confidence in the findings and in the final overall 
attribution statement(s) (Philip et al., 2020). 

2.1. Observational data 

Observational data are the basis for determining the magnitude- 
likelihood characteristics, as well as the spatial extent, of the analysed 
events. The results are strongly conditional on data quality and partic-
ularly on the duration of the available time series. Here, we used two 
observational daily rainfall datasets: (i) Kenya Meteorological Depart-
ment (KMD) meteorological station data; and (ii) the Climate Infrared 
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Precipitation with Stations (CHIRPS) satellite-based gridded data. For 
KMD data, we used daily rainfall records from 17 synoptic weather 
stations within the study area(s) for the period 1981–2018 (see Sup-
plementary Material S1 for station details and Fig. 1 for locations). We 
obtained an area average of the station data over the analysis domain 
(see below) using the Thiessen polygon approach (Thiessen, 1911) since 
our interest is on a regionally constrained exceedance of flood-relevant 
amounts of rainfall, at scales suitable for analysis by climate models. 
CHIRPS is a high-resolution (0.05◦) daily precipitation dataset, available 
from 1981-present. CHIRPS uses the Tropical Rainfall Measuring 
Mission Multi-Satellite Precipitation Analysis version 7 (TMPA 3B42 v7) 
to calibrate global Cold Cloud Duration (CCD) rainfall estimates (Funk 
et al., 2015). It includes monthly precipitation climatology, and atmo-
spheric model rainfall fields from the NOAA Climate Forecast System, 
version 2 (CFSv2). It is blended with station data to produce a gridded 
rainfall time series suitable for trend analysis, and seasonal flood and 
drought monitoring. We used daily data for the period 1981–2018. 

2.2. Climate models and experiments 

2.2.1. Atmospheric General Circulation Models (AGCMs) 
Atmospheric General Circulation Models (AGCMs) are primarily 

designed to isolate the component of atmospheric variability driven by 
oceanic boundary forcing. AGCMs are less computationally demanding 
hence more simulations at higher spatial resolution can be obtained 
aimed at improving signal-to-noise ratio. We employ ensemble simula-
tions from three attribution-dedicated experiments: ECHAM5.4, 
CAM5.1, and weather@home2. ECHAM5.4 and CAM5.1 participated in 
the Climate of the 20th Century Plus (C20C+) Detection and Attribution 
project (Stone et al., 2019) while weather@home2 (Guillod et al., 2017) 
simulations were produced by the www.climateprediction. 
netdistributed system based at the University of Oxford. For each 
model, we utilise two sets of simulations: historical and natural, which 
serve as factual and counterfactual worlds for the attribution analysis. 
Historical runs are simulations representing possible states of the at-
mosphere and land surface for all years of 20th and 21st century under 
observed SST, land surface and sea ice boundary conditions, along with 
historical radiative forcing. Here, we analyse outputs for MAM 2012, 
2016, and 2018. Natural simulations represent possible states of the 
atmosphere under an estimate of what the observed boundary condi-
tions might have been in the absence of anthropogenic interference with 
the climate system. Detailed experiment descriptions are laid out in 
Table 1 and further documentation and outputs from the CAM5.1 and 
ECHAM5.4 and simulations can be found online: (https://portal.nersc. 
gov/c20c/data), (https://www.esrl.noaa.gov/psd/repository/alias/fact 
s) and respectively. weather@home data is archived at (https://jasm 

in.ac.uk/). The data will be made available through OpenUCT which 
is an open-access data portal. 

2.2.2. General circulation models (CGCMs) 
Comprehensive coupled climate models allow a dynamically inter-

acting ocean; therefore, assumptions on the influence of anthropogenic 
climate change on ocean variability and on the effects of short-term 
coupled atmosphere-ocean interactions on the production of extreme 
weather and climate events are minimised. However, the simulated SSTs 
do not track those observed, so daily to decadal internal variability, and 
the timing of specific events, are not captured in these experiments. We 
employed 7 models from the sixth phase of Coupled Model Intercom-
parison Project (CMIP6; Eyring et al., 2016), which were selected after 
evaluation from the 15 (Table 2) for which daily rainfall data were 
available (see section 3). For models with more than one simulation, 
only the first member of the ensemble was utilised as the use of many 
members would skew the results since some models have more members 
than others. Thus, the choice of the first member is arbitrary as ensemble 
members only differ by initial conditions. We use historical simulations 
covering the period 1850–2014, and then extend the data to 2030 using 
simulations driven by the SSP1-2.6 (shared socio-economic pathway) 
scenario, which is closest to the current forcing for our averaging period, 
as the forcing does not increase as steeply into the future. For attribu-
tion, we consider two climate worlds: historical and natural. We take 
1850–1900 to represent the natural climate, representative of the period 
prior to the onset of large-scale industrialization and human influence 
on the climate. This approach has been used in several studies (e.g., Van 
Oldenborgh et al., 2016; Uhe et al., 2017) to understand the 
pre-industrial climate. While cognizant of other approaches such as the 
use of historicaNat runs, not all the coupled models used in this analysis 
have such data available. For the historical climate, we consider the 
period 2000–2030 centred on 2015. For all the SSP scenarios, climate 
conditions in the next 15–20 years are not projected to be significantly 
different from each other nor depart significantly from the current 
climate conditions. Therefore, we assume the average forcing over this 
30-year period is roughly equal to the forcing during the period 
2012–2018. And for consistency with the historical simulations, the use 
of the first member is maintained. Further documentation and outputs 
from the CMIP6 experiments can be found online (https://esgf-node.llnl. 
gov/projects/cmip6/). 

2.3. Model evaluation 

Precipitation extremes in Eastern Africa are influenced by a complex 
interaction of changes in local weather systems and perturbations in the 
global and regional circulation (Nicholson 2017; Vellinga and Milton, 

Table 1 
A description of Atmosphere-only model experiments.  

Model Experiment Description Citation 

CAM5.1 All-Hist/est1 300 simulations 2012, 2016, and 2018 observationally derived SSTs and sea ice, GHG concentrations, sulphate 
aerosol burden, organic aerosol burden, black carbon aerosol burden, dust aerosol burden, sea salt 
aerosol burden, ozone concentrations, solar insolation, volcanic aerosol, land surface cover/use. 
Prescribed model aerosol values are used for the non-volcanic aerosols; volcanic aerosols are 
prescribed through a height-latitude profile of the mass mixing ratio. 

Neale et al., 
(2012); 

Nat-Hist/CMIP5-est1 300 simulations 1855 GHG concentrations, aerosol burdens, SST and Sea Ice extent, and ozone concentrations. Solar 
and volcanic forcing is identical to All-Hist/est1. 

Stone et al. 
(2018) 

ECHAM 5.4 AMIP, Observed Radiative Forcing 50 
simulations 

2012, 2016 & 2018 AMIP conditions with specified historical time varying GHG and ozone. The 
GHG evolution is based on observed estimates from 1979 to 2005, and then an RCP6 scenario 
thereafter. The time-varying ozone is based on data from the AC&C/SPARC ozone database. 

Roeckner et al., 
(2003); 

AMIP with 1880s Radiative Forcing 50 
simulations 

AMIP conditions in which the SST has been detrended and adjusted to 1880 equivalent mean 
conditions (the SST otherwise retain identical interannual and decadal variability as in the other 
experiments). Sea ice is set to a repeating seasonal cycle of roughly 1979–1990 (pre-emergence of 
the melt out). The GHG and ozone concentrations are adjusted to their 1880 values. 

Roeckner et al. 
(2006) 

weather 
@home2 

Historical 798 simulations for 2012, 615 
for 2016, and 908 for 2018 

2012, 2016, and 2018 SSTs and sea ice as observed, other forcings as RCP4.5. Guillod et al. 
(2017) 

Natural 1 131 simulations for 2012, 933 
for 2016, and 1 610 for 2018 

2012, 2016, and 2018 SSTs reconstructed for pre-industrial conditions, all other forcing set to pre- 
industrial. The maximum observed sea-ice extent is used.  
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2018; Ongoma et al., 2018a,b). There is limited understanding of the 
influence of regionally important forcings such as aerosols and land-use 
changes on weather and climate (Rowell et al., 2016), remote forcing 
control and inadequate simulation of the regional climate by many 
climate models (Giannini et al., 2018). These important factors pose a 
challenge in application of models to understanding changes in extremes 
over the region (Otto et al., 2015, 2020; Nicholson 2017; Otto et al., 
2020a,b). We, therefore, pay particular attention to a reliable repre-
sentation of observed rainfall by models for their application in this 
study. We focus on model ability to realistically simulate MAM 
spatio-temporal patterns of seasonal and heavy rainfall over the study 
region. In this assessment, we use three main error-based metrics; Mean 
Absolute Error (MAE), Pearson correlation coefficient (R) and Root 
Mean Squared Error (RMSE) on different rainfall characteristics: (i) 
seasonal cycle (hereafter, SC) patterns to assess models’ ability to 
replicate the expected bimodal rainfall regime (AGCMs & CGCMs); (ii) 
spatial patterns of mean MAM rainfall (AGCMs & CGCMs); and (iii) the 
temporal (interannual) variability of MAM rainfall (AGCMs only). We 
also make use of quantile-quantile (Q-Q) plots to evaluate the modelled 
versus observed distributions of Rx5d, Rx10d, and Rx20d (for conve-
nience hereafter, RxNds). We calculate the agreement statistics for the 
models against observations (CHIRPS) and also ERA5 against CHIRPS, 
after which we compare the performance of the models against that of 
ERA5. ERA5 (ECMWF Reanalysis 5th Generation) data is incorporated 
in the evaluation to serve as a benchmark for the models — data 
assimilation in reanalysis means the model is likely “as good as it gets” 
for a model representation in the region. ERA5 is an atmospheric 
reanalysis product that combines vast amounts of historical observations 
into global estimates using state-of-the-science modelling and data 
assimilation systems. It covers the earth on a 30 km horizontal resolu-
tion and resolves the atmosphere using 137 levels from the surface to a 
height of 80 km (Hersbach et al., 2020). ERA5 has been found to exhibit 
similarity with gridded datasets like CHIRPS and CenTrends (Centennial 
Trends; Funk et al., 2015) which incorporate most observations in Kenya 
Nicholson and Klotter, 2021 with considerable improvements over 
ERA-interim on better representation of the spatial distribution of pre-
cipitation during extreme years and reduction in climatological biases 
(Gleixner et al. 2020). The evaluation and rating are done independently 
for the two model types. We define a range of values based on the sta-
tistics of ERA5 for which the models are rated, 1 being on the lower 
range (worst performing), 2 middle range (medium performance), and 3 
on the upper range (best performing). The scores (1, 2, and 3) are then 
averaged to give a mean performance (MP) of each parameter for every 
model. The cut-off score for AGCMs models is 2.5 while that of CGCMs 
models is 2.4. As the metrics span a range of scales and specificity 
defined based on a very generalized understanding of what constitutes a 
bad and a good model, we do not assign weights to individual metrics. 
This is the simplest approach to the problem at hand, i.e., rejecting 
models that do not perform well in simulating processes relevant from 
the point of view of the objectives of the study. As such, model selection 
is based on mean performance i.e., those found to deviate substantially 
(persistent low average performance) from ERA5, and consequently 
CHIRPS, are disregarded for the analysis. Detailed information on the 
evaluation is found in Supplementary Material S2. 

Table 2 
List of CMIP6 models evaluated. Those utilised are asterisked (Expansions of 
acronyms are available online at https://www.ametsoc.org/ams/list-of-acro 
nyms-and-abbreviations/).  

Model Resolution Institution Citation 

CNRM- 
CM6-1- 
HR* 

0.5◦ in the 
atmosphere, 
0.25◦ in the 
ocean, 12 vertical 
levels 

Centre National de 
Recherches 
Météorologiques, 
France 

Voldoire et al. 
(2019)  

IPSL- 
CM6A- 
LR* 

2.0◦ × 2.0◦ , 39 
layers in the 
vertical in both 
the atmosphere 
and ocean 

Institute Pierre-Simon 
Laplace Climate 
Modelling Centre, 
France 

Boucher et al., 
(2020); Lurton 
et al., (2020)  

INM-CM5* 2 × 1.5◦ , 73 
vertical levels in 
the atmosphere; 
0.5 × 0.25◦, 40 
levels in the ocean 

Institute for 
Numerical 
Mathematics, Russian 
Academy of Science, 
Russia 

Volodin and 
Gritsun, (2018); 
Volodin et al., 
(2017)  

NorESM2- 
MM* 

1◦ × 1◦ in both 
atmosphere and 
ocean, 32 vertical 
layers 

NorESM Climate 
modelling 
Consortium, Norway 

Seland et al. 
(2020)  

UKESM1-0- 
LL* 

1.25◦ × 1.875◦ , 
85 vertical levels 
in the atmosphere 
and 1◦, 75 vertical 
levels in the ocean 

Met Office Hadley 
Centre, UK 

Sellar et al. 
(2019)  

NESM3* 1.9◦, 47 vertical 
levels in the 
atmosphere; 1◦, 
46 vertical levels 
in the ocean 

Nanjing University of 
Information Science 
and Technology, 
China 

Cao et al. 
(2018)  

MRI-ESM2- 
0* 

1◦ × 1◦ in both 
atmosphere and 
ocean, 80 vertical 
layers 

Meteorological 
Research Institute 
(MRI) of the Japan 
Meteorological 
Agency 

Yukimoto et al. 
(2019)  

CanESM5 2.8◦ in the 
atmosphere, 1◦ in 
the ocean, 49 
vertical layers 

Canadian Centre for 
Climate Modelling 
and Analysis 

Swart et al. 
(2019)  

CESM2- 
FV2 

1.25◦ × 0.96◦, 32 
vertical levels in 
the atmosphere 
and 1.25◦ ×

0.27◦,60 vertical 
levels in the ocean 

National Centre for 
Atmospheric 
research, Climate and 
Dynamics Laboratory 

Danabasoglu 
et al. (2020)  

EC- 
EARTH3 

1◦ in both 
atmosphere and 
ocean, 91 vertical 
levels in the 
atmosphere, 75 
levels in the ocean 

European Research 
Consortium (EC- 
EARTH) 

Döscher et al. 
(2021)  

MIROC6 2.5◦ in the 
atmosphere, 81 
levels and 2.5◦, 63 
levels in the ocean 

JAMSTEC, Japan Tatebe et al. 
(2019)  

SAMO- 
UNICON 

1.25◦ × 0.94 in 
both atmosphere 
and ocean, 30 
vertical levels in 
the atmosphere, 
60 levels in the 
ocean 

Seoul National 
University, South 
Korea 

Park & Shin, 
2019  

TaiESM1 0.9 × 1.25◦, 30 
vertical levels in 
the atmosphere 
and 1◦, 60 levels 
in the ocean 

Research Centre for 
Environmental 
Changes, Taiwan 

Lee et al. (2020) 

HadGEM3- 
GC31- 
MM 

1◦,85 vertical 
levels in the 
atmosphere and 
0.25◦, 75 levels in 
the ocean 

Met Office Hadley 
Centre, UK 

Andrews et al. 
(2020) 

Gutjahr et al. (2019)  

Table 2 (continued ) 

Model Resolution Institution Citation 

MPI-ESM1- 
2-HR 

T255,95 vertical 
levels in the 
atmosphere and 
0.4◦, 40 levels in 
the ocean 

Max Planck Institute 
for Meteorology  

J. Kimutai et al.                                                                                                                                                                                                                                 

https://www.ametsoc.org/ams/list-of-acronyms-and-abbreviations/
https://www.ametsoc.org/ams/list-of-acronyms-and-abbreviations/


Weather and Climate Extremes 38 (2022) 100529

6

2.4. Attribution analysis 

We chose spatial domains for analysis in each event year that 
encompass the areas of Kenya with (i) above-average seasonal rainfall 
and (ii) documented high-impact floods. These domains were also made 
large enough to accommodate GCM-scale data. The domains were 3ᵒS, 
1.7ᵒN, 34.7ᵒE, 37ᵒE; 3ᵒS, 2.0ᵒN, 34ᵒE, 36.7ᵒE; and 3ᵒS, 1.7ᵒN, 34.7ᵒE, 
39ᵒE for 2012, 2016 & 2018, respectively (illustrated in Fig. 1). Given its 
importance for the impacts, we primarily focus our analysis on the 
change in intensity or magnitude rather than probability and thus we 
evaluate the magnitude ratio (MR) and the fraction of attributable 
magnitude (FAM) to understand the attributable change in the magni-
tude of heavy rainfall in the seasons when the flood events occurred. MR 
is the measure of how the magnitude of n-day maximum rainfall during 
the season has changed in the present day versus the pre-industrial 
period. An MR > 1.0 indicates that anthropogenic climate change has 
increased the magnitude of the event and vice versa for MR < 1.0. 
Following Stone and Allen (2005) definition of FAR (Fraction of 
Attributable Risk) for likelihood-based event attribution, we define the 
Fraction of Attributable Magnitude (FAM; expressed as 1 – 1/MR) as the 
proportion of Rx5d, Rx10d, and Rx20d that can be ascribed to anthro-
pogenic climate change. We express FAM as percentage increase (posi-
tive values) and percentage decrease (negative values) in interpreting 
the changes in attributable magnitude. For instance, FAM of 100% in-
dicates that the event or class of events of the given magnitude would 
never occur in the preindustrial climate and thus is entirely attributable 
to anthropogenic climate change, while zero indicates that there is no 
influence of anthropogenic climate change on the magnitude of the 
event. FAM greater than zero implies human influence, with the amount 
of human influence increasing for larger values. Negative values indi-
cate that human influence has resulted in a decrease in the given 
magnitude by that given proportion. For the three experiment types 
(observations, atmospheric, and coupled model runs), we use different 
approaches to evaluate the natural and historical MRs, outlined below. 

2.4.1. Attribution analysis using observations 
For observations, we adopt the approach used in several recent 

attribution studies (e.g., Van Oldenborgh et al., 2016; Van Der Wiel 
et al., 2017; Philip et al., 2019). We use the generalized extreme value 
(GEV) distribution, an approach to extreme value analysis that allows 
for characterization of intensity, duration, as well as frequency of 
extreme events by defining extremes as block maxima (Coles, 2001). 
Rx5d, Rx10d, and Rx20d are seasonal maxima thus well suited for GEV 
analysis. Following Katz (2013), we fit a GEV to each of the three RxNds, 
with a 4-year smoothed global mean surface temperature (GMST) as a 
covariate to account for possible changes due to anthropogenic climate 
change over time, from which we estimate the return period and 
magnitude of each event in 2012, 2016 and 2018 (hereafter, event-year) 
with respect to preindustrial conditions (specifically, the year 1880). We 
then calculate MR as the ratio of event-year magnitude versus prein-
dustrial magnitude for the same return period as that observed. 

For an extreme value x, GEV function is represented by 

F(x)= exp
[

−
(

1 + ξ
x − μ

σ

)1
/

ξ
]

μ= μ0 exp
(

αT ′

μ0

)

σ = σ0 exp
(

αT ′

μ0

)

(1) 

Where μ is the location parameter, σ is the scale parameter, and ξ 
represents the shape parameter of the curve. The location parameter 
specifies the centre of the distribution while the scale parameter de-
termines the size of deviations around the location parameter. The shape 

parameter determines the tail’s behaviour (negative indicates light tail 
while positive indicates heavy tail). T′ is the smoothed GMST, a measure 
of the uniform global climate response to external forcing used to scale 
the GEV fit. We consider an approach where both location and scale of 
the distribution scale with GMST i.e., magnitude (μ) and variability (σ) 
of the considered weather/climate variable change as a result of global 
warming. The scaling is taken to be an exponential function of GMST 
resembling Clausius–Clapeyron (CC) scaling expected of daily precipi-
tation extremes with local daily temperature in regions with enough 
moisture availability (Allen and Ingram, 2002; Trenberth et al., 2003; 
Trenberth, 2011; O’Gorman, 2015). To fit the distribution to the pre-
cipitation data, however, we need to make a further assumption that σ 
scales with μ (Hanel et al., 2009). These are minimum assumptions that 
have to be made as described in (Philip et al., 2020), and this is a 
standard approach to attribution used in numerous studies (e.g. (Van 
Der Wiel et al., 2017; van Oldenborgh et al., 2016). The fit parameters 
are estimated using the maximum likelihood estimation (MLE) method 
where σ, μ0 and σ0 are varied while ξ is assumed to be constant. For each 
event i, we, therefore, estimate the return period in the event-year then 
the magnitude of an event with the same return period in 1880. MR and 
FAM are then calculated as described earlier in Section 2.4. To sample 
the uncertainty of MR, we estimate 95% confidence intervals using a 
non-parametric bootstrap approach, by repeating the GEV fitting and 
magnitude estimation through 1 000 random samples, with replication, 
of the observed data. 

2.4.2. Attribution analysis of AGCMs 
For the AGCMs, we opt for a non-parametric approach because it 

does not require any strong assumptions about the underlying distri-
bution, and thus is more robust. The simulations are initial-condition 
ensembles, so the variation between each simulation captures the sto-
chastic nature of RxNd, while the ensemble mean represents the com-
mon (forced) signal. Therefore, in order to estimate the distribution of 
MR, we bootstrap RxNd for each set of attribution runs to obtain a 1 000- 
member resample of the mean. To do this, we select 1 000 pairs of 
historical and natural RxNd values with replacement from which we 
calculate 1 000 MRs. Basically, we take the ensemble mean of each RxNd 
from the historical and the natural simulations as the forced and the 
unforced signal, respectively. Thus, for each event i, we obtain Mi, 
magnitudes in the event year, and M0, magnitudes in the natural climate 
for every RxNd. We then calculate MR and FAM, and a median MR and 
FAM across the 1 000 resamples. To sample the uncertainty of MR from 
the distribution, we calculate the 95% sampling interval for MR and 
FAM from the 1 000 resamples. 

2.4.3. Attribution analysis of CGCMs 
For each CGCM, we use the return periods estimated in the obser-

vational analysis to evaluate changes in the event magnitudes between 
the current and the past climate. For this, we fit GEV to RxNd 
(1851–1900 and 2001–2030) without a covariate to evaluate magni-
tudes, for a given return period. We use present-day return periods based 
on CHIRPS analysis (see, Table 3) rather than KMD data, although re-
sults do not vary significantly (not shown). For every event i, therefore, 
we obtain Mi and M0 for each RxNd. We then calculate MR and FAM as 
described in Section 2.4 and adopt a bootstrapping approach to estimate 
the median and the 95% confidence intervals. 

2.4.4. Synthesis 
Since different approaches are used to evaluate MR and FAM for each 

experiment type, we first synthesise the results independently for each 
experiment type, and then combine these into an overall synthesis 
result. By combining the results in the synthesis step, we give a quan-
titative summary statement for the study. This, however, does not sug-
gest that the best guess of that summary range is indeed any closer to the 
real answer to the question than the results from the individual exper-
iments. But since none of the three experiment types provides us with 
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the whole uncertainty nor are the results from different experiment 
types, we use the synthesis, as a numerical aid to summarise the results. 
This has become a common practice as described e.g Philip et al., 2020. 
To calculate the median for each experiment, we take the mean of the 
individual medians, assuming equal weighting, and then likewise for the 
overall synthesis result. 

To estimate confidence intervals for the synthesis, we follow 
(Paciorek et al., 2018) in assuming that the experiment MRs (each with a 
median and 95% CI) distributions are not normally distributed, but that 
we can approximate the right and left tails as parts of two different 
normal distributions, with standard deviations (SD) equal to (mean – 
2.5th percentile)/1.96 and (97.5th percentile – mean)/1.96, respec-
tively. We first calculate a pooled variance (S2) using the estimated 
upper and the lower SD for each attribution result:  

S2 = (S1
2 (n1-1) +S2

2(n2-1))/n1+n2-2,                                                   (2) 

where n is the sample size, S2 is the pooled variance. For equal sample 
size (as in our case), equation (2) reduces to S2=(S1

2+S2
2)/2. This can be 

extended for more than two samples (experiments)  

S2=(S1
2+S2

2+S3
2+ …...+Sm2)/m                                                         (3) 

where m is the number of experiments. 
For each experiment type, we calculate lower pooled variance and 

upper pooled variance from which the square root gives the pooled 
lower (pSDl) and upper (pSDu) standard deviation, respectively.  

Sl2=(Sl1
2 +Sl2

2
+Sl3
2
+ …...+Slm
2
)/m                                                                                

Su
2
=(Su1
2
+Su2
2 +Su3

2 + …...+Sum
2 )/m                                                                       

Where Sl2 and Su2 are the lower and upper pooled variances, 
respectively. The value of m is 2 for observations, 3 for atmospheric and 

Table 3 
Summary of estimated magnitude ratios and Fraction of attributable magnitude for observational data.    

2012    2016    2018    

Dataset Metric Return period MR 95%CIs FAM Return period MR 95%CIs FAM Return period MR 95%CIs FAM 

CHIRPs Rx5d 3.67 1.11 0.90,1.44 11% 1.45 1.20 0.85,1.65 20% 11.5 1.17 0.88,1.64 17% 
Rx10d 10.8 1.12 0.80,1.46 12% 1.58 1.22 0.76,1.82 22% 50.3 1.04 0.73,1.55 4% 
Rx20d 23.8 1.16 0.78,1.54 16% 2.38 1.21 0.73,2.01 21% 32.75 1.06 0.70,1.66 6% 

KMD Rx5d 8.1 0.97 0.74,1.31 − 3% 2.87 0.97 0.68,1.43 − 3% 1.82 0.98 0.74,1.43 − 2% 
Rx10d 11.02 1.04 0.81,1.36 4% 2.10 1.06 0.76,1.47 6% 2.81 1.06 0.73,1.56 6% 
Rx20d 11.69 1.05 0.75,1.42 5% 2.31 1.08 0.69,1.60 8% 9.53 1.07 0.66,1.63 7%  

Fig. 2. Summary of model performance for (a) 
C20C+ and weather@home and (b) CMIP6 models 
based on different statistics of spatio-temporal char-
acteristics of MAM rainfall in the study region. The 
numbers in the heatmap represent the average score 
on a scale of 1–3 (with 3 representing good and 1 bad 
performance), based on MAE, R, and RMSE for TS, SS, 
SC, QQ5, QQ10, and QQ20. MP is the mean of the 
average scores which gives the overall performance of 
each model. Models with an average score below 2.5 
are marked with an X over the MP boxes and were 
excluded in the analysis.   
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7 for coupled experiments. Therefore, we take synthesis mean - 
(1.96pSDl) and synthesis mean +(1.96pSDu) to obtain lower and upper 
bound synthesis, respectively. To calculate the confidence interval for 
the overall synthesis, mean, we repeat the above procedure using the 
pooled variances from each experiment. 

3. Results 

3.1. Model evaluation 

Fig. 2 provides a summary of AGCM and CGCM evaluation results. 
For convenience, we label the summary of statistics for temporal and 
spatial patterns as ‘Temporal Statistics’ (TS) and ‘Spatial Statistics’ (SS) 
respectively; ‘QQ5’, ‘QQ10’, and ‘QQ20’ for Rx5d, Rx10d, and Rx20d 
respectively from the Q-Q plots; and seasonal cycle as ‘SC’. For every 
model, each rainfall characteristic (TS, SS, QQ5, QQ10, QQ20, and SC) is 
rated on a scale of 1–3 based on how close the statistics of its metrics are 
to that of CHIRPS and ERA5 data (see Section 2.3). 

The models generally reproduce the expected bimodal rainfall 
regime, associated with north-south migration of the inter-tropical 
convergence zone (ITCZ) (see, Supplementary Material Fig. S5 and 
S9). However, all the models underestimate MAM rainfall intensities, 
while overestimating OND; this misrepresentation is generally larger in 
the coupled models. The same weakness has been found in CMIP5 
(Tierney et al., 2015; Ongoma et al., 2018a,b; King et al., 2020), CMIP3 
(Anyah and Qiu, 2012a) and weather@home2 (Uhe et al., 2018). 
However, Ayugi et al. (2021) found substantial performance improve-
ment in CMIP6 over CMIP5 in representation of East African rainfall, 
notably, simulation of mean annual cycle and extreme indices although 
biases remain. AGCMs capture the distribution of RxNds, and spatial and 
temporal patterns of MAM rainfall season reasonably well compared to 
the coupled models. Overall, AGCMs are found to perform better than 
the coupled models. This is expected as AGCMs have their interannual 
variability synchronised with the observations by prescribing SST ob-
servations, unlike CGCMs. However, we do not evaluate temporal cor-
relation for GCMs because we do not expect the variability to be 
synchronised. 

3.2. Attribution results 

3.2.1. Observational analysis 
Table 3 shows changes in the magnitude ofRx5d, Rx10d, and Rx20d 

with their corresponding return time periods between the event-years 
and preindustrial period based on observational data. Attribution 
analysis of CHIRPS data shows an increase in the magnitude (MR > 1.0) 
of all three extreme rainfall metrics, in each of the three event-years. For 
KMD data, increases in magnitude are seen for R×10d and Rx20d in all 
three event years, but the magnitude of Rx5d decreases in all three years. 
The highest return periods are seen for 2018 events based on CHIRPS 
analysis, while KMD analysis shows the highest in 2012. The fraction of 
attributable magnitude ranges from − 2 to 22% with highest shown by 
CHIRPS for 2016 across all the indices. Despite an overall increase in the 

intensity of extreme rainfall, the increase is statistically non-significant 
(lower bound on the uncertainty of MR range less than or equal to 1.0) 
and so we do not find an attributable human influence on heavy rainfall 
magnitude with this approach. 

3.2.2. AGCM analysis 
Table 4 shows the results of the atmospheric model analysis. Results 

from ECHAM5.4 and weather@home show an intensification of rainfall 
across all the years whereas CAM5.1 shows an increase in 2012 and 
2018, but a reduction in magnitude in 2016. Overall, the largest pro-
portion of climate change-attributable magnitude is seen in MAM 2018, 
although ECHAM5.4 depicts equally high values in 2012. Correspond-
ingly, the lowest proportions of attributable magnitude are seen in 2016 
across all RxNds. Statistically significant increases (95% CI of the MR 
does not encompass 1) in intensity are shown by weather@home in all 
RxNds; ECHAM5.4 for Rx20d in 2012, Rx5d and Rx10d in 2016 and 
Rx5d in 2018, and CAM5.1 for Rx10d and Rx20d in 2012 and RxNds in 
2018. ECHAM5.4 shows higher values of fraction of attributable 
magnitude across the years in all indices compared to weather@home 
and CAM5.1. While there are still several instances where the result is 
not statistically significant, the result is much stronger than for the ob-
servations (lower CI close to 1.0 when it is below 1.0). 

3.2.3. CGCM analysis 
There is less agreement in the change of magnitude of RxNds in 

analyses based on CMIP6 data compared to the other two experiments 
(Table 5). IPSL-CM6A-LR, INM-CM5, and NorESM2-MM show a general 
increase while MRI-ESM2-0 shows reduction in intensity, across all the 
event years. UKESM1-0-LL shows a general reduction except for Rx10d 
and Rx20d in 2018 which depict a substantial statistically significant 
increase. Analysis of CNRM-CM6-1-HR shows an increase in the in-
tensity of all RxNds in 2018 and Rx5d and Rx20d in 2012 but a reduction 
in 2016 and Rx20d in 2012. For NESM3, the magnitude of Rx5d 
increased in 2012 and 2018 while the magnitude of R×10d and Rx20d 
for 2012 and 2018 decreased. Of these, NorESM2-MM for all RxNds in 
2018 and UKESM1-0-LL for Rx5d in 2012, and Rx5d and Rx20d in 2016 
show a significant positive influence of anthropogenic climate change. 

3.3. Synthesis results 

Fig. 3 gives a synthesis of the results, where outcomes from each 
experiment type are first synthesised independently after which an 
overall synthesis result is shown, for each of the rainfall indices, and for 
each event-year. Overall synthesis results show intensification of 
extreme rainfall in all the event years relative to a preindustrial climate 
across all the experiments, but without statistical significance (the 95% 
CI encompasses a MR of 1.0). MAM 2018 shows higher levels of inten-
sification compared to 2012 and 2016. In 2018, intensity of Rx5d, Rx10d 
and Rx20d is seen to increase by 6%, 9% and 9% respectively relative to 
preindustrial period. For 2016, the multi-experiment mean change in 
magnitude is found to be 3% in Rx5d, 4% in Rx10d and Rx20d, while in 
2012 the intensity of Rx5d increased by 3%, and 6% in Rx10d and 

Table 4 
Summary of estimated magnitude ratios and fraction of attributable magnitude from atmosphere-only attribution runs.    

2012 2016 2018 

Model Metric MR 95%CIs FAM MR 95%CIs FAM MR 95%CIs FAM 

weather@home2 Rx5d 1.046 1.028,1.063 4.6% 1.033 1.015,1.051 3.3% 1.073 1.052,1.096 7.3% 
Rx10 1.051 1.31,1.071 5.1% 1.036 1.018,1.055 3.6% 1.085 1.061,1.108 8.5% 
Rx20d 1.068 1.048,1.088 6.8% 1.030 1.011,1.049 3.0% 1.099 1.072,1.13 9.9% 

ECHAM5.4 Rx5d 1.138 0.962,1.346 13.8% 1.109 1.009,1.226 10.9% 1.120 1.006,1.262 12% 
Rx10 1.143 0.977,1.341 14.7% 1.098 1.015,1.190 9.8% 1.111 0.994,1.239 11.1% 
Rx20d 1.186 1.000,1.387 18.6% 1.074 0.984,1.165 7.4% 1.060 0.945,1.189 6% 

CAM5.1 Rx5d 1.028 0.989,1.065 2.8% 0.983 0.951,1.018 − 1.7% 1.040 1.000,1.079 4% 
Rx10 1.043 1.002,1.084 4.3% 0.988 0.954,1.022 − 1.2% 1.053 1.014,1.094 5.3% 
Rx20d 1.064 1.023,1.106 6.4% 0.965 0.930,1.000 − 3.5% 1.045 1.009,1.081 4.5%  
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Rx20d. 
Results of individual experiment synthesis indicate that the intensity 

of MAM 2018 extreme rainfall has increased across all experiments. For 
Rx5d, an increase of 8% is seen in observations, 7% in atmospheric 
models and 3% in coupled models. For Rx10d, 5% increase is found in 
observations, 8% in atmospheric models and 13% in coupled models 

while for Rx20d, 7% increase is seen in observations and atmospheric 
models, and 14% in coupled models. Highest values of FAM are found in 
Rx20d in the synthesis of coupled models (14%). However, changes in 
observational data and coupled models’ analysis show non-significant 
change in intensity. For 2016, the analysis of observations and atmo-
spheric models shows intensification of extreme rainfall while that of 

Table 5 
Summary of estimated magnitude ratios and fraction of attributable magnitude from coupled model runs.    

2012 2016 2018 

Model Metric MR 95% CIs FAM MR 95% CIs FAM MR 95% CIs FAM 

CNRM-CM6-1-HR Rx5d 1.025 0.831,1.272 2.5% 0.98 0.69,1.293 − 2% 1.08 0.86,1.33 8% 
Rx10 0.979 0.785,1.152 − 2.1% 0.86 0.61,1.15 − 14% 1.01 0.70,1.29 1% 
Rx20d 1.028 0.856,1.181 2.8% 0.88 0.68,1.09 − 12% 1.21 0.96,1.54 21% 

IPSL-CM6A-LR Rx5d 1.09 0.94,1.21 9% 1.10 0.99,1.25 10% 1.07 0.95,1.23 7% 
Rx10 1.06 0.93,1.19 6% 1.04 0.94,1.15 4% 1.01 0.84,1.13 1% 
Rx20d 1.08 0.96,1.23 8% 1.04 0.96,1.14 4% 1.02 0.88,1.15 2% 

INM-CM5 Rx5d 1.27 1.09,1.58 27% 1.21 1.089,1.35 21% 1.22 0.92,1.44 22% 
Rx10 1.35 0.91,1.84 35% 1.23 0.096,1.34 23% 1.11 0.82,1.54 11% 
Rx20d 1.23 0.96,1.69 23% 1.28 1.16,1.40 28% 1.15 0.83,1.57 15% 

NorESM2-MM Rx5d 1.01 0.89,1.12 1% 0.99 0.89,1.15 1% 1.17 1.08,1.26 17% 
Rx10 1.08 0.98,1.28 8% 1.08 0.93,1.37 8% 1.34 1.13,1.57 34% 
Rx20d 1.11 0.93,1.32 11% 1.04 0.89,1.22 4% 1.44 1.16,1.75 44% 

UKESM1-0-LL Rx5d 0.68 0.51,0.90 − 32% 0.78 0.50,1.36 − 22% 0.83 0.33,1.19 − 17% 
Rx10 0.89 0.54,1.30 − 11% 0.63 0.40,1.17 − 37% 1.69 1.31,3.82 69% 
Rx20d 1.10 1.01,1.78 10% 0.64 0.47,1.05 − 36% 1.33 0.46,3.39 33% 

NESM3 Rx5d 1.02 0.92,1.11 2% 1.05 0.92,1.18 5% 1.01 0.92,1.06 1% 
Rx10d 0.99 0.89,1.07 − 1% 1.06 0.92,1.21 6% 0.96 0.88,1.11 − 4% 
Rx20d 0.98 0.89,1.07 − 2% 1.07 0.97,1.26 7% 0.97 0.84,1.12 − 3% 

MRI-ESM2-0 Rx5d 0.85 0.75,0.94 − 15% 0.80 0.74,0.93 − 20% 0.82 0.75,0.94 − 18% 
Rx10d 0.86 0.74,0.98 − 14% 0.77 0.67,0.89 − 23% 0.83 0.56,1.27 − 17% 
Rx20d 0.94 0.79,1.23 − 6% 0.82 0.71,0.96 − 18% 0.88 0.77,1.01 − 12%  

Fig. 3. Synthesis results for attribution analysis of observations, atmospheric models, and coupled models for change in magnitude of Rx5d, Rx10d and Rx20d 
between preindustrial period and event-year 2012, 2016, and 2018. The overall synthesis result for the three experiments is shown by the thicker bar marked 
‘synthesis’ below the individual experiment results. The thick black marking represents the mean while the bar spans the 95% confidence interval. 
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coupled models shows reduction in intensity. For Rx5d, an increase of 
9% is found in observations, 4% in atmospheric models and − 2% in 
coupled models. For Rx10d, an increase of 14% is found in observations, 
4% in atmospheric models and − 5% in coupled models. For Rx20d, 
observational analysis shows an increase of 15%, 2% in the analysis of 
atmospheric models and − 4% in coupled models. Of these findings, 
none is attributable to anthropogenic climate change. In 2012, intensi-
fication of extreme rainfall is seen across all RxNds in all experiments 
except for Rx5d in which coupled models show a reduction of 1%. In 
observations and atmospheric models, x5d has increased by 4% and 7% 
respectively. For Rx10d, increase of 8% is seen in observations, 8% in 
atmospheric models and 2% in coupled models. Intensity of Rx20d has 
increased by 11% in observations and atmospheric models and 6% in 
coupled models. Changes In the intensity of Rx10d and Rx20d in the 
analysis of atmospheric models are attributable to anthropogenic 
climate change. In general, it is only atmospheric models that show a 
significant positive influence of anthropogenic climate change in the 
rainfall events. 

4. Discussion and conclusions 

Evaluation of the role of human-induced climate change on the 
magnitude of March-April-May 2012, 2016, and 2018 heavy precipita-
tion events in defined regions in Kenya was undertaken based on three 
different experiments using independent event-attribution approaches. 
Climate model ensembles representing the preindustrial or past (period 
prior to the onset of large-scale industrialization and human influence 
on the climate) and current (MAM 2012; 2016 and 2018) climates, and 
two observational (station and gridded) datasets were used to evaluate 
changes in seasonal rainfall maxima between preindustrial and current 
climates, as well as their return periods. To widen the temporal defini-
tion of the events, three heavy-rainfall maxima were investigated: 
maximum consecutive 5-day, 10-day and 20-day (Rx5d, Rx10d and 
Rx20d) rainfall. This multi-method multi-model methodology allows 
attribution results to be independent of assumptions within specific 
methods and idiosyncrasies of data, and thus enhancing robustness in 
the assessment of human-induced changes in the extreme rainfall events. 
This is particularly important for attribution studies in East Africa where 
models generally perform poorly, in addition to limited availability of 
long historical observations. 

Looking across all the three event years, there is a general shift to-
wards positive FAM, although this is not statistically significant. 
Therefore, while there might be an emerging signal of human influence 
on climate causing heavier rainfall events, this is not yet formally 
attributable to human influence on the climate system. This is an 
interesting finding in the context of the ‘East African climate paradox’ 
where a contradiction exists in model projections and observed trends in 
MAM total rainfall —an observed overall decline in rainfall since the 
early 1990s while model projections show a wetting trend. It remains 
unclear whether a changing balance in anthropogenic forcing exists 
whereby past trends may have been influenced by anthropogenic 
aerosols while the future trends are driven by increasing concentrations 
of greenhouse gases (e.g., Rowell et al., 2015). Over the past decade, 
extreme wet conditions in the MAM season e.g., 2012 (OCHA, 2012), 
2016 (KMD, 2016; IFRC, 2016), 2018 Kilavi et al. (2018); OCHA (2018), 
OCHA (2020) have punctuated the dominant drier conditions. However, 
there is still limited knowledge of past and present trends of rainfall 
extremes over the MAM season in Kenya as reported by various studies 
including Omondi et al. (2014) and Schmocker et al. (2016), mainly 
attributed to inadequate long and quality observations (Anyah and Qiu, 
2012b; Otto et al., 2020a,b). Depending on the time periods and 
geographical locations evaluated, exceptions of the downward rainfall 
trend have been noted by various researchers. For instance, analyses 
done on local scales have particularly exhibited upward trends in rain-
fall compared to those on a regional scale (Kizza et al., 2009). Variation 
in results of historical trend analysis also exist (Philippon et al., 2015; 

Nicholson, 2016b; Thiery et al., 2016) whereby some studies show in-
crease (e.g., Gebrechorkos et al., 2019; Ongoma et al., 2018) with some 
decrease e.g., Schmocker et al. (2016), depicting the high variability in 
space and time of precipitation extremes in Kenya. Increased variability 
is likely to exacerbate the historic trend of less predictable and unreli-
able rainfall characterised by increased frequency and intensity of 
droughts and floods. 

It is important to note that precipitation change signals have been 
found to emerge more slowly in regions experiencing high climate 
variability especially for analysis at smaller scales where models do not 
capture all necessary processes to realistically simulate regional details 
and regionally important forcings, and with high observational un-
certainties (Bindoff et al., 2013; Collins et al., 2013). Also, since rainfall 
in East Africa is driven by both dynamic and thermodynamic processes, 
it is unclear whether these processes acted in opposite direction during 
the events thus attenuating the anthropogenic signal, especially given 
the existing limitation of models in simulating intense rainfall associated 
with deep convection (Finney et al., 2020). There is potential to use 
convective permitting models in attribution analyses in East Africa, 
however not at this point in time. At the time of this analysis, no con-
vection permitting simulations of sufficient length and ensemble size 
exist that would allow for the identification of trends in extremes. So-
cietal adaptation to climate change in areas with high climate variability 
is more challenging than to an overall change since extreme weather and 
climate events are considered to have a higher impact than the mean 
climate (Parmesan et al., 2000). This poses a serious threat to Kenyan 
livelihoods given that the dry years in recent memory which have been 
perceived as harbingers of the future despite the lack of attribution, 
leave already vulnerable societies with uncertainties of how to prepare 
for a changing climate. Overall, our results show an intensification of 
extreme rainfall in the three years studied. A shift toward high precip-
itation is consistent with what is expected under an enhanced green-
house gas climate world scenario through the Clausius-Clapeyron 
relationship (Boer, 1993; Allen and Ingram, 2002; Trenberth 2011; 
O’Gorman 2015). While there is no discernible anthropogenic climate 
signal on the magnitude of the recent flood-inducing rainfall events in 
Kenya, the projected increase in MAM rainfall and the current variability 
characterised by increased frequency and intensity of floods amid the 
general drying trend suggest the need for accurate monitoring to un-
derstand and avoid adverse impacts. This study, therefore, provides a 
basis for in-depth assessment of current and future trends of extreme 
rainfall in East Africa in adapting to changing climate risks in the already 
vulnerable and less resilient society. Further work is required to un-
derstand the role of anthropogenic climate change in the dynamics 
controlling East African MAM extreme rainfall. 
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Ghattas, J., Hauglustaine, D., Hu, R.M., Kageyama, M., Khodri, M., Boucher, O., 
2020. Implementation of the CMIP6 forcing data in the IPSL-CM6A-LR model. 
J. Adv. Model. Earth Syst. 12 (4), 1–22. https://doi.org/10.1029/2019MS001940. 

Marthews, T.R., Otto, F.E.L., Mitchell, D., Dadson, S.J., Jones, R.G., 2015. The 2014 
drought in the horn of Africa: attribution of meteorological drivers. Bull. Am. 
Meteorol. Soc. 96 (12), S83–S88. https://doi.org/10.1175/BAMS-D-15-00115.1. 

Meehl, G.A., Stocker, T.F., Collins, W.D., Friedlingstein, P., Gaye, A.T., Gregory, J.M., 
Kitoh, A., Knutti, R., Murphy, J.M., Noda, A., Raper, S.C.B., Watterson, I.G., 
Weaver, A.J., Zhao, Z.-C., 2007. Global Climate Projections. Climate Change 2007: the 
Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report 
of the Intergovernmental Panel on Climate Change. 

NAS, 2016. Attribution of extreme weather events in the context of climate change. In: 
Attribution of Extreme Weather Events in the Context of Climate Change. https:// 
doi.org/10.17226/21852. 

Richard B. Neale, C.C.C., Lauritzen, A.G.P.H., Sungsu Park, DavidL., Williamson, A.J.C.R. 
G., Lamarque, D.K.J.-F., Mills, D.M.M., Tilmes, A.K.S.S., Vitt, Francis, 
Morrison, Hugh, Philip Cameron-Smith, WilliamD., Collins, Michael J., 
Iacono, Richard C., Easter, S.J.G., RaschXiaohongLiuPhilipJ, M.A.T., 2012. 
Description of the NCAR community atmosphere model (CAM 5.0). Theory of Hindi 
Syntax. https://doi.org/10.1515/9783111358611-006. 

Nicholson, S.E., 2016a. An analysis of recent rainfall conditions in eastern Africa. Int. J. 
Climatol. 36 (1), 526–532. https://doi.org/10.1002/joc.4358. 

Nicholson, S.E., 2016b. An analysis of recent rainfall conditions in eastern Africa. Int. J. 
Climatol. 36 (1), 526–532. https://doi.org/10.1002/joc.4358. 

Nicholson, S.E., 2017. Climate and climatic variability of rainfall over eastern Africa. 
Rev. Geophys. 55 (3), 590–635. https://doi.org/10.1002/2016rg000544. 

OCHA. Eastern Africa region: floods and locust outbreak Snapshot (may 2020) - Ethiopia 
| ReliefWeb. Retrieved May 12, 2021, from. https://reliefweb.int/report/ethiopia 
/eastern-africa-region-floods-and-locust-outbreak-snapshot-may-2020. 

Nicholson, Sharon, Klotter, Douglas, 2021. Assessing the reliability of satellite and 
reanalysis estimates of rainfall in equatorial Africa. Remote Sens. 13, 3609. https:// 
doi.org/10.3390/RS13183609. 

OCHA, 2012. Eastern Africa Region: Floods and Locust Outbreak Snapshot (May 2020) - 
Ethiopia. ReliefWeb. 

OCHA Flash Update #5: Floods in Kenya | 10 May 2018 - Kenya | ReliefWeb. (n.d.). 
Omondi, P., Ogallo, L.A., Anyah, R., Muthama, J.M., Ininda, J., 2012. Linkages between 

global sea surface temperatures and decadal rainfall variability over Eastern Africa 
region. Int. J. Climatol. 33 (8), 2082–2104. https://doi.org/10.1002/joc.3578. 

Omondi, P.A.o., Awange, J.L., Forootan, E., Ogallo, L.A., Barakiza, R., Girmaw, G.B., 
Fesseha, I., Kululetera, V., Kilembe, C., Mbati, M.M., Kilavi, M., King’uyu, S.M., 
Omeny, P.A., Njogu, A., Badr, E.M., Musa, T.A., Muchiri, P., Bamanya, D., 
Komutunga, E., 2014. Changes in temperature and precipitation extremes over the 
Greater Horn of Africa region from 1961 to 2010. Int. J. Climatol. 34 (4), 
1262–1277. https://doi.org/10.1002/joc.3763. 

Ongoma, V., Chen, H., Gao, C., 2018a. Evaluation of CMIP5 twentieth century rainfall 
simulation over the equatorial East Africa. Theor. Appl. Climatol. 1–18. https://doi. 
org/10.1007/s00704-018-2392-x. Ipcc 2013.  

Ongoma, V., Chen, H., Omony, G.W., 2018b. Variability of extreme weather events over 
the equatorial East Africa, a case study of rainfall in Kenya and Uganda. Theor. Appl. 
Climatol. 131 (1– 2), 295–308. https://doi.org/10.1007/s00704-016-1973-9. 

Otieno, V.O., Anyah, R.O., 2012. CMIP5 simulated climate conditions of the Greater 
Horn of Africa (GHA). Part II: projected climate. Clim. Dynam. 41 (7–8), 2099–2113. 
https://doi.org/10.1007/s00382-013-1694-z. 

Otto, Friederike, 2017. Attribution of weather and climate events. Annu. Rev. Environ. 
Resour. https://doi.org/10.1146/annurev-environ-102016-060847. 

Otto, F.E.L., Boyd, E., Jones, R.G., Cornforth, R.J., James, R., Parker, H.R., Allen, M.R., 
2015. Attribution of extreme weather events in Africa: a preliminary exploration of 
the science and policy implications. Climatic Change 132 (4), 531–543. https://doi. 
org/10.1007/s10584-015-1432-0. 

Otto, F.E.L., Van Oldenborgh, G.J., Eden, J., Stott, P.A., Karoly, D.J., Allen, M.R., 2016. 
The attribution question. Nat. Clim. Change 6 (9), 813–816. https://doi.org/ 
10.1038/nclimate3089. 

Otto, F.E.L., Harrington, L., Schmitt, K., Philip, S., Kew, S., Jan van Oldenborgh, G., 
Singh, R., Kimutai, J., Wolski, P., 2020a. Challenges to understanding extreme 
weather changes in lower income countries. Bull. Am. Meteorol. Soc. 1–19. https:// 
doi.org/10.1175/bams-d-19-0317.1. preprint(2020.  

Otto, F.E.L., Harrington, L., Schmitt, K., Philip, S., Kew, S., van Oldenborgh, G.J., 
Singh, R., Kimutai, J., Wolski, P., 2020b. Challenges to understanding extreme 
weather changes in lower income countries. Bull. Am. Meteorol. Soc. 101 (10), 
E1851–E1860. https://doi.org/10.1175/BAMS-D-19-0317.1. 

O’Gorman, P.A., 2015. Precipitation extremes under climate change. Curr. Clim. Change 
Rep. 1 (2), 49–59. https://doi.org/10.1007/s40641-015-0009-3. 

Paciorek, C.J., Stone, D.A., Wehner, M.F., 2018. Quantifying statistical uncertainty in the 
attribution of human influence on severe weather. Weather Clim. Extrem. 20 
(December 2017), 69–80. https://doi.org/10.1016/j.wace.2018.01.002. 

Park, Sungsu, Shin, J. (n.d.. NCC NorESM2-MM model output prepared for CMIP6 CMIP 
historical. Retrieved June 4, 2021, from. https://cera-www.dkrz.de/WDCC/ui/cera 
search/cmip6?input=CMIP6.CMIP.SNU.SAM0-UNICON.piControl. 

Parmesan, C., Root, T.L., Willig, M.R., 2000. Impacts of extreme weather and climate on 
terrestrial biota. Bull. Am. Meteorol. Soc. 81 (3), 443–450. https://doi.org/10.1175/ 
1520-0477(2000)081<0443:IOEWAC>2.3.CO;2. 

Philip, S., Sparrow, S., Kew, S.F., Van Der Wiel, K., Wanders, N., Singh, R., Hassan, A., 
Mohammed, K., Javid, H., Haustein, K., Otto, F.E.L., Hirpa, F., Rimi, R.H., Saiful 
Islam, A.K.M., Wallom, D.C.H., Jan Van Oldenborgh, G., 2019. Attributing the 2017 
Bangladesh floods from meteorological and hydrological perspectives. Hydrol. Earth 
Syst. Sci. 23 (3), 1409–1429. https://doi.org/10.5194/hess-23-1409-2019. 

Philip, S., Kew, S., van Oldenborgh, G.J., Otto, F., Vautard, R., van der Wiel, K., King, A., 
Lott, F., Arrighi, J., Singh, R., van Aalst, M., 2020. A protocol for probabilistic 
extreme event attribution analyses. Adv. Statistical Climatol. Meteorol. 
Oceanography 6 (2), 177–203. https://doi.org/10.5194/ascmo-6-177-2020. 

Philippon, N., Camberlin, P., Moron, V., Boyard-Micheau, J., 2015. Anomalously wet and 
dry rainy seasons in Equatorial East Africa and associated differences in intra- 
seasonal characteristics. Clim. Dynam. 45 (7–8), 1819–1840. https://doi.org/ 
10.1007/s00382-014-2436-6. 

Pohl, B., Camberlin, P., 2006. Influence of the Madden-Julian Oscillation on East African 
rainfall. II. March-May season extremes and interannual variability. Q. J. R. 
Meteorol. Soc. 132 (621), 2541–2558. https://doi.org/10.1256/qj.05.223. 

Pohl, B., Camberlin, P., 2011. Intraseasonal and interannual zonal circulations over the 
Equatorial Indian Ocean. Theor. Appl. Climatol. 104 (1–2), 175–191. https://doi. 
org/10.1007/s00704-010-0336-1. 
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