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Abstract
We study the compositional and configurational heterogeneity of Greater London at the city- and
neighbourhood-scale using Geographic Information System (GIS) data. Urban morphometric in-
dicators are calculated including plan-area indices and fractal dimensions of land cover, frontal area
index of buildings, evenness, and contagion. To distinguish between city-scale heterogeneity and
neighbourhood-scale heterogeneity, the study area of 720 km2 is divided into 1 × 1 km2 neigh-
bourhoods. City-scale heterogeneity is represented by categorisation of the neighbourhoods using
a k-means clustering algorithm based on the morphometric indicators. This results in six neigh-
bourhood types ranging from “greenspace” to “central business district”. Neighbourhood-scale
heterogeneity is quantified using a hierarchical multi-scale analysis for each neighbourhood type.
The analysis reveals the dominant length scales for land-cover and neighbourhood types and the
resolutions with the most information gain. We analyse multi-scale anisotropy and show that small-
scale features are homogeneous, and that anisotropy is present at larger length scales.

Keywords
spatial heterogeneity, urban landscape, neighbourhood-scale, classification

Introduction

The urban landscape, a patchwork of buildings, roads, pavements, gardens, parks, and water, is
inherently heterogeneous. Although straightforward to understand intuitively, heterogeneity lacks a

Corresponding author:
Maarten van Reeuwijk, Imperial College London, SW7 2AZ London, UK.
Email: m.vanreeuwijk@imperial.ac.uk

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/23998083221140890
https://journals.sagepub.com/home/epb
https://orcid.org/0000-0001-9638-5643
https://orcid.org/0000-0003-4840-5050
mailto:m.vanreeuwijk@imperial.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1177%2F23998083221140890&domain=pdf&date_stamp=2022-11-25


universally adopted definition, as it represents unevenness, randomness, difference, variability,
complexity, and deviation from a norm. The Oxford English Dictionary defines heterogeneity as the
difference or diversity in contrast with other things or being made up of things or parts differing
greatly from each other (Fitch et al., 2015). Li and Reynolds (1995) define heterogeneity as ‘the
complexity and/or variability of a system property in space and/or time’ (p. 280). Santos et al. (2021)
distinguish between structural and functional heterogeneity. Structural heterogeneity relates to the
size, quantity, and spatial configuration of different surface properties. Functional heterogeneity
refers to quality and resource availability that affects ecological processes and responses, e.g., living
organisms’ density and distribution. Heterogeneity also has a temporal component: the urban
landscape is subject to abrupt, short-term, and long-term changes in its functional use and land-
cover properties due to human activities, phenological cycles, and urbanisation of previously rural
landscapes (Santos et al., 2021).

Heterogeneity in urban systems is created and maintained by many different processes across
physical, biological and social realms. Physical processes involve natural progression, disturbances
(e.g., fire, flood, etc.) and recovery, which set the heterogeneity of urban system at coarse scale.
Biological processes refer to the interactions among organisms including humans, such as the
competing for resources, resulting in the heterogeneity in population sizes and occupied locations
(Pickett et al., 2000; Cadenasso et al., 2013). Social processes are related to the management,
planning and design interventions by humans, modifying the physical structures and components of
the urban system such as removing materials or transferring materials from one landscape to
another, which leads to contrasting land covers and creates local areas differing from adjacent ones
(Pastor, 2005; Pickett and Cadenasso, 2009; Cadenasso et al., 2013).

Heterogeneity of landscape properties plays an important role in the ecological processes and
functioning of urban systems (Cadenasso et al., 2007, 2013). The built environment consists of a
rich variety of materials and textures: common building materials are brick, stone, concrete, wood,
and glass; building facades can be smooth, rough, or vegetated; roads are paved with asphalt or
stones. These materials differ in their permeability, their capacity to store heat, absorb water or
reflect solar radiation, and therefore influence the surface energy budget of urban environments
(Oke et al., 2017). The density of buildings and street networks that run throughout a city may differ
substantially for different areas. Densely built-up areas reduce the sky-view-factor and thus block
the emission of thermal radiation. Continuous wide streets promote ventilation, which removes heat
and air pollution from urban environments. The abundance or lack of urban vegetation and water
also affect the urban energy budget on the neighbourhood scale (Zipper et al., 2017). The differences
in structure and land-cover between urban and rural areas result in generally higher air temperatures
in urban environments compared to the rural surroundings (Bohnenstengel et al., 2011), a phe-
nomenon called the urban heat island (UHI; Buyantuyev and Wu, 2010; Qian et al., 2020; Stewart
and Oke, 2012). The presence of the UHI has motivated research about how to assess and mitigate
urban heat stress. For example, Bartesaghi Koc et al. (2020) identified different types of green
infrastructure and their cooling capacity in Sydney, Australia by their morphological and spatial
characteristics. As cities consist of neighbourhoods with different form and functionality, the heat
island intensity varies spatially across the city, as does the distribution of air pollution (NOx,
particulate matter) and anthropogenic heat from heating/cooling, industrial processes, and car
engines (Allen et al., 2010; Crippa et al., 2021). Spatial heterogeneity has been a key concern for
linking ecological sciences and urban design professions (Cadenasso et al., 2013; Pickett et al.,
2017; Zhou et al., 2017).

Successful understanding of spatial heterogeneity in cities relies on its accurate quantification
(Murwira, 2003). The quantification of urban heterogeneity not only provides a way to describe,
assess and compare the morphologies of different urban landscapes, but also helps us understand
how the physical characteristics of landscapes respond to urbanization or human manipulation
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(Cadenasso et al., 2013; Wiese et al., 2021). Heterogeneity can be quantified by measuring
complexity and variability of a system property, and by measuring departure from homogeneity
(Fitch et al., 2015; Li and Reynolds, 1995; Oke et al., 2017). There are numerous indices to assess
heterogeneity of a landscape, each emphasizing a different aspect or property of the landscape.

Our study is motivated by providing a better representation of cities in global weather and climate
models and thus the need to incorporate surface heterogeneity into atmospheric models due to the
strong interaction between the land surface and the atmospheric boundary layer (Barlow, 2014;
Margairaz et al., 2020; Oke et al., 2017). Indeed, the physical processes in the near-surface at-
mosphere are fundamentally related to urban morphology. For example, aerodynamic roughness is
commonly estimated by geometric parameters including average surface element height, plan area
index, and frontal area index (cf. Kent et al., 2017). Land-surface model components of atmospheric
models, such as JULES (Best et al., 2011; Clark et al., 2011) and the Town-Energy-Balance model
(TEB, Masson, 2000) rely on urban morphology indicators in order to make predictions of
aerodynamic drag, sensible and latent heat fluxes, which characterise the influence of the surface on
the atmospheric flow.

However, land-surface models use simplified representations of the urban surface and usually do
not consider the spatial configuration of different surface types within the given area, even though it
is known that the way the surface types are arranged within an urban area can have a profound effect
on the interaction with the atmosphere (Bartesaghi Koc et al., 2020; Sützl et al., 2021a, 2021b). To
improve these models, it is necessary to add information about the structural heterogeneity of the
urban area to the model. This paper explores several indicators of heterogeneity that could serve this
purpose, namely the fractal dimension, contagion, and evenness.

Another challenge for modelling urban climate is that heterogeneity is inherently multi-scale. An
urban area may be spatially homogeneous in respect of a particular surface property at one length
scale and heterogeneous at another (Oke et al., 2017). Before one can understand how the at-
mosphere is influenced by urban heterogeneity, it is crucial to define heterogeneity in a multi-scale
context. This is particularly pertinent in the context of numerical weather prediction, where the
increase in computational resources has allowed simulation at higher and higher resolution over the
years (Jochem et al., 2021). For example, the UKMet Office now runs its main weather forecasting
model at a grid of 1500 m (Tang et al., 2013), and experiments with resolutions even of the order of
hundreds of metres (Boutle et al., 2016; Lean et al., 2019). With each increase in the resolution, part
of the surface heterogeneity which was sub-grid (at scales smaller than the grid size) becomes
resolved which will then affect the atmospheric flow. For an ideal model, predictions would be
independent of resolution. In this paper, we develop a hierarchical decomposition at neighbourhood
level that is able to quantify the effect of changes in resolution on heterogeneity.

The aim of this paper is to use high-resolution land-use data of Greater London to explore how
structural heterogeneity can be defined in a multi-scale setting, making use of spatial maps of
land-cover types, their spatial aggregation and fractal dimensions, distinguishing between city-
scale heterogeneity and neighbourhood-scale heterogeneity. The Greater London area includes
rural, suburban, and urban areas, as well as large parks and water bodies (e.g., the river Thames).
Firstly, the city-scale heterogeneity is captured through land-cover and urban function categories
based on a k -means clustering algorithm. Clustering methods have been used extensively in urban
morphological studies (Fleischmann et al., 2021), to classify building types (Berghauser Pont
et al., 2019), settlement types (Jochem and Tatem, 2021; Jochem et al., 2021), sanctuary areas
(Dibble et al., 2019) and morphological cells (Fleischmann et al., 2021). Secondly,
neighbourhood-scale heterogeneity will be investigated using a novel hierarchical decomposition
method. Finally, conclusions are made in the last section.
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Methodology

Study area and map sources

The study area covers most of Greater London on 24 × 30 km2, ranging from 515000, 169000 to
545000, 193000 in British National Grid (EPSG:27700) reference system. The map data are
supplied by Digimap Ordnance Survey, including vector layer (Ordnance Survey (GB) 2020a),
raster layer (Ordnance Survey (GB) 2017) and Building Height Attribute data (Ordnance Survey
(GB) 2020b). The vector map consists of twenty-seven land features, such as buildings, structures,
land, inland water, rail, paths and roads. This study categorizes all land features to four main land-
cover types, namely buildings (including structures), impervious (including roads, rail and other
impervious ground surfaces), vegetation, and water, summarised in Table S1. The original raster
map at pixel resolution of 0.3125 m is also reclassified into four land-cover types using vector layer
in QGIS software. The reclassified land-cover raster map is shown in Figure 1, where each colour
represents a different land-cover type.

Figure 1. Reclassified land-cover raster map of the study area with four categories: buildings and structures
(black), impervious surface (pink), vegetation (green), and water (dark blue). A spatial reference of the area is
shown in the insert map (red rectangle). National and Greater London outlines from the Boundary-Line data
(Ordnance Survey (GB) 2021).
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Morphometric indicators

We investigate different measurements of urban heterogeneity with the aim of providing useful
additional information to models of surface-atmosphere interactions. As mentioned in the intro-
duction, other than the basic physical representation, the heterogeneity indicators related to spatial
configuration information of land types should be included to improve the urban surface repre-
sentation in land-surface models. We employ several morphometric indicators to quantify the urban
heterogeneity from compositional and configurational perspectives. The indicators selected must
directly describe the structural heterogeneity, be present in multi-scale and measurable from data
sources. The compositional heterogeneity with respect to different types of land-cover is quantified
by the land-covers’ plan area fractions and the evenness, and the frontal area index quantifies the
compositional heterogeneity with respect to height. Contagion index and fractal dimensions of the
land-cover types are used to characterise the configurational heterogeneity of the urban space in the
aggregation/fragmentation and arrangement ways. The details of these morphometric indicators are
described as below.

Plan area index. The plan area index of a land-cover type is expressed as (Oke et al., 2017)

λx ¼ Ax

AT
(1)

where the subscript x is the notation of land-cover type, Ax is the plan-view area occupied by the
land-cover type, and AT is the total ground surface area of interest. This study uses λb, λv, λi and λw to
represent the plan area fractions of buildings, vegetation, impervious ground (roads, parking areas,
etc.) and water cover, respectively. The plan area index relates to the density (or relative frequency)
of the land-cover type, which is often an indication of the different functionalities of the urban space
(greenspace, residential, commercial, etc.), reflecting urban planning and natural growth of cities.

Frontal area index of buildings. The frontal area index indicates the wind-facing surface area of urban
elements, which relates to the height of the elements and the “porosity” of the total urban envi-
ronment. This parameter is relevant to the exchange of air and heat within the urban system, hence,
to the mechanisms regulating the local urban climate. The frontal area index is given by

λf ¼ Af

AT
(2)

where Af is the total windward area of urban elements (Oke et al., 2017). This study considers only
the windward area of buildings, where the windward area is defined as an average over all wind
directions, employing the calculation method presented in Sützl et al. (2021b).

Evenness index. The evenness index characterizes the proportions of the different land-cover types.
The expression of relative evenness is

E ¼ 100
�ln

�P
x
λ2x

�

lnðNÞ (3)

where x denotes the land-cover types (i.e., x ¼ b, i, v, w) and N is the number of land-cover types
(Li and Reynolds, 1994; Romme, 1982). Evenness is a relative index with values between 0 and
100. When the area contains only one land-cover type, E ¼ 0. When each land-cover type is equally
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present (i.e., λx ¼ 1=N ), then E ¼ 100. In general, the greater the differences among proportions of
land-cover types, the smaller E will be.

Contagion index. The contagion index describes the connectivity of land-cover types and granularity
of the landscape texture by measuring the extent to which land-cover types are clumped together
(Riitters et al., 1996). The adjacency state k of a data pixel describes the combination of the land-
cover type of the pixel itself and the land-cover type of an adjacent pixel. For a map with N types of
land-cover, the number of different adjacency states is therefore N 2. Here we measure the adjacency
state for the pixels below and to the right, respectively, yielding two adjacency states per pixel
(Riitters et al., 1996). The contagion index is then given by (Li and Reynolds, 1993; Riitters et al.,
1996)

C ¼ 1þ
P
k
pk lnðpkÞ
2lnðNÞ (4)

where pk is the proportion of each adjacency state k in the total domain. Note that in equation (4) the
summation is only performed over proportions pk that are non-zero. The contagion index ranges
from 0 to 1. A low contagion value indicates that the proportions of land-cover types and adjacency
types are about the same, which may be related to a landscape with many small and highly dissected
patches. A high contagion value can come from different proportions in land-cover types, or from
one adjacency type being more frequent than the others, which can be same-type adjacency (i.e.,
clumping: large continuous patches of one land-cover type) or different-type adjacency (repeated
spatial land-cover patterns) (Riitters et al., 1996; Wiese et al., 2021).

Fractal dimension. Fractals refer to geometries that cannot be described by regular shapes such as
lines, squares, or cubes (Batty and Longley, 1994; Strogatz, 2018). Urban surface form resembles a
fractal by considering the spatial distribution of an urban element (for example the buildings), which
can be characterised by a fractal dimension (Batty and Longley, 1994). The fractal dimension
measures the complexity and irregularity of fractals. As above, we use the land-cover types to define
different fractals. This study uses the box counting method (Fernández and Jelinek, 2001) to
calculate the fractal dimensionDx which is performed by dividing the area up into squares of size rm,
denoting the sum of all squares covering the elements of land-cover type x ¼ fb, i, v, wg as Fx,m,
and repeating this procedure for several rm. Since Fx,m follows a powerlaw behaviour as Fx,m ∼ rDx

m ,
the fractal dimension Dx is determined by applying linear regression between lnðFx,mÞ and lnðrmÞ
(Chen et al., 2017; Chen and Huang, 2018; Sun and Southworth, 2013; Tannier and Pumain, 2005),
since

lnðFx,mÞ ¼ �DxlnðrmÞ þ c (5)

where c is a constant. A fractal dimension of 0 indicates that the urban elements are at a single
location. A fractal dimension of 1 indicates that the urban elements are spatially distributed along a
line or simple curve. A fractal dimension of 2 indicates that the urban elements fill the two-
dimensional space homogeneously. For urban surface form, the fractal dimension commonly lies
between 1 and 2 (Batty and Longley, 1994).

Clustering algorithm

In order to explore heterogeneity on the city-scale, we use a clustering analysis of urban surface data
on neighbourhood scale. The study area is divided into neighbourhood tiles of size 1 km × 1 km,
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which is similar to how urban surface data is processed for atmospheric models. The spatial
properties of each tile are quantified using a vector of morphometric indicators introduced above.
(hereafter referred to as a data point). The data are clustered using the k-means algorithm
(MacQueen, 1967), which aims to separate the data into k groups, where each data point is assigned
to the cluster that has the closest cluster mean. The optimal number of clusters is determined using
the elbow method (Kodinariya and Makwana, 2013). This method performs the k-means clustering
for a sequence of numbers of clusters k. The total within-cluster Euclidean distance dðkÞ, as a
function of k, will decrease rapidly at a low number of clusters and decrease much slower after a
certain value of k, where there usually is a kink or elbow, and this value of k is taken as the optimal
number of clusters, so the elbow method determines the optimal number of clusters in a visual way.
As the clustering results can be sensitive to the initial estimates of cluster centroids, we repeated the
clustering 300 times and chose the result with the lowest total Euclidean distance, which ensures that
the final cluster results are robust. To investigate whether the clustering results are sensitive to the
chosen neighbourhood-scale or the way the domain is split up, the analysis was repeated also for
neighbourhood tiles of sizes 0.5 km × 0.5 km and 2 km × 2 km, as well as a 1 km × 1 km domain
shifted by 0.5 km in both the horizontal and vertical direction.

Results

Analysis of morphometric indicators

The spatial and frequency distributions of ten morphometric indicators at a resolution of 1 km are
shown in Figure 2. The core of the city centre is densely covered by buildings accounting for about
half of the land-cover, other areas have a lower building cover and average λb ¼ 0:2 (Figure 2(a)).
The plan area index of impervious ground λi has a similar distribution to λb with the exception that
the core part does not stand out from the rest of the city centre (Figure 2(b)). On the contrary,
greenspace covers only about 10-20% of the city centre, while it accounts for large proportion of the
peripheric areas (Figure 2(c)). Notably, λv has a much wider range of values than λb and λi, ranging
from 0.1 to 1, which indicates that the spatial distribution of vegetation is highly heterogeneous over
the study area. Most tiles contain few or no water, such that the irregular pattern of λw highlights the
river Thames and some larger local water bodies in the north of London (Figure 2(d)). The dis-
tribution of the frontal area index of buildings λf is relatively similar to that of λb, with the difference
that λf reaches much higher values in the core of the city centre, and thus has a larger spread of
values overall (Figure 2(e)).

Spatial patterns between plan area index and fractal dimension of the same land-cover type are
remarkably similar. This can be seen by looking at either end of the value spectrum: areas with a
high plan area index λx have a fractal dimension Dx (x ¼ fb, i, vg) at the higher end of the value
spectrum, and vice versa, suggesting that these two indicators are implicitly related. The fractal
dimensions of buildingsDb (Figure 2(f)) and impervious groundDi (Figure 2(g)), have a mean value
of ∼1.7, while the average vegetation fractal dimension Dv ¼ 1:9 (Figure 2(h)). This means that
particularly vegetation fills the domain relatively uniformly, presumably through the abundance of
small-scale elements such as street trees. Note that the fractal dimension cannot be computed when
the land-cover type is absent. Since this leaves the fractal dimension for water Dw undefined for
many tiles, Dw was omitted here.

For the extent of aggregation of land-cover, most areas show weak connectivity of one land-
cover type, with a contagion index C between 0.5 and 0.7, except for where vegetation cover is large
and contiguous, yielding a contagion index of almost 1 (Figure 2(i)). The spatial pattern of evenness
E is the most diverse since its range has the widest spread (Figure 2(j)). In contrast to contagion,
evenness has high values in the centre of London, since the proportions of land-cover types in these
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areas are relatively uniformly distributed, while low values are observed in peripheral areas with
abundant vegetation, i.e., a large proportion of a single land-cover type.

Comparison of the spatial patterns of the morphometric indicators suggests that there is re-
dundant information between these ten indicators. To assess the overlap of information, correlation
coefficients between the morphometric indicators are calculated and summarised in Table 1. Figure
3 shows the tile-wise correlations for some of the indicators with the highest correlation coefficients.

Figure 2. Spatial and frequency distributions of ten morphometric indicators of Greater London at a
resolution of 1 km: plan area indices of (a) buildings λb, (b) impervious surface λi, (c) vegetation λv , and (d)
water λw , (e) frontal area index of buildings λf , fractal dimensions of (f) buildings Db, (g) impervious ground Di,
and (h) vegetation Dv , (i) contagion index C, and (j) evenness index E.
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Plan area index λx and fractal dimensionDx for the same land-cover type (x ¼ fb, i, vg) are strongly
positively correlated (Figure 3(a)-(c)). If the plan area index is low, it is unlikely that that land-cover
type is distributed homogeneously across the neighbourhood tile, and therefore Dx is at the lower
value range. Conversely, if the plan area index is high, the land-cover type is more likely to be spread
out across the entire tile, which yields a fractal dimension closer to 2. Evenness and contagion show
a strongly negative correlation (Figure 3(d)), as previously noted by Li and Reynolds (1994). This
suggests that landscapes with uniform proportions of land cover tend to have many dissected,
randomly distributed patches rather than having each type clumped together individually. Moreover,
λb is positively correlated with λf (Figure 3(e)), and negatively correlated with λv (Figure 3(f)). This
result is expected, because urbanization means the decrease of natural greenspace, and both λb and
λf are associated with the built environment. However, in contrast to the indicators discussed
previously, the relation between λb and λf , and between λb and λv, is not one-to-one (Figure 3(e)-(f)).

In the clustering analysis that follows, we will therefore discard the fractal dimension and the
evenness indicators, as these are well represented by other indicators. We choose contagion over
evenness because the correlation between contagion and the plan area indices is weaker than that
between evenness and the plan area indices. Then, the remaining six indicators include the plan area
indices of four land-cover types, the frontal area index of buildings, and contagion.

Clustering analysis

A k-means clustering algorithm is applied to classify neighbourhood types based on the reduced set
of six heterogeneity indicators at 1 km × 1 km grid resolution. The elbow method suggests that the
optimal number of clusters is six (Figure S1). The resulting neighbourhood classification map of
Greater London is displayed in Figure 4. The typical urban morphologies in each neighbourhood
type were identified using the morphometric indicators only, but Figure 4 clearly shows that the
clustering also distinguishes categories of urban function, by separating Greater London into zones
with distinct functional properties. The six neighbourhood types can be associated with greenspace
(GS), water (W), sparse sub-urban areas (SSU), compact sub-urban areas (CSU), mixed-type
residential and commercial zones (MTR) and central business districts (CBD), respectively.

Since the morphometric indicators take values from a continuous distribution (cf. Figure 2) rather
than a discrete set of values, the morphometric indicators cover a range of values within each cluster
and can also partially overlap between clusters (Figure S2). To identify whether the clustering

Table 1. Correlation coefficient matrix of the ten morphometric indicators calculated for Greater London at
1 km resolution. The cells are coloured in a yellow-green scale, dark green represents strong (positive or
negative) correlations while light yellow represents weak correlations.

λb λi λv λw λf E C Db Di Dv

λb 1
λi 0.79 1
λv �0.85 �0.82 1
λw �0.2 �0.22 �0.26 1
λf 0.91 0.74 �0.8 �0.16 1
E 0.75 0.77 �0.89 0.19 0.67 1
C �0.7 �0.72 0.82 �0.17 �0.61 �0.98 1
Db 0.84 0.74 �0.76 �0.16 0.72 0.76 �0.76 1
Di 0.76 0.95 �0.79 �0.19 0.69 0.8 �0.78 0.84 1
Dv �0.81 �0.73 0.95 �0.29 �0.8 �0.75 0.67 �0.64 �0.67 1
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results are subject to a modifiable-areal-unit-problem (MAUP) bias, the full analysis was repeated
for three other cases: two different grid resolutions (0.5 and 2 km) and a modified study domain
(shifted by 0.5 km). The maps for different resolutions and shifted neighbourhoods are largely the
same (Figure S3), and the elbow method also indicate that 6 clusters are optimal except for the 2 km
resolution, which shows that 5 is the optimal number of categories (Figure S1). Inspection shows
that the central business district cluster disappears in the 2 km case. This can be understood by
realizing that these are often high-rise clusters which tend to be smaller than 2 × 2 km2. This
investigation suggests that the results of the neighbourhood-scale clustering are not MAUP-biased.
The sensitivity check of the clustering algorithm with different initial conditions confirmed that, by
choosing the clustering result with the lowest Euclidian distance, we produce a robust clustering: 1)
the within-cluster distance of the 300 runs generally does not vary by more than 2%; and 2)
repeating of the full clustering analysis (i.e. 300 runs) with different initial conditions produces
virtually identical clusters (<0.5% difference). The remaining analysis will focus on the neigh-
bourhood classification of the 1 km × 1 km base case.

The average value and range of the morphometric indicators within each neighbourhood type for
the base case are summarised in Table 2. Example tiles for each neighbourhood type are shown in
Figure 5, and the main urban features for each neighbourhood type are described below.

Greenspace (GS) is predominantly covered by vegetation with an average plan area index of
λv ¼ 0:82. A few small-sized cottages are located along the roads. The composition of land-cover
types is highly non-uniform, and the spatial arrangement with a large and continuous vegetation
cover yields the maximum contagion index among the six neighbourhood types (average

Figure 3. Pairwise correlations between plan area indices and fractal dimensions of (a) buildings, (b)
impervious surface, and (c) vegetation, between (d) evenness and contagion, (e) plan area index and frontal
area index of buildings, and (f) plan area indices of buildings and vegetation for each 1km2-tile in Greater
London.
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C ¼ 0:77). Tiles in GS are mainly located in the periphery of the study area and are associated with
large parks or nature reserves.

Water (W) is the only neighbourhood type with a significant water coverage of λw ¼ 0:3. The
most notable feature is the river Thames passing through central London and large water reservoirs
in the north. Water covers on average about twice as much area as buildings (average λb ¼ 0:14) or
impervious surface (average λi ¼ 0:15). The similar proportions of buildings and impervious
surface and similar proportions of vegetation and water increase the uniformity degree of com-
position, yielding the second smallest value for contagion.

Sparse sub-urban areas (SSU) are characterised by a low density of mainly low-rise, single-
family buildings (average λb ¼ 0:16) along residential streets surrounded by contiguous greenspace
(average λv ¼ 0:65). The average contagion index is the second highest amongst the neighbourhood
types (C ¼ 0:63), which is likely related to the large and contiguous vegetation cover and repeated
spatial patterns of sub-urban residential areas with rows of houses lined up along the roads, each
with their vegetated backyards (cf. Figure 5(c)).

Compact sub-urban areas (CSU) have a lower proportion of vegetation (average λv ¼ 0:53) and
more compact buildings and impervious surface (average λb, λi ¼ 0:23) compared with the sparse

Figure 4. Classification map of the study area into six neighbourhood types: greenspace (GS), water (W),
sparse sub-urban (SSU), compact sub-urban (CSU), mixed-type residential (MTR), and central business
district (CBD). The sample tile discussed in the hierarchical decomposition is outlined in black.
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sub-urban zones, containing also mid-rise buildings like schools or hospitals. The spatial ar-
rangement of buildings and roads appears relatively similar to SSU, but also shows larger clusters of
built infrastructure, e.g., around local train stations. The more equal distribution of land cover
compared to SSU reduces the compositional heterogeneity and increases the land-cover frag-
mentation, which yields a lower contagion index than SSU. The CSU has the largest number of tiles
accounting for about one third of the whole study area. It could reflect the medium level of
urbanization.

The mixed-type residential zone (MTR) represents a higher level of urbanization with resi-
dential, commercial, and industrial areas. Residential houses are either compact low-rise buildings
with little greenspace, or open mid- to high-rise buildings surrounded by green areas. In MTR, the
built-up and impervious surface cover exceed the pervious surface cover (vegetation, water). The
average contagion index is the lowest amongst the neighbourhood types (C ¼ 0:52) since the
landscape is fragmented into many small patches.

Central business district (CBD) is a highly developed and urbanized region in Greater London,
characterised by compact arrangement of buildings, a few sporadic greenspaces and complex
transport networks. The occurrence of many mid-rise and high-rise buildings is shown by the
average frontal area index λf ¼ 0:54, which is significantly larger than the building plan area index
(average λb ¼ 0:4). In other five neighbourhood types, these two values are almost identical. The tall
buildings are closely spaced by staggered roads, forming many street canyons with narrow widths.
The landscape in CBD is divided into many small and highly dissected fragments, resulting in a low
contagion index.

The different neighbourhood type (with exception of the water cluster) can also be distinguished
by the proximity to the city centre: GS, SSU, CSU, MTR, and CBD (GS being furthest away and
CBD being closest). Buildings, impervious surface, and frontal area indices increase as the distance

Figure 5. Example tiles for (a) greenspace (GS), (b) water (W), (c) sparse sub-urban (SSU), (d) compact sub-
urban (CSU), (e) mixed-type residential (MTR), and (f) central business district (CBD).
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from city centre decreases, implying urbanization is accompanied by the increased need to transport
people and goods, while vegetation cover decreases. In addition, urbanization tends to increase the
composition uniformity but promotes land fragmentation, which yields a decreasing contagion
index with higher urbanization.

It is interesting to investigate how the detected neighbourhood types identified here compare to
Local Climate Zones (LCZs, Stewart and Oke, 2012), which describe distinct categories of urban
areas in terms of the land cover type, the height and compactness of buildings and vegetation. Each
LCZ is associated with a specific range of morphology indicators (see Stewart and Oke (2012) for
details). Below we determine the LCZ(s) associated with each neighbourhood type using those
indicators available as within-cluster means (Table 2).

Both CSU and MTR correspond to LCZ 6 (open low-rise), and CBD corresponds to LCZ 3
(compact low-rise; see Table S2). Neither GS,W, nor SSU have a direct LCZ correspondence. These
associations also change with resolution: while there are more correspondences of neighbourhood
types with LCZs at 0.5 km resolution, there are almost none at 2 km (Table S2), and some mappings
change with the shifted grid. We find that there is no one-to-one correspondence between the
identified neighbourhood types and LCZ classes, and that the mapping between them is not robust.
Mouzourides et al. (2019) similarly found that LCZmaps derived frommorphometric indicators can
be resolution dependent: they found 16 different LCZs in Greater London at a resolution of 100 m ×
100 m, whereas at a resolution of 1.6 km × 1.6 km, the number of classes reduced to 6.

Hierarchical decomposition

In this section we explore heterogeneity within the 1×1 km2 neighbourhood-scale tiles by con-
sidering the properties of each neighbourhood type at a range of different measurement scales.
Indeed, heterogeneity is dependent on the measurement scale, meaning that urban surface properties
which are heterogeneous will become homogeneous as the measurement scale increases (Cullinan
and Thomas, 1992; Li and Reynolds, 1995; Murwira, 2003; Oke et al., 2017). The approach is based
on repeated coarse-graining: starting from an original map IM with resolution of 2M × 2M pixels,
each coarse-graining operation reduces the resolution in each direction by a factor two, as shown in
Figure 6. We will denote the coarse-grained maps Im where m <M . When m ¼ M it represents the
original map, whenm ¼ M � 1, the map is coarse-grained once, whenm ¼ M � 2 twice and so on.
More specifically, Im contains 2m × 2m pixels, implying that each of its pixels represents the in-
formation of 2M�m × 2M�m pixels of IM . The associated length scale is rm ¼ 1000=2m m. We will
first explore the properties of the coarse-grained maps, and then introduce a hierarchical de-
composition map Jm, which represents the difference between the maps at resolution m and m� 1
(defined rigorously below). The aim of this analysis is to quantify what happens to morphometric
indicators upon changing the resolution, at what resolution the changes are largest and to quantify
heterogeneity across multiple scales. It is hoped that this information ultimately will be of use in
quantifying the effects of changing resolution in land-surface model predictions. The method
presented here is closely related to Multi-Resolution Analysis (MRA) and wavelets (Mouzourides
et al., 2013, 2014).

The resolution of the neighbourhood tiles is 3200 × 3200 which is not a power of two, therefore
some interpolation is necessary before the analysis can be conducted. To have as many exact
divisions by a factor of two as possible, the tiles were interpolated using a nearest-pixel approach to
3072 × 3072 pixels at 0.3255 m resolution. Since 3072 = 3×210, this allows the maps to be divided
by a factor of two for 10 times, and finally scaled down by a factor three to obtain the finest
resolution (pixel-based) raster map. This refinement gives in total twelve levels of resolution (m
ranging from 0 to M ¼ 11). Figure 7 shows the first ten maps Im of λb for a sample tile outlined in
Figure 4 at the computed length scales rm.
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To quantify the statistical properties of each map Imði, jÞ, we introduce the following notation: the
tile-based mean at resolution levelm is μm, and the tile-based variance (i.e., the variance between the
cells, or resolved variance) is denoted by σ2m. These quantities (the resolved statistics) can be directly
computed from the maps Im (cf. Figure 6). For each cell in Imði, jÞ, we denote the within-cell mean
and variance at resolution level m as μ

0
mði, jÞ and σ

02
mði, jÞ. In Figure 7, the within-cell mean values

μ
0
mði, jÞ simply correspond to the λb values shown: i.e., Imði, jÞ≡ μ0

mði, jÞ. The within-cell variance is a
result of the coarse-graining process at length scale rm and is calculated from the input map (i.e. IM ).
The average of the cell-based values over the entire tile will be denoted with an overbar: μ0

m for the
tile-averaged within-cell mean, and σ02

m for the tile-averaged within-cell variance. These quantities
are related to the tile-based statistical quantities of the original (pixel-based) map IM as

"m2 ½0,M � : μ0m ¼ μM , (6)

σ2m þ σ02m ¼ σ2M , (7)

which follows from the linearity of the mean and the variance decomposition formula (also called
law of total variance; Pishro-Nik, 2014). Equation (6) states that the mean over the entire tile is
conserved across various resolutions. Equation (7) states that the variance in the tile is conserved as
the sum of the between-cell variance and the averaged within-cell variance. Figure 8 depicts the
statistical properties of the maps Im from Figure 7 as functions of the measurement scale rm. As
expected from the equations above, the between-cell variance σ2m and averaged within-cell variance
σ 02
m vary oppositely with rm: as the measurement length rm increases, the resolved contribution σ2m

will reduce while the within-cell contribution σ02
m increases.

We introduce a hierarchical decomposition of the data that helps to explore the heterogeneity
present at different resolutions of Im. The decomposition at resolution level m is based on the

Figure 6. Example of coarse-grained and hierarchical maps for M ¼ 2. Map I2 is the original map containing
2M × 2M pixels which can be coarse-grained twice (maps I1 and I0). The hierarchical maps are obtained by
taking the difference between two neighbouring coarse-grained maps.
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difference between two successive maps Jm ¼ Im � Im�1. Setting J0 ¼ I0, this implies that the map
Im can be computed as the sum of decomposition maps Jm as

Im ¼
Xm
i¼0

Ji , "m2 0,M½ � (8)

Figure 9 displays the decomposition maps Jm at various resolutions, clearly outlining the
“corrections” that are needed to move from resolution level m� 1 to level m. This hierarchical
decomposition shares some features with Fourier decomposition in that it breaks up an image into
features at particular scales but has two important differences: 1) there is not a single amplitude/
phase linked to a particular scale; and 2) the hierarchical decomposition is intrinsically local – if
there are areas that are uniform above resolution levelm, then the corrections will be zero for higher
level maps. This is clearly seen in Figure 9, where parks (i.e., a larger area without buildings)
become visible as white spots around rm ¼ 15:6 m (Figure 9(g)), and these locations remain
unchanged at higher resolutions.

An attractive feature of the hierarchical decomposition is that the tile-based variance of a map Jm,
which we refer to as scale variance and denote by Δσ2m, can be shown to directly link the resolved
variances in the maps Im�1 and Im as Δσ2m ¼ σ2m � σ2m�1 (see the overlapping lines of Δσ2m and
σ2m � σ2m�1 in Figure 8). Therefore, the hierarchical decomposition distributes the variance into its
contribution at different scales. This implies that Δσ2m represents the proportion of within-cell
variance that becomes resolved by doubling the resolution. This allows for the interpretation of the
scale variance Δσ2m as an “energy spectrum”, which is often used for identification of the energetic
scales in multi-scale problems (Pope, 2000). Figure 8 shows the scale variance Δσ2m as a function of
the measurement scale rm, which can be seen to peak around 15.6 m, implying that this is the
dominant (or most energetic) length scale. This length scale is also roughly where the between-cell
and averaged within-cell variances cross over.

Below we conduct an analysis for the multi-scale properties of the neighbourhood types
identified in the clustering analysis using the hierarchical decomposition described above. Hier-
archical maps Jm of the four plan area indices λb, λi, λv, and λw are constructed for each tile in the
study area. These resulting tile-based statistics are then further averaged over all tiles within the

Figure 7. Maps Im of building plan area index λb at measurement scales rm of (a) 1000 m, (b) 500 m, (c) 250 m,
(d) 125 m, (e) 62.5 m, (f) 31.3 m, (g) 15.6 m, (h) 7.8 m, (i) 3.9 m, and (j) 2 m. The location of the selected area
is outlined in Figure 4.
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cluster to identify the differences between the neighbourhood types. Figure 10(a)-(d) shows the
cluster averages of the scale variance Δσ2m for each land-cover type.

For building cover,the cluster-averaged scale variance Δσ2mðλbÞ (Figure 10(a)) increases with
measurement scale rm, peaks at 7.8 m or 15.6 m and subsequently decreases with measurement
scale. This distribution is similar for all neighbourhood types, where a higher average building plan
area index is accompanied by larger variance. The observation that the maximum scale variance
occurs at 7.8 m or 15.6 m implies that these two scales contribute most to the total variance of the
neighbourhoods, and equivalently that these scales represent the dominant lengths at which

Figure 8. Statistics of the sample tile (Figure 7) and its hierarchical decomposition against length scale rm. The
statistical quantities are: tile-averaged within-cell mean μ0

m, between-cell variance σ
2
m, tile-averaged within-

cell variance σ 02
m , and scale variance Δσ2m. Note that the measurement scale rm is logarithmic.

Figure 9. Hierarchical decomposition maps Jm of plan-area index λb of the sample tile (Figure 7) at
measurement scales rm of (a) 1000 m, (b) 500 m, (c) 250 m, (d) 125 m, (e) 62.5 m, (f) 31.3 m, (g) 15.6 m, (h)
7.8 m, (i) 3.9 m, and (j) 2 m.

Yu et al. 17



individual building becomes resolved. For example, the individual building in Figure 7, classified
into CBD, start to be resolved at a scale of 15.6 m (Figure 7(g)). For scales smaller than 15.6 m, there
are almost no changes in λb (cf. Figure 7(h)-(j)), and small changes primarily concern the boundaries
of the buildings, as indicated by the hierarchical decomposition in Figure 9(h)-(j). For scales
between 15.6 m and 62.5 m, several buildings begin to blur into a single cell, leading to a significant
variance in λb (cf. Figure 7(e)-(f) and Figure 9(e)-(f)). As the scale increases, the averaging
procedure covers more buildings by a single cell, resulting in relatively less change of λb at each
level.

The scale variance of impervious ground (Figure 10(b)) exhibits a similar distribution for all
neighbourhood types across the length scales with a clear maximum at a scale of 15.6 m, which is a
width typical for a road. Similar to the building cover, the magnitude of the scale variance is linked
to the magnitude of the plan area index, where Δσ2mðλiÞ is highest for the CBD that meanwhile has
the highest average values for λb and λi, suggesting that each increase in resolution results in larger
changes than in the other neighbourhood types, and the “gains” from increasing the resolution are
therefore highest for these urban neighbourhoods.

Figure 10. Cluster-averaged scale variance Δσ2m and anisotropies Am for plan-area indices of (a, e) buildings λb,
(b, f) impervious ground λi, (c, g) vegetation λv , and (d, h) water λw at different scales. Note that the
measurement scale rm is logarithmic.
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The scale variance of vegetation has a similar distribution for each neighbourhood type with a
peak at a scale of 7.8 m, with the exception of the water neighbourhood type, in which the scale
variance is nearly uniformly distributed across most length scales, suggesting that there is no
dominant length scale for vegetation in the water neighbourhood type (Figure 10(c)). The peak at the
maximum variance at scale 7.8 m is weaker compared to the peaks in building and impervious
cover, and the relation between higher variances and higher (vegetation) land-cover is not always
maintained. A typical length scale for vegetation is therefore not obvious from the data. The
greenspace cluster shows least variance and a weak dependence on scale, suggesting that the tiles
identified in GS indeed primarily consist of large green spaces and therefore, small changes are
required upon moving to higher resolutions.

All neighbourhood types except for the water cluster contain almost no water (averaged
λw ≤ 0:02) and therefore have very low scale variance at all resolutions, which implies that there is no
strong dominant length scale for water in these neighbourhood types (Figure 10(d)). The water
neighbourhood type, however, displays a strong peak at 250 m, implying that tiles in this type are
dominated by water (averaged λw ¼ 0:3) in form of a large contiguous body of water with dominant
width around 250 m. Clearly, this is given by the river Thames that characterises most tiles in the
water neighbourhood type.

Next, we consider the isotropy of the hierarchical maps Jm at various scales by introducing an
anisotropy indicator as

Am ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���Δσ2x,m � Δσ2
y,m

���
Δσ2

m

vuut
(9)

where Δσ2x,m represents the mean variance in the x-direction of Jm and Δσ2y,m represents the mean
variance in the y-direction. The indicator Am ranges from 0 to 1, with 0 being isotropic and 1 being
anisotropic (variation in x or y only). The anisotropy indicator is calculated for each tile for the
four plan area indices λb, λi, λv and λw and averaged over all tiles belonging to the same
neighbourhood type (Figure 10(e)-(h)). The anisotropy indicator is nearly identical for all
neighbourhood types and land-cover types. The anisotropy is low at high resolutions and starts to
increase significantly from a measurement scale of 62.5 m, with most anisotropy at the largest
scale of 500 m (although note that at this scale there are only four cells in total and care must be
taken in the interpretation of this value). As Δσ2mðλwÞ equals zero for tiles that contain no water,
Figure 10(h) only shows anisotropy in the water neighbourhood type. The anisotropy of the water
neighbourhood type is generally slightly larger than the anisotropy of the other neighbourhood
types at the same scale, indicating that the different types of land-cover within the water
neighbourhood type are more strongly anisotropic, as the land-cover types tend to be more
aggregated in a single area (e.g., rivers, lakes, surrounded by green space, etc.) rather than
distributed.

Conclusion

The heterogeneity of Greater London was investigated by calculating several morphometric
indicators on neighbourhood-tiles of 1 km2. The clear-cut positive correlation between the
plan area index and fractal dimension of land-cover types (e.g., buildings) showed that fractal
properties can be inferred from the plan area index without having to explicitly calculate the
fractal dimension. The data suggests that when there is little area of a specific land-cover type,
it is not distributed uniformly in space. For example, buildings are more likely arranged along
a twisted road in sparse sub-urban areas, which corresponds to a fractal dimension above 1 but
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well below 2, filling the space more than a line but much less than a surface. It is not evident a
priori that this should be the case and it is likely to be a consequence of urban design decisions
rather than a natural process. With larger coverage, the land-cover type tends to be more
homogeneously distributed, with a fractal dimension closer to 2. Moreover, evenness is
negatively correlated to contagion, which suggests that areas with uniform proportions of
different land-cover types also tend to be highly fragmented into many small patches rather
than having each type clumped together individually. This is an important observation for the
modelling of urban surfaces within weather and climate models, as it contradicts common
practise to represent different land-cover types within a grid cell by separate fractions (called
“tiles”) of uniform land-cover to model their effects on the atmosphere individually.

A clustering analysis with a subset of the morphometric indicators was used to describe city-
scale heterogeneity. Whilst the analysis was purely based on the morphometric indicators, the
resulting neighbourhood types also distinguished the functionality of the urban ecosystems
(greenspace, residential, business districts, etc.). The clustering used the contagion index because
of its weaker correlation to the other indicators. However, if this index is not available, the
evenness would be a good substitute which can be directly calculated from the plan area indices of
the surface cover, thus enabling a clustering analysis using only the most common indicators (plan
area indices of buildings, impervious ground, vegetation, water, frontal area index of buildings).
The frontal-area index is required to distinguish the dense and high-rise city centres (i.e., central
business districts) from other parts of the core city. This distinction is important, as high-rise
buildings significantly alter air flow at the ground level, can trap short- and long-wave radiation
when forming narrow and deep street canyons, and affect the mixing properties with the at-
mosphere. In other parts of the city, the buildings’ frontal area index is similar to the plan-area
index.

The neighbourhood types identified by the clustering algorithm have only weak associations
with Local Climate Zones (LCZs), as the correspondence between them is not one-to-one and
varies with resolution and grid boundaries. This may partially be due to a different set of pa-
rameters used in this study and the LCZs. The clustering approach is readily usable for other city
contexts. It would be interesting to explore what the clustering algorithm would define and how
these would link to LCZs. The approach towards classification of urban surfaces is also com-
plimentary: LCZs are defined by a range of urban morphometric parameter values, as a result, a
region at a certain scale usually falls into one specific LCZ type. In contrast, the clustering
classification is based on the relative morphological similarity/dissimilarity, consequently, the
results are purely data-driven (e.g., study domain, city context). Our analysis first classified the
data, and the resulting clusters were then analysed according to their parameter values. This means
that the clustering analysis may not always produce the same neighbourhood types or LCZ
correspondence, but identifies for each city individually which categories are relevant. This can be
an advantage in several cases: for example, for cities that do not correspond well the LCZs, or for
research questions where the LCZ classes are too broad, but the clustering could further dis-
tinguish the landscape within one LCZ. We also added the contagion index to represent het-
erogeneity, and the clustering approach is more flexible towards including further parameters
should they be relevant.

Multi-scale analysis and hierarchical decomposition of land-cover maps revealed the
characteristic scales of land-cover types within the neighbourhood scale. The scale variance,
which is the variance from the decomposed resolutions, indicates the most energetic scales
and therefore where the most information gains lie. In this study, this is between 7.8 m (for
vegetation, buildings) and 15.6 m (for buildings, roads), but at 250 m for water. It was shown
that below measurement scales of 62.5 m, the neighbourhood types are homogeneous. Above
this scale, neighbourhoods are anisotropic. One interesting finding is that all neighbourhood
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types and land-cover types reach similar levels of anisotropy, indicating that anisotropy of
land cover is independent of land-cover type and land-cover fraction.

While any measure of heterogeneity generally depends on measurement scale, meaning that
urban surface properties which appear heterogeneous at small scales will become homogeneous as
the measurement scale increases, the hierarchical decomposition introduced in this paper conserves
the total variance (i.e., the sum of the between-cell resolved variance and the averaged within-cell
sub-grid variance) of the land-cover map. For numerical weather modelling, this gives important
insight on the representation of urban environments at different scales. For example, if the resolved
variance changes little by increasing the resolution, this implies that also the sub-grid variance
remains similar, which in turn implies that the urban surface properties of a grid cell at that scale can
be assumed to be statistically representative (i.e., the values do not significantly change upon small
increases or decreases of the considered area).

There are several opportunities for future work. First, this study was limited to Greater London
and it would be interesting to study other urban areas, especially developing cities. Second, due to
the large number of potential input parameters for the clustering and the option of many different
clustering algorithms, the results of the clustering will therefore depend to a certain extent on these
choices. Third, environmental factors such as orography, temperature, wind velocity and air
pollution are not considered at this stage to link the urban spatial heterogeneity with atmospheric
modelling. Fourth, it may be possible to develop new heterogeneity indicators that provide different
information and identify heterogeneity indicators that are independent of plan-area indices and each
other as most heterogeneity indicators are related to the proportion or arrangement of urban
constituents. In our analysis, the only direct heterogeneity indicator we used was contagion which
measures the arrangement of one land-cover type. Last but not least, it would be valuable to study
how multi-scale heterogeneous surfaces influence urban microclimate, the atmospheric boundary
and regional weather.
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