
Circulatory proteins relate
cardiovascular disease to
cognitive performance: A
mendelian randomisation study

Jian Huang1,2*, Dipender Gill2, Verena Zuber2,
Paul M. Matthews3,4, Paul Elliott2,4,5, Ioanna Tzoulaki2,6 and
Abbas Dehghan2,4,5

1Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR),
Singapore, Singapore, 2Department of Epidemiology and Biostatistics, School of Public Health, Imperial
College London, London, United Kingdom, 3Department of Brain Sciences, Faculty of Medicine, Imperial
College London, London, United Kingdom, 4UK Dementia Research Institute at Imperial College London,
London, United Kingdom, 5MRC Centre for Environment and Health, School of Public Health, Imperial
College London, London, United Kingdom, 6Department of Hygiene and Epidemiology, University of
Ioannina Medical School, Ioannina, Greece

Background and objectives: Mechanistic research suggests synergistic effects of
cardiovascular disease (CVD) and dementia pathologies on cognitive decline.
Interventions targeting proteins relevant to shared mechanisms underlying
CVD and dementia could also be used for the prevention of cognitive impairment.

Methods:We appliedMendelian randomisation (MR) and colocalization analysis to
investigate the causal relationships of 90 CVD-related proteins measured by the
Olink CVD I panel with cognitive traits. Genetic instruments for circulatory protein
concentrations were obtained using a meta-analysis of genome-wide association
studies (GWAS) from the SCALLOP consortium (N = 17,747) based on three sets of
criteria: 1) protein quantitative trait loci (pQTL); 2) cis-pQTL (pQTL within ±500 kb
from the coding gene); and 3) brain-specific cis-expression QTL (cis-eQTL) which
accounts for coding gene expression based on GTEx8. Genetic associations of
cognitive performance were obtained from GWAS for either: 1) general cognitive
function constructed using Principal Component Analysis (N = 300,486); or, 2) g
Factor constructed using genomic structural equation modelling (N =
11,263–331,679). Findings for candidate causal proteins were replicated using a
separate protein GWAS in Icelanders (N = 35,559).

Results: A higher concentration of genetically predicted circulatory
myeloperoxidase (MPO) was nominally associated with better cognitive
performance (p < 0.05) using different selection criteria for genetic
instruments. Particularly, brain-specific cis-eQTL predicted MPO, which
accounts for protein-coding gene expression in brain tissues, was associated
with general cognitive function (βWald = 0.22, PWald = 2.4 × 10−4). The posterior
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probability for colocalization (PP.H4) of MPO pQTL with the g Factor was 0.577.
Findings for MPO were replicated using the Icelandic GWAS. Although we did not
find evidence for colocalization, we found that higher genetically predicted
concentrations of cathepsin D and CD40 were associated with better cognitive
performance and a higher genetically predicted concentration of CSF-1 was
associated with poorer cognitive performance.

Conclusion: We conclude that these proteins are involved in shared pathways
between CVD and those for cognitive reserve or affecting cognitive decline,
suggesting therapeutic targets able to reduce genetic risks conferred by
cardiovascular disease.

KEYWORDS

proteins, cardiovascular disease, cognition, mendelian randomisation,
myeloperoxidase (MPO)

Introduction

The main protein biomarkers identified for dementia include
amyloid precursor protein and tau protein (O’Brien and Wong,
2011). Clinical trials of anti-amyloid and anti-tau intervention for
AD have been conducted but meaningfully effective drugs are still
not available (Congdon and Sigurdsson, 2018; Huang et al., 2020),
and their causal role is under question (Kametani and Hasegawa,
2018; Morris et al., 2018; Thomas et al., 2020; Sturchio et al.,
2021). Accumulating evidence has suggested a link between
cardiovascular disease (CVD) and dementia (Paciaroni and
Bogousslavsky, 2013). Classical cardiovascular risk factors,
such as smoking, diabetes, hypertension, obesity, and physical
inactivity contribute to a higher risk of cognitive impairment and
dementia (Juul Rasmussen et al., 2020; Yaffe et al., 2020).
Mechanistic research suggests that the impact of CVD risk
burden on dementia pathologies could lead to cognitive
decline (Attems and Jellinger, 2014; Santos et al., 2017).
Plasma proteins for CVD related to several biological
pathways that may be responsible for this have been identified.
Confident identification of causal relationships between these
protein biomarkers and cognition would support the
development of pathway-specific treatment (Ho et al., 2018;
Wallentin et al., 2021). With strong evidence that such
proteins play shared causal roles in the mechanisms
underlying CVD and cognition, interventions targeting
these proteins and their pathways could be developed to
prevent, slow or reverse disease progression and cognitive
impairment.

Some recent trials have shifted the focus to the early stages of
AD or mild cognitive impairment (Congdon and Sigurdsson,
2018). Given the high failure rate of the translation of preclinical
drug candidates in animal models into treatment in humans, a
more cost-effective strategy for drug discovery for cognitive
impairment is needed. The recent development of genotyping
and proteomic technologies has enabled the detection of protein
quantitative trait loci (pQTL) in large-scale genome-wide
association studies (GWAS) (Folkersen et al., 2020). Albeit
most GWAS in human subjects interrogate plasma pQTL
(rather than brain or brain cell-specific pQTL), they still can
be used as genetic instruments for instrumental variable analyses
such as Mendelian randomisation (MR) (Gill et al., 2021). MR

analysis uses genetic variants, which are randomised at
conception, to mimic random allocation in clinical trials and
investigate the causal relationship between a risk factor and an
outcome (Harris et al., 2020). It is less susceptible to confounding
or reverse causation than conventional observational studies and
can be used to identify potential molecular targets for
intervention (Harris et al., 2020). In this study, we applied MR
analyses to assess the associations of a wide range of plasma
proteins, which are known to associate with CVD, with cognitive
traits.

Methods

Genetic associations of concentrations of
plasma proteins

Genetic associations of 90 proteins in plasma were obtained
from a GWAS meta-analysis comprised of 13 cohorts of
European ancestry (SCALLOP consortium; average per-protein
sample size, 17,747) (Folkersen et al., 2020). Relative protein
quantification was measured using the Olink proximity extension
assay (PEA) cardiovascular (CVD) I panel (Assarsson et al.,
2014). The selected protein biomarkers are associated with
cardiovascular risk or prognosis in human observational
studies and animal models (Assarsson et al., 2014; Folkersen
et al., 2020). The Olink PEA CVD I panel returns normalized
protein expression (NPX) values (on the log2 scale so that each
one-unit difference in NPX indicates a doubling of protein
concentration). NPX values were rank-based inverse-
normalised to unit variance for the genetic association
analysis. Supplementary Table S1 listed the proteins under
investigation in this study.

To replicate the findings, we obtained the summary statistics for
the genetic instruments from a separate GWAS of protein
concentrations measured by SomaScan assay among
35,559 Icelanders (Ferkingstad et al., 2021). The SomaScan assay
provides an aptamer-based measurement of the relative binding of a
putative target protein to each aptamer in relative fluorescence units
(Ferkingstad et al., 2021). Because of the methodological differences,
the effect sizes from analyses based on Olink and Somalogic data
cannot be compared directly.
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FIGURE 1
Relationships between plasma protein concentrations and cognitive traits from bidirectional Mendelian randomisation (MR). MR estimate was
obtained from inverse-varianceweighted (IVW)method. The symbol + indicates an association with a p-value smaller than 0.05, the symbol * indicates an
association with a p-value smaller than 0.05/90, and the symbol ** indicates an associationwith a p-value smaller than 0.05/180. Due to the large number
of proteins, MR results for different proteins are presented in (A–C) in this figure.
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Genetic associations of cognition

We obtained the effect estimates for the association of genetic
instruments with two cognitive traits constructed using different

plasma protein datasets (Davies et al., 2018; de la Fuente et al., 2021).
A GWAS meta-analysis for general cognitive function (N = 300,486,
age 16–102 years) was performed based on the first unrotated
principal component of multiple cognitive tasks from
57 population-based cohorts of the Cohorts for Heart and Aging
Research in Genomic Epidemiology (CHARGE) and the Cognitive
Genomics Consortium (COGENT) consortia and the verbal and
numerical reasoning test in UK Biobank (Davies et al., 2018). A
GWAS for the general factor of intelligence (g Factor) was
performed based on seven different cognitive tests (N =
11,263–331,679, age 40–70 years at first assessment) in UK
Biobank (de la Fuente et al., 2021). For this association analysis,
a univariate GWAS was performed for each of the seven
standardised cognitive test scores and the univariate summary
statistics then were used to conduct a multivariate GWAS using
genomic structural equation modelling (Genomic SEM) (Grotzinger
et al., 2019). In Genomic SEM, the target trait represents the genetic
components of the individual GWAS traits (de la Fuente et al.,
2021). A higher g Factor score indicates better performance in
cognitive tasks. Supplementary Table S2 shows the details of
GWAS of cognition.

Bidirectional two-sample univariable
mendelian randomisation

We performed a two-sample univariable MR to investigate
the associations of each protein with either general cognitive
function or the g Factor. For each MR analysis, we selected genetic
instruments for each protein using three sets of criteria. Under
the first set of criteria, we selected any single-nucleotide
polymorphisms (SNPs) throughout the genome associated with
the protein of interest at a p-value<5 × 10−8 (both cis- and trans-).
For the proteins with less than three SNPs under these criteria, we
loosened the p-value threshold to 5 × 10−6. We referred to this set
of instruments as pQTL instrumental variables. Under the second
set of criteria, we selected cis-pQTL (i.e., pQTL within ±500 kb
from the protein coding gene) associated with the protein of
interest at p-value<5 × 10−6. To test directly for potentially causal
associations with brain protein expression, we, under the third set
of criteria, leveraged the information from GTEx8 expression
quantitative trait loci (eQTL) by meta-analysing eQTL from
13 brain tissues (Supplementary Table S3; sample sizes ranged
from 139 to 255). We selected SNPs located within ±500 kb from
the coding gene, associated with expression of the coding gene at
p-value<10−4, and associated with circulating protein
concentration at p-value<0.05. We defined these as brain-
specific cis-eQTL. For all three sets of criteria, we only
included SNPs with a minor allele frequency (MAF) greater
than 5% and F-statistics greater than 10. Correlated SNPs
(r2 ≥ 0.001) were excluded by keeping the one with the
smallest p-value.

We also performed a two-sample MR to investigate whether
cognitive traits or their genetic liability affect the plasma
concentrations of selected marker proteins. We selected
independent SNPs (r2 < 0.001) associated with the cognitive
traits of interest at p-value<5 × 10−8, MAF greater than 5%, and
F-statistics>10 as genetic instruments.

FIGURE 2
Associations of cis-pQTL-predicted plasma protein
concentrations with cognitive traits from Mendelian randomisation
(MR). MR estimate was obtained from theWald ratiomethod (NSNP = 1)
and inverse-variance weighted (IVW) method (NSNP>1). The
symbol + indicates an association with a p-value smaller than 0.05, the
symbol * indicates an association with a p-value smaller than 0.05/90,
and the symbol ** indicates an association with a p-value smaller than
0.05/180. Due to the large number of proteins, MR results for different
proteins are presented in Panels a and b in this figure.
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For eachMR analysis, genetic associations of the selected genetic
instruments with the outcome of interest were obtained from the
corresponding GWAS. We estimated the SNP-specific effects using
the Wald ratio (Burgess et al., 2017) and pooled the SNP-specific

estimates using inverse-variance weighted (IVW) for the MR effect
estimates (Lawlor et al., 2008). We used IVW fixed-effects model for
the analyses with two or three SNPs and IVW random-effects model
for the analyses with more than three SNPs (Bowden et al., 2017).
We also performed two sensitivity methods (weighted median
(WM) and MR-Egger regression) to assess the robustness of MR
estimates and horizontal pleiotropic effects for analyses with at least
three SNPs (Bowden et al., 2016; Burgess and Thompson, 2017).
Potential outlier SNPs were identified using MR-PRESSO and
excluded from the analysis (Verbanck et al., 2018). We accounted
for multiple comparisons using Bonferroni correction for 90 plasma
proteins and two directions with a p-value threshold of 0.05/180 =
0.0003. We prioritised candidate proteins by accounting for the
findings based on all three sets of criteria (i.e., pQTL, cis-pQTL, and
brain-specific cis-eQTL)

Colocalization

We performed colocalization to estimate the posterior
probability of the hypothesis that a cognitive trait shares the
same causal variant with a candidate protein (i.e., PP.H4) using
both pQTL and brain-specific eQTL (Zuber et al., 2022). Specifically,
we focused on the genomic region within ±50 kb from the protein
coding gene of interest. Given that we performed colocalization for
the candidateMR findings, here we tested only whether the common
causal variant is more likely than other hypotheses (see
Supplementary Table S8). Evidence of colocalization provides
complementary information on causal relationships since distinct
causal variants for the exposure and outcome of interest could lead
to a violation of the exchangeability assumption in MR analysis
(Zuber et al., 2022). We considered a PP.H4>0.5 as evidence for
colocalization (Giambartolomei et al., 2014).

Replication analysis

To validate our findings, we repeated the analysis of findings in
our main MR analyses using summary statistics from a GWAS of
putative protein concentrations measured using the SomaScan assay
(Ferkingstad et al., 2021). Specifically, we conducted MR and
colocalisation analysis for macrophage colony-stimulating factor
1 (CSF-1), cathepsin D (CTSD), and myeloperoxidase (MPO).
We were not able to extend the analysis to tumour necrosis
factor receptor superfamily member 5 (TNFRSF5, commonly
known as CD40) as this protein was not measured in the
Icelandic GWAS. We also performed additional analyses for IL-
34 and CSF-1 receptor (CSF1R), since IL-34 and CSF-1 are both
ligands of CSF-1 receptor.

Statistical software

All analyses were performed in R 3.6.1. Bidirectional MR
analyses were performed using the TwoSampleMR and MR-
PRESSO packages (Verbanck et al., 2018). Colocalization was
performed using the coloc package (Giambartolomei et al., 2014).

FIGURE 3
Associations of brain-specific cis-eQTL-predicted plasma
protein concentrations with cognitive traits from Mendelian
randomisation (MR). MR estimate was obtained from the Wald ratio
method (NSNP = 1) and inverse-variance weighted (IVW) method
(NSNP>1). The symbol + indicates an association with a p-value smaller
than 0.05, the symbol * indicates an association with a p-value smaller
than 0.05/90, and the symbol ** indicates an association with a
p-value smaller than 0.05/180. Due to the large number of proteins,
MR results for different proteins are presented in Panels a and b in this
figure.
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TABLE 1 Associations of circulating proteins with cognitive performance based on Mendelian randomisation analyses.

Exposure Instrument
type

Number
of SNPs

Method Beta SE p-valuea 95% CI
(lower)

95% CI
(upper)

Heterogeneity
p-value

Pleiotropy
p-value

Protein → General cognitive function

CD40 pQTL 3 IVW-FE 0.019 0.006 0.001* 0.007 0.030 0.696 -

WM 0.019 0.006 0.001* 0.008 0.030 - -

MR-Egger 0.024 0.008 0.216 0.007 0.040 0.923 0.553

cis-pQTL 3 IVW-FE 0.017 0.006 0.003* 0.006 0.029 0.021 -

WM 0.019 0.006 0.001* 0.008 0.030 - -

MR-Egger 0.031 0.011 0.222 0.009 0.053 0.166 0.332

cis-eQTL 2 IVW-FE 0.021 0.006 4.4E-04* 0.009 0.032 - -

CSF-1 pQTL 8 IVW-RE −0.033 0.008 4.5E-05** −0.048 −0.017 0.814 -

WM −0.036 0.013 0.004* −0.061 −0.011 - -

MR-Egger −0.042 0.025 0.141 −0.091 0.007 0.741 0.690

cis-pQTL 1 Wald ratio −0.037 0.015 0.013* −0.065 −0.008 - -

CTSD pQTL 7 IVW-RE −0.008 0.010 0.409 −0.028 0.011 0.081 -

WM 0.001 0.009 0.935 −0.017 0.019 - -

MR-Egger 0.010 0.016 0.579 −0.022 0.042 0.143 0.234

cis-pQTL 4 IVW-RE 0.001 0.007 0.828 −0.011 0.014 0.614 -

WM 0.004 0.009 0.622 −0.013 0.022 - -

MR-Egger 0.008 0.015 0.650 −0.022 0.038 0.465 0.653

cis-eQTL 3 IVW-FE 0.005 0.010 0.608 −0.014 0.024 0.945 -

WM 0.005 0.010 0.603 −0.014 0.024 - -

MR-Egger 0.003 0.014 0.852 −0.024 0.030 0.774 0.888

MPO pQTL 10 IVW-RE 0.020 0.014 0.157 −0.008 0.047 0.051 -

WM 0.038 0.014 0.006* 0.011 0.065 - -

MR-Egger 0.052 0.028 0.103 −0.003 0.107 0.082 0.233

cis-pQTL 1 Wald ratio 0.045 0.018 0.010* 0.011 0.080 - -

cis-eQTL 1 Wald ratio 0.219 0.059 2.0E-04** 0.104 0.335 - -

Protein → g Factor

CD40 pQTL 3 IVW-FE 0.016 0.006 0.012* 0.004 0.028 0.332 -

WM 0.016 0.006 0.014* 0.003 0.028 - -

MR-Egger 0.015 0.014 0.470 −0.012 0.042 0.139 0.945

cis-pQTL 3 IVW-FE 0.017 0.006 0.009* 0.004 0.029 0.469 -

WM 0.016 0.006 0.011* 0.004 0.029 - -

MR-Egger 0.014 0.010 0.399 −0.006 0.035 0.241 0.804

cis-eQTL 2 IVW-FE 0.016 0.007 0.012* 0.004 0.029 - -

CSF-1 pQTL 10 IVW-RE −0.023 0.013 0.082 −0.049 0.003 0.215 -

WM −0.035 0.015 0.017* −0.064 −0.006 - -

MR-Egger −0.048 0.031 0.161 −0.109 0.013 0.208 0.398

cis-pQTL 1 Wald ratio −0.035 0.016 0.032* −0.067 −0.003 - -

(Continued on following page)
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Results

Figure 1; Supplementary Tables S4, S5 show the relationships
between plasma proteins and cognitive traits defined by the
bidirectional univariable MR analyses. Among the 180 univariable
MR analyses for the associations of pQTL-predicted plasma protein
concentrations with cognitive traits, 115 had at least three SNPs with
p-value<5 × 10−8 and r2 < 0.001 (F-statistics ranged from 30 to 7,577).
For the remaining 65 univariableMR analyses (33 proteins), we selected
SNPs with p-value<5 × 10−6 and r2 < 0.001 (F-statistics ranged from
21 to 1,811). We successfully identified cis-pQTL instruments for
75 circulating proteins and brain-specific cis-eQTL instruments for
50 circulating proteins (Figures 2, 3; Supplementary Tables S6, S7).
Table 1 shows that genetically MPO, CSF-1, CTSD, and CD40 were
associated with cognitive performance under different instrument
selection criteria.

Supplementary Figures S1, S2 show that nominal significant
associations for pQTL predicted plasma protein concentration with
cognitive traits (p-value for IVW <0.05) were consistent in the
direction using sensitivity methods (WM and MR-Egger). After
accounting for multiple comparisons (PIVW<0.05/180), a higher
concentration of pQTL-predicted CSF-1 was associated with
poorer general cognitive function (βIVW = −0.03; 95% confidence
interval (CI) −0.05, −0.02; PIVW = 4.5 × 10−5). A higher
concentration of cis-pQTL-predicted CSF-1 was nominally
associated with both poorer general cognitive function
(βWald = −0.04; 95% CI -0.065, −0.008; PWald = 0.01) and lower g
Factor score (βWald = −0.04; 95% CI -0.067, −0.003; PWald = 0.03).
The only two brain-specific cis-eQTL for CSF-1 were both rare

variants (MAF = 2%), thus MR analysis using brain-specific cis-
eQTL was not performed. However, there was weak evidence for
colocalization for CSF-1 with cognitive traits (Supplementary Table
S8; PP.H4<0.1 for both pQTL and eQTL).

A higher concentration of pQTL-predicted IL-8 was associated
with better general cognitive function (βIVW = 0.03; 95% CI 0.02,
0.05; PIVW = 2.4 × 10−5). Cis-pQTL and brain-specific cis-eQTL
instruments were not identified for IL-8. We did not find supporting
evidence for colocalization for IL-8 with cognitive traits
(Supplementary Table S8; PP.H4<0.1 for both pQTL and eQTL).

Although pQTL-predicted CTSD plasma concentration was not
associated with cognitive traits, a higher concentration of cis-pQTL-
predicted CTSD was associated with a higher g Factor score after
accounting for multiple comparisons (βIVW = 0.03; 95% CI 0.02,
0.04; PIVW = 8.4 × 10−8), and a higher concentration of brain-specific
cis-eQTL-predictedCTSDwas nominally associatedwith higher g Factor
score (βIVW = 0.03; 95%CI 0.01, 0.05; PIVW= 0.004).MR estimates using
sensitivity methods showed a consistent direction and similar effect size
for these associations and MR-Egger did not suggest horizontal
pleiotropy. However, colocalization for CTSD with g Factor was not
found (Supplementary Table S8; PP.H4<0.1 for both pQTL and eQTL).

The pQTL, cis-pQTL, and brain-specific cis-eQTL predicted
CD40 and MPO were consistently nominally associated with better
cognitive performance in the MR analyses (Figure 4; Supplementary
Tables S4–S6). Particularly, brain-specific cis-eQTL-predicted MPO
was associated with general cognitive function after accounting for
multiple comparisons (βWald = 0.22; 95% CI 0.10, 0.33; PWald = 2.4 ×
10−4). PP.H4 was 0.577 for MPO pQTL with g Factor
(Supplementary Table S8).

TABLE 1 (Continued) Associations of circulating proteins with cognitive performance based on Mendelian randomisation analyses.

Exposure Instrument
type

Number
of SNPs

Method Beta SE p-valuea 95% CI
(lower)

95% CI
(upper)

Heterogeneity
p-value

Pleiotropy
p-value

CTSD pQTL 6 IVW-RE 0.018 0.012 0.145 −0.006 0.042 0.104 -

WM 0.028 0.010 0.008* 0.007 0.048 - -

MR-Egger 0.041 0.016 0.068 0.009 0.073 0.279 0.149

cis-pQTL 4 IVW-RE 0.026 0.005 8.4E-08** 0.017 0.036 0.853 -

WM 0.028 0.010 0.005* 0.008 0.048 - -

MR-Egger 0.030 0.017 0.213 −0.003 0.063 0.707 0.790

cis-eQTL 3 IVW-FE 0.032 0.011 0.004* 0.010 0.053 0.189 -

WM 0.031 0.011 0.004* 0.010 0.053 - -

MR-Egger 0.021 0.025 0.546 −0.027 0.069 0.118 0.655

MPO pQTL 9 IVW-RE 0.031 0.014 0.026* 0.004 0.059 0.139 -

WM 0.052 0.016 0.001* 0.020 0.084 - -

MR-Egger 0.079 0.023 0.011* 0.034 0.124 0.485 0.047

cis-pQTL 1 Wald ratio 0.064 0.019 0.001* 0.028 0.101 - -

cis-eQTL 1 Wald ratio 0.138 0.064 0.030* 0.013 0.264 - -

a“**” indicates a p-value smaller than 0.05/180, and “*” indicates a p-value smaller than 0.05.

Abbreviations: tumour necrosis factor receptor superfamily member 5 (TNFRSF5, commonly known as CD40); confidence interval (CI); macrophage colony-stimulating factor 1 (CSF-1);

cathepsin D (CTSD); expression quantitative trait loci (eQTL); inverse-variance weighted fixed-effect (IVW-FE); inverse-variance weighted random-effect (IVW-RE); myeloperoxidase (MPO);

protein quantitative trait loci (pQTL); standard error (SE); single-nucleotide polymorphisms (SNPs); weighted median (WM).
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Genetically predicted cognition was nominally associated with
concentrations of plasma proteins (Figure 1; Supplementary Table
S5). However, we did not find evidence supporting an influence of
genetically predicted cognition on plasma concentrations of CSF-1,
IL-8, CTSD, CD40, and MPO.

Using genetic associations from the Icelandic GWAS, a higher
concentration of cis-pQTL-predicted MPO was nominally

associated with better cognitive performance (Supplementary
Table S9) measured as the general cognitive function (βIVW =
0.02; 95% CI 0.003, 0.04; PIVW = 0.02) or g Factor (βIVW = 0.02;
95% CI 0.002, 0.04; PIVW = 0.03). Consistent with our main
analysis based on the SCALLOP GWAS, the PP.H4 was 0.577 for
MPO pQTL (Icelandic GWAS) with the g Factor. In addition, a
higher concentration of pQTL-predicted IL-34 (a ligand of CSF-1
receptor) was nominally associated with better cognitive
performance but there was no evidence of colocalization
(PP.H4<0.1).

Discussion

By aggregating evidence from MR (with three sets of
instrument selection criteria) and colocalization, our study
found that a higher concentration of genetically predicted
MPO was associated with better cognitive performance.
Genetically predicted CSF-1, CTSD, and CD40 were associated
with cognitive performance, but causal relationships were not
supported by colocalization. Conversely, we found no evidence
suggesting cognitive traits or their genetic liability to affect
circulating concentrations of these proteins.

Our associations of circulating proteins with general cognitive
function and g Factor score were not always consistent. This may
be attributed to the different methods utilised to construct the
two cognitive traits. While g Factor score was constructed based
on seven cognitive tests using Genomic SEM, it may have
captured greater contributions from reaction time and
memory, given the larger sample sizes for these tests (e.g., N =
331,679 for the memory pairs-matching test, N = 330,024 for
reaction time, and N = 11,356 for the matrix pattern recognition
test) (de la Fuente et al., 2021). General cognitive function was
constructed based on a wider range of cognitive tests using
principal component analysis, which showed a stronger genetic
correlation with educational attainment (Davies et al., 2018; de la
Fuente et al., 2021). Nevertheless, we observed consistent
associations for genetically predicted MPO with both these
two cognitive traits in our MR analyses.

In this study, we observed a direct association between
circulatory concentrations of MPO and cognitive function. In
agreement with this finding, studies have reported an association
of a functional polymorphism in the promoter region of theMPO
gene (rs2333227, G-463A) with cognitive function and risk of
Alzheimer’s disease (Crawford et al., 2001; Combarros et al.,
2002; Pope et al., 2006; Talarowska et al., 2015). The MPO AA
genotype, which decreases the production of myeloperoxidase,
was associated with cognitive decline among older adults (aged
70–79 years) (Pope et al., 2006). However, both MPO expression
and protein levels in middle-aged adults (aged 20–67 years,
mean = 40) were found to be associated with worse cognitive
function as assessed using Trail Making Test, Stroop Test, Verbal
Fluency Test, and Auditory-Verbal Learning Test (Talarowska
et al., 2015). Inconsistent findings have been reported for MPO
and the risk of Alzheimer’s disease. The MPO GG genotype
(increasing production of myeloperoxidase) was associated
with a higher risk for Alzheimer’s disease among Caucasians
but not Hispanics (Crawford et al., 2001). Sex-specific risk for

FIGURE 4
Forest plots for the most prominent findings in univariable
Mendelian randomisation (MR) for the associations of genetically
predicted plasma protein concentrations with cognitive traits ((A)
general cognitive function. (B) g Factor). Each panel indicates the
estimates fromMR analysis based on three sets of selection criteria for
genetic instruments. The shape in red and the double asterisk symbol
(**) indicate an association with a p-value<0.05/180. The symbol in
blue and larger in size and the asterisk symbol (*) indicate an
association with a p-value<0.05. (Inverse-variance weighted (IVW);
weighted median (WM)).
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Alzheimer’s disease among individuals with the MPO GG
genotype also has been reported (Reynolds et al., 1999). In
addition, circulating MPO was higher among individuals with
mild cognitive impairment and Alzheimer’s patients compared to
healthy controls (Folkersen et al., 2020). This may suggest the role
of MPO in cognitive performance varies by age and sex. We were
not able to perform sex-specific MR analysis given that sex-
specific GWAS for Alzheimer’s disease with a large sample size
was not available. A higher concentration of circulating MPO was
associated with an increased incidence and poorer prognosis of
CVD (Ramachandra et al., 2020). Further investigation is needed
to elucidate the mechanisms underlying the effects of MPO on
cognition and CVD.

We also found a direct association between circulatory
concentrations of CD40 and cognitive performance. A
published study by Ye et al. (2019) showed that the
CD40 concentrations in the cerebrospinal fluid were lower
among patients with mild Alzheimer’s disease compared with
healthy controls and MCI patients. Increased expression of
CD40 is associated with microglial activation, which has been
found to contribute to cognitive impairments and the
pathogenesis of Alzheimer’s disease (Hamelin et al., 2018;
Zhang et al., 2021). Inhibition of the CSF-1 receptor reduces
microglial activation (Olmos-Alonso et al., 2016). A previous
study reported a higher concentration of plasma CTSD among
AD patients with less severe cognitive impairment (Kim et al.,
2021). Increased expression of CTSD, as lysosomal protease that
degrades both amyloid-beta and tau proteins, is part of an
adaptive response to AD-related neurodegenerative pathology
(Cataldo et al., 1995; Suire et al., 2020). Our findings of
higher genetically predicted CD40 and CTSD associated with
better cognitive performance and higher genetically
predicted CSF-1 with poorer general cognitive function are
consistent with this. CD40, CSF-1, and CTSD also have been
reported to play a role in CVD, possibly through their roles in
mediating inflammation (Gorelick, 2010; Ozawa et al., 2017;
Sjaarda et al., 2018; Daub et al., 2020; Hoes et al., 2020). This
supports the shared mechanisms underlying CVD, cognitive
impairment, and Alzheimer’s disease. Further research on
repurposing CVD drugs for cognitive impairment and
Alzheimer’s disease is warranted.

In brief, our findings highlight a number of CVD-related
proteins that may play a role in building the cognitive reserve or
cognitive decline based on MR analyses with rigorously selected
genetic instruments. We improved the validity of genetic
instruments by using stringent p-value thresholds and
performed sensitivity analyses using cis-pQTL located near the
protein coding gene of interest and brain-specific cis-eQTL
leveraging gene expression in brain tissues. Sensitivity MR
methods showed consistent results and bidirectional MR did
not suggest reverse causation. However, we recognise the
limitations of our analyses. First, our analysis was based on
the GWAS of circulatory protein concentrations measured
using Olink CVD I panel. Large GWAS of other CVD-related
proteins measured using CVD II or III panel was not available at
the time of analysis. Second, the effect sizes from analyses
based on the Olink protein GWAS and the Icelandic GWAS
(SomaScan assay) cannot be compared directly. However, MPO

measured by the two technologies are expected to be highly
correlated (Pietzner et al., 2021). Third, colocalization provides
moderate evidence for a common causal variant between MPO or
CD40 and cognitive traits (PP.H4: 0.3–0.6). However, this is likely
to be hindered by the limited power of colocalization. Our
analysis showed that it was more likely for the candidate
causal proteins and cognitive traits to share a single causal
variant than have different causal variants (PP.H4>PP.H3).
Fourth, we observed opposite effects of the two ligands of
CSF-1 receptor (CSF-1 and IL-34) on general cognitive
function, but we were not able to disentangle which
interventions would be most effective in the clinical setting.
Animal experiments and intervention trials should be
considered to bring light to this. In addition, further research
is warranted to decipher the role of protein-protein interaction
networks in cognitive function. Fifth, this study was based on
individuals of European ancestry, thus our findings may not be
generalized to other ethnic groups.

Conclusion

By applying MR analysis and colocalization with a rigorous
selection of genetic instrument accounting for both pQTL and
brain-specific eQTL, our study investigated the relationship of a
wide range of plasma proteins that were known to be related to
cardiovascular risk with cognitive traits and found supporting
evidence for MPO, CSF-1, CTSD, and CD40. These proteins are
involved in shared pathways between CVD and those for
cognitive reserve or affecting cognitive decline, suggesting they
might be used as therapeutic targets for cognitive impairment.
Functional work and further investigations in more relevant
tissues are needed.
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