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Abstract: Weighted averages of air pollution measurements from monitoring stations are commonly
assigned as air pollution exposures to specific locations. However, monitoring networks are spatially
sparse and fail to adequately capture the spatial variability. This may introduce bias and exposure
misclassification. Advanced methods of exposure assessment are rarely practicable in estimating daily
concentrations over large geographical areas. We propose an accessible method using temporally
adjusted land use regression models (daily LUR). We applied this to produce daily concentration
estimates for nitrogen dioxide, ozone, and particulate matter in a healthcare setting across England
and compared them against geographically extrapolated measurements (inverse distance weighting)
from air pollution monitors. The daily LUR estimates outperformed IDW. The precision gains
varied across air pollutants, suggesting that, for nitrogen dioxide and particulate matter, the health
effects may be underestimated. The results emphasised the importance of spatial heterogeneity in
investigating the societal impacts of air pollution, illustrating improvements achievable at a lower
computational cost.

Keywords: air pollution; inverse distance weighting; land use regression; pollution exposure

1. Introduction

There is clear empirical evidence that links short-term exposure to ambient air pollu-
tion with a wide range of societal and economic impacts, including on health
(e.g., [1–3]), productivity (e.g., [4–6]), and learning (e.g., [7,8]). However, as pollutants tend
to vary spatially and temporally, studies are often challenged by imprecise air pollution
estimates to establish such impacts. Air pollutants, such as nitrogen dioxide (NO2), ozone
(O3), and particulate matter (PM), originate from different sources, disperse differentially,
and can uniquely interact with other environmental factors, such as temperature and
humidity, over time. These complexities are further compounded by the computational
demands required to model air pollution concentrations at high spatial and temporal
resolutions, which makes precise or accurate exposure assessment challenging. Instead,
studies often rely on sparse air pollution measurements from monitoring stations and
simple assumptions when assigning air pollution exposure to individuals or geographical
locations (e.g., schools, factories, hospitals, etc.). As a result, studies may be biased due to
measurement error as robust, local, and frequent air pollution levels continue to be difficult
to estimate. Thus, the use of air pollution exposures estimated with biases hinders the
identification of the air pollution impact on individual outcomes.

In an ideal research setting, individuals would be equipped with personal portable
monitors to collect precise and accurate estimates of their exposure as they move across
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space and time. While this is the most-accurate way of tracking personal exposure, it is
extremely costly, cumbersome, mainly available for small samples over a limited amount of
time, and not necessarily informative for policy design. In a similar vain, low-cost sensors
are suggested as an alternative; but their reliability, availability, and precision are still an
issue, and they currently do not support the development of national models. To circumvent
these limitations, various exposure assessment methods have been developed to assign air
pollution concentrations to a given location (e.g., residential address or hospital). The most-
simplistic approach is proximity-based assessments, which are based on the proximity
of a location to an emission source or monitoring station to assess changes in ambient
air quality [9]. Another approach is spatial interpolation, which generates estimates for
unsampled locations using the covariance and distance between the unsampled location
and sampled location (e.g., from air monitoring stations). This rests on the principle that
near things are more related than distant things [10]. The most-commonly used spatial
interpolation techniques is inverse distance weighting (IDW). Although IDW may seem
to be an acceptable approach that produces high-frequency time series datasets, it lacks
sensitivity to topological variation and atmospheric conditions that may influence some
air pollutants. These methods heavily rely on the availability of monitoring data and
may produce overly smoothed concentration surfaces, in cases of a limited number of
monitoring stations [11]. IDW also has the potential to lead to systematic estimation bias,
especially with sparse monitoring networks and topological complexity. On the other
hand, dispersion models are mathematical simulations of how air pollutants disperse in
the atmosphere. Dispersion models estimate the concentration of pollutants as they travel
away from an emission source, how they interact with other pollutants in the atmosphere,
and how they are dispersed due to meteorological conditions [12]. Dispersion models
are capable of modelling concentrations for short-term (e.g., hourly) and long-term (e.g.,
annually) averaging periods. The drawback is that dispersion models are demanding
both in terms of input data and computational power. In places with no, or limited, air
pollution monitoring stations, economists have also explored the use of satellite data
(e.g., [13,14]). Satellite information on air pollution can occasionally be obtained at high
temporal frequency; however, its use requires expensive pre-processing, and data are not
often available at the required spatial resolution [15]. Its accuracy is dependent on the
spatiotemporal characteristics of the air pollutant considered. The availability of satellite
sensors is disproportionately spread globally, increasing the difficulty in studying low- and
middle-income settings. Therefore, such estimates are often not readily available nor easily
accessible to social science researchers.

Economists interested in the impact of air quality on societal outcomes often develop
economic models using natural experiments or simple exposure assessment methods.
Natural experiments rely on an exogenous change in emission sources (e.g., the closure
of factories or a change in government policies) to overcome measurement challenges
and avoid the need to accurately quantify changes in air pollution concentrations. While
this method might be able to uncover causal relationships, it is not suitable to establish
concentration–response relationships. Therefore, to assess concentration–response rela-
tionships, economists tend to employ simple exposure assessment methods (e.g., nearest-
neighbour matching or IDW). These methods sacrifice either the temporal frequency by
relying on annual averages or the geographical precision by assigning the same air pollution
level to a large number of locations.

In this paper, we propose a simplified exposure assessment approach to produce
temporally and spatially highly resolved estimates for the main regulated air pollutants:
nitrogen dioxide (NO2), ozone (O3), and particulate matter with a diameter smaller than
10 µm (PM10) and smaller than 2.5 µm (PM2.5). Our method relies on land use regression
(LUR) models to derive robust estimates of local air pollution levels. Compared to disper-
sion models, LUR models are less challenging in terms of input data and computational
processing and can account for high spatial variability. With their relatively low demand
on the input data, LUR models have the potential to provide an improved, yet accessible,
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robust alternative to weighted averages whilst capturing the spatial heterogeneity of air
pollution. Traditional LUR models are widely used in predicting long-term (e.g., annual)
air pollution estimates. However, since typical land use input variables (e.g., road distribu-
tion, population density, etc.) are fairly constant over time, their application to estimate
short-term (e.g., daily) exposures is limited. (Therefore, they are commonly used to develop
annual models as the variables (e.g., land use, road length) are time-invariant. It is, in
principle, possible to develop daily LUR models, but the lack of daily data required to build
the model is generally a restriction. Over the last decade, there has been increasing interest
in combining different modelling techniques to overcome their respective limitations, so-
called “hybrid models”. Our methodology accounts for both environmental characteristics
that may influence emission and dispersion patterns and daily variability. This approach
relies on LUR and allows for the derivation of estimates at a fine geographical scale, as well
as at a high time frequency, which increases the accuracy compared to the standard IDW.

To illustrate the effectiveness of this approach, we developed daily air pollution
estimates (daily LUR) across England. We validated the models in space and time using
an independent subset of data from the monitoring stations. Similarly, we estimated the
weighted averages of pollution measurements using IDW. We assigned both our daily
LUR and IDW estimates to hospitals in the National Health Service (NHS) in England
and assessed the impact of the daily variation of air pollution on accident and emergency
(A&E) visits between 2010 and 2011 using a flexible multiple fixed effects distributed lag
model [6,16]. This allowed us to quantify the impact of different air pollution exposure
assessment models on health outcomes. The differences incurred by exposure assessments
may subsequently influence policy perspectives.

Our results varied by pollutant. NO2, PM2.5, and PM10 demonstrated notable dis-
crepancies between the two exposure assessment approaches—with daily LUR estimates
resulting in statistically significant effects, while IDW estimates suggesting no impact of
air pollution on A&E visits. The effect sizes using IDW were half those estimated by daily
LUR. Conversely, health estimates from O3 were similar when using IDW measurements
and daily LUR estimates.

Our findings suggest that the use of IDW risks the introduction of a substantial down-
ward bias, which has the potential to limit the ability of uncovering potential economic
estimates and underestimate the potential effects of air pollution. This paper proposes a
simpler methodology to improve the accuracy of assigning air pollution exposure across
space for studies that require temporally high-resolution information (e.g., daily or weekly).
It should be clear that the daily LUR is not the panacea to pollution exposure and that
there are more complex methods to assign pollution exposure, for example using machine
learning (e.g., random forest, XGBoost, neural networks). However, they require more data
and are computationally intensive. Therefore, the daily LUR represents a user-friendly
improvement over the IDW method.

The remainder of the paper is structured as follows: The next section presents a brief
background of air pollution assessment techniques (Section 2). Section 3 presents our
proposed exposure assessment technique. Section 4 applies this technique to a case study,
outlining our health setting and empirical approach. Findings from this case study are
reported in Section 5 and compare estimates between the techniques. Finally, Section 6
discusses the implications of our findings and concludes.

2. Background on Air Pollution Exposure Assignment

Air pollution is one of the most-serious environmental concerns of our generation: not
only is it closely linked with anthropogenic activities related to climate change, it also directly
affects individuals’ health and well-being. Air pollution has given rise to extensive research
documenting increased mortality (e.g., [1–3]) and morbidity (e.g., [17,18]) and decreased produc-
tivity and human capital (e.g., [4–6]) and school performance (e.g., [7,8]). Given the complexity
in accurately estimating air pollution levels, economic studies often have to make trade-offs
between temporal and spatial precision in estimating air pollution or circumvent estimating
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air quality altogether. Approaches can be broadly categorised into four types of air pollution
studies on economic outcomes: studies using (i) specific sources of air pollution (e.g., emissions
from a factory), (ii) natural experiments that provide a rapid exogenous change in the ambient
air quality (e.g., policy changes), (iii) air pollution modelling (e.g., modelling air quality with
satellite-based products in [19]), and (iv) monitoring stations capturing specific pollutants at a
specific location.

The first approach utilises variation in specific sources of air pollution, such as emis-
sions from traffic (e.g., [20–22]) or manufacturing sites (e.g., [23]). In these studies, the im-
pact of ambient air quality is only indirectly captured by a relative change of activity at
the source. The main issues with this approach are that it only captures the effect of a
unique variation in a local source, often without knowledge of its impact on the overall air
quality, and it assumes that the emissions from other sources (e.g., manufacturing sector)
remain constant over the period of the evaluation. Additional assumptions on the spatial
extent of impacts are also required. While it may serve to demonstrate that a change in
air pollution is beneficial or detrimental to the outcome of interest, this approach cannot
inform dose–response relationships and peaks of air pollution (e.g., [21,24,25]).

Secondly, natural experiments or quasi-experimental approaches (e.g., [3,24,26]) are
commonly adopted and focus on abrupt, and often unanticipated, changes in ambient air
pollution levels. These research designs typically come from changes in environmental
policy, such as the introduction of the 1970 Clean Air Act (e.g., [3,24,27]) or the closure of
power plants (e.g., [28]). The advantage of this approach is that it controls for the issues of
residential sorting, as well as acclimatisation. The former refers to the possible bias from
individuals choosing their residential location as a function of ambient air quality and their
individual susceptibility to, or preference for, air quality. A natural experiment typically
offers an abrupt change in air quality, and the observed effect is more likely to be a result
that can be attributed to the change in air quality as opposed to behavioural changes, such
as avoidance behaviour (see [17,29,30] for a discussion on avoidance behaviour). Due to this,
it could be argued any detected effects are close to causal. However, it only relies on a
single and local variation in average air quality across a specific population and often does
not capture daily changes in air pollution concentrations.

The third approach, using annual air pollution models, predicts spatially granular esti-
mates, via data-intensive and complex models, but is only feasible for annual estimates due
to the complexity of the models [31]. This presents an attractive option to researchers due to
its ability to provide air pollution at a fine granular scale that captures the heterogeneity of
a pollutant’s geographical distribution (e.g., [32]). However, as estimates are often limited
to long-term annual averages, they fail to account for the burdens imposed by short-lived
pollutants (e.g., ozone) and prevent one from obtaining short-term variations that may have
separate effects on the outcomes of interest (e.g., health and academic performance [33]).

Finally, economists also use direct measurements from ground monitoring stations
(e.g., [6,16,34]) or satellites (e.g., [35,36]). Monitoring stations are becoming increasingly
prevalent, particularly in urban locations. They represent a valuable source of information,
often on an hourly basis, that captures temporal changes at their location (e.g., [37] with
SO2 and black smoke, [1,38–40] with CO, PM10, and O3, [1] with PM10 and O3, and [2] with
PM2.5 and O3). Such time series data are easy to obtain and straightforward to analyse;
however, air pollution monitoring networks often remain sparse, and assumptions are
required to obtain proxies of local air pollution concentrations in areas without monitoring
stations. A common approach has been to assign a point of interest, an area, or an individual
to their nearest monitoring station (nearest neighbour matching). However, this has been
shown to be a poor marker in spatial assessments of air pollution exposures [41] as it
disregards the various essential dispersion characteristics of each pollutant. Another naive
practice has been to average the stations’ values across the neighbourhood of the points of
interest [42–44]. While this offers frequent estimates, its geographical aggregation, similar
to nearest neighbour matching, is likely to introduce a large bias as it does not account for
the regional characteristics that affect air pollution sources and dispersion.
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There is growing interest in exploring the effects of, and accounting for, short- and
long-term variation in air pollution without sacrificing spatial granularity. On the one hand,
advanced modelling, in principle, could achieve higher temporal frequency, but requires
high computational power and more input data than are often available. These models
are often challenging to implement across a large geographical area (e.g., across a country)
or over a long time period. On the other hand, daily or hourly air pollution measurements
are easily accessible given the wide availability of monitoring stations, but suffer from
systematic biases when the pollutant’s dispersion characteristics and local topography
are not accounted for. Therefore, these limitations present a need for an approach in air
pollution exposure assignment that is both (1) accessible to social scientists, amongst other
disciplines, and (2) considerate to the range of influencing factors of each pollutant, which
enables a more accurate air pollution assignment to provide robust evidence of the impacts
of air pollution concentrations on a wide range of outcomes.

3. Methodology

Our modelling approach was based on an LUR model, which is a widely used air pol-
lution exposure assessment method to estimate annual average air pollution concentrations
for environmental epidemiology [45–47]. LUR models have been developed for cities in
North America [48], Europe [49], Asia [50], Australia [51], South Africa [52], and larger geo-
graphic areas including North America [53,54], Europe [55,56], Australia [57], and Asia [58].
The spatial resolution of LUR models provides the opportunity for estimates on a fine
geographical scale, depending on their land use variables—typically ranging from 100 m
by 100 m to 1 km by 1 km. In order to obtain air pollution estimates of more frequent
temporal variation (i.e., daily), we propose temporal scaling of the traditional LUR (daily
LUR). This approach offers a more accessible and reliable way of estimating daily ambient
air pollution in various geographical settings as opposed to predictions derived purely
from empirical relationships.

We modelled the annual LUR model using a standard methodology and detail its steps
in Appendix A. This begins by gathering air pollution measurements at monitoring stations,
then identifying variables that can (a) predict the measured air pollution concentrations
from various sources (e.g., road traffic and industrial plants) and sinks (e.g., forests) and
(b) estimate the direction of their effects using a regression model. We combined the tradi-
tional land use input variables with a chemical transport model (CTM). The CTM estimates
simulate the physical and chemical processes of pollutant transport based on emission
inventories (location, strength, size) and meteorological inputs (e.g., temperature, relative
humidity, wind speed, and wind direction). The model was then calibrated and validated
against data from monitoring stations, before the production of concentration surfaces.

The daily LUR estimates proposed in this paper were derived as follows: once vali-
dated annual surfaces were obtained, the annual estimates were scaled to obtain temporal
variation using measurements from air pollution monitoring stations. The granularity
depends on the requirements of the study. For example, one may have individual health
data geocoded at the level of a geographic unit p. Supposing we have LUR estimates for
N geographic units, p, we take the centroid of each unit and assume the centroid pc to
be representative of the entire unit. Modelled annual air pollution concentrations C′annual
are extracted from the LUR surface at all geographic unit centroids. Daily exposure for
each p, DailyExpopc , is calculated by scaling monitored daily concentrations to annual
concentrations such as

DailyExpopc =
Cdaily

Cannual
× C′annual (1)

where Cdaily and Cannual are the measured daily and annual concentration from the nearest
background monitoring station of the geographic unit centroid pc, respectively; C′annual is
the estimated annual concentration of each geographic unit extracted from the LUR surface.

In practice, it is unlikely that the outcome data and LUR estimates are at the same
geographical scale. If outcome data are geocoded for an aggregated area, q, which is
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larger than p, the annual concentration for each q, AnnualExpoq, is calculated by aver-
aging all modelled annual air pollution concentrations C′annual for each p within each q
(Equation (2)), again assuming the centroid qc to be representative of the entire area q. Daily
exposure for each qc, DailyExpoqc , is then calculated using the aggregated annual exposure
(Equation (3)).

AnnualExpoq =
∑ C′annual

N
(2)

DailyExpoqc =
Cdaily

Cannual
× AnnualExpoq (3)

where q is the geographic area, C′annual is the estimated annual concentration of each
geographic unit extracted from the LUR surface, N is the number of geographic units, p,
within each aggregated area q, and Cdaily and Cannual are the measured daily and annual
concentration from the nearest background monitoring station of geographic unit centroid
qc, respectively.

4. Case Study: A&E Visits to the English National Health Service

To assess the performance of the daily LUR model, compared to IDW, we applied
the air pollution exposure assignment approach described in Section 3 and IDW to a
healthcare setting in England. We modelled A&E visits to hospitals in the NHS across
England from 1 April 2010 to 31 March 2011 as a function of air pollution assigned to the
neighbourhood of the hospital, controlling for various confounders. A&E visits do not
require a diagnosis, and therefore, the majority of the visits are unclassified in terms of
disease or visit purpose. We began by quantifying the differences between air pollution
concentrations from different exposure assignment techniques. We subsequently quantified
the differences in the estimated air-pollution-associated A&E visits using the two different
exposure assignment techniques. This allowed us to illustrate how the use of daily LUR
estimates performs against IDW estimates when identifying its impact on social outcomes.

4.1. Study Population and Data Sources

All observations were unique at the day and hospital level with the sum of A&E
visits to the hospital on that day. All observations were then assigned an air pollution
concentration using daily LUR and IDW to the centroid of the hospital postcode district
(PCD) level. Further, they were also assigned meteorological characteristics measured
from the nearest monitoring station, including important confounders, temperature, and
relative humidity. We matched all data at the hospital visit date level between 1 April
and 31 March 2011. Summary statistics describing our air pollution data can be found
in Appendix B. Below, the emphasis is on further detailing each dataset implored in our
empirical illustration.

The Automatic Urban and Rural Monitoring Network (AURN) [59] provides rati-
fied daily mean measured concentrations of four major health-relevant pollutants: NO2,
O3, PM2.5, and PM10. The AURN classifies monitoring stations as background urban,
background suburban, background rural, traffic urban, industrial urban, and industrial
suburban. We only included background sites to avoid the influence of road traffic and
industrial emissions, which can result in biased exposure assignment (i.e., overprediction).
The completeness of the data was checked for each pollutant and each monitoring station
based on a 75% completeness site selection rule. A monitoring station was included if it
had more than 75% daily mean measurements over (a) an entire year and (b) within each
month. This site selection rule ensures that the available daily data of each site have a good
representativeness of a year when they are averaged for the annual mean. For PM2.5 and
PM10, this selection rule resulted in too few sites; therefore, a less-stringent criterion of 50%
data completeness applied for these two pollutants. After applying the above criterion,
the number of selected monitoring stations used in Equation (A1) (Appendix A) over this
study year was 59 for NO2, 63 for O3, 38 for PM2.5, and 25 for PM10.
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The meteorological data, which are used as confounders in Section 4.5, came from the
Met Office Integrated Data Archive System (MIDAS) database. It provides meteorological
characteristics collected by the Met Office. The meteorological conditions aspects are
captured by irregularly spaced stations across England. The dataset contains daily and
hourly meteorological measurements, such as daily air temperature and relative humidity,
provided by 106 stations.

A&E visits came from the Hospital Episode Statistics (HES) database from NHS
Digital across 220 hospitals in England. These are the universe of visits over that period.
The mean number of daily A&E visits was 200 (SD 124) per hospital. The mean age
of all visits was 37.9 (SD 6.6) years old, with 48.8% of patients being female. The data
provide information on hospital utilisation. Each observation includes details on visit type
(e.g., treatment, diagnosis type), socioeconomic status (Index of Multiple Deprivation),
patient characteristics (e.g., age group and gender), and hospital specifics (e.g., postcode).
Data are collected during a patient’s visit to the provider for multiple administrative and
financial purposes. Due to a high rate of missing values in the classification of diagnoses or
treatments, we used all-cause A&E visits.

4.2. Pollution Assignment Methods

We began by estimating an LUR model for England and then applying the method-
ology outlined in Section 3. For our LUR model, we obtained six types of Geographic
Information System (GIS)-derived land use data including: land cover, population/house-
hold, road network, traffic, topography, and building. The predictors were chosen mostly
based on the ones used in the European Study of Cohorts for Air Pollution Effects (ESCAPE)
study [60], with one predictor on building volume as a proxy for street ventilation [61].
When estimating our annual air pollution surface (Stage 3 in Appendix A) to derive daily
LUR estimates, we used a resolution of 25 m by 25 m because it is the smallest resolution of
the datasets (i.e., land cover). At this resolution, the spatial variation of the variables is not
aggregated. However, as previously mentioned, the resolution can be adjusted according
to the study needs. Given the size of the selected monitoring stations, we used a 5-fold
cross-validation. This allowed an adequate amount of sample data to be included in each
fold and used in the validation. Models are summarised by several measurements includ-
ing the adjusted R2, root-mean-squared error (RMSE), and coefficient (β) in Appendix B
Table A1.

We then implemented the strategy outlined in Section 3 to obtain air pollution esti-
mates by daily LUR. We applied the scaling in Equation (3) to an LUR model (described
in Appendix A) for 2778 PCDs across England over the same period. For our application,
we used the centroid of each PCD. Air pollution estimates were assigned to each NHS
hospital using their PCD. Air pollution was assigned at the hospital level as this analysis
looked at the contemporaneous impact on A&E visits. A&E visits capture the immediate
effects of deviations in air pollution levels. As the average distance of a patient’s residential
postcode district to his/her A&E hospital is 13.3 km (SD 10.9), with a maximum distance of
223 km, the assignment of air pollution at the hospital level reduces the risk of inaccurately
assigning location exposure.

As a comparison, a spatial interpolation of monitoring data using IDW is included.
IDW does not involve statistical modelling: it is based on the distance weighting of nearest
monitoring stations to a location. Air pollution exposure at each PCD j on day t, DailyExptj,
equals the average values of daily measurements from k monitoring stations within a 50 km
radius, with weights proportional to the inverse of the square of the distance between their
residence and the monitoring station (Equation (4)).

DailyExptj =
n

∑
k=1

Pkt ×
1

d2
kj

∑n
k=1

1
d2

kj

(4)
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where Pkt is the measured daily concentration at each monitoring station k on day t; d is
the distance between postcode centroid j and monitoring station k. We used a maximum
radius of 50 km to include a moderate number (n) of monitoring stations. For instances
where a PCD has no monitoring stations within 50 km, we used the nearest monitoring
station (n = 1).

4.3. Defining Air Pollution Bins

The primary exposure variables of interest in this analysis were seven 5 µgm−3 daily
air pollution bins, constructed for PM2.5 and PM10, ranging from values under 5 µgm−3 to
over 30 µgm−3. For NO2, six 10 µgm−3 daily air pollution bins were constructed ranging
from values under 10 µgm−3 to over 50 µgm−3. Finally, seven 10 µgm−3 daily air pollution
bins were constructed for O3 ranging from values under 10 µgm−3 to over 60 µgm−3.
These thresholds were used to ease the comparison of the air pollution assessment methods.
These variables indicate whether air pollution measured at a given NHS hospital falls in
the specified air pollution range. As daily air pollution is defined at the NHS hospital
level (hospital-day), we preserved the spatial variation in air pollution to allow for the
identification of its effects. The 0–10 µgm−3 bin (NO2 and O3) and 0–5 µgm−3 bin (PM2.5
and PM10) were the reference categories and omitted in all regressions; consequently, all
estimates were interpreted as the impact of a day in the given air pollution range relative
to a day in either the 0–5 µgm−3 or 0–10 µgm−3 range.

4.4. Quantifying the Differences in Exposure Assessment Approaches

In this section, we compare air pollution estimates derived from different air pollution
exposure assignment methods (daily LUR and IDW) and any differences that may be
subsequently introduced in air pollution–health impact analysis. We first compared annual
air pollution concentrations spatially through maps to illustrate the geographical variation
in air pollution concentrations. Second, we compared the correlations of daily estimated
air pollution concentrations with observed values (i.e., air pollution measurements) at
monitoring stations that we used as a benchmark to quantify the potential bias introduced
by daily LUR and IDW. Our third comparison was similar to the second, but using annual
levels, we randomly omitted some air pollution monitoring stations to derive the air
pollution estimates at the monitoring station and compared the derived estimates to actual
measurements taken at these locations. Finally, we describe how air pollution exposure
assigned to hospitals was classified into different treatment bins—potentially creating
different treatment intensities and, thus, impacting the overall conclusion.

The spatial distribution of the monitoring stations for NO2, O3, PM2.5, and PM10 is
shown in Figure 1. We included stations from Wales and Scotland to “borrow” measure-
ments from monitoring stations, within 50 km of England. We produced air pollution
surfaces at the PCD level to visually compare the spatial pattern generated from the two
approaches (daily LUR and IDW). The comparison of the maps provides an insight into
the spatial heterogeneity of the different methods. Greater spatial granularity enables the
identification of hot spots of air pollution, which are often in densely populated areas
(e.g., London, Birmingham) and, therefore, essential to assess the impact of air pollution
on individuals.
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Figure 1. Spatial distribution of monitoring stations across Great Britain

Whilst the comparisons of daily air pollution estimates are insightful, they are not
representative of the precision of IDW in other locations, as the comparisons occurred at
monitoring stations where the IDW estimates were calculated from. In order to assess
the precision of IDW, we further explored the magnitude of any discrepancies through
a “bench-marking” approach. The measurements at monitoring stations (MONs) were
considered true observations of air pollution exposure that we can use to compare against
air pollution estimates derived from the other exposure assignment methods. Specifically,
we were interested in the difference between these true observations and the concentrations
derived using assignment methods. We applied the daily LUR model and IDW to obtain
daily air pollution estimates, for all four pollutants, at each monitoring station, while
excluding the station in question from its own measurement/estimation. For example,
for IDW estimate at monitoring station A, we deliberately excluded measurements from A
and used measurements from the second-nearest station, B. This was to mimic situations
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where a location for estimation is not near a monitoring station. We then calculated the
absolute difference (Deviationmt) at the monitoring station, m, following

|Deviationm,d| = |Pollutioni
m,d − PollutionMON

m,d | (5)

where Pollutanti
m,d is the air pollution concentration at the monitoring station, m, on day d,

estimated through air pollution technique i. i can be from: IDW or daily LUR. PollutantMON
m,d

is the average daily air pollution concentration reported at monitoring station m on day d.
The same bench-marking calculations were conducted using IDW, daily LUR, and satellite
monitors (SAT) at an annual level for NO2 and PM2.5. Annual calculations were estimated
as this was the most granular temporal scale available using satellite monitors. These
results mirror the results that are presented in the paper with a larger deviation observed
for SAT for NO2.

To compare daily estimates from the daily LUR and IDW, as described in Section 4.2,
we produced pairwise scatter plots that compare daily estimates against measurements
recorded from monitoring stations. We used the Pearson correlation coefficient (Pearson’ r)
to indicate the strength of the linear relationship between the two sets of data.

In addition, the accuracy and precision of the models were quantified by regressing
daily predictions (from the “bench-marking” approach, where values from the station
in question were excluded) against daily measurements and summarised in terms of the
coefficient of determination (R2), root-mean-squared error (RMSE), beta, and intercept.

It could be argued that the conventional modelling approach in social sciences, by flex-
ibly modelling air pollution impacts through the use of indicator bins, small deviations
in concentrations from different air pollution exposure methods are unimportant should
observations be properly classified into correct indicator bins. However, mismeasurement
of an individual’s or unit’s air pollution exposure risks misclassification of individuals
to indicator bins. To assess how the classification varies across the different methods, we
compared any deviations between the assigned bins from daily LUR and the IDW for each
observation by calculating the percentage of observations that did not fall into the same
indicator bin category.

4.5. Identification Strategy

To identify the effects of each pollutant, we exploited the panel structure of our data
and built on the panel approach used in [6,16,62]. We introduced NHS hospital fixed effects
(FE), which account for local air quality baselines and allowed us to identify the impact
of short-term air pollution variation around the local average air quality. Implicitly, NHS
hospitals without high peaks of air pollution throughout the year form a counterfactual for
NHS hospitals that do have peaks in that same year, after accounting for fixed differences
between the NHS hospitals and for common time effects. Naturally, many hospitals had
multiple events over the period of the analyses. An attractive feature of this approach is
that it builds in placebo tests that should identify likely violations of this assumption. Fur-
thermore, this identification strategy relies on the unpredictable and presumably random
daily local variation in air pollution.

Using a panel dataset, we employed a distributed lag Poisson regression model with
multiple fixed effects to estimate the effect of air pollution on daily A&E visits and for the
three days following a day in which air pollution falls into an extreme air pollution bin.
Equation (6) denotes the reduced form relationship between air pollution and A&E visits.
The total net effect of air pollution on A&E visits was flexibly modelled by including a
series of indicator variables for air pollution.
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The goal was to estimate the net effect of air pollution on day d on the number of A&E
visits (Yjd) per NHS hospital, j, per day, d, and for three days following day d:

log(Yjd) = α + ∑
p∈(<b,...>u)

βpPollutantp
jd + βMeanTempjd + ιHumidityjd+

+
3

∑
l=1

πp1l Pollutantp1
jl +

3

∑
l=1

πp2l Pollutantp2
jl +

3

∑
l=1

πp3l Pollutantp3
jl +

ζkDayo f Weekk + ρr Holidaysr + σm Monthm + τj Hospitalj + εjd (6)

Pollutantp
jd are a series of regressors that equal 1 if the daily air pollution at NHS

hospital j falls into a predefined air pollution bin and zero otherwise. For each pollutant,
regressions were run separately using the air pollution bins described above. Consequently,
these coefficients βh semi-parametrically describe the pollution–visits relationship, the net
of seasonal influences and relative to the lowest air pollution bin (i.e., 0 µgm−3 to 5 µgm−3

or 0 µgm−3 to 10 µgm−3) that is omitted in all regressions.
Pollutantp1

jl , Pollutantp2
jl , and Pollutantp3

jl are indicator variables for up to 3 days
following a day in a predefined air pollution bin of extreme air pollution exposure and
zero otherwise. Therefore, the extreme air pollution lag effect was estimated for 30 days
following a day of extreme air pollution.

A&E visits, health, and air pollution vary seasonally. A series of time-fixed effects
for day of the week (Dayo f Weekk), school and bank holidays (Holidaysr), and month
(Monthm) intended to control for the seasonal effects of cyclical variation. The use of
time-fixed effects makes no assumptions on seasonal form, does not constrain the model,
and avoids specification errors. Additionally, as seasonality is measured at a relatively
fine scale, the flexibility inherited from such granular fixed effects also accounts for health
changes that are driven by long-term behavioural changes. In addition, fixed effects for
NHS hospitals were also included for 220 NHS hospitals over our study period (Hospitalj).
As our observed geographical unit was the NHS hospital, the inclusion of these fixed
effects also captures population grouping effects, such as residential sorting. Overall, these
variables account for the influence of unobserved confounding factors.

MeanTempjd and Humidityjd represent the daily mean temperature (in Celsius) and
daily relative humidity on day d at NHS hospital j and were included as potential con-
founders of the effect of air pollution on A&E visits. Finally, εjd represents the standard
idiosyncratic disturbance term.

We used clustered and robust standard errors to allow for arbitrary within-group
correlations at the hospital level. All analyses were conducted with Stata MP v15 [63].

5. Results
5.1. Quantifying the Differences in Exposure Assessment Approaches

The spatial distribution of air pollution estimates at the PCD level is illustrated in
Appendix C Figure A1. (Appendix C Figure A2 reports the surfaces of annual estimates, as
daily maps demonstrate wide variation depending on the day chosen for representation.)
The air pollution surfaces were produced at the annual level (by averaging daily estimates)
to demonstrate the spatial distribution of the estimated concentrations from daily LUR
and IDW. Although having the same spatial resolution (i.e., PCD centroids), the surfaces
generated from LUR models capture more spatial heterogeneity compared to the surfaces
from IDW models. In rural areas, where there are fewer monitoring stations, the spatial
variation is almost uniform when using IDW models.

Figure 2 compares daily air pollution concentrations using estimates from the daily
LUR and IDW models with measurements. Overall, both modelling approaches were
in high agreement with the measurements from monitoring stations—with the highest
correlations observed for PM10, PM2.5, and O3. IDW appeared more precise than, or equally
as good as, daily LUR in this comparison. This was expected, as IDW models are completely
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informed by measurements at monitoring stations, and the comparison does not reflect
the accuracy of estimates in out-of-sample areas (i.e., any locations other than monitoring
stations). Furthermore, the IDW estimates of several locations used only one nearest
monitoring station, which resulted in perfect fitting between measurements and estimates.

Figure 2. Pairwise scatter plots (bottom-left cells), histograms of concentrations’ distribution (left
diagonal), and Person coefficients (top-right cells) for daily concentrations of NO2, O3 (top row),
PM2.5, and PM10 (bottom row). It shows paired comparisons of monitored daily concentrations
(MONs), estimated daily concentrations based on LUR scaling (LUR), and estimated daily concen-
trations based on IDW (IDW). All correlations are significant. Note that this is a naive comparison
at monitoring stations, which does not reflect the accuracy of estimates in out-of-sample areas as
the IDW concentrations are entirely based on measurements from nearest monitors within a 50 km
radius. Stars represent p-values: *** p < 0.001.

Table 1 shows summary statistics that quantify the daily average difference across all
four pollutants between the average daily LUR or IDW estimates and the average daily
air pollution concentration observed at the different air pollution monitoring stations that
were omitted in the calculation of the estimates. The magnitude of the deviation varies
by pollutant, but on average, daily LUR provides more accurate estimates than IDW: the
averages of the difference are smaller using daily LUR, for all pollutants, than IDW. The
standard deviations of the difference are also smaller for daily LUR, suggesting greater
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accuracy of the estimates. In addition, IDW tends to provide maximum values that are
larger than the maximum values obtained using daily LUR, which is true for all pollutants,
except for NO2. This is further supported by looking at the distributions of the differences
reported in Appendix D Figure A3 for each pollutant. Daily LUR appears to be more
accurate than IDW.

Table 2 shows the model performance from the validation, where daily estimates were
regressed against daily measurements at monitoring sites. Daily LUR outperformed IDW
for all pollutants across all parameters. Briefly, daily LUR accounted for 13% to 39% more
variation in the measured daily concentrations compared to IDW. Daily LUR also had lower
RMSE values, which suggests smaller errors (RMSE ranging from 6.87 to 14.50 µgm−3 for
daily LUR; 8.21 to 22.80 µgm−3 for IDW).

Table 1. Summary statistics describing the absolute difference, in µgm−3, between the average daily
pollution observed at the monitoring site and average daily pollution concentrations at the same site
estimated through (a) daily LUR or (b) IDW (|Deviationm,d|). Pollution concentrations are across four
pollutants: O3, NO2, PM2.5, and PM10.

Daily LUR IDW
Mean SD 5th 95th N Mean SD 5th 95th N

NO2 10.09 10.42 0.70 28.39 21,535 14.07 12.17 1.00 35.00 21,535
PM2.5 10.33 9.02 0.70 28.15 22,995 16.96 15.24 1.10 47.00 22,995
O3 5.70 6.23 0.35 18.19 9,125 10.02 8.86 1.00 27.50 9,125
PM10 4.25 5.39 0.28 12.68 13,870 5.51 6.08 0.30 16.40 13,870

Table 2. Model performance for daily LUR and IDW by regressing daily predictions against daily
measurements. N: number of daily mean predictions; R2: coefficient of determination; RMSE:
root-mean-squared error (unit: µgm−3).

Daily LUR IDW
N R2 RMSE Beta Intercept N R2 RMSE Beta Intercept

NO2 21,535 0.52 14.50 0.73 5.69 21,535 0.25 18.61 0.54 11.10
PM2.5 13,870 0.56 6.87 0.81 2.78 13,870 0.43 8.21 0.74 5.23
O3 9,125 0.59 13.72 0.82 11.52 9,125 0.20 22.80 0.42 28.61
PM10 22,995 0.50 8.45 0.75 4.80 22,995 0.15 13.37 0.41 13.49

When assessing exposure by indicator bins, we found large discrepancies in the
classification. Figure 3 illustrates the differences between the daily LUR and IDW bins for
each pollutant. In our dataset, only 66.7% of observations fall into the same bin for PM2.5
across both exposure assignment techniques. This match decreases to 56.5% for PM10,
54.2% for O3, and 40.2% for NO2. This suggests that, depending on the pollutant, at least
33.3% of the observations were inconsistently assigned to a pollutant bin. In some extreme
cases, hospitals were assigned to high air pollution exposure bins in one method, but to
low air pollution exposure bins in the other. While such exposure misclassification occurs,
it appears that IDW is more likely to classify hospitals in higher exposure bins, relative to
the daily LUR groups. This was expected as IDW relies on air pollution monitoring stations
that are often located in areas of concern, where pollution concentrations are more likely to
be high. Therefore, IDW extrapolates over extreme values over distances and, therefore,
potentially overestimates air pollution exposure at hospitals.
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Figure 3. Scatter graphs comparing the number of visits classified to air pollution bins, defined using
IDW and daily LUR techniques. Pollution concentrations are across four pollutants: NO2, O3, PM10,
and PM2.5. The size of the circle represents the number of visits. The percentage (%) match of air
pollution indicator bins derived by IDW compared to air pollution indicator bins derived daily LUR
estimates. A misclassified overestimated group is when IDW-estimated exposure is classified to be
larger than those classified by daily LUR-estimated exposure. A misclassified underestimated group
is when IDW exposure is classified to be smaller than those classified by the daily LUR-estimated
exposure.

5.2. Regression Results

In the previous section, we demonstrated that the classification of air pollution expo-
sure using traditional indicator bins corresponded to, at best, 66% of observations being
allocated to the same indicator bin when using daily LUR and IDW. Specifically, we ob-
served that IDW measurements appeared to generally classify observations to higher
exposure bins. In this section, we assess how this difference in classification impacts the
estimated effects of air pollution on A&E visits using Equation (6).

In all cases, we found different point estimates when using daily LUR and IDW across
comparable exposure bins. We found that the estimated changes, associated with air
pollution exposure, to A&E utilisation rates varied depending on the air pollution exposure
assessment approach applied. This variation differed across pollutants.

When comparing the point estimates between exposure assessment approaches for
NO2 (Figure 4), we obtained estimates of similar sizes. However, these estimates var-
ied in statistical significance between exposure assignment techniques. We observed no
statistically significant effect of air pollution on hospital visits across the pollutant when
using IDW as the exposure assessment technique. This implies that there is no relationship
between NO2 and A&E visits. Conversely, we saw a steady increase in hospital visits
associated with NO2 exposure when using daily LUR as the exposure assessment approach.
Statistical significance was observed for the more extreme air pollution bins, 40–50 µgm−3

(p < 0.01) and >50 µgm−3 (p < 0.001). The estimates for both methods are illustrated in
Appendix E Table A3.
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Figure 4. Incidence risk ratios (IRRs) of the effect of exposure on a day in a given range of each
pollutant, relative to a day in the reference group. This represents the contemporaneous effect of
each pollutant (βp). For PM2.5 and PM10, estimates are shown across 5 µgm−3 bands with a reference
group in the 0–5 µgm−3 range. For NO2 and O3, estimates are shown across 10 µgm−3 bands with a
reference group in the 0–10 µgm−3 range. Each dot represents the exponent of the point coefficients
with 95% CIs reported by the lines on each side of estimates. The results presented are for air pollution
exposure assignment through (a) IDW and (b) daily LUR.

When comparing the point estimates between exposure assessment approaches for O3
(Figure 4), we obtained estimates of similar sizes. Both exposure assessment techniques had
estimates of statistical significance. In both instances, we observed a decrease in hospital
visits as air pollution exposure increases. The estimates for both methods are illustrated in
Appendix E Table A4.

PM10 and PM2.5 display different relationships across exposure assessment approaches
(Figure 4). For PM10, we saw a steady increase in visits as air pollution increases. However,
this effect was statistically non-significant when using IDW. Conversely, there appeared to
be statistically significant effects for values above 25 µgm−3 using daily LUR. For PM2.5,
point estimates varied in size between daily LUR and IDW, with only statistically significant
results when using daily LUR for values above 15 µgm−3. The regression results are
outlined in Appendix E Table A5.

These estimates are plain correlations and by no means causal in these models. The na-
ture of A&E visits are non-specific in our data, and therefore, the effects observed are likely
masked by the aggregation to all-cause visits. The value of the different regressions only
lies in the comparison of the coefficients using the different pollution assignment methods.

6. Conclusions

Ambient air pollution is an environmental factor with wide-ranging effects on human
health and well-being. The assessment of air pollution exposure on social outcomes requires
the estimation of air pollution, which has been performed in the economic literature in
several ways. We illustrated how a widely used method in the social sciences, IDW,
misclassifies air pollution concentrations, particularly in areas with sparse monitoring
networks. We proposed a simpler computational approach, based on land use regression



Int. J. Environ. Res. Public Health 2023, 20, 3852 15 of 25

(LUR), that increases the geographical precision and accuracy compared to IDW, while
still offering estimates of high temporal frequency. Our LUR outperformed IDW in our
cross-validation study using various indicators of performance.

The difference in parameter estimates for the IDW approach and the daily LUR model
was likely due to the inability of the IDW approach to account for different emission sources
(such as road traffic, industrial activities) and topographies. We observed that, on average,
air pollution concentrations derived from daily LUR showed smaller prediction errors than
IDW and, thus, a higher accuracy. The instability of the IDW approach was also documented
by [32], who compared this with a dispersion model to find the latter outperforming the
inverse distance approach, when using annual air pollution concentrations. Whilst the use
of dispersion models provides reliable air pollution estimates, their use is computationally
demanding and generally inaccessible for wider contexts.

Our findings showed that the IDW approach, which has been the convention to mea-
sure air pollution in previous economic studies, is likely to exacerbate measurement error
in exposure assignment due to its lower accuracy and precision. The level of these varies
by pollutant. For PM, which comprises atmospheric aerosol particles that fluctuate less
geographically compared to NO2 and travel long distances, both PM10 and PM2.5 displayed
small discrepancies in their assigned air pollution exposure and, therefore, negligible dif-
ferences in the estimated health impacts. For both pollutants, we failed to identify health
impacts using IDW, otherwise observed with daily LUR. Contrastingly, NO2 is a pollutant
that diffuses rapidly and, therefore, exhibits a higher degree of spatial variation. In this
case, the two concentrations assigned using the two different methods were largely differ-
ent, being in agreement for less than half of our observations. Although this resulted in
similar point estimates of the impact of air pollution concentrations on the health outcome,
the variability observed was much smaller under the daily LUR approach, which resulted
in statistically significant health impacts. Finally, health estimates associated with O3 were
relatively unresponsive to exposure assessment approaches. Overall, the daily LUR model
approach was able to account for some of the spatio-temporal variation associated with
each pollutant, resulting in (i) the assignment of a more accurate and precise air pollution
concentration and (ii) a more precise estimate of associated health impacts.

It is important to acknowledge that the economic significance of any variation created
by the choice of pollution exposure method will vary with the pollution–outcome dose–
response function related to the outcome of interest. In our illustration, the use of IDW
resulted in an overestimation of air pollution effects on hospital utilisation, compared to
the daily LUR. However, as other outcomes (e.g., mortality, obesity, productivity, etc.) carry
their own unique relationship with air pollution, the associated sensitivity to exposure
assignment may be of different magnitudes. In instances where large changes in air
pollution are required to identify an impact on the outcome (e.g., obesity), the consequence
of this difference in pollution exposure assignment may be smaller than in studies where
small changes in air pollution are meaningful (e.g., mortality).

This paper illustrated how LUR models can be adapted to construct a reliable and
frequent measure of local air pollution exposure. The daily LUR has several important
advantages over other exposure assignment techniques, including less stringent data
requirements, low computational costs, and the consideration of environmental characteris-
tics, topological variation, and atmospheric conditions. Still, some of the emission sources
and process characteristics used in the daily LUR model could be subject to imprecise
measurement. While this approach is not devoid of measurement error, we have begun
to bridge the gaps in accurate air pollution modelling for economic assessment. Most
importantly, the availability of accessible LUR models for various cities and countries
allows for this technique to be used in less-studied contexts (e.g., low- and middle-income
countries with poorer and sparse monitoring networks).

These findings emphasise the need to be mindful of the exposure assessment technique
utilised in economic studies as, depending on the pollutant, conventional approaches may
introduce degrees of measurement error and variability that have the potential to bias
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the analysis and underestimate the impacts of air pollution. Our results may contribute
to a more accurate evaluation of air pollution impacts and, subsequently, inform future
environmental policies.

Author Contributions: Conceptualisation, L.d.P., D.F. and J.G.; data curation, D.R.; formal analysis,
D.R. and W.W.; funding acquisition, L.d.P.; investigation, D.R.; methodology, L.d.P., D.R., D.F., J.G. and
W.W.; project administration, D.R.; resources, W.W.; supervision, L.d.P., D.F. and J.G.; visualisation,
W.W.; writing—original draft, D.R. and W.W.; writing—review and editing, L.d.P., D.R., D.F. and J.G.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Academy of Medical Sciences Springboard Grant awarded
to L.P. (HOP001\1001). The Imperial College Business School funded D.R.’s Ph.D., which supported
part of the time of this research.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data can be obtained through application to the NHS. The authors do
not have permission to share health data.

Acknowledgments: We thank Marisa Miraldo, Corey White, Matthew Neidell, and the participants
at conferences held by the International Health Economics Association, OSWEET, and the American
Society of Health Economics for their helpful advice and suggestions.

Conflicts of Interest: The authors have no competing interests to declare that are relevant to the
content of this article.

Appendix A. Estimation of the Land Use Regression Model

Stage 1: Identification of the “Land use” predictor variables: Six types of Geographic
Information System (GIS)-derived land use data were obtained including: land cover,
population/household, road network, traffic, topography, and building. Potential predictor
variables were characterised with different spatial scales by creating circular buffer zones
around monitoring sites. The predictors were chosen mostly based on the ones used
in the European Study of Cohorts for Air Pollution Effects (ESCAPE) study [49,60,64],
with one predictor on building volume [61]. Each variable should be assigned a predefined
direction of effect. The direction of effect was based on whether the variable acts as a source
(+) or sink (−) and was used to guide the selection of predictor variables for modelling.
For NO2, PM2.5, and PM10, variables for traffic, population, and the built environment
(building, road, industry, etc.) were expected to increase air pollution concentrations (i.e.,
have a positive direction of effect). Vegetation land covers and open water, on the other
hand, were expected to decrease pollution concentrations (i.e., negative direction of effect).
The direction of effects was the opposite for O3 because O3 can be degraded by NOx.

Chemical transport model (CTM) estimates were also included as an additional pre-
dictor variable. CTM provides a three-dimensional complex simulation of air conditions.
CTMs include formation, advection, deposition, and dispersion of air pollutants based on
emission inventories (location, strength, size) and meteorological inputs (e.g., temperature,
relative humidity, wind speed, and wind direction) [11]. CTMs have been increasingly
used to predict the distribution of air pollution in large spatial domains. CTM estimates
are usually available as a complete surface at various temporal and spatial resolutions.
The CTM variable is obtained by extracting values at monitoring sites from the surface
and, then, if the temporal resolution of the CTM surface is finer than annual, averaging to
the annual mean.

Stage 2: Annual LUR model: A pilot study was first conducted to test the goodness of
the fit of individual variables. Variables with zero values for a large number of monitoring
sites (e.g., more than 80%) were removed. The modelling followed a standard approach
for developing LUR models as described in [64]. The potential predictor variable with
the highest correlation with all monitored concentrations was then offered to the model,
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followed by the next-ranking variable using a supervised forward stepwise method. A pre-
dictor variable was maintained in the final model if (i) the increment of the adjusted R2

was greater than 1%, (ii) the coefficient conformed to the pre-determined direction of effect,
and (iii) the p-value was no greater than 0.05. If the resulting model included the same
variable with different buffers, the variable of less significance was removed. This was to
avoid variables overlapping and make the models more intuitively interpretable [49].

The best combination of variables has the highest R2. The output model contains a
“best” set of predictor variables and associated coefficients (Equation A1).

y = b0 + b1x1 + b2x2 + · · ·+ bpxp + ε (A1)

where y is the monitored annual average concentration, b0 is the y-intercept (constant term),
b1; b2; . . . ; bp are the estimated regression coefficients, x1; x2; . . . ; xp are the independent land
use variables, and ε is the error term.

Models were checked for collinearity using the variance inflation factor (VIF) and
spatial autocorrelation using Moran’s I of residuals. The VIF measures how much of
the variance of the estimated coefficients is increased due to collinearity. If VIF > 3, the
variable is to be removed from the model. Moran’s I coefficient is between −1 and +1,
with 0 indicating no correlation with the nearby monitoring sites. Statistical analysis was
performed in SPSS 24.0 [65].

Models were validated using k-fold cross-validation. Typically, one would use 5 or 10
folds depending on the data size. Our models included 26 - 63 monitoring sites; therefore,
we used five folds in the analysis. The monitoring sites were randomly divided into five
folds. One of the folds was used as the testing set, and the remainder acted as the training
set. The operation iterates five times until all subsets are leaved out once. The model
performance was then assessed on the predictions versus the monitored concentrations.
This generated a squared Pearson correlation, which indicated the predictive ability of
the models. Models were summarised by several measurements including adjusted R2,
root-mean-squared error (RMSE), and coefficient (beta). The formulae for the R2 and RMSE
are as follows:

R2 = 1− sum squared regression(SSR)
total sum o f squares(SST)

= 1− ∑(yi − ŷi)
2

∑(yi − ȳ)2 (A2)

where ŷ1, ŷ2, . . . , ŷn are predicted concentrations, y1, y2, . . . , yn are monitored concentra-
tions, n is the number of monitoring sites, and ȳ is the mean of monitored concentrations.

RMSE =

√
n

∑
i=1

(ŷi − yi)2

n
(A3)

where ŷ1, ŷ2, . . . , ŷn are predicted concentrations, y1, y2, . . . , yn are monitored concentra-
tions, and n is the number of monitoring sites.

The model performance of the annual LUR is presented in Appendix B Table A1.
Stage 3: Annual air pollution surface: An annual air pollution surface was created

for each pollutant. The surface was built in ArcGIS v10.4 [66]. The resolution of the surface
was determined by the smallest resolution of the datasets used.

Creating an air pollution surface involved four main steps: (i) creating a fishnet of cells
covering the whole study area, (ii) extracting the values of the selected variables around
the centroid of each cell, (iii) creating raster layers for the selected variables, and (iv) apply-
ing the constant and coefficients from the LUR model to the raster layers and compiling
the surface.
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Appendix B. Descriptive Statistics

Table A1. Summary statistics for pollution concentrations obtained using LUR models.

N * Model adj. R2 CV-R2 RMSE Variable Buffer Beta

NO2 86 0.762 0.736 0.343 (Constant) - 1.808
Road length 500 0.080
MACC - 0.320
Traffic load 50 0.016
Natural land 400 −0.019

PM2.5 53 0.770 0.631 0.137 (Constant) - 1.507
MACC - 0.444
Building volume 100 4.64 × 10−4

Traffic load 50 3.27 × 10−4

Natural land 1000 −0.003

PM10 41 0.696 0.540 0.175 (Constant) - 0.591
MACC - 0.852
Building volume 50 0.002
Natural land 400 −0.018
Traffic load 50 2.06 × 10−4

O3 65 0.816 0.799 4.944 (Constant) - 7.622
MACC - 0.841
Road length 500 −0.930
Natural land 400 0.146

* Number of monitoring sites.

Table A2. Summary statistics of each air pollutant (in µg/m3) across the various pollution bins used.

IDW Daily LUR

Mean SD Min 25th
Quartile

75th
Quartile Max N Mean SD Min 25th

Quartile
75th

Quartile Max N

Pollutant, O3
<10 6.44 2.44 0 4.67 8.47 10 3914 5.87 2.61 0 3.80 8.11 10 5118
10–20 15.47 2.89 10 13 18 20 7751 15.26 2.96 10 12.61 17.79 20 9187
20–30 25.38 2.86 20 23 27.95 30 12,690 25.14 2.88 20 22.60 27.66 30 14,176
30–40 35.18 2.89 30 32.75 37.73 40 16,066 35.04 2.86 30.01 32.60 37.50 40 17,359
40–50 45.04 2.90 40 42.54 47.55 50 16,008 44.79 2.89 40.01 42.25 47.26 50 16,360
50–60 54.83 2.89 50 52.26 57.17 60 11,924 54.49 2.84 50 52.03 56.82 60 10,345
>60 69.16 7.57 60 63.46 73 131 11,947 68.23 7.19 60 62.77 71.97 110.54 7755
Overall 40.27 18.20 0 27.02 53 131 80,300 36.87 17.32 0 24.29 48.68 110.54 80,300
Pollutant, NO2
<10 6.11 2.73 0 4 8.62 10 10,708 7.26 2.10 0 6.02 8.95 9.99 9795
10–20 15.22 2.84 10 12.95 17.73 20 18,409 14.93 2.89 10.01 12.48 17.39 19.99 25,255
20–30 24.95 2.85 20 22.55 27.33 30 18,146 24.68 2.87 20 22.15 27.13 29.99 19,699
30–40 34.82 2.86 30 32.29 37.19 40 13,919 34.48 2.86 30 31.98 36.85 40 12,435
40–50 44.59 2.88 40 42.01 47 50 9201 44.44 2.83 40.01 42.01 46.82 49.99 6741
>50 62.49 11.64 50 54.09 67.50 145 9917 64.64 16.44 50 53.80 69.19 245.35 6375
Overall 28.80 17.69 0 15.25 39.20 145 80,300 25.84 16.39 0 14 33.66 245.35 80,300
Pollutant, PM2.5
<5 4.09 0.96 0 3.71 5 5 3796 4.04 0.83 0 3.69 4.68 5 6642
5–10 8 1.36 5 7 9 10 28,446 7.55 1.36 5.01 6.43 8.66 10 32,086
10–15 12.28 1.43 10 11 13.44 15 21,307 12.16 1.42 10.01 10.93 13.29 14.99 19,643
15–20 17.36 1.43 15 16 18.59 20 11,013 17.24 1.43 15 15.98 18.48 20 9207
20–25 22.37 1.45 20 21 23.64 25 6171 22.24 1.45 20.01 20.94 23.51 24.99 5098
25–30 27.42 1.44 25 26.10 28.58 30 3499 27.26 1.39 25 26.07 28.44 29.99 2710
>30 40.71 9.14 30 33.55 45.49 100 6068 40.03 8.72 30.01 33.66 44.20 106.28 4914
Overall 14.66 9.72 0 8.41 17.89 100 80,300 13.08 9.17 0 7.25 15.79 106.28 80,300
Pollutant, PM10
<5 2.13 0.60 2 2 2 5 1358 1.88 0.83 1.51 1.60 1.71 4.99 1422
5–10 8.81 1.19 5.01 8 10 10 6074 8.40 1.18 5.01 7.66 9.38 10 12,017
10–15 12.87 1.35 10 12 14 15 20,493 12.41 1.40 10 11.24 13.58 15 23,469
15–20 17.66 1.40 15 16.39 19 20 20,210 17.31 1.41 15 16.02 18.50 20 17,816
20–25 22.55 1.45 20 21.04 24 25 12,797 22.26 1.43 20 21.05 23.43 25 11,004
25–30 27.58 1.48 25 26.01 29 30 6658 27.30 1.45 25 26.02 28.55 30 5458
>30 41.51 10.74 30 33 47 116 12,710 40.60 10.05 30 32.98 44.89 114.19 9114
Overall 20.88 11.28 2 13.22 25 116 80,300 18.27 10.35 1.51 11.42 22.09 114.19 80,300



Int. J. Environ. Res. Public Health 2023, 20, 3852 19 of 25

Appendix C. Air Pollution Maps

Figure A1. Annual average air pollution concentrations of the LUR model across England, over the
year of interest, at the postcode district level (left); annual average of IDW of one to four nearest
monitoring stations at the postcode district level (right). Concentration displayed in µgm−3.
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Figure A2. Daily NO2 surfaces from 1 April 2010 to 10 April 2010, produced from the daily LUR
model. The spatial unit is the postcode district. The maps demonstrate spatial variation across
England and temporal variation across six consecutive days. For example, 6 April 2010 shows an
elevated pollution level in most regions.
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Appendix D. Bench-Marking Average Daily Air Pollution Estimates against
Measurements from Monitoring Stations

Figure A3. The density plots represent the differences between the daily LUR or IDW estimates and
the air pollution concentration measured at monitoring stations, where the monitoring station itself
has been removed from the calculation of the estimate.

Appendix E. Regression Tables

Table A3. Incidence risk ratios (IRRs) of the effect of exposure on a day in a given range of NO2,
relative to a day in the 0–10 µgm−3 range. This represents the contemporaneous effect of NO2 (βp).
A value of 1 represents no change. Estimates are shown for two pollution exposure assignment
methods: inverse distance weighting (IDW) and daily land use regression (daily LUR).

NO2

IDW Daily LUR

10–20 1.023 0.995
(0.018) (0.010)

20–30 1.012 1.005
(0.020) (0.014)

30–40 1.020 1.017
(0.022) (0.014)

40–50 1.029 1.033 *
(0.022) (0.016)

>50 1.042 1.048 **
(0.024) (0.018)

Day of Week FE Yes Yes
Bank Holidays FE Yes Yes
School Holidays FE Yes Yes
Month FE Yes Yes
Hospital FE Yes Yes
3-Day Lags Yes Yes
Mean Relative Humidity Yes Yes
Mean Temperature Yes Yes

Pseudo R2 0.815 0.816
Observations 70,825 70,825

Exponentiated coefficients representing IRR. Robust S.E. clustered by NHS hospital in parentheses. * p < 0.05,
** p < 0.01.
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Table A4. Incidence risk ratios (IRRs) of the effect of exposure on a day in a given range of O3, relative
to a day in the 0–10 µgm−3 range. This represents the contemporaneous effect of O3 (βp). A value
of 1 represents no change. Estimates are shown for two pollution exposure assignment methods:
inverse distance weighting (IDW) and daily land use regression (daily LUR).

O3

IDW Daily LUR

10–20 0.982 *** 0.975 ***
(0.0049) (0.0054)

20–30 0.970 *** 0.969 ***
(0.0052) (0.0056)

30–40 0.965 *** 0.968 ***
(0.0065) (0.0068)

40–50 0.962 *** 0.965 ***
(0.0070) (0.0075)

50–60 0.961*** 0.949 ***
(0.0080) (0.0085)

>60 0.943 *** 0.941 ***
(0.011) (0.0090)

Day of Week FE Yes Yes
Bank Holidays FE Yes Yes
School Holidays FE Yes Yes
Month FE Yes Yes
Hospital FE Yes Yes
3-Day Lags Yes Yes
Mean Relative Humidity Yes Yes
Mean Temperature Yes Yes

Pseudo R2 0.815 0.815
Observations 70,825 70,825

Exponentiated coefficients representing IRR. Robust S.E. clustered by NHS hospital in parentheses. *** p < 0.001.

Table A5. Incidence risk ratios (IRR) of the effect of exposure on a day in a given range of PM, relative
to a day in the 0–5 µgm−3 range. This represents the contemporaneous effect of PM (βp). A value of 1
represents no change. Estimates are shown for PM2.5 & PM10. Estimates are shown for two pollution
exposure assignment methods: inverse distance weighting (IDW) and daily land use regression (daily
LUR).

PM2.5 PM10

IDW Daily LUR IDW Daily LUR

5–10 0.984 1.005 0.992 0.984 *
(0.015) (0.012) (0.0087) (0.0069)

10–15 0.991 1.020 0.995 1.004
(0.015) (0.015) (0.0081) (0.0081)

15–20 1.000 1.032 * 0.999 1.009
(0.017) (0.015) (0.0078) (0.0080)

20–25 1.002 1.039 * 1.009 1.015
(0.016) (0.016) (0.0078) (0.0084)

25–30 1.006 1.035 * 1.008 1.024 **
(0.017) (0.016) (0.0081) (0.0081)

>30 0.998 1.030 * 1.011 1.023 **
(0.016) (0.015) (0.0079) (0.0080)

Day of Week FE Yes Yes Yes Yes
Bank Holidays FE Yes Yes Yes Yes
School Holidays FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
Hospital FE Yes Yes Yes Yes
3-Day Lags Yes Yes Yes Yes
Mean Relative
Humidity Yes Yes Yes Yes

Mean Temperature Yes Yes Yes Yes

Pseudo R2 0.815 0.815 0.815 0.815
Observations 70,825 70,825 70,825 70,825

Exponentiated coefficients representing IRR. Robust S.E. clustered by NHS hospital in parentheses. * p < 0.05,
** p < 0.01.
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