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Empirical analysis of PGA-MAP-Elites for Neuroevolution in
Uncertain Domains
MANON FLAGEAT, FELIX CHALUMEAU, and ANTOINE CULLY, Imperial College London, UK

Quality-Diversity algorithms, amongwhichMAP-Elites, have emerged as powerful alternatives to performance-

only optimisation approaches as they enable generating collections of diverse and high-performing solutions to

an optimisation problem. However, they are often limited to low-dimensional search spaces and deterministic

environments. The recently introduced Policy Gradient Assisted MAP-Elites (PGA-MAP-Elites) algorithm over-

comes this limitation by pairing the traditional Genetic operator of MAP-Elites with a gradient-based operator

inspired by Deep Reinforcement Learning. This new operator guides mutations toward high-performing solu-

tions using policy-gradients. In this work, we propose an in-depth study of PGA-MAP-Elites. We demonstrate

the benefits of policy-gradients on the performance of the algorithm and the reproducibility of the generated

solutions when considering uncertain domains. We first prove that PGA-MAP-Elites is highly performant

in both deterministic and uncertain high-dimensional environments, decorrelating the two challenges it

tackles. Secondly, we show that in addition to outperforming all the considered baselines, the collections of

solutions generated by PGA-MAP-Elites are highly reproducible in uncertain environments, approaching the

reproducibility of solutions found by Quality-Diversity approaches built specifically for uncertain applications.

Finally, we propose an ablation and in-depth analysis of the dynamic of the policy-gradients-based variation.

We demonstrate that the policy-gradient variation operator is determinant to guarantee the performance of

PGA-MAP-Elites but is only essential during the early stage of the process, where it finds high-performing

regions of the search space.

Additional Key Words and Phrases: Quality-Diversity, MAP-Elites, Uncertain domains, Neuroevolution,

Reinforcement Learning, Policy Gradients

1 INTRODUCTION
Natural evolution can generate diverse species with distinct characteristics existing within the

same ecological niche. This variety of survival strategies adopted by cohabiting species has allowed

life to endure for instance multiple mass extinction events. Inspired by this importance of diversity,

researchers have proposed Quality-Diversity (QD) optimisation [Chatzilygeroudis et al. 2021;

Cully and Demiris 2018b; Pugh et al. 2016]. This branch of Evolutionary Computation does not

generate one solution to a problem based on performance only, but rather a collection of diverse

and high-performing solutions. QD approaches, and in particular, the Multi-dimensional Archive of

Phenotypic Elites (MAP-Elites) algorithm [Mouret and Clune 2015], have shown promising results

in a wide range of domains, from content generation for video games [Gravina et al. 2019], and

aerodynamic design [Gaier et al. 2017] to robotics [Cully et al. 2015]. They allow the discovery

of creative solutions [Gaier et al. 2017; Gravina et al. 2019], but also non-trivial stepping stones

toward even better solutions [Cully and Demiris 2018b], and enable fast adaptation to damages or

unseen situations [Chatzilygeroudis et al. 2021; Cully et al. 2015].

QD algorithms traditionally rely on elitism. This is beneficial in environments where performance

scores are deterministically associated with solutions; in other words, environments in which a

given solution always exhibits the same behaviour. However, many environments, refered to

as uncertain, do not fulfil this assumption: real robots, for example, use imperfect sensors and

actuators. In such environments, a given solution might exhibit slightly different behaviours from

one evaluation to another with different performance scores. As a consequence, solutions might be

lucky and get a higher performance score than they could expect on average. The elitism of QD
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algorithms preserves these lucky solutions, making uncertain applications an important challenge

for QD [Flageat and Cully 2020; Justesen et al. 2019]. In particular, some solutions might be more

robust than others to the source of uncertainty and thus be more reproducible. For example, if

one actuator is an important source of uncertainty, solutions relying on this actuator would be

less reproducible than others. Most QD algorithms do not have mechanism to favour reproducible

solutions [Flageat and Cully 2020; Justesen et al. 2019]. Besides, QD algorithms are traditionally

driven in their exploration of the search space by a Genetic Algorithm (GA). Due to its sample

inefficiency, this mechanism makes it difficult -if not impossible- to apply QD to high-dimensional

problems [Such et al. 2017], making it another important limitation. This paper focus on domains

that are both high-dimensional and uncertain.

On the other side, Deep Reinforcement Learning (DRL) approaches [Arulkumaran et al. 2017]

show encouraging results in a wide range of uncertain domains with high-dimensional search-

spaces [Lillicrap et al. 2016; Mnih et al. 2015]. Unlike QD, DRL aims to find a single performance-

maximising solution. It relies on the powerful directed-search abilities of gradient-based learning,

as well as the function-approximation capabilities of Deep Neural Networks (DNNs) to find a

high-performing and highly-reproducible solution [Fujimoto et al. 2018; Lillicrap et al. 2016].

Policy Gradient Assisted MAP-Elites (PGA-MAP-Elites) [Nilsson and Cully 2021] has been recently

introduced as an alternative algorithm mixing QD and DRL to scale QD algorithms to large

neuroevolution problems. PGA-MAP-Elites extends MAP-Elites with a new variation operator

based on policy-gradients (PG). Half of the solutions are generated using this PG variation operator

and the other half using the usual GA variation operator.

This work proposes an in-depth study of PGA-MAP-Elites and, more generally, the benefits

of integrating PG in MAP-Elites. We focus on the same tasks as in the PGA-MAP-Elites paper,

referred to as QD-Gym [Nilsson and Cully 2021]. These tasks are all uncertain locomotion tasks

with high-dimensional parameter spaces. Our contributions can be summarised as followed:

• A comparison of PGA-MAP-Elites to a larger set of QD and DRL baselines, demonstrating

extensively that it maintains the divergent search capabilities of MAP-Elites while finding

solutions as performing as those found by compared DRL approach.

• Additional results in deterministic QD-Gym environments, highlighting the benefit of PGA-

MAP-Elites applied to high-dimensional search-space independently of the uncertainty.

• A reproducibility-study in uncertain environment, demonstrating that PGA-MAP-Elites

does not only generate solutions that are better performing but also more reproducible in

uncertain environments, matching and sometimes out-performing the performance of QD

algorithms specifically designed for such applications.

• To support these analysis, we also propose a new set of loss metrics quantifying the repro-

ducibility of solutions found by QD algorithms in uncertain domains.

• An ablation of the proportion of PG and GA variation in PGA-MAP-Elites, proving the

importance of both type of variations.

• An analysis of the impact of PG and GA variation operators on improvement of the collection

showing that PG is only essential during the early stage of the process, where it finds high-

performing regions of the search space.

2 BACKGROUND AND RELATEDWORK
2.1 Quality-Diversity Optimisation and MAP-Elites algorithm
While standard optimisation searches for a single high-performing solution, QD optimisation

allows finding a collection of solutions that are as high-performing and diverse as possible. To this

end, QD algorithms distinguish solutions that produce different behaviours. This distinction is
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Fig. 1. PGA-MAP-Elites is based on the standard MAP-Elites loops: parent solutions are selected from the
archive and mutated to generate offspring that are evaluated in the environment and added back to the
archive. However, in PGA-MAP-Elites, the mutation relies on two distinct variation operators: (1) a Policy
Gradient (PG) operator that directs variation toward high-performing solutions, and (2) a Genetic Algorithm
(GA) operator that maintains divergent search. The PG operator relies on a critic neural network, trained
asynchronously to the MAP-Elites loop using experience collected in a replay buffer during evaluations.

based on metrics chosen as part of the task definition to be meaningful for the type of diversity

sought. Each metric corresponds to a dimension of interest, denoted as Behavioural Descriptor (BD)

[Chatzilygeroudis et al. 2021; Cully and Demiris 2018b; Pugh et al. 2016]. For example, different

solutions to a robotic locomotion task might induce different gaits. To characterise each gait, the

BD of a solution could be the proportion of time each foot of the robot is in contact with the

ground [Colas et al. 2020; Cully et al. 2015; Vassiliades et al. 2017]. QD algorithms attempt to find

solutions as distant as possible in terms of BD while being high-performing in their local region of

the BD space; in other words, collections of both diverse and high-performing solutions. There

are currently two leading QD approaches: Novelty Search with Local Competition [Lehman and

Stanley 2011] and MAP-Elites [Mouret and Clune 2015], the focus of this work.

The core idea of MAP-Elites is to discretise the BD-space into a grid. This grid constitutes the

final collection of solutions returned at the end of the algorithm. Each of its cells corresponds to

a behavioural niche and can store one solution: the elite of this niche. MAP-Elites aims to fill as

many niches as possible with the highest-performing solutions possible. The grid is created empty

and initially filled with a set of randomly-generated solutions. One iteration of MAP-Elites can

be summarised as: (1) randomly selecting parent solutions from the grid, (2) applying variations

(such as mutations or crossovers) to generate offspring, and evaluating them, (3) adding to the grid

offspring that either populate an empty cell or outperform an existing elite.

2.2 Deep Reinforcement Learning setting and TD3 algorithm
2.2.1 Reinforcement Learning (RL). In the typical RL setting, an agent strives to find the optimal

way of acting in an environment. The agent-environment interaction is modelled as a Markov

Decision Process (MDP) given as < S,A,P, 𝑟 , 𝛾 >. The agent acts sequentially at discrete time-steps

𝑡 ∈ [0,𝑇 ], performing actions at ∈ A. These actions induce transitions detailed by P between

states st and st+1 ∈ S of the environment, and each transition generates a reward 𝑟𝑡 . In an MDP, the

immediate next state st+1 only depends on the current state st of the environment. Internally, the

agent chooses its next action based on the current state st following a policy 𝜋 (at |st). The agent
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aims to learn the policy that maximises the expected return E𝜋𝜙
[∑𝑇

𝑡=0 𝛾
𝑡𝑟𝑡

]
, where 𝛾 ∈ [0, 1] is the

discount factor which regulates importance of future rewards.

2.2.2 Deep Reinforcement Learning (DRL). DRL solves continuous and large-dimensional RL appli-

cations by leveraging the powerful directed-search abilities of gradient-based learning, as well as

the function-approximation capabilities of Deep Neural Network (DNNs). Most DRL algorithm rely

on approximating with a DNN the action-value function 𝑄𝜋𝜙 (st, at) = E𝜋𝜙
[∑𝑇−𝑡

𝑘=0
𝛾𝑘𝑟𝑡+𝑘+1 | st, at

]
,

which encodes the expected return from following the policy 𝜋𝜙 after having performed action at in
state st. The DNN is trained to approximate 𝑄𝜋𝜙

via the Bellman equation in Eq. 1: it incrementally

learns a better approximation of 𝑄𝜋𝜙
by bootstrapping from its current estimates.

𝑄𝜋𝜙 (st, at) = 𝑟 (st, at) + 𝛾E
[
𝑄𝜋𝜙

(
st+1, 𝜋𝜙 (st+1)

) ]
(1)

In most DRL algorithms, the policy 𝜋𝜙 is also modelled by a DNN. The DNN approximating 𝑄𝜋𝜙
is

often referred to as the critic while the DNN approximating 𝜋𝜙 as the actor. Methods using both an

actor network and a critic network are thus known as actor-critic.

2.2.3 Twin Delayed Deep Deterministic policy-gradient algorithm (TD3). This work is based on TD3

[Fujimoto et al. 2018], one of the state-of-the-art actor-critic DRL algorithms. In TD3, the policy 𝜋𝜙
is learned by an actor network, while the approximation of 𝑄𝜋𝜙

is done simultaneously by two

distinct critics: 𝑄\1 and 𝑄\2 . These two critics have the same structure but are trained separately

to counteract overestimations; more information are given below. In TD3, 𝑄𝜋𝜙
is learned in an

off-policy fashion, meaning using experience collected by any policy, and not only by the current

best policy [Lin 1992]. Thus, TD3 stores all encountered transitions (st, at, 𝑟 (st, at) , st+1) in a replay

buffer B to use them to train the critics. Based on batch of 𝑁 transitions sampled from B, the loss

𝐿 defined in Eq. 2 updates the critics towards a target 𝑦 that approximates Eq. 1.

𝐿 (\1, \2) =
(
𝑦 −𝑄\1 (st, at)

)
2 +

(
𝑦 −𝑄\2 (st, at)

)
2

(2)

𝑦 = 𝑟 (st, at) + 𝛾 min

𝑖=1,2
𝑄\ ′i

(
st+1, 𝜋𝜙′ (st+1) + 𝜖

)
(3)

The target 𝑦 uses the minimum action-value prediction between the two critics 𝑄\1 and 𝑄\2

to counteract overestimations done by the critics and avoid instabilities. This is the reason why

there is two critic networks. On top, TD3 also uses target networks 𝑄\ ′1
, 𝑄\ ′2

and 𝜋𝜙′ [Mnih et al.

2013, 2015]. Target networks are copies of the original networks, but updated with a delay 𝜏

to amortise variations and provide further stability. Finally, in the expression of the target 𝑦,

𝜖 ∼ clip(𝜎𝑝N(0,I),−𝑐, 𝑐) is a noise on the policy’s action to promote reproducibility in uncertain

environments.

The experiences collected in B are also used to learn the policy 𝜋𝜙 to maximise 𝑄𝜋𝜙
, using an

approximation of the deterministic policy-gradient [Silver et al. 2014]. As the policy is deterministic,

exploration is achieved by adding Gaussian noise with a variance 𝜎𝑎 to the selected action: at =
𝜋𝜙 (st) +𝜎𝑎N(0,I). This exploration noise is applied when interacting with the environment, while

the reproducibility noise mentioned earlier is only considered to compute the critics target.

2.3 Alternative variation operator forQuality Diversity
In MAP-Elites, as in standard GAs, variations are fitness-agnostic and aim to explore around

existing solutions. However, this lack of directed search can cause slow convergence even in

low-dimensional search space [Fontaine et al. 2020a], and this problem is increasingly prominent

as the number of dimensions increases [Colas et al. 2020]. Previous works in QD have proposed

alternatives to the standard GA mechanism for MAP-Elites. Covariance Matrix Adaptation
MAP-Elites (CMA-MAP-Elites) [Fontaine et al. 2020a] proposes a directed variation scheme
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relying on Covariance Matrix Adaptation Evolution Strategy [Hansen 2016]. This approach allows

directing the variations toward regions of the search space that maximise the archive improvements

and has proven to outperform MAP-Elites in multiple domains [Cully 2020; Fontaine et al. 2020a].

However, it relies on covariance matrix inversions, which do not scale easily to high-dimensional

space. Alternatively, Policy Manifold Search [Rakicevic et al. 2021] and Data-Driven Encoding
[Gaier et al. 2020] proposed mutations scheme relying on learned low-dimensional representation

of the solutions space to scale QD to high-dimensional search-space. Another approach, MAP-
Elites with Evolution Strategies (MAP-Elites-ES) [Colas et al. 2020] replaces GA with Evolution

Strategies proposed in Salimans et al. [2017] to extend MAP-Elites to high-dimensional search

spaces. This method directs the variation toward an objective using empirical gradients estimated

from evaluating a range of perturbations around a current solution. MAP-Elites-ES proposes to use

a mixture of fitness and diversity objectives to direct the search. However, it requires a large number

of evaluations and typically finds archives containing far fewer behaviours than MAP-Elites given

an equal amount of experience in the environment [Colas et al. 2020]. Recently, Fontaine et al. have

proposed the Differentiable-QD framework [Fontaine and Nikolaidis 2021] for the specific case of

QD applied to differentiable domains. This work augments QD search with the information given

by the explicit gradient of the function to optimise. However, it is limited to differentiable domains,

which is not the case with DRL, thus it is not directly applicable to the domains considered in this

work. Differentiable-QD has recently been extended to non-differentiable domain in Tjanaka et al.

[2022] but the authors prove that this approach does not work well for the domains considered in

this work. Finally, Quality-Diversity Policy-Gradient (QD-PG) [Pierrot et al. 2022] has been
recently introduced as a way to combine QD and DRL. QD-PG introduces a policy-gradient for

diversity, computed using BDs defined at the state level and referred to as state-descriptors. At

each generation of QD-PG, half of the solutions are updated using this diversity policy-gradient

and the other half using the quality policy-gradient.

2.4 Quality-Diversity applied to uncertain environments
In many environments, the exact same solution might not exhibit the same behaviour when

evaluated twice. One solution might thus get different fitness or BD values from one evaluation to

another. Such environments have been extensively studied in the Evolutionary Algorithm literature

[Jin and Branke 2005], we refer to them as uncertain environments.

2.4.1 Performance estimation in uncertain environments. The lack of reproducibility in uncertain

environments directly impacts the performance of QD algorithms. In MAP-Elites, solutions are

evaluated once and the result of this unique evaluation is used to determine their cell and their

fitness. However, this single evaluation might be "lucky" and display higher fitness or higher novelty

than it would display on average if more evaluations were performed. Due to this uncertainty,

solutions might be kept in the wrong cell, leading to a loss in the actual coverage of the BD-space.

Lucky solutions might also be kept in the place of truly good-performing ones, resulting in a loss in

the actual quality of the collection. To handle such uncertain environments, the most widely used

approach is to sample multiple times solutions [Cully and Demiris 2018a]. In this approach, that

we refer to as MAP-Elites-sampling, each solution is evaluated a fixed number of times𝑀 before

being added to the archive. The fitness and BD of a solution are approximated using the mean

fitness and BD of these re-evaluations. However, this approach is costly and impact drastically the

algorithm speed-of-convergence. Thus, Justesen et al. [2019] proposed Adaptive-sampling: an
alternative sampling-based approach that distributes samples more wisely across solutions. This

solution mitigates the cost of MAP-Elites-sampling but stays significantly slower in convergence
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than the original MAP-Elites. Alternatively, Flageat and Cully [2020] proposed Deep-grid, a MAP-

Elites variant that tackle uncertain environments without sampling. In Deep-grid, sampling is done

implicitly by storing 𝐷 previously encountered solutions in each cell and considering them as

samples of the same solution.

2.4.2 Reproducibility in uncertain environments. Most uncertainty-handling approaches focus on

computing a better approximation of the "ground-truth" fitness and BD of solutions. However, in

certain tasks, some solutions are more reproducible than others and thus more robust to uncertainty.

Said differently, while it is important to approximate the expected value of the fitness and BD

distributions of each solution, it is as valuable to minimise the variance of these distributions as

this leads to more reproducible solutions. A challenge of QD approaches in such domains is to

generate solutions as reproducible as possible, while producing large collections of truly diverse

and high-performing solutions. Adaptive-sampling proposes an explicit mechanism to delete from

the grid solutions whose BD is evaluated too often outside of their cell. Deep-grid on the other

side enforces reproducible solutions via its selection and addition mechanisms. These mechanisms

systematically question solutions, even after their addition to the grid, and slowly reject from the

grid non-reproducible solutions. We hypothesise that algorithms that use empirical estimation

of the gradient for variation should enforce reproducible solutions. Gradient approximations are

based on sampling and are thus be less sensitive to luck. It is the case of MAP-Elites-ES, described

in Section 2.3, which, on top, also uses 30 re-sampling of the offspring to tackle uncertainty. Finally,

we demonstrate in this paper that the use of policy-gradient variation operators also promotes

reproducible solutions in QD collections.

2.5 PGA-MAP-Elites
In this work, we study PGA-MAP-Elites, a new QD algorithm proposed by Nilsson and Cully

[2021] and illustrated in Fig. 1 and Alg. 1. PGA-MAP-Elites allows to apply the QD approach to

high-dimensional search spaces by combining ideas from MAP-Elites and TD3. It follows the usual

MAP-Elites loop (selection, variation, evaluation, addition) but uses two independent variation

operators: a standard Genetic Algorithm (GA) operator fromMAP-Elites, and a Policy Gradient (PG)

operator inspired by TD3. The PG operator relies on policy-gradients derived from critics trained

in parallel to the main loop. In summary, PGA-MAP-Elites adds three components to standard

MAP-Elites: (1) a replay buffer collecting experience from evaluations, (2) two critic networks and

their associated policy, trained using the replay buffer, and (3) a PG variation operator.

2.5.1 Replay buffer. At each iteration of the algorithm loop, a fixed number of offspring policies

are evaluated in the environment. A replay buffer B collects every transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) of these
experiences. B has a limited capacity, and old transitions are removed on a first-in-first-out basis.

2.5.2 Critics and greedy actor. Like TD3, PGA-MAP-Elites trains two critic networks 𝑄\1 and 𝑄\2

to approximate the action-value function, and an associated "greedy" actor 𝜋𝜙 . PGA-MAP-Elites

keeps 𝜋𝜙 separate from the actors in the archive to compute the critic update target in Eq. 3. This

way the target is computed using an actor that approximate the optimal action in each state, not

conditioned by a bd. The two critics and the greedy actor are trained at each MAP-Elites loop for

𝑛𝑐𝑟𝑖𝑡 steps of gradient descent, with the loss given by Eq. 2 and the same sampled noise 𝜖 that

implicitly favours reproducible behaviours. This part of PGA-MAP-Elites is exactly the same as in

TD3. It only starts after initialisation to ensure a good initial distribution of experience in the replay

buffer. Finally, a copy of the greedy controller is always considered as an offspring for evaluation

as it may provide useful behaviours.
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Algorithm 1: PGA-MAP-Elites algorithm.

Data: 𝑛𝑔𝑒𝑛 total generations, 𝑏 batch-size, 𝑝𝑒𝑣𝑜 proportion of GA and PG variations, 𝑛𝑐𝑟𝑖𝑡 and

𝑛𝑎𝑐𝑡 PG parameter, and 𝜎1 and 𝜎2 GA parameters

Result: the final archive A
for 𝑖 = 0 → 𝑛𝑔𝑒𝑛 do

if 𝑖 = 0 then
𝜋
𝜙1
, . . . , 𝜋

𝜙b
= random_solutions()

else
// Train critics and greedy actor

for 𝑘 = 1 → 𝑛𝑐𝑟𝑖𝑡 do
𝑄\1 , 𝑄\2 , 𝑄\ ′1

, 𝑄\ ′2
= train_critics(B, 𝑄\1 , 𝑄\2 , 𝑄\ ′1

, 𝑄\ ′2
, 𝜋𝜙′

greedy
)

𝜋𝜙greedy , 𝜋𝜙′
greedy

= train_actor(B, 𝑄\1 , 𝜋𝜙greedy , 𝜋𝜙′
greedy

)
// Apply GA variation

for 𝑗 = 1 → ⌊𝑝𝑒𝑣𝑜 · 𝑏⌋ do
𝜋𝜙p1

, 𝜋𝜙p2
= uniform_selection(A)

𝜋
𝜙j
= 𝜋𝜙p1

+ 𝜎1N(0, I) + 𝜎2

(
𝜋𝜙p2

− 𝜋𝜙p1

)
N(0, 1)

// Apply PG variation

for 𝑗 = ⌊𝑝𝑒𝑣𝑜 · 𝑏⌋ → 𝑏 − 1 do
𝜋𝜙p = uniform_selection(A)
for 𝑘 = 1 → 𝑛𝑎𝑐𝑡 do

𝜋
𝜙j
= train_actor(𝜋

𝜙j
,B, 𝑄\1 , 𝜋𝜙p )

// Return the greedy actor as offspring

𝜙b = 𝜙greedy
// Evaluate offspring and update B and A
𝑓 𝑖𝑡, 𝑏𝑑, 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 = evaluate(𝜋

𝜙1

, ...𝜋
𝜙𝑏
)

B = add_to_replay_buffer (B, 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠)
A = add_to_archive (A, 𝑓 𝑖𝑡, 𝑏𝑑)

2.5.3 PG and GA variation operators. At each iteration of the algorithm’s main loop, the randomly

selected parents are updated by variation operators to generate offspring. The core idea of PGA-

MAP-Elites is to introduce a new PG variation operator, based on the critic networks 𝑄\1 and 𝑄\2

and the replay buffer B. This operator updates a solution by applying 𝑛𝑎𝑐𝑡 consecutive steps of

gradient ascent based on 𝑁 transitions sampled uniformly from B. It thus directs variations toward

high-performing regions of the search space. To maintain the divergent search methodology of

standard MAP-Elites, the PG variation operator is paired with a GA variation operator, here we

use the directional variation introduced by Vassiliades and Mouret [2018]. This variation is based

on two parents sampled uniformly from the archive. It combines a displacement in the parameter

space along the line between the two parents and a random perturbation. The PG and GA operators

used in PGA-MAP-Elites are independent and used to generate distinct offspring controllers. The

proportion of controllers generated by each of them is determined by the parameter 𝑝𝑒𝑣𝑜 . At each

iteration, the next batch of offspring controllers to be evaluated is of size 𝑏, among which ⌊𝑝𝑒𝑣𝑜 · 𝑏⌋
are generated through GA variation and ⌈(1−𝑝𝑒𝑣𝑜 ) ·𝑏⌉ through PG variation. Among the controllers

generated through PG, one is always a copy of the greedy controller associated with the critics.
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3 EXPERIMENTAL METHODOLOGY
This work proposes an in-depth analysis of PGA-MAP-Elites divided in three main parts:

• Section 4 studies the performance of PGA-MAP-Elites on tasks with high-dimensional search

space, and with or without uncertainty on the fitness and BD estimations.

• Section 5 proposes a study of the reproducibility of the solutions found by PGA-MAP-Elites.

• Section 6 displays an ablation of the main parameter of PGA-MAP-Elites: the proportion of GA

and PG variations; and a study of the dynamics of these variation operators.

All these results use the same environments, baselines, implementations, and metrics. We introduce

them in this section.

3.1 Environments
3.1.1 Tasks. We consider the four QD-Gym tasks defined in Nilsson and Cully [2021], derived

from the standard DRL benchmark OpenAI Gym [Brockman et al. 2016] in PyBullet [Coumans and

Bai 2019]. In all these tasks, a robot aims to discover all the ways it can walk while maximising a

trade-off between speed and energy consumption. The details of these tasks are given in Table 1.

Table 1. QDGym tasks used in this work.

QDWalker QDHalfCheetah QDAnt QDHopper

State description Position and velocity of the centre of gravity and joints

Action description Continuous-valued torques in each joint

Fitness definition Forward progress reward + surviving reward + energy usage penalty

BD definition Proportion each foot of the robot is in contact with the ground

State dimensions 22 26 28 15

Action dimensions 6 6 8 3

BD dimensions 2 2 4 1

Nr BD niches 1024 1024 1296 1000

Episode length 1000 simulation steps

Controller Deep Neural Network with 2 hidden layers of 128 neurons

Nr parameters 20230 20742 21256 18947

3.1.2 Uncertainty. In the QD-Gym tasks, the initial joint positions are sampled from a Gaussian

distribution, making these tasks uncertain. This stochasticity has a limited impact and intuitively

one might think that controllers should reach a stationary gait, independent of the initialisation.

However, these stationary behaviours can only be reached at a long horizon, and the simulation

time is limited to a few seconds. In addition, for some controllers, the initialisation can lead to a fall

which simply stops the simulation. Thus the fitness and BD of a given controller are computed based

on a transitional gait, and as such, they are uncertain (see Section 2.4). In addition, we hypothesise

that, in the QD-Gym tasks, some controllers are more reproducible than others and thus more

robust to this uncertainty.
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3.2 Baselines
In the next sections, we consider baselines among the list below, also detailed in Table 2. All the

baselines we re-implemented use a CVT-shaped MAP-Elites-archive [Vassiliades et al. 2017] to

store solutions. For MAP-Elites-ES and QD-PG only we use the original implementation from the

authors with standard MAP-Elites grid-based archive. All baselines use the same number of cells

so this difference in archive type does not impact the results.

• MAP-Elites (Section 2.1) with directional variation [Vassiliades and Mouret 2018].

• TD3 (Section 2.2) the original TD3 algorithm from [Fujimoto et al. 2018] augmented with a

CVT-MAP-Elites archive, used to passively collect behaviours for comparison purposes.

• CMA-MAP-Elites (Section 2.3) with 5 improvement emitters [Fontaine et al. 2020b].

• MAP-Elites-sampling (Section 2.4) with𝑀 = 10 samples.

• Deep-grid (Section 2.4) with depth 𝐷 = 50 as in the original paper.

• MAP-Elites-ES (Section 2.3)

• QD-PG (Section 2.3)

Table 2. List of the baselines used in this work and which comparison they figure in. We also outline the type
of mutation used for each baseline and the origin of the implementation used to generate the results.

Sec. 4 Sec. 5 Variation Code

PGA-MAP-Elites ✓ ✓ GA & policy-gradient Original code

MAP-Elites-ES ✓ ✓ natural-gradient Original code

QD-PG ✓ diversity-gradient & policy-gradient Original code

CMA-MAP-Elites ✓ CMA-ES PyRibs lib

TD3 ✓ policy-gradient Ours

MAP-Elites ✓ ✓ GA Ours

MAP-Elites-sampling ✓ GA Ours

Deep-Grid ✓ GA Ours

3.3 Implementation and hyperparameters
Our source code is available at https://github.com/adaptive-intelligent-robotics/pga-map-elites. It

includes a containerised environment to replicate our experiments. Our code is based on source code

from Nilsson and Cully [2021]. Common hyperparameters are identical between PGA-MAP-Elites

and MAP-Elites, TD3, MAP-Elites-sampling and Deep-grid, and correspond to the ones used in

the original PGA-MAP-Elites paper [Nilsson and Cully 2021] apart from two parameters of the PG

variation: the number of actor training steps 𝑛𝑎𝑐𝑡 and the actor learning rate 𝑙𝑟𝑎𝑐𝑡 . We increased

these two parameters values in PGA-MAP-Elites only, as it proves to significantly improve its

performance. All hyperparameters for these algorithms are given in Appendix A. CMA-MAP-Elites

[Fontaine et al. 2020b] is implemented using the PyRibs library proposed by its authors [Tjanaka

et al. 2021] with default parameters. For MAP-Elites-ES [Colas et al. 2020] and QD-PG [Pierrot et al.

2022] we use the implementation provided by the original authors.

3.4 Evaluation Metrics
In the following sections, we consider the following metrics and report p-values based on the

Wilcoxon rank-sum test with Bonferroni correction (summarised in Appendix E).

https://github.com/adaptive-intelligent-robotics/pga-map-elites
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3.4.1 Main metrics: In the following, we consider two main metrics:

• QD-score: [Pugh et al. 2016] Sum of all fitnesses of the archive, offsetted by the lowest

fitness value. It quantifies the diversity and performance of the final collection and allows

comparison with QD approaches.

• Max-fitness: Fittest solution in the archive, allow comparison with DRL approaches.

For the sake of conciseness, we are not reporting the Coverage metric comparisons within the core

of the paper, but we provide them in Appendix D.

3.4.2 Corrected metrics: To take into account the effects of uncertainty, we re-evaluate each

solution kept by the algorithm a fixed number of times 𝑁 , and use the average fitness and BD of

these 𝑁 re-evaluations as approximation of the “ground truth” fitness and BD [Flageat and Cully

2020; Justesen et al. 2019]. We place the re-evaluated solutions in a "Corrected archive", using the

same archive addition rules with the “ground truth” fitness and BD. We then compute the QD-score

and Max-fitness of this Corrected archive. We refer to them asCorrected QD-score andCorrected
Max-fitness. The 𝑁 re-evaluations are only used for metric computation: the algorithms cannot

access them for optimisation.

3.4.3 Loss metrics: We also propose to study the loss induced by the re-evaluations, as a way

to estimate the reproducibility of the solutions generated by an algorithm. For each metric, we

define the loss as the difference between the original 1-sample-based metric and the Corrected

𝑁 -samples-based metric, normalised by the original value of the metric reached by the algorithm:

• QD-score loss: Normalised loss between QD-score and Corrected QD-score.

• Max-fitness loss: Normalised loss between Max-fitness and Corrected Max-fitness.

4 PERFORMANCE OF PGA-MAP-ELITES
We first study the performance of PGA-MAP-Elites on the QD-Gym suite, considering the baselines

from Section 3.2 and the new hyper-parameters of PGA-MAP-Elites described in Section 3.3. The

results are displayed in Fig. 2. The QD-Gym tasks are both high-dimensional and uncertain, so

we also propose to decorrelate these two distinct challenges and demonstrate the performance of

PGA-MAP-Elites on deterministic QD-Gym tasks. The uncertainty in the QD-Gym tasks arises

from the random initialisation of the robots’ joints positions. Here, we consider a new version of the

QD-Gym tasks where all joints are initialised to 0 at every episode. The dynamics in PyBullet being

deterministic [Coumans and Bai 2019], this modification leads to a deterministic variant of the

QD-Gym environments. Fig. 3 displays the performance across all deterministic tasks. Fig. 4 pictures

one final archive per algorithm for the Deterministic QDWalker and Deterministic QDHalfCheetah

tasks. Appendix E summarises the p-values of these comparisons.

Due to computational resource limitations, each run is given a maximum budget of 3 days of

computation on 32 cores. All algorithms except CMA-MAP-Elites manage to reach 10
6
evaluations

within this budget. CMA-MAP-Elites relies on costly covariance matrix inversion having ≈ 4.108

parameters, which explains why it does not reach the maximum number of evaluations.

4.1 QD-score
The QD-score metric in Fig. 2 and 3 shows that PGA-MAP-Elites outperforms all baselines in

terms of quality and diversity of the final archive, and reaches the best collection across all tasks

(𝑝 < 1e−6). This observation holds on the archives in Fig. 4. MAP-Elites and CMA-MAP-Elites both

find significantly less-performing archives than PGA-MAP-Elites. In the case of CMA-MAP-Elites,

this could be due to the early stopping of the algorithm. However, in the case of MAP-Elites, it

is likely due to the ineffectiveness of GA variation in large search space [Colas et al. 2020]. On
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PGA-MAP-Elites 
(ours)

MAP-Elites-ES

MAP-Elites

TD3

CMA-MAP-Elites

QD-PG

QDWalker

QDHalfCheetah

QDAnt

QDHopper

QD-score (%) Max-fitness (%)

Fig. 2. QDGym results: Comparison of the QD-score (left) and Max-fitness (right) of all algorithms on each
QDGym task for 106 controller evaluations. Each experiment is replicated 20 times, the solid line corresponds
to the median over replications and the shaded area to the first and third quartiles.

the contrary, the PG variation operator of PGA-MAP-Elites allows directing the variation toward

promising regions of the search space. Yet, PGA-MAP-Elites also outperforms TD3, which also

relies on PG. But this result is expected as TD3 only focuses on optimising the best solutions and

not the intermediate solutions encountered during the optimisation process that populate the

archive. PGA-MAP-Elites also performs better than QD-PG and MAP-Elites-ES, two QD approaches

designed for high-dimensional search-spaces. MAP-Elites-ES has a higher sample-cost than PGA-

MAP-Elites as it relies on sampling to approximate the gradient, and its QD-score does not seem to

have fully converged despite the high number of evaluations available. On the contrary, QD-PG

seems to have converged, but does not succeed to find diverse and high-performing solutions in the

considered tasks. QD-PG assumes that the sum of the novelty of each state provides a meaningful

characterisation for the novelty of the entire behaviour. However, there are no guarantees that it is

the case for the QD-Gym tasks.

These results are similar in uncertain and deterministic tasks, except for QDAnt: interestingly,

all baselines reach a lower QD-score in the deterministic version of this task (Fig. 3) than in its

original version (Fig. 2). This task has the larger search space of the QD-Gym domains, and the Ant

is the only 4-legged robot in the suite, which might lead to a more complex subspace of promising

policies, making it harder to discover and explore. The randomness of the initial positions might
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PGA-MAP-Elites 
(ours)

MAP-Elites-ES

MAP-Elites

TD3

CMA-MAP-Elites

QD-PG

QD-score (%) Max-fitness (%)

Fig. 3. Deterministic QDGym results: Comparison of the QD-score (left) and Max-fitness (right) of all
algorithms on each Deterministic task for 106 controller evaluations. Each experiment is replicated 20 times,
the solid line corresponds to the median over replications and the shaded area to the first and third quartiles.

help the algorithms with this exploration, leading to a better QD-Score. Still, PGA-MAP-Elites

significantly outperforms all other algorithms in terms of QD-score across all tasks. According

to this first metric, PGA-MAP-Elites is the only considered algorithm that finds high-performing

solutions throughout the BD-space in all QD-Gym domains.

4.2 Max-fitness
PGA-MAP-Elites finds the best solutions of all QD approaches (𝑝 < 1e−6). TD3 also finds these

high-performing solutions in QDHalfCheetah and QDAnt and in their deterministic versions, but

PGA-MAP-Elites outperforms it in QDWalker and QDHopper and their Deterministic versions

(𝑝 < 1e−7). Thus, PGA-MAP-Elites retains the optimisation capability of DRL approaches.

4.3 Conclusion
These results show that PGA-MAP-Elites maintain the capabilities of QD algorithms to generate

diverse and high-performing populations while retaining the faculties of DRL approaches to

optimise single solutions for performance. As uncertainty might impact some of the baselines

[Flageat and Cully 2020], this section also proves that PGA-MAP-Elites outperforms all approaches
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Fig. 4. Final archives in the Deterministic QDWalker (top) and Deterministic QDHalfCheetah (bottom) tasks
after 106 controller evaluations. The BD in these tasks are 2-dimensional, giving a square grid. Increasing feet
contact time from left to right and from bottom to top. The colour of each cell represents the fitness of the
controller it contains (the lighter the better), grey colour corresponds to an empty cell.

in Deterministic QD-Gym. Thus, PGA-MAP-Elites allows applying the QD-approach to high-

dimensional neuroevolution tasks, independently of their uncertain nature.

5 REPRODUCIBILITY IN UNCERTAIN ENVIRONMENTS
Previous works have shown that QD algorithms applied to uncertain environments tend to favour

lucky solutions and struggle to find solutions that are truly diverse and high-performing (see Section

2.4). On the contrary, the critic networks in TD3 encourage reproducible behaviours (see Section

2.2). As PGA-MAP-Elites built on both MAP-Elites and TD3, it should find more reproducible

controllers than vanilla QD approaches in uncertain environments. This section analyses the

impact of uncertainty on the performance of PGA-MAP-Elites. It compares the reproducibility of

the controllers it produces to those of MAP-Elites, MAP-Elites-ES as well as approaches designed

specifically for such applications: MAP-Elites-sampling and Deep-grid (see Section 2.4).

Fig. 6 displays the original and Corrected metrics on the QDWalker task, and Fig. 5 the corre-

sponding original and Corrected archives. As detailed in Section 3.4, to compute the Corrected

metrics, all solutions of the archive are replaced in a Corrected archive according to their average

BD and fitness over 50 replications. The results for the other tasks of the QD-Gym suite can be found

in Appendix B. Fig. 7 gives the loss in performance induced by uncertainty across all tasks. The loss

corresponds to the difference of each Corrected metric in proportion of the original metric. Lower

loss indicates better reproducibility. As already observed in previous uncertainty studies [Flageat

and Cully 2020; Justesen et al. 2019], the re-evaluation process results in a loss in performance for

all the algorithms.

5.1 Corrected QD-score and QD-score loss
The results in Fig. 6 and Appendix B show that PGA-MAP-Elites outperforms all baselines in

Corrected QD-score (𝑝 < 1e−9). This results is expected as PGA-MAP-Elites was already outper-

forming all other approaches before the re-evaluation in Sec. 4. However, the QD-score loss in

Fig. 7 indicates that PGA-MAP-Elites also manages to find reproducible solutions. In QDWalker,

QDHalfCheetah and QDAnt, the QD-score losses of MAP-Elites are consistently higher than those

of other algorithms except for Deep-grid (𝑝 < 5e−7). Only in QDHopper does MAP-Elites observe

similar performance-drop. This task seems to produce more reproducible solutions overall. On the

contrary, MAP-Elites-sampling has a significantly lower QD-score loss than MAP-Elites on all tasks
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Fig. 5. Final archives (top) and final Corrected archives (bottom) found by all algorithms in the QDWalker
task after 106 controller evaluations. The BDs in this task are 2-dimensional, giving a square grid. Increasing
feet contact time from left to right and from bottom to top. The colour of each cell represents the fitness of
the controller it contains (the lighter the better), grey colour corresponds to an empty cell. The Corrected
archive is filled with the controllers from the standard MAP-Elites archive with the same archive-addition
rules but using the average fitness and BD over 50 replications of this controller.

(𝑝 < 1e−7). Compared to vanilla MAP-Elites, MAP-Elites-sampling gets a better estimate of the true

fitness and BD of a solution through sampling, thus it is less likely to keep lucky solutions which

reduce the QD-score-drop. The implicit mechanism of Deep-grid fails to find reproducible solutions

as efficiently as MAP-Elites-sampling, maintaining QD-score losses close to those of MAP-Elites

and significantly higher than other baselines. Deep-grid uses neighbours in the BD-space to ap-

proximate the true fitness and BD of a solution. However, QD-Gym tasks have a high-dimensional

search space mapped to a low-dimensional BD space. Thus, the relation between genotype and

BD space is probably less straightforward than in usual QD-tasks and can be confusing for this

BD-neighbourhood-based mechanism. Interestingly, MAP-Elites-ES constantly gets lower QD-score

losses than all other baselines (𝑝 < 5e−7 except for QDHopper: 𝑝 < 5e−4). As mentioned in Sec. 2.4,

this algorithm uses a sampling-based approximation of the gradient to direct the variation toward

high-performing or diverse solutions. This approximation of the search space structure makes the

variation operator less sensitive to luck. In addition, MAP-Elites-ES re-evaluates each solution

considered for addition 30 times, where MAP-Elites-sampling only re-evaluates them 10 times.

MAP-Elites-ES selects its offspring thoughtfully, unlike MAP-Elites-sampling, it can thus afford to

spend more time on re-evaluation. MAP-Elites-sampling with 30 re-evaluations would not even

fill the grid, spending too much time on sampling the same unpromising solutions. Thanks to

these two mechanisms MAP-Elites-ES finds more reproducible solutions than all other baselines,

making it a strong competitor in term of reproducibility of solutions. PGA-MAP-Elites also finds

highly reproducible solutions across all tasks, and even manage to find more reproducible solutions

than MAP-Elites-sampling in QDHalfCheetah (𝑝 < 5e−5). Yet, PGA-MAP-Elites does not have

any explicit mechanisms to handle uncertainty in its archive-management contrary to Deep-grid,

MAP-Elites-ES or MAP-Elites-sampling. It manages to find reproducible solutions while managing

the archive the exact same way as MAP-Elites. Thus, the reproducibility of the solutions found by

PGA-MAP-Elites is probably inherent to its variation mechanisms. This result corroborates the

hypothesis that PG variations bring the optimisation process to reproducible areas of the search

space contrary to GA variations.
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Fig. 6. Corrected results: Comparison of the original (left) and corrected (right) QD-score (top) and Max-
fitness (bottom) of all algorithms on QDWalker. To compute the Corrected metrics, all solutions of the archive
are replaced in a Corrected archive according to their average BD and fitness over 50 replications. Each
experiment is replicated 20 times, the solid line corresponds to the median over replications and the shaded
area to the first and third quartiles.

5.2 Corrected Max-fitness and Max-fitness loss
PGA-MAP-Elites also outperforms all baselines according to the Corrected Max-fitness (𝑝 <

1e−9) and also find significantly more reproducible solutions according to the Max-fitness loss,

achieving less than 20% loss across all tasks and even less than 10% loss in QDWalker and 5%

loss in QDHalfCheetah and QDAnt. MAP-Elites-ES achieves similar score on QDWalker and

QDAnt but higher loss on QDHalfCheetah (still less than 20%) and lower loss on QDHopper, while

MAP-Elites-sampling achieves similar scores on QDAnt and QDHopper, but significantly higher

loss in QDWalker and QDHalfCheetah. In comparison, MAP-Elites reaches significantly higher

Max-fitness loss than PGA-MAP-Elites across all tasks (𝑝 < 1e−7 except QDHopper: 𝑝 < 2e−2),
supporting previous results. Deep-grid obtains really poor scores on this metric, getting even bigger

loss values than MAP-Elites, especially in QDWalker. As highlighted before, Deep-grid has not

been designed for such high-dimensional search spaces. Also, the original Deep-grid work has

already shown that the main advantage of the Deep-grid algorithm lies in the BD-reproducibility of

its solutions, and less in their fitness-performance or fitness-reproducibility. Deep-grid has a really

high variance in results compared to other approaches, causing their boxplots to appear flattened

on Fig. 7. Thus, we added the same graph without Deep-grid in Appendix B, to allow to visualise the

full range of variation of the other baselines. These results illustrate again the high reproducibility

of the solutions found by PGA-MAP-Elites, that has no explicit uncertainty-handling mechanisms.

5.3 Conclusion
PGA-MAP-Elites is the only algorithm considered in this study, apart from vanilla MAP-Elites, that

does not have any explicit mechanism to handle uncertainty. In comparison, MAP-Elites-sampling

and MAP-Elites-ES both uses sampling to get a better approximate of the true BD and fitness

of solutions, while Deep-grid uses neighbouring individuals for the same purpose. In this sense,

PGA-MAP-Elites is closer to vanilla MAP-Elites, and despite this similarity it proves to generate

solutions that are significantly more reproducible, on top of being diverse and high-performing.

Thus, the reproducibility of the solutions found by PGA-MAP-Elites is inherent to its variation
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Fig. 7. Loss comparison: Comparison of the QD-score loss (top) and Max-fitness loss (bottom) due to the
lack of reproducibility of the solutions. To compute these losses, all solutions of the archive are replaced in a
Corrected archive according to their average BD and fitness over 50 replications. The loss corresponds to the
difference of each metric in proportion of the original metric. Lower loss indicates better reproducibility. The
boxes represent the distribution of the loss for a given algorithm across 20 runs.

mechanism, based on policy-gradients. This allows PGA-MAP-Elites to maintain the diversity and

the quality of its final archive, making it a strong QD baseline for uncertain applications.

6 ABLATION OF PGA-MAP-ELITES
The core principle of PGA-MAP-Elites is to introduce a new PG variation operator for MAP-Elites.

At each generation, PGA-MAP-Elites generates 𝑏 offsprings from parents selected from the archive.

Among these offsprings, ⌊𝑝𝑒𝑣𝑜 · 𝑏⌋ are generated using GA, and ⌈(1 − 𝑝𝑒𝑣𝑜 ) · 𝑏⌉ using PG. The last

of the PG-generated solutions is a copy of the greedy actor of the critics. In this section, we propose

an ablation study to better understand the impact of these variation operators.

6.1 Impact of the proportion of PG and GA variation
We first study the impact of the proportion of PG and GA variations: 𝑝𝑒𝑣𝑜 .

6.1.1 Baselines: In the above experiments, the implementation of PGA-MAP-Elites uses 𝑝𝑒𝑣𝑜 = 0.5

and 𝑏 = 100. In other words, 50 offsprings are generated through GA and 50 through PG, among

which 1 is a copy of the greedy actor. In this section, we compare multiple versions of PGA-MAP-

Elites with 𝑏 = 100 but different values of the 𝑝𝑒𝑣𝑜 parameter:

• 𝑝𝑒𝑣𝑜 = 1 - corresponds to the standard MAP-Elites algorithm with only GA variations.

• 𝑝𝑒𝑣𝑜 = 0.75 - corresponds to 75% of GA and 25% of PG.

• 𝑝𝑒𝑣𝑜 = 0.5 - is the standard PGA-MAP-Elites algorithm.
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Fig. 8. Ablation 𝑝𝑒𝑣𝑜 - Main results: Comparison of the QD-score (left) and Max-fitness (right) of PGA-
MAP-Elites with different mutation proportions on the QDGym tasks. Each experiment is replicated 10 times,
the solid line gives the median over replications and the shaded area to the first and third quartiles.

• 𝑝𝑒𝑣𝑜 = 0.25 - corresponds to 25% of GA and 75% of PG.

• 𝑝𝑒𝑣𝑜 = 0 - corresponds to full PG variations. Importantly, it does not correspond to TD3.

First, PGA-MAP-Elites with 𝑝𝑒𝑣𝑜 = 0 selects the parents from the archive, while TD3 does

not perform any selection and always modifies the greedy actor. Second, in PGA-MAP-Elites

with 𝑝𝑒𝑣𝑜 = 0, the training of the greedy and the variations are applied only every generation.

In other word, actors are modified only between episodes, while in TD3 the greedy actor is

trained within episode.

6.1.2 Main results: Fig. 8 summarises the results of this study, the corresponding archives are

given in Appendix C. All runs are replicated 20 times. PGA-MAP-Elites with 𝑝𝑒𝑣𝑜 = 1, which

corresponds to MAP-Elites, under-performs PGA-MAP-Elites with 𝑝𝑒𝑣𝑜 = [0.25, 0.5, 0.75]: its QD-
score is order-of-magnitude lower (𝑝 < 5e−4) as well as its Max-fitness (𝑝 < 5e−4). This first
result illustrates the importance of policy-gradients in PGA-MAP-Elites. On the opposite side of

the spectrum, PGA-MAP-Elites with 𝑝𝑒𝑣𝑜 = 0, corresponding to PG-only, also reaches significantly

lower QD-score (𝑝 < 5e−4) than 𝑝𝑒𝑣𝑜 = [0.25, 0.5, 0.75]. This variant manages to find the same max-

fitness solutions as the other baselines in QDAnt and QDHopper, but not in QDWalker (𝑝 < 5e−3)
and QDHalfCheetah (𝑝 < 5e−4). This second result highlights the importance of the divergent

fitness-agnostic search of the GA variation operator.
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Fig. 9. Ablation 𝑝𝑒𝑣𝑜 - Loss comparison: Comparison of the QD-score loss (top) and Max-fitness loss
(bottom) due to the lack of reproducibility of the solutions, for PGA-MAP-Elites with different variation
operator proportions. To compute these losses, all solutions of the archive are replaced in a Corrected archive
according to their average BD and fitness over 50 replications. The loss corresponds to the difference of each
metric in proportion of the original metric. Lower loss indicates better reproducibility. The boxes represent
the distribution of the loss for a given algorithm across 10 runs.

The last three variants: 𝑝𝑒𝑣𝑜 = [0.25, 0.5, 0.75] perform equally across tasks and metrics. The

ideal value of 𝑝𝑒𝑣𝑜 seems to vary with the task. 𝑝𝑒𝑣𝑜 = 0.25, which corresponds to PGA-MAP-Elites

with predominant PG, converges a bit slower than the two others and even reaches a lower value

of QD-score in the QDWalker task (𝑝 < 5e−2). However, it performs similarly to the others in

the QDAnt task. On the contrary, 𝑝𝑒𝑣𝑜 = 0.75, PGA-MAP-Elites with predominant GA, performs

similarly to the others in QDWalker and QDHalfCheetah but reaches a lower QD-score in QDAnt

(𝑝 < 1e−2). These results illustrate the importance of balancing GA and PG variations in PGA-

MAP-Elites and indicate that the algorithm is quite robust to the choice of this hyperparameter as

long as it does not take extreme values. Overall, 𝑝𝑒𝑣𝑜 = 0.5, which corresponds to the value chosen

for PGA-MAP-Elites in the previous sections, shows the best trade-off.

6.1.3 Reproducibility results: Fig. 9 gives the reproducibility analysis for this ablation. The cor-

responding Corrected metrics and Corrected archives are given in Appendix C. These results

draw similar conclusions to previous results of this section but also to those obtained in Sec. 5.

Overall, all algorithms are impacted by the re-evaluation mechanisms but PGA-MAP-Elites with

𝑝𝑒𝑣𝑜 = [0.25, 0.5, 0.75] still outperform the extreme values both in term of Corrected metrics and

Loss metrics. Again, 𝑝𝑒𝑣𝑜 = [0.25, 0.5, 0.75] are equivalent and 𝑝𝑒𝑣𝑜 = 0.5, the value chosen earlier

in the paper, shows the best trade-off. Fig. 9 shows that PGA-MAP-Elites with 𝑝𝑒𝑣𝑜 = 1, which

corresponds to MAP-Elites, is more impacted than the others by the re-evaluation process. As
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Fig. 10. Variation operators contribution: Stacked contribution of each variation operator of PGA-MAP-
Elites: GA, PG and Greedy. The number of offspring generated by each operator is fixed: 50 for GA, 49 for
PG and 1 for Greedy. This graph gives the number of these offspring added to the archive for each operator.
Offspring are added to the archive when they either discover a new cell or improve the existing elite of their
cell. The results are averaged over 20 replications of PGA-MAP-Elites, and smoothed on 2000 generations
(2 ∗ 104 evaluations) to increase the readability. They are stacked over operators to facilitate comparison.

all other algorithms rely on critics approximations, this observation corroborates the hypothesis

that the robustness mechanism enforced by the PG variation via the TD3 training allows to better

handle uncertainty. The Coverage and QD-score loss of PGA-MAP-Elites with 𝑝𝑒𝑣𝑜 = 0, which cor-

responds to PG variations only, are equivalent or even lower in average to those of other baselines,

supporting the hypothesis of the importance of critic-based variation for the reproducibility of

solutions. However, it displays a greater variance across runs, which is coherent with the high

variance observed in the results in Fig. 8. PGA-MAP-Elites with 𝑝𝑒𝑣𝑜 = 0 might lack exploration

compared to the other algorithms which all use GA variation, which enhance the difference in

performance between lucky and unfortunate runs.

6.2 Variation operators contribution
This section studies the contribution to archive improvement of each variation operator.

6.2.1 Metrics. We consider three operators: GA variation, PG variation and Greedy actor. The
first two correspond to the two variation operators of PGA-MAP-Elites. Greedy actor refers to a

copy of the actor associated with the critics. It is considered among the offspring of each generation.

We propose to visualise how each of these operators improves the archive across time by counting

the number of solutions added to the archive it generates. We represent the median of this quantity

across 20 runs against the number of evaluations.

6.2.2 Results. Fig. 10 summarises this analysis. While we observed in previous sections that the PG

variation operator is necessary to get good results, here we can see that it is only relevant during

the early stage of the process. On the contrary, the GA operator contributes to archive improvement
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throughout the process. This result suggests that the PG operator is used to find the region of the

search space containing high-performing solutions: the hyper-volume of Elites, as introduced by

Vassiliades and Mouret [2018]. The GA operator is then used to exploit this hyper-volume.

Across all tasks, the total number of offspring added to the archive per generation reaches its

maximum at the start of the process. These values support previous analysis showing that interesting

solutions are harder to find for QDAnt and easier to find in QDHopper. All tasks show a first phase

during which the three operators improve the archive. During this phase, the PG variation and

the GA variation have an equivalent impact. The former guide the optimisation process toward

promising regions of the search space, and the latter explore these regions. Throughout this first

phase, the Greedy actor, also guided by the critics toward promising regions, is often added to

the archive. This phase is of equivalent length for QDWalker and QDHalfCheetah, but longer for

QDAnt, and significantly shorter for QDHopper. During the rest of the process, the impact of all

variations decreases. The PG variation is the most impacted and adds almost no new solution to

the archive, whereas the GA variation continues to discover new diverse solutions in the hyper-

volume of elites found thanks to the critics. During this second phase, the Greedy actor keep on

being added to the archive episodically but less frequently. Thus, despite being essential to finding

promising solutions in the QD-Gym domains, the PG variation operator is only crucial for the first

phase of the process during which it guides the optimisation process toward the hyper-volume of

elites, that is then extensively explored by the GA operator. These results corroborate the previous

ones, showing the importance of both PG and GA variation operators in PGA-MAP-Elites.

7 CONCLUSIONS AND DISCUSSION
This work proposes an in-depth analysis of PGA-MAP-Elites, a new variant of MAP-Elites that

allows to successfully apply the QD approach to uncertain environments with high-dimensional

search space. PGA-MAP-Elites extends MAP-Elites with a new DRL-inspired variation operator that

leverages the estimation of critic networks and pairs it with the standard GA variation operator for

exploration.We first prove that PGA-MAP-Elites significantly outperforms existing methods on four

robotic locomotion tasks, demonstrating its ability in uncertain tasks with high-dimensional search-

space. We also show that these results hold in deterministic variants of the same tasks. We thus

secondly propose an analysis of the reproducibility of the solution generated by PGA-MAP-Elites in

such uncertain domains. We demonstrate that these solutions are highly reproducible, approaching

the solutions generated by QD baselines designed specifically for uncertain applications. Thirdly,

we study in detail the impact of the proportion of PG and GA variations on PGA-MAP-Elites.

We demonstrate the importance of the two operators to preserve both the performance and the

reproducibility of the solutions. We also show that the performance of PGA-MAP-Elites are robust

to the proportion of PG and GA, as long as the two operators are present. Finally, we analyse the

contribution of each variation operator to archive improvement. The results indicate that the PG

operator is crucial at the beginning of the optimisation process to discover the hyper-volume of elites

containing the performing individuals. The GA variation operator remains essential throughout the

process to guarantee sufficient exploration of the search space. Overall, these results highlight the

importance of policy-gradients in PGA-MAP-Elites and prove their potential to improve MAP-Elites

and allow to apply QD to evolve diverse high-quality DNN controllers.

These analyses point toward possible directions for future work. The ablation study indicates

that the PG variation is key during the first phase of the optimisation process, where it contributes

to improving the collection of solutions. During this phase, it seems to guide the process toward

promising regions of the search space that are then explored by the GA. Thus, an interesting

direction of research would be to propose an adaptive mechanism for the proportion of GA and

PG as variation operators. Also, this work proposes an analysis of PGA-MAP-Elites applied to



Empirical analysis of PGA-MAP-Elites for Neuroevolution in Uncertain Domains 111:21

robotic locomotion tasks. It would be interesting for future work to study its performance in other

domains, possibly uncertain and controlled using high-dimensional DNN controllers, for example

manipulation tasks.
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A ALGORITHMS HYPERPARAMETERS
PGA-MAP-Elites, MAP-Elites, TD3, MAP-Elites-sampling and Deep-grid are all implemented in

a common repository detailed in Sec. 3.3. The corresponding hyperparameters are summarised

below (#A refers to the number of actions in a task). MAP-Elites-ES and QD-PG are not included

in this table as we used the implementation and hyperparameters of the original authors.

Parameter MAP-Elites variants PGA TD3

Nr. of random init. (𝐼 ) 500 episodes 500 episodes 2500 timesteps

Evaluation batch size (𝑏) 100 100 1

Actor networks [128, 128, #A] [128, 128, #A] [128, 128, #A]

Critic networks / [256, 256, 1] [256, 256, 1]

Training batch size (𝑁 ) / 256 256

Critic training steps (𝑛𝑐𝑟𝑖𝑡 ) / 300 /

Actor training steps (𝑛𝑎𝑐𝑡 ) / 50 /

Critic learning rates (𝑙𝑟𝑐𝑟𝑖𝑡 ) / 3 × 10
−4

3 × 10
−4

Actor learning rate (𝑙𝑟𝑎𝑐𝑡 ) / 0.005 3 × 10
−4

Replay buffer max. size / 10
6

10
6

Discount factor (𝛾 ) / 0.99 0.99

Exploration noise (𝜎𝑎) / 0.2 0.2

Target update freq. (𝑑) / 2 2

Target update rate (𝜏) / 0.005 0.005

Smoothing noise var. (𝜎𝑝 ) / 0.2 0.2

Smoothing noise clip (𝑐) / 0.5 0.5

GA variation param. 1 (𝜎1) 0.005 0.005 /

GA variation param. 2 (𝜎2) 0.05 0.05 /
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B REPRODUCIBILITY IN UNCERTAIN ENVIRONMENT - COMPLEMENTARY
This section complements the results displayed in Fig. 6 and Fig. 5, and analysed in Sec. 5. Fig. 11

shows the original and corrected metrics for all algorithms across remaining tasks. Fig. 13 shows

the corresponding archives for the QDHalfCheetah tasks. We also display the Max-fitness loss for

all baselines except Deep-grid in Fig. 12

QDHalfCheetah

QDAnt

QDHopper

Original metrics Corrected metrics

QD-score (%)

Max-fitness (%)

QD-score (%)

Max-fitness (%)

QD-score (%)

Max-fitness (%)

PGA-MAP-Elites (ours)

MAP-Elites-ES

MAP-Elites

Deep-grid

MAP-Elites-sampling

Fig. 11. Corrected results: Comparison of the original (left) and corrected (right) QD-score (top) and Max-
fitness (bottom) of all algorithms on QDWalker. To compute the Corrected metrics, all solutions of the archive
are replaced in a Corrected archive according to their average BD and fitness over 50 replications. Each
experiment is replicated 20 times, the solid line corresponds to the median over replications and the shaded
area to the first and third quartiles.
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Fig. 12. Loss comparison: Comparison of the Max-fitness loss due to the lack of reproducibility of the
solutions. To compute these losses, all solutions of the archive are replaced in a Corrected archive according
to their average BD and fitness over 50 replications. The loss corresponds to the difference of each metric
in proportion of the original metric. Lower loss indicates better reproducibility. The boxes represent the
distribution of the loss for a given algorithm across 20 runs.

PGA-MAP-Elites MAP-Elites-smplDeep-gridMAP-Elites

QDHalf
Cheetah

QDHalf
Cheetah

Corrected
archive

MAP-Elites-ES 
high

low

Fig. 13. Ablation 𝑝𝑒𝑣𝑜 - Corrected archives: Final archives (top) and final Corrected archives (bottom)
found by all algorithms in the QDHalfCheetah tasks after 106 controller evaluations. The BDs in these tasks
are 2-dimensional, giving a square grid. Increasing feet contact time from left to right and from bottom to top.
The colour of each cell represents the fitness of the controller it contains (the lighter the better), grey colour
corresponds to an empty cell. The Corrected archive is filled with the controllers from the standard archive
with the same archive-addition rules but using the average fitness and BD over 50 replications.

C ABLATION-STUDY - COMPLEMENTARY
C.1 Archives
Fig. 14 display the archives and corrected archives obtained for one run of each baseline considered

in the ablation study in Sec. 6. These archives support the results from Sec. 6 and show that

𝑝𝑒𝑣𝑜 = 0.25, 𝑝𝑒𝑣𝑜 = 0.5 and 𝑝𝑒𝑣𝑜 = 0.75 outperform the two extreme baselines 𝑝𝑒𝑣𝑜 = 0, only

PG, and 𝑝𝑒𝑣𝑜 = 1, only GA. This highlights again the complementary of PG and GA variation in

PGA-MAP-Elites. However, the archives given in Fig. 14 only represent one run and should be
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compared gingerly, especially for PGA-MAP-Elites with 𝑝𝑒𝑣𝑜 = 0 which has a really high variance

across runs.
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pevo = 0.75 pevo = 1pevo = 0 pevo = 0.25 pevo = 0.5
high

low
high

low

Fig. 14. Ablation 𝑝𝑒𝑣𝑜 - Corrected archives: Final archives (top line) and final corrected archives (bottom
line) found by PGA-MAP-Elites with different mutation proportion in the QDWalker (top) andQDHalfCheetah
(bottom) tasks after 106 controller evaluations. The BD in these tasks are 2-dimensional, giving a square grid.
Increasing feet contact time from left to right and from bottom to top. The colour of each cell represents the
fitness of the controller it contains (the lighter the better), grey colour corresponds to an empty cell. The
Corrected fitness and BD of each controller is computed as the average over 50 replications of this controller.
The Corrected archive is filled with the same archive rules but using these corrected scores.

C.2 Reproducibility in uncertain environment
We also give the Corrected metrics complementing the ablation study of Sec. 6 in Fig. 15.

D COVERAGE COMPARISON
D.1 Performance of PGA-MAP-Elites
We display in Fig. 16 the Coverage metrics corresponding to Section 4 in both uncertain and

deterministic environment. This additional metric shows that PGA-MAP-Elites also retains the

divergent search capability of QD-algorithms. It achieves coverages similar to MAP-Elites and

CMA-MAP-Elites for the QDWalker and QDHalfCheetah tasks and even outperforms MAP-Elites

in QDHopper (𝑝 < 1e−2) and QDAnt (𝑝 < 5e−8). In this last task, CMA-MAP-Elites manages to
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pevo = 0 
100% PG

pevo = 0.25
25% GA - 75% PG

pevo = 0.5 
50% GA - 50% PG
(PGA-MAP-Elites)

pevo = 0.75 
75% GA - 25% PG

pevo = 1 
100% GA
(MAP-Elites)

QDHalfCheetah

QDAnt

QDHopper

Original metrics Corrected metrics

QD-score (%)

Max-fitness (%)

QD-score (%)

Max-fitness (%)

QD-score (%)
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Fig. 15. Ablation 𝑝𝑒𝑣𝑜 - Corrected results: Comparison of the original (left) and Corrected (right) QD-score
(top) and Max-fitness (bottom) of PGA-MAP-Elites with different mutation proportion on each QDGym task.
To compute the Corrected metrics, all solutions of the archive are replaced in a Corrected archive according
to their average BD and fitness over 50 replications. Each experiment is replicated 10 times, the solid line
corresponds to the median over replications and the shaded area to the first and third quartiles.

reach a better coverage than all the other baselines within only 2 ∗ 105 evaluations (𝑝 < 1e−6) but
longer run-time. As mentioned before, QDAnt likely has a more complex subspace of promising

policies than other QD-Gym tasks, making it harder to discover and explore, which might explain

the good performance of CMA-MAP-Elites in this domain. PGA-MAP-Elites also outperforms TD3

on the Coverage metric (𝑝 < 5e−5). Interestingly, TD3, which is not a QD algorithm, manages

to get relatively good coverage of the BD space, in particular in QDWalker and QDHalfCheetah.

However, it does not optimise these local solutions and only focuses on the best-performing one,
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as highlighted by its poor QD-score. PGA-MAP-Elites also performs better than QD-PG and MAP-

Elites-ES, for causes similar to those of the QD-Score. These results are similar in both versions of

the environments. Only QD-PG obtains significantly lower coverage when applied to Deterministic

QD-Gym tasks, probably due to the random initialisation of the robot encouraging exploration.

QDWalker

QDHalfCheetah

QDAnt

QDHopper

Coverage in QDGym (%) Coverage in Deterministic QDGym (%)

PGA-MAP-Elites 
(ours)

MAP-Elites-ES

MAP-Elites

TD3

CMA-MAP-Elites

QD-PG

Fig. 16. QDGym and Deterministic QDGym results: Coverage of all algorithms on each QDGym (left)
and Deterministic QDGym (right) task for 106 controller evaluations. Each experiment is replicated 20 times,
the solid line corresponds to the median over replications and the shaded area to the first and third quartiles.

D.2 Reproducibility in uncertain environments
Fig. 17 gives the Coverage loss corresponding to Section 5. According to the metrics in Appendix B,

MAP-Elites-sampling and MAP-Elites-ES have a higher diversity in their final Corrected archive

than all other algorithm in QDWalker (𝑝 < 1e−5) and QDHopper (𝑝 < 1e−7), and MAP-Elites-

sampling still does in QDHalfCheetah (𝑝 < 5e−4). However, in QDAnt they are performing

equivalently to PGA-MAP-Elites and Deep-grid. These results, as well as the archives displayed in

Fig. 13, indicate that MAP-Elites-sampling and MAP-Elites-ES are the only algorithms that manage

to discover reproducible solutions all over the BD-space, but their sample inefficiency makes them

less efficient in QDAnt. The Coverage loss results in Fig. 17 are similar to those of QD-score loss,

and the comparison across algorithms stay alike: MAP-Elites-ES is the algorithm that finds the

more reproducible solutions across all tasks (𝑝 < 1e−7 except in QDHalfCheetah: 𝑝 < 5e−5),
and MAP-Elites-sampling stays second in this category (𝑝 < 5e−7 except in QDHalfCheetah:
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MAP-Elites-samplingDeep-gridPGA-MAP-Elites (ours) MAP-ElitesMAP-Elites-ES

QDWalker QDHalfCheetah QDAnt QDHopper

Fig. 17. Loss comparison: Comparison of the Coverage loss. To compute these losses, all solutions of the
archive are replaced in a Corrected archive according to their average BD and fitness over 50 replications.
The loss corresponds to the difference of each metric in proportion of the original metric. Lower loss indicates
better reproducibility. The boxes represent the distribution of the loss for a given algorithm across 20 runs.

𝑝 < 5e−4). Their sampling mechanism increases their chance to store solutions in more accurate

cells than MAP-Elites or PGA-MAP-Elites which only rely on one evaluation to estimate the BD

of solutions. In the case of MAP-Elites-ES, the sampling-based estimate of the gradient probably

also guide variation toward reproducible solutions. Despite also being designed for uncertain

applications, Deep-grid obtains higher Coverage-loss than these two baselines (𝑝 < 5e−7 except in
QDHalfCheetah: 𝑝 < 5e−4). As highlighted before, its neighbours-based mechanism is not built

for such high-dimensional search spaces. Among all baselines, MAP-Elites observes the higher

performance drop (𝑝 < 5e−5 except in QDHalfCheetah: 𝑝 < 6e−3), except on QDHopper where it

performs similarly to PGA-MAP-Elites and Deep-grid.

The coverage-losses of PGA-MAP-Elites are close to those of the three uncertainty-handling QD

algorithms, staying significantly lower than those of MAP-Elites (𝑝 < 5e−5 and in QDHalfCheetah

𝑝 < 3e−3) except on QDHopper. These results lead to the same conclusions as for the QD-score loss

metric. However, interestingly, the solutions found by PGA-MAP-Elites are slightly less reproducible

in terms of Coverage than they were in terms of QD-score: PGA-MAP-Elites obtains slightly

higher Coverage loss than QD-score loss in QDHalfCheetah and QDAnt. On the contrary, MAP-

Elites solutions are more reproducible in terms of Coverage than QD-score (even if they stay

less reproducible than those of all other baselines). As mentioned earlier, MAP-Elites and PGA-

MAP-Elites use the same archive-management and differ only in variation operators. Thus, this

difference could be related to critic-based variations: as the critic is only aware of fitness values

and not BD, it may encourage reproducibility in terms of fitness but not directly in terms of BD.

However, as reproducibility in terms of fitness and BD are likely correlated, we still observe a better

Coverage-loss for PGA-MAP-Elites.

D.3 Ablation of PGA-MAP-Elites
We display in Fig. 18 the Coverage metrics from Section 6 and in Fig. 19 the corresponding Coverage

loss. These results lead to the same conclusion as the QD-Score and Max-Fitness analysis in Section

6: the performance of PGA-MAP-Elites are robust to the proportion of PG and GA, as long as the

two operators are present.
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pevo = 0 
100% PG

pevo = 0.25
25% GA - 75% PG

pevo = 0.5 
50% GA - 50% PG
(PGA-MAP-Elites)

pevo = 0.75 
75% GA - 25% PG

pevo = 1 
100% GA
(MAP-Elites)

QDWalker

QDHalfCheetah

QDAnt

QDHopper

Coverage (%)

Fig. 18. Ablation 𝑝𝑒𝑣𝑜 - Coverage: Coverage of PGA-MAP-Elites with different mutation proportion on
each QDGym task. Each experiment is replicated 10 times, the solid line corresponds to the median over
replications and the shaded area to the first and third quartiles.
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pevo = 0 (PG-only) pevo = 0.25 pevo = 0.5 (ours) pevo = 0.75 pevo = 1 (GA-only) 

QDWalker QDHalfCheetah QDAnt QDHopper

Fig. 19. Ablation 𝑝𝑒𝑣𝑜 - Loss comparison: Comparison of the Coverage loss for PGA-MAP-Elites with
different variation operator proportions. To compute these losses, all solutions of the archive are replaced in a
Corrected archive according to their average BD and fitness over 50 replications. The loss corresponds to the
difference of each metric in proportion of the original metric. Lower loss indicates better reproducibility. The
boxes represent the distribution of the loss for a given algorithm across 10 runs.
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E WILCOXON RANK-SUM TEST P-VALUES
In Table 3, we give all the p-values based onWilcoxon rank-sum test associated with all comparisons

of PGA-MAP-Elites with other baselines in each result Section.

Table 3. Summary of p-values: we give the p-value based on Wilcoxon rank-sum test associated with all
comparisons of PGA-MAP-Elites with other baselines in each result Section. ME stands for MAP-Elites.

Section 4 ME-ES ME TD3 QD-PG

QDWalker

QD-Score 1.38208e-14 1.38208e-14 1.38208e-14 3.55295e-10

Max-Fitness 1.38208e-14 1.38208e-14 1.38208e-14 3.55295e-10

QDHalfCheetah

QD-Score 3.01981e-14 1.38208e-14 1.38208e-14 1.86346e-07

Max-Fitness 5.58359e-14 1.38208e-14 0.0153138 1.86346e-07

QDAnt

QD-Score 1.38208e-14 1.38208e-14 3.55295e-10 1.38208e-14

Max-Fitness 3.47414e-13 1.38208e-14 0.0903488 3.55295e-10

QDHopper

QD-Score 3.01981e-14 1.38208e-14 1.38208e-14 3.55295e-10

Max-Fitness 3.01981e-14 1.38208e-14 1.38208e-14 3.55295e-10

Deterministic QD-Score 1.38208e-14 1.38208e-14 3.55295e-10 3.01981e-14

QDWalker Max-Fitness 1.38208e-14 1.38208e-14 3.42566e-08 3.55295e-10

Deterministic QD-Score 1.38208e-14 1.38208e-14 3.01981e-14 3.55295e-10

QDHalfCheetah Max-Fitness 1.38208e-14 1.38208e-14 1.71916e-08 3.55295e-10

Deterministic QD-Score 1.38208e-14 3.01981e-14 1.38208e-14 3.55295e-10

QDAnt Max-Fitness 1.38208e-14 3.01981e-14 0.0646717 3.55295e-10

Deterministic QD-Score 1.38208e-14 1.38208e-14 1.38208e-14 3.55295e-10

QDHopper Max-Fitness 1.38208e-14 1.38208e-14 1.38208e-14 3.55295e-10

Section 5 ME-ES ME Deep-grid ME-sampling

QDWalker

QD-Score 1.38208e-14 1.38208e-14 3.55295e-10 3.55295e-10

Max-Fitness 1.38208e-14 1.38208e-14 3.55295e-10 3.55295e-10

QDHalfCheetah

QD-Score 3.01981e-14 1.38208e-14 3.55295e-10 3.55295e-10

Max-Fitness 5.58359e-14 1.38208e-14 3.55295e-10 3.55295e-10

QDAnt

QD-Score 1.38208e-14 1.38208e-14 3.55295e-10 3.55295e-10

Max-Fitness 3.47414e-13 1.38208e-14 3.55295e-10 3.55295e-10

QDHopper

QD-Score 3.01981e-14 1.38208e-14 3.55295e-10 3.55295e-10

Max-Fitness 3.01981e-14 1.38208e-14 3.55295e-10 3.55295e-10

Section 6 𝑝𝑒𝑣𝑜 = 0 (Full PG) 𝑝𝑒𝑣𝑜 = 0.25 𝑝𝑒𝑣𝑜 = 0.75 𝑝𝑒𝑣𝑜 = 1 (Full GA)

QDWalker

QD-Score 0.000379285 0.000880743 0.173617 0.000157052

Max-Fitness 0.000529757 0.0126111 0.364346 0.000157052

QDHalfCheetah

QD-Score 0.000157052 0.0864107 0.705457 0.000238563

Max-Fitness 0.000157052 0.567628 0.198765 0.000238563

QDAnt

QD-Score 0.000157052 0.596701 0.00515896 0.000157052

Max-Fitness 0.762369 0.0696424 0.0126111 0.000157052

QDHopper

QD-Score 0.000157052 0.0342937 0.0101652 0.000157052

Max-Fitness 0.00149887 0.449692 0.04125 0.000157052
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