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SUMMARY

This paper is concerned with nonparametric estimation of the intensity function of a point
process on a Riemannian manifold. It provides a first-order asymptotic analysis of the proposed
kernel estimator for Poisson processes, supplemented by empirical work to probe the behaviour 15

in finite samples and under other generative regimes. The investigation highlights the scope for
finite-sample improvements by allowing the bandwidth to adapt to local curvature.
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1. INTRODUCTION

In the analysis of random collections of point events, a fundamental role is played by the 20

intensity function, which determines the first-order properties of a spatial point process and is
an essential component of second order analyses. It provides a complete characterization for the
smaller class of Poisson processes.

Features of spatial point processes, as distinct from those along a time axis, are their inherent
multidimensionality and the need to treat all directions equivalently, in contrast to the direction- 25

ality of one-dimensional time. A further feature, sometimes ignored with little effect due to the
scales involved, are the topological features of the space on which the point events occur.

In the present paper we are concerned with point processes on the surface of a Rieman-
nian manifold, a situation of high relevance in cellular biology and microbiology, where super-
resolution microscopy techniques can record the spatial arrangement of proteins and other 30

molecules of interest on the cellular membranes of cells, bacteria and other microorganisms.
At these scales the topology cannot be ignored, necessitating inferential procedures that adapt
to local curvature. In this microbiological example, knowledge of the intensity functions of, say,
two different molecular processes can guide scientific inference by suggesting possible depen-
dencies between the processes, perhaps to be probed more formally. Alternatively, the intensity 35
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2 S. WARD ET AL.

estimates might be used as outcomes, blocking factors or concomitant variables in an experimen-
tal context, concerned with assessing the efficacy of one or more treatments.

Intensity estimation under this framework is unexplored. Recent relevant work is due to Robe-
son et al. (2014), Lawrence et al. (2016) and Møller & Rubak (2016), who considered functional
summary statistics for point processes on the surface of a d-dimensional unit sphere. These sum-40

marize the global properties of the point process. Ward et al. (2021) extended the construction
of such statistics to convex manifolds using the Mapping Theorem (e.g. Kingman, 1993, p.18)
to map the point events on the manifold to the surface of the unit sphere, performed statistical
analysis there using the rotational invariance of the sphere, and mapped the conclusions back to
the manifold of interest. Whilst the present paper is concerned with more general processes and45

manifolds, we must similarly assume the implicit equation g(x1, . . . , xd) = 0 of the manifold is
known in analytic form, or can be well approximated as illustrated in Section 7.

The closest related work is that concerned with nonparametric density estimation from in-
dependent and identically distributed (i.i.d.) observations constrained to the surface of a mani-
fold. Pelletier (2005) extended some of the theory of kernel density estimation to accommodate50

i.i.d. observations on a finite volume boundary-free Riemannian manifold, while Kerkyacharian
et al. (2012) considered so-called needlet density estimation on compact homogeneous mani-
folds, motivated by applications in astrophysics. As with their Euclidean counterparts, the broad
strategies appropriate for kernel density and kernel intensity estimation are rather similar, al-
though the technical differences are considerable, most notably: the point process observations55

cannot be treated as i.i.d.; the number of event observations are, at least in the present context,
treated as random; and the point process is frequently not observed over the entire manifold. The
latter situation necessitates procedures that can seamlessly accommodate both boundary-free
manifolds and manifolds with boundaries.

2. PRELIMINARIES60

Consider a compact d-dimensional Riemannian manifold (M, g) with Riemannian metric ten-
sor g. Our treatment here is coordinate-free, i.e., avoiding a fixed basis in which to express all
calculations. This formulation comes at the expense of greater abstraction but leads to a more
compact notation. Most of the details are deferred to the Supplementary Material along with the
proofs of the main results.65

Let X be a point process overM, most naturally viewed as a random set formed of elements
of M. To distinguish between points in a realization of X and any point in the space M, we
shall refer to the former as events and the latter as points. We use x both to specify points inM
and to index events in X , with the context ensuring no ambiguity.

For any Borel measurable subset B ⊆M, let NX(B) denote the number of events of X in70

B and let dvol denote the d-dimensional Riemannian volume form on M (see Supplementary
Material). The intensity measure is defined as µ(B) = E{NX(B)} and provided that µ is ab-
solutely continuous with respect to dvol, there exists a function ρ :M→ R called the intensity
function such that

µ(B) =

∫
B
ρ(x)dvol(x).

In other words, ρ is the Radon-Nikodyn derivative of the intensity measure with respect to the75

Riemannian volume form. A more precise formalization avoiding ambiguity in the asymptotic
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Biometrika style 3

framework of Section 3 is

ρ(x) = lim
δx→0

vol(δx)−1E{NX(δx)}, (1)

where δx ⊂M is a region centred on x, and the notation δx → 0 means that the geodesic distance
dg :M×M→ R+ between any two elements of δx tends to zero. This is a natural adaptation
of the Euclidean definition of Cressie (2015) and retains all the usual properties. Under the con- 80

straint that X is simple, that is pr{NX(δx) > 1} = o{vol(δx)}, ρ(x)dvol(x) can be interpreted
as the probability of a point occurrence in the infinitesimal volume dvol(x) at x ∈M.

A point process X is said to be homogeneous if ρ is constant overM and otherwise inhomo-
geneous. By Campbell’s theorem (Daley & Vere-Jones, 2010), for any measurable nonnegative
function f :W ⊆M→ R+, 85

E

{ ∑
x∈X∩W

f(x)

}
=

∫
W
f(x)ρ(x)dvol(x). (2)

Poisson processes can be characterized in the same way onM as in Rd. Specifically, X is said
to be a Poisson process with intensity function ρ if, for any Borel measurable subset B ⊆M,
NX(B) is Poisson distributed with mean µ(B) and, for any disjoint Borel measurable subsets
A,B ⊆M, NX(A) and NX(B) are independent random variables. This affords considerable
simplification. In particular, for any measurable non-negative function f :W ⊆M→ R+, 90

Var
{ ∑
x∈X∩W

f(x)

}
=

∫
W
f2(x)ρ(x)dvol(x). (3)

3. INTENSITY ESTIMATION ONM
Estimation of ρ is treated nonparametrically. As in simpler contexts (e.g. Bartlett, 1963; Cox,

1965, for events along a time axis) smoothing is required to achieve acceptable estimation
variance. This entails some form of weighted averaging of nearby points, ideally with tapered
weights for decreasing proximity. Intuitively, in regions of high curvature, neighbouring points 95

appear closer in the Euclidean metric than the arc length of the shortest curve section between
them, constrained to the surface ofM, namely the geodesic distance dg :M×M→ R+. This
renders the standard Euclidean theory of kernel intensity estimation unusable. We pursue the nat-
ural approach of replacing the Euclidean metric in the kernel function by the geodesic distance,
so that the kernel intensity estimator automatically adapts to local curvature. 100

A further complication in this setting is that a kernel function, typically non-compactly sup-
ported, centred at a particular point may not integrate to one over the manifold. This could be
because the manifold has a boundary, or may only be observed over a convex compact subset of
M, a situation that is rather common in practice. A related problem arises when the manifold
is of finite volume and boundary-free. Although this latter issue can be circumvented in certain 105

special cases, for instance by using Fisher’s (1953) density function as a kernel on the sphere or
adopting finitely supported kernels (Pelletier, 2005), for more general manifolds and kernels a
shape correction is needed, in effect to avoid double counting of points in the weighted average.
Conveniently, the boundary correction required in the former situation is operationally the same
as shape correction for finite-volume boundary-free manifolds. All cases can be encapsulated 110

by defining a convex compact subset W of M over which the point process is observed. The
corrections introduced in the forthcoming discussion are then either edge or shape corrections,
the latter corresponding to W =M withM a finite-volume boundary-free manifold.
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4 S. WARD ET AL.

The intensity function estimator to be studied in the present paper is

ρ̂h(x) =
∑

y∈X∩W

ch(x, y)
−1

hd
k

{
dg(x, y)

h

}
, (4)

where W is as described above, ch(x, y) is the edge or shape correction and, for Euclidean norm115

‖ · ‖, k is such that k ◦ ‖ · ‖ : Rd → R+ is a symmetric probability density function, specified
for concreteness as Gaussian:

k{dg(·, y)} = (2π)−d/2 exp{−d2g(·, y)/2}.

In direct analogy to the corresponding corrections in Rd (Diggle, 1985; Berman & Diggle, 1989;
van Lieshout, 2012), ch(x, y) is defined either globally or locally as

c
glo
h (x, y) = ch(x) =

1

hd

∫
W
k

{
dg(x, z)

h

}
dvol(z), (5)120

cloc
h (x, y) = ch(y) =

1

hd

∫
W
k

{
dg(z, y)

h

}
dvol(z). (6)

Specifically, the global correction depends only on the point at which the intensity is estimated,
while the local correction adjusts for each event. The resulting estimator (4) is generally biased
in finite samples regardless of which correction is used but, as shown in Proposition 1, the global
version ρ̂glo

h is unbiased for homogeneous point processes. The local version ρ̂loc
h enjoys mass125

preservation for homogeneous and inhomogeneous processes, specifically,∫
W
ρ̂loc
h (x)dvol(x) = NX(W ), (7)

as was demonstrated in the Euclidean case by van Lieshout (2012).
The estimators ρ̂glo

h (x) and ρ̂loc
h (x) are best justified by consideration of their first and second

moment properties, stated as a series of Propositions of varying degrees of technical intricacy,
and culminating in Proposition 3.130

PROPOSITION 1. Let (M, g) be a Riemannian manifold and let X be a homogeneous spatial
point process over M with intensity function ρ(x) = ρ for all x ∈M. Then for any h, ρ̂glo

h is
unbiased for ρ while E{ρ̂loc

h } = ρη with

η =

∫
W

cloc
h ( · , y)−1

hd
k

{
dg(x, y)

h

}
dvol(y).

Proof. This is a special case of the more general result

E{ρ̂•h(x)} =
∫
W

c•h(x, y)
−1

hd
k

{
dg(x, y)

h

}
ρ(y) dvol(y), • ∈ {glo, loc},135

which follows by Campbell’s theorem. The result is immediate on noting the constancy of the
intensity function. �

Although ρ̂loc
h has multiplicative bias η for homogenous processes (and is expected to exhibit

pointwise bias for inhomogeneous processes too) the functional
∫
W ρ̂loc

h (x)dvol(x) is always
unbiased for µ(W ) by taking expectations in (7).140
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Biometrika style 5

PROPOSITION 2. Let (M, g) be a Riemannian manifold and let X be a Poisson process on
M. Then

Var{ρ̂glo
h (x)} = c

glo
h (x, · )−2

∫
W

[
1

hd
k

{
dg(x, y)

h

}]2
ρ(y) dvol(y),

Var{ρ̂loc
h (x)} =

∫
W
cloc
h ( · , y)−2

[
1

hd
k

{
dg(x, y)

h

}]2
ρ(y) dvol(y).

Proof. The result is by direct calculation using (3). � 145

For homogeneous Poisson processes, it follows from Proposition 2 that the variance is not
constant over M even though the intensity function is. This conclusion is equivalent to that
of Rakshit et al. (2019) in the context of homogeneous point processes observed over linear
networks.

Specification of the bandwidth h relies on a notional asymptotic regime in which the expected 150

number of events µ(W ) diverges. As in simpler contexts, the bias and variance are antagonistic
as a function of h, and a suitable compromise between the two must be determined. In assessing
the appropriate scaling of h with the expected number µ(W ) of events, there are some subtleties
that distinguish the present setting from the i.i.d. Euclidean case. In a Euclidean setting, one way
to achieve µ(W )→∞ is to consider an expanding W . This on its own is unsatisfactory, as the 155

concentration of events around an arbitrary x ∈W could remain diffuse, as noted by Cucala
(2008). The expanding W framework is also physically implausible in the context of boundary-
free finite-volume manifolds where W =M.

To ensure the target of inference is stable under the notional limiting operation µ(W )→∞,
the asymptotic properties of a suitably standardized version of (4) are considered, analogously to 160

Cucala (2008). The standardized object of inference is ρ1(x) = ρ(x)/µ(W ), the relative concen-
tration of events at each point ofW ensuring that ρ1 integrates to one overW . The corresponding
estimators are

ρ̂•h,1(x) =
1{NX(W ) 6= 0}

NX(W )

∑
y∈X∩W

c•h(x, y)
−1

hd
k

{
−dg(x, y)

h

}
, • ∈ {glo, loc}, (8)

where 1(A) denotes the indicator function of the event A, and the relationship to the estimator
in (4) is ρ̂•h(x) = NX(W )ρ̂•h,1(x). For Poisson processes the following proposition gives the 165

pointwise asymptotic properties of ρ̂•h,1 for • ∈ {glo, loc}.
PROPOSITION 3. Let (M, g) be a Riemannian manifold. Suppose X is a Poisson process pa-

rameterized by ρ = {ρ(x) : x ∈M} and observed over the bounded windowW ⊆M. Provided
that ρ1 is smooth, for any x ∈W ⊆M and • ∈ {glo, loc},

E{ρ̂•h,1(x)} → ρ1(x), 170

Var{ρ̂•h,1(x)} → 0,

as µ(W )→∞ provided that h→ 0 and µ(W )−1 = o(hd).
This result supplies a degree of reassurance over the behaviour of the proposed estimators, as

the conclusion coincides with that obtained in Euclidean space.
From a technical point of view there are some limitations of this analysis. Firstly, Proposition 175

3 is proved only for Poisson processes. It is supplemented by empirical work in Section 6, which
probes the behaviour in finite samples and for other generative processes. Secondly, the conclu-
sions are first-order asymptotic in nature, and not optimized to exploit the interaction between
the process and the manifold. Since the volume of a ball of radius r at two points x and y on a
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6 S. WARD ET AL.

general manifold is not necessarily equal for x 6= y, the expected number of events in such a ball 180

is, in general, not constant over the manifold. Intuitively then, an optimal estimator would have
a bandwidth that adapted to the local curvature, thereby producing a better separation between
clustering induced by the process and that induced by the geometry. Similar reasoning would
lead one to allow asymmetric localization via elongated “balls” and so on.

4. PRACTICAL GUIDE TO BANDWIDTH SELECTION185

While Proposition 3 specifies the properties of h under a notional asymptotic regime, and
thereby provides some theoretical reassurance over the proposed intensity estimator, the practical
problem of choosing the bandwidth for a given sample size is always present, as in almost all
areas of nonparametric estimation.

One approach to selecting h is through a critical inspection of intensity plots in order to balance190

local and global features in the data (Møller & Waagepetersen, 2004). Other approaches involve
optimization criteria. Baddeley et al. (2015, p. 176) suggest selecting the h that maximises the
cross-validated Poisson log likelihood, which in the present setting is

`cv(h|X) =
∑
x∈X

log
{
ρ̂−xh (x)

}
−
∫
M
ρ̂h(x) dvol(x), (9)

where ρ̂−zh (x) = h−d
∑

y∈X\{z} k{−dg(x, y)/h}c
−1
h (x, y) is an estimate of ρ constructed as in

(4) but without the observation z ∈ X . Application of Campbell’s Theorem shows `cv is unbiased195

for the log likelihood function

`(ρ;X) =
∑
x∈X

log{ρ(x)} −
∫
M
ρ(x) dvol(x).

A nonparametric bandwidth selection procedure that can be readily extended to the Rieman-
nian setting is given in Cronie & Van Lieshout (2018). On assuming that the intensity function
is positive everywhere onM and applying Campbell’s formula (2) to ρ−1,

E
{∑
x∈X

ρ−1(x)
}
= Vol(W ).

Replacement of ρ by its estimate ρ̂h points to a choice of h that minimizes

F (h) = {T (ρ̂h)− Vol(W )}2 , (10)

where T (ρ̂h) =
∑

x∈X ρ̂
−1
h (x). In addition to being relatively free of modelling assumptions,

(10) is less burdensome to compute than (9). The existence of a minima of F can be shown
by consideration of its continuity and limiting properties. Proposition 4 extends Theorem 1 of200

Cronie & Van Lieshout (2018) toM.
PROPOSITION 4. Let (M, g) be a Riemannian manifold and letX be a point process observed

through a bounded windowW ⊆M. After disregarding the trivial caseX ∩W = ∅, global and
local corrections (5) or (6) both yield T continuous in h ∈ (0,∞). This conclusion also holds
when no correction is used, i.e. c•h(x, y) = 1. In all cases, limh→0 T (ρ̂h) = 0. For correction205

given by (5) and (6) limh→∞ T (ρ̂h) = V ol(W ) and if no correction is used limh→∞ T (ρ̂h) =
∞.

The intermediate value theorem dictates that when ch(x, y) = 1 there exists a minima for
F , whilst if a correction is used a minimum occurs when h→∞. This is consistent with the
Euclidean approach considered by Cronie & Van Lieshout (2018). The recommendation of the210
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Biometrika style 7

present paper is also to optimize F with no correction, including it instead after h has been
selected.

5. NUMERICAL CONFIRMATION IN A TEST CASE

Numerical validity of the proposed procedure is checked empirically using an example in
which standard methods are approximately valid in the limit as a key parameter becomes small, 215

but more generally handled by the approach developed in Section 3.
We consider a Poisson process on the unit square with intensity function

ρ(x1, x2) =
N

2πσ2K
exp

{
−
(x1 − 1

2)
2 + (x2 − 1

2)
2

2σ2

}
,

where N > 0 and K is chosen to ensure the expected number of points in [0, 1]2 is N . With
the unit square considered as the unit subset of the plane x3 = 0 in R3, a Poisson process on a
bounded Euclidean manifold,M =W say, is obtained by rotating the plane x3 = 0 through an
angle of θ about the x2-axis, giving the intensity function

ρW (x1, x2, x3) =

{
ρ{(x21 + x23)

1/2, x2} x3 = x1 tan(θ);
0 otherwise.

The first approach, as described in Sections 3 and 4, involves direct application of the recom-
mended procedure on W to estimate ρW using a local correction. The second, for comparison,
follows a cross-validation approach previously considered in Baddeley et al. (2015), whereby a
standard bivariate Euclidean kernel intensity estimator is first applied to the orthogonal projec-
tion on the plane x3 = 0, with the fitted intensity ρ̂proj then mapped back onto W as

ρ̂W (x1, x2, x3) =

{
ρ̂proj(x1, x2){1 + tan2(θ)}−1/2 x3 = x1 tan(θ);
0 otherwise.

The two situations are depicted in Fig. 1(a).
The sample mean integrated squared error (MISE) of each approach is computed using 10,000

simulated replicates of the point pattern with parameters σ2 = 0.01 and N = 500 for a range of 220

values of θ. Fig. 1(b) shows that the MISE remains constant for increasing θ when estimation
is performed directly on the manifold, whereas the projection approach differs considerably for
large θ, but coincides, as expected, for small θ.

6. SIMULATIONS

Point patterns are simulated on the surface of three ellipsoids of increasing eccentricity: 225

manifolds E1, E2 and E3, respectively. A common local chart used to describe an ellipsoid
E is x ≡ (x1, x2, x3) = {a sin(θ) cos(φ), b sin(θ) cos(φ), c cos(θ)} where θ ∈ [0, π) and φ ∈
[0, 2π). Manifold E1 is a sphere of radius a = b = c = (4π)−1/2, E2 has a = b = 0.8(4π)−1/2,
and E3 has a = b = 0.6(4π)−1/2. To enable comparison, the value of c for E2 and E3 is set to
ensure that they each have unit Riemannian volume measure (surface area).230

The intensity function is estimated using point patterns sampled from three Poisson pro-
cess models. Details and results for log Gaussian Cox processes and Strauss processes are
presented in Supplementary Materials Section 3, alongside a detailed explanation of how
the processes were simulated in Supplementary Materials Section 4. The three Poisson pro-
cess models considered are: (PP1) homogeneous Poisson process, i.e. with intensity function235

ρ1(x) = ρ1; (PP2) inhomogeneous Poisson process with log-linear intensity function ρ2(x) =
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8 S. WARD ET AL.
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(a) (b)

Fig. 1. (a) Example point pattern on W (black) with its or-
thogonal projection on the plane x3 = 0 (grey). (b) Sam-
ple mean integrated squared error (MISE) of the intensity
estimate across 10,000 simulations for the projected point

pattern (◦) and working directly on the manifold (×)

exp(3 + α2x1); (PP3) inhomogeneous Poisson process with log-modulation intensity function
ρ3(x) = exp{2 + α3 cos(8x2)}. Parameters ρ1, α2 and α3 each take three values to give a low,
medium and high number of expected events.

The results from this 33 factorial experiment are presented in Table 1, where the last two240

columns display the integrated squared error of the estimate, ‖ρ̂− ρ‖2, averaged over Monte
Carlo replications and standardized by the square of the expected number of events ‖ρ‖2 to
make the rows comparable. The norm is the L2(M) norm, i.e. withM∈ {E1, E2, E3},

‖ρ̂− ρ‖2 =
∫
M
{ρ̂(x)− ρ(x)}2dvol(x)

=

∫ π

0

∫ 2π

0

[
ρ̂
{
ψ−1(θ, φ)

}
− ρ

{
ψ−1(θ, φ)

}]2 {det(gij)}1/2 dθdφ, (11)245

where ψ is the local chart forM and where (gij) is the matrix representation of the metric under
the corresponding local coordinate system. For the chosen chart it can be shown that

det(gij) = sin2(θ)a2b2{1− (1− c2/a2) sin2(θ) cos2(φ)− (1− c2/b2) sin2(θ) sin2(φ)}.

The bandwidth is selected using the two methods outlined in Section 4, referred to here as cross
validation (CV) (Baddeley et al., 2015) and nonparametric (NP) (Cronie & Van Lieshout, 2018).
Intensity function estimates are then computed using the local correction. The integral in (11) is250

computed using a numerical approximation.
In the Poisson setting outlined here, the CV method for bandwidth selection outperforms the

NP method, while inspection of the results for log Gaussian Cox and Strauss processes shows
the opposite is true. This is unsurprising since the CV method is based on a Poisson likelihood.
The simulation results are consistent with the Euclidean analysis considered in Cronie & Van255

Lieshout (2018).

7. APPLICATION TO THE BEILSCHMIEDIA PENDULA DATASET

In applying the proposed estimator to the Beilschmiedia Pendula data set (Hubbell, 1983;
Condit et al., 1996; Condit, 1998), a number of important practical considerations are isolated.
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Biometrika style 9

Table 1. Performance of kernel intensity estimators

Manifold
Poisson Process Expected number {Ê(‖ρ̂− ρ‖2/‖ρ‖2)}1/2
model parameters of events CV NP

E1 PP1 ρ1 = 50 50.00 0.285 0.307
E1 PP1 ρ1 = 150 150.0 0.182 0.220
E1 PP1 ρ1 = 300 300.0 0.128 0.185
E1 PP2 α2 = 10 59.57 0.306 0.598
E1 PP2 α2 = 18 317.2 0.179 0.765
E1 PP2 α2 = 22 802.2 0.141 0.806
E1 PP3 α3 = 3 49.98 0.462 0.624
E1 PP3 α3 = 4 116.1 0.378 0.671
E1 PP3 α3 = 5 280.2 0.305 0.706

E2 PP1 ρ1 = 50 50.00 0.285 0.303
E2 PP1 ρ1 = 150 150.0 0.178 0.224
E2 PP1 ρ1 = 300 300.0 0.137 0.186
E2 PP2 α2 = 10 43.60 0.343 0.538
E2 PP2 α2 = 18 153.8 0.236 0.717
E2 PP2 α2 = 22 313.7 0.183 0.763
E2 PP3 α3 = 3 58.60 0.449 0.562
E2 PP3 α3 = 4 135.9 0.380 0.617
E2 PP3 α3 = 5 326.7 0.303 0.659

E3 PP1 ρ1 = 50 50.00 0.292 0.297
E3 PP1 ρ1 = 150 150.0 0.197 0.229
E3 PP1 ρ1 = 300 300.0 0.147 0.187
E3 PP2 α2 = 10 32.34 0.432 0.511
E3 PP2 α2 = 18 75.05 0.313 0.662
E3 PP2 α2 = 22 123.1 0.279 0.718
E3 PP3 α3 = 3 74.88 0.447 0.478
E3 PP3 α3 = 4 175.7 0.368 0.514
E3 PP3 α3 = 5 423.1 0.290 0.562

Square root of the mean integrated squared error from a 33 factorial experiment. The
mean is taken over 100 Monte Carlo replicates.

These data provide locations of 3605 trees in a 1000m by 500m rectangular sampling region of260

a tropical rainforest. Each event is characterized by its longitude, latitude and elevation and is
assumed to lie on a two-dimensional Riemannian manifold within R3, inheriting the canonical
metric tensor by the embedding. As with most practical settings, there is no analytical formula
for the manifold. Instead, it was approximated using a 201× 101 regular grid of longitude and
latitude coordinates each with an elevation. Let U be the union of the recorded events and the265

manifold grid points. The manifold was approximated as a triangular meshM = (U, T ), where
T = {Fm;m = 1, . . . ,M} is the set of triangular faces of the mesh with each element repre-
sented by the three elements of U that form its vertices. This was constructed by implementing
a 2D Delaunay triangular mesh on the longitude and latitude, with each vertex then raised by its
respective elevation. The full mesh and an illustrative subsection are shown in Fig. 3(a) and Fig. 270

3(b), respectively. Including the events as vertices of the triangular mesh aids the computation
of event-to-point geodesic distances, here conducted with the Fast Marching Algorithm (Peyre,
2021).
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Fig. 2. (a) Nonparametric (NP) bandwidth selection criteria
F (h) for the Beilschmiedia Pendula Dataset, plotted with
a log scale y-axis. (b) F (h) in the locality of its minimum,

plotted with a linear scale y-axis.

The kernel intensity estimator of (4) was constructed using the local correction with (6) be-
coming

ch(y) =
1

hd

M∑
m=1

∫
Fm

k

{
dg(z, y)

h

}
dλm(z)

on replacement of dvol(·) by dλm(·) for the surface area element over the mth face of the mesh.
This is approximated by

1

hd

M∑
m=1

k

{
dg(zm, y)

h

}
λm(Fm),

where zm is a representative point of Fm, here computed as the arithmetic average of its three
vertices. At this junction, a second triangular mesh was constructed in an identical manner to the275

first but including {z1, . . . , zM} as additional vertices such that all required geodesic distances
could be computed with the Fast Marching Algorithm.

To avoid modelling the data generating process, only the nonparametric (NP) approach to
bandwidth selection was used. If the CV method was to be applied, the integral in (9) would
instead be approximated as280 ∫

M
ρ̂h(x)dvol(x) ≈

M∑
m=1

ρ̂h(zm)λm(Fm).

As recommended, the bandwidth was selected without correction, which was only applied sub-
sequently in the construction of the kernel intensity estimate. The selection criterion was evalu-
ated at bandwidths h ∈ {1, 2, . . . , 300} in the units of metres. Additional refinement around the
minimizing value of h gave a final bandwidth choice of 57.17 m (2 d.p.). Fig. 2 shows a well
behaved convex function with a pronounced minimum. The resulting NP intensity estimate is285

shown in Fig. 3(c). Fig. 3(d) displays the relative difference between this and a simple alterna-
tive. The latter, written ρ̂flat constructs the intensity estimate on the plane and projects it onto
the landscape using local gradients, as in (Baddeley et al., 2015, p. 176). The elevation scale has
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(b)

(c) (d)

(a)

Fig. 3. (a) Beilschmiedia Pendula events (red dots) on the
triangular mesh representation of the geographical sur-
face. (b) Small portion of (a), depicting the events (red
dots) and constructed triangular mesh. (c) NP intensity
estimate in units m−1 depicted using the presented col-
ormap, shown with the events (black dots). (d) Relative
difference between the estimated intensity directly on the
manifold and estimated intensity assuming a flat surface,

{ρ̂manifold(x)/ρ̂flat(x)} − 1.

been magnified to aid visualization. For a manifold without a boundary, such as a sphere or an
ellipsoid, it is unclear how ρ̂flat could be implemented.290

8. DISCUSSION AND OPEN PROBLEMS

The constructions presented in the present work have first-order asymptotic guarantees for
the estimation of intensity functions of Poisson processes observed over general Riemannian
manifolds, with or without boundaries. Their properties under other generative point processes
have been assessed by simulation. As discussed in Section 3, intuitive reasoning suggests that the 295

proposed estimator is not optimal in finite samples. A finite-sample theoretical analysis seems
challenging and may involve extension of the classical probability inequalities.
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