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Abstract
Automated segmentation of multiple organs and tumors from 3D medical images such as magnetic resonance imaging (MRI) 
and computed tomography (CT) scans using deep learning methods can aid in diagnosing and treating cancer. However, organs 
often overlap and are complexly connected, characterized by extensive anatomical variation and low contrast. In addition,  
the diversity of tumor shape, location, and appearance, coupled with the dominance of background voxels, makes accurate 3D  
medical image segmentation difficult. In this paper, a novel 3D large-kernel (LK) attention module is proposed to address 
these problems to achieve accurate multi-organ segmentation and tumor segmentation. The advantages of biologically inspired 
self-attention and convolution are combined in the proposed LK attention module, including local contextual information, 
long-range dependencies, and channel adaptation. The module also decomposes the LK convolution to optimize the compu-
tational cost and can be easily incorporated into CNNs such as U-Net. Comprehensive ablation experiments demonstrated 
the feasibility of convolutional decomposition and explored the most efficient and effective network design. Among them, 
the best Mid-type 3D LK attention-based U-Net network was evaluated on CT-ORG and BraTS 2020 datasets, achieving 
state-of-the-art segmentation performance when compared to avant-garde CNN and Transformer-based methods for medical 
image segmentation. The performance improvement due to the proposed 3D LK attention module was statistically validated.
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Introduction

Malignant tumors and other organ illnesses have long been 
a problem for humans, seriously endangering their lives and 
general well-being. Worldwide, millions of people die from 

cancer each year, making it the leading cause of mortal-
ity [1]. Nevertheless, early identification and therapy are 
still the most effective means of enhancing cancer survival. 
Identifying the location of organs and lesions is a crucial 
step in the diagnostic process and plays a vital role in treat-
ing diseases. In general, locating organs and lesions from 
medical images such as Magnetic Resonance Imaging (MRI) 
and Computed Tomography (CT) is a segmentation task. 
Clinicians can determine the location, size, and subtype of 
a tumor through the precise segmentation of tumors. This 
benefits not only the diagnostic process but also the planning 
of radiation therapy or surgery. On the other hand, accurate 
organ segmentation can help clinicians select personalized 
treatment strategies for various patients, enabling the prac-
tice of precision medicine and individualized care, which 
can lessen the patient’s financial and psychological burdens. 
Additionally, the segmentation of longitudinal MRI images 
can be utilized to track tumor development or shrinkage 
as well as the response of diseased organs to therapeutic 
interventions. Therefore, the research and implementation 
of medical image segmentation are of major significance.

Segmentation of organs and lesions is typically per-
formed manually by experienced radiologists in current 
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clinical practice. Observing medical images to differentiate 
human organs, tissues, and lesions is a challenging and time-
consuming endeavor. Additionally, because manual labeling 
results rely heavily on the radiologist’s expertise and subjec-
tive judgment, they are rarely reproducible and might even 
involve human bias. Consequently, these problems contrib-
ute to the low practicability of manual segmentation. Auto-
mated or computer-aided segmentation approaches can solve 
these issues by requiring less labor and producing objective, 
reproducible results for later disease diagnosis and manage-
ment. As a result, automated medical image segmentation 
has been thoroughly researched and has emerged as the 
benchmark.

With the increase in computing power and the quick 
advancement of deep learning technology in recent years, 
natural image segmentation using fully convolutional neural 
networks (FCN) [2] has grown rapidly. In the meantime, 
medical image segmentation remains a formidable chal-
lenge, as medical images are characterized by uneven gray-
scale, significant contrast variation, and substantial noise. 
Since U-Net [3] was published, medical image semantic 
segmentation has also undergone tremendous development.

However, the existing technology for the automated seg-
mentation of medical images lacks sufficient intelligence 
and precision. For multi-organ segmentation, it is inherently 
challenging to differentiate between different organs due to 
overlapping boundaries and intricate connections. Moreover, 
the wide variation in anatomy and low contrast between tis-
sues makes the segmentation task more ambiguous and com-
plex to tackle [4–6]. For lesion segmentation, although the 
tumor does not have any problems in terms of overlapping, 
lesions can arise in any position, unlike organs, which are 
relatively fixed spatially. In addition, tumors exhibit a wider 
range of sizes, shapes, and appearances [7]. Furthermore, 
in many cases, the tumor volume is rather small relative 
to the entire scan, resulting in the dominance of the back-
ground noise [8]. All of these issues lower the segmentation 
accuracy. In clinical practice, even minute inaccuracies in 
medical image segmentation might result in misdiagnosis. 
Therefore, segmentation models based on deep learning 
have significant room for development in this discipline.

Long-range self-attention can be used to enable the net-
work to learn only the truly crucial information [9], such 
as the organ boundaries or tumor-related features. It is an 
attention mechanism for adaptive input selection based on 
the inputs’ features. In deep learning, attention is a biologi-
cally inspired technique designed to mimic cognitive atten-
tion [10]. Different self-attention techniques have been used 
in medical image segmentation [11–13]. They have obtained 
superior performance compared to traditional FCNs because 
of their efficiency in capturing long-range dependencies. 
Despite recent attempts [11–13], self-attention has several 
shortcomings when it comes to medical image segmentation 

since it was designed for Natural Language Process-
ing (NLP). First, it analyzes images as one-dimensional 
sequences, ignoring the structural details required for obtain-
ing morphological features in medical images. Second, since 
3D scans like MRI or CT are too computationally expensive 
with quadratic complexity, most self-attention research is 
2D-based. Third, it disregards the necessity of channel adap-
tation for attention processes. For semantic segmentation 
tasks, different channels usually represent features of differ-
ent objects. Thus, adaptation in channel maps is important 
for attention to build dependencies within channels [12, 14, 
15].

In order to address these issues, this paper introduces 
a novel large-kernel (LK) attention module for enhancing 
medical image segmentation. The LK attention module 
combines self-attention and convolution’s advantages, such 
as long-range dependencies, spatial adaptation, and local 
contextual information, and avoids their disadvantages, such 
as disregarding channel adaptation and computational com-
plexity. In this way, we can spatially focus on details related 
to the segmentation target, such as organs or tumors, in a 
holistic view. Moreover, since each channel usually repre-
sents the features of each organ (as shown in Fig. 5), the 
spatial and channel adaptability makes the feature extraction 
more precise and specific to each organ, which helps resolve 
the ambiguity caused by overlapping boundaries between 
organs. This paper is based on our previous work on MRI 
brain tumor segmentation at the Medical Image Understand-
ing and Analysis Conference (MIUA) [16]. On this basis, we 
optimized the LK attention model, conducted comprehen-
sive ablation experiments to demonstrate its feasibility, and 
explored more efficient design and deployment strategies. 
We also further investigated whether LK attention could 
improve the performance of CT multi-organ segmentation 
to expand the application scope and adaptability of LK atten-
tion in medical imaging and segmentation tasks. The follow-
ing highlights the key contributions of this paper:

• A novel 3D LK attention utilizing decomposed LK con-
volutions was proposed, which combines the advantages 
of convolution and self-attention while avoiding their dis-
advantages.

• A U-Net architecture that efficiently incorporates 3D LK 
attention was proposed for the segmentation of 3D medi-
cal images. By adaptively amplifying the weights of key 
features while reducing the weights of noisy voxels and 
channels, the 3D LK attention-based U-Net can accu-
rately identify the location of various organs and tumor 
subregions.

• In publicly available datasets for evaluating multi-organ 
and tumor segmentation, 3D LK attention-based U-Net 
outperformed state-of-the-art methods in delineating all 
targets.
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• Extensive ablation experiments were performed, and the 
findings validated the effectiveness of the decomposition 
of the 3D LK convolution and investigated the optimal 
deployment and design strategies for the 3D LK attention 
module.

• The proposed 3D LK attention module is easy to inte-
grate into any other neural network. Quantitative studies 
demonstrated that it could effectively improve the accu-
racy of 3D medical image segmentation and provide 
local explanations.

The rest of the article is structured as follows: “Related 
Work” section will briefly review related work. “Method” 
section will detail our segmentation method, including the 
LK attention module and network architecture. “Experi-
ment” section will illustrate the experimental setup, and 
results and discussion will be presented in “Results and 
Discussion” section. The conclusion will be given in the 
final “Conclusion” section.

Related Work

In this section, we will briefly review the recent work related 
to multi-organ segmentation (“Multi-organ Segmentation” 
section) and tumor segmentation (“Tumor Segmentation” sec-
tion), including some applications of self-attention. We will 
also review recent work that adopted the large kernels and com-
paratively present our contribution (“Large Kernels” section).

Multi‑organ Segmentation

Multi-organ segmentation, which comprehensively classifies 
voxels into multiple organ classes rather than just organs or 
other tissues, gives a broader viewpoint on the task of organ 
segmentation. This involves identifying which organ type a 
particular voxel belongs to, in addition to determining if it 
belongs to an organ. Due to the increased data volume and 
image complexity, the automated segmentation of multiple 
organs in 3D medical images is challenging.

A method for segmenting 3D CT images using major-
ity voting was proposed in [17] based on the FCN. In [18], 
a neural network dubbed 3D DSN avoids unnecessary 
computation and overfitting via volume-to-volume learn-
ing, making it suited for applying to cardiac and hepatic 
anatomy. Roth et al. [19] presented a coarse-to-fine method 
for multi-organ segmentation that included two stages. 
The 3D FCN in the first stage extracts candidate regions 
coarsely, whereas the second 3D FCN focuses on potential 
organ region boundaries in a cascaded way, hence minimiz-
ing the number of voxels to be processed. Similar research 
was conducted by [20] employing cascaded 3D FCNs for 
dual-energy CT. [21] presented a 3D-U-JAPA-net based on 

transfer learning, whereas [22] created a semi-supervised 
network to fully exploit the unlabeled data. To save GPU 
memory, [23] suggested combining 2D and 3D models, per-
forming segmentation using 2D convolutions and extracting 
spatial information from 3D models.

To comprehensively benchmark multi-organ segmenta-
tion methods for the abdomen, the first Fast and Low GPU 
Memory Abdominal Organ Segmentation (FLARE) chal-
lenge was recently organized [24]. In this challenge, 23 
methods are benchmarked on a large and diverse dataset of 
abdominal CT, including 511 cases from 11 medical centers. 
The winning method outperforms the baseline with 19 times 
faster inference, using coarse-to-fine U-Nets with mixed 
pyramid pooling [25]. Although FCNs have been proven 
to be very successful, learning long-range spatial relation-
ships is challenging due to the localization of convolutional 
layers. The UNETR architecture was proposed by [26], who 
was inspired by transformers used in NLP. The transformer 
acting as an encoder enables U-Net to collect global infor-
mation and model long-range spatial relationships, leading 
to superior segmentation results. However, it converted the 
3D anatomical structure segmentation to a sequence-to-
sequence prediction problem.

Tumor Segmentation

Identification of tumors can be aided by image analysis 
across various imaging modalities. The Brain Tumor Seg-
mentation Challenge (BraTS) compiles a well-known public 
multi-modal MRI dataset. The BraTS challenge compares 
cutting-edge brain tumor segmentation methods annually 
[27–29]. T1-weighted (T1), post-contrast T1-weighted 
(T1ce), T2-weighted (T2), and T2 fluid attenuated inver-
sion recovery (FLAIR) 3D MRI modalities are available for 
each patient case.

Since 2014, deep learning algorithms have been exten-
sively researched for tumor segmentation in the BraTS chal-
lenge [9, 30–39]. Myronenko [32] won the BraTS 2018 com-
petition by training an asymmetrical U-Net with a broader 
encoder and an additional variational decoder branch that 
provided further regularization. A two-stage cascaded asym-
metrical U-Net comparable to Myronenko [32] was pro-
posed by Jiang et al. [34]. The first step generated a coarse 
prediction, whereas the second stage utilized a larger net-
work to refine the outcome. In order to automatically adapt 
the traditional U-Net to a particular dataset with just minor 
alterations, Isensee et al. [33] adopted a self-configuring 
framework called nnU-Net. Wang et al. [35] suggested a 
modality-pairing learning method that uses the layer connec-
tion on parallel branches to extract the complicated interac-
tions and rich information between various MRI modalities.

A recent study [37] proposed an optimized U-Net architec-
ture for the BraTS challenge. To find the optimal architecture 
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and learning strategy, extensive ablation studies were con-
ducted to test: U-Net depth, number of convolutional chan-
nels, decoder attention, residual connections, losses, and 
post-processing strategy. Similarly, [38] developed a novel 
brain tumor segmentation method by improving nnU-Net, 
including using a larger network, replacing batch normaliza-
tion with group normalization, and using axial attention in 
the decoder. In addition, [39] proposed a trusted brain tumor 
segmentation network, which could generate robust segmen-
tation results and reliable uncertainty estimates, modeled 
using subjective logic theory. The trusted framework learns 
to gather evidence from the features, endowing the model 
with reliability for out-of-distribution samples. Jia et al. [9] 
created the Hybrid High-resolution and Non-local Feature 
Network (H2NF-Net), which used parallel multi-scale con-
volutional blocks to utilize multi-scale features and preserve 
high-resolution features representation simultaneously. The 
self-attention mechanism implemented in this study permits 
the aggregation of local information across spatial locations 
and the acquisition of long-range dependencies. However, 
this attention can only operate on a set of feature reconstruc-
tion bases rather than high-resolution feature maps.

Large Kernels

In the recent past, the contribution of large kernels to natural 
image segmentation was first highlighted in [40]. However, 
instead of using additional large kernels to capture long-
range dependencies, this paper directly used large kernels 
to extract features, so a refinement module was required. 
This idea was extended by [41], using re-parameterization 
to scale up the kernels to 31 × 31 . The proposed RepLKNet 
[41] achieved comparable or better results than transformers 
on classification, semantic segmentation, and object detec-
tion of natural images. On the other hand, Yang et al. [42] 
utilized large kernels to improve the performance of spatial 
pyramid pooling and demonstrated the improvement in the 
road extraction task.

Several concurrent works also adopted large kernels as 
attention mechanisms, including LKASR [43] for light-
weight image super-resolution and LKD-Net [44] for single 
Image dehazing. However, all related papers only proved 
that large kernels were effective on natural images, and no 
study had attempted to employ large kernels in 3D due to 
computational cost constraints as mentioned in the previous 
section. The only attempt at medical image segmentation 
was [45], which proposed an anisotropic network for MRI 
brain tumor segmentation. This paper ingeniously com-
bined 2D large-kernel convolutions on two different axes to 
achieve anisotropic 3D segmentation, but also ignored the 
holistic 3D anatomical structure.

Therefore, this work is the first to demonstrate the fea-
sibility and effectiveness of 3D large-kernel attention for a 

variety of segmentation tasks across different medical image 
modalities. We present guidelines on how to efficiently 
implement 3D large-kernel attention and show that it is able 
to provide 3D local explanations that are only reasonable for 
three-dimensional medical scans.

Method

Our method is detailed in this section, including the new LK 
attention module (“LK Attention” section) and the modified 
U-Net based on the LK attention module for 3D medical 
image segmentation (“LK Attention-Based U-Net” section).

LK Attention

Numerous studies have demonstrated that the integration of 
diverse attention mechanisms has the potential to enhance 
segmentation performance. The attention map reflects the rel-
ative significance across the feature space, which necessarily 
involves the capture of correlations between various locations. 
The self-attention can be used to discover long-range depend-
encies, but it has several disadvantages, as stated in the previ-
ous section. Applying large-kernel convolution to establish 
long-distance dependencies and generate the attention map 
is an alternative method [14, 15, 46–49]. Nevertheless, this 
strategy substantially increases the computational cost.

To address these limitations and maximize the benefits of 
self-attention and large-kernel (LK) convolution, we devel-
oped an LK attention module (shown in Fig. 1). Assuming K 
is the number of channels, a K × K × K LK convolution was 
decomposed into a (2d − 1) × (2d − 1) × (2d − 1) depth-wise 
(DW) convolution, a K

d
×

K

d
×

K

d
 depth-wise dilated (DWD 

Conv) convolution with dilation of d and a 1 × 1 × 1 convolu-
tion. For an input with dimensions of H ×W × D × C , the 
number of parameters ( NPRM ) and the number of floating-
point operations (FLOPs) for the original LK convolution 
and its decomposition can be calculated as follows:

where O and D represent the original LK convolution and 
decomposed LK convolution, respectively. To determine the 

(1)NPRM,O = C × (C × (K × K × K) + 1),

(2)FLOPsO = C × (C × (K × K × K) + 1) × H ×W × D,

(3)
NPRM,D = C × ((2d − 1) × (2d − 1) × (2d − 1)

+
K

d
×
K

d
×
K

d
+ C + 3),

(4)
FLOPsD = C × ((2d − 1) × (2d − 1) × (2d − 1)

+
K

d
×
K

d
×
K

d
+ C + 3) × H ×W × D,
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optimal d such that NPRM is minimal for a particular kernel 
size K, we set the first derivative of Eq. (3) to 0 and then 
solved as follows:

In Eq. (5), the superscript ∗ distinguishes dilation d 
from derivation d. For K = 21 , solving Eq. (5) numerically 
yielded an optimal approximation of d of approximately 
3.4159. As shown in Table 1, the number of parameters can 
be significantly lowered with a dilation rate of 3. We can 
also observe that as the number of channels increases, the 
decomposition becomes more efficient.

The entire LK attention module is formulated as follows:

where A denotes the attention map, and GN is the group nor-
malization. �lReLU and �sigmoid denote to leaky ReLU activa-
tion function and sigmoid activation function, respectively. 
The LK Attention module’s output is formed by multiplying 

(5)
d

dd∗

(
C

(
(2d∗ − 1)

3
+

(
K

d∗

)3

+ C + 3

))
= 0,

(6)24d2 − 24d −
3K3

d4
+ 6 = 0.

(7)
A = �sigmoid

(
Conv1×1×1

(
ConvDW

(
ConvDWD

(
�lReLU(GN(Input))

))))
,

(8)
Output = A⊗

(
𝜎lReLU(GN(Input))

)
+ 𝜎lReLU(GN(Input)),

and summing the input feature map and the attention map 
element by element. Using the LK attention module, we can 
extract long-range dependencies within a feature space and 
generate the attention map with minimal computing com-
plexity and parameters.

LK Attention‑Based U‑Net

The U-Net [3] has served as a basis for numerous studies on 
medical image processing. Its capacity to capture fine object 
features utilizing skip connection is particularly advanta-
geous for precise segmentation. As shown in Fig. 2, the 3D 
LK attention-based U-Net architecture is based on the U-Net 

Fig. 1  LK attention module. The decomposed LK convolution is 
applied on the feature map after group normalization (GN) and leaky 
ReLU (lReLU). The attention map is obtained by sigmoid activation, 
which is then multiplied and summed elementwise with the origi-
nal feature map to generate the module output. The figure shows a 
representative decomposition of a 21 × 21 × 21 convolution into 

a 5 × 5 × 5 depth-wise (DW) convolution, a 7 × 7 × 7 depth-wise 
dilated (DWD) convolution with dilation of 3, and a 1 × 1 × 1 convo-
lution. The position of the kernel is indicated by colored voxels, and 
the yellow voxels show the kernel’s centers. (The figure only illus-
trates a corner of the feature space of the decomposed LK convolu-
tion and disregards the zero-padding)

Table 1  Complexity analysis: comparison of the number of param-
eters N

PRM
 for a 21 × 21 × 21 convolution

The subscripts O and D denote the original convolution and the pro-
posed decomposed convolution, respectively. C: number of channels

C N
PRM,O

N
PRM,D

N
PRM,D

∕N
PRM,O

32 9.48 M 16.10 k 0.17%
64 37.94 M 34.24 k 0.09%
128 151.75 M 76.67 k 0.05%
256 606.99 M 186.11 k 0.03%
512 2427.98 M 503.30 k 0.02%
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and comprises an encoding path of feature extraction and a 
decoding path of inference with the skip connection.

Encoder

The encoder is composed of convolution blocks of six 
scales. Each block contains two convolution layers with a 
3 × 3 × 3 kernel, GN, and lReLU (with a slope of 0.01). The 
input data of I channels is convoluted by 32 kernels to gen-
erate the initial 32 feature maps, and the channel number I 
corresponds to the number of imaging modalities. Between 
the two scales, a stride-2 3 × 3 × 3 convolution is used to 

downsample the feature map by 2 and increase the number 
of channels to a maximum of 512. The deepest feature map 
is 1/32 of the original size.

LK Attention‑Based Decoder

The architecture of the decoder is identical to that of the 
encoder, using 4 × 4 × 4 transposed convolution for upsam-
pling. The LK attention module can be applied to each 
upsampled feature map to form a fully applied (Full) net-
work as in our previous paper. The details of the LK atten-
tion module for the Full network are shown in Table 2. At 

Fig. 2  The network architecture 
of our proposed LK attention-
based U-Net

Table 2  Details of LK attention 
modules in the Full LK 
attention-based U-Net

Scale DW Conv DWD Conv Equal LK Conv

Kernel Padding Kernel Dilation Padding Kernel

10×12×8 (3, 3, 3) (1, 1, 1) (3, 3, 3) (2, 2, 2) (2, 2, 2) (6, 6, 6)
20×24×16 (3, 3, 3) (1, 1, 1) (3, 3, 3) (2, 2, 2) (2, 2, 2) (6, 6, 6)
40×48×32 (3, 3, 3) (1, 1, 1) (5, 5, 5) (2, 2, 2) (4, 4, 4) (10, 10, 10)
80×96×64 (5, 5, 5) (2, 2, 2) (5, 5, 5) (3, 3, 3) (6, 6, 6) (15, 15, 15)
160×192×128 (5, 5, 5) (2, 2, 2) (7, 7, 7) (3, 3, 3) (9, 9, 9) (21, 21, 21)
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the last layer, a 1 × 1 × 1 convolution is applied to compress 
the channel number O according to the number of segmen-
tation classes, followed by the softmax/sigmoid to gener-
ate probability maps for different organs or tumor regions. 
Additional softmax/sigmoid outputs were added to all scales 
except the two lowest levels for deep supervision and boost 
gradient propagation.

Experiment

The LK attention is evaluated on standard benchmarks: CT-
ORG [50] for multi-organ segmentation and BraTS 2020 for 
tumor segmentation. We first conducted extensive ablation 
experiments to evaluate the proposed module’s effectiveness 
thoroughly.

Data Acquisition

The CT-ORG [50] dataset consists of 140 CT images of 
six organ classes, including liver, lungs, bladder, kidneys, 
bones, and brain. Of the total 140 image volumes, 131 were 
dedicated CTs, and 9 were CT components collected dur-
ing PET-CT examinations. Each image was acquired from 
a different patient. Most images displayed benign or malig-
nant liver lesions; some showed metastasis from breast, 
colon, bone, and lung cancers. The images were collected 
from a variety of sources, including low-dose, high-dose, 
contrast, and non-contrast CT, with dedicated CTs ranging 
from 0.56 to 1 mm in axial resolution. Some images were 
received from the Liver Tumor Segmentation Challenge 
(LiTS) [51]. With the help of ITK-SNAP and morphological 

segmentation, manual labeling of soft tissues was conducted 
for all images. However, the manual correction for annota-
tions of lungs and bones was only conducted on the test data-
set (comprising 21 cases). Therefore, we tested our model on 
these 21 cases as suggested by the provider of the dataset.

The BraTS 2020 dataset was collected using various clin-
ical protocols and scanners from different institutions. The 
ground truth (GT) labels are annotated by one to four raters 
and approved by specialists, which include the GD-enhanc-
ing tumor (ET), peritumoral edema (ED), and necrotic and 
non-enhancing tumor core (NCR + NET). The segmentation 
results are evaluated on three subregions of the tumor: the 
GD-enhancing tumor (ET), the tumor core (TC = ET + NCR 
+ NET), and the whole tumor (WT = ET + NCR + NET 
+ ED). The image modalities T1, T1ce, T2, and T2-FLAIR 
are co-registered to the same template with an image size 
of 240 × 240 × 155 . Afterward, they are interpolated to the 
same resolution ( 1mm3 ) and skull-stripped. Annotations are 
only available for the training set (369 cases). The evalua-
tion of the independent validation set (125 cases) should be 
conducted on the official online platform (CBICA’s IPP1). 
Details of the two datasets are summarized in Table 3.

Pre‑processing and Data Augmentation

For the CT-ORG dataset, our network takes an image vol-
ume of 128 × 128 × 256 as input. To reduce GPU memory 
usage, all image volumes were resampled to 3 mm3 . Resa-
mpling uses Gaussian smoothing to avoid aliasing artifacts, 
followed by resolution interpolation. All image volumes for 
the BraTS 2020 dataset are cropped to 160 × 192 × 128 to 
reduce computational waste on background voxels. All input 
volumes are then pre-processed by intensity normalization.

Various data augmentation techniques have been applied 
to artificially increase dataset size and minimize the risk 
of overfitting. All augmentations are applied on-the-fly 
throughout the training to expand the training dataset indefi-
nitely. Furthermore, to increase the variability of the gen-
erated data, all augmentations are applied randomly based 
on preset probabilities, and most parameters are also drawn 
randomly (see Table 4 for details).

Table 3  Details of datasets Dataset Modality Labels Classes Training set Test set

CT-ORG CT Organs 6 119 21
BraTS 2020 MRI (4 modalities) Brain tumors 3 369 125

Table 4  Details of data augmentation strategies

Methods Probability Range

Brightness 30% U(0.7, 1.3)
Contrast 15% U(0.6, 1.4)
Gaussian Noise 15% variance � ∼ U(0, 1)

Gaussian Blur 20% kernel � ∼ U(0.5, 1.5)

Gamma Augmentation 15% � ∼ U(0.7, 1.5)

Scaling 30% U(0.65, 1.6)
Rotation 30% U(−30, 30)

Elastic Transform 30% � ∼ U(5, 10), � = 3�

Flipping 50% along all axes 1 CBICA’s Image Processing Portal (https:// ipp. cbica. upenn. edu)

https://ipp.cbica.upenn.edu
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Training and Optimization

The LK attention-based U-Net is trained separately on CT-
ORG and BraTS 2020 training datasets. For the CT-ORG 
training set (119 cases), the network parameters are opti-
mized for weighted soft Dice loss. The weight for each seg-
mentation class is one minus the ratio of foreground voxels 
to background voxels. For the BraTS 2020 training set (369 
cases), binary cross-entropy (BCE) and soft Dice losses are 
utilized.

The adaptive moment estimator (Adam) optimizer was 
applied to optimize the parameters of the network. Each 
training process had 200 epochs with a batch size of 1 and an 
initial learning rate of 0.0003. All experiments were imple-
mented with Pytorch 1.10 on an NVIDIA GeForce RTX 
3090 GPU of 24GB VRAM.

Evaluation Metrics

The segmentation results were evaluated using the Dice 
score and 95 percent Hausdorff distance (HD95), which are 
defined as:

where X  and Y are sets of GT and prediction, and P repre-
sents the percentile. HD95 indicates the 95th percentile of 
maximum distances between two boundaries, whereas the 
Dice score measures spatial overlap between the segmenta-
tion result and the GT annotation. The final performance of 
LK attention-based U-Net was evaluated using independent 
test sets from CT-ORG (21 cases) and BraTS 2020 (125 
cases), respectively. The brain class was excluded from 
evaluation because only 8 of the 119 training CT images 
had complete coverage of the patient’s head.

Results and Discussion

This section will first experimentally demonstrate the effec-
tiveness of our LK attention module design (“Qualitative 
Analysis of Ablation Experiments” section), and then quan-
titatively analyze the segmentation results (“Quantitative 
Analysis of Segmentation” section). The limitations of the 
proposed method will be also discussed in the last subsec-
tion (“Limitations” section).

(9)Dice =
2|X ∩ Y|
|X| + |Y|

,

(10)

HD95 = P95

(
max

(
max
x∈X

min
y∈Y

|y − x|, max
y∈Y

min
x∈X

|x − y|
))

,

Qualitative Analysis of Ablation Experiments

For the ablation study, the CT-ORG test dataset was used for 
evaluation, and the network without any attention module 
was adopted as the base model. We first verify the effective-
ness of LK convolutional decomposition and then look for 
efficient ways to compute the attention map through different  
model variants.

We conducted ablation experiments by adding different 
single attention modules to the base network. By comparing 
the attention module using the original LK convolution with 
the attention module using the decomposed LK convolution, 
the decomposition of the LK convolution was proven to be 
effective and efficient. The comparative results in Table 5 
show that the segmentation results of the two attention mod-
ules were very close at both the deepest and shallowest lev-
els. The changes in the averaged Dice score were not signifi-
cant, verified by paired t-tests in the test set, giving p-values 
of 0.094 and 0.122, respectively. On the other hand, we can 
see that the decomposition of LK convolution significantly 
reduced the number of added parameters to about 0.5% and 
0.2% of the original, respectively.

The LK attention module can be applied to each upsam-
pled feature map. However, the additional computational 
cost of a fully applied (Full) network is high, and the effi-
ciency of its design deserves to be analyzed. Therefore, we 
explored many variants of attention modules with different 
sizes and positions, as shown in Table 6. Applying decom-
posed LK attention modules with different kernel sizes at 
the same location ( 160 × 192 × 128 ) indicated that larger 
kernel coverage leads to better segmentation performance. 
Kernel coverage refers to the ratio of the kernel size to the 
feature space size. This is reasonable because convolutions 
with larger kernels capture correlations across longer dis-
tances more effectively. While decomposed LK convolu-
tions with the same kernel size (6, 6, 6) at different locations 
show that the LK attention module worked best in the mid-
dle of the decoder. We can see that when the LK attention 
module of fixed kernel size was applied to larger scales, 

Table 5  Quantitative results to compare the decomposed (D) 3D LK 
convolution with the original (O) 3D LK convolution

Metrics are shown as mean (standard deviation). mean: averaged Dice 
scores of all organs/subregions

Scale LK Conv N
PRM

(k) Dice↑
mean

None (Base) N/A 101017.22 91.43 (1.66)
10×12×8 O +56623.62 90.72 (2.30)
10×12×8 D +291.33 90.63 (2.07)
160×192×128 O +9483.30 91.20 (1.98)
160×192×128 D +16.10 91.25 (1.95)
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its segmentation performance initially increased but then 
started to decrease slightly due to the significant reduction 
of kernel coverage at high levels. Therefore, to balance the 
effects of kernel size and position, we applied the largest LK 
attention module in the middle, which achieved the highest 
Dice score. This observation was statistically verified by 
pair t-tests as shown in Table 6. To conclude, the network 
structure utilizing LK attention in the middle of the decoder 
(Mid) is the most effective and efficient, with the number of 
added parameters being nearly one-sixth of the Full network.

Quantitative Analysis of Segmentation

The evaluation of the segmentation performance of the pro-
posed methods was conducted and compared with state-of-
the-art methods, including CBAM [15] using an independent 
CT-ORG test set (21 cases) and BraTS 2020 validation set 
(125 cases), which are shown in Tables 7, 8, 9, and 10.

Quantitative results showed that the proposed networks 
outperformed all state-of-the-art methods in segmenting all 
organs and tumor subregions, including advanced U-Net 
(nnU-Net [33]) and Transformer (UNETR [26]). Specifi-
cally, the Mid-type network among them was the best-per-
forming approach among them. For multi-organ segmen-
tation, the proposed method achieved the highest Dice 
score and the lowest HD95 score in all organs, especially 
the lungs. This might be attributed to the fact that the 3D 
LK attention module emphasizes lung-related features both 
spatially and individually, thereby alleviating the problem 
of overlapping boundaries with other organs, such as the 
liver. In terms of the Dice score, the Mid network was only 
slightly inferior to the Base network in segmenting the blad-
der. We found that adding any attention mechanism would 
cause an insignificant decrease in Dice for bladder segmen-
tation. This might be due to the uneven distribution of atten-
tion to fine organs, resulting in a greater concentration of 

Table 6  Quantitative results 
to compare 3D LK attention 
modules of different kernel 
sizes at different locations in the 
network

Metrics are shown as mean (standard deviation). mean: averaged Dice scores of all organs/subregions
a p-value < 0.05 compared with Mid network by paired t-test
b p-value < 0.05 compared with Base network by paired t-test

Scale Equal LK Conv Kernel Coverage NPRM (k) Dice↑
mean

None (Base) N/A N/A 101017.22 91.43 (1.66)a

10×12×8 (6, 6, 6) 22.50% +291.33 90.63 (2.07)a,b

20×24×16 (6, 6, 6) 2.81% +80.13 90.84 (1.90)a,b

40×48×32 (6, 6, 6) 0.35% +23.68 91.32 (2.24)a

80×96×64 (6, 6, 6) 0.04% +7.74 91.02 (1.13)a

160×192×128 (6, 6, 6) 0.01% +2.85 90.61 (2.32)a,b

160×192×128 (10, 10, 10) 0.03% +5.98 90.83 (2.28)a,b

160×192×128 (15, 15, 15) 0.09% +9.12 91.13 (1.85)a,b

160×192×128 (21, 21, 21) 0.24% +16.10 91.25 (1.69)a

40×48× 32 (Mid) (21, 21, 21) 15.07% +76.67 92.15 (1.50)b

All (Full) see Table 2 N/A +444.06 91.69 (1.81)a

Table 7  Quantitative results 
(Dice) of proposed methods 
compared to state-of-the-art 
methods for CT-ORG

Metrics are shown as mean (standard deviation). mean: averaged Dice scores of all organs/subregions. Bold 
numbers are the best results
a p-value < 0.05 compared with Mid network by paired t-test

Method Dice↑

liver bladder lungs kidneys bone mean

U-Net [3] 94.83 (2.56)a 76.79 (17.89)a 93.85 (4.55)a 89.35 (4.01)a 85.43 (6.27)a 88.05 (5.77)a

nnU-Net [33] 95.48 (1.45)a 85.00 (3.69)a 95.21 (3.47)a 91.74 (2.86)a 87.84 (3.15)a 91.25 (1.89)a

UNETR [26] 95.88 (1.24)a 86.20 (3.20)a 96.21 (2.66)a 91.98 (1.34)a 88.01 (1.71)a 91.33 (1.72)a

Ours (Base) 95.81 (1.63)a 86.81 (2.91) 94.23 (2.86)a 92.11 (2.13)a 88.20 (2.00)a 91.43 (1.20)a

Ours (CBAM) 95.92 (1.27)a 86.63 (3.58) 94.48 (2.94)a 91.57 (1.94)a 88.15 (1.93)a 91.35 (1.69)a

Ours (Full) 96.12 (1.10) 86.63 (2.93) 95.56 (2.00)a 91.70 (2.08)a 88.45 (1.31) 91.69 (1.81)a

Ours (Mid) 96.12 (1.07) 86.48 (2.68) 97.40 (1.85) 92.26 (1.46) 88.51 (1.99) 92.15 (1.50)
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computing power on others. As for the brain tumor segmen-
tation, the Mid network performed remarkably well regard-
ing ET’s HD95 score, which might also be due to the LK 
attention module adding feature weights to the correct tumor 
subregions. Representative segmentation results were also 
compared visually in Figs. 3 and 4, which further proved the 
effectiveness of the LK attention module.

Comparing the visual segmentation results of the Base 
and Mid networks, the performance improvement due 
to the presence of the LK attention module can be seen 

(as indicated by pointers). Bones, lungs, ET, and TC had 
more significant improvements which were also shown in 
Tables 11 and 12. The improvements brought by the LK 
attention module on all segmentation targets were statisti-
cally validated, except for bladder and ET. The LK attention 
module might cause an insignificant accuracy decrease in 
segmenting bladders according to the test. As for the ET, 
since BraTS 2020 set a penalty of Dice = 0 and HD95 = 
373.13 for false positives of ET, the paired t-test cannot 
verify the change in ET. But overall, this statistic validated 

Table 8  Quantitative results 
(HD95) of proposed methods 
compared to state-of-the-art 
methods for CT-ORG

 Metrics are shown as mean (standard deviation). mean: averaged Dice scores of all organs/subregions. 
Bold numbers are the best results
a p-value < 0.05 compared with Mid network by paired t-test 

Method HD95↓

liver bladder lungs kidneys bone mean

U-Net [3] 3.71 (4.56)a 4.64 (8.33)a 14.10 (9.49)a 4.87 (2.92)a 6.27 (2.53)a 6.52 (6.07)a

nnU-Net [33] 1.81 (2.69)a 3.02 (2.55)a 9.67 (5.82)a 3.11 (1.94)a 4.25 (1.30)a 4.35 (3.67)a

UNETR [26] 1.60 (1.79)a 3.05 (3.03)a 8.93 (6.38)a 3.44 (1.84)a 4.77 (1.61)a 4.18 (2.90)a

Ours (Base) 1.64 (1.54)a 2.83 (3.04) 10.38 (5.63)a 2.90 (1.65)a 4.93 (1.72)a 4.52 (2.68)a

Ours (CBAM) 1.55 (1.57) 2.99 (3.39) 10.00 (5.46)a 3.68 (2.89)a 4.43 (1.54)a 4.53 (2.37)a

Ours (Full) 1.56 (1.75) 2.97 (3.00) 9.56 (5.26)a 3.24 (2.44)a 4.40 (1.47)a 4.35 (2.65)a

Ours (Mid) 1.53 (1.56) 2.93 (2.85) 6.54 (5.30) 2.80 (1.81) 4.12 (1.43) 3.64 (2.23)

Table 9  Quantitative results 
(Dice) of proposed methods 
compared to state-of-the-art 
methods for BraTS 2020

Metrics are shown as mean (standard deviation). mean: averaged Dice scores of all organs/subregions. Bold 
numbers are the best results
a p-value < 0.05 compared with Mid network by paired t-test

Method Dice↑

ET WT TC mean

U-Net [3] 64.77 (31.80)a 84.31 (8.98)a 72.61 (23.00)a 73.90 (16.31)a

nnU-Net [33] 77.07 (12.80)a 90.10 (2.52)a 84.26 (3.89)a 83.81 (3.99)a

UNETR [26] 78.15 (13.06)a 90.29 (2.04)a 84.46 (4.25)a 84.30 (3.58)a

Ours (Base) 77.94 (11.67)a 90.18 (2.08)a 83.99 (3.53)a 84.04 (3.00)a

Ours (Full) 78.01 (11.87)a 90.31 (2.20)a 84.25 (3.82)a 84.19 (3.35)a

Ours (Mid) 78.94 (11.88) 90.68 (2.16) 84.82 (3.34) 84.81 (3.17)

Table 10  Quantitative results 
(HD95) of proposed methods 
compared to state-of-the-art 
methods for BraTS 2020

Metrics are shown as mean (standard deviation). mean: averaged Dice scores of all organs/subregions. Bold 
numbers are the best results
a p-value < 0.05 compared with Mid network by paired t-test

Method HD95↓

ET WT TC mean

U-Net [3] 41.35 (113.26)a 13.85 (11.23)a 18.57 (27.15)a 24.59 (45.79)a

nnU-Net [33] 35.10 (33.85)a 4.89 (2.74)a 5.91 (4.86)a 15.30 (8.01)a

UNETR [26] 26.58 (32.38)a 4.18 (2.82)a 5.07 (4.05) 12.03 (7.85)a

Ours (Base) 29.14 (28.66)a 4.77 (2.53)a 6.01 (4.12)a 13.31 (6.94)a

Ours (Full) 26.27 (25.90) 4.56 (2.50)a 5.87 (4.32)a 12.23 (6.38)a

Ours (Mid) 25.22 (25.91) 3.65 (2.09) 5.02 (3.75) 11.30 (6.84)
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the effectiveness of the adaptive feature selection of the LK 
attention module, as visualized in Fig. 5. In addition, accord-
ing to Table 6, the performance improvement brought by 
LK attention only sacrificed negligible efficiency, explicitly 
increasing the model parameters by only 0.0759%.

Furthermore, high-performance deep learning mod-
els usually produce incomprehensible results for humans. 
While these models can yield better efficiencies than 
humans, it is not easy to express intuitive explanations to 
justify their findings or to derive additional clinical insights 

Fig. 3  Representative visual results of proposed methods for CT-ORG. From left to right: CT scan, ground truth (GT), and predictions. The 
labels are liver (red), gladder (green), lungs (blue), kidneys (yellow), and bone (cyan)

Fig. 4  Representative visual results of proposed methods for BraTS 2020. From left to right: four MRI modalities, ground truth (GT), and pre-
dictions. The labels are enhancing tumor (yellow), edema (green), and necrotic and non-enhancing tumor (red)
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from these computational “black boxes” [52]. Given the 
importance of explainability in the clinical domain, our pro-
posed LK attention module proved that deep learning mod-
els could identify appropriate regions in medical images 
without overemphasizing unimportant findings. The local 
explanation furnished directly by the LK attention map 
(in Fig. 5) argued that there was medical reasoning for the 
focused parts of the CT scan, which could facilitate clini-
cians’ decision-making.

Limitations

Our method still has some limitations. First, as shown in Fig. 3, 
the segmentation results showed unsmooth edges because their 
resolution is lower than GT due to resampling. In future work, 
the resolution of the segmentation mask can be improved by 
resampling the image to a higher resolution and performing 
segmentation with sliding windows. Moreover, in the sec-
ond example of Fig. 4, the TC was not accurately segmented, 

Fig. 5  A representative visual effect of the LK attention module. a The CT scan input. b The upsampled feature map at the middle scale of the 
decoder. c The attention map. d The feature map after multiplying with the attention map. e The GT labels 

Table 11  Improvement in quantitative results due to the LK attention module for CT-ORG

Dice↑ HD95↓

liver bladder lungs kidneys bone mean liver bladder lungs kidneys bone mean

Ours (Base) 95.81 86.81 94.23 92.11 88.20 91.43 1.64 2.83 10.38 2.80 4.93 4.52
Ours (Mid) 96.12 86.48 97.40 92.26 88.51 92.15 1.53 2.93 6.54 2.80 4.12 3.64
Improvement 0.3% –0.4% 3.4% 0.2% 0.4% 0.8% –7.1% 3.5% –37.0% 0.0% –16.6% –19.5%
p-value 0.020 0.081 0.040 0.026 0.031 0.030 0.021 0.075 0.025 0.039 0.015 0.028

Table 12  Improvement in 
quantitative results due to the 
LK attention module for BraTS 
2020

Dice↑ HD95↓

ET WT TC mean ET WT TC mean

Ours (Base) 77.94 90.18 83.99 84.04 29.14 4.77 6.01 13.31
Ours (Mid) 78.94 90.68 84.82 84.81 25.22 3.65 5.02 11.30
Improvement 1.3% 0.5% 1.0% 0.9% –13.4% –23.4% 16.5% –15.1%
p-value 0.286 0.013 0.013 0.015 0.095 0.037 0.044 0.65
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which might be due to the blurring of the T2 modality. This 
demonstrates the importance of data integrity for the accurate 
segmentation of medical images. This can be solved by more 
diverse data acquisition and data augmentation or by training 
generative networks to synthesize clear images.

Conclusion

This paper introduced LK attention for 3D medical image 
segmentation, which can be easily incorporated into any 
CNN such as U-Net. The 3D LK attention module com-
bines the advantages of biologically inspired self-attention 
and convolution, exploits local contextual information, 
long-range dependencies, spatial and channel adaptation, 
and uses convolutional decomposition to eliminate the dis-
advantage of high computational cost. Ablation experi-
ments on the CT-ORG dataset first verified the feasibility 
of the decomposition of 3D LK convolutions and secondly 
explored the most efficient deployment design of the 3D 
LK attention module. The quantitative results of ablation 
learning indicated that incorporating the 3D LK attention 
module in the middle of the decoder achieved optimal 
performance. The Mid-type LK attention-based U-Net 
achieved state-of-the-art performance on both multi-organ 
and tumor segmentation compared to advanced CNN and 
Transformer-based methods. Segmentation results of 
CT-ORG and BraTS 2020 datasets showed that the 3D 
LK attention module improved predictions for all organs 
and tumor subregions except the bladder, especially for 
lung, ET, and TC. In addition, the 3D LK attention mod-
ule was proven to be effective in adaptively selecting 
important features and suppressing noise, which provided 
local explanations of the model’s prediction. Overall, our 
method shows promise that can be extended into research 
in other brain diseases, e.g., ageing and neurodegenerative 
disorders [53], by combining with transfer learning [54] 
and graph neural networks [55].

However, some challenges remained. First, the addi-
tion of attention caused the scattered computing power 
for some fine targets such as the bladder. Thus, the LK 
attention module can be further customized for multi-
target segmentation. Second, for large medical images, 
better sampling or training strategies can be used to fur-
ther improve the resolution of the segmentation results. 
Furthermore, since the low quality of the images can sig-
nificantly reduce the segmentation accuracy, more com-
prehensive data augmentation and data harmonization [56] 
strategies and larger training datasets can be considered, 
or a generative network can be used to synthesize high-
quality images [57, 58]. In addition, we plan to validate 
whether the superior performance of our method also 
holds in newly released datasets.
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