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Abstract

Integrating diverse metabolomics data for molecular epidemiology analyses provides both opportuni-

ties and challenges in the field of human health research. Combining patient cohorts may improve

power and sensitivity of analyses but is challenging due to significant technical and analytical vari-

ability. Additionally, current systems for the storage and analysis of metabolomics data suffer from

scalability, query-ability, and integration issues that limit their adoption for molecular epidemiological

research. Here, a novel platform for integrative metabolomics is developed, which addresses issues

of storage, harmonisation, querying, scaling, and analysis of large-scale metabolomics data. Its use

is demonstrated through an investigation of molecular trends of ageing in an integrated four-cohort

dataset where the advantages and disadvantages of combining balanced and unbalanced cohorts are

explored, and robust metabolite trends are successfully identified and shown to be concordant with

previous studies.
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Chapter 1

Introduction

1.1 Background

Metabolomics is the study of small-molecule (< 1kDa) metabolites in biological samples using various

analytical platforms, and has a wide range of clinical and pre-clinical uses, including epidemiology,

drug discovery, biomarker discovery, precision medicine, toxicology, and nutrition (X.-W. Zhang et al.

2020). Metabolomics is a ‘top-down’ systems biology approach, generating large amounts of complex

data, and it would be beneficial to be able to integrate this data together to increase study sample size

(n) and power, and to simplify retrieval of stratified datasets for reproducible and user-friendly analy-

sis. This thesis aims to develop a scalable, robust, user-friendly, and extensible platform for researchers

to integrate metabolomics data from multiple studies and platforms. To achieve this, computational

approaches for scalable, robust, and query-able storage of metabolomics data are investigated and im-

plemented, as well as user-friendly and flexible tools for harmonising metabolomics data from disparate

sources, integrating and stratifying the metabolomics data for different experimental purposes, and

finally analysing the data with robust statistical methods and visualisations. The aim is to develop a

platform to facilitate researchers to perform the steps necessary for multi-cohort metabolomics data

integration, without requiring the rediscovery or re-implementation of these methods themselves. To

demonstrate the utility of the developed platform, a multi-cohort analysis of metabolites associated

with age is undertaken and the results compared with individual-cohort analyses.

1.1.1 Metabolomics

The most commonly used metabolomics platforms are 1H nuclear magnetic resonance spectroscopy

(NMR), liquid-chromatography mass spectrometry (LC-MS), and gas-chromatography mass spectrom-

etry (GC-MS). To understand the challenges of integrating metabolomics data an introduction to

metabolomics and metabolomics data analysis is required.
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1H nuclear magnetic resonance (NMR)

Nuclear magnetic resonance spectroscopy (NMR) allows the determination of molecular structures by

the analysis of nuclear spins in the presence of a large magnetic field. The measured relaxation times

can be used for analysing the molecular composition of biofluids (or tissues when using HRMAS NMR)

(A.-H. Emwas et al. 2019). The NMR data used in this thesis is the result of 1H NMR analysis, (or

’proton NMR’).

1H NMR spectroscopy is a robust, reproducible, non-invasive, and quantitative bio-analytical tech-

nology, that can provide structural information on a wide range of metabolites in a sample, and can be

used for full structural elucidation of target biomolecules (Dona et al. 2014). One of the key drawbacks

to NMR is its low sensitivity, meaning metabolites with low abundances may be below its limit of

detection (LOD) of 10−9 mol (A.-H. M. Emwas 2015, Gathungu et al. 2020).

Figure 1.1: A example 1H NMR spectrum, with peaks annotated with compounds. Adapted
from Bharti and Roy 2012 1.

While NMR produces a continuous spectrum which can be used directly in down-stream analyses

(with some pre-processing including spectral binning (Holmes et al. 1994)), it is possible through

structural elucidation and using chemical standards to identify and quantify specific metabolites, for

example as can be seen in figure 1.1, where metabolite labels have been added to specific peaks, or

collections of peaks. This process of metabolite identification can also discretise the continuous spectra

into discrete variables with metabolite labels.

Liquid chromatography mass spectrometry (LC-MS)

LC-MS is another widely used platform in metabolomics, consisting of two main parts, a chromatogra-

phy step to separate out components that have different physico-chemical properties that define their

1Reprinted from TrAC Trends in Analytical Chemistry, Vol 35, Santosh Kumar Bharti & Raja Roy, Quantitative 1H
NMR spectroscopy, Pages 5-26, Copyright (2012), with permission from Elsevier.”
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retention, (e.g. the time at which they elute from the chromatographic column - retention time (RT)),

and a mass spectrometry step to ionize and measure the mass to charge ratio (m/z) of the resulting

ions. GC-MS uses gas-chromatography rather than liquid-chromatography (Dettmer, Aronov, and

Hammock 2007), and the MS data used in this thesis is the result of LC-MS analysis. Figure 1.2

shows example LC-MS chromatograms and mass spectra for leucine from a chemical standard and an

endogenous source (urine). By comparing the endogenous spectra with the chemical reference spectra,

endogenous metabolites can be identified, and also used to configure untargeted LC-MS annotation

tools such as PeakPantheR (Wolfer et al. 2021), by identifying mass spectrum peaks with consistent

m/z values between endogenous and reference sources (Matthew R Lewis et al. 2022).

LC-MS can be viewed as complementary technology to NMR, as it has much higher sensitivity

with an LOD of 10−13 mol, which is offset by its destructive nature and lower intrinsic capacity for

metabolite identification, which requires comparison with chemical standards (A.-H. M. Emwas 2015,

Matthew R. Lewis et al. 2016, Gathungu et al. 2020).

Targeted vs Untargeted LC-MS

With LC-MS, two main kinds of analyses can be undertaken: targeted, and untargeted. Targeted

analysis is where the metabolites to be measured are known a-priori, and a chemical reference stan-

dard is added manually (’spiked’) into the prepared sample prior to analysis. By knowing the exact

expected spectra and quantity of the spiked reference standard, the metabolite can be both identified

and absolutely quantified by the method. In untargeted analysis, no reference standards are added,

and instead, all the detected ion features can be labelled with retention time and m/z (RT-m/z).

Untargeted analyses do not require a-priori knowledge of the metabolites to be analysed, but with-

out reference standards to identify and quantify the metabolites, only relative abundances can be

measured, and further steps are required to annotate the ion features with metabolite labels. While

targeted analysis is excellent for the full characterisation of specific metabolites, untargeted analy-

sis benefits from being able to identify de-novo biomarkers, and through the process of metabolite

identification, resolve the chemical structure of the biomarkers of interest, as determined by via data

analysis (X. Zhang et al. 2016).

1.1.2 Metabolomics data analysis

Metabolomics data is large-scale and complex, and subject to many sources of technical variation, mak-

ing pre-processing and rigorous statistical data analysis critical for robust analyses and conclusions.

Figure 1.3 shows steps in a generalised metabolomics data analysis workflow, including acquisition,

quality control, pre-processing, annotation, and data analysis, and their interaction with and depen-

dence on various database resources and data processing platforms. The first step is bio-analytical data

acquisition (step 1), which may interact with laboratory-information-management-systems (LIMS) for
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Figure 1.2: LC-MS reversed-phase chromatogram and tandem mass spectra (MS/MS) (pos-
itive mode) for a leucine chemical standard in urine (top), and endogenous leucine in urine
(bottom). A: Leucine reference chromatogram with peak labelled with retention time and
m/z value. B Leucine reference MS/MS spectrum for chromatogram peak retention time, with
ion fragments labelled with m/z values. C: Endogenous leucine chromatogram, with peak for
leucine (1.47 minutes), and a peak for another metabolite with similar physico-chemical proper-
ties (identified separately as isoleucine at 1.40 minutes). D: Endogenous leucine mass spectrum
at 1.47 minutes RT, with ion features that corresponding to the leucine standard ion fragments.
Image adapted from internal metabolite identification documentation at the National Phenome
Centre, Imperial College London.
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sample metadata storage and generating randomised run-lists for acquisition. Post-acquisition, data

is pre-processed with platform-specific feature-extraction/peak-fitting, and calibration methods (step

2A), after which data can can be deposited into online data repositories such as Metabolights (Haug

et al. 2019) for sharing and publication. Following pre-processing, it is useful to annotate spectra

with identified metabolite labels (step 2B). This process often uses spectral databases, for both fea-

ture matching and for sharing experimentally-derived spectra. Annotated labels can also be added to

study repository submissions, for example, Metabolights allows users to record metabolite labels as

derived data. Data analysis can be undertaken with un-annotated feature labels (for example chemi-

cal shift (NMR), or RT-m/z (LC-MS)), or with annotated metabolite labels, and includes uni-variate

methods that can test for association with outcomes, multivariate methods such as principle com-

ponent analysis (PCA) and partial-least-squares (PLS) regression, and pathway analysis to identify

biologically relevant pathways (step 3). Finally, identified biomarkers can be deposited in biomarker

databases that may be domain specific or general purpose. These databases are introduced later in

this introduction.

Figure 1.3: A generalised metabolomics data analysis workflow, highlighting the steps involved
from acquisition to data analysis, and the relevant interactions with various online databases,
including LIMS, spectral databases, compound databases, pathway databases, study reposito-
ries, and biomarker databases.
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Metabolite annotation and identification

Metabolite annotation is the process of assigning putative metabolite labels to acquired bioanalytical

spectra, through statistical or database matching techniques. Metabolite identification (Met ID)

is the process of confirming the identity of the metabolites, using known chemical standards, and

comparison of sample spectral features (Godzien et al. 2018, Chaleckis et al. 2019, J. F. Xiao, B.

Zhou, and Ressom 2012). Metabolite annotation and identification best-practice is to adhere to the

Metabolomics Standards Initiative (MSI) (Sumner et al. 2007) reporting system, which provides a set

of minimum reporting standards for metabolite identification, and similar recent proposals exist for

lipids (McDonald et al. 2022).

A wide range of annotation software for different kinds of NMR and MS exists (Blaženović et al.

2018), including SMolESY-select (Panteleimon G. Takis et al. 2021), MetaboAnnotatoR (Graça et al.

2022), and CliqueMS (Senan et al. 2019), in this thesis two annotation methods will be used as an

example, one for LC-MS (PeakPantheR), and one for NMR (Bruker IVDr BI-LISA). PeakPantheR

(Wolfer et al. 2021) is an open-source R-based annotation method for LC-MS untargeted data, and

matches chromatographic peak retention times and ion m/z values with a-priori annotated metabo-

lites. Bruker IVDr BI-LISA is a commercial annotation method created by Bruker for use with NMR

data acquired with their spectrometers. Their BI-LISA method uses predictive multivariate models

for annotating and quantifying lipoprotein and lipid fractions in plasma samples, and has been shown

to be highly reproducible (Jiménez et al. 2018).

Univariate methods

Univariate methods can be applied to metabolomics data to test the similarity between two variables

in a dataset, typically using parametric t-tests, ANOVA, or non-parametric Mann-Whitney U tests,

and can be used to assess whether one set of variables is higher or lower (one-sided), or generally

different (two-sided). Metabolome-wide association study (MWAS) is uni-variate method used in

molecular epidemiology to find metabolites significantly associated to an outcome, in the presence of

covariates (Chadeau-Hyam et al. 2010), and is applied by applying regression or correlation analysis

to each variable in turn. In many metabolomics experiments, there may be more variables than

samples, meaning statistical models are prone to overfitting, and metabolomics variables may be

highly colinear, meaning multiple testing correction must be undertaken to prevent false positives

when many variables are tested at once (Saccenti et al. 2014). Multiple testing correction methods

include the Benjamini-Hochberg false discovery rate (FDR) correction and Bonferroni family-wise

error rate (FWER) correction, and have differing characteristics depending on how severe a correction

penalty an analyst wishes to apply (Noble 2009). MWAS methods are further introduced in chapter

4.
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Multivariate methods

Multivariate methods can be supervised or unsupervised, and are applied for specific analysis purposes.

Principle component analysis is an unsupervised, multivariate dimensionality reduction technique

used for exploring and visualising variance structures in highly-dimensional data (Lever, Krzywinski,

and Altman 2017). PCA is typically used for data exploration, however it can also identify trends

in the data by labelling PCA scores with metadata values such as sex or disease state, and which

variables/metabolites contribute to those trends (the PCA loadings). PCA is introduced further in 4.

Supervised methods include partial-least-squares (PLS) regression, and can be used to build predic-

tive models from metabolomics data, where the outcome Y (for example subject age) can be predicted

from the combined variables. Again, metabolites contributing to the models can be found by exploring

the loadings. Supervised methods require careful training and cross-validation strategies to measure

goodness-of-fit (R2), such as using k-fold training and measuring goodness-of-prediction (sometimes

measured with Q2) on a hold-out dataset that was not used for training (Blaise, G. D. S. Correia,

et al. 2021).

Pathway analysis

Pathway analysis is a method to identify functionally enriched biological pathways (over-representation

analysis (ORA)) (Garćıa-Campos, Espinal-Enŕıquez, and Hernández-Lemus 2015, Wieder et al. 2021,

Marco-Ramell et al. 2018). In metabolomics it can be used in combination with MWAS to identify

pathways associated with an outcome or study factor.

1.1.3 Sources of variation in metabolomics data

Typically in metabolomics analyses, a researcher wishes to understand and model biological variances

in the data, while accounting for significant technical variability. Understanding these sources of

technical variability is critical for designing a method capable of integrating metabolomics data from

multiple cohorts, analytical platforms, and assays.

Biological sources of variation

Biological sources of variation include:

• Between-person variability — e.g. the effect of age, sex, BMI, disease state, genetic, diet,

activity levels, or geographic differences.

• Within-person variability — e.g. the effect of time of day and circadian rhythms, nutritional

status (e.g. time of last meal), or drug dosage schedule.
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Both observational studies (single-timepoint studies), and longitudinal studies (multi-timepoint

studies) should account for these differences when recruiting and sampling and typically record them

for use in later analyses, although their use in observation studies for understanding within-person

variability is limited if they only have one timepoint. These clinical variables can be referred to as

study factors, or sample metadata.

Study design can have a large impact on the suitability of cohort data for integration and com-

parison. For example, are the participants diseased or healthy (case/control)? Are the participants

balanced in terms of covariates (e.g. age, sex, BMI)? Are there other covariates found only in some

cohorts (e.g. interventions)? In this context, data from multiple cohorts must be critically assessed

for their suitability for integration, but realistically researchers may be limited by the design choices

made in the original study, in which case it is useful to assess if studies with unbalanced study factor

distributions can be successfully integrated.

Technical sources of variation

Technical sources of variation include:

• Sample preparation — Extraction methods, dilution, sample storage.

• Analytical — Analytical platforms, assays, instrument configurations, batch-effects, run-order

effects, non-linear electrospray and mass-analyser effects.

• Data analysis — Pre-processing parameters, peak-fitting, scaling, annotation.

Sample preparation and storage

Sample preparation will have a very large effect on metabolomics data; differing methods for fixing

or extracting metabolites from tissues or biofluids, including the addition of buffers or standards, can

also have an effect (Smith et al. 2020, Beltran et al. 2012). Sample storage methods can also result

in metabolite degradation, effecting the quality of acquired data (Erngren et al. 2021, Wagner-Golbs

et al. 2019, Valo et al. 2022).

Data acquisition

NMR and MS produce different kinds of data and have differing levels of sensitivity (LOD) and speci-

ficity, resulting in differences in the levels of measured and identified metabolites. Within analytical

platforms, different assays may be to able detect different classes of biochemicals, for example different

LC-MS ionisation modes or different kinds of chromatography (Matthew R Lewis et al. 2022). NMR

is robust between instruments and analyses (Dona et al. 2014, A.-H. Emwas et al. 2019), however

LC-MS has further sources of technical variation. Within the same assay type, LC-MS instruments
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from different vendors, or even the same model of instrument from the same vendor may have varying

analytical range and sensitivity (LOD), and require robust tuning prior to acquisition. Analysing the

same sample set through the same mass-spectrometer could result in systematic differences in signal

intensities known as batch-effects. Within a single acquisition, detector sensitivity can degrade over

time as a result of the mass analyser becoming saturated with detected ions, this within-batch signal

degradation is referred to as run-order drift. (Fages et al. 2014, Q. Xiao et al. 2014, Clark et al.

2021, Sampson et al. 2013, Viallon et al. 2021). Additionally, matrix effects and ion suppression can

introduce variability (Pitt 2009), and in electrospray-ionisation (ESI) LC-MS, signal detection is not

linearly related to chemical abundance due to electrospray nozzle-size effects (Wilm and Mann 1994).

When combined, and especially in large-scale studies, these effects can add up to significantly high

analytical variability (B. Li et al. 2017, Caroline J. Sands et al. 2021).

To account for (and in some cases correct) analytical and technical variation, various methods

can be used, the most common being to use quality control (QC) samples, batch correction, and

scaling/normalisation.

Study pool QCs (SR)

Study pool QCs, sometimes referred to as study reference (SR) samples, are pooled samples made

from the same volume of material from every sample in the study. By design, they represent the entire

analytical dataset of the study, and as such can be used for both assessing detector linearity by using

a series of decreasing dilutions, and for assessing run-order drift and batch effects by analysing the

same pooled sample at different time-points throughout the whole analytical run of study samples

(Broadhurst et al. 2018). Study Pool QCs can also be used for LOWESS-regression based run-order

correction (Dunn et al. 2011).

External reference QCs (LTR)

External reference QCs, sometimes referred to as long term reference (LTR) samples, are pooled

samples made from previously collected reference material, external to the study, and can be used in

combination with Study Pool (SR) samples for assessing run-order drift and for comparing technical

variation between batches and projects (Gouveia et al. 2021).

Batch correction

Batch and run-order correction refers to the process of reducing the systematic technical variation

found between batches (batch effects), and within batches (run-order drift). Some batch correction

methods use SR samples to correct for run-order drift and batch effects, for example the LOWESS

method (Dunn et al. 2011), whereas others are referred to as ’QC-free’, in that they do not require QC

samples for their correction (Tokareva et al. 2021). Two such methods are ComBat (W. E. Johnson, C.
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Li, and Rabinovic 2007), originally developed for batch effects in gene expression studies, and Viallon

et al. (2021) mixed-model regression method for pooling targeted LC-MS data from multiple studies.

Scaling and normalisation

Scaling and normalisation are related to batch correction, but refer specifically to either sample-

wise correction (normalisation), or metabolite-wise correction (scaling). Scaling and normalisation

are used to enable comparisons of abundance values between samples or metabolites where technical

or bio-analytical variation makes direct comparisons difficult. For example probabilistic-quotient-

normalisation (PQN) can be used to minimise between-sample dilution effects (Dieterle et al. 2006),

and scaling can be used for reducing between-metabolite heteroscedastic variance, where metabolites

with greater abundance show greater variance, an effect of the electrospray nozzle and the non-linear

dynamic range of the MS detector. By scaling metabolite abundances, the effect any single metabolite

has on any down-stream statistical model is reduced (Blaise, G. D. S. Correia, et al. 2021), however

noise can also be amplified. Scaling methods typically balance the reduction of inter-sample and

inter-metabolite variation with minimising the amplification of noise (Berg et al. 2006, Q. Yang et al.

2020).

These wide-ranging sources of variation in metabolomics studies make inter-study integration prob-

lematic, as each of these the sources of technical variation will effect the abundance values of the study

data. To account for this, methods for measuring and correcting the variation between studies will

need to be implemented and used.

Harmonisation of metadata

Sample metadata refers to the collection of clinical metadata used for exploring the influence on, or

effect of, biological metrics and measurements to a specific outcome or factor (Honardoost, Rajabpour,

and Vakil 2018). To leverage the data for integrative molecular epidemiology, rigorous metadata

harmonisation is required (Fortier et al. 2016), due to differences in metadata naming conventions,

data types, and values.

Feature metadata may refer to information related to the detected features in a metabolomics

assay, including instrument configuration and feature labels. In untargeted LC-MS, these features

will have a specific retention time and m/z pair, and in targeted LC-MS, or following annotation

of untargeted datasets they may refer to annotated/identified metabolites. In LC-MS, matching

untargeted, un-annotated features between batches or cohorts is difficult due to retention-time drift,

and require bespoke methods to correct the drift, and therefore accurately match the same feature

in different studies (Climaco Pinto et al. 2022, Y. Li and L. Li 2019, Hu et al. 2021, Z. Zhang 2012,

Fernández-Albert et al. 2014). This thesis will focus on the integration of annotated metabolite features

from multiple assays, and while this data is already retention-time corrected during PeakPantheR

32



annotation, it has other issues that require harmonisation, such as inconsistent feature/metabolite

labels, and differing levels of analytical specificity between analytical platforms and assays.

1.1.4 Molecular epidemiology

One of the applications of metabolomics is molecular epidemiology, the study of environmental,

metabolic, or genetic associations to disease, in the presence of epidemiological covariates such as

age, sex, and BMI (Honardoost, Rajabpour, and Vakil 2018, Vineis et al. 2020, Eybpoosh et al.

2017). In the context of metabolomics, this often translates to identifying biomarkers associated with

risk factors, diseases states, or specific genes, and linking those biomarkers to biological function and

pathways (Tümmler 2020, Fearnley and Inouye 2016), with the general aim of understanding disease

mechanisms, to develop future treatments or population risk reduction programmes. In epidemio-

logical studies, typically increasing the sample size (n) will increase the power and effect size of any

associations, and integrating metabolomics data with data from other omic–levels (e.g. genomics,

transcriptomics, or proteomics) can help reveal genes or proteins involved with diseases, helping iden-

tify druggable targets. For these reasons, and despite the challenges, it is worth exploring integration

strategies for metabolomics data.

1.1.5 Integrative data analysis

Integrative data analysis (IDA) is the integration and study of heterogenous datasets, vertically (e.g.

between studies or laboratories), and horizontally (e.g. between different assays, biological tissues,

or omic–levels) (X.-T. Yu and Zeng 2018). Different forms of IDA exist, corresponding to different

analysis strategies (when the integration occurs). ’Early integration’ refers to concatenating matrices

of abundance values prior to analysis, ’intermediate integration’ refers to some form of transformation

prior to concatenation, and ’late integration’ refers to creating a meta-model of individually derived

models (Jendoubi 2021). For the purposes of integration for molecular epidemiology, early, or in-

termediate integration is most useful, so that different kinds of statistical analyses can undertaken a

single, integrated dataset (e.g. to increase the sample size) as required. In metabolomics, it is common

to analyse data from multiple biological tissues, for example blood and urine (Robinson et al. 2020,

Evans et al. 2020, Zuo Wang et al. 2022, De Paepe et al. 2018, Liu et al. 2021), or to integrate data

from multiple platforms or assays (Comte et al. 2021, Robinson et al. 2020), or to integrate data from

multiple omic–levels (Diray-Arce et al. 2020, Horgusluoglu et al. 2022). In this thesis, the main focus

of integration will be intermediate strategies for multi-cohort integration, however the methodology

developed will aim to be applicable to multi-platform and multi-assay integration, and extensible to

multi-omic integration and late-stage strategies such as meta-analyses and pathway analysis.

In recent years a further trend has emerged whereby metabolomics data from multiple cohorts

are integrated to produce a single, larger cohort, for the purpose of increasing the sample size, and
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thereby the measured effect sizes.

Karaman et al (Karaman et al. 2016) developed a generalised method for intermediate stage

integration of untargeted 1H NMR data from multiple studies, for the COMBI-BIO project. The

COMBI-BIO project used batch-wise mean-centering and normalisation of aligned NMR spectra to

integrate data from The London Life Sciences Prospective Population (LOLIPOP) (Chambers et al.

2000, The Multi-Ethnic Study of Atherosclerosis (MESA) (Bild 2002), and The Rotterdam Study

(ROTTERDAM) (Hofman et al. 2013), using PCA, univariate statistics, and QC samples to compare

the effect of alignment, normalisation, and batch correction on integration, good overlap between

cohorts was reported after these steps had been applied.

Viallon et al. (2021) developed a method for integrating data (intermediate stage integration) from

targeted LC-MS assays (Biocrates) used for multiple projects from the EPIC study (Riboli et al. 2002)

using mixed-effects regression for batch correcting the inter-project variance while maintaining the

biological variation of interest. PCA, as well as the principle component partial-R2 (PCPR2) method

(Fages et al. 2014) and the intra-class correlation (ICC) (per metabolite) were used for assessing the

effect of the batch correction method. The PCPR2 method is introduced in further detail in chapter

4. The method performed well at reducing the batch effects, resulting in good overlap betweeen the

studies in the PCA, reducing the study partial-R2, and reducing the number of metabolites with low

ICC.

Lind et al. (2020) used meta-analysis (late-stage integration) to compare 204 annotated LC-MS

metabolites in multiple studies to identify and validate biomarkers of ischaemic stroke. Using a meta-

analysis approach, each cohort was analysed separately, and identified vitamin E, cholesterol, and

various phosphatidylcholines and sphingomyelins as associated with ischeamic stroke. The analysis

was limited in that the participants were from a homogenous group of middle-aged to elderly Swedes

and not all annotated metabolites had internal standards as a reference, meaning some metabolites

may not be accurately identified.

Robinson et al. (2021) used meta-analysis (late-stage integration) to compare 233 annotated NMR

metabolites from 30,000 adults in multiple cohorts to investigate biomarkers of socio-economic position

(SEP). Data from each study was log transformed and unit-variance scaled, before MWAS analyses

and multiple-testing-correction were undertaken on each separate cohort. The study identified SEP

as strongly associated with the serum NMR metabolome.

The many sources of technical variation outlined earlier in this chapter suggests integrating metabolomics

data using early integration (no transformation) is not possible due to significant batch effects. The

findings of some of these multi-cohort studies suggest that intermediate strategies however are possi-

ble, as well as the more frequently used late-stage strategies (e.g. meta-analysis). Intermediate stage

integration requires good study design, as well as platform and methodology specific (untargeted vs

targeted) processing steps before any multi-project batch correction and integration can occur. Fig-
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ure 1.4 shows the pre-processing and calibration, batch correction, and scaling and normalisation

requirements for multi-project comparisons of NMR and LC-MS data. All methods/platforms require

consistent variable labelling, whether that is chemical shift (NMR), annotation labels (annotated NMR

and annotated LC-MS), feature labels (untargeted LC-MS) or chemical standards (targeted LC-MS).

LC-MS requires more quality-control steps, including inspecting the relative-standard-deviation (RSD)

and correlation to dilution (linearity) of features, and filtering those that fail to meet minimum stan-

dards (Caroline J. Sands et al. 2021). Targeted LC-MS and some NMR annotation methods are

fully quantifiable, making multi-project integration easier. For untargeted or annotated untargeted

LC-MS, significant run-order, batch, and retention time correction is required for annotation, and

multi-project integration. For methods without quantification, scaling and normalisation is required

for inter-project comparisons, either using reference signals (e.g. ERETIC for NMR Akoka, Barantin,

and Trierweiler 1999), or statistical scaling and normalisation. Urine samples, even if fully quantified,

require methods such as PQN to correct for urine dilution effects.

These sources of variation, and different pre-processing and correction requirements for different

analytical techniques results in the following difficulties of multi-cohort early or intermediate stage

integration:

1. Sample metadata fields from different projects must be harmonised into consistent names, units,

and categories.

2. Types of features labels differ between platforms and types of assays (targeted vs untargeted), in-

cluding chemical shift for untargeted NMR, RT-m/z pairs for untargeted LC-MS, and metabolite

labels for annotated data.

3. Direct comparisons between integrated projects are not possible without harmonisation of fea-

ture labels between different projects, including RT drift correction or metabolite label naming

conventions.

4. Different platforms and methods require different pre-processing steps, and result in different

kinds of data (absolute quantification vs. relative quantification).

5. Scaling and normalisation is required for multi-project integration of relative abundances, and

also required for absolutely-quantified urine samples to account for large dilution effects.

Researchers must be aware of these idiosyncratic differences and use different methods for pre-

processing each kind of metabolomics data, slowing down integrative molecular epidemiological in-

vestigations, and subjecting them to risk of induced biases. Ideally, the data used for the input for

intermediate stage integrative molecular epidemiological experiments should be harmonised as much

as possible to reduce the burden on the experimenter to correctly pre-process and harmonise the data

manually or with custom-built scripts.
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Figure 1.4: Overview of NMR, LC-MS data pre-processing requirements for single large-scale
projects and multiple projects, broken into untargeted, targeted, and annotated routes. NMR
annotation is often fully quantified, however some methods might not absolutely quantify,
or be of low precision, for these scaling and normalisation is still recommended for multi-
project integration. Urine samples will always require normalisation (probabilistic-quotient-
normalisation PQN). Suitable QC metrics for LC-MS can be found in Sands et al. (2021).
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1.1.6 Integration use cases in metabolomics

To understand the community needs for a platform for integrating metabolomics data, it is useful

to consider some use-cases of such as system. These use-cases are written from the perspective of a

researcher or analytical chemist, and each in case, the general requirements are that the system is

user-friendly, robust, and scale appropriately. The use-cases were developed through discussions held

with analytical chemists and researchers from the National Phenome Centre.

1. As a molecular epidemiologist, for the purposes of increasing sample size (n) of a dataset, I need

an integrated dataset with metabolomics data from multiple projects.

2. As a molecular epidemiologist for the purposes of identifying metabolite coverage, I want to

know how many features (e.g. variables) exist in the different cohorts.

3. As a molecular epidemiologist, for the purposes of sample metadata harmonisation between

studies, I want to know what are the study factor field names for the projects I aim to integrate?

4. As a molecular epidemiologist, for the purposes of assessing potential power of an integrated

cohort, I want to know how many male and female participants there are in all cohorts.

5. As a molecular epidemiologist, for the purposes of assessing suitability for integration of multiple

studies (e.g. balance), I want to know how many male and female participants there are in each

cohort.

6. As a molecular epidemiologist, I want to compare metabolite trends between two stratified

datasets (e.g. males vs females), to explore sex-specific metabolite disease associations

7. As a molecular epidemiologist, so I can build in integrated cohort to investigate associations

with a particular metabolite, I want to know in how many samples was a particular metabolite

identified, stratified by cohort.

8. As an analytical chemist, for the purpose of metabolite identification, I want to find all metabolite

features with a particular retention time and m/z range.

9. As an analytical chemist, for the purpose of method characterisation and optimisation, I want

to know how many amino acids abundance values were detected and passed QC in each project.

10. As an analytical chemist, for the purpose of method characterisation and optimisation, I want

to know in how many samples have a particular metabolite been detected, and the median and

standard deviation of run-order-corrected intensities of the particular metabolite in the study

samples, SR samples, and LTR samples.
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Method aims Requirements

Handle complex data Flexible storage system

Integrate large datasets Scalable

Build re-usable and dynamic
datasets

Stratifiable & query-able

Standardise heterogeneous data
sources

Flexible harmonisation tools

Bespoke data processing and analy-
sis

Data pipelines and analyses

User friendly User interface for control and visu-
alisation

Reproducible Robust

Table 1.1: Aims and associated requirements of the platform for metabolomics data integra-
tion

11. As a molecular epidemiologist, for the purposes of assessing integration of data from multiple

projects, I want to know in how many samples have we detected a particular metabolite, and the

median and standard deviation of run-order-corrected intensities for the particular metabolite,

stratified by study and participant sex.

12. As an analytical chemist, I want a dataset with all the long-term-reference (LTR) samples from

multiple projects, to explore the technical variation of the analytical method.

From these use cases, it is clear that the method needs to be capable to integrating data from

multiple projects, platforms, and assays, and to dynamically and robustly stratify the data by sample

metadata including covariates such age, sex, or BMI, and sample type (e.g. LTRs), or sample matrix

(e.g. plasma). These fields for stratification are simply examples, in reality a researcher may wish

to stratify integrated data by any of the sources of biological or technical variation outlined earlier.

Alongside this, methods are needed for harmonisation of feature labels, scaling and normalisation of

abundances, and bespoke data processing and analysis methods for identifying molecular trends.

With the outlined use-cases, and an understanding of the complexities of metabolomics data inte-

gration, general method aims and requirements can be developed, the results of which can be seen in

table 1.1. The general requirements for the method are to have a flexible, scalable, and robust storage

system, capable of querying, integrating, and stratifying the data, alongside flexible and scalable tools

for harmonisation, running data analysis pipelines, and user-interfaces for system control and visu-

alisation. Reviewing these requirements suggests a hybrid approach could be used, with a database

as the base of the system, and software tools and user-interfaces for running data analysis pipelines

and exploring the results. Using a database as the base for the integration platform provides the

capability for integrating and stratifying heterogeneous data, in a robust, scalable, and flexible way -

once the data is imported into the standardised data model and harmonised, reproducible integrated

and stratified datasets can be generated with programmatic query languages. From this base, the
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developed software could interact with, harmonise, and analyse the data, as well as providing the

capability to build user-interfaces for exploring the data and analysis results.

1.1.7 Existing databases

Databases are useful tools for scalable storage and reproducible, and robust integration and stratifi-

cation of data, via the process of normalisation and the implementation of structured-query-language

(SQL) or other technology-specific query languages. In figure 1.3, various database systems can be

seen supporting and involved with many steps in the generalised metabolomics data analysis work-

flow, including spectral databases, compound databases, study repositories, pathway databases, and

biomarker databases, each with differing purposes and roles within the metabolomics data analysis

workflow (Sorokina and Steinbeck 2020).

Study databases

Metabolights (Haug et al. 2019) and Metabolomics Workbench (Metabolomics Workbench 2022) both

provide online repositories for publishing and sharing study data, including analytical data, annota-

tions, and study metadata.

Metabolights is a database for storing and publishing metabolomics studies, and provides a search

interface for finding studies based on their analytical or study metadata and their ontologies. Study

data can be downloaded via the web-interface or using web-requests. Metabolights allows for public or

private repositories, both of which are stored and managed by the European Bioinformatics Insitute

(EBI). Its main limitations are the inability to run analyses within the system, and the inability to

query individual spectra from projects in an integrated or stratified manner.

Metabolomics Workbench is another study database and data processing platform that has many

similar features to Metabolights, but also allows for analyses to be run and explored inside the software.

Metabolomics workbench also allows for some multi-project analyses, but is limited to only basic ratio

comparisons, and cannot stratify cohorts.

Spectral databases

Spectral databases are databases specifically for the storage and sharing of metabolomics derived

spectra from NMR or MS experiments and are used for various purposes within the metabolomics

workflow. METLIN (Montenegro-Burke, Guijas, and Siuzdak 2020) and Massbank (Horai et al. 2010)

are databases for sharing MS/MS (tandem) spectra from LC-MS experiments, primarily to aid the an-

notation and identification of metabolites through database-matching techniques (Montenegro-Burke,

Guijas, and Siuzdak 2020, Horai et al. 2010), and HMDB is another spectral database, but specifically

for human metabolites and experiments (David S Wishart et al. 2022). PeakForest is a database

and software system for storage, curation, and annotation of metabolomics spectra (Paulhe et al.
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2022), and GNPS is computation platform for molecular-networking based annotation of GC-MS/MS

spectra (Aron et al. 2020), so aspects of it can be grouped with other spectral databases. There are

also vendor-specific databases for storing and collating metabolomics spectra from specific platform

vendors, for example Bruker, Waters, Sci-ex, or Shimadzu.

Compound databases

Compound databases are databases of molecular entities, and are important for mapping annotations

to chemoinformatic resources. Various online databases exist for chemical identifiers, with varying

metabolite coverage and focus, including PubChem (S. Kim et al. 2021), Human Metabolome Database

(HMDB) (David S. Wishart, Tzur, et al. 2007, David S. Wishart, Feunang, et al. 2018), Lipid Metabo-

lites and Pathway Strategy (LIPID MAPS) (Sud et al. 2007), Fahy, Subramaniam, et al. 2009), The

Chemical Entities of Biological Interest (ChEBI) (Hastings et al. 2016) (as used by Metabolights),

The Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa 2000), and Refmet (Fahy and

Subramaniam 2020). These databases are introduced in further detail in chapter 3.

Pathway databases

KEGG (Kanehisa 2000), Reactome (Gillespie et al. 2022), and BioCyc (Karp et al. 2018) are databases

for biological pathways, and are used primarily in functional enrichment analysis (over-representation

analysis (ORA)) for identifying pathways related to genes, proteins, or metabolites (Wieder et al.

2021).

Biomarker databases

Biomarker databases are databases of identified biomarkers, and can be general purpose, such as Mark-

erDB (David S. Wishart, Bartok, et al. 2021), or specific to an area of research, such as MetaboAge

(Bucaciuc et al. 2000), which is for biomarkers of ageing. Biomarker databases will typically con-

tain information about the experimental derivation, species, biological location (e.g. which tissues),

pathways, risk factors, and multi-omic information such as associated genes, transcripts and proteins.

While these database systems provide excellent tools supporting key steps in the metabolomics

data analysis workflow, they do not provide complete solutions for integrative metabolomics that meet

the use-cases set out earlier.

1.1.8 Existing data analysis platforms

Pre-processing and data analysis platforms

With the unique challenges that metabolomics data pre-processing and analysis pose, dedicated desk-

top and cloud-based software for metabolomics data pre-processing and analysis have been developed
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over the years, including XCMS (Tautenhahn et al. 2012), MetaboAnalyst (Z. Pang, Chong, et al.

2021), Workflow4Metabolomics (W4M Giacomoni et al. 2015), IP4M (Liang et al. 2020), Phenomenal

(Peters et al. 2019), and MetabolomicsWorkbench (Metabolomics Workbench 2022). Some platforms

also have features for visual programming of pipelines, including MassCascade (Beisken et al. 2014)

and Knimet (Liggi et al. 2018). These tools provide excellent data pre-processing and data analy-

sis methods specifically for metabolomics data analysis, however are limited in their capabilities for

intermediate-stage integrative analysis.

Pathway analysis tools

Mummichog (Shuzhao Li et al. 2013) is a pathway analysis tool for untargeted, un-annotated metabolomics,

that uses network analysis to circumvent the requirement to metabolite identification. iPath3 (Darzi,

Letunic, and Yamada 2018) is a web-based pathway analysis tool which allows users to submit KEGG

identifiers for pathway visualisation. There is no capability for intermediate stage integration strate-

gies.

Lipidomics tools

Lipidomic analysis in metabolomics can analyse many different lipid species, but suffers from particular

difficulties in identification, characterisation, and classification with commonly used LC-MS platforms,

and these difficulties are introduced in further detail in chapter 3. Because of these unique challenges,

some software tools are dedicated to lipidomic analysis, including LION/web (Molenaar et al. 2019),

a tool for lipid enrichment analysis by linking lipids to LIPID MAPS classifications, chemical and

biological associations, and cellular locations, LINT-web (F. Li et al. 2021), a multi-omic integrative

correlation method for predicting lipid function, and LipidSig (Lin et al. 2021), a platform for multi-

method data analysis for characterisation, phenotype associations, and pathway analysis.

Combined analysis and database systems

Some data processing systems allow users to store metabolomics data in databases or data storage

mechanisms, to facilitate data organisation, and to simplify data retrieval and analysis.

XCMS online (Tautenhahn et al. 2012) allows users to upload MS data, organised into datasets,

and spectra can added and removed via the user-interface, these datasets can then be analysed using

XCMS tools. XCMS online has predefined limits for user storage, limiting its capacity for large-scale

analysis.

MetHoS (Tzanakis et al. 2022) is a database and analysis platform for of large-scale storage and

analysis of untargeted LC-MS data, that uses Apache Spark and the NoSQL CassandraDB database

for processing and storing LC-MS features with excellent scalability performance. NoSQL databases

such as Cassandra are however limited in that data must stored in single indexes (e.g. tables), so

41



no multi-table joins are possible, meaning that linking metabolite features to study factors requires

secondary indexes and multiple client-side queries, or duplicating data by storing it directly in the

metabolite feature index. Further, MetHoS has no support for NMR features, nor tools for analytical

or study factor harmonisation. MetHoS is available via public web-interface, but does not have an

API for importing data or building or executing pipelines.

While not capable of the kind of intermediate-stage integration and stratification, these systems

demonstrate the utility of combined data storage and data analysis tools for user-friendly organisation

and analysis of metabolomics data, with MetHoS in particular demonstrating the utility of scalable

database and data processing infrastructure.

Existing tools for integrative metabolomics

Some tools are specifically for integrative metabolomics or molecular epidemiology application devel-

opment, including iMap (D. Zhou et al. 2021), MeltDB (Neuweger et al. 2008, Kessler et al. 2013),

and Molgenis (Van Der Velde et al. 2019).

iMap (D. Zhou et al. 2021) is a web-based version of IP4M (Liang et al. 2020) for integrative data

analysis of peak-picked or annotated metabolites, with modules for many common analysis methods

used in metabolomics, and the ability to create and save analysis workflows/pipelines. iMap provides

an excellent range of data analysis tools for integrative metabolomics, but has no data storage capabili-

ties beyond uploaded CSV files, meaning all integration, stratification, and study factor harmonisation

steps must be undertaken prior to upload. Alongside this, iMAP is mostly closed-source, and only

available via a insecure web-interface, and as such should not used for sensitive data.

MeltDB (Neuweger et al. 2008, Kessler et al. 2013) is a web-based platform for late-stage integration

of metabolomics data, primarily by linking spectra to biological pathways via KEGG, but also by

linking spectra to multi-omic resources such as genomic, transcriptomic, and proteomic databases.

Statistical analysis can performed on individual datasets, and results compared between datasets.

MeltDB lacks features for intermediate stage integrative analysis, and has no functions to stratify

imported datasets or link metabolite features to study factors/sample metadata.

Molgenis (Van Der Velde et al. 2019) is a collection of bioinformatics tools and methods for

cloud-based molecular epidemiology application development, with modules for dynamically gener-

ating database systems (Molgenis M. A. Swertz et al. 2010), executing shell scripts on HPC (Mol-

genis/compute Byelas, Kanterakis, and M. Swertz 2011), imputing missing values (Molgenis/impute

Kanterakis et al. 2015), metadata harmonisation (Molgenis/connect C. Pang, Enckevort, et al. 2016),

querying data, running scripts, and viewing reports (Molgenis/research Van Der Velde et al. 2019),

and running next-generation-sequencing (NGS) pipelines (Molgenis 2022). Molgenis has a wide-range

of tools targeting the challenges of data integration, including storage, processing, harmonisation,

querying, and analysis of data. However it has various drawbacks including using the binary EMX
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format for model definitions, making model management with version control systems difficult, no

ability to define database indexes or JSON fields, and like MetHoS can only query individual tables.

R and Python scripts can be executed, however they are not horizontally scalable. Molgenis uses

a Postgres database for data storage, along with an Elasticsearch instance for fast data searching,

however this will duplicate the data, and Elasticsearch has large random-access-memory (RAM) re-

quirements according to their online documentation (Elastic 2022), limiting its use for integration of

large-scale metabolomics studies. Finally, Molgenis is simply an application development framework,

in order to utilise it, application development must be undertaken within the constraints of the system.

While these tools provide good solutions for some aspects of integrative metabolomics, none provide

an out-of-the-box user-friendly, scalable, or secure solution for storing and processing metabolomics

data from multiple analytical platforms, with all the identified requirements for intermediate-stage in-

tegration and molecular epidemiology, including linking study factors to metabolite features, metadata

harmonisation and batch correction, integration, stratification, analysis, and visualisation.

1.2 Aims and objectives

1.2.1 Problem statement

Integration of metabolomics data has strong potential for simplifying data organisation, molecular

epidemiology, and biomarker discovery, however, due to the large scale and technical variability of

metabolomics data, challenges remain in intermediate-stage integration, including processing, storage,

harmonisation, stratification, batch correction, and analysis of multi-cohort metabolomics data for

molecular epidemiological investigations.

1.2.2 Aims

1. To develop scalable, query-able, and extensible methods for the storage and processing of

metabolomics data

2. To develop standardised methods for import and harmonisation of sample and feature metadata

3. To develop user-friendly methods for the integration and stratification of metabolomics data

4. To develop methods for the analysis and visualisation of integrated metabolomics data

5. To demonstrate the utility of these methods in an investigation into molecular trends of ageing in

an integrated cohort, including an assessment of integrating metabolomics data from unbalanced

cohorts
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1.3 Methods summary

1.3.1 Method development

Chapters 2, 3, and 4 outline the development of the platform for storing, processing, harmonis-

ing, querying, and analysing data from multiple analytical platforms for the purpose of multi-cohort

and multi-platform integrative analysis. The specific methods used, including technology selection,

scalability assessments, and validation steps are outlined in each chapter. Throughout the thesis,

metabolomics data from four cohorts will be imported, harmonised, integrated, stratified, processed,

analysed to demonstrate the utility of each aspect of the platform.

1.3.2 Data modelling

As part of the development process, data modelling will be used for modelling the complex data,

to aid in the development of the database system. Data modelling is the technique for developing

domain-specific database and data-storage systems, where a domain is broken into constituent entities

and their relationships to each other. Data modelling typically can be broken into the following steps

(Ribeiro, A. Silva, and A. R. d. Silva 2015):

1. Conceptual data model — a high-level, ”platform-independent” model of the data and their

relationships and cardinality.

2. Logical data model — a refined version of the conceptual model, that includes all the model

attributes, including what makes them unique, and their data types.

3. Physical data model — the ”platform-specific” implemented data model, e.g. the code to

create the database (the schema).

Cardinality & Normalisation

Cardinality in data modelling refers to the order and hierarchy of relationships between entities in

the data model. For example, in metabolomics, a particular project may have one or more samples,

and a particular sample may have one or more metabolite features. In this example, a project has

a one-to-many relationship with sample, and sample has a one-to-many relationship with feature.

Normalisation refers to the process of identifying and implementing the correct cardinality between

data model entities.

1.3.3 Test driven development

During each stage of development, test driven development (TTD) will be used to ensure validity of

each software component, by assessing that the output of any method or function matches what is
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Figure 1.5: Example of cardinality in a simple epidemiological/bio-analytical data model

expected. TTD is the undertaken by developing unit tests with expected output data of a function, and

testing that the function produces the output as expected (Beck 2003). During development, the nPYc-

toolbox tutorials DEVSET test dataset was used as the primary source of test data (Metabolights

study MTBLS694), as well as custom built test datasets targeting further data formats.

1.3.4 The National Phenome Centre

The National Phenome Centre (NPC) is a research centre at Imperial College London with the facility

for the analysis of large-scale metabolomics studies with multiple NMR, targeted LC-MS, and untar-

geted LC-MS, using standard operating procedures (SOPs) for sample preparation, data acquisition,

quality control, data pre-processing, and metabolite annotation (Dona et al. 2014, Matthew R. Lewis

et al. 2016, Matthew R Lewis et al. 2022, Caroline J Sands et al. 2019, Jiménez et al. 2018, Wolfer

et al. 2021, Caroline J. Sands et al. 2021).

nPYc-toolbox

The nPYc-toolbox (Caroline J Sands et al. 2019) is an NPC python package for NMR and MS data

for the import, pre-processing and quality-control of metabolomics data. The data in this thesis has

been imported from raw, feature-extracted, and QC-filtered by the nPYc-toolbox (Bruker IVDr data)

and PeakPantheR (untargeted LC-MS data).

Untargeted LC-MS

The NPC applies various untargeted LC-MS assays for covering different parts of the metabolome

(Matthew R Lewis et al. 2022). For small molecules, a HILIC positive assay (HPOS), and reversed-

phase positive and negative assays (RPOS, RNEG) exist, and positive and negative assays for lipid

profiling (LPOS/LNEG). In this thesis, HPOS, LPOS, and LNEG will be used.

1H NMR

The NPC uses NOESY, CPMG, and J-RES NMR experiments for blood serum or plasma samples,

and uses the vendor-specific (Bruker) annotation software called in-vitro diagnostic research (IVDr)

for annotating small molecules (Bi-Quant-P), and lipoproteins and lipid fractions in plasma (Bi-LISA).

In this thesis, the Bi-LISA method will be used.
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1.3.5 Data sources

Metabolomics data used were from multiple NMR and LC-MS assays acquired by the National Phe-

nome Centre. Approval for the analysis of Airwave, Airwave2, and FINGER was granted as part

of the UKRI-funded METAGE fellowship project lead by Dr Oliver Robinson at Imperial College

London. METAGE aims are to utilise metabolomics and multi-omics data from multiple molecular

epidemiological population studies to identify biomarkers of ageing, improve knowledge and under-

standing of ageing processes, and identify risk factors for accelerated ageing. Approval for inclusion

of MASALA for academic research and development was granted under the standard collaboration

agreement between Imperial College London and University of California, San Francisco (UCSF).

Cohorts

Metabolomics data from four projects/cohorts will be used in this thesis; Airwave & Airwave2 (Elliott

et al. 2014), MASALA (Kanaya et al. 2010), and FINGER (Kivipelto et al. 2013). These cohorts were

chosen for inclusion for the following reasons:

• Each cohort has been analysed and annotated with the NPC LPOS, LNEG, HPOS, and Bi-LISA

methods.

• Each cohort has age, sex, and BMI metadata available.

• The age range of the combined cohort is from 19-83, which is essentially a whole adult life span.

• The participants are either healthy (Airwave/Airwave2) or are at risk of an early-stage age-

associated disorder (MASALA/FINGER).

• The samples collected and analysed in the cohorts are from the same biofluid (blood plasma or

serum).

Airwave & Airwave2

Airwave and Airwave2 are cohorts from the same study, The Airwave Health Monitoring Study was a

study made up of police staff in the UK. Airwave was designed to study potential health impacts of the

Terrestrial Trunked Radio (TETRA), a digital communications platform used in their work. The first

Airwave project (Airwave) consisted of single timepoint plasma samples of 2994 working-age subjects.

The second Airwave project (Airwave2) consisted of 1002 subjects. Both Airwave and Airwave2 are

random sub-samples of the original cohort, full details which can be found in Elliott et al. 2014.

Airwave has previously been used for various metabolomics method development purposes, including

statistical power analysis (Blaise, Gonçalo Correia, et al. 2016), large-scale untargeted LC-MS urine

profiling (Matthew R. Lewis et al. 2016), Bayesian methods for metabolomics (Ye 2020). Airwave
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has also previously been used for assessing investigating determinants of accelerated ageing (Robinson

et al. 2020), a study which is introduced in further detail in chapter 5.

FINGER

The Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER)

study is a collection of plasma samples from a cohort of 1200 elderly Finnish individuals at risk

of cognitive decline and dementia (Kivipelto et al. 2013). Two timepoints were taken, 24 months

apart. For the demonstrative analysis in this thesis, we will use just the first timepoint. As this is an

intervention based study, only the first timepoint has been used in this this thesis to reduce confounder

bias, as different individuals will have received a different intervention treatment.

MASALA

The Mediators of Atherosclerosis in South Asians Living in America (MASALA) study is a cohort

of 754 South Asians living in America consisting of serum samples with a single timepoint, and was

designed to explore cardiovascular risk factors in this community (Kanaya et al. 2010, N. K. Reddy

et al. 2022).

1.4 Thesis outline

In chapter 2, database and data-processing technologies are explored and suitable technologies for

integrative storage and processing of metabolomics data are implemented. In chapter 3, data models

and software tools for sample and annotation metadata harmonisation are developed. In chapter

4, user-friendly methods for building, saving, and executing queries, and running analyses are are

developed. Figure 1.6 shows an overview of these method development chapters. In each of the

method development chapters, the developed methods will be compared against the relevant aspects

of previously developed tools for large-scale or integrative metabolomics or molecular epidemiology,

including iMAP, MetHoS, MeltDB, and Molgenis, and the various use-cases set out in this introduction

will be assessed. Finally, in chapter 5, the four-cohorts are integrated and analysed using the developed

methods and used to investigate age-associated metabolites.
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Chapter 2

Development of a database and

software library for storage and

processing of metabolomics datasets

2.1 Introduction

The first stage in harmonising and integrating datasets is to develop methods for the structured storage

and processing of metabolomics datasets. This chapter outlines the research and development required

to develop these methods.

2.1.1 Metabolomics data

Metabolomics data has different characteristics depending on the platform used; 1H nuclear magnetic

resonance data is a continuous spectrum, typically (after pre-processing including Fourier transfor-

mation) represented with signal intensity on the Y axis and parts-per-million (PPM) on the X axis.

Liquid-chromatography mass spectrometry (LC-MS) data is discrete, with three data points, reten-

tion time (RT) (the time at which molecules elute from an liquid-chromatography (LC) column), m/z

(the mass to charge ratio of a particular fragment assessed by the mass analyser), and signal inten-

sity/abundance (Karaman 2017). Annotation of metabolomics data can reduce these data to simply

metabolite label and signal abundance.

Data formats

Metabolomics data comes in a wide-range of vendor and open-source formats, including the XML-

based mzML (Deutsch 2010), and the CSV-based nPYc-toolbox formats (Caroline J Sands et al. 2019).

The nPYc-toolbox formats closely represent the simplest way of organising metabolomics data, with

either a combined file with rows as samples, columns as features, and cells as abundance values, or a
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Figure 2.1: Overview of the nPYc file formats for representing abundance values, and their
related sample and feature metadata. A combined format can be deconvolved into a 3-file
format, where m samples and n features relate to the intensity data/abundance values in the
intensity data file.
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3-file format, with separate files for sample metadata, feature metadata, and intensity data/abundance

values, where the m samples, and n features, relate to the m ∗ n abundance values in the intensity

file. An overview of these relations can be seen in figure 2.1.

2.1.2 Databases and cloud platforms

A wide range of specialist and general-purpose databases and data processing platforms for metabolomics

exist, including vendor databases, spectral databases, study repositories, compound databases, path-

way databases, biomarker databases, and data processing platforms (Sorokina and Steinbeck 2020,

S. R. Johnson and Lange 2015, Weber et al. 2017), these different kinds of databases were introduced

in more detail in the introduction chapter (chapter 1). Integrated metabolomics for molecular epi-

demiology is an application that cross-cuts these database purposes, and requires a solution that is

capable of storing, processing, harmonising, querying, and analysing data.

2.1.3 Technology requirements for integrated molecular epidemiology

The novel database and software platform for integrated molecular epidemiology has the following

requirements.

Domain applicable

Metabolomics data is complex, and therefore any developed method for storing and processing metabolomics

data must be capable of modelling and processing complex data. A wide range of assays, vendors, and

data formats exists, again, any method must be suitable for storing data from a wide range of these

assays, vendors, and formats. For molecular epidemiology, the method should be capable of linking

study factors to metabolite features and abundances.

Scalable

Metabolomics data is large-scale, with potentially many thousands of features per sample, therefore

any method for storing large numbers of metabolomics samples must be able to scale appropriately.

Data storage systems such as databases have differing levels of performance characteristics, with some

database systems performing better at large scale than others (Chen et al. 2020). As metabolomics

produces ’big data’, the method should be able to scale appropriately to the kinds of data to be stored,

which means estimating the computational resources the method will require. For this, a conceptual

data model is required, and from this the combinatorial complexity of the data model can be assessed

using the appropriate usage estimates. With these figures, scalability requirements can be assessed

and the appropriate technology selected.

When referring to system scalability, two main types of scalability are described, vertical and

horizontal scaling. Vertical scaling (’scaling up’) refers to the scaling the system on one host, to fully

51



utilise the single host resources. Horizontal scaling (’scaling out’) refers to scaling the system across

multiple hosts. While vertical scaling is limited by the compute resources on the single host, horizontal

scaling is only limited by the number of hosts that the system can be scaled across (Singh and C. K.

Reddy 2015).

Query-able

Integrated data analysis for molecular epidemiological investigations require the ability to reliably and

dynamically integrate and stratify data across multiple projects. As such the data needs to be stored

in such a way that allows for specific but flexible querying, e.g. structured, indexed, and query-able.

In the use-cases outlined in the introduction, nearly all of them required some kind of stratification,

either by study factors such as sex, sample matrices such as plasma, sample types such as LTR external

references, or by feature labels such as retention time and m/z ranges. By storing the data in a query-

able system, stratified datasets can be extracted from the integrated datasets.

Different types of query-able data store exist, including relational databases, graph databases, and

NoSQL databases (Bai 2022), each with differing performance, scalability, and query-ability charac-

teristics.

NoSQL databases such as Redis (Redis Labs 2022), ElasticSearch (Elasticsearch 2015), MongoDB

(Chodorow and Dirolf 2010), and Cassandra (Apache Software Foundation 2022b) are key-value doc-

ument stores, and therefore can horizontally scale very well. Some, such as Redis, only have a limited

key-based lookup system, whereas others such as MongoDB and ElasticSearch have full query APIs.

MetHoS (Tzanakis et al. 2022), a system for large-scale processing and storage of untargeted LC-MS

features uses the NoSQL system Cassandra, that has excellent scalability performance, but is limited

in that it cannot perform multi-index queries, meaning storing study factors along with metabolite

features in a denormalised index will result in a large amount of data duplication.

Relational databases (RDBMS) are highly structured data stores, where the structure of the data,

including its relationships and cardinality are modelled a-priori to importing and storing data records.

In a relational database, the entity relationships are stored at the table level, enabling high-scalability

of fully normalised and integrated data models. Relationship keys, known as foreign keys, provide

fast relationship traversal. These design factors make relational databases good for storing lots of

records (e.g. big data), and have excellent query-ability due to their utilisation of Structured Query

Language (SQL) (Bai 2022). Examples of relational databases are MySQL (Oracle 2022b), Postgres

(Matthew and Stones 2005), and Microsoft SQL Server (Microsoft 2022a). The Molgenis molecular

epidemoliogy application framework (Van Der Velde et al. 2019) uses a Postgres database with an

Elasticsearch instance for fast data lookups, while this combination can be used to store data and

scale horizontally, duplicating the data in the RAM-intensive Elasticsearch instance will add significant

hardware requirements to any application (Elastic 2022).
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Graph databases are a form of database where instead of storing the relationship between entities

at the table level, the relationship is stored as part of the entity record (Miller 2013). This has

advantages over relational databases in that no a-priori knowledge of the entity relationships are

required in order to store records, meaning complex and dynamic relationships can be stored with

ease. Graph databases form the basis for Knowledge Graphs, and have excellent query-ability, with

inbuilt query APIs. These benefits are off-set by the practice of storing relationships at the entity-

level themselves, resulting in much slower relational traversal and querying compared to relational

databases (Chen et al. 2020), a problem for databases used for big data. Examples of graph databases

are Neo4j (Miller 2013) , and JanusGraph (Sharp 2019).

Extensible

The field of metabolomics is rapidly evolving, with new platforms, assays, annotation methods, and

data formats regularly emerging from laboratories and research institutes around the world (Misra

2021). As such, any method for storing and processing metabolomics data requires the ability to be

both general purpose and extensible to new data types and formats that emerge in the future. This

means the core technology for the method should be preferably open source and well-maintained to

ensure long term viability, and that the methods developed must both suitable for a wide range of

data types and sources, and allow for the easy extension to new data, as required.

Asynchronous pipelines

As metabolomics data is ’big data’, any system for storing or processing metabolomics data should be

capable of executing long running jobs. Data processing in metabolomics is experiment, platform, and

analysis type specific, and as such any data processing system needs to be flexible enough to handle

this, while still being robust, reproducible, user-friendly, and scalable.

Asynchronous pipeline systems are systems for executing these kind of long-running, complex, data

processing workloads. They are asynchronous because the process of scheduling a workload is separate

the process of running a workload, thereby allowing the user or scheduling process to continue with

other work while the long-running workload process continues. Typically, a first-in-first-out (FIFO)

queue system stores the code and parameters to be executed, and an asynchronous ’worker’ retrieves

the code, and executes it. Pipeline systems range from relatively simple worker/queue systems, to

more complex and fully featured systems that enable complex orchestration of many workers or sub-

tasks, job monitoring, logging, and the re-running of pipelines (Densmore 2021). By abstracting the

computational processing to a separate process, the computational processing can be scaled vertically

and horizontally.

Data pipelines typically consist of two entities - units of computation known as tasks, and a

collection or sequence of tasks called a pipeline. A task is a single unit of computation, and may be
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viewed as a discrete unit of work to execute. A task could be something as simple as copying a file

from one location or another, or a more complicated process of importing data into the database and

checking everything is correct. By abstracting the code into discrete, reproducible blocks, tasks can

then be chained together into a complex and reproducible pipelines.

Many pipeline technologies exist for running complex data analysis pipelines. Some pipeline sys-

tems are more user-friendly, and have distinctly biomedical or data science focus, such as Phenomenal

(Peters et al. 2019), KNIME (Berthold et al. 2008), and Metabolomics Workbench (Metabolomics

Workbench 2022). Others are more general and focused towards developers and programming data

engineering systems, for example Galaxy (Afgan et al. 2018), Luigi (Spotify 2022), or Apache Airflow

(Apache Software Foundation 2022a). General purposes systems are more flexible than biomedical-

specific system, but they may require bespoke implementation of tools for processing of biological and

metabomics datasets.

Platform independent

Installing and configuring software systems to run locally using system commands can be complex

and daunting to the casual user, as well difficult to develop for and maintain for different target

operating systems. In recent years hyper-visors and containerisation systems like Kubernetes (The

Linux Foundation 2014) and Docker (Merkel 2014) have risen to prominence for deploying complex

software stacks and releasing reproducible code. The principle of a container is similar to that of a

shipping container - each part of the system is bundled into a deployable unit, and then the containers

can be stacked together (or orchestrated) in a simplified way. Using Docker not only simplifies the

deployment and configuration and installation of the software, but it also simplifies running it on

different target systems such as desktop PCs and servers. By using Docker the system can be easily

scaled and deployed to the optimised configuration necessary for the system, meaning the system can

be reliably installed and run on a desktop PC with a few commands, but also can be used for lab-scale,

server-based installations such as that used at the NPC.

Usability

The method developed should provide user access and control methods suitable for informatitians,

analytical chemists, and epidemiologists, with differing but complementary skill sets. As such it

should have both low-level programming APIs, and high-level user-control interfaces.

Security

Local governance regulations for the storage of biomedical data typically require robust security prac-

tices. As such the method should utilise technology capable of this. For most applications, only

pseudonymised data should be stored.
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2.1.4 Aims

With these method requirements outlined, the aims of this method development chapter are:

1. Design and develop a database to store experimental data from multiple large-scale metabolomics

experiments.

2. Design and develop software to interact with and import data to the database.

3. Deploy the database and software in a production environment.

4. Import data from multiple large-scale metabolomics experiments.

5. Assess the database and software against the criteria, including scalability, query-ability, usabil-

ity, and security.

2.2 Methods

An overview of the steps used to develop a database and data processing platform for metabolomics

data can be seen in figure 2.2.

2.2.1 Conceptual modelling

A conceptual data model for the storage of metabolomics datasets was designed using data modelling

techniques. The sources of data were explored, and the data model was normalised by identifying the

main groups of the data and their cardinality to each other.

2.2.2 Scalability estimation

Scalability estimates were calculated against the conceptual model using the following approach.

For each model type, the count of entities per sample is defined, and the estimated entity count is

calculated by multiplying the number of samples by the number of entities per sample.

Values for the estimated number of features (25000) and unique annotated features (1000) per

sample were taken from Mahieu and Patti 2017. In real data, these numbers will vary per sample,

assay, and method, depending on the biology, chemistry, and a-priori set of annotations searched

against. In Matthew R Lewis et al. 2022, a combination of five NPC assays were shown to provide

good metabolome coverage; HPOS (HILIC positive), RPOS (reversed phase positive), and RNEG

(reversed phase negative) for small molecules, and LPOS (lipid positive) and LNEG (lipid negative)

for lipid species, with ≈ 700 molecular species annotated across these five assays. To simplify the

estimation, and theoretical ideal sample was created, with a fixed number of features and abundance

values/intensities per sample. A figure of 1000 annotations per sample was used in the estimations.
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Figure 2.2: Overview of the steps involved in the development and validation of the method
to store and process metabolomics data
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Table 2.1: Data-store assessment criteria

Property Assessment Criteria

Domain applicable

• Can the technology model and process complex data?

• Can the technology integrate with existing tools and formats?

Scalability

• Can the technology scale appropriately?

Query-ability

• How well can the database store, traverse, and retrieve the rela-
tionships between the structured entries?

Usability

• How easy is it to develop, run, maintain, and interact with the
database? Assuming basic knowledge of databases and linux sys-
tem administration.

Licensing

• Is it open-source or commercial? While commercial systems often
have feature benefits, many researchers and laboratories have lim-
ited funds, and open access initiatives push technology choice to
open-source/free to use solutions.

Hardware resources

• Is the technology CPU, disk, or memory intensive?

Reliability

• Is it ACID compliant? (atomicity, consistency, isolation, durabil-
ity)

• Can the system handle crashes without corrupting or losing data?

Security

• Does the technology allow for secure storage and access?

These figures are estimates, however for the scalability estimation they should be approximately within

the correct order of magnitude.

2.2.3 Database technology selection

The following database technologies were and compared against the criteria outlined in table 2.1:

• Relational databases — MySQL, Microsoft SQL Server, Postgres

• Graph databases — Neo4j, JanusGraph

• NoSQL databases — Redis, MongoDB, Elasticsearch, Cassandra
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2.2.4 Logical and physical data modelling

The conceptual model was further developed into a logical model by analysing and assessing the data

requirements for each entity in the conceptual model, including foreign key relationships, indexes, and

unique keys. A physical schema was created for the selected database system (Postgres), and imported

into the database instance. Two databases were created, one for testing, and one for production. The

physical schema can be found in the appendix A.1. Logical data model entity relationship diagrams

were generated using DBVisualiser 13.05.

2.2.5 Software development

With a physical data model and database in place, a extendable software library was developed

to simplify database access, and to provide an environment for processing, import, and analysis of

analytical data. Python was chosen for as the language for its wide applicability, extensive packages,

and its rapid prototyping capability. Local development was undertaken using the Intellij PyCharm

IDE and Python virtual environments, and later using Docker and custom built docker images. Unit

tests and test driven development (TTD) was used to ensure software robustness. Git version control

was used at all stages of development, and the code was stored is stored in a github repository linked

to Imperial College London. During development, the nPYc-toolbox tutorials DEVSET test dataset

was used as the primary source of test data (Metabolights study MTBLS694), as well as custom built

test datasets targeting further NPC dataset formats, in the combined and 3-file format.

Feature development

During software development, the following features were developed.

Standardised database access methods

A python package called ’phenomedb’ and a database.py module were created, with methods for

instantiating database connections from the python package to test and production databases. A

config.py module was created to parse a config.ini file containing database parameters, an example

of which can be seen in appendix A.2. A models.py module was created, with SQLAlchemy ORM

definitions for each database table in the physical model. Unit tests were developed to validate that

the database and ORM specifications matched (test models.py).

PhenomeDB task definition

A custom task class and module was created to provide a wrapper with standardised functions for

PhenomeDB tasks, including standardised logging, benchmarking, and SQL transaction management,

including the ability to capture exceptions, log them, and rollback the database transaction.
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The database entity TaskRun was created to store metadata of task executions, including param-

eters used, data output, and benchmark data including run time and database memory usage. An

SQLAlchemy object for TaskRun was created and the test models.py test was updated.

Methods to import metabolite features and abundances

With standardised database access methods and a base task class developed, the next step was to

develop a method for importing metabolite features and abundances. An import module was created,

imports.py, with a standardised import API that extended the task class. The key requirements for

this standardised import API were:

• A set of common, standardised, and reusable data access methods.

• Duplication prevention: Rerunning the task twice should only import once or update existing

records.

• ACID compliance: The method should use database transactions and rollback in the event of

error.

• Validation: The method should check that the imported data matches what was expected (e.g.

Consistency in ACID).

Standardised functions were created for loading data from source files, creating SQLAlchemy ob-

jects, and validating the objects are correct as expected.

Classes for importing analytical features from Bruker IVDr, and PeakPantheR datasets were de-

veloped and tested, including validation methods which independently check the number of imported

objects and their values match the expected values from the source datasets.

Command line interface (CLI)

A command line interface (CLI) script was created to execute PhenomeDB task; cli.py*JMS1. A

task type spec.json configuration file was created to store options for PhenomeDB tasks, and the

cli.py was developed to read and display the task options with the python cli.py –help (-h) command.

The task type spec.json can be found in the appendix A.3.

Asynchronous pipeline software development

With a standardised method for building ETL tasks, and a CLI for executing them on demand com-

pleted, a method for chaining PhenomeDB task objects together into a pipeline was developed. The

Pipeline database model was created to store a definition of pipeline as a sequence of parameterised

1Developed by Jazz Mack Smith under my direction
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TaskRuns. Pipeline was added to the database schema, and to models.py and test models.py. Ex-

isting methods for asynchronous execution of tasks and pipelines were explored, and Apache-Airflow

was selected for it’s excellent support, permissive licence, excellent Python integration, and extensible

Python-Flask web-based user interface. A novel python module (pipeline factory.py) was created for

dynamically building, parameterising, and saving Pipeline objects, converting them to Apache-Airflow

pipeline format (a python script defining an directed-acyclic graph (DAG) of functions), registering

them with Apache-Airflow, and triggering their execution. A PipelineManager class was developed

to abstract the PipelineFactory from Apache-Airflow, to allow for other pipeline technologies to be

used instead if required. Two kinds of pipeline approaches were developed, one for hard-coding every

TaskRun and their parameters to a new, dedicated Apache-Airflow DAG, and another for execut-

ing existing pipelines/DAGs with dynamically set parameters. A pipelines.py module was created,

with PhenomeDB Tasks for generating pipelines, including one called GenerateSingleTaskPipelines,

which uses the task spec.json file to create Apache-Airflow DAGs with one task for each task in the

task spec.json file, to enable the execution of these tasks via the Apache-Airflow user interface. An-

other pipeline task, NPCSetup, was developed to configure the PhenomeDB database and build any

NPC specific pipelines; using the config file found in appendix A.3, NPCSetup creates the database

models used for the NPC datasets, including assay types, annotation methods, projects, and units.

User Interface (UI)

Apache-airflow 2+ uses Flask-Appbuilder (Gaspar 2021) for its web-based user interface, and can

easily be extended to include custom built plugins for application and domain specific systems. A

plugin was created, with views for viewing and editing project information. The plugin system was

used to create novel views for various methods in chapters 3, 4, and 5.

Application Programming Interface (API)

Flask-Appbuilder comes with an extensible REST API, and seamlessly integrates with SQLAlchemy

to provide a simple way of querying for specific models over a HTTP web request. A custom instance

of the Flask-Appbuilder Python webserver was configured, and the ModelAPI implemented. Custom

API methods were created to allow the remote parameterisation and triggering of import tasks such

as ImportPeakPantherAnnotations.

2.2.6 Deployment

Docker was selected for deployment due to its principle of build-once, run anywhere, simplifying the

deployment of multi-component software. A Docker image extending the Apache-Airflow Docker im-

age was built, which installs the necessary software packages for using the PhenomeDB library with
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Apache-Airflow, and can be found on Docker Hub at: https://hub.docker.com/r/ghaggart/phenomedb-

airflow. A docker-compose file was created to configure and run the multi-container application on

a desktop machine, with instructions for containers to run a Postgres container, and two containers

running phenomedb-airflow; one for the Apache-Airflow scheduler and LocalExecutor, and one for

the Apache-Airflow webserver. The Apache-Airflow webserver Flask-appbuilder system was edited

to allow correct url rewrites to enable the PhenomeDB API and the Apache-Airflow UI and API to

run on the same host. The scheduler was configured to execute tasks locally as part of a single-host

deployment. Container volumes are mounted locally for data persistency, including the Postgres data

directory and the Apache-Airflow home directory ($AIRFLOW HOME), and the PhenomeDB con-

fig.py script was adapted to enable container environment variables to override the default config.ini

settings. During start up, if the database does not already exist it is created from the physical model

SQL script, and shell script is executed which uses the PhenomeDB CLI script to run the Gener-

ateSingleTaskPipelines, ensuring the necessary PhenomeDB single task pipelines are created when

the system boots.

For the production installation, a CentOS linux server was configured in the Imperial College

London ICT server farm, with 4 cores, 16GB RAM, and a 600GB hard disk. Another Docker image was

built using phenomedb-airflow as the base, with NPC specific components including user management

for mounting the Imperial College London Research Data Store (RDS) network drive. Nginx was added

to the docker-compose definition, and configured for TLS/SSL secure connections. The Apache-Airflow

Flask-appbuilder webserver config was edited to use the Imperial College London LDAP system for

authentication. The container start up script was edited to run the NPCSetup task on system boot,

to configure the database for NPC usage. With these custom Docker images, start up scripts, logical

database model, and docker-compose file developed and tested, the system was deployed, configured,

using the following command:

docker compose up

A CentOS systemd service was created to run and monitor the docker compose command, restart

on failure, and restart on reboot.

2.2.7 Metabolite features and abundances import

With a production grade system deployed and configured, a standardised method for importing ana-

lytical data from source developed, and a method for building and executing asynchronous multi-task

pipelines in place, a method for importing data from multiple NPC datasets was developed.
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Bruker Bi-LISA import

The annotation files for the Bruker Bi-LISA (IVDr) annotated features were manually organised into

dedicated folders broken into project, sample, assay. The pipeline generator task GenerateAnnotation-

ImportPipeline was developed and executed to create an import pipeline to import all the IVDr annota-

tion data from these files. GenerateAnnotationImportPipeline iterates over these standardised folders

and adds ImportBrukerIVDrAnnotation tasks to a hard coded data pipeline backfill ivdr annotations,

using the PipelineFactory, specifying the parameters for each dataset to import. Once developed

and tested, GenerateAnnotationImportPipeline was executed via the Airflow UI, creating the pipeline

backfill ivdr annotations pipeline. This pipeline was then executed via the Apache-Airflow interface

to import all the Bruker Bi-LISA annotated features.

PeakPantheR import

The annotation files for the PeakPanther annotated features were re-processed to allow the import of

the PeakPantheR annotation config files and the raw and SR run-order-corrected data, and a Phe-

nomeDB/Airflow JSON config file for each was developed, specifying the full paths to the PeakPantheR

datasets on the RDS network drive. These JSON configs were then used directly in the Airflow in-

terface to manually trigger the ImportPeakPantherAnnotations per project and LC-MS assay, and

sample matrix (e.g. the FeatureDataset model).

Following data import, basic statistics for the imported values were calculated using SQL, including

the sample counts, feature counts, and the sum total of AbundanceValues (samples ∗ features), and

reported.

2.2.8 Method Validation

Once developed and implemented, the approach was validated against its design requirements. Mul-

tiple validation steps were involved, including the following:

• Test driven development: each component of the software library was tested using unit

tests and test data, including unit tests to check the consistency between the SQLAlchemy

models and the database *CT2, check the ImportTasks work as designed, and import the correct

number of entities for the test data, check the ImportAPI successfully triggers the corresponding

ImportTask, check the PipelineFactory correctly runs a Pipeline or creates a new one, and checks

that the functionality in the UI methods work as expected. Any identified problems were fixed

in the code.

• Data integrity: each data import was validated using the custom built validation steps, involv-

ing automated checks on the counts and values of imported entries. The data was also manually

2Developed by Chris Tomlinson under my direction
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inspected to ensure validity using spot-checks on the data.

• Technology requirement validation: Does the system meet the requirements set out in the

introduction; scalability, query-ability, asynchronous pipelines, platform independence, usability,

security?

Scalability assessment

Following data import, system scalability was assessed using the imported data.

The database memory usage for imported datasets were exported from the TaskRun benchmark

fields, and the number of idealised samples plotted against the database size. Actual usage, as well as

cumulative usage were plotted. Two sets of figures were created, one where the ideal sample has 5000

features, and one where the ideal sample has 1000 features.

Linear models were fitted to the data, with Y = memory usage, and X = the number of idealised

samples. Predictions for the database memory requirements for a range of sample sizes were then

calculated and plotted.

The maximum number of idealised samples (with 1000 features each) that could be stored in the

databases was assessed by calculating the size of the abundance values table for the imported features,

and comparing that to the maximum table size (128TB), and a similar estimate was calculated for

MySQL using 1000 dummy rows. Calculating the table size:

SELECT pg_total_relation_size(’abundance_value ’);

Query-ability assessment

A selection of use-cases outlined in the introduction were used to develop example SQL queries demon-

strating the query-ability of the system. The questions asked were:

• What is the abundance value, retention time, and m/z for a specified feature in a sample?

• How many different sample types are there in each project? (e.g. study samples, and pooled

QCs (SR/LTR))

• How many metabolite features exist in the different cohort datasets?

• How many abundance value records exist in the different cohort datasets?

• In each project, how many study samples contain CAR(18:0)?

• What are the imported retention times for CAR(18:0) across the different cohorts?

• Which metabolites have a retention time between 60 and 65 seconds?
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Security assessment

OWASP Zed Attack Proxy (ZAP) was used to penetration test the deployed software. (OWasp 2022).

2.3 Results & Discussion

2.3.1 Conceptual modelling

The relationship between the sample metadata files, feature metadata files, and intensity data files,

and their relationships to the core PhenomeDB data model can be seen in figure 2.3.

The extended conceptual model is shown in figure 2.4, labelled with the relationship cardinality.

This generalised data model is capable of capturing the main sources of biological and technical

variation captured in metabolomics experiments and annotation, including ontologies and support for

external data formats such as Metabolights.

2.3.2 Scalability estimation

Combinatorial complexity scalability estimates are shown in table 2.2. From this table, it can be seen

that storing untargeted features for ten thousand samples would require 1.25 billion table records.

Increasing this to biobank scale and beyond (circa 1 million samples), would increase the number of

required table records to 125 billion. In a hypothetical situation where the storage of 1 billion samples

would be required, the estimated number of table records for the features would be 125 trillion. While

some database systems can theoretically support this number of entries, practical limits on system

memory and resources make this highly impractical, requiring a different approach to be considered.

While storing the un-annotated abundance values as top-level database entities is impractical, for

annotated abundance values, the numbers are more tractable, with 10 thousand samples requiring only

10 million abundance value records, and even one million samples only requiring 5 billion abundance

value records, and 1 billion samples requiring 5 trillion abundance value records. For this reason,

a decision was made to store un-annotated abundance values as a JSONB dictionary stored in the

relevant SampleAssay record.

2.3.3 Technology selection

Summarised results of the technology comparisons can be seen in table 2.3.

NoSQL databases such as Redis, MongoDB, Elasticsearch, and Cassandra, have excellent hori-

zontal scalability features, simplified by the fact that data is stored in document indexes, and such

do not have maintain foreign keys or entity relationships, however due to the denormalised nature of

these databases, data may be duplicated (there are no multi-table joins), creating unwanted overheads

when storing big data. MongoDB, Elasticsearch, and Cassandra maintain their own query APIs that
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Figure 2.3: The basic file structure of the sample metadata, intensity data, and feature meta-
data source files (top), their relationship to each other (middle), and the example mapping to
the core PhenomeDB data model (bottom). Sample metadata for m Sample maps to Project,
Subject, Sample, and SampleAssays. Feature metadata for n features maps to Feature and
Annotation. m ∗ n intensities map to AbundanceValue.
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Figure 2.4: The extended and normalised conceptual data model, including entities for labora-
tory, metadata fields and values, assays, units, annotation methods, feature datasets, protocols,
and ontologies.
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Table 2.3: Database technology assessment results. *Atomicity, Consistency, Isolation, Dura-
bility. ∓Basic availability, soft-state, eventual-consistency.
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enable document search and retrieval, whereas Redis is simply an in-RAM key-value store and cannot

compare or query values without another index such as Redis-Search, and lacks reliable persistence.

RDBMS have multi-table joins, and are highly scalable, if not quite to the level of NoSQL systems,

and have much better scalability than Graph databases, due to the fact that RDBMS relationships

are stored at the table level, so do not require extra records to store entity relationships like Graph

databases. This is reflected in the comparisons, where the three RDBMS have very high reported scal-

ability features; MySQL can scale to 256TB per table, Microsoft SQL Server to 524PB per database,

and Postgres to 128TB per table. All of these RDBMS have very high query-ability, however MySQL

does not have a full SQL implementation, instead using its own version of SQL. The usability and

reliability of each is very high with excellent documentation, simple syntax database operations, and

ACID compliance, however as MySQL uses its own SQL implementation, some syntax are MySQL

specific. Microsoft SQL Server has an expensive pricing model and requires the Windows operat-

ing system, whereas Postgres and MySQL are free, open source, and can run on operating systems.

MySQL has a free community edition and an expensive commercial version with more scalability

features and support.

The compared graph databases, Neo4j and JanusGraph both have very good query-ability and

scalability, however the free community version of Neo4j lacks scalability features and such would

require using the expensive commercial version. JanusGraph is free to use, however the Gremlin

query language for writing queries is quite verbose, making its usability somewhat lower than Neo4j,

with its excellent GraphQL API.

The database systems that provide the best combination of domain applicability, scalability, query-

ability, usability, licensing, reliability and security are MySQL and Postgres. Both of these technologies

would be suitable as a data store for the method, and both have advantages; MySQL has approximately

twice the maximum table capacity as Postgres, however its SQL implementation is not standard, and

the free community version lacks features available in the paid for version. Postgres, on the other

hand, is totally free and open source, is a more ’correct’ implementation of SQL, and has excellent

support for storing denormalised data such as JSON in its searchable JSONB datatype field. Its only

downside compared to MySQL is scalability, however Postgres’ maximum table sizes of 128TB is very

high, and in practice most systems will have difficulty reaching that scale due to architectural and

hardware limitations, not software limitations. For these reasons, Postgres was selected for usage as

the data store.

2.3.4 Logical and physical data modelling

The logical model for the core data model can be seen in figure 2.5, where the field name and data

types for each entity can be seen. Additions to the data model were made during later chapters,

the final logical model used can be found in the appendix A.1. The data model had to be capable
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of integrating data from multiple metabolomics platforms and data formats, while representing the

major sources of biological and technical variation.

Laboratory

The laboratory model is used to store information about the laboratory that conducted the analysis.

Unique key: (Laboratory.name).

Project

Project describes the main collection of information in the database. One project could be a study, a

cohort, or it could be sub-study of a larger investigation. Multiple projects can linked to a laboratory.

Unique key: (Project.name).

Subject

Subject describes an individual study participant. Some studies will have multiple time-points from a

single subject, therefore it is useful to understand which samples come from the same subject. Multiple

subjects can be linked to a project. Unique key: (Subject.name, Subject.project id).

Sample

Sample represents a unique sample from a study participant. Multiple samples can be linked to a

subject, for example if multiple timepoints are used. Samples have the following attributes stored as

table fields:

• Sample Matrix — The matrix of the sample — e.g. ’plasma’,’urine’ etc. This field can also

describe both the biofluid and the typical sample preparation steps used (e.g. Serum or Faecal

Water).

• Biofluid — The biofluid of the sample — where it was originally sampled from (e.g. Blood or

Faeces).

• Sample Type — The type of the sample — whether its a Study Sample, or a QC Sample.

Definitions are taken from the npyc-toolbox and include StudySample (SS), ExternalReference

(LTR), and StudyReference (SR).

• Assay Role — The ’role’ of the sample — whether it is to be assayed (Assay), or a QC for

assessing linearity, or precision. Definitions are taken from the npyc-toolbox and include Assay,

LinearityReference, and PrecisionReference.

Unique key: (Sample.name, Sample.subject id, Sample.sample type, Sample.assay role, Sample.sample matrix).
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feature
id BIGSERIAL
feature_name TEXT
annotation_id INTEGER
feature_dataset_id INTEGER
rt_average NUMERIC
rt_min NUMERIC
rt_max NUMERIC
mz_average NUMERIC
mz_min NUMERIC
mz_max NUMERIC
lod NUMERIC
lloq NUMERIC
uloq NUMERIC
ion_type TEXT
ion_id TEXT
lower_reference_percentile NUMERIC
upper_reference_percentile NUMERIC
lower_reference_value NUMERIC
upper_reference_value NUMERIC
rsd_filter BOOLEAN
variance_ratio_filter BOOLEAN
correlation_to_dilution_filter BOOLEAN
blank_filter BOOLEAN
artifactual_filter BOOLEAN
excluded BOOLEAN
exclusion_details TEXT
rsd_sp NUMERIC
rsd_ss_rsd_sp NUMERIC
correlation_to_dilution NUMERIC
blank_value NUMERIC
quantification_type TEXT
calibration_method TEXT
feature_filtering_pass BOOLEAN
final_assessment_pass BOOLEAN
final_assessment_rename TEXT
comment TEXT
annotation_parameters JSONB
annotation_version TEXT
feature_metadata JSONB
date_imported TIMESTAMP(6) WITHOUT TIME ZONE

abundance_value
id BIGSERIAL
intensity NUMERIC
below_lloq BOOLEAN
above_uloq BOOLEAN
sample_assay_id INTEGER
feature_metadata_id INTEGER
unit_id INTEGER
comment TEXT
sr_corrected_intensity NUMERIC
ltr_corrected_intensity NUMERIC

sample_assay
id SERIAL
sample_id INTEGER
assay_id INTEGER
acquired_time TIMESTAMP(6) WITHOUT TIME ZONE
raw_spectra_path TEXT
processed_spectra_path TEXT
excluded TEXT
exclusion_details TEXT
instrument TEXT
sample_file_name TEXT
sample_base_name TEXT
position TEXT
expno TEXT
run_order INTEGER
batch TEXT
correction_batch TEXT
dilution NUMERIC
detector_voltage NUMERIC
instrument_metadata JSONB
assay_parameters JSONB
unannotated_abundance_values JSONB

annotation_method
id SERIAL
name TEXT
description TEXT

annotation
id SERIAL
version TEXT
cpd_name TEXT
cpd_id TEXT
annotated_by TEXT
confidence_score TEXT
default_primary_ion_rt_seconds NUMERIC
default_primary_ion_mz NUMERIC
config JSONB
annotation_method_id INTEGER
assay_id INTEGER

assay
id SERIAL
name TEXT
platform TEXT
targeted TEXT
ms_polarity TEXT
annotated_feature_type TEXT
long_name TEXT
long_platform TEXT
quantification_type TEXT

feature_dataset
id SERIAL
name TEXT
feature_extraction_params JSONB
annotation_params JSONB
filetype TEXT
unified_csv_filename TEXT
intensity_data_filename TEXT
sample_metadata_filename TEXT
feature_metadata_filename TEXT
assay_id INTEGER
project_id INTEGER
sample_matrix TEXT
sr_correction_parameters JSONB
ltr_correction_parameters JSONB

project
id SERIAL
name TEXT
description TEXT
lims_id INTEGER
date_added TIMESTAMP(6) WITHOUT TIME ZONE
project_folder_name TEXT
short_description TEXT
laboratory_id INTEGER
persons JSONB
chart_colour TEXT

laboratory
id SERIAL
name TEXT
affiliation TEXT

metadata_field
id SERIAL
name TEXT
project_id INTEGER
unit_id INTEGER

metadata_value
id SERIAL
raw_value TEXT
sample_id INTEGER
metadata_field_id INTEGER

sample
id SERIAL
name TEXT
sampling_date TIMESTAMP(6) WITHOUT TIME ZONE
sample_type TEXT
subject_id INTEGER
assay_role TEXT
sample_matrix TEXT
biological_tissue TEXT
sample_metadata JSONB

protocol_parameter
id SERIAL
protocol_id INTEGER
name TEXT
value TEXT
ontology_ref_id INTEGER

subject
id SERIAL
name TEXT
project_id INTEGER

protocol
id SERIAL
name TEXT
type TEXT
description TEXT
uri TEXT
version TEXT

sample_assay_protocol
id SERIAL
protocol_id INTEGER
sample_assay_id INTEGER

ontology_ref
id SERIAL
ontology_source_id INTEGER
accession_number TEXT

ontology_source
id SERIAL
name TEXT
url TEXT
version TEXT
description TEXT

unit
id SERIAL
name TEXT
description TEXT

Figure 2.5: PhenomeDB core logical data model, with full field definitions specified. Cardinal
relationships are represented with arrows, with the arrow direction representing going from
one-to-many.

71



Metadata

MetadataField and MetadataValue describe individual study factors, e.g. age, sex, BMI, disease state,

nutritional status, time of day, etc. These are linked to samples and projects accordingly. Information

about these models can be found in more detail in chapter 3.

Assay

Assay describes the analytical assay and platform used for analysis, for example ’HPOS’, which is

a LC-MS HILIC positive method, or ’NOESY’ which is the NMR 1D NOESY method. Each assay

stored in PhenomeDB has a name, platform (LC-MS or NMR), polarity (positive or negative - MS

only), quantification type (absolute or relative), and whether the method is a targeted or untargeted

method. Unique key: (Assay.name).

SampleAssay

SampleAssay describes the relation between a sample and an assay, as such a seperate record is created

for every assay applied to a sample. SampleAssay records information such as the sample file name, the

path to the data, the batch, any other analytical metadata information. JSONB fields enable to storage

of unstructured analytical parameters. SampleAssay also has a further JSONB field called unanno-

tated abundance values, which can be used for storing all the NMR or LC-MS untargeted features for a

sample, e.g. a row from the 3-file-format intensity data matrix. Each Sample and Assay can have multi-

ple SampleAssays. Unique key: (SampleAssay.sample id,SampleAssay.assay id,SampleAssay.sample file name,

SampleAssay.sample base name).

Protocols

Protocols and protocol parameters match the Metabolights data model for storing parameters for a

particular analytical method. Protocols are linked to SampleAssay instead of Assay, because individual

samples may have different sample preparation steps depending on their type, whereas the analytical

assay itself might remain fixed.

Ontologies

Ontology source and ontology ref provide a normalised model for storing references to available on-

tologies, and are linked to protocols. In later chapters, further links were created between these tables

and sample and annotated metabolite metadata tables.
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Feature Dataset

Feature dataset records information regarding a set of analytical features from one assay and project

(e.g. the output of one set of analytical acquisitions) as such it records the source data files these

features were taken from. A record in this table represents every column and row in the 3-file format

intensity matrix, for one project, assay, and sample matrix. Unique key: (FeatureDataset.project id,

FeatureDataset.sample matrix, FeatureDataset.assay id)

Feature

Feature records store information relating to a single feature in a feature dataset, e.g. one column of

the 3-file format intensity matrix. As such, this table stores the assay and project specific metadata

for a particular feature; for LC-MS this includes the retention time, m/z, and other metadata such as

limit of detection, upper and lower limits of quantification, and any feature QC parameters that were

applied. Unique key: (Feature.cpd name, Feature.feature dataset id)

AbundanceValue

AbundanceValue stores individual measurements relating to annotated features for specific Sample-

Assay objects; ie a cell in the 3-file format intensity data matrix. This table stores peak-picked,

uncorrected intensities for NMR and LC-MS, and SR run-order corrected intensities for LC-MS, and

unit id, a foreign key to the Unit table. Unique key: (AbundanceValue.sample assay id, Abundance-

Value.feature id)

Annotation

Linked to feature metadata, annotation stores information about the metabolite annotation for the

feature, including the compound name, and any configuration used for the annotation. Unique key:

(Annotation.cpd name,Annotation.assay id, Annotation.annotation method id, Annotation.version)

AnnotationMethod

Annotation method stores the information pertaining to the method used to annotate the features,

such as PeakPantheR or Bruker IVDr Bi-LISA. Unique key: (AnnotationMethod.name)

Unit

Unit provides the main storage for units of measurement, and is used for both annotated features

and metadata values. In chapters 3 and 4, methods for converting from one unit to another were

developed. Unique key: (Unit.name)
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Indexes

Indexes were created for all foreign keys, and all fields likely to be regularly queried (such as As-

say.name, Sample.name, Project.name for example).

Data modelling summary

With this data model, analytical features, and their main sources of technical and biological variation

can be stored and queried, allowing specific and targeted datasets to be generated from the database,

by study, sample, assay, or feature, as required. It is not possible to record every data type or field

possible in metabolomics as a dedicate field in the schema, but the developed and implemented schema

provides a stable framework upon which new assays and annotation methods can added as required,

an extensible schema, and using a technology that allows for unstructured data to be easily stored

and queried in JSONB fields.

2.3.5 Software development

The PhenomeDB software is a multi-software environment consisting of a custom built Python library,

Postgres, and Apache-Airflow. An overview of the system can be seen in figure 2.6, with Nginx added

for a server-based installation (not required for a desktop deployment). The PhenomeDB software

library uses a config.ini file to specify configuration options, including database credentials, data

directories, user accounts and API keys, and test data and schema locations.

Data access methods

Database access methods are functions for standardised and simplified database actions from a pro-

gramming language. Using standardised database access methods simplifies later development, re-

duces the chance of wrong data being imported to or queried from the database, and can prevent

injection attacks through reliable parameter stripping. The Python library SQLAlchemy was chosen

for database access as it provides an object-relational-map (ORM) for in-Python representations of

database objects (Bayer 2012), and supports a wide-range of database backends, meaning the database

backend can be changed at a later date if more a more performant solution emerges. Models can be

queried safely using the SQLAlchemy syntax, and queries typically return lists of SQLAlchemy model

objects representing one database table. SQLAlchemy queries can also be converted into regular SQL,

and SQLAlchemy provides methods for executing text-based SQL against the configured database.

ORMs allow for in-software representations of database entries, and allowing relationship traversal and

custom object methods to be developed, simplifying software development for complex applications

(Cvetković and Janković 2010).
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Figure 2.6: PhenomeDB core software component overview and their relationship to each
other; including the Postgres database, PhenomeDB python library, Apache-Airflow integra-
tion, and Nginx for handling http requests to both the Apache-Airflow webserver and the
PhenomeDB API. In chapter 4, Redis is added to the system as a cache.
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ETL Tasks

PhenomeDB tasks follow the Extract-Transform-Load (ETL) model of data-engineering; they extract

the required data, they transform the data, and they load the data into the database or another sub-

system. The task system is built using object-orientated programming (OOP) and inheritance, and

as such the tasks rely on the same boilerplate code that allows for standardisation, reproducibility,

repeatability, and uniqueness. This is achieved by various features of the task class:

1. Database sessions — test, beta, and production databases can be connected to by specifying

the db env parameter.

2. Standardised data access methods — get and set methods exist for major model types,

such as Assay, Project, or Annotation Method, and a standardised ’csv to dataframe()’ function

exists for loading data from source files with standardised boilerplate options.

3. Logging — processing events are recorded in a log file for visual inspection during and after

the task execution, and are viewable via the Airflow webserver UI for monitoring and debugging

purposes.

4. Database transactions — all database operations of the task run inside a try/catch statement

and a database transaction, if an error occurs, all database operations are rolled back to the

state before the task was executed.

5. TaskRun model — task executions, the parameters used, and task-specific data are recorded

in the TaskRun model for later inspection, reproduction, or re-running the task.

Implementing a new task is straightforward and requires defining a new child class of Task and

implementing/overriding any necessary methods, in particular, the process() method.

The TaskRun model can be seen in 2.7, including fields for storing task types, execution parameters

(args), the execution date, status (e.g. scheduled, success, error), benchmark data, and the DB

environment used.

At the end of each task execution, the user who created the task is emailed a notification of task

success or failure. Email settings can be configured in the config.ini or in the docker .env files.

Methods to import metabolite feature abundances

ImportTask is the base class for implementing an import script. ImportTask inherits from task,

and as such has the necessary methods for connecting to the database and logging messages and

errors. ImportTasks record the task and any reconciliation/validation errors in the database models

ImportRecord and MissingImportData. An import validation hook allows for custom validation meth-

ods to be built as required; once all import steps and validation have passed successfully, the database
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Figure 2.7: The TaskRun model to store execution specific parameters including the task
functions, the arguments used, and benchmark data.

transaction is committed. If any failures are detected the entire database transaction will be rolled

back; ensuring the entire imported dataset is valid before committing the transaction ensures the data

is consistent and correct. A post-commit hooks allows for custom code execution post-import, e.g. for

triggering any further pipelines.

The source data used in this thesis is in the format of the nPYc-toolbox. The data has been

pre-processed and QC filtered, and exported in the combined or 3-file format. Two types of assays/an-

notation methods are used in this thesis, untargeted LC-MS in combination with PeakPantheR (e.g.

HPOS, LPOS, LNEG), and Bruker IVDr NMR methods (e.g. Bi-LISA). Each of these data types have

their own idiosyncracies, whether that is specific units, or assay-specific analytical metadata, as such a

dedicated ImportTask class was created for each; ImportPeakPantheRAnnotations and ImportBruk-

erIVDRAnnotations. The ImportBrukerIVDRAnnotationsTask imports BI-LISA annotations from

the single-file combined format produced by the npyc-toolbox. The ImportPeakPantherAnnotation-

sTask imports the 3-file format produced by the npyc-toolbox. This task can be used for all profiling

LC-MS assays, including the NPC HPOS, LPOS, LNEG, RNEG, and RPOS assays.

In each of these import tasks, the major steps are:

1. Add a FeatureDataset object, with sample matrix and assay information.

2. Iterate over the feature names, and add a Feature object with the available feature metadata,

linked to FeatureDataset.
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Figure 2.8: Overview of the ImportTask class, with steps for loading data from files or APIs
and converting the entries to SQLAlchemy model ORM objects, validating the entries created
match exactly with the expected, and committing them to the database. If an error is thrown
during the import, or the validation checks fail, the TaskRun fails and the database session is
rolled back, ensuring the data is only imported if all the data can be imported. After commit,
post-commit hooks allow for triggering of custom pipelines via the PipelineFactory.
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3. Attempt to match the metabolite names and annotation version with existing Annotation ob-

jects, create if not exists, and link to Feature.

4. Iterate through each row/record, get or create a Sample, using the Sample ID to match on

Sample.name.

5. For each Sample, add a SampleAssay object, with the assay specific sample metadata (e.g.

Sample File Name).

6. For each Sample, iterate over the features, adding the AbundanceValue objects, linked to Sample-

Assay and Feature. ImportPeakPantherAnnotations also allows for the import of SR/run-order

corrected intensities if they are supplied.

7. Independently iterate over each cell/record again, checking the counts and values match the

database transaction values exactly.

These import classes are specific to the NPC datasets used in this thesis, however the ImportTask is

easily extendable to other data formats, including untargeted NMR and LC-MS features, Metabolights

format, or mzML, as required; the steps outlined above will be the same for all of these formats; open

the files, create the necessary data objects, validate they are correct, and commit them.

Command Line Interface

PhenomeDB comes with a command line interface*JMS3 (CLI) for running individual imports (and

further tasks developed in later chapters). Available scripts can be found using the following command:

python cli.py -h.

python cli.py -h

USAGE: python cli.py [--db_env [PROD|TEST]] <task >

Where <task > is one of:

imports.ImportBrukerIVDRAnnotations

imports.ImportPeakPantherAnnotations

imports.ImportTargetLynxAnnotations

Parameters for individual tasks can be found using the following command syntax:

python cli.py imports.ImportBrukerIVDRAnnotations -h

usage: cli.py imports.ImportBrukerIVDRAnnotations [-h]

[project_name]

[annotation_method]

[unified_csv_path]

[sample_matrix]

optional arguments:

3Developed by Jazz Mack Smith under my direction
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-h, --help show this help message and exit

--project_name [PROJECT_NAME]

The project name

--annotation_method [ANNOTATION_METHOD]

The annotation method , ie Bi -LISA or Bi -Quant -P

--unified_csv_path [UNIFIED_CSV_PATH]

The path to the unified/combined CSV containing the

annotations

--sample_matrix [SAMPLE_MATRIX]

The sample matrix of the imported data , ie plasma ,

serum , urine

Tasks can be run standalone using the following syntax:

cli.py <task_name> <optional_arguments>

Asynchronous pipelines; Apache-Airflow integration

The three main components of Apache-Airflow can be seen in figure 2.6; the task scheduler, the task

executor, and the webserver. The task scheduler monitors for new tasks to run, and executes them

using the task executor. Different options for task executor include the LocalExecutor for running

tasks locally, KubernetesExecutor for running tasks on a Kubernetes cluster, CeleryExecutor for using

the Celery queue system for multi-host worker execution, and Apache-Airflow executors can also be

configured to run on HPC clusters. For desktop deployment, the LocalExecutor is used, and for larger

systems the distributed executors can be used by changing the configuration options in the airflow.cfg

file.

Apache-airflow uses custom python scripts referred to as DAG files (DAG for Directed Acylic

Graph), which use Apache-Airflow python packages and custom decorators to define DAG tasks as

python functions. These python scripts are then saved by the user in a dedicated directory ($AIR-

FLOW HOME/dags/), which is monitored by the airflow scheduler process. When a DAG script is

added or edited, the scheduler detects this, parses the python script, and adds the tasks to an Air-

flow DAG, ready for execution. The Apache-airflow webserver provides excellent pipeline monitoring

and user control interfaces; a Python-FlaskAppbuilder web application enables users to list, inspect,

trigger, monitor, and re-run DAGs on demand, as required, including the inspection of task logfiles.

Screenshots for the inbuilt Apache-Airflow UI can be seen in the appendix figures A.1, A.2, A.3, A.4.

While Apache-Airflow met the requirements needed for the asynchronous execution of a task, or a

sequence of task, it depended on writing DAG.py code for the Airflow scheduler to define and execute

a task. This means that every task, or sequence of tasks that could possibly be needed to run would

have to be defined and coded as a DAG.py script a-priori, before manual UI or API-based execution.

To overcome this, and to simplify the creation and execution of pipelines with any combination of

PhenomeDB tasks, a custom module called the Pipeline Factory was developed to act as an interface

between the PhenomeDB task system and Apache-Airflow, enabling the dynamic creation, registration,
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and execution of Apache-Airflow DAGs as a sequence of any order of PhenomeDB tasks. A Pipeline

model was added to the PhenomeDB database, to store the definition of a pipeline, to allow it to be

reloaded/regenerated from the database as required, the definition of which can be seen in figure 2.10.

The pipeline factory has the following features:

• Pipeline creation: task can be added in a sequence for execution, and the Pipeline is then

converted into an Apache-Airflow DAG file using the Jinja templating system.

• Pipeline persistence: Pipeline parameters can be saved in the database and loaded and re-

added to Apache-Airflow on demand.

• Pipeline execution: Pipelines or individual task can be executed on demand.

• Static or dynamic parameterisation: Pipelines can be configured to use hard coded param-

eters, or to allow dynamic parameterisation upon execution.

The Pipeline Factory system improves on the main usage of Apache-Airflow, by removing the

necessity for a developer to build Pipelines with hard coded steps or parameters, allowing complex

dynamic pipelines to be created through a standardised programmable interface.

Two kinds of pipelines can be created with the Pipeline Factory; ’static’ (hard coded) pipelines, and

’dynamic’ (configurable) pipelines. Dynamic pipelines are created with the Apache-Airflow run config

parameters passed into the task as keyword arguments, allowing the Apache-Airflow DAG/pipeline to

be parameterised on execution. This was how the Pipeline Factory worked when it was was first built,

as it utilises Apache-Airflow as it was designed to be used, and is good for building and executing a

pipeline that will be executed many times repeatedly. However, debugging tasks executed in this way

can be difficult, as the Apache-Airflow UI partially obfuscates task execution parameters; they can

only be found in the DAGRun task log file, which requires manually inspecting the log files to identify

particular task executions. When importing data from many projects, even with a standardised

import module issues can arise such as malformed data in the source data files. Using Airflow with

the dynamic pipelines made debugging these issues difficult, and it also made re-running the same

task with different parameters difficult (for example if the file path was slightly wrong and needed

updating). For this reason, to simplify monitoring and debugging a large number of imported datasets,

a second type of pipeline was added to the Pipeline Factory - the static pipeline. Defined by setting the

’use hard coded’ flag when creating a Pipeline object, the static pipeline system takes the parameters

used for the pipeline tasks, and creates a dedicated Apache-Airflow DAG file, with the hard coded

parameters. These static pipelines are easier to debug when executing many tasks of the same type,

such as an import pipeline, and editing or fixing the parameters is easily achieved either through the

Pipeline Factory or simply by manually editing the DAG.py files, however with this approach each

separate pipeline execution will create a separate Airflow DAG; an Airflow anti-pattern that would
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Figure 2.9: Overview of the Pipeline Factory, with methods for creating Pipeline objects
as a sequence of PhenomeDB tasks and saving them to database, committing the Pipeline
definition to the Pipeline Manager and executing the Pipeline with JSON parameters. When
using the Airflow as Pipeline Manager, when the Pipeline definition is committed the pipeline
definition is converted to a Apache-Airflow DAG file using Jinja templates, and written to the
Airflow DAG folder, where the Apache-Airflow scheduler process registers it. When running
a Pipeline, the Apache-Airflow inbuilt API is used to check if the Pipeline is registered, and
if it is, executes it with the specified options. The Pipeline Factory module can be used for
building and executing Pipelines from PhenomeDB task, custom Python code (including unit
tests), the PhenomeDB API (such as the Import API methods), and the PhenomeDB UI (such
as the analysis module developed in chapter 4).
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Figure 2.10: The Pipeline model with fields for name, description, definition, task order, and
some Pipeline Factory options such as max active runs and concurrency.

create an unmanageable number of DAGs if this was the only approach available. For this reason,

both approaches were implemented and are used in conjunction with each other, depending on the

use-case.

In summary, dynamic pipelines are used for executing single task pipelines, or where a pipeline

structure is standardised a-priori to execution, and can therefore be executed with different parameters

as required, whereas static pipelines are for pipelines where a large number of tasks will be chained

together, with a high likelihood of some failures (such as import tasks), and monitoring, debugging,

and the easy of changing parameters may be required.

The Pipeline Factory and Pipeline Manager modules also help maintain logical seperation between

’the code the worker runs’ and ’the code that runs the worker’; minimising any dependency on external

software, in case for example Apache-Airflow changes licence, features, or is superseded by a more

suitable, feature-rich, or just simpler pipeline system in the future. Adding a new pipeline manager

for a different pipeline software such as Luigi or Galaxy (Weber et al. 2017) can be achieved by imple-

menting a new Pipeline Manager class and setting the use of this pipeline manager in the PhenomeDB

configuration file.

By providing a standardised interface to building and executing dynamically generated pipelines,

it is straightforward to build pipelines to permute over many data sources and import them in a

standardised, asynchronous, scalable, monitored, and debuggable way.
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Administrative pipelines

Two administrative pipeline tasks were created for setting up and configuring the database and

Apache-Airflow for usage. The first one, GenerateSingleTaskPipelines, iterates over the task spec.json

task parameter definition file and using the Pipeline Factory, creates one Apache-Airflow pipeline/DAG

per task. These single task pipelines can then be triggered via the Apache-Airflow UI, or via the

Pipeline Factory methods.

The second pipeline task, NPCSetup, uses a JSON configuration file to create all the units, anno-

tation methods, assays, laboratory, and projects for the NPC production environment. An example

of this can be found in appendix A.4. Extra fields, developed for methods implemented in chapter 3

can be seen also. This configuration file can be easily modified to add new records as required.

Both of these pipelines can be manually executed via the CLI to configure the database and

Apache-Airflow for PhenomeDB usage.

API

In order to meet the requirement for low-level interfaces for bioinformatitians and external software

to interact with the database, a secure, bespoke REST-API was developed. This REST API utilises

Flask-Appbuilder, including the in-built Model REST-API, login system, and Swagger-based API

documentation viewer. The Model REST-API allows for direct create, read, update, and delete

(CRUD) of the database models via a standardised and secure interface.

2.3.6 Security, Permissions, and Roles

System security is provided by the in-built permissions system of Postgres and Apache-Airflow/Flask-

appbuilder. The Apache-Airflow/Flask-appbuilder security model allows for user authentication with

passwords, and role-based permissions. The flask-appbuilder authentication system can be configured

to use database-encrypted passwords, Microsoft Active Directory (LDAP), or other authentication

systems. The role-based permission system means certain parts of the system can be locked down to

only certain users, (including certain web-views and executing pipelines). This means that for cloud

deployments it is possible to have some data and functionality available to the public, while retaining

other functionality as only available to privileged (e.g. internal) users or collaborators. The inbuilt

role system could be extended to link Projects to Roles, meaning different users could have access to

different projects, and can only view or interact or process projects that they have access to. This

would make it possible to enable external collaborators to interact with their data, while ring-fencing

the other projects that they should not have access to.
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Software development summary

Following software development, the database and software (PhenomeDB), can process and import

metabolomics data, and build and execute dynamic, asynchronous pipelines with standardised tasks,

on a wide-range of platforms, in a scalable, secure, and user-friendly way.

Import of metabolite feature abundances from the four cohorts

The GenerateAnnotationImportPipeline task is a ’pipeline generator’ task, and uses the Pipeline

Factory to build a pipeline with a sequence of BrukerIVDRAnnotationTasks chained together. This

pipeline (backfill annotations) was then executed, importing each feature dataset into the database.

An overview of this pipeline generator and the pipeline can be seen in figure 2.11. This demonstrates

the utility of the Pipeline Factory and the task system, as standardised and robust tasks for data

import can be dynamically chained together using simple logic.

Following execution of these pipelines, the data for the Bruker Bi-LISA annotated metabolite

features and abundances were imported. Table 2.4 shows the per-project, per-assay breakdowns

of the number of samples and annotated features imported during the data import, including the

PeakPantheR datasets imported using the ImportPeakPantheRAnnotations tasks, executed via the

Apache-Airflow UI.

2.3.7 Scalability results

Figure 2.12 shows the actual and predicted memory usage for importing abundance values into Phe-

nomeDB. From this it can be seen that the amount of memory required is generally linearly related

to the number of idealised samples. The number of samples has been estimated using an idealised

sample with a fixed number of features per sample (1000), so the real number of samples will vary

depending on the number of features imported for each sample. A fitted linear model predicts that

per 1000 idealised samples (with 1000 features each), ≈ 0.2GB of disk space is required. Biobank scale

(approximately 1 million samples) would require a 200GB database, and scaling to even 100 million

samples is predicted to use <20TB of disk space.

While this approach of using idealised samples (with a fixed number of features) means this is not

exactly how the normalised database might perform at scale with samples with differing numbers of

features, it does provide an estimate for assessing and validating the scalability performance.

Abundance DB table memory usage

The average memory usage of each row in the abundance table was ≈ 215 bytes. With a theoretical

upper limit of 128TB per table, the maximum number of idealised samples (with 1000 features each)

that could theoretically be stored in the abundance value table is approximately 595,348,837 samples.
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Figure 2.11: Overview of the GenerateAnnotationBackfillPipeline, and how it dynamically
creates the backfill annotations pipeline from the standardised folder structure of the source
datasets. Following execution of the GenerateAnnotationBackfillPipeline task from the airflow
interface (or CLI), the backfill annotations pipeline will be registered in the Apache-Airflow
system and can be executed and monitored via the UI.
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Table 2.4: Import statistics for Airwave, Airwave2, FINGER, MASALA, including the number
of samples, number of features, and sum of features in the cohort.
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Figure 2.12: Scalability results and predictions of the imported Airwave, Airwave2, FINGER,
and MASALA datasets, using an estimated number of idealised samples where the number of
features per sample is 5000 (A, B, C), and 1000 (D, E, F). A & D: The actual DB memory
usage of imported datasets, with a OLS trend line fitted. B & E: the cumulative memory usage
with a OLS trend line fitted. C & F: The predicted memory usage required for increasing
numbers of idealised samples (from 1000 to 10 billion), with number of idealised samples and
estimated memory usage on log scale axes.
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If required, table partitioning could be used to scale the database beyond this limit, where the table

is split into master and child tables, but can be accessed via SQL targeting the single master table.

With this approach, the only theoretical limit for the database will be hardware requirements, not

software.

As outlined in the datastore technology selection, another option for a database backend is to use

MySQL. MySQL with the InnoDB table engine has a maximum table size of 256TB (Oracle 2022a).

Following the import of 1000 dummy abundance values into a test table, the average value for the

total row size per sample (data and indexes) was ≈ 180 bytes, which is similar to the 215 bytes average

per row for Postgres. This suggests that using MySQL would allow for at least double the number of

metabolite abundance records, without having to use table partitioning. Despite this, Postgres is still

preferable due to it outperforming MySQL in terms of its JSONB functionality, concurrent read/write

performance, SQL standardisation, and fully open source licence and community support

For the use-cases and demonstration set out in this thesis, no further optimisations or table par-

titioning were required.

2.3.8 Query-ability assessment

With the imported data, the kinds of questions set out in the introduction can be answered using

SQL. In the following section examples of these kinds of questions, the SQL to answer them, and their

answers can be found. The following use-cases can be answered with the imported data.

• As a molecular epidemiologist for the purposes of identifying metabolite coverage, I want to

know how many features (e.g. columns) exist in the different cohorts.

• As an analytical chemist, for the purpose of metabolite identification, I want to find all metabolite

features with a particular retention time and m/z range.

• As a molecular epidemiologist, I’m interested in knowing in how many samples has a particular

metabolite been identified, per cohort.

What is the abundance value, retention time, and m/z for a specified feature in a sample?

select p.name as project , su.name as subject , s.name as sample , an.cpd_name

as metabolite , fm.rt_average as rt , fm.mz_average as mz , af.intensity as

intensity

from abundance_value af

inner join sample_assay sa on sa.id = af.sample_assay_id

inner join sample s on s.id = sa.sample_id

inner join subject su on su.id = s.subject_id

inner join project p on p.id = su.project_id
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inner join feature fm on af.feature_id = fm.id

inner join annotation an on an.id = fm.annotation_id

where p.name = ’AIRWAVE ’

limit 1;

project subject sample metabolite RT m/z intensity

AIRWAVE 27452 27452 Green Paraxanthine 58.35 181.071 79365.1061871726

Table 2.5: One Airwave annotated feature record

How many different sample types are there in each project?

select p.name , s.sample_type , s.assay_role , count (1)

from sample s

inner join subject su on su.id = s.subject_id

inner join project p on p.id = su.project_id

where p.name in (’AIRWAVE ’,’AIRWAVE2 ’,’FINGER ’,’MASALA ’)

and s.sample_matrix in (’plasma ’,’serum ’)

group by p.name , s.sample_type , s.assay_role

order by p.name , s.sample_type , s.assay_role;

project sample type assay role count

AIRWAVE ExternalReference PrecisionReference 971
AIRWAVE StudyPool LinearityReference 900
AIRWAVE StudyPool PrecisionReference 852
AIRWAVE StudySample Assay 3000

AIRWAVE2 ExternalReference PrecisionReference 325
AIRWAVE2 StudyPool LinearityReference 313
AIRWAVE2 StudyPool PrecisionReference 280
AIRWAVE2 StudySample Assay 1000

FINGER ExternalReference PrecisionReference 649
FINGER StudyPool LinearityReference 620
FINGER StudyPool PrecisionReference 636
FINGER StudySample Assay 2178

MASALA ExternalReference PrecisionReference 227
MASALA StudyPool LinearityReference 296
MASALA StudyPool PrecisionReference 225
MASALA StudySample Assay 754

Table 2.6: Counts for the different sample types found in the different projects

How many metabolite features (e.g. columns) exist in the different cohort datasets?

select p.name , count (1)

from project p

inner join feature_dataset fd on p.id = fd.project_id
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inner join feature fm on fd.id = fm.feature_dataset_id

where p.name in (’AIRWAVE ’,’AIRWAVE2 ’,’FINGER ’,’MASALA ’)

group by p.name

order by p.name;

AIRWAVE 585

AIRWAVE2 558

FINGER 577

MASALA 411

Table 2.7: The number of features imported in each cohort/dataset

How many abundance values (e.g. cells) exist in the different cohort datasets?

select p.name , count (1) from abundance_value af

inner join sample_assay sa on sa.id = af.sample_assay_id

inner join sample s on s.id = sa.sample_id

inner join subject su on su.id = s.subject_id

inner join project p on p.id = su.project_id

where p.name in (’AIRWAVE ’,’AIRWAVE2 ’,’FINGER ’,’MASALA ’)

and s.sample_matrix in (’plasma ’,’serum ’)

group by p.name

order by p.name;

AIRWAVE 2092054

AIRWAVE2 679559

FINGER 1452684

MASALA 365004

Table 2.8: The total number of abundance values per project

In each project, how many study samples contain CAR(18:0)?

select p.name , count (1) from abundance_value af

inner join sample_assay sa on sa.id = af.sample_assay_id

inner join sample s on s.id = sa.sample_id

inner join subject su on su.id = s.subject_id

inner join project p on p.id = su.project_id

inner join feature fm on af.feature_id = fm.id

inner join annotation a on a.id = fm.annotation_id

where p.name in (’AIRWAVE ’,’AIRWAVE2 ’,’FINGER ’,’MASALA ’)

and s.sample_type = ’StudySample ’

and a.cpd_name = ’CAR (18:0) ’

group by p.name;
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AIRWAVE 2968

AIRWAVE2 997

FINGER 2045

MASALA 722

Table 2.9: How many study samples contain CAR(18:0) per project

What are the different recorded retention times for CAR(18:0)?

select fm.rt_average as rt , fm.mz_average as mz

from feature fm

inner join annotation a on a.id = fm.annotation_id

inner join feature_dataset fd on fd.id = fm.feature_dataset_id

inner join project p on fd.project_id = p.id

where p.name in (’AIRWAVE ’,’AIRWAVE2 ’,’FINGER ’,’MASALA ’)

and a.cpd_name = ’CAR (18:0) ’;

RT m/z

140.911 428.373

138.285 428.373

140.933 428.373

145.128 428.373

Table 2.10: The different recorded retention times for CAR(18:0)

Which annotations have a retention time between 60 and 65 seconds?

select a.name as assay , fm.feature_name as metabolite

from feature fm

inner join feature_dataset fd on fd.id = fm.feature_dataset_id

inner join assay a on a.id = fd.assay_id

where rt_average >= 60 and rt_average <= 65

group by a.name , fm.feature_name;

assay metabolite label

HPOS Niacinamide
HPOS Nicotinamide
HPOS Pantothenate

LNEG LPA(14:0)
LNEG LPI(16:1/0:0)

LPOS CAR(14:0-OH)
LPOS CAR(14:1)

RPOS Nicotinate
RPOS Quinolinate

Table 2.11: Annotations with a retention time between 60 and 65 seconds
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These queries demonstrate the utility of storing the date in a standardised, query-able RDBMS

such as Postgres. These examples enabled the answering of some of the use-cases set out in the

introduction. The remaining will be answered in the following chapters.

Security assessment

Following penetration testing with OWASP ZAP, some low-risk cookie and http header vulnerabilities

were identified and resolved following security recommendation best practices.

2.3.9 Comparison with existing tools

MeltDB (Neuweger et al. 2008) and XCMS online (Tautenhahn et al. 2012) are limited in that they

cannot scale to population-scale molecular epidemiology experiments (Tzanakis et al. 2022).

PhenomeDB and MetHos (Tzanakis et al. 2022) have some similarities, including providing a scal-

able database and data processing platform for metabolomics data. There are however significant

differences between the systems, specifically in terms of application, and the kinds of the data stored.

Firstly, MetHoS is for large-scale processing and storage of untargeted LC-MS data, whereas Phe-

nomeDB is focused on integrative storage and processing of annotated metabolomics features from

both LC-MS and NMR, and is extensible to storing untargeted NMR and LC-MS features. Secondly,

MetHoS and PhenomeDB use different kinds of storage systems, optimised for their different purposes.

MetHoS uses the Apache Cassandra NoSQL document index for storage, to facilitate horizontally-

scalable (theoretically unlimited) storage of untargeted LC-MS features, whereas PhenomeDB uses

the Postgres RDBMS for storage, to balance excellent scalability performance with a fully normalised

data model, capable of linking study factors to metabolite features and abundances, and modelling the

complex sources technical and biological variability in metabolomics data. These differences enable

MetHoS and PhenomeDB to excel in different areas, MetHoS excels at large-scale storage and pro-

cessing of untargeted LC-MS features, whereas PhenomeDB excels at facilitating complex integration

and stratification of annotated metabolite features and study factors/metadata, making PhenomeDB

more suitable for integrative molecular epidemiological applications.

iMap (D. Zhou et al. 2021) has the ability to build user-defined analysis workflows for integrative

analysis of metabolomics data, but unlike PhenomeDB, it does not have any capability for storing

metabolomics data in an integrated form, other than by uploading CSV matrices of data, meaning all

integration and stratifications have to be handled by the researcher prior to utilising the system.

Molgenis (Van Der Velde et al. 2019) and PhenomeDB have some similar use-cases (molecu-

lar epidemiology), however Molgenis is simply an application development framework, whereas Phe-

nomeDB is a custom-built, domain-specific, and scalable software environment for storing and pro-

cessing metabolomics data for the purposes of integrative metabolomics. While it would have been

possible to develop the PhenomeDB database and processing platform within the Molgenis ecosys-
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tem, by instead utilising the core underlying technologies directly (e.g. Postgres), schema design and

version control was simpler by not requiring the usage of the required binary Excel EMX format,

and enabled full control over database indexing and scalability without the added overhead of using

Elasticsearch to create secondary indexes on the data. The software component was not limited to util-

ising Java for the backend, and the utilisation of an ORM (SQLAlchemy) was possible. The inclusion

and extension of Apache-Airflow enabled out-of-the-box horizontal scalability and the development of

fully customisable web-based user-interface plugins, without being constrained by using just client-side

tools. Unlike Molgenis, the data import system is not constrained by requiring a dedicated 1:1 match

between import files and database tables, and custom validation steps can be incorporated to ensure

dataset validity, not just individual field format validity.

Summary

The developed method, PhenomeDB, is a multi-software database and data processing environment

for metabolomics data, capable of meeting the requirements set out in the introduction; domain-

applicability, scalability, query-ability, usability, extensibility, asynchronous execution and platform

independence, and such is well-placed to provide the foundation for a method for integrated molecular

epidemiological investigations.

While the method is capable of processing, storing, integrating, and querying metabolomics data

from multiple studies and analytical platforms, further challenges remain to facilitate molecular epi-

demiological investigations:

1. The ability to import sample metadata and link them to samples and abundance values.

2. The ability harmonise sample metadata for multi-project integration and stratification.

3. The storage and harmonisation of annotation metadata, including metabolite labels, classes, and

links to online database references

4. User friendly methods and robust methods for creating integrated and stratified cohorts

5. User friendly methods for running reproducible statistical analyses, including batch correction,

and viewing the results

6. Demonstrating the use of these methods for reproducible molecular epidemiological investigations

These challenges will be addressed in the following chapters.

2.4 Contribution of this Chapter

The work in this chapter has resulted in a novel method for the extensible, scalable, and query-

able storage of metabolomics data, as well as novel methods for generating and executing dynamic
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asynchronous data processing pipelines for the purposes of dynamic and standardised data processing

and experimental investigation.
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Chapter 3

Import & harmonisation of sample and

annotation metadata

3.1 Introduction

In chapter 2, a scalable database and software library was created for storing, importing, and querying

metabolite abundance values and feature metadata, and data for four projects was imported into the

database. The work in this chapter outlines the design, development, and usage of methods to store,

import, and harmonise sample and annotation metadata, to enable multi-project integration and

stratification, and to enable linking the metadata to online ontologies and databases.

Figure 3.1: Overview of the process of import and harmonisation of sample metadata, an-
alytical features, and feature and annotation metadata. Abundance values were imported in
chapter 2.
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3.1.1 Sample metadata

Here sample metadata refers to the collection of study factors/clinical metadata used for exploring

the influence on, or effect of, biological metrics and measurements to a specific outcomes or pheno-

types (Honardoost, Rajabpour, and Vakil 2018). For example, in metabolomics a researcher may

be interested in understanding the relationships or associations between metabolite abundances and

particular covariates of interest, for example age, sex, BMI, diet, disease state, or the expression of

certain genes.

To leverage the data for integrative analysis, rigorous metadata harmonisation is required (Fortier

et al. 2016, Cernava et al. 2022). The needs for harmonisation can be demonstrated with three

aspects of sample metadata that may differ between studies; naming conventions, values (including

units/categories), and data types.

Data types

Two main classes of metadata data types exist, continuous, and discrete; continuous refers to numerical

variables on a continuous scale, and discrete refers to categorical variables, either binned numeric values

or text fields.

• Continuous — Numerical/datetime — comparison operators: (<, >, ==, ! =).

• Discrete — Text/categorical/classes — comparison operators: (==, ! =).

In order to use the kind of comparison operators required for stratification (e.g. to find samples

for participants under 50), these data types require specific and different database data types. These

data types are sometimes detectable/predictable from the values, but not always, for example in the

case where 1 and 0 represent classes.

Naming conventions

Naming conventions for sample metadata fields are typically study-specific, and as such require a-

priori knowledge of the metadata field names prior to the harmonisation and usage in an integrated

analysis (Bergeron et al. 2018).

Values

Even if the data type and naming conventions are the same across different studies, metadata values

for those fields may not have the same units, categorical labels, or precision. A-priori knowledge of

the values is therefore required, followed by manual curation of the values to a harmonised standard

form, whether that be standardised units or categorical labels.
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Standardised vs dynamic

Sample metadata fields can be described as:

1. Standardised — fields where the name is known a-priori, for example study descriptors such

as ’study name’, or ’sample ID’.

2. Dynamic — fields where the name is not known a-priori, for example study-specific confounders

such as ’age’, ’BMI’, ’sex’, or ’hours since eaten’.

Standardised metadata fields can be defined in the database, as their data type and naming

convention are by definition already standardised. Dynamic fields however cannot easily be stored in

dedicated columns in the database without a-priori knowledge of their data types, naming conventions,

and values.

Ontologies

A widely used approach for standardised a-priori descriptions of sample metadata naming conventions

and units is to assign metadata fields to online ontologies, for example one of the many ontologies

searchable via the NCBO Bioportal (Whetzel et al. 2011). Metabolights for example uses the stan-

dardised ISA-Tab format to describe study and sample metadata, part of the ISA-tools software suite.

ISA-Tab enables users to define biomedical investigations, and their related metadata, as a file or

collection of files describing investigations, studies, and assays (ISA) (Sansone et al. 2012). Ontologies

can help enable multi-project integration, however they are only a structured and standardised format

for metadata, they do not by themselves provide a computational mechanism for curating metadata

values, from unstructured origins, to harmonised values.

Existing tools

Various tools for metadata harmonisation have been developed, including the open source software

Opal and Mica (Doiron et al. 2017), which act together to provide a web-based metadata database

and search portal for the manual harmonisation and discovery of epidemiological metadata. Study

data can also be stored, and R and Python scripts executed.

Semi-automated methods include MOLGENIS/connect (C. Pang, Enckevort, et al. 2016), an open

source platform for harmonising Biobank phenotypes, with features for semi-automated name match-

ing, data transformation, unit conversion, and mapping categorical variables, and when tested was

able to correctly harmonise 27% of tested fields with no human intervention.

Fully automated methods of field name-matching have also been developed. Sawarker et al. (2020)

tested using entity-resolution and contextual-embedding methods to merge heterogenous metadata for
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machine learning applications, including comparing the use of using Levenshtein distance and machine-

learning method db2vec to predict harmonised field names. The db2vec method performed well at

matching field names, but it does not have the capability to automatically curate the metadata values

or data types.

While these tools provide excellent manual, semi-automated, or automated methods for meta-

data harmonisation, in order to leverage the power of SQL for integration and stratification of the

metabolomics data, an in-database, user-friendly, and 100% accurate solution is required, whereby

the harmonised fields and values are stored and linked to the recorded metabolite abundances. While

semi-automated methods such as the one used by MOLGENIS/connect can significantly reduce the

time needed to harmonise metadata when many fields require harmonising, it still requires monitoring

and some human intervention, as well as data modelling and programming skills to configure and

deploy.

3.1.2 Feature metadata

Feature metadata is typically a file containing metadata related to the abundance values measured in

the metabolomic assay, and may contain both analytical metadata such as instrument configuration,

measured values such m/z or retention time, or even metabolite annotation/ identification informa-

tion such as chemical identifiers, pathway information, or perhaps the software version used in the

annotation. A common set of these fields was developed and imported into the database in chapter 2.

3.1.3 Annotation metadata

The annotation metadata is a subset of feature metadata, related specifically to the chemical anno-

tation of the features. Annotation metadata may come from other sources, such as the PeakPantheR

region-of-interest (ROI) file, or the Bruker Bi-LISA mapping file. By linking annotations to online

compound databases, the annotations become inter-operable with online databases and analysis tools,

such as the pathway analysis tools iPath3 (Darzi, Letunic, and Yamada 2018), and LION/web (Mole-

naar et al. 2019).

PeakPantheR Region-of-Interest (ROI) files

These files contain the name of the compound being annotated (the same as the Annotation.cpd name’

in the core data model), molecular metadata (e.g. mass, molecular formula), and compound identifiers

(InChI, InChI Key, PubChem CID, etc), as well as the necessary retention time and m/z windows for

matching ion features to compounds.

Each assay has an ROI file specifically for the compounds that can be detected in each assay, and

their associated retention time and m/z windows. Retention time windows can be adjusted per-dataset

or per laboratory, to account for both retention time drift and analytical method variation.
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The specific ROI files used in this analysis can be found in the supplementary section of Matthew

R Lewis et al. 2022.

Bruker Bi-LISA metadata

Another source of metadata is the Bruker Bi-LISA configuration file, which contains the long-form

names of the annotated lipo-protein and lipid fractions. This is a simple CSV file containing the short

name (Annotation.cpd name) and the long name of the related lipoproteins and lipid fractions.

Compound databases

In the introductory chapter, a wide-range of databases were introduced, including spectral databases,

compound databases, and pathway databases. In figure 1.3, it can be seen that the interoperability

of these databases depends on these compound databases, and their identifiers.

PubChem (S. Kim et al. 2021) is online biomedical chemical reference managed by the US National

Library of Medicine (NLM), as part of the National Institue of Health (NIH), and as of 2021 had 111

million unique chemical structures (CIDs), from 217 substances (SIDs), and 1.2 million biological

assays, from over 750 sources. Each record contains information about the chemical properties, and

known identifiers for the compounds, and PubChem maintains a REST API that is capable of searching

and retreiving records using various identifiers, including InChI and InChI key.

HMDB (David S Wishart et al. 2022) is an online repository for human metabolites, specifi-

cally targeting the metabolomics community, with 217,920 annotated human metabolites as of 2021.

HMDB sets itself apart from pathway databases such as KEGG or spectral databases such as Metlin

(Montenegro-Burke, Guijas, and Siuzdak 2020), by enriching the information related to the metabo-

lite. Each record (’MetaboCard’) contains information related to the structure, chemical taxonomy

(classes), biological roles and associations, reactions, pathways, and related MS/MS, GC-MS, and

NMR spectra, and the entire database can downloaded in XML format.

LIPID MAPS (Sud et al. 2007, Fahy, Subramaniam, et al. 2009) is an online classification system

for lipids, created to handle difficulties of lipidomic bio-analytical classification. Lipids are organised

into structural classes, and entities provided unique identifiers where possible. As of 2022, it had

25661 curated lipid species recorded for fatty acyls, glycerolipids, glycerophospholipids, sphingolipids,

sterol lipids, prenol lipids,,saccharolipids, and polyketides.

ChEBI (Hastings et al. 2016) is a database and ontology created by the European Bioinformatics

Institute for high quality information regarding chemical species of biological interest. ChEBI stores

structural properties, external database identifiers, and ontological classification of compounds, as the

database identifier for annotated compounds in the metabolomics data repository Metabolights. As

of 2016, over 46,000 chemical species are described in ChEBI.
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KEGG (Kanehisa 2000) is widely used database storing compounds, genes, and biological path-

ways, and as such can be used for linking annotated compounds to biological pathways.

Refmet (Fahy and Subramaniam 2020) is a collection of 138,000 metabolite names and classes

(as of 2020), specifically for the harmonisation of metabolomics annotation nomenclature (metabolite

names), curated from the National Metabolomics Data Repository on the Metabolomics Workbench.

Refmet records contain a name, and where possible, the associated InChI and InChI key.

Two main kinds of annotations will be imported to the database, compound annotations, such

as those annotated by PeakPantheR, and lipid fraction annotations, such as those annotated by the

Bruker Bi-LISA method. Compound annotations are the main kind of annotation we will address. In

order to make use of the annotated compounds in chemoinformatic analyses, it is useful to have links

from the annotated compounds to their records (if they exist) in online chemoinformatic databases

and ontologies.

With the wide selection of databases available, at first thought, it may seem simple to harmonise

annotation labels using one or another of the online chemical and metabolite databases for metabolite

naming conventions, such as Pubchem CID or Refmet name. For example the user could find the

related Pubchem CIDs for their annotated compounds, and use these to harmonise the annotation

labels. However, there are multiple difficulties with consistent reporting of metabolite labels from

multiple assays, these difficulties are broadly covered by annotation specificity, database coverage,

and naming conventions.

Annotation specificity

Annotation specificity relates to the ability of a method to resolve the structure of a molecule (e.g.

its identification). NMR can in most cases fully resolve the identity of a molecule through full struc-

tural elucidation, including stereo and double-bond isomers, whereas LC-MS can only measure the

mass/charge ratio of ions, including molecular fragments, and therefore is blind to structural differences

such as stereo and double-bond isomers unless chiral stationary phases are used in the LC (Chaleckis

et al. 2019). Many compounds in online databases relate to either L, D, and/or DL (racemic) versions

of the compounds; the problem arises that if an NMR method can detect the L version, and the

LC-MS method can only detect the DL version, then by design they may have different identifiers,

even though they are different forms of the same compound.

In the PeakPanther ROI files, most annotations map to a single compound, and therefore have

one InChI recorded. However in LC-MS, some metabolites with the same molecular formula and

ion m/z values may co-elute from the chromatographic column at the same time, meaning they are

indistinguishable by LC-MS. In the ROI files, these compounds have multiple InChIs, seperated by

either a ’|’ character, or ’and/or’, these represent an annotation or ’either compound A or compound

B’ or ’compound A and compound B’. This means each annotation can have one-to-many compounds.
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Figure 3.2: Two examples of potential differences in the specificity and uniqueness of LC-MS
annotations vs NMR annotations. A: LC-MS cannot distinguish between co-eluting compounds
with the same m/z, whereas with NMR the full elucidation is possible. B: Different forms of
the same compound (e.g. position of the sulfur atom) may elute at different times.
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Some annotations, for example Cholesterol sulfate 1, and Cholesterol sulfate 2, relate to the same

chemical composition but are two different compounds with subtle difference in their structures (e.g.

Cholesterol sulfate), for example they may have slight differences such as the position of the sulfur

atom, and thereby may elute at different times. This means each compound can relate to multiple

annotations (e.g. many-to-many).

Further, some compounds have no InChIs recorded at all, for example some lipid species, where the

number of possible structural isomers is so great that recording and storing all the possible InChIs for

that annotation would be difficult and/or futile. Instead, LIPID MAPS classes are stored, and KEGG

IDs where possible, as KEGG compounds in some species use un-specific R-groups for characterisation,

and can therefore represent many structural isomers. This downside to this approach is that potentially

many unique lipid species will be represented as a single KEGG ID - a significant loss of information.

The differences in the number of compounds per annotation and analytical specificity between the

platforms, must be taken into account in order to harmonise annotations for multi-project integration,

and for finding samples annotated in different platforms.

3.1.4 Naming conventions

Another source of potential variation in the metabolite labels are the naming conventions used in the

version of the ROI file used in the analysis. During import of abundance values in chapter 2, multiple

metabolite label versions were imported relating to different ROI versions used in the annotation,

meaning each unique annotation had multiple potential metabolite labels, and therefore different values

for Annotation.cpd name, making in-database multi-project harmonisation difficult. This was due to

the revisions in the ROI files, which meant that certain annotations may have increased or decreased

in confidence, thereby changing the labels used. For example where two or more compounds are

reported for one annotation, with further metabolite identification experimentation it may be possible

to reduce this to just one. A method for harmonising these metabolite labels must be developed for

integrative analysis.

Database coverage

The large-scale nature of metabolomics data further complicates the issue; the potentially large number

of chemical species found in a single dataset means there is no guarantee that any one database will

have an entry for every annotated compound, meaning any method must be capable of storing multiple

online database identifiers.

In summary, metabolite annotations are difficult to integrate due to:

• Differing analytical specificity between platforms and methods.

• Differing or changing metabolite labels used in annotations.
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• Differing compound database coverage of the annotated metabolites.

The work in this chapter aims to address some of these problems, by finding a common data model

that can be used for annotation compounds, enabling multi-study integration and comparisons, with

the appropriate level of assay specificity, and reusable and generalised methods for importing and

storing metabolite identifiers and classes from multiple databases.

3.1.5 Aims

The combined aims of the chapter are:

1. Design and develop methods for importing and harmonising sample metadata names, data types,

and values.

2. Import and harmonise sample metadata for Airwave, Airwave2, FINGER, and MASALA.

3. Design and develop generalised methods for importing and harmonising annotation metadata,

including annotation configurations, online database identifiers and classes.

4. Import and harmonise annotation metadata for the HPOS, LPOS, LNEG, RPOS, RNEG, and

Bruker Bi-LISA assays.

5. Using the use-cases outlined in chapter 1, demonstrate the utility of the these methods for the

multi-project integration and stratification.

3.2 Methods

An overview of the steps involved in importing and harmonising sample metadata can be seen in figure

3.3.

3.2.1 Design and development of methods for the import and harmonisation of

sample metadata

In chapter 2, a standardised import task class and method for creating dynamic pipelines was created,

along with a data model capable of storing sample metadata for individual projects. These tools,

along with the developed core data model, were used to create a data model and an import methods

for the storage and harmonisation of sample metadata.

Design and development of a data model for storing harmonised metadata

Following the same data modelling process used in chapter 2, a logical data model was developed

for metadata harmonisation, and the tables and foreign keys added to the physical schema, and the

models.py SQLAlchemy definition and the test models.py unit tests.
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Figure 3.3: Overview of the steps to develop a methods for the harmonisation of sample and
annotation metadata for multi-project integration and stratification.
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Design and development of a task for importing sample metadata

With a suitable data model in place, methods for importing the sample metadata were designed and

built. The ImportTask developed in chapter 2 was extended to create the ImportSampleManifest

task, to import sample metadata from the NPC format metadata source files. Features were added to

prevent the import of personally identifiable information or other sensitive metadata, and a validation

step was added to ensure the imported data was consistent with the source data. The developed task,

ImportSampleManifest was added to the task spec.json file, the Import API methods, and Apache

Airflow, to allow CLI, API, and web-interface SingleTaskPipeline execution of the task as required.

A UI control panel was added to the Apache-Airflow UI as Flask-Appbuilder plugin, with views

for adding harmonised metadata fields, units, viewing the metadata fields for a project, and manually

harmonising values.

Design and develop a task for curating sample metadata

With methods for importing the data created, a task for harmonising/curating the sample metadata

was created. The task was designed to meet the following requirements:

• Naming convention harmonisation — Can the method harmonise metadata field names?

• Data type harmonisation — Can the method handle different data types, such as numerical,

date, or categorical data, and cast to the harmonised type?

• Value harmonisation — Can the method harmonise values to the correct units or categories?

The resulting CurateMetadata task was added to the task spec.json file.

3.2.2 Import and harmonisation of sample metadata for Airwave, Airwave2, FIN-

GER, and MASALA

A pipeline generator task (GenerateMetadataBackfillPipeline) was created to download the sample

manifests from the NPC web-based LIMS, and using the Pipeline Factory, created a hard-coded

pipeline to execute the ImportSampleManifest tasks for each study. The resulting pipeline (back-

fill sample metadata) was then executed via the Apache-Airflow interface, and the metadata for the

four projects was imported to the MetadataField and MetadataValue tables in the database.

Harmonised metadata fields and relevant unit were created for age, sex, BMI, and timepoint. The

definitions were added to the npc-setup.json for creation during the execution of NPCSetup.

For each study, the metadata fields for age, sex, BMI, and timepoint were curated using the

CurateMetadata task, with the parameters outlined in table 3.1. A pipeline generator task (Gener-

ateMetadataHarmonisationPipeline) was created and executed to build a pipeline of CurateMetadata
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tasks, with the task parameters defined in table 3.1. Following the execution of the generated pipeline

(harmonise age sex bmi), the metadata field names, data types, and values were curated into the

harmonised fields, ready for integration and stratification.

3.2.3 Design and development of methods for import and harmonisation of anno-

tation metadata

Methods for the storage, import and harmonisation of annotation metadata were developed and im-

plemented. The overall steps involved were:

1. Design and implement and data model to store annotation metadata, including annotation

configs, compounds, links to external databases, and metabolite classes.

2. Design, implement, and use methods to import annotation metadata for the different assays and

annotation methods.

3. Design and implement a user interface system to explore and harmonise annotation metadata.

4. Harmonise imported annotations by version.

5. Demonstrate the utility of annotation harmonisation with example queries.

Design and implementation of a data model to store and harmonise annotation metadata

The annotation metadata source files were inspected, and a data model to store metabolite identifiers

and link them to the imported features & annotations was designed and developed. The data model

was designed to be capable of:

1. Storing multiple compound labels and online identifiers.

2. Linking compounds to analytical features with the correct level of assay specificity and annota-

tion uniqueness.

3. Enabling annotation harmonisation across multiple annotation versions.

4. Storing information about metabolite classes.

During data modelling, a unique key for each compound was developed by assessing the uniqueness

and specificity capabilities of various metabolite descriptors, and their appropriateness for both small

molecules and lipids. The metabolite labels assessed for this usage were common name, molecular

formula, IUPAC, InChI, InChI Key, and Isomeric SMILES. Following assessment, the unique key was

designed to be a combination of common name and InChI key.
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Table 3.1: Metadata harmonisation parameters for the covariates of interest (age, sex, BMI,
timepoint). 108



The metabolite identifiers identifiers to be included in the data model were Refmet, Pubchem CID,

HMDB ID, LIPID MAPS ID, ChEBI, ChEMBL, ChemSpider, KEGG. Their respective coverage for

the PeakPantheR annotations were assessed.

The metabolite classifications systems included in the data model were Refmet, HMDB, LIPID

MAPS, and ClassyFire. The ontologies from these different systems were harmonised in the data

model.

Design and implementation of methods for importing annotation metadata and external

references

Following the development and implementation of the data model, data import tasks were developed

and executed to populate the compound library and link the compounds to imported features and

annotations. The method had the following capability requirements:

• Import data from the PeakPantheR ROI and Bruker IVDr configuration files

• Lookup and store online database identifiers

• Lookup and store metabolite classes

A python module called compounds.py was created for importing and harmonising annotation

metadata from ROI files and Bruker IVDR configs, and a CompoundTask was created with standard-

ised methods for looking up online database identifiers as required.

API based compound identifier lookup methods were created for PubChem, ChEMBL, and Classy-

FIRE, using their public REST APIs, and ChemSpider using the ChemSpiPy Python library (Matt

Swain 2022). The Python library RDKit (Landrum 2010) was used for converting the available InChIs

to InChI keys. The InChI Key was then used API lookups. For these REST APIs with no dedicated

client, the endpoints used were:

• ChEMBL —

https://www.ebi.ac.uk/chembl/api/data/molecule/<inchi_key>/?format=json

• PubChem —

https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/<inchi_key>/JSON/

• ClassyFIRE —

http://classyfire.wishartlab.com/entities/<inchi_key>.json

CSV reference file lookup methods were created for ChEBI, Refmet, LIPID MAPS, HMDB, and

KEGG. These methods use Pandas dataframes to search for the online identifier using either the InChI

key, common name (e.g. for lipids), or the PubChem CID.
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ChEBI, Refmet, LIPID MAPS, and HMDB reference files were downloaded from their respective

locations:

• ChEBI —

https://ftp.ebi.ac.uk/pub/databases/chebi/Flat_file_tab_delimited/chebiId_inchi.tsv

• Refmet —

https://www.metabolomicsworkbench.org/databases/refmet/refmet_download.php

• LIPID MAPS —

https://www.lipidmaps.org/data/structure/LMSDSearch.php?Mode=ProcessStrSearch&OutputMode=File&OutputType=CSV

• HMDB —

https://hmdb.ca/system/downloads/current/hmdb_metabolites.zip

The task ParseHMDBToCSV was developed to convert the HMDB XML format into CSV files for

fast lookup.

The task ParseKEGGToCSV was developed to use the KEGG API to download the entry datasets

for KEGG compounds, and extract their associated PubChem SID. The PubChem CID was retrieved

using the PubChem API (searching by SID), and a CSV of KEGG IDs and their associated PubChem

CID was created for fast look up.

The task ImportROICompounds was created for importing annotation metadata data from Peak-

PantheR ROI files, including importing the relevant compounds, online database identifers and classes,

creating harmonised annotations, and mapping them to annotations.

The task ImportBILISACompounds was created for importing Bruker Bi-LISA annotation meta-

data data.

The developed import tasks were added to the task spec.json config file. An API key for Chem-

Spider was added to the config.py and config.ini scripts for usage in the import scripts.

Import of annotation metadata

Lookup tables for HMDB and KEGG were created by executing ParseHMDBToCSV and ParseKEG-

GToCSV. Annotation metadata, including compounds, was imported by running the ImportROICom-

pounds and ImportBILISACompounds for the each assay and platform. Feature and annotation meta-

data configurations were added to the NPCSetup pipeline config, to enable database setup during

system/container start up.

Design and implementation of user interfaces to explore and harmonise annotations

Flask-Appbuilder web views were designed and built and added to the Apache-Airflow interface. Views

were developed for:
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• Viewing imported compound information, including links to online databases and classes.

• Viewing imported compounds in each class type (Refmet, ClassyFire, HMDB, LIPID MAPS).

• Viewing imported annotation configs.

• Harmonising annotation naming conventions by version.

3.2.4 Harmonisation of annotation version

After import, the remaining unharmonised annotations were manually harmonised using the developed

view, or in the case where specific annotations were removed from later ROI versions, they were left

unharmonised, and therefore not included in the later analysis/integration.

3.2.5 Method validation

Test driven development was used at every development stage to test model and code functionality.

The harmonised sample metadata and imported compound IDs and classes were manually checked to

ensure validity.

Demonstrating the utility of sample metadata harmonisation

Queries to answer the following use-cases from the introduction were developed to demonstrate the

utility of sample metadata harmonisation.

• As a molecular epidemiologist, for the purposes of sample metadata harmonisation between

studies, I want to know what are the study factor field names for the projects I aim to integrate?

• As a molecular epidemiologist, for the purposes of assessing potential power of an integrated

cohort, I want to know how many male and female participants are in all cohorts?

• As a molecular epidemiologist, for the purposes of assessing suitability for integration of multiple

studies (e.g. balance), I want to know how many male and female participants are there in each

study?

Demonstrating the utility of annotation harmonisation

Queries to answer the following use-cases from the introduction were developed to demonstrate the

utility of annotation harmonisation.

• As an analytical chemist, for the purpose of method characterisation and optimisation, I want

to know how many amino acid abundance values were detected and passed QC in each project.
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• As an analytical chemist, for the purpose of method characterisation and optimisation, I want to

know in how many samples have we detected a particular metabolite, and what is the median and

standard deviation of run-order-corrected intensities of the particular metabolite in the study

samples, study references (SR), and external references (LTR).

• As a molecular epidemiologist, for the purposes of assessing integration of data from multiple

projects, I want to know in how many samples have we detected a particular metabolite in, and

what is the median and standard deviation of run-order-corrected intensities for the particular

metabolite, stratified by study and participant sex.

To answer these, the chemical identifier ChEBI:17154 will be used as the specific metabolite, and

the HMDB sub class ’Amino acids, peptides, and analogues’ will be used for querying the amino acid

annotations.

A Postgres function for calculating the median function can be found and in appendix A.5, was

copied from: https://wiki.postgresql.org/wiki/Aggregate\_Median

The results for examples 2 and 3 were plotted using the Python package Plotly (Plotly Technologies

Inc. 2015).

3.3 Results/discussion

3.3.1 Design and develop methods for sample metadata storage, import, and har-

monisation

Design and develop a data model for sample metadata harmonisation

The first step for data modelling was to develop a conceptual model of the data to be stored, where

the core components of the data model, the entity relationships, cardinality, and links to the existing

data model is identified. For sample metadata, each sample will have a unique entry for a metadata

value, and each metadata value will also have a field name and units.

In chapter 2, the core data model was developed, and a decision was made about which level

of ’sample’ information to use to provide the unique-ness of the values was necessary. The NPC

format sample manifest has two levels of associated metadata; subject and sample. Alongside this,

some standardised sample metadata is SampleAssay specific (as seen in figure 2.3). To simplify the

data model Sample was chosen the level for storing dynamic metadata fields (e.g. where the naming

convention, data type, and values are not known a-priori).

Figure 3.4 shows the conceptual model for storing and harmonising sample metadata. Samples

are linked one-to-many to MetadataValues, which store the raw metadata values from the imported

sample data. MetadataValue stores raw values as strings because the source data is typically un-

known, and trying to detect the datatype programmatically is error-prone, for example numbers can
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easily be misinterpreted as text, and numbers which are actually classes/categories may be inter-

preted as numbers (e.g. 0/1). For this reason the raw data is all stored as a string to prevent any

confusion. MetadataValues also have an associated MetadataField, which is unique per project. The

data model has a harmonisation extension that allows for multiple project comparisons, this is the

HarmonisedMetadataField, with associated datatype and units. Depending on the HarmonisedMeta-

dataField datatype, the curated metadata value will be stored in a dedicated, fully typed field in

MetadataValue; harmonised numeric value, harmonised text value, and harmonised datetime value,

allowing for database comparison operators to function, to enable MetadataValue comparison filter-

ing.

Figure 3.4: Logical data model for sample metadata: Top) Data model for MetadataVal-
ues and MetadataFields per project. Bottom) The addition of HarmonisedMetadataField al-
lows for cross-project linkage of MetadataFields, including standardised units and datatype;
depending on the datatype, MetadataValues store either harmonised numeric value, har-
monised text value or harmonise datetime value, to allow utilisation of comparison operators
and functions (ie <, >, =, ! =).
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ImportSampleManifest task

Extending the ImportTask developed in chapter 2, the ImportSampleManifest task uses the NPC

Sample Manifest excel file to import the sample metadata. Following the design principles of the

ImportTask, the ImportSampleManifest task imports data ensuring no incorrect duplication, and

then validates the data before committing to the database.

The ImportSampleManifest task takes as parameters the Project/Study name, and the path to

the sample manifest file to import. The sample manifest file is an excel workbook with two sheets,

one for metadata linked to Subjects, and one linked to Samples. For data model simplification all

metadata fields are imported linked to Sample objects.

The major steps of the import are:

1. Get, or create the Project, based on the supplied project name.

2. Merge the worksheet data together, by Sample ID.

3. Iterate through the samples, adding a Sample in the database, (Sample ID is Sample.name)

4. For each sample, iterate through the metadata values, getting or creating a MetadataField, and

creating a MetadataValue for each sample, with the value stored as text in MetadataValue.raw value.

Validation is a two stage process. Firstly, counts of each imported object are checked against the

expected. Secondly, a separate method iterates through every expected value in the source data file,

and checks that the objects in the database transaction exist as expected, and that the values match.

The sample manifest format is more complicated than is necessary for the purpose of storing

sample metadata, including those found in most online databases, which are typically a single table

CSV with rows with samples columns with metadata values. For these a different task was created;

ImportMetadata, which can be used for importing sample metadata from these simpler formats,

including for extra metadata that was not included the sample manifests.

User interface additions

Figure 3.5 shows the metadata explorer view that was created to allow users to explore and manually

harmonise metadata *JMS1. Panels for viewing the metadata fields of a project, exploring the metadata

values (including distribution plots), assigning metadata fields to harmonised metadata fields, and

manually curating metadata values to harmonised values can be seen, along with forms for creating

harmonised metadata fields and units. This user interface enables users to explore and harmonise

the metadata, however curation is very laborious using this approach as each individual metadata

value must be manually curated, and as such it is inefficient for cohorts with many participants. To

1Some parts of the metadata explorer view were developed by Jazz Mack Smith under my direction
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overcome this, a method of rule-based curation was developed, where all the metadata values for a

specific metadata field can be curated using a single user-defined lambda function. This method is

the CurateMetadata task.

CurateMetadata task

Figure 3.6 is an overview of the CurateMetadata task. The takes source MetadataValues, curates the

values to harmonised values, and links the MetadataField to HarmonisedMetadataField. The task

does this via various in-built functions for common data transformations, as well the ability to execute

user-defined python lambda functions. Like the ImportTask, if any errors occur during transforma-

tion and curation, the database transaction is rolled back, ensuring the data is consistent. In more

complex cases, the user can define a python lambda function with one argument (the MetadataValue

raw value), which is then executed against MetadataValue raw value and stored in the correct har-

monised metadata value. An example of this function is where sex might be coded ’1’ and ’2’, and

the user wishes to curate the values to ’Male’ and ’Female’. The lambda definition for this would be:

lambda x : ’ Male ’ i f x . s t r i p ( ) == ’1 ’ e l s e ( ’ Female ’ i f x . s t r i p ( ) == ’2 ’ e l s e ’Unknown

’ )

More complex transformations that require more than one input variable currently require custom

built functions added to the metadata module, for example if instead of age, date of birth and sam-

pling date are recorded. For this, the inbuilt function transform dob and sampling date to age() was

created, which calculates the subject’s age using the date of birth and the recorded sampling date (e.g.

the date the sample was taken). Once transformation via the inbuilt methods or user-defined lambda

is completed, the harmonised value is cast to the harmonised data type, before storing the value in

the harmonised value fields of MetadataValue. If other cases require multiple variables, the metadata

module can be extended as required. With these inbuilt and lambda functions, the CurateMetadata

task grants excellent transformational flexibility in a standardised and ACID compliant method; again

if any of the transformations fail, the database transaction is rolled back to prevent inconsistencies.

The metadata harmonisation system, consisting of the harmonised metadata data model, and

CurateMetadata task, meet the requirements set out in methods:

• Naming convention harmonisation — study-specific MetadataFields are linked to multi-

study HarmonisedMetadataFields, with standardised names.

• Data type harmonisation — raw values are dynamically cast to the correct data type and

stored in typed database fields.

• Value harmonisation — values can be curated to specified units, categories, and precision

(rounding).

2*JMS Jazz Mack Smith developed most parts of this view under my direction, excluding the charts.
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Figure 3.5: User interface for the PhenomeDB metadata explorer and harmonisation UI. A:
Screen for exploring the metadata fields for a selected project. When a project is selected,
the list of metadata fields appears, with the linked harmonised metadata field shown. When
a metadata field is clicked, a plot of the distribution of the values, and a list of the values is
shown. Metadata raw values can be manually curated to harmonised metadata values using
this control panel. B: Form for adding new harmonised metadata fields. C: Form for adding
new units.*JMS2
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Figure 3.6: Overview of the curate metadata task. The metadata field is linked to the selected
harmonised metadata field, before value transformation via in built functions, or a user defined
functions, before final type cast to the harmonised data type, ready for in-database integration
and stratification.

117



With a method for importing and harmonising sample metadata created, sample metadata was

then imported into the database and harmonised.

Import of sample metadata

The pipeline generator task GenerateMetadataAndDataLocationsBackfillPipeline creates a pipeline

(backfill sample manifests), with a sequence of ImportSampleManifest tasks, one for each project

who’s sample metadata is to be imported.

All the source sample manifests files were stored in the web-based NPC LIMS, however in many

cases these files are edited manually and stored on a network drive. Reasons why a file may be edited

are that the sample may be missing, the sample may have been renamed, or a sample may have

required re-acquiring due to an instrument error. The pipeline generator GenerateMetadataAndDat-

aLocationsBackfillPipeline task uses these manually edited files, and defaults to downloading from the

NPC LIMS via a web-scraping script when a manually edited file does not exist.

Following the creation and execution of the sample metadata import pipeline, (via the execution

of the GenerateMetadataAndDataLocationsBackfillPipeline task and the backfill sample manifests

pipeline), the sample metadata for the four studies were imported, and can be found using the following

SQL examples.

What are the study factor field names for the Airwave project?

select mf.name

from metadata_field mf

inner join project p on mf.project_id = p.id

where p.name = ’AIRWAVE ’

order by mf.name;

Following sample metadata import, the sample metadata for the four studies were ready for har-

monisation. The different metadata fields for the covariates of interest (age, BMI, sex) can be found

with the SQL query defined in 3.3.1.

select p.name ,mf.name

from metadata_field mf

inner join project p on mf.project_id = p.id

where p.name in (’AIRWAVE ’,’AIRWAVE2 ’,’FINGER ’,’MASALA ’)

and (

lower(mf.name) like ’%age%’

or

lower(mf.name) like ’%sex%’

or

lower(mf.name) like ’%gender%’
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Age
Airwave user
BMI cat
BMI cont
CHOLESTEROL cat
coffee 60mn
diag cancer
Gender
has drunk within 24hours
HBA1C cat
hours since eat blood
is menses
is pregnant
is smoker
latest storing place
night work 72hours

Table 3.2: Raw metadata fields for Airwave

or

lower(mf.name) like ’%bmi%’

or

replace(lower(mf.name),’ ’,’’) like ’bodymassindex ’)

order by p.name , mf.name;

AIRWAVE Age
AIRWAVE BMI cat
AIRWAVE BMI cont
AIRWAVE Gender

AIRWAVE2 Age
AIRWAVE2 BMI cat
AIRWAVE2 Gender

FINGER Age
FINGER bmi
FINGER bmi 0
FINGER bmi 24
FINGER Gender
FINGER sex
FINGER storage
FINGER storage 0
FINGER storage 24

MASALA Age
MASALA Body Mass Index
MASALA Gender

Table 3.3: Metadata fields that match the query written to find fields that could age, sex, or
BMI

The different metadata fields shown in 3.3 highlight the difficulty in integrating and stratifying the

metadata from these different projects without prior curation, in that they have different names, and

some have multiple fields with different units, referencing the same data (e.g. BMI cont and BMI cat),
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and non-unique field name matches, for example the wildcard (%) like ’%age%’ matching both ’age’

and ’storage’.

Figure 3.7: Sample metadata is now imported, and mapped to the imported abundance
values.

Harmonise metadata pipeline

The GenerateMetadataHarmonisationPipeline uses the pre-defined CurateMetadata options (seen in

table 3.1) to create a pipeline of CurateMetadata tasks (harmonise age sex bmi). Following execution

of this pipeline, the study-specific metadata fields and values for the covariates of interest were curated

into harmonised names, values, and datatypes.

The harmonised metadata fields can now be found with a much simpler query, and through har-

monisation, the different field names and data types can be found with the query shown in query

3.3.2.

3.3.2 Method validation

Queries can now be created to answer some of the use-cases set out in the introduction, as outlined

in the methods section.

What are the study factor field names for the different projects?

select p.name , hmf.name

from harmonised_metadata_field hmf

inner join metadata_field mf on hmf.id = mf.harmonised_metadata_field_id

inner join project p on p.id = mf.project_id

where p.name in (’AIRWAVE ’,’AIRWAVE2 ’,’FINGER ’,’MASALA ’)
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order by hmf.name ,p.name;

AIRWAVE Age numeric
AIRWAVE2 Age numeric
FINGER Age numeric
MASALA Age numeric

AIRWAVE BMI numeric
AIRWAVE2 BMI numeric
FINGER BMI numeric
MASALA BMI numeric

AIRWAVE Sex text
AIRWAVE2 Sex text
FINGER Sex text
MASALA Sex text

AIRWAVE Timepoint numeric
AIRWAVE2 Timepoint numeric
FINGER Timepoint numeric
MASALA Timepoint numeric

Table 3.4: Harmonised metadata fields for the four cohorts

The harmonised fields can be seen in table 3.4. With the metadata fields and values harmonised,

its now possible to answer the following types of questions, as outlined in the use-cases.

How many male and female participants are in all cohorts?

The query to get the integrated counts of study participants stratified by sex can be found in appendix

A.6. The results of the counts of study participants stratified by sex can be seen in table 3.5.

Female 2851
Male 4081

Table 3.5: Integrated study participants counts across the four cohorts, stratified by sex

How many male and female participants are in each cohort?

The query to get the integrated and stratified count of male and female study participants can be

found in appendix A.7. The integrated cohort participant counts, stratified by project and sex can be

seen in table 3.6.

Summary

The queries and results demonstrate the sample metadata fields have been harmonised in the database,

and abundance values can be integrated and stratified.
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AIRWAVE Female 1182
AIRWAVE Male 1818

AIRWAVE2 Female 315
AIRWAVE2 Male 685

FINGER Female 1016
FINGER Male 1162

MASALA Female 338
MASALA Male 416

Table 3.6: Integrated cohort participant counts, stratified by project and sex

Figure 3.8: Sample metadata is now imported and harmonised, and linked to abundance
values.
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3.3.3 Design and development of methods for import and harmonisation of metabo-

lite metadata

Selection of a unique key

Table 3.7 shows the summarised results of the suitability assessment for selection of a metabolite

label to act as a unique key. From these summaries, it can be seen that the different identifiers have

differing levels of suitability for the unique key. The best performing structural identifiers are InChI

and isomeric SMILES, due their ability to represent isomeric information (specificity and uniqueness),

however their potential length are problematic for usage in a Postgres unique key, where the max

length is 63 characters. For this reason the InChI key will be used as it is has the same level of

specificity and uniqueness as an InChI, but is of a fixed length (27 characters).

In summary:

• All compounds have a name, but it may not be unique or specific enough.

• Not all compounds in the ROI files have a recorded InChI (specificity e.g. lipids).

• Some annotations in the ROI files have multiple mapped compound identifiers (specificity/u-

niqueness).

• NPC compound IDs have in some cases changed between versions of ROI files. In later ROI

versions, including those published in Matthew R Lewis et al. 2022, the annotation labels have

been harmonised to provide consistency between assays and future versions.

Comparison of online metabolite identifiers

Table 3.8 show the summarised results of the comparison of online database identifiers. The best

performing general purpose online identifier is ChEBI, as differing levels of analytical specificity can

be represented with ChEBI entries, however the coverage is lower than some databases, meaning newly

identified metabolites may need manual submission prior to usage, and multiple records would still

need to be stored in the case of low annotation confidence (e.g. for co-eluting or double-bond isomer

metabolites). For lipids, LIPID MAPS provides the best coverage, and has excellent lipid classification

tools available, and can be used alongside LION/web (Molenaar et al. 2019) for interpretation of lipid

analyses. For pathway analysis, KEGG is the defacto approach, but it has very poor specificity

for stereo and double-bond isomers. The NPC CPD ID has the exact level of analytical specificity

required, but the IDs are not persistent, and they still require mapping to online databases. Refmet

is a good choice for name, as it provides a standardised naming convention, however it again has

differing levels of analytical specificity.

Each database has differing levels of metabolite coverage, and specificity, as such the data model

was developed to store references to each database, where they exist.
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Table 3.7: Compound descriptor assessment results, with Arginine as the example (PubChem
CID: 6322)
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Table 3.8: Compound identifier assessment results, with Arginine as the example (PubChem
CID: 6322. A Fahy and Subramaniam 2020, B: S. Kim et al. 2021, C: David S Wishart
et al. 2022, D: ChEBI release 212 (https://www.ebi.ac.uk/chebi/statisticsForward.do), E:
https://www.kegg.jp/kegg/docs/statistics.html, F: Matthew R Lewis et al. 2022
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Data modelling

Figure 3.9 shows the data model for storing compounds and compound properties, external database

identifiers and classes, linking them to annotations, and harmonising annotation versions.

Figure 3.9: Logical data model for storing annotation metadata, including harmonised anno-
tations, their links to compounds and their external references and classes.

Compound

Compound is the main table storing individual, specific, and unique compounds. Compounds have

a name (the common name), and stores the other properties, such as IUPAC, InChI, or InChI key.

Each compound may or not have an InChI/InChI key (e.g. for some lipid annotations). The unique

key is (Compound.name, Compound.inchi key).
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ExternalDB

ExternalDB is the table for recording the name and entity URL definition for online databases such

as PubChem, Refmet, or ChEBI. The unique key is (ExternalDB.name).

CompoundExternalDB

CompoundExternalDB is the many-to-many joining table between a Compound and an ExternalDB,

and records the entity reference (database ref), e.g. the PubChem CID. For each each external refer-

ence, the full URL to the online database entry can be found with a combination of ExternalDB.url

and CompoundExternalDB.database ref. The unique key is (CompoundExternalDB.external db id,

CompoundExternalDB.compound id).

CompoundClass

CompoundClass stores information regarding the chemical classes recorded for the associated com-

pound. Different kinds of class systems can be stored, including Refmet, HMDB, ClassyFire, and

LIPID MAPS. The different levels for each class type were harmonised into the ClassyFire nomencla-

ture, and can be seen in table 3.9. The unique key is (CompoundClass.type, CompoundClass.super class,

CompoundClass.main class, CompoundClass.sub class ,CompoundClass.direct parent).

ClassyFire HMDB Refmet LIPID MAPS

kingdom

category super class super class category

main class class main class main class

sub class sub class sub class sub class

intermediate nodes

direct parent direct parent

alternative parents

molecular framework

Table 3.9: Harmonisation of ClassyFire, HMDB, Refmet, and LIPID MAPS classes

Annotation

Annotation is the main link from the feature and abundance values to the compounds. Annotation

stores the recorded cpd name, cpd id, confidence score, any annotation specific configurations, in-

cluding version, or variables such as adjusted PeakPantheR RT-windows (to account for RT-drift).

During import, Annotation objects for the specific annotation method version used are created. The

unique key is (Annotation.assay id, Annotation.cpd name, Annotation.annotation method, Annota-

tion.version).
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HarmonisedAnnotation

HarmonisedAnnotation is the main harmonisation linkage table for annotations, enabling annotations

from multiple different annotation versions to be joined together and compared across projects. With

this table, a standardised cpd name and cpd id field can be specified and used in a query. Each

harmonised annotation can be linked to multiple compounds, and the operator for the annotation is

stored as well (AND/OR). The unique key is (HarmonisedAnnotation.assay id, HarmonisedAnnota-

tion.annotation method, Annotation.cpd name).

Annotation metadata import

The source files to be imported were the PeakPantheR ROI configurations (Matthew R Lewis et al.

2022), and the Bruker Bi-LISA configurations. Bruker Bi-LISA is a specific edge case for annota-

tion metadata, as the annotations are not actually small molecules or lipid molecules, instead they

are predicted lipid and lipoprotein fractions, and as such they are not imported directly as com-

pounds. Despite this, a method was developed that could be applied to a general annotation set,

with limited configuration data. Figure 3.10 shows an overview of the CompoundTask, which can im-

port compounds, find the relevant online identifiers and classes, and map compounds to harmonised

annotations.

The absolute minimum information required to import compounds and map them to annotations

is a CSV file with two columns, one for cpd name (the feature name used in the annotated feature

file), and one with the corresponding InChI. The developed Compound Task facilitates import of

compound metadata by utilising a series of external database look up files and external REST APIs

requests; with the InChI alone, the InChI key is calculated using RDKit, and then the compound

properties are looked up via the PubChem API. Following this, the online identifiers and classes from

various different online databases are retrieved, either from the look up files, or via standardised API

requests. An overview of the compound import process can be seen in figure 3.10.

Two helper tasks exist to create the lookup files for HMDB and KEGG; ParseKEGGtoCSV and

ParseHMDBToCSV. The ParseKEGGToCSV task uses the KEGG API to download the entry datasets

for KEGG compounds, and extract their associated PubChem SID. The PubChem CID is then re-

trieved using the PubChem API (searching by SID), and a CSV of KEGG IDs and their associated

PubChem CID is exported for fast look up during metadata import.

The ParseHMDBToCSV downloads the HMDB database as XML, and parses it to a the CSV

format, with HMDB IDs, classes, and InChI keys.

The PeakPanther ROI configuration files also contain further information, including information

regarding annotation confidence, as such it useful to be able to import this data to the database as

well. The PeakPantheR ROI files also contain examples of low LC-MS annotation specificity; i.e.
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Figure 3.10: Overview of the compound import process and the base Compound Import
Task. CSV files for ID and class lookups for HMDB, LIPID MAPS (LMSD), ChEBI, Refmet,
and KEGG are downloaded and stored in the PhenomeDB data directory, or created via the
ParseHMDBToCSV and ParseKEGGToCSV tasks. API methods for ID, class, and property
lookups for PubChem, ChEMBL, ChemSpider and ClassyFire also exist. The annotation meta-
data file is imported, with minimum information of feature/cpd name, and InChI (further in-
formation can be imported on a case-by-case basis if required, for example in the case of the
PeakPantheR ROI files). Each row is split into its constituent compounds (n ≥ 1), and for
each compound, the InChI key is calculated using RDKit, the PubChem CID and compound
properties are looked up via the PubChem API, and then the IDs and/or metabolite classes
for each external database are queried using the CSV lookup files or API methods by either
InChI Key or PubChem CID (KEGG), and the properties, identifiers, and classes are added to
the database. Any extra configuration data are imported from the source metadata file, and
the imported Compound/s are mapped to a HarmonisedAnnotation.
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some annotations relate to multiple potential compounds (n ≥ 1). For these reasons, and simply

because the ROI files are the annotation metadata files for PeakPantheR annotations, a dedicated

PeakPantheR ROI compound import task was created; ImportROICompounds.

When iterating over the annotation rows, the ImportROICompounds task splits each row by

its constituent compounds into n ≥ 1 compounds, before importing each compound seperately, and

finally mapping all the compounds for the annotation to its harmonised annotation, and specifying the

HarmonisedAnnotation.multi compound operator to be AND or AND/OR (as defined by the operator

type).

The algorithm for matching the ROI file annotation record to the previously imported Annotation

database record, and linking Annotations to Harmonised Annotations and Compounds is:

1. Attempt to match Annotation using assay, annotation method, version, and cpd name. If a

match occurs, go to 5, else go to 2.

2. If no matching Annotation, attempt to match to a HarmonisedAnnotation, using assay, annota-

tion method, and cpd id. If no match, attempt to match again using assay, annotation method,

and cpd name. If matched, go to 4, else go to 3.

3. If no matching HarmonisedAnnotation, create one, with the correct multi compound operator.

4. Create an Annotation record setting the ROI file row as JSON in the Annotation.config JSONB

field.

5. Link the matched or created HarmonisedAnnotation with the matched or created Annotation,

by specifying the Annotation.harmonised annotation id.

6. For each n ≥ 1 compound for the annotation, create the AnnotationCompound many-to-many

table record to link the HarmonisedAnnotation record to the Compound record.

By importing only the most recent version of the ROI files during this step, the most up to date

cpd id and cpd names are used in HarmonisedAnnotation. This prevents incorrect mappings from

older versions resulting in duplicated values, however it does mean that existing imported annota-

tions from older versions, where the cpd id or cpd name has significantly changed must be manually

harmonised to link the Annotation to HarmonisedAnnotation.

These general approaches are suitable for small molecules and some lipids, however many lipids

recorded in the PeakPantheR LPOS and LNEG ROI configuration files do not have an InChI recorded

(due to the inability of the LC-MS assays used to distinguish double-bond isomers), and such there is

no simple way to link them to online identifiers or classes. For these purposes a different import task

was created, ImportROILipids. In this task, properties for those lipid annotations without InChIs

are imported directly from data stored in the ROI files, including the LipidMAPs identifiers, LIPID

130



MAPS classes, and KEGG IDs, where present. Without reliable, specific, and unique identifiers for

some lipid species, automated library population is not possible.

Annotation metadata import

Annotation metadata for the three LC-MS PeakPantheR small molecule annotation configurations

(HPOS, RPOS, RNEG) were imported using the ImportROICompounds task, and the two LC-MS

PeakPantheR lipid annotation configurations (LPOS, LNEG) were imported using the ImportROILipids

task, with the following versions:

• HPOS: v3.1.2

• RPOS: v3.1.1

• RNEG: v3.1.0

• LPOS: v5.1.1

• LNEG: v5.1.1

Compounds were defined in npc-setup.json (as seen in listing A.4) and imported into the database

during deployment and configuration via the NPCSetup pipeline using the ImportROICompounds,

ImportROILipids, and ImportBrukerBILISACompounds tasks. 385 LPOS, 171 LNEG, 129 HPOS, 135

RPOS, 130 RNEG, and 112 Bi-LISA harmonised annotation labels and their associated compounds

were imported.

Figure 3.11: Annotation metadata is now imported, and linked to abundance values and
harmonised sample metadata.

Figure 3.12 shows Venn diagrams for online database coverage for the deduplicated small molecule

(RPOS, RNEG, HPOS) and lipid assays (LPOS, LNEG), following the data import process. In the
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Figure 3.12: Venn diagrams of the overlapping metabolite identifier coverage for the imported
annotations and their compounds. Top: deduplicated small molecules from RPOS, RNEG,
HPOS. Bottom: deduplicated lipid molecules from LPOS and LNEG. Venn diagrams created
with software from (Bioinformatics & Evolutionary Genetics 2022).
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small molecules, the only database with full coverage of all annotated compounds is PubChem with 4

unique references, and 36 compounds have references in all databases. In the lipids, 114 compounds

have no references at all, and KEGG provides the greatest number of uniquely identified references

(308). While KEGG has the greatest number of references, this is only because of its low specificity

and uniqueness.

The developed data model and import system for harmonising identifiers and classes is easily

extensible to new online compound databases that exist now, or in the future, for example the recently

released COCONUT meta-database (Sorokina, Merseburger, et al. 2021).

Design and implementation of user interfaces to explore and harmonise annotations

Screenshots of the views for exploring the imported annotation metadata can be seen in figures A.5,

A.6, A.8, A.7, with Glycoursodeoxycholic acid as an example.

Figure A.5 shows the paginated compound list view with 22 compounds shown. All the com-

pounds can be searched from here, using the search bar. Figure A.6 shows the compound view for

Glycoursdeoxycholic acid, with sections for viewing the Compound properties, classes, external links,

annotations, and the structure. Figure A.7 shows the compound class view for the HMDB sub class

’Glycinated bile acids and derivatives’, listing the other annotated compounds imported into the

database. Figure A.8 shows the annotation view for Glycoursdeoxycholic acid, listing the full annota-

tion cpd name, the other annotation compound in the annotation (Glycochenodeoxycholic acid), and

the full ROI config for the annotation (in JSON format)*JMS3.

With these views, its possible to search for compounds by property or identifer, view properties

and structure, link to online database reference pages, or find similar annotated compounds by HMDB,

ClassyFire, Refmet, or LIPID MAPS classes, and look up annotation configurations.

Figure 3.13 shows an example of the manual harmonisation view, for annotations that are unable

to be automatically harmonised during compound import. With this view, its possible to select the

unharmonised annotation, and then select from the dropdown the harmonised annotation to map it

to.

Following ROI import, the remaining unharmonised annotations were harmonised using this view,

with the exception of Hydroxybutyric acid and Decatrienoylcarnitine from Airwave2, which were

removed from later ROI versions, and such these annotations were not included in the downstream

analysis (figure 3.14).

3The compound list, main view, classes, and annotation config views were implemented by Jazz Mack Smith under
my direction. I developed the annotation harmonisation view.
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Figure 3.13: Screenshot the manual annotation harmonisation view. Users select the unhar-
monised annotation from the left hand side, and then select the harmonised annotation from
the dropdown on the right hand side.

Figure 3.14: The 2 remaining unharmonised annotations (Hydroxybutyric acid and Deca-
trienoylcarnitine), which were removed from later ROI versions and will be excluded from any
downstream analysis.
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3.3.4 Method validation

With the sample metadata harmonised between projects, annotations harmonised between versions,

and annotation compounds, identifiers, and classes imported, answers to some of the use-cases set out

in the introduction, and outlined in the methods, can be answered. For each of the following queries,

instead of counts, it would be possible to instead also return the actual records if required.

How many amino acid abundance values were detected and passed QC in each project?

The query to find the amino acid abundance value counts per project can be found in appendix A.8.

The query to calculate this uses the HMDB sub class ’Amino acids, peptides, and analogues’. The

result of the query can be seen in table 3.10. From this table it can be seen that only creatinine has

recorded abundance values in all four projects.

cpd id cpd name Project count

HPOS-040 Phenylalanine AIRWAVE2 1281
HPOS-040 Phenylalanine FINGER 2615

HPOS-051 3-methylhistidine AIRWAVE2 1281

HPOS-045 Creatine AIRWAVE2 1281
HPOS-045 Creatine MASALA 959

HPOS-074 Dimethylglycine FINGER 2615
HPOS-074 Dimethylglycine MASALA 959

HPOS-043 Proline AIRWAVE2 1281
HPOS-043 Proline FINGER 2615
HPOS-043 Proline MASALA 959

HPOS-044 Alanine AIRWAVE2 1281

HPOS-047 Citrulline AIRWAVE2 1281

HPOS-006 Symmetric | Asymmetric Dimethy-
larginine

AIRWAVE2 1281

HPOS-006 Symmetric | Asymmetric Dimethy-
larginine

FINGER 2615

HPOS-006 Symmetric | Asymmetric Dimethy-
larginine

MASALA 959

HPOS-046 Glutamine AIRWAVE2 1281
HPOS-046 Glutamine MASALA 959

HPOS-014 Histidine AIRWAVE2 1281
HPOS-014 Histidine MASALA 959

HPOS-036 Creatinine AIRWAVE 3842
HPOS-036 Creatinine AIRWAVE2 1281
HPOS-036 Creatinine FINGER 2615
HPOS-036 Creatinine MASALA 959

Table 3.10: Abundance value counts for amino acids, per project, using the HMDB sub class
’Amino acids, peptides, and analogues’. Query definition can be found in the appendix A.8.
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For each project and sample type, how many samples have we detected ChEBI:17154,

and what is the median and standard deviation of run-order-corrected abundance values?

The query to count the number of samples with ChEBI:17154 (niacinamide) annotations, per project

and sample type, and to calculate the median and standard deviation of the run order corrected

abundance values can be found in appendix A.9, and the results can be seen in table 3.11 and figure

3.15.

project sample type count Median stddev

AIRWAVE ExternalReference 300 7016.790 569.224
AIRWAVE StudyPool 572 20508.778 9121.844
AIRWAVE StudySample 2970 19647.968 13288.37

AIRWAVE2 ExternalReference 100 20893.995 962.233
AIRWAVE2 StudyPool 184 78348.509 30305.195
AIRWAVE2 StudySample 997 78348.509 31838.424

FINGER ExternalReference 218 7404.146 977.208
FINGER StudyPool 401 9764.334 4529.164
FINGER StudySample 1996 10095.614 5716.923

MASALA ExternalReference 75 483.084 628.295
MASALA StudyPool 167 14485.654 9940.548
MASALA StudySample 717 11608.804 27674.416

Table 3.11: Counts, median, and standard deviation of ChEBI:17154 (niacinamide), stratified
by study and sample type

The results of this query demonstrates:

1. The annotation metadata between the versions has been harmonised, and online identifiers

imported.

2. Data can be retrieved/queried using compound database identifiers.

3. The median and standard deviation of the abundance values change between projects and sample

types.

4. The LTR median and standard deviation of the abundance values changes between the project,

highlighting the technical variation between the projects

For each project and sex, how many samples have we detected ChEBI:17154, and what

is the median and standard deviation of run-order-corrected intensities?

The query to count the number of samples with ChEBI:17154 (niacinamide) annotations, per project

and sample, and to calculate the median and standard deviation of the run-order-corrected abundance

values can be found in appendix A.9, and the results can be seen in table 3.11 and figure 3.15.

The results of these queries demonstrate:

1. More of the use-cases outlined in chapter 1 can be answered with PhenomeDB.
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Figure 3.15: Median run-order corrected abundance values (with +- 0.5 - 1 stddev plotted)
for ChEBI:17154 (Niacinamide) the four projects, broken down by sample type (SS, SR, LTR),
demonstrating the significant variation in abundance values between the projects. Technical
variation can be observed by the differences in median and standard deviations of the External-
Reference (LTR) samples. The skewed nature of the intensities is also visible by the negative
lower standard deviation.

project Sex count Median stddev

AIRWAVE Female 1170 19073.032 5287.656
AIRWAVE Male 1800 20004.573 16490.638

AIRWAVE2 Female 313 67820.298 32224.943
AIRWAVE2 Male 684 79152.317 31349.318

FINGER Female 973 9998.958 5050.294
FINGER Male 1023 10206.338 6284.421

MASALA Female 317 11333.637 10612.343
MASALA Male 400 11993.98 35751.469

Table 3.12: Counts, median, and standard deviation of ChEBI:17154 (niacinamide), stratified
by study and sample type.
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Figure 3.16: Median run-order corrected abundance values (with +- 0.5 - 1 stddev plotted) for
ChEBI:17154 (Niacinamide) the 4 projects, broken down by males and females (SS, SR, LTR),
demonstrating the both the technical variation in abundance values between the projects, and
the biological variation between the sexes.

2. Data can be stratified by sample metadata and retrieved using online metabolite identifiers.

3. The median and standard deviation of the abundance values changes between projects and

sample types.

4. The biological variation between the sexes can be compared within projects, but not between

(due to the technical variation).

These query demonstrate that while the data can be integrated and stratified across multiple

projects, direct comparisons of study samples between projects is not possible due to the inter-project

technical variation, and methods to scale, transform, or batch correct abundance values are necessary

to enable direct comparisons and leverage the power of PhenomeDB for integration of metabolomic

datasets. These will be addressed in chapter 4.

3.3.5 Ontologies

One of the remaining challenges for metadata harmonisation was to create a formalised method for

storing ontological information. Protocol parameters from chapter 2, harmonised metadata fields, and

compound classes can all be linked to online ontologies. As such a method was created for storing

these ontology references in a normalised data model. Figure 3.18 shows the data model for storing

ontologies, with links to harmonised metadata field, protocol parameter, and compound class. With
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Figure 3.17: Annotation metadata is now imported and harmonised and linked to abun-
dance values and harmonised sample metadata. Abundance values require another form of
harmonisation, e.g. scaling, normalisation, or batch correction.

this data model its possible to store ontological references, and thereby make them query-able, similar

to the previous example where abundance values were filtered by a specific ChEBI ID.

3.3.6 Comparison with existing tools

MetHoS (Tzanakis et al. 2022) has no functionality for importing or harmonising sample metadata.

Annotation pipelines are in-software, meaning annotation labels are already harmonised, whereas

PhenomeDB is extensible to any annotation method or software, giving users greater control over

annotation labels and metadata.

iMAP (D. Zhou et al. 2021) provides no sample or annotation metadata harmonisation tools, so

all metadata, including metabolite labels, must be harmonised prior to upload.

MeltDB (Neuweger et al. 2008) again has no sample import or harmonisation tools, samples are

only integrated using harmonised KEGG IDs. PhenomeDB is capable of storing any compound

ID, and provide many-to-many mappings between compounds and annotations, handling differing

annotation specificity between metabolomics platforms, and storing and linking to multiple compound

classification systems.

Molgenesis (Van Der Velde et al. 2019) provides excellent sample metadata harmonisation and on-

tological mapping capabilities, including semi-automated sample metadata harmonisation approaches

(using BiobankConnect (C. Pang, Hendriksen, et al. 2015)), but these methods still require supervision

and manual correction in ≈ 73% of cases when automated harmonisation is used (C. Pang, Enckevort,

et al. 2016). While PhenomeDB does not have an automated harmonisation method, with correct

definitions, the user-defined lambda-based method will be error free, and is validated during execution
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Figure 3.18: Data model for ontologies, with accession numbers stored in ontology ref, ontol-
ogy sources stored in ontology source, and links to compound class, protocol parameter, and
harmonised metadata field.
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to ensure all values are processed without error. The PhenomeDB sample metadata curation method

could be extended to use BiobankConnect, if desired. For the integration example used in this thesis,

the implemented lambda-based system is more than capable of the required sample metadata harmon-

isation. Molgenis is targeted primarily at genomics-based molecular epidemiology, and as such does

not include any harmonisation processes for metabolite annotations. Custom built tools would still

need to be developed for this purpose, and implemented into the Molgenis system, whereas they are

in-built into PhenomeDB and easily extensible to newly developed online identifiers and ontologies.

3.3.7 Summary

To facilitate in-database integration and stratification, standardised and reusable methods for sample

and annotation metadata import and harmonisation have been created, and used to harmonise the

sample metadata and annotation metadata for the studies and annotations used in this thesis.

The PipelineFactory developed in chapter 2 was used to create sample metadata import and

harmonisation pipelines, and the annotation metadata files for five LC-MS and one NMR assay were

imported into the database and harmonised.

Example queries were developed to answer some of the use-cases set out in the introduction, and

successfully demonstrated that PhenomeDB could now be used to answer them, including:

• As a molecular epidemiologist, for the purposes of sample metadata harmonisation between

studies, I want to know what are the study factor field names for the projects I aim to integrate?

• As a molecular epidemiologist, for the purposes of assessing potential power of an integrated

cohort, I want to know how many male and female participants are in all cohorts?

• As a molecular epidemiologist, for the purposes of assessing suitability for integration of multiple

studies (e.g. balance), I want to know how many male and female participants are in each study?

• As an analytical chemist, for the purpose of method characterisation and optimisation, I want

to know how many amino acid abundance values were detected and passed QC in each project.

• As an analytical chemist, for the purpose of method characterisation and optimisation, I want to

know in how many samples have we detected a particular metabolite, and what is the median and

standard deviation of run-order-corrected intensities of the particular metabolite in the study

samples, study references (SR), and external references (LTR).

• As a molecular epidemiologist, for the purposes of assessing integration of data from multiple

projects, I want to know in how many samples have we detected a particular metabolite, and

what is the median and standard deviation of run-order-corrected intensities for the particular

metabolite, stratified by study and participant sex.
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These queries demonstrate the utility of metadata harmonisation for multi-project integration

and stratification, however challenges remain in facilitating the user-friendly creation and storage

of integrated and stratified metabolomics datasets, and in scaling, normalising and analysing those

datasets. These challenges will be addressed in the chapter 4.

The remaining challenges for integrating and stratifying data from multiple metabolomics projects

and assays are:

1. Developing user-friendly methods for integrating and stratifying imported and harmonised metabolomics

datasets.

2. Developing user friendly methods for running reproducible statistical analyses, including ex-

ploratory analysis, scaling/normalisation, QC reports, identifying molecular trends, and visual-

ising the results

3. Demonstrating the use of these methods for integrative analysis of metabolomics data for molec-

ular epidemiological investigations.

3.4 Contribution of this Chapter

In this chapter, methods were developed for the import and harmonisation of sample and annotation

metadata, and included in a novel implementation.

A generalised sample metadata harmonisation data model was created, capable of harmonising

naming conventions, values, and types, along with a standardised, robust, but flexible method for

curating metadata values with user defined functions, and linking them to online ontologies.

A generalised annotation harmonisation data model was created, capable of storing annotated

compounds and their online references with the correct level of annotation specificity and uniqueness,

as well metabolite classes from multiple ontologies. A standardised compound import task was im-

plemented to populate the annotation metadata from a set of minimum information (cpd name and

InChI), including online identifier and class search methods, and views were created for exploration

of annotated compound identifiers and classes. Novel annotation harmonisation views were devel-

oped and used to harmonise annotations with different metabolite labels, and exclude low-confidence

annotations that had been removed in later ROI versions.
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Chapter 4

Development and validation of a

method for the creation and execution

of user-generated queries and

statistical analyses

4.1 Introduction

With validated methods for storing, processing, importing, and harmonising data from different

metabolomics studies, there is now a need to develop methods for reproducibly and robustly inte-

grating, stratifying, analysing that data.

4.1.1 Database queries & generating novel cohorts

To be able to integrate and stratify metabolomics datasets, it is desirable to develop user-friendly

methods for molecular epidemiologists to create, save, and execute queries and construct datasets. To

achieve this, the method must be able to allow users to create and execute flexible, robust, reproducible,

and scalable database queries.

Types of querying systems vary from low-level instructions such as Structured Query Language

(SQL), to very high-level/abstracted instructions such as Natural Language Processors (NLP) or

search indexes. SQL is the primary database language capable of retrieving specific information as

required. NLP are software that interpret sentences of text (natural language) and convert them to the

database software instructions (e.g. SQL) (Khurana et al. 2022). Search indexes in this context mean

dedicated software data stores that link keywords to data objects (such as database identifiers), and

were originally developed for information retrieval for early computer systems with slow storage like

tapes and drums (Knuth 1998), and in modern systems typically use NoSQL databases. In chapter 2,
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Figure 4.1: Overview of the five main types of query technologies to be assessed for usage
for the querying method, demonstrating the steps and technologies involved in parsing a user
query and returning the results.
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two further query abstraction systems were also implemented, the SQLAlchemy ORM (Bayer 2012,

and the Flask-appbuilder Model REST API (Gaspar 2021). A simplified overview of these query

technologies can be seen in figure 4.1. In this chapter these approaches will be assessed for their

suitability for searching and integrating cohort data, and the selected technology will be implemented

for the method in PhenomeDB.

4.1.2 Data analysis

Various statistical analysis techniques are useful for exploring and understanding the structure of our

data, minimising unwanted sources of variation, and identifying metabolites that are associated with

outcomes of interest. For this reason it is desirable to be able to easily execute, review, and compare

the results from these analyses in a simple and reproducible way; by implementing these methods in

PhenomeDB we can take advantage of the features PhenomeDB has for reproducible experimentation,

e.g. the database, pipelines, and web-views.

Principle Component Analysis

Principle Component Analysis (PCA) is an unsupervised dimensionality reduction technique used for

exploring the underlying structure in highly dimensional data, such as that generated with metabolomics.

By projecting the data onto latent structures called Principle Components (PCs), the major sources

of uncorrelated variance can be found, helping to identify clusters of treatment groups or different

phenotypes (Lever, Krzywinski, and Altman 2017). PCA results are formed of two main matrices;

the scores, which represent the position for each sample along each PC eigenvector axis, and the load-

ings, which represent the coefficient (or influence) each feature has to the PC eigenvector axis. PC1

represents the latent axis of highest variation of the underlying data, and as each PCs is orthogonal,

that is, uncorrelated with each other, PC2 represents the latent axis at 90 degrees to PC1. PCA is

therefore useful for exploring the variance in the dataset; with the scores representing the clustering

of the samples and loadings the influence of each feature to the variance. By plotting the scores and

colouring samples by different metadata types, trends can be identified, and then with the loadings,

candidate biomarkers for the trend can be found.

Principle Component Partial R2

Described in Fages et al. 2014, the principle component partial R2 (PCPR2) method combines PCA

and regression, by building linear models that describe the amount of the variation that covariates of

interest contribute to the principle component R2; the partial-R2. As such, by summing the partial-R2

for all components (up to a specified threshold), the relative contribution of each covariate to the total

R2 can be calculated. This is useful for assessing the effect of batch correction method, as was done

by Viallon et al. (2021) for pooling metabolomics data from multiple studies.
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MWAS

Metabolome-wide-association study (MWAS) is a uni-variate analysis where each metabolite is set as

the outcome (Y) of an association test, and the input (X) is set to the abundance values/intensities and

covariates for each metabolite feature and sample. MWAS can be viewed as analagous to a genome-

wide association study (GWAS), and requires multiple testing correction of p-value thresholds to

reduce false positives associations of the highly colinear metabolite features (Chadeau-Hyam et al.

2010).

Different association methods may be used for MWAS, such as linear or logistic regression, Pearson

correlation, Spearman correlation, or Kendall correlation, and partial correlations can be used to take

into account the effect of model covariates such as BMI or sex. Metabolites with multiple testing

corrected p-values lower than a certain threshold (e.g. 0.05) are significant associations.

nPYC-toolbox reports

The nPYc-toolbox (Caroline J Sands et al. 2019) contains functionality for the execution and gen-

eration of various reports useful for metabolomic quality control, batch correction, and multi-variate

analysis. A breakdown of these reports can found in the online documentation for the software avail-

able at https://npyc-toolbox.readthedocs.io/.

Batch correction

Batch correction refers to the process of correcting for sample collection, preparation, and analytical

(e.g. technical) variation between the projects; these sources of variation may obscure the contribution

of our covariates of interest to the underlying variance, and as such must be corrected before these

covariates of interest can be studied. Various methods for batch correction exist, but can be broken

into two main types: those which require pooled QC samples and those which do not.

Sources of technical variation were introduced in the chapter 1, as well as methods for assessing

technical variation, including study reference (SR) and external reference (LTR) pooled samples.

4.1.3 Existing methods for querying and analysing metabolomics data

MetHoS (Tzanakis et al. 2022) is a database and data processing system for large-scale metabolomics,

and stores processed untargeted LC-MS data in a Cassandra NoSQL database. Cassandra allows users

to query each index with multiple comparison operators, such as <, >, ==, ! =. Only single index

queries are possible, with no multi-index joins.

MeltDB (Neuweger et al. 2008) is a database and analysis system for integrating metabolomics

data. It has no querying system other than via backend software, and integration is limited to

annotation harmonisation via KEGG IDs and other annotation compound identifiers. As such it has
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no capability for storing or stratifying study factors/sample metadata.

Molgenis (Van Der Velde et al. 2019) is a molecular epidemiology application development frame-

work that uses a Postgres RDBMS for storage, combined with an Elasticsearch NoSQL index to provide

fast querying. Molgenis allows users to create and save filters for defined objects, and build front-end

visualisations to view the filtered data, however despite it utilising an RDBMS as the backend, all

queries are processed by the NoSQL Elasticsearch instance, resulting in limited, single-index queries

(no multi-table joins).

In chapter 3, SQL queries were created to answer some of the use-cases outlined in chapter 1.

These queries utilised multi-table joins to integrate and stratify the imported data, demonstrating

that to fully leverage PhenomeDB, a querying system that allows multi-table joins must be used for

these purposes. This work in this chapter outlines the development of such a method, along with tools

for executing statistical analyses and visualising the results.

4.1.4 Aims

1. Design and develop user-friendly tools for building, saving, and executing user-defined queries

for integrating and stratifying data.

2. Design and develop tools for generating metabolomics datasets from user-defined query defini-

tions.

3. Implement tools for scaling, normalisation, and batch correction.

4. Design and develop a method for executing reproducible and scalable analyses on demand, and

visualing the results.

5. Implement PCA, PCPR2, and MWAS analyses.

6. Demonstrate the utility of these tools with an investigation of molecular trends in Airwave

(LNEG assay).

4.2 Methods

To develop and validate the methods for generating and executing queries and running metabolomics-

related analyses, the following overall steps were undertaken:

1. Methods were developed and assessed for the generation of flexible, robust, reproducible, scalable

and transformable integrated datasets.

2. Methods were developed and assessed for executing, visualising, and comparing statistical anal-

yses.
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Property Assessment Criteria

Specific

• Can the method produce integrated and stratified data sets exactly
targeting the information required?

User-friendly

• Is the method simple enough for all user types, including those
with limited programming experience?

Flexible

• Does the method allow for a wide-range of inputs and output for-
mats?

Robust

• Can the method be trusted to always return the expected results?

Persistent

• Does the method allow users to save queries for re-use later?

Scalable

• Can the method scale to accommodate large and complex queries?

• Does the method return results in an appropriate time-frame?

Table 4.1: Querying method assessment criteria

3. The utility of the methods were demonstrated with an investigation into molecular trends of

AIRWAVE LNEG metabolites.

4.2.1 Development and assessment of methods for generating and storing user-

defined queries

Following a similar method development process used in chapter 2, firstly different technologies were

assessed for their suitability, and the chosen technology was then implemented and validated using

test driven development.

Technology selection

The following approaches were assessed against the criteria outlined in table 4.1:

• Structured Query Language (SQL)

• Search indexes (NoSQL)

• Natural Language Processor (NLP)

• Object Relational Map (ORM)

• Representative State Transfer Application Programming Interface (REST API)
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Once a technology was selected, the method was implemented into the PhenomeDB system and

tested using test data and unit tests to ensure it met the assessment criteria in table 4.1.

4.2.2 Development and assessment of methods for running, analysing, and com-

paring statistical analyses

Once the method for generating and executing user-defined queries was implemented, a set of analysis

tools were developed using the PhenomeDB Task method developed in chapter 2. The following

analysis techniques were incorporated into PhenomeDB:

• PCA

• PCPR2

• MWAS

• nPYc-toolbox reports

• QC-free batch correction techniques

To achieve this, the PhenomeDB Task system was extended to create standardised Python API

for executing analysis methods.

For each analysis, the following approach was used:

1. Software tools/packages for the type of analysis were explored and implemented in PhenomeDB.

2. Web-views were implemented to execute analyses and visualise the results.

The methods were tested using unit tests, test data, and the process of test-driven development

outlined in chapter 1.

4.2.3 Demonstrating the utility of these methods with an investigation into age-

associated metabolites in Airwave

Once the method for executing queries and running analyses was developed, implemented, and tested,

the utility of the approach was demonstrated using an investigation into metabolite trends in Airwave.

For this, the following steps were taken:

1. Using the querying method developed in this chapter, user-generated queries were created and

executed.

2. The nPYc-toolbox BatchCorrectionAssessment report was used assess the run-order effects of

the source data and select a correction type (e.g. SR or None).
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3. PCPR2 was used to demonstrate the effect of scaling and transformation on the covariates-of-

interest.

4. PCA and MWAS were used to identify molecular trends.

4.3 Results & Discussion

4.3.1 Development of a method for the dynamic generation of flexible, robust,

reproducible, scalable integrated cohorts

Technology selection

The results of the comparisons of the different querying technologies can be found in table 4.2. SQL was

found to be the best-in-class approach for querying the database, however it is very user-unfriendly,

as it requires expert knowledge of SQL optimisation to use successfully in complex and large-scale

queries. Natural Language Processors and Search Indexes are on the other hand very user-friendly as

they only require simple search terms or natural-language queries, but may not have the specificity

or robustness required for complex queries and reproducible scientific investigation. NoSQL search

indexes will typically only allow single-index queries, meaning either multiple queries must executed,

or the results be filtered further by users, and may use significant in-memory resources to store

the full text. Natural language processors may interpret small lexical differences in different and

unexpected ways. Object-relational-maps and REST APIs may have the required specificity; and in

some cases may be simpler to use than using SQL, but they still require programming knowledge and

an environment to use them, and the abstractions can add further overhead to the query process.

Like SQL, SQLAlchemy has a learning curve, requires in-depth knowledge of the underlying data

model, and requires a python environment and programming skills to use. It can be relatively slow

for queries with many results, as the python code must build the ORM objects for each result.

The REST API implemented in chapter 2 allows for multiple filters to be added to flexibly query

data, however they are limited to ’AND’ queries, not ’OR’ queries, and again requires knowledge of the

underlying data model. It also requires users to build, execute, and parse REST API requests, requiring

programming skills and knowledge of HTTP request, and it does not return nested objects, which

means further API requests are required to query multiple objects, such as getting in a participants

name from an abundance value, resulting in many requests or programming steps needed to build a

full dataset.

None of the approaches allow for saving user-generated or multi-table queries, and the various

limitations of each technology means as such a custom approach was necessary for giving non-

computational users the ability to generate specific, flexible, robust, reproducible, scalable, and trans-

formable queries. For this purpose, the SQLAlchemy ORM implemented in chapter 2 was chosen, as
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Table 4.2: Querying method assessment results
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it provides a simplified pythonic interface to the database and the model relationships, is the industry-

standard python ORM, allows for changing the PhenomeDB database technology in the future, and

has been previously tested in chapters 2 and 3.

SavedQuery & the QueryFactory

Figure 4.2: Overview of the QueryFilter, and QueryMatch, highlighting the nested nature of
these objects. 1...n QueryFilters can be added be added to a SavedQuery, each with and or OR
operator and n QueryMatches. A QueryMatch is a set of options for database field comparison
matching. A combination of Query matches and query filters can be used to combined and
filter datasets.

When developing the method, the first step was create a system for creating SQLAlchemy queries

from a JSON definition. To achieve this, a data model called a SavedQuery was created, with fields

to store id, name, description, and query definition stored as JSON. This model was developed us-

ing data modelling techniques and implemented into the database physical model and PhenomeDB

SQLAlchemy models.

The SavedQuery JSON definition is simply a standardised data structure storing various filters

to target specific information in the database; these filters are representative of of the SQLAlchemy

filter() function. Figure 4.2 outlines the basic principle of a SavedQuery definition; that of a nested

system of one-to-many AND/OR filters called QueryFilters and QueryMatches; unique combinations

of these nested objects allow for the flexible targeting of specific database entries.

Next in the method development was to build a python module for building a SavedQuery, and

executing that query against the database. The QueryFactory module was developed for to help build,

execute, and parse SavedQueries; converting the SavedQuery JSON definition into an SQLAlchemy

query, and executing the query. Part of this module are the classes for QueryFilter and QueryMatch;
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once the QueryFilters are added, the QueryFactory converts the QueryFilters into the SavedQuery

JSON definition.

Code example A.11 demonstrates using the QueryFactory to build a SavedQuery to select Airwave

users under 40. To simplify the python API, various constructors were created to reduce the boiler

plate necessary to create filters, and can be seen in code example A.12. These simplifications reduced

the number of lines of code for generating and saving this query from nine lines to six lines.

Some desirable matches requite matching of two fields, such as dynamic fields where the fields don’t

have dedicated columns in the database, such as metadata fields. To simplify this, the MetadataFilter

was created, reducing the same SavedQuery definition to four lines of code, as shown in example A.12.

With the defined and saved SavedQuery, the QueryFactory can then convert the SavedQuery into

an SQLAlchemy definition. To do this, two things are needed, the target/output ORM model (e.g.

AbundanceValues, or SampleAssays), and the necessary joins to link the output model with the tables

that are being filtering against, referred to here as the ’join route’. Because the output model and the

filters are dynamic, an algorithm to calculate the join route was developed to allow users to specify

any output model with any combination of filters.

The join route calculator was initially designed to be flexible to work with any data model, target

model, or combination of filters, without any a-priori knowledge of the underlying data model. It

worked by traversing the model relationships, and finding the shortest path between the filter models

and the target model. This shortest path was then used for defining the join routes for the query.

Unfortunately, database optimisations to simplify the data model, such as linking MetadataFields

directly to Projects, demonstrated how such an approach would not work; the shortest route between

MetadataField and Project is one step, however to identify which samples we want to select, we need

to traverse the other way from MetadataField...MetadataValue...Sample...Subject...Project. As such

the dynamic join route calculator would not work with circular references created for optimisations.

Instead, the method was refactored to use hard-coded join routes defined in the QueryFactory class.

The QueryFactory method could be easily extended for implementation as a generalised approach for

other SQLAlchemy software.

When a SavedQuery is executed, the output model is specified, and the join-routes are loaded from

the pre-defined definitions and the shortest full-path route is selected. The definition is then converted

into SQLAlchemy code, and the resulting query can be executed with various SQLAlchemy output

functions, including count(), all(), with limits and offsets, or executed directly as raw SQL. A saved

SavedQuery can also be loaded from the database and executed by the QueryFactory, an example of

which can be see in code example A.14.

This method provides the ability to save and load the query definitions from the database, and the

ability to execute them against different target output models, and retrieve either their actual records

or counts of their records (useful for summaries or validation). The method can be used to generate
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novel, integrated cohorts as a set/list of individual measurement records (AbundanceValues).

With this output, it was then necessary to develop a function for constructing the same format as

the import system uses; combined format, or the 3-file format, as defined in chapter 3. This process is

completed by the QueryFactory function build abundance value dataframe(). This function takes as

input the AbundanceValue result set, and iterating over the features, constructs the combined format.

A further method, build 3 file format() takes this combined dataframe, and from it deconstructs into

the 3 file nPYc format, an example of which can be seen in A.15.

Figure 4.3: Example of generating the sample metadata, intensity data, and feature metadata
from the combined format dataframe

The function build abundance value dataframe() has various options, including:

• Selecting raw or SR-corrected intensities (e.g. for LC-MS features).

• Unit conversion/harmonisation for features with units (e.g. NMR), the default is mmol/L.

• Harmonise annotations - when selected uses the harmonised annotations cpd names (see chapter

3, otherwise uses the unharmonised feature names.

• Set features < LLOQ = zero and features > ULOQ = inf.
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Utilising SQLAlchemy for constructing these dataframes has some advantages and some disad-

vantages over using a custom, raw SQL approach; the advantages is that for each AbundanceValue

object, all the associated feature and sample metadata is available in Python, whereas if we used

raw SQL we would have to execute custom SQL queries to retrieve the necessary objects, adding

significant overhead both in terms of development, usage, and execution. The biggest disadvantage is

speed, generating the result set and transforming that into the output dataframe takes a long time

for large queries, in some cases up to many hours of time. This is a major drawback to using this

approach to construct the dataframes for repetitive or permuted downstream analysis. To take ad-

vantage of the benefits of SQLAlchemy has for ease of programming and standardised interfaces, a

method optimisation step was necessary, the PhenomeDB Cache.

PhenomeDB Cache

The PhenomeDB Cache is a custom built system for fast access of SavedQuery result sets. In the

first iteration of the cache, the Redis NoSQL key-store was used (Redis Labs 2022). Redis uses an

in-memory approach (RAM) for key-based fast data storage and retrieval, and by default persists data

to disk; in the event of system crash or reboot the entire key-store can be reloaded into the memory.

Items stored in Redis can have an expiry time set, so that after this time the item is deleted.

During development and early testing of using Redis for storing SavedQuery dataframes, it was

noted that storing the dataframes for many SavedQueries resulted in significant system RAM utilisa-

tion (a consequence of Redis being an in-memory database) severely limiting the number of SavedQuery

dataframes that could be reasonably stored. This required the design and development of a solution to

overcome the memory over-utilisation while still benefiting from speed of an in-memory data store. To

achieve this, a custom cache module was developed that abstracted the Redis set(), get(), and expire()

methods to also store the dataframes on the file system, load the dataframes from the file system,

and delete them from the file system as required. An overview of the system can be seen in figure

4.4. When accessed by the user the data is loaded into Redis for a 2 hour period, before expiring and

freeing up the system memory, while also persisting the data to the file system, allowing the benefit

of the Redis for fast in memory use when the data is needed repeatedly over a short window.

Redis uses the principle of a unique key for storage and retrieval, as such for storing SavedQuery

dataframes in the cache, an understanding of what makes a SavedQuery dataframe unique was neces-

sary. The key for a SavedQuery dataframe is made up:

• Output model (e.g. AbundanceValue).

• Dataframe type (e.g. combined, sample metadata, feature metadata, intensity data).

• Correction type (None, or SR).

• Dataframe options (e.g. harmonise units, harmonise annotations, below lloq, above lloq).
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Figure 4.4: Overview of the PhenomeDB cache system. Items set into the cache are written
into Redis with an expiry of two hours, and the file system (no expiry). Items retrieved from
the cache are checked to see if they exist in Redis, if they do (e.g. they were set < 2 hours ago),
they are retrieved from Redis, if they do not exist in Redis, the file system is checked for the
item, if it exists on the file system it is set into Redis and returned to the user. Items deleted
from the cache are deleted from both Redis and the file system.
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Incorporating PhenomeDB Cache into the QueryFactory

With the benefit of the PhenomeDB cache for fast, persistent, and low-RAM utilisation local storage,

it was possible to leverage the underlying similarities in the output data models to create a tiered

dataframe generation system. The first function, which generates the combined format dataframe,

(build abundance value dataframe()) iterates over every AbundanceValue, as such it essentially must

iterate over every cell to create the combined dataframe (O(m∗n)). Because the combined dataframe

has the same underlying structure as the 3-file format, the second function (build 3 file format()) can

simply iterate over the columns of the combined dataframe, significantly reducing the complexity to

O(n) (as shown in overview in figure 4.3). This means that the bottleneck of creating SavedQuery

dataframes is the creation of the combined dataframe; and once this is created and stored in the cache,

it can be reused to create other child dataframes.

To simplify the python API for storing and accessing SavedQuery dataframes, a unified access

function was created in the QueryFactory; the recursive function load dataframe(). Load dataframe()

has knowledge of parent-child dataframe structures, and will either load a dataframe from the cache,

or build and store the dataframe from its parent dataframe or the database if the top-level parent

dataframe does not exist (e.g. the combined dataframe). An overview of this can be seen in figure

4.5.

This means that at each step, the QueryFactory will use the fastest method available to create/re-

turn the dataframe; however, if the top-level parent dataframe (the combined dataframe) is not in

the cache, it must be rebuilt; the slowest operation in this system. To solve this issue, a PhenomeDB

task was created, ”CreateSavedQueryDataframeCache”; this asynchronous pipeline task can generate

the combined dataframe cache offline, and means that although generating this dataframe can take

a long time, it only has to happen once for each SavedQuery and the associated unique options (un-

less the SavedQuery is saved/updated). Figure 4.6 shows the run time in hours for building various

SavedQuery caches for the integrative analysis described in chapter 5. Each task was run concurrently

with at least one other task, (up to three concurrent tasks); as such database, memory, and CPU

contention may mean over-estimated run times; however they are representative of the system being

used for multiple concurrent tasks on a single-host system. A non-linear scaling trend can be observed.

To achieve the scalability required to reach biobank scale and beyond, a different approach could

be used, a column-wise approach with individual queries for the sample metadata and the feature

intensities, firstly setting SampleAssay as the output model and retrieving the SampleAssay IDs, then

through further queries, retrieving associated metadata for those SampleAssay ids. The results of these

queries could then be merged into a Pandas dataframe, joining on SampleAssay ID, column-by-column.

A further query with HarmonisedAnnotations as the output model would allow for further column

by column queries to find the AbundanceValues for those SampleAssay IDs. Initial benchmarking
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Figure 4.5: Overview of the QueryFactory.load dataframe() function. Top level dataframes
are loaded from cache or created from the database and set in the cache. Child dataframes are
loaded from the cache or by calling load dataframe on their parent dataframe, and set into the
cache. This way the slowest part of the system must only be called once (unless the SavedQuery
is changed/saved, or the cache expired manually.
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Figure 4.6: Run time in hours of the CreateSavedQueryDataframeCache task for 35 Saved-
Query definitions used in chapter 5. A) Run time vs N AbundanceValues B) Run time vs
Average N Samples (N features per sample = 318). These are average number of samples per
cohort based on the total number of features found in the integrated AIRWAVE-AIRWAVE2-
FINGER-MASALA cohort. A LOWESS trend line is fitted to the data.
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Figure 4.7: Run time in hours of the CreateSavedQueryDataframeCache task for 35 Saved-
Query definitions used in chapter 5. Top: run time vs average N samples (N features per
sample 318) for the 2 different methods, column-wise and cell-wise, with LOWESS trendline
fitted using the same datasets used in figure 4.6. Bottom: log10 run time for the 2 methods
with OLS trendline fitted.
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found this approach may provide significant speed gains compared to the cell wise approach used in

this thesis. Figure 4.7 shows the benchmarks from initial prototyping of the column-wise method,

demonstrating the potentially signficiant performance gains, including an approximately 100 times

faster creation of the largest query datasets using the column-wise approach compared to the cell-wise

approach used.

Data scaling, transformation, and filtering

A function was developed to scale, transform, and filter the query data as appropriate. To achieve

this, a method was implemented into the QueryFactory called transform dataframe(). This method

accepts the dataframe type, the dataframe, and the relevant options, and transforms and filters the

data as required. The combined dataframe, as well as the sample metadata and feature metadata

dataframes are stored in memory as Pandas dataframes (Reback et al. 2022, McKinney 2010), and

the intensity data matrix is stored as a NumPy matrix (Harris et al. 2020). Four scaling methods

were implemented; Pareto scaling, median scaling, mean-centring, and unit-variance scaling. An

overview of these scaling methods and their applications can be found in Blaise, G. D. S. Correia, et

al. 2021. Pareto, mean-centring, and unit-variance scaling were implemented via the pyChemometrics

toolbox (Goncalo Correia, Pearce, and C. Sands 2021), whereas median scaling was implemented

using NumPy matrix algebra. Scaling occurs on a per-project, per-assay basis. Two mathematical

transformation methods were implemented; Log10 transform and Square root transform; again these

were implemented using NumPy. Pandas and NumPy both provide fast and simple conditional filtering

on dataframes; as such it is straightforward to implement optional filters to remove:

• Samples with null metadata values.

• Features with only zero values.

• Features not available for all samples.

• Specific sample types, such as QC samples.

Further transform functions were implemented including binning metadata values, and removing

certain metadata columns from the sample metadata, and adding or removing columns necessary for

certain data formats.

Data export

Data export (CSV) functionality was implemented via the relevant Pandas or NumPy functions.

Three export formats were implemented, combined, nPYc format (e.g. the 3-file format), and

MetaboAnalyst format for usage in MetaboAnalyst (Xia et al. 2009, Z. Pang, G. Zhou, et al. 2022).

The exported files can then be used in any external software package.
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A full example of creating, saving, loading, executing, transforming, and exporting data can be

seen in code example A.16.

This concludes the development of the QueryFactory python API; a novel approach for building,

storing, executing, and exporting flexible and specific queries in a scalable and persistent way. How-

ever, one major drawback to this method is still the usability; the developed python API requires

programming knowledge to use effectively. To address this, and to allow users with non-programming

abilities to use the system, the development and usage of user-interface control panels will be explored.

4.3.2 SavedQuery User Interface

Using the PhenomeDB web-app user interface, views were developed for listing, searching, creating,

editing, and viewing SavedQuery definitions. Figure A.9 shows the user interface for viewing the

existing SavedQuery definitions, including the ability to filter the table using text filters, in this case

the id 133. Figure 4.8 shows the SavedQuery editor view, where QueryFilters and QueryMatches can

be added to the SavedQuery definition in a like-for-like representation of the QueryFactory python

API.

Next, a method for users to explore the composition of the dataset produced by the SavedQuery

was developed. This was necessary for users to be able to explore the dataset composition, includ-

ing subject counts, sample types, and metadata breakdowns, to assess if the built SavedQuery was

both correct in specificity and suitability for downstream analysis. A QueryFactory function called

load summary stats() was developed to calculate these statistics. This function executes the Saved-

Query definition, using SampleAssay as the output model, to calculate the statistics displayed in

various charts found in the user interface; these can be seen in figures 4.9 and 4.10. To speed up re-

peated views, the PhenomeDB cache system was used for storing the data for the summary statistics.

Control panels for triggering the execution of the CreateSavedQueryDataframeCache task with

either raw, SR-corrected or LTR-corrected intensities, and exporting dataframes via the user-interface

were created, and can be viewed in figure A.10.

To export a dataframe, the combined-format AbundanceValue cache must exist. Once it does, the

control panel for data export allows users to bin harmonised metadata fields, specify feature inten-

sity type (e.g. Raw/SR/LTR), select whether to harmonise annotations, specify the file format and

various options for column headers, and whether to transform/scale the data using the QueryFactory

transform() method.

The development of this user interface means that users with no programming skills can use the

QueryFactory, significantly increasing the user-friendliness of the system. However, using the devel-

oped interface to build a SavedQuery still relies on the user understanding the underlying principles of

QueryFilters and QueryMatches; without a good understanding of boolean logic, comparison opera-

tors, and datatypes, a user may make a fundamental error when it comes to selecting the specific data
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Figure 4.8: Screenshot of the QueryFactory UI create view, the steps in involved in creating
and saving a simple 2 filter/3 match SavedQuery (to get AIRWAVE samples for people aged
between 20 and 40. The red X button deletes the match or filter. Control panel buttons
are shown for viewing summary statistics, copying the query to a new definition, deleting a
the caches associated with the SavedQuery, and deleting the SavedQuery from the database.
Complex queries, such as (condition1 AND condition2) OR (condition1 and condition2) can be
created.
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Figure 4.9: Screenshot of the QueryFactory UI summary statistics counts for Airwave subjects
between 20 and 40 years old.

they require. For this reason, a simplified user interface was also developed, one targeted specifically

at people with no prior knowledge or training can use.

The simplified query builder targets the most commonly used cohort selectors; Project, Sample

Matrix, Sample Type, Assay, Annotation Method, Harmonised Metadata, and Compounds. Users can

use a simple dropdown to select these values. Harmonised Metadata and Compound filtering uses a

bespoke UI to allows users to select the comparison operator and the values; when selecting list-based

items such as IN and NOT IN, values from the database field are dynamically loaded into a dropdown.

Figure 4.11 demonstrates the simplified query builder interface for creating a SavedQuery targeting

Airwave LNEG PPR subjects between 20 and 40 years old and with annotated features with exact

mass between 45.05784m/z and 130.06299m/z. The other compound/metabolite fields available are

for filtering are:

• Chemical properties (e.g. formula, exact mass, logP).

• Chemical identifiers (e.g. InChI, InChI Key, common name, IUPAC).

• External database identifiers (e.g. PubChem, ChemSpider, HMDB, ChEMBL, CAS, KEGG,

ChEBI).

• Chemical classes (e.g. LIPID MAPS, Refmet, HMDB, ClassyFire).

• Feature identifiers (e.g. feature name, cpd name, cpd id).

• Intensity types (Raw, SR-corrected, LTR-corrected).

• Analytical properties (e.g. LOD, ULOQ, LLOQ).
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Figure 4.10: Screenshot of the QueryFactory UI summary statistics charts for Airwave sub-
jects between 20 and 40 years old, showing pie charts for project, sample matrix, and assay
breakdowns, and bar charts for the harmonised metadata fields available (sex, BMI, and age).
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Figure 4.11: Screenshot of the Simple Query Builder user interface, with filters selected for
Airwave LNEG PPR samples for subjects between 20 and 40, and features with exact mass
between 45.05784m/z and 130.06299m/z.
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With this additional interface to the QueryFactory, PhenomeDB has a very user-friendly way to

create powerfully flexible, specific, robust, persistent, and scalable queries, and can integrate and

stratify imported data, and construct datasets in the 3-file format and load them quickly from the

cache.

Validation

As in the previous chapters, the SavedQuery model and QueryFactory python API and UI were

developed using test-driven development. Unit tests for each component tested the actual output

against expected test data. Query results were checked against expected, most crucially checking

that at each step of the dataset generation and transformation that row order of any constructed or

transformed datasets were preserved.

During development the method was assessed against the criteria for the query system outlined

in 4.1, and was found to meet all the criteria specified in the requirements to be meet the desired

use-cases; specificity, usability, flexibility, robustness, persistency, and scalability.

With the method for generating, inspecting, and transforming cohorts developed and validated,

we can now move onto the development and implementation of various statistical methods required

for integration.

4.3.3 Implementation of methods for running statistical analyses

Figure 4.12: Example analysis workflow for metabolomics.
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As outlined in the introduction, various statistical tools are necessary for exploring and under-

standing the structure of our data, for analysing and minimising the sources of variation, and for

finding and comparing molecular trends. By implementing these tools into PhenomeDB pipelines,

we will have a powerful system for reproducible experimentation and investigation of metabolomics

datasets. The work in this section outlines the design, development, and validation of these methods.

AnalysisTask & AnalysisView

Each type of analysis conducted in metabolomics and data science in general fits well into the software

model developed in chapter 2, that is, the flexible, reproducible, and standardised ETL tasks and

pipelines. Therefore, as similarly done in chapter 3, the Task module was extended to a new module

for the AnalysisTask.

Figure 4.13 shows an overview of the AnalysisTask module, with steps for loading the data, running

analysis in Python or R, and storing the results in the persistent cache. Data can be loaded from either

a SavedQuery or an upstream TaskRun. Each type of Analysis is an extension of the AnalysisTask,

and the code for the underlying analysis method is implemented and executed in the AnalysisTask sub-

class. For persistency, the output is stored in the PhenomeDB cache, enabling inspection, comparison,

and further downstream analyses as required.

Originally, TaskRun output was stored as JSON in the TaskRun model in the database, however

with many analyses this affected database performance, and to preserve the performance the output

was instead moved to the cache to be stored persistently on the file system.

By integrating the analyses into the Task/Pipeline system, the results can be accessed quickly on

demand. A new user-interface module was created for running, viewing, and exploring the results

of AnalysisTasks. The AnalysisView list control panel allows users to trigger Single Task Pipelines

such as AnalysisTasks using a dynamic HTML interface, that is essentially a HTML representation

of the PhenomeDB task CLI. Figure 4.14 shows a screenshot of this view with the control panel for

running AnalysisTasks and SingleTaskPipelines and specifying their parameters, and the table listing

the results of the existing analyses, with links to the Airflow log and a view for viewing the results of

each TaskRun.

The results for each successfully executed TaskRun are accessible via a dedicated AnalysisView

page. For all AnalysisTask types, a set of common features for this view include the ability to view the

options used, export the results as a JSON file, view the results JSON in the window, and download

the TaskRun.data matrices used in the analysis as CSV files; e.g. the sample metadata, the feature

metadata, and the intensity data. Panels also exist for viewing the upstream TaskRun arguments (if

any), and for re-running the Task with different parameters if required. These common panels can be

seen in the screenshot in figure A.11. Custom features for each type of analysis, including relevant

figures can be implemented as necessary for each type of AnalysisTask.
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AnalysisTask

Transform

Analysis method code
executed either 
in-python or via 

external-language
templating system

(ie R)

Method specific steps

Python R
render_R_Jinja_template()

save_input_data_to_temp_folder()

run_R_script_subprocess()

load_analysis_results_json()
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Data loaded from
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load_data_from_upstream()
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Task Output stored
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Backed up nightly
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specific
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Figure 4.13: Overview of the AnalysisTask, demonstrating how the ETL parts of a task can
be extended to the role of running analyses. Extract: Data is either loaded from a SavedQuery
Cache and transformed, or it is loaded from an upstream TaskRun. In theory any data can
be loaded in this step, method requiring. Transform: The method specific code is executed;
in Python, the data is prepared into the format required by the method, the code is executed,
and the results are stored in TaskRun.output. For R, Jinja templates are rendered with paths
to input csv files, the R script is executed, and the results are loaded from exported JSON and
stored in the TaskRun.output. Load: The TaskRun.data (input data) and the TaskRun.output
dictionaries are stored in the PhenomeDB persistent cache.
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Figure 4.14: Screenshot of the AnalysisView main control panel, with UI elements for run-
ning AnalysisTasks and SingleTaskPipelines with optional parameters, including the Saved-
Query/SavedQuery ID. Below, a table of existing analyses and their metadata including
TaskRun status is included. Each row has links to view the Airflow Log, view the Analy-
sisTask results, and delete the TaskRun.
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The pyChemometrics toolbox (gscorreia89, jaketmp, and carolinesands 2021) was chosen for im-

plementation of PCA in PhenomeDB; the pyChemometrics toolbox was developed as an extension to

the Python library scikit-learn (Pedregosa et al. 2011), with extra functionality for cross-validation.

pyChemometrics was added to the dockerfile for PhenomeDB, to make it usable inside the docker

images. A class of AnalysisTask was developed called RunPCA, and the PCA functions in pyChemo-

metrics were implemented in the method-specific-step of the RunPCA class. The key options were

identified and implemented as options to the RunPCA Task, and RunPCA and its options were added

to the task spec.json for utilisation in the CLI.

RunPCA will automatically calculate the optimal number of PCs, cross-validate the results, and

calculate Hotelling’s T2 for visualisation, before storing the results in the TaskRun.output (for storage

in the cache).

The AnalysisView for RunPCA has panels for viewing the commonly found PCA figures; the scree

plot, the scores plot, and the loadings plots. The scree plot (otherwise known as an elbow plot) allows

users to visualise the cumulative R2 of the PCs, helping identify how many principle components

should be included in the PCA. The scores plot is a 2D plot of scores for each PC; a control panel

allows users to select X-axis PC, the Y-axis PC, the score (sample) labels, the colour map, what

sample metadata to colour by (for example run order, or age), and whether to hide or show different

sample types (e.g. study samples, SR samples, LTR samples). Two kinds of loadings plots were

implemented, one that mirrors the 2D scores plot, showing the loadings for each selected PC axis,

and two 1D loadings plots, bar charts of the loadings for each selected PC axis. Screenshots of these

figures and the visualisation UI are shown in figure 4.15.

Other than trying to identify molecular trends, or visualise sources of variation in the dataset, PCA

is often used in an exploratory manner to identify clusters or potential outliers. In the PhenomeDB

PCA results view, potential outliers can be selected in the 2D PCA scores plot, and automatically

added to the original SavedQuery definition to exclude the specific sample. This means the RunPCA

task can be used in conjunction the SavedQuery system, to exclude outliers, and then re-run the

RunPCA Task again, on the new SavedQuery result without the outliers.

PCPR2 and the RAnalysisTask

While investigating PCPR2 for implementation, it was found that the only existing software package

available for it was in R. For this reason, a method for executing R software tools was implemented

into the AnalysisTask module. Using the same principle developed in chapter 2 for building Airflow

DAGs (python scripts) in the AirflowPipelineManager, the RAnalysisTask uses standardised R Jinja

templates for dynamic rendering and executing of R code. A base.r template has boiler-plate to load

the 3-file format data from a dedicated temporary folder on disk, a space for the method-specific-steps,

and finally a standardised export of results to JSON. The output is then loaded into the AnalysisTask
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Figure 4.15: Screenshot of the PCA results UI. A) The Scree plot. B) The control panel for
selecting PC axis and labels and sample types, and colouring scores by sample metadata fields.
C) The 2D scores plot coloured by run order, highlighting how the run order of SR-corrected
data is not the greatest source of variance. D) The 2D loadings plot, and E) & F) the 1D
loadings plots for the same PCs shown in A. Here the metabolite labels have been removed for
clarity in this figure.
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before saving in the TaskRun.output. The Jinja base.r template can be seen in A.17. R, and an R

package installation script was added to the DockerFile for usage inside the Docker environment. Run-

PCPR2 was implemented, extending the RAnalysisTask. A PCPR2 R Jinja template was developed,

that loads the data, and runs the PCPR2 R library (Rothwell 2021), the code for which can be seen

in listing A.18. Jinja variables for data paths and options such as the pct.threshold can be seen.

The AnalysisView results page for RunPCPR2 has a custom figure showing the Partial-R2 for each

covariate included along with the total R2 of covariates. An example of these figures can be seen in

figure 4.21. With this analysis and visualisation, the relative contribution of covariates to the total

variance can be understood, and most importantly for our purpose, batch effects can be modelled,

and different batch correction methods can be compared for their suitability for minimising the batch

effects.

Run nPYc Reports & Batch correction

As the QueryFactory can produce the 3-file format that is input to the nPYC-toolbox (Caroline J

Sands et al. 2019), it is straightforward to implement the report generators included in the nPYc-

toolbox. Extending the AnalysisTask, RunNPYCReport can be used to run and inspect any report

that is available in the nPYc-toolbox, including the batch correction reports to carry out and assess

Study-Reference QC based LOWESS run-order correction. A RunNPYCReport task was implemented

to prepare and execute the nPYc report generation tools. Reports are stored on disk and can be viewed

and loaded in browser via the ReportView control panel.

QC-free batch correction; ComBat & Regression-based batch correction

By implementing the nPYc toolbox as part of PhenomeDB, the batch correction functionality in the

nPYc toolbox is available to use for run-order correcting LC-MS data. Similar to SR correction, the

nPYc-toolbox can also LOWESS correct data based on the Long Term Reference (LTR). Both of

these corrections however assume that QC samples were run, and are available in the dataset. This

may not always be the case, especially for projects stored in public repositories. For these cases, it

is useful to be able to use batch correction methods that do not use QC samples for their correction.

Two such methods in the literature are ComBat (W. E. Johnson, C. Li, and Rabinovic 2007), and the

regression-based method developed by Viallon et al. (2021). Both of these methods have packages or

code in R, and as such both were implemented using the RAnalysisTask and can be used to batch

correct datasets in PhenomeDB; the RunComBatCorrection and RunNormResidualsMM tasks.

With these QC-free batch correction methods implemented, intensity data can be loaded into a

task, batch-corrected, and then the output of that batch correction used as the input to the next Task

(by using the upstream task run id).
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MWAS

The R package MWASTools (Rodriguez-Martinez et al. 2018) was selected for implementation, as

it has a wide range of association and multiple testing methods available, through a simplified and

standardised API. The RunMWAS task extends RAnalysisTask, and has options for setting Y, X,

confounders, association method, and the multiple testing correction method. Coefficients, and p-

values are stored in the TaskRun.output. The MWAS view has figures for exploring the adjusted

p-values and coefficients for significantly associated metabolites, an example of which can be seen in

figure A.12. An HTML table lists the metabolites and their analysed association metrics as produced

by MWASTools.

MWASTools has a useful feature to plot a heatmap to compare p-values and coefficients of different

association and multiple-testing correction methods for a given dataset. The main limitations of

MWASTools are that you cannot compare the results from two different datasets (e.g. two different

cohorts), and nor can you override the correction parameters to account for multiple assays in each

dataset. By implementing MWASTools into PhenomeDB these limitations can be overcome; MWAS

analyses from different projects can be run and compared, and the Bonferroni m can be overridden

and the p-value threshold recalculated to account for multiple assays. This means the potential of

MWAS for these comparisons can be unlocked while ensuring the identified associations are truly

robust across different assays/platforms.

The MWAS compare functionality shows four heatmaps:

1. The corrected p-values for metabolites found to be significant in all selected analyses.

2. The coefficients for metabolites found to be significant in all selected analyses.

3. The corrected p-values for metabolites found to be significant in at least one selected analysis.

4. The coefficients for metabolites found to be significant in at least one selected analysis.

Scatterplots to compare the adjusted p-values between two analyses are also shown, as well as a

Venn diagram of metabolites found to be significant in each analysis.

Various options exist to enable comparisons between the MWAS analyses.

• Dedupe — Remove the consistently found metabolites from the table of metabolites significant

in at least one analysis.

• Order by — Specify a task run to order the plots by adjusted p-value.

• somenull — Remove those which significant in some, but not analysed in some.

• fwer n — Recalculate the Bonferroni corrected p-values using a different number of features.
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Examples of these plots can be seen in the next section. With these querying and analysis tools

implemented into the Task system and UI, PhenomeDB now has powerful tools implemented to be

able to explore, analyse, combine, scale, and compare datasets and analyses, to aid in the identification

of molecular trends. In the next section we will demonstrate the utility of these various methods in to

an example investigation into molecular trends in Airwave LNEG, and in doing so answer the another

of chapter 1’s use-cases: that of comparing metabolite trends between two stratified datasets, e.g.

males vs females, so sex-specific metabolite disease associations can be explored.

4.3.4 Demonstrating the utility of these methods with an investigation into molec-

ular trends in Airwave LNEG

All of the figures included in this section are either screenshots of PhenomeDB or were rendered in

and exported from PhenomeDB web views developed in this chapter.

In the previous chapters, the Airwave data was imported and harmonised, and in this chapter the

Airwave SavedQueries were created.

SavedQuery ID Project Assay Annotation Method Sample Matrix Correction MWAS confounders MWAS Age range

133 AIRWAVE LPOS PeakPantheR plasma SR Sex, BMI, Batch 24-60
134 AIRWAVE LNEG PeakPantheR plasma SR Sex, BMI, Batch 24-60
135 AIRWAVE HPOS PeakPantheR plasma SR Sex, BMI, Batch 24-60
137 AIRWAVE NOESY Bi-LISA plasma None Sex, BMI, Batch 24-60

Table 4.3: QueryFactory parameters for AIRWAVE

Using the QueryFactory web interface, queries for each assay were created for the AIRWAVE

datasets, as defined in table 4.3. Figure A.13 is a screenshot of the QueryFactory view developed in

this chapter, demonstrating the exact filters used for creating this cohort.

For each cohort, The summary statistics inspected, and the dataframe caches built ready for the

analysis The metadata distributions provided by the QueryFactory summary statistics for AIRWAVE

LNEG can be seen in figure 4.16.

Now that cohorts have been built, and the caches generated, it is simple to run basic analyses on

the datasets, including the NPYC batch correction assessment report; which can be used to assess

run-order effects and batch correction requirements of the data.

Run order correction assessment

The NPYC BatchCorrectionAssessment report was used to assess the run order effects of the imported

datasets.

Figures 4.17, 4.18, and 4.19 show the strong run-order effects of the raw LC-MS LPOS, LNEG,

and HPOS assays; demonstrating that it is preferable to use the SR-corrected data for these assays,

which minimises the run-order effect using the LOWESS-based correction with the pooled QC (SR)

samples as reference.
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Figure 4.16: Distributions of the harmonised age, sex, and BMI in AIRWAVE LNEG, taken
from the summary statistics of the QueryFactory view for SavedQuery 134.
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Figure 4.17: Airwave LPOS sample TIC, demonstrating the strong run order effects. Gener-
ated using the nPYc BatchCorrectionAssessmentReport from within PhenomeDB.

Figure 4.18: Airwave LNEG sample TIC, demonstrating the strong run order effects. Gen-
erated using the nPYc BatchCorrectionAssessmentReport from within PhenomeDB.
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Figure 4.19: Airwave HPOS sample TIC, demonstrating the strong run order effects. Gener-
ated using the nPYc BatchCorrectionAssessmentReport from within PhenomeDB.

Figure 4.20: Airwave NMR Bi-LISA sample total intensity, demonstrating the lack of run
order effects. Generated using the NPYC BatchCorrectionAssessmentReport as part of Phe-
nomeDB.
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NMR has been shown to be highly reproducible and stable, making it suitable for large scale

studies such as those analysed in this thesis (Dumas et al. 2006). Figure 4.20 shows the negligible run

order effects of the NMR data, demonstrating that is suitable to use the uncorrected intensities for

analysis without any run order correction.

PCPR2

No scaling, no transform

UV-scaling, log transform

Figure 4.21: PCPR2 results for batch, sex, age, and BMI, alongside the total R2 these
covariates contribute to the overall PC scores. Top: No scaling or transformation. Bottom:
Unit-variance scaling & log transform.

Figures 4.21 shows the PCPR2 results for the SR-corrected AIRWAVE LNEG cohort with no

scaling and transformation (top) and unit-variance scaling and log transformation (bottom). The

effect of scaling on the PCPR2 values can be observed, where the scaling and transformation has

reduced the PCPR2 for batch (desirable), and increased the relative contribution of age (desirable).
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PCA

PCAs were executed for each query/assay using the Analysis view, with the following parameters:

• Correction Type — ’SR’ for LPOS, LNEG, HPOS, None for Bi-LISA.

• Scaling — Unit-variance scaling.

• Transform — Log transform.

Using the PhenomeDB PCA results web-view, no obvious age-related trends were visible using any

of the colour schemes. However, trends were visible in the scores for some principal components when

coloured by sex.

Figure 4.22 shows the PCA scores and 2D loadings plots for PC5 and PC6 for SR-corrected unit-

variance log scaled AIRWAVE LNEG dataset, as produced by the QueryFactory and RunPCA task.

PCA scores are coloured by Sex. 15 metabolites have been labelled on the 2D loadings plot that are

the metabolites with the greatest PCA loadings on these component axis.

Figure A.14 shows the 1D loadings plots for the same components. These figures, including the

principle components, score colouring, and labels have been selected to demonstrate the function of

the PhenomeDB PCA tools for identifying potential metabolite trends; in this case metabolites that

are potentially associated with sex.

MWAS

To help understand if the metabolites identified as potentially associated with sex in figure 4.22 are

real molecular trends in the data, an MWAS was executed on the AIRWAVE LNEG cohort with the

following parameters and compared with the PCA results:

• Y — sex

• Covariates — BMI, age, batch

• Correction Type — SR

• Scaling — unit-variance

• Transform — log

• Association method – linear regression

• Multiple testing method — Bonferroni

Figure 4.23 shows the metabolites found to be significantly associated with Sex after Bonferroni

correction. The 16 metabolites labelled in the 2D loadings plot in figure 4.22 are found to be signif-

icantly sex-associated with the MWAS analysis, and are grouped into the same positive or negative
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Figure 4.22: PCA scores and 2D loadings plots for PC5 and PC6 for AIRWAVE LNEG
(SavedQuery 134), unit-variance log scaled, generated by the PhenomeDB RunPCA task and
displayed using the web-view.
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association direction as indicated by the loadings. These metabolites are highlighted in bold in fig-

ure 4.23. This provides good evidence that the methods developed in this chapter can be used to

find consistent molecular trends across multiple statistical method approaches (multi-variate PCA vs

uni-variate MWAS).

Cohort stratification

Now the usage and utility of these analysis tools has been demonstrated, and consistent metabolites

that are likely to be sex-associated were found in two separate methods, the QueryFactory was used

to create 2 stratified AIRWAVE LNEG cohorts, one for males and one for females, and explore age-

associated trends in these cohorts.

Figure A.15 is a screenshot showing the filters and matches used to define the AIRWAVE LNEG

females cohort. This and another for females was created, the summary statistics viewed, SR-corrected

caches built, and SR-corrected unit-variance log scaled data were again analysed using PCA and

MWAS.

Figure A.16 shows the scores plots for PC5 and PC7 for the female LNEG cohort, coloured by

age. On PC5 and PC7 a mild age trend of can be observed. Some metabolites from this extreme

ends of this trend are labelled. Figure A.17 shows the Bonferroni corrected metabolites found to

be significantly age associated using linear regression, with BMI and batch as covariates; again the

metabolites labelled in A.16 are highlighted in bold. Again, this provides evidence that the methods

developed in the chapter can enable the identification of molecular trends, consistent across multiple

methods, including those with strong sex-effects.

Figures 4.24 and A.18 show the LNEG metabolites found to be significantly age-associated using

linear regression MWAS in both cohorts, and either males or females respectively. In these plots, the

differences between the sexes in terms of age-related metabolite trends can be seen, for example, even

some metabolites that are significantly age-associated in both males and females have opposite trends

(positive vs negative), for example PA(16:0/18:2) in figure 4.24. These plots highlight the utility of the

PhenomeDB MWAS comparison heatmaps for comparing trends in different cohorts or sub-cohorts.

4.3.5 Method summary

The methods developed in this chapter are capable of integrating, stratifying, scaling, transforming,

batch correcting, reporting on, and analysing metabolomics data, and an example analysis has demon-

strated its capabilities on an individual, and stratified dataset. In doing so, a further use-case has

been met, comparing metabolite trends between two stratified datasets, e.g. males vs females, so

sex-specific metabolite disease associations can be explored.

The remaining use-case is the integrated analysis of metabolomics data for increasing sample size

(n) and power — the main aim of this thesis, and will be explored in the chapter 5.
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Figure 4.23: 1D MWAS coefficients and Bonferroni corrected p-values AIRWAVE LNEG
(SavedQuery 134), unit-variance log scaled metabolites significantly associated with sex, with
BMI, age, and batch as confounders, generated by the PhenomeDB RunMWAS task and dis-
played using the web-view. Metabolights labelled in the PCA 2D loadings in figure 4.22 are
highlighted in bold.
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Figure 4.24: Heatmap of Bonferroni corrected p-values for AIRWAVE LNEG metabolites
found to be consistently significant in both males and females, using unit-variance log scaling,
linear regression, with BMI and batch as covariates, generated by the PhenomeDB RunMWAS
task and displayed using the web-view. Red is positively associated, blue is negatively associ-
ated.
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4.3.6 Comparison with existing tools

Querying

The Metabolights (Haug et al. 2019) and Metabolomics Workbench (Metabolomics Workbench 2022)

study repositories do not enable users to query datasets in an integrated, specific, and stratifiable

way, only to search by specific fields, and download entire datasets. iMAP (D. Zhou et al. 2021) has

no ability to store data in a query-able way, only to upload pre-integrated data matrices (CSV files).

Molgenis (Kanterakis et al. 2015), MeltDB (Neuweger et al. 2008) and MetHoS (Tzanakis et al. 2022)

all have database backends for storing metabolite features. MeltDB and MetHoS have no capability

for storing sample metadata/study factors, meaning study factor stratification of integrated datasets

is not possible within the existing systems. MetHOS uses NoSQL, meaning a secondary database

or index of study factors alongside multiple client-side queries would be required for stratification.

Molgenis as an application development framework that uses an RDBMS backend has the capability

to store study factors/sample metadata, however it lacks a the ability to execute multi-table queries

(due to the utilisation of an Elasticsearch index as the main query API), meaning it cannot leverage

the RDBMS multi-table joins. The Molgenis query system uses a Javascript query API, which is very

similar to that included in the Flask-AppBuilder REST API that was assessed in this chapter (table

4.2), and was found to be insufficient in terms of user-friendliness, persistency, and flexibility.

PhenomeDB is unique amongst these compared tools in that it allows users to upload sample

metadata/study factors to a query-able RDBMS, link those metadata fields to metabolite feature

abundances, and allow multi-table queries to be built, saved, and executed on demand, to generate

and export datasets in the 3-file format required for many metabolomics data analysis methods and

software tools.

Analysis

MeltDB, MetHoS, and iMAP have wide-ranging analysis tools specific for metabolomics, including

univariate, multivariate (supervised and unsupervised), and correlation methods. iMAP also includes

iPath integration, as well as tools for imputing missing values. MetHoS also includes retention-time

drift correction and annotation algorithms. Many dedicated data analysis suites exist for metabolomics

data, the most user-friendly likely being Metaboanalyst (Z. Pang, Chong, et al. 2021), PhenomeDB is

not aimed at replicating these feature-rich data analysis suites, and instead focuses on implementations

of tools for integrating metabolomics data for molecular epidemiology, including PCA for exploratory

analysis, nPYc-reports for assessing quality control and run-order drift correction, PCPR2 for assessing

batch correction and scaling methods, and MWAS for analysing and comparing metabolite trends.

The AnalysisTask does however provide excellent features for reproducible, flexible, standardised, and

scalable data analysis, and any kind of statistical can be implemented if required. Finally, if a user
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wishes to use a separate software for data processing or analysis, the data can be exported via the

PhenomeDB UI or API.

4.4 Contribution of this Chapter

In this chapter, novel methods have been developed for defining, saving, and executing user defined

queries, to enable users to create novel, integrated, and stratified cohorts, and enabling any combina-

tion of filters to be used with any output SQLAlchemy ORM model.

Various statistical tools and analysis methods have been implemented into a novel framework that

facilitates reproducible investigations of integrated metabolomics datasets. These methods have been

demonstrated by identifying consistent molecular trends in the Airwave cohort.

With these methods, it is now possible to explore the integrated cohorts, which will be the focus

of chapter 5, where the methods developed in this thesis will be applied to explore the remaining

unanswered use-case: integrative analysis of the four cohorts.
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Chapter 5

An investigation of metabolomic

molecular trends of ageing in four

integrated cohorts

5.1 Introduction

In the previous chapters, methods were developed for the storage, harmonisation, integration, strati-

fication, and analysis of metabolomics data. This chapter outlines the application of these methods

for a multi-platform, multi-cohort integrative analysis of molecular trends of ageing. The over-arching

aim of the thesis will be explored here — can multi-platform metabolomics studies be integrated to

find robust molecular trends of ageing?

5.1.1 Ageing

Ageing refers to the process of decreasing function of biological mechanisms, and has been widely

studied in terms of longevity, and its relation to many of the major human diseases, including cardio-

vascular disease (CVD) (Rodgers et al. 2019), hyperglycemia/type II diabetes (T2D) (Chia, Egan, and

Ferrucci 2018), cancer (Berben et al. 2021), neuro-degenerative disorders (Y. Hou et al. 2019), kidney

disease (Y. Fang et al. 2020), liver disease (I. H. Kim, Kisseleva, and Brenner 2015), muscle function

(Siparsky, Kirkendall, and Garrett 2014), bone function (Boskey and Coleman 2010), and skin func-

tion (Farage et al. 2013). As such, understanding the underlying processes and identifying important

biomarkers of ageing may improve outcomes of these diseases through early-intervention, nutrition,

and treatment of the age-related disorders, as well as promoting longevity and healthy ageing. As

the population in the UK and worldwide ages, understanding, treating, or preventing many of these

age-related diseases will reduce their significant and growing impact on social and health services (UK

Government Office for National Statistics 2013, United Nations Department of Economic and Social
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Affairs 2019).

Various theories of biological ageing have been posited (K. Jin 2010), and the major processes of

ageing have been grouped into ’hallmarks’ of ageing; genomic instability, telomere attrition, epige-

netic alterations, loss of proteostatis, deregulated nutrient sensing, mitochondrial dysfunction, cellular

senescence, stem cell exhaustion, and altered intercellular communication, and the combination of

these hallmarks determines the ageing phenotype (López-Ot́ın et al. 2013).

Metabolites associated with ageing

Previous studies have identified many lipid classes and small molecules to be involved with ageing or

age-related disorders, and a selection of those metabolites are introduced here.

Triglycerides are major lipid transporters in the body, and elevated levels of blood plasma triglyc-

eride levels have been found to be associated with ageing and various metabolic/age-associated disor-

ders such as CVD and T2D (Spitler and B. S. Davies 2020, Barzilai 2003).

Lysophospholipids, such as lysophosphatidylcholines (LPC), lysophosphatidylinositols (LPI), and

lysophosphatidylethanolamines (LPE) are glycerophospholipids involved in lipid biogenesis for plasma

membrane oxidation in mitochondria, and have more recently been discovered to be involved in extra-

cellular signalling (S. T. Tan et al. 2020) and associated with obesity (Bas et al. 2016). Lysophos-

phatidylcholine (LPC) is derived from phosphocholine (PC) by the action of phospholipase A2. PC is

involved stress modulation and has been shown to promote longevity in C. elegans (S.-H. Kim et al.

2019).

Fatty acids are the building blocks of many other lipids, including triglycerides, phospholipids, and

cholesterols, and various forms of fatty acids have been shown to be important in brain ageing (Denis

et al. 2015), healthy ageing (Pararasa et al. 2016), lipid metabolism (Toth and Tchernof 2000), and

life-span extension in C. elegans (A. A. Johnson and Stolzing 2019).

Sphingomyelins are long chain lipids containing sphingosine, and have roles in signal transduction

cellular regulation, and senescence (Trayssac, Hannun, and Obeid 2018), and have been found to be

involved in all major hallmarks of ageing (Shengxin Li and H.-E. Kim 2022). Expression of genes

involved in sphingolipid metabolism have been found to associated with both ageing and Alzheimer’s

disease (D’angiolini, Chiricosta, and Mazzon 2022), and abnormal levels of sphingomyelinase have been

found in various neuropathological tissues (M. H. Park, H. K. Jin, and Bae 2020). Sphingomyelin is

metabolised by sphingomyelinase into ceramide (Shengxin Li and H.-E. Kim 2022).

Carnitine is a small molecule that aids energy production by transporting long-chain fatty acids

into mitochondria, is widely used as a exercise supplement (Sawicka, Renzi, and Olek 2020), and

has been found to associated with various metabolic disorders including T2D (Mynatt 2009), liver

cirrhosis (Sakai et al. 2016), and other age-related changes such as bone density (Flanagan et al.

2010). Decreased carnitine serum levels are associated with frailty in older individuals (Malaguarnera
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et al. 2020), and added carnitine supplementation has been shown to increase fat oxidation in older

individuals (Chee et al. 2021).

All 20 amino have been shown to be age-associated in various model organisms or humans, with

the evidence collated by Canfield et al. (2019) in their review of amino acids and ageing. Branch-chain

amino acids (leucine, isoleucine, and valine) have been shown to be strongly associated with ageing,

but with inconsistent findings regarding their exact relationship with age-related changes (Le Couteur

et al. 2020).

Metabolomics of ageing

In recent years, metabolomics has been widely used for studying ageing, including in model organisms

such as Drosophila (Zhao et al. 2022), C. elegans (S. K. Davies, Bundy, and Leroi 2015, Copes et al.

2015), and mice (Salek et al. 2018, Petr et al. 2021), as well as in humans (Kondoh, Kameda, and

Yanagida 2021, Jové et al. 2016, Robinson et al. 2020, Mäkinen et al. 2022). Adav et al. (2020)

published an in-depth and wide-ranging review of recent advances in metabolomics of ageing. Jové

et al. (2016) used untargeted LC-MS assays to analyse serum from 150 participants, and identified

vitamin D2, mono and poly-unsaturated fatty acids, and glycerophospholipids decreased with age.

Kondoh et al. (2021) used untargeted LC-MS assays to analyse plasma and red blood cells (RBC),

identifying and annotating 126 metabolites found to be age-associated, including amino acids, car-

nitines, and ethylamines. Robinson et al. (2020) used a single-cohort observational study (Airwave) to

study metabolomic ageing trends and build a multi-platform multivariate age predictor and undertake

a pathway analysis. Lind et al. (20202) used late-stage integration (meta-analysis) of three cohorts to

identify biomarkers of ischaemic stroke. Mäkinen et al. (2022) used a two-cohort, longitudinal study

of 1672 + 3117 participants aged 24-49 years, with 236 annotated NMR metabolites and other clinical

factors to investigate univariate pair-wise ageing trends in young and old participants, stratified by

sex, and identified low-density-lipoproteins (LDL), fatty acids, and amino acids as age-associated.

At the time of writing, no studies have attempted integration of four cohorts, in a whole-life ageing

analysis. The cohorts used in this analyis are a combination of balanced and unbalanced, and given

one of the purposes of integrative analysis is to combine heterogenous cohorts, it is useful to assess if

unbalanced cohorts can be integrated to find robust molecular trends. The work in this chapter aims

to investigate this.

5.1.2 Aims

The aim of this chapter is to test if multiple unbalanced cohorts can be integrated to find robust

molecular trends of ageing. Key questions to be investigated are:

1. Can robust metabolite trends be found by integrating metabolomics cohorts?
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2. Does integrating cohorts improve the significance of age-associated metabolite trends compared

to individual cohorts?

3. Does integrating cohorts find more metabolites with age-associated trends compared to the

individual cohorts?

4. Which MWAS association method is best for finding age-associated metabolites in the integrating

cohort?

5. Which metabolites are found to be age-associated?

6. Are these trends supported by the existing literature?

In order to answer these questions, in this chapter PhenomeDB will be used to build queries for

the Airwave, Airwave2, FINGER, and MASALA cohorts, both individually and integrated, compare

scaling and transformation methods, execute MWAS analyses, and compare the results including the

p-values and number of age-associated metabolites.

5.2 Methods

With the methods developed and data imported and harmonised in the previous chapters, it is now

possible to generate integrated cohorts, and to identify age-associated metabolites. In this chapter,

the methodology used could be adapted for different data sources, experimental investigations, assay

types, studies, or study factors of interest, as required.

5.2.1 Method steps

The overall aim of the method was to select a suitable data scaling and transformation method, and

to identify and compare age-associated metabolites in the integrated dataset using MWAS methods.

The main steps involved in the analysis were:

1. Test cohorts used in the analysis were generated using the QueryFactory developed in chapter

4.

2. A pipeline and custom web view was built to permute over the scaling and transformation meth-

ods for each test cohort, and execute a PCA and PCPR2, to enable the selection of the scaling

and transformation method that best minimised the inter-project variation while maintaining

the variance of the outcome of interest. Two-sided Mann-Whitney U tests were also carried out

on the LTR samples using data exported from the system.
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3. Once the scaling and transformation parameters were selected, MWAS was executed on the test

cohorts to identify age-associated metabolites with BMI, sex, sample matrix, batch, and project

as covariates where appropriate/available.

4. The number and p-values of significantly age-associated metabolites found in the test cohorts

were compared.

5.2.2 Generating test cohorts for analysis

SavedQuery definitions for the source cohorts were built using the QueryFactory user interface outlined

in chapter 4, to the specification outlined in table 5.1. Each source cohort has a query for each

assay, and Timepoint 1 was used in the analysis (FINGER has two timepoints, the second is post-

intervention).

The sample and subject metadata distributions for the test cohorts were viewed via the summary

statistics view. The study factor distributions were inspected and cohorts were selected for testing

integration, these can be seen in figure 5.1. Airwave and Airwave2 were selected for initial integration

as they have the most similar composition in terms of participants; they could in fact be viewed

as ’extreme’ batches of the same cohort, acquired years apart on different instruments, and have a

balanced composition in respect to the outcome and covariates of interest. The main difference between

them is their dilution, Airwave was acquired at a concentration of 100%, whereas Airwave2, FINGER,

and MASALA were acquired at concentration of 50%. These features of the datasets make Airwave

and Airwave2 a useful first test for integration, as technical variation such as instrument variation,

sample processing variation, and sample storage differences between the datasets are often large sources

of variation between metabolomics datasets, and we wish to minimise the technical variability, not

the biological variability. The second integrated test cohort explores adding FINGER to Airwave and

Airwave2. FINGER was selected as it constitutes plasma samples from 1053 participants aged 60 to

79. Finally MASALA was added (751 participants aged 40 to 83), where the effect of using a different

sample matrix (serum) was explored.

For each test cohort, the SavedQuery dataframe cache generator task was executed (CreateSaved-

QueryDataframeCache) via the QueryFactory UI, with the following options:

• Output model — ’AbundanceValue’

• Master unit — ’mmol/L’1

• Correction Type — ’SR’ for LPOS, LNEG, HPOS, None for Bi-LISA

• Harmonise annotations — True

1mmol/L is the default and is ignored for LC-MS relative abundances.
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In chapter 4, it was demonstrated that LC-MS run order effects require run-order correction (e.g.

SR-corrected values), whereas NMR has much less of a run-order effect. For these reasons the SR-

corrected values were used for LC-MS assay (LPOS, LNEG, HPOS) and the uncorrected (raw) values

were used for the NMR annotation method (Bi-LISA).

5.2.3 Assessing and minimising the inter-batch and inter-study variation

With the caches built, the fully integrated dataset (Airwave-Airwave2-FINGER-MASALA) was used

to assess the scaling/normalisation requirements of the analyses using the PCA and PCPR2 methods.

A pipeline and custom web view was developed to permute over and explore the effect scaling and

transformation methods on the PCA scores and PCPR2 values of the integrated dataset. This pipeline,

called batch correction comparison pipeline, is executed by another pipeline, RunBatchCorrection-

ComparisonPipeline. RunBatchCorrectionComparisonPipeline takes a saved query id, a variable of

interest (e.g. age), and various covariates (e.g. BMI, sex, batch, project, sample matrix) based on at-

tributes of the cohort, builds a PipelineFactory run config and triggers the batch correction comparison pipeline.

Whether or not to run the ComBat or RunNormMixedResidualsMM QC-free batch correction methods

can be specified as a parameter.

PCPR2 allows for some inter-correlation between covariates (Fages et al. 2014), however highly

correlated covariates cause the matrix algebra to fail; as such the highly-correlated covariates we wish

to explore (batch, project, and sample matrix) must be modelled separately.

A view was developed to explore the results of this pipeline, including merging the PCPR2 results

into a novel, integrated chart, to simplify the assessment of scaling/transform or batch correction

method on the inter-project and covariate variation. This view displays links for the pipeline task

runs executed in the pipeline, and aggregates the PCPR2 values into novel charts for exploring the

how different scaling, transformation, and batch correction methods affect the PCPR2 values batch,

project, and sample matrix (as required). An example of this figure with real data can be seen in

figure A.19.

Figure 5.1 demonstrates the unbalanced nature of our cohorts. Nygaard et al. (2016) demonstrated

how batch-correction methods that try to maintain covariate effects in unbalanced cohorts can bias

downstream analyses and result in over-exaggerated confidence in the results. It has previously be

shown that scaling methods alone can in many cases provide as-good performance as bespoke batch

correction methods (Luo et al. 2010). For these reasons, for the unbalanced cohorts used in this

analysis the ComBat and RunNormMixedResidualsMM batch correction methods were excluded from

the comparison.

Finally, a two-sided Mann-Whitney U test was carried out by with the Python package sci-py

(Virtanen et al. 2020) to compare the distributions of each LTR metabolite feature between each pairs

of cohorts.
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Table 5.1: SavedQuery definitions for the investigation into integrating cohorts
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Once the pipeline had been developed and tested, it was executed for each assay of the Airwave-

Airwave2-FINGER-MASALA cohort, and the scaling & transformation method that on balance best

met the following criteria was used for analysis of all the test cohorts:

• Reduced the inter-project and inter-sample-matrix variation in the PCA and PCPR2 analysis.

• Maintained the biological variation of interest (age) in the PCPR2.

• Had the greatest proportion of LTR metabolite features with no significant differences using a

two-sided Mann-Whitney U test.

• For LC-MS, reduced the technical variation, as assessed by comparing the grouping of the LTR

samples on the PC1 and PC2 scores.

5.2.4 Comparing age-associated metabolites identified in individual and integrated

cohorts

Using the scaling & transformation methods selected in the previous step, and the test cohort def-

initions defined table 5.1, linear regression, Pearson correlation, Spearman correlation, and Kendall

correlation MWAS analyses executed for each cohorts. To prevent extreme values from skewing the

associations, the age distributions for each cohort were inspected and suitable cut-offs were identified

to trim the lowest ages and the highest ages from each test cohort. Covariates were harmonised BMI,

and sex. For queries with multiple batches, projects or sample matrices, batch and/or project and/or

sample matrix were used. A full breakdown of the cohorts, the MWAS covariates, and trimmed age

ranges can be found in the table 5.1.

In order to ensure fair comparisons between the test cohorts, a set of common features was iden-

tified, and features not found in this set were excluded from the analysis. Overlaps between the sets

of features available in each cohort can be seen in figure 5.2.

Bonferroni correction was used for multiple-testing-correction of the p-value thresholds of the

significant age-associations. With the n of common of features shown in figure 5.2, a Bonferroni

m = 280 was used, with a corrected 0.05 cutoff of 1.786714 ∗ 10−4.

To compare the cohort MWAS results, the heatmap visualisations developed in chapter 4 were

used, and venn diagrams comparing the metabolites found to be significantly age-associated were

added to the MWAS compare view, and created and compared for the comparisons and association

methods. The venn diagrams use the XCMS online venny jQuery package (Bardou Philippe 2013).

Scatter plots of the -log10(p-values) were added to the MWAS compare view, to enable to comparison

of the effect of merging cohorts on the p-values of the found associations.

For each cohort and MWAS association method, the numbers of significant metabolites were

recorded, and the number of metabolites found to be consistently significant in all association methods
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were recorded.

A HTML form and submit button was added to the MWAS compare view to enable the creation

of a human metabolic pathway map via iPath3 (Darzi, Letunic, and Yamada 2018). This feature uses

the KEGG compound IDs imported in chapter 3.

5.3 Results & Discussion

5.3.1 Generating cohorts for analysis

The Saved Query IDs can be found in the table 5.2. The naming convention used is:

• Airwave: The Airwave study.

• Airwave2: The Airwave2 study.

• FINGER: The FINGER study.

• MASALA: The MASALA study.

• Airwave-Airwave2: The combined Airwave & Airwave2 study.

• Airwave-Airwave2-FINGER: The combined Airwave & Airwave2 & FINGER study.

• Airwave-Airwave2-FINGER-MASALA: The combined Airwave & Airwave2 & FINGER & MASALA

study.

Figure 5.1 shows the summary metadata distributions for the LNEG Airwave-Airwave2-FINGER-

MASALA cohorts. As can be seen figure 5.1, the age distribution of the four cohorts is unbalanced

and strongly bi-modal, with Airwave and Airwave2 being younger people, FINGER older people, and

MASALA approximately between them. The sex distribution shows there are males and and females

in all cohorts, however Airwave and Airwave2 have more males than females. BMI is approximately

normally distributed, but is mildly skewed towards overweight individuals.

Figure 5.2 shows the number of shared/overlapping harmonised annotations between the different

cohorts. Harmonised annotations with all zero values have been excluded. A total of 280 features are

found in all cohorts.

5.3.2 Investigating multi-project integration

Assessing and minimising the inter-batch and inter-study variation

The RunBatchCorrectionComparisonPipeline was executed for the Airwave-Airwave2-FINGER-MASALA

cohort, for each assay; The PCA and PCPR2 project and sample matrix results of these analyses can

be seen in figures A.19, A.20, A.21, A.22, A.23, A.24, 5.4, 5.5, 5.6, 5.7, 5.8.
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Figure 5.1: Distributions of the harmonised age, sex, and BMI used in the analysis, generated
by the QueryFactory summary statistics web-view.
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Figure 5.2: Venn diagram showing the number of shared harmonised annotations between
the Airwave, Airwave2, FINGER, & MASALA cohorts across all assays. Features with all zero
values in at least one cohort are excluded.

Inspecting these results, it was observed that across the different assays, unit-variance scaling with

log transform was the method that performed overall best across all assessments; reducing the PCPR2

for project and sample matrix, maintaining biological variance with respect to age, while also reducing

the PC1 and PC2 PCA score variance in the LTR samples (e.g. the tightest grouping), and providing

the greatest proportion of equal LTR metabolite distributions in the two-sided Mann-Whitney U

tests. In LPOS, UV scaling with no log transform performed best at reducing batch, however UV-log

scaling performed best for reducing the effect of sample matrix, whereas for LNEG and HPOS UV-log

scaling was the best at reducing project variance. While median scaling log transform scaling was

best at reducing inter-project variation in LC-MS according to the PCPR2 analysis, the LTRs were

further apart on the PCA scores plots, and the two-sided Mann-Whitney U results showed a almost

zero metabolites were equal between the cohorts, suggesting this method was worse at reducing the

technical variation compared to unit-variance scaling. Mean-centred square root scaling was good at

reducing the inter-project variation according to the PCPR2 analysis, but again performed poorly at

reducing the PCA score variance for the LTR samples, and in the 2-sided Mann-Whitney U tests; this

is likely due to the dilution differences of the different source cohorts.

The good performance of unit-variance scaling at reducing inter-project and inter-sample-matrix

variance in the LC-MS data was as expected from the statistical methodology of the approach; by
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treating all features as equal and normalising by standard deviation, the technical variation is reduced,

including the non-linear effects of the LC-MS detector, sample preparation differences between plasma

and serum, and the different concentrations of the source cohorts. While LPOS and LNEG and HPOS

responded differently to log transformation, for intermediate integration of assays, as might be used

in a predictive model, it is preferable to use a single transformation method.

LTR samples were only available in the NMR assays for Airwave and Airwave2, therefore a com-

parison of the grouping of the LTRs in all projects and scaling methods was not possible. To provide

consistent data preprocessing between the different datasets the use of unit-variance log scaling was

assessed for usage for the Bi-LISA datasets. Unit-variance log scaling was good at reducing the

inter-project variance observable in higher Principle Component scores (as shown in figure 5.8), and

performed well in the PCPR2 analysis by reducing the project and sample matrix PCPR2 while

maintaining the covariates of interest PCPR2 (5.7).

5.3.3 Exploring the effect of merging Airwave and Airwave2 on identified age-

associated molecular trends

From the aims of this chapter, the key questions we wish to ask answer are,

1. Can consistent metabolite trends be found by merging these cohorts?

2. Does merging the cohorts improve the significance of age-associated metabolites trends?

3. Does merging cohorts find more metabolites with significant age-associated trends?

4. Which MWAS association method is best for finding age-associated metabolites in a merged

cohort?

Table 5.2 shows the number of analysed and significant features found for each assay in Airwave,

Airwave2, and Airwave-Airwave2, using the different association methods. From this table it can

be observed that merging Airwave and Airwave2 together in Airwave-Airwave2 increases the num-

ber of metabolites found to be significant in the merged cohort compared to when analysing the

cohorts individually, for every assay and for those found to be consistently significant using all as-

sociation methods. The average proportion of metabolites found to be significant across all assays

and association methods increases from 53.50% in Airwave, and 42.21% in Airwave2, to 69.28% in

Airwave-Airwave2. The average proportion of metabolites found to be consistently significant in each

assay using all association methods increases from 63.93% to 67.50%.

Figure 5.9 shows venn diagrams of the number of metabolites found to be significant in Airwave,

Airwave2, and Airwave-Airwave2, across all assays, for each association method. For each association

method, more metabolites are found to be significant in Airwave-Airwave2 compared to Airwave or

Airwave2; however there are some metabolites which are only found to be significant in Airwave or

198



Figure 5.3: Results of different scaling and transformation methods on metabolite distribution
similarity in the LTR samples, using two-sided Mann-Whitney U tests between each metabolite
in each cohort/assay (LPOS/LNEG/HPOS), comparing values between each individual.
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Figure 5.4: The effect of different scaling and transformation methods on PCPR2 values
of the integrated cohort (Airwave-Airwave2-FINGER-MASALA) HPOS SR-corrected LC-MS
data. A shows the relative contributions of age, sex, BMI, and project. B shows the relative
contributions of age, sex, BMI, and sample matrix.
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Figure 5.5: The results of different scaling and transformation methods on PC1 and PC2 PCA
scores of the integrated cohort (Airwave-Airwave2-FINGER-MASALA) HPOS study-sample
SR-corrected LC-MS data, including unit-variance scaling, median scaling, and mean-centering
scaling.
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Figure 5.6: The results of different scaling and transformation methods on PC1 and PC2 PCA
scores of the integrated cohort (Airwave-Airwave2-FINGER-MASALA) HPOS SR-corrected
LC-MS data, including unit-variance scaling, median scaling, and mean-centering scaling. LTR
samples from each study are individually coloured, and the Study Samples from each cohort is
grey.
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Figure 5.7: The effect of different scaling and transformation methods on PCPR2 values of
the integrated cohort (Airwave-Airwave2-FINGER-MASALA) BI-LISA NMR data. A shows
the relative contributions of Age, Sex, BMI, and Project. B shows the relative contributions
of age, sex, BMI, and sample matrix
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Figure 5.8: The effect of unit-variance log scaling on the Bi-LISA Study Samples PCA scores;
left-hand side, PC1/PC2, PC3/PC4, and PC5/PC6 with no scaling and no transformation.
Right-hand side, PC1/PC2, PC3/PC4, and PC4/PC5 with unit-variance log scaling.
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Table 5.2: UV-log scaled Bonferroni-adjusted age-associated MWAS results for Airwave,
Airwave2, FINGER, MASALA, Airwave-Airwave2, Airwave-Airwave2-FINGER, Airwave-
Airwave2-FINGER-MASALA, using Linear regression, Spearman rank partial correlation,
Pearson partial correlation, Kendall rank partial correlation, using the same set of features
for each cohort.
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Figure 5.9: Venn diagrams of all metabolites found to be significantly age associated in Air-
wave, Airwave2, and Airwave-Airwave2, using Linear regression, Pearson correlation, Spearman
correlation, and Kendall correlation, across all LC-MS and NMR assays. Bonferroni correction
with m = 280 used. covariates: sex, BMI, batch, and project.
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Figure 5.10: -log10(p-values) for metabolites significantly age-associated in Airwave vs
Airwave-Airwave2, and Airwave2 vs Airwave-Airwave2, for each association method and as-
say. The larger the value, the smaller the Bonferroni-corrected p-value, so if they are above
the y=x line they are more significant in Airwave-Airwave2 compared to Airwave or Airwave2.
covariates: sex, BMI, batch, and project. Bonferroni m = 280.
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Figure 5.11: Feature plots of unit-variance log scaled Tetradecanoylcarnitine CAR(14:0) in-
tensities plotted against age, in Airwave2, Airwave, and Airwave-Airwave2. The mean +- 0.5
stdev is also plotted to highlight any trends.
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Airwave2. The fact the some are only found significant in the individual cohorts, and that these are

very similar cohorts suggests that these associations may be spurious.

Figure 5.11 shows the unit-variance log scaled intensities plotted against age for the metabolite

identified as significant in Airwave2 but not Airwave or Airwave-Airwave2 (Tetradecanoylcarnitine

CAR(14:0)). In Airwave2 a mild positive age trend can be observed, whereas in Airwave and Airwave2

there is no visible trend. This suggests that the association identified in Airwave2 is potentially

spurious, and that combining cohorts can in some cases reduce the number of spurious associations.

Figure 5.10 shows scatter plots comparing the -log10(p-values) for metabolites found to be sig-

nificantly age-associated in each cohort. Each scatter plot Y-axis is the combined Airwave-Airwave2

cohort, and the X-axis is either the individual Airwave or Airwave2 cohort. By plotting the -log10(p-

values) for each metabolite, cohort, and assay, we can interpret the effect of merging the cohorts on

the metabolite p-values; with Airwave-Airwave2 on the Y-axis, it can be observed that for each as-

say the majority of p-values for Airwave-Airwave2 decrease compared to Airwave and Airwave2 (e.g.

most of the points are above the y=x trend line). This provides evidence that merging cohorts can

decrease the p-values of significantly associated metabolites (e.g. increase significance), however for

some metabolites the p-values increase (below y=x).

In figure 5.9, linear regression and Pearson both identify the greatest number of uniquely identified

age-associated metabolites in Airwave-Airwave2 (18), followed by Kendall (9), and Spearman (8).

Summary

In summary, this comparison has found:

1. Consistent metabolite trends can be found by merging cohorts.

2. Merging balanced cohorts can increase the power and sensitivity of MWAS analyses, increas-

ing the number of identified metabolite associations and generally decreasing the p-values of

metabolite associations, however in some cases merging cohorts will increase the p-values.

3. Merging balanced cohorts can remove potentially spurious associations found in individually

analysed cohorts.

4. Linear association methods identify the greatest number of age-associated metabolites in an

early-mid life balanced cohort.

Age-associated metabolites in the Airwave-Airwave2 merged cohort

Figures 5.12, A.25, A.26, and A.27 show the UV-log scaled intensities for various metabolites found

to be strongly age-associated, plotted against age, with the mean and ±0.5standard deviation. In
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each, the strong positive or negative trend is visible. These plots demonstrate that the age-associated

metabolites identified in the combined Airwave-Airwave2 cohort are not spurious associations.

5.3.4 Adding further cohorts - FINGER & MASALA

Now that significant age-associated trends have been identified in the balanced Airwave-Airwave2

cohort, the effect of merging further cohorts was explored.

Airwave & Airwave2 & FINGER

Looking again in table 5.2 the effect of adding FINGER to Airwave-Airwave2 can be seen. Comparing

the significant metabolites found in Airwave-Airwave2-FINGER and Airwave-Airwave2, it can be

observed that the average proportion of total metabolites decreases from 69.28% in Airwave-Airwave2,

to 62.33% in Airwave-Airwave2-FINGER. On a per-assay basis, while LPOS, LNEG and Bi-LISA

decrease in the average proportion of found associations across all association methods, in HPOS the

average proportion moderately increases from 58.33% to 66.67%, although this is only an increase of

one significant association.

Figure 5.13 shows venn diagrams of the metabolites found to be significantly age-associated

Airwave-Airwave2, FINGER, and Airwave-Airwave2-FINGER. When using linear methods (Linear

regression and Pearson correlation), merging the cohorts identifies no further metabolites than when

analysing Airwave-Airwave2 or FINGER separately. The non-linear methods (Spearman correlation

and Kendall correlation) do identify some further metabolites (two and one respectively). For all

methods, more metabolites are uniquely identified as significantly age associated in Airwave-Airwave2

and FINGER than in Airwave-Airwave2-FINGER.

Figure 5.14 compares the -log10(p-values) for metabolites found to be significantly age-associated

in Airwave-Airwave2, and Airwave-Airwave2-FINGER, for each assay and association method, with

age, sex, BMI, project, and batch as covariates. In LPOS, LNEG, HPOS, and Bi-LISA, most p-values

are smaller in Airwave-Airwave2 than in Airwave-Airwave2-FINGER, suggesting merging these three

cohorts together results in lower power and sensitivity than when just looking at Airwave-Airwave2.

Figure 5.15 shows the heatmap of metabolites found to be significantly age associated in Airwave-

Airwave2, FINGER, and Airwave-Airwave2-FINGER, using all association methods, in LPOS, LNEG,

HPOS, and Bi-LISA. This heatmap shows that some metabolites that are consistently age-associated

using linear and non-linear methods in all cohorts are positively associated in Airwave-Airwave2 and

negatively associated in FINGER. This may explain why the p-values for the associations seem to

increase in Airwave-Airwave2-FINGER compared to Airwave-Airwave2 (as shown in figure 5.14).

Feature plots for two of these metabolites can be seen in figure 5.16, demonstrating positive trends

in Airwave-Airwave2, negative trends in FINGER, and non-monotonic trends in Airwave-Airwave2-

FINGER, increasing in early-mid life and decreasing in mid-late life. One LC-MS and one NMR
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Figure 5.12: Unit-variance scaled, log transformed feature intensities vs age for a selection of
strongly age-associated LPOS metabolites from the Airwave-Airwave2 cohort, with the mean
and standard deviation added.
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Figure 5.13: Venn diagrams of all metabolites found to be significantly age associated in
Airwave-Airwave2, FINGER, and Airwave-Airwave2-FINGER, using linear regression, Pearson
correlation, Spearman correlation, and Kendall correlation, across all LC-MS and NMR assays.
Bonferroni correction with m = 280 used. covariates: sex, BMI, batch, and project.
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Figure 5.14: -log10(p-values) for metabolites significantly age-associated in Airwave-Airwave2
vs Airwave-Airwave2-FINGER, for each association method and assay. The larger the value,
the smaller the Bonferroni-corrected p-value, so if they are aboe the y=x line they are more
significant in Airwave-Airwave2 compared to Airwave-Airwave2-FINGER. covariates: sex, BMI,
batch, and project. Bonferroni m = 280.
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Assay Metabolite Association methods

HPOS Hypoxanthine Spearman, Kendall

LPOS LPC(P-18:0/0:0) Spearman*

Table 5.3: Metabolites significant in only Airwave-Airwave2-FINGER, and not in Airwave-
Airwave2. (* LPC(P-18:0/0:0) is detected using linear regression and Pearson correlation in
Airwave-Airwave2, but not Spearman correlation).

metabolite are presenting, confirming these opposing trends are independent of the analytical platform

used for analysis.

While it might be assumed that age-associated metabolite trends are linear in nature, in practice

this is not always the case. Non-monotonic, and undulating age-related trends have been seen in various

experiments and model organisms, including neural stem cell gene expression in mice (Apostolopoulou

et al. 2017), oxidative stress transcription factors in C. elegans (S. K. Davies, Bundy, and Leroi 2015),

proteome changes in mice (Lehallier et al. 2019), and energy metabolism in humans (Pontzer et al.

2021).

Looking again the age distributions of the cohorts compared (figure 5.1) highlights the bimodal

nature of the Airwave-Airwave2-FINGER cohort; Airwave-Airwave2 is young healthy people and

FINGER is older people at risk of dementia; as such the changes in coefficient direction could be

explained if these metabolites increase in early life and decrease in late life, or it could be the result

of dementia related changes; these differences highlight the difficulties in drawing robust conclusions

from the results of unbalanced cohorts, especially where confounders are not known.

Despite the p-values for most metabolites increasing in Airwave-Airwave2-FINGER compared to

Airwave-Airwave2, one HPOS metabolite (hypoxanthine) is identified as significant only in Airwave-

Airwave2-FINGER, and not Airwave-Airwave2. The feature plots for this metabolite can be seen in

5.17, where no age trend is visible when both males and females are included together, and in females

a positive trend can be seen, and in males, a negative trend can be seen.

We will now explore adding MASALA to the merged cohort, where the effect of including a different

sample matrix will be explored. As the age distribution of MASALA sits roughly between Airwave-

Airwave2 and FINGER, it may also help us identify if these non-monotonic trends are real or artefacts

of the unbalanced cohorts and residual inter-project technical variability.

Airwave & Airwave2 & FINGER & MASALA

Table 5.2 shows the number of analysed metabolites, and number of significantly age-associated

metabolites in each cohort. In this table it can be observed that in LPOS, HPOS, and Bi-LISA,

the average proportion of age-associated metabolites found using each association method decreases

in Airwave-Airwave2-FINGER-MASALA compared to Airwave-Airwave2-FINGER, and the average

proportion increases in LNEG (59.38% to 63.28%). The proportion of metabolites found significantly

214



Figure 5.15: Heatmap of the 10 LPOS, 1 LNEG, 1 HPOS, and 4 Bi-LISA metabolites
found to be significantly age-associated in Airwave-Airwave2, FINGER, and Airwave-Airwave2-
FINGER, with all association methods. Bonferroni m = 280, 0.05 cut-off 1.786∗10−4. covariates
were sex, BMI, project, and batch. Red is positively associated, blue is negatively associated.
P-values are shown.
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Figure 5.16: Feature plots for 2 metabolites with opposite direction age trends in Airwave-
Airwave2 and FINGER; LPOS SM(d18:1/24:0) and Bi-LISA Total Plasma Cholesterol. Inten-
sities are unit-variance log scaled.
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Figure 5.17: Feature plots for HPOS Hypoxanthine, showing trends for both males and
females, females, and males. Intensities are unit-variance scaled and log transformed.
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Figure 5.18: Venn diagrams of all metabolites found to be significantly age associated
in Airwave-Airwave2, Airwave-Airwave2-FINGER, and Airwave-Airwave2-FINGER-MASALA,
using linear regression, Pearson correlation, Spearman correlation, and Kendall correlation,
across all LC-MS and NMR assays. Bonferroni correction with m = 280 used. covariates: sex,
BMI, batch, project, and sample matrix.
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Figure 5.19: -log10(p-values) for metabolites significantly age-associated in Airwave-
Airwave2-FINGER-MASALA vs Airwave-Airwave2-FINGER. The larger the value, the smaller
the p-value, so if they are above the y=x line they are more significant in Airwave-Airwave2-
FINGER-MASALA compared to Airwave-Airwave2-FINGER. covariates: sex, BMI, batch, and
project. Bonferroni m = 280.
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Figure 5.20: Venn diagrams of all metabolites found to be significantly age associated in Air-
wave, Airwave2, FINGER, MASALA, and Airwave-Airwave2-FINGER-MASALA, using Linear
regression, Pearson correlation, Spearman correlation, and Kendall correlation, across all LC-
MS and NMR assays. Bonferroni correction with m = 280 used. covariates: sex, BMI, project,
and sample matrix.
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Assay Metabolite Association methods

LPOS CAR(18:1) Linear, Spearman, Pearson, Kendall
LPOS CAR(18:2) Linear, Pearson
LPOS CAR(12:1-0H) Linear, Spearman, Pearson, Kendall
LPOS CAR(14:1) Linear, Spearman, Pearson, Kendall
LPOS CAR(18:3) 1 Linear, Spearman, Pearson
LPOS CAR(14:2) Linear, Spearman, Pearson, Kendall

LNEG LPE(0:0/20:4) Linear, Pearson
LNEG LPE(18:1/0:0) 1 Linear, Spearman, Pearson

Table 5.4: Metabolites significant in only Airwave-Airwave2-FINGER-MASALA, and not in
Airwave-Airwave2 or Airwave-Airwave-FINGER.

age-associated using all association methods again decreases for LPOS, HPOS, and Bi-LISA, and

increases for LNEG (46.88% to 53.13%).

Figure 5.18 shows the venn diagrams of the metabolites found to be significantly age-associated

in Airwave-Airwave2 vs Airwave-Airwave2-FINGER vs Airwave-Airwave2-FINGER-MASALA. This

venn diagram demonstrates that 14 metabolites are found to be age-associated solely in Airwave-

Airwave2-FINGER-MASALA using linear regression, 9 using Pearson correlation, 7 using Spearman

correlation, and 9 using Kendall correlation.

Figure 5.19 shows the -log10(p-values) for Airwave-Airwave2-FINGER vs Airwave-Airwave2-FINGER-

MASALA metabolites found to be significantly age associated, demonstrating that in some cases the

associations are more significant in Airwave-Airwave2-FINGER-MASALA, and some are more signif-

icant in Airwave-Airwave2-FINGER. This demonstrates that merging cohorts with different sample

matrices (plasma vs serum) may improve the power and sensitivity for some cohorts; especially if

adding the further cohort can improve the balance of covariate distributions (MASALA ages are

between Airwave-Airwave2 and FINGER).

Figure 5.20 shows the venn diagrams of the metabolites found to be significant in Airwave, Air-

wave2, FINGER, MASALA, and Airwave-Airwave2-FINGER-MASALA, demonstrating that merging

the cohorts together can find some uniquely identified age-associated metabolites. Only the metabo-

lites found in all cohorts (n = 280) were included in the analysis. Linear regression and Spearman cor-

relation found the greatest number of uniquely identified metabolite associations in Airwave-Airwave2-

FINGER-MASALA (5), and Kendall correlation found the greatest number of metabolite associations

across the individual and combined cohorts (234).

Summary

In summary, combining multiple metabolomics cohorts using intermediate-stage integration may:

• Increase or decrease the total number and proportion of identified significantly age-associated

metabolites, depending if the cohorts are balanced or unbalanced, whole-life or part-life, and

possibly by unknown confounders. (Table 5.2, figures 5.9, 5.13, 5.18)
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• Increase or decrease the p-values for significant associations. (Figures 5.10, 5.14, 5.19).

• Make some metabolites found to be significant in individual cohorts not significant in the merged

cohorts. (Figure 5.20).

• Identify some metabolites as significant only in the merged cohorts vs the individual cohorts,

even in unbalanced cohorts. (Figure 5.20).

• Remove potentially spurious associations. (Figure 5.11).

• Enable cohorts with mixed sample matrices (e.g. plasma/serum) to be analysed together. (Fig-

ure 5.19).

• Effect which metabolites are found with different association methods (Figure 5.20).

These effects may attributed to:

• Increased power and sensitivity of merged cohorts.

• The non-monotonic or undulating trends of some age-associated metabolites.

• The demographic and geographic distribution of the cohorts.

• The the disease status, or other confounders, of different cohorts.

• Residual inter-project technical variation, including sample preparation differences such as plasma

and serum (post-scaling/batch correction).

Different association methods may be suitable for different cohort structures, primarily due to

the underlying types of age-associated molecular trends. In early-mid, or mid-late life cohorts, linear

methods identify the greatest number of molecular trends, whereas in whole-life cohorts, non-linear

methods identify the greatest number of molecular trends. While Spearman correlation can in some

cases identify more trends than Kendall correlation, Kendall correlation is preferable due to it having

a greater robustness than Spearman, thereby reducing the potential for spurious associations in an

unbalanced cohort caused by any residual inter-project technical variance.

5.3.5 Age-associated metabolites in Airwave-Airwave2-FINGER-MASALA

Figures 5.21, A.28, 5.22, 5.23, and A.32 show heatmaps of the metabolites found to be age-associated

in Airwave-Airwave2-FINGER-MASALA, in LPOS, LNEG, HPOS, and Bi-LISA, using the different

association methods. Feature plots for some of these metabolites can be seen in figures A.29, A.30,

A.31, and A.33. Positive, negative, and non-monotonic trends can be seen in these plots.

The chemical classes for these significantly age-associated metabolites are triglycerides (TG), phos-

phatidylcholines (PC), lysophosphatidylcholines (LPC), lysophosphatidylinositols (LPI), lysophos-

phatidylethanolamines (LPE), fatty acids (FA), sphingomyelins (SM), ceramides (Cer), carnitines
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Figure 5.21: Heatmap of LPOS metabolites significantly age-associated using all methods in
Airwave-Airwave2-FINGER-MASALA. Bonferroni m = 280. P-values shown.
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Figure 5.22: Heatmap of LNEG & HPOS metabolites significantly age-associated using in at
least one association method in Airwave-Airwave2-FINGER-MASALA. Bonferroni m = 280.
P-values shown
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Figure 5.23: Heatmap of Bi-LISA metabolites significantly age-associated using all methods
in Airwave-Airwave2-FINGER-MASALA. Bonferroni m = 280

225



Figure 5.24: Human metabolic pathway map with metabolites found to be significantly
age associated in Airwave-Airwave2-FINGER-MASALA using at least one association method
marked as red circles. Bonferroni m = 280. Generated using KEGG IDs and iPath3 (Darzi,
Letunic, and Yamada 2018).
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Figure 5.25: Human metabolic pathway map with metabolites found to be significantly age
associated in Airwave, or Airwave2, or FINGER, or MASALA (analysed separately) using
linear regression marked as red circles. Bonferroni m = 540. Generated using KEGG IDs and
iPath3 (Darzi, Letunic, and Yamada 2018).
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(CAR) and lipoproteins. Alongside these, the analysis identified cholesterols, food metabolites such

as caffeine and paraxanthine, niacinamide (vitamin B3), and the small molecule hypoxanthine.

The identified age-associated metabolites are summarised on the pathway figure 5.24, where the

significantly age-associated metabolites are shown as red circles. Despite the many lipids being identi-

fied as significantly age-associated, due to the lack of specificity that KEGG IDs have for lipid species

(due to R-group chain representation), the number of unique KEGG IDs is much lower than the num-

ber of significantly age-associated metabolites. Also, as the number of shared HPOS features across all

cohorts and therefore the combined cohort is very low, the metabolome coverage in non-lipid areas is

low for the combined cohort. For this reason, and because in the venn diagram shown in figure 5.20 it

is clear that many metabolites are uniquely identified only in these individual cohorts, a pathway map

showing all the metabolites found to be significantly age-associated in each of these individual cohorts

is shown in figure 5.25, where a much wider coverage of the metabolome can be seen as age-associated.

This approach is akin to late-stage integration or pathway-based meta-analysis. Although the work

in this chapter has shown that merging cohorts can potentially reduce the number of spurious associ-

ations, the same Bonferroni correction value (m = 540, adjusted p-value threshold 9.259 ∗ 10−5) has

been used for all cohorts, even where the number of analysed metabolites is less than this, a heavy

correction penalty which will help reduce the number of false positives/spurious associations. This

pathway map demonstrates the fundamental downside of merging cohorts without imputation; the

significant reduction in the number of analysed features, and the resulting loss of information.

Triglycerides (TG)

Triglycerides (TG) and low-density lipoproteins (LDL) were identified in the Bi-LISA analysis as

strongly positively age associated across all association methods (figure 5.23), consistent with existing

literature regarding the known association between CVD, T2D, and LDLs and TG (Spitler and B. S.

Davies 2020, Barzilai 2003). In the LPOS analysis further triglycerides were identified as positively

associated (figure A.28), including TG(44:1), TG(46:1), and TG(48:1).

Phosphatidylcholines (PC & LPC)

Various phosphatidylcholines (PC) were found to be strongly positively associated with ageing, includ-

ing PC(16:0/20:5), PC(34:0), and PC(18:0/18:1), and one found to be negatively associated (PC(O-

16:0/16:0) in LPOS (figures 5.21, A.28). Positive and negative trends are consistent with previous

studies in humans (Z. Yu et al. 2012), and mice (Wijeyesekera et al. 2012). PC(18:0/18:1) was previ-

ously found to be positively associated (PC(36:1) in Z. Yu et al. 2012).

The related compound lysophosphatidylcholine (LPC) was also identified as strongly positively age-

associated in LPOS, including LPC(20:5/0:0), LPC(0:0/20:5), LPC(22:0/0:0), LPC(20:0/0:0). LPC

has previously found to be strongly positively associated with CVD and atherosclerosis formation,
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potentially via upregulation of hepatic cholesterol biosynthesis (Law et al. 2019). LPC(20:0/0:0) has

also previously been found to have decreased levels in obese adolescent boys (Y. Wang et al. 2019).

In the analysis in this chapter, BMI was set as a covariate in the MWAS models, so it is interesting

to find it is also positively age-associated.

Other Lysophospholipids

Further lysophospholipids were identified as positively age associated, including the lysophosphatidyli-

nositols LPI(20:4/0:0), LPI(22:6:/0:0), and LPI(18:2/0:0), and lysophosphatidylethanolamines LPE(22:6/0:0),

LPE(0:0/22:6), LPE(18:1/0:0). LPI(20:4/0:0) and LPE(22:6/0:0) have previously been identified as

strongly associated with metabolic changes involved in pulmonary fibrosis (X. h. Yang et al. 2022).

LPI(22:6/0:0) has previously been identified in the MASALA cohort as associated with animal protein

diets (Gadgil et al. 2022). Lysophosphatidylinositols (LPI) have been found to play a role in cardio-

metabolic diseases through their interaction with the G-protein coupled recepter (GCPR) GPR55

(Arifin and Falasca 2016), and Lysophosphatidylethanolamines (LPE) have been found to play a role

in breast cancer (Soo-Jin Park, Lee, and Im 2014), lipid biogenesis/metabolism (Yamamoto et al.

2022), and have long been known to cause plasma membrane dysfunction in rat erythrocytes (Rah-

man, Wright, and Cerny 1973), suggesting the association with ageing may be due to age-associated

disorders.

Fatty acids (FA)

Various fatty acids were found to be positively age associated in LNEG, including saturated (hexa-

cosanoic acid FA(26:0), and lignoceric acid FA(24:0)), and mono-unsaturated (trans) (FA(18:1)), and

poly-unsaturated (FA(20:5), FA(22:5), FA(22:6), FA(16:2)). Elevated saturated fatty acids are known

to be positively associated with CVD (Briggs, Petersen, and Kris-Etherton 2017), and linked with

early-onset macular degeneration (Sasaki et al. 2020), and dementia (Barnard, Bunner, and Agarwal

2014). Trans-fats (e.g. FA(18:1)) have been found linked associated with dementia in some studies,

but not all (Barnard, Bunner, and Agarwal 2014). Most studies report negative age associations of

poly-unsaturated fatty acids (Zhu, Ferrara, and Forman 2018, Yan et al. 2009, Lawton et al. 2008,

Jové et al. 2016, N. S. Hou and Taubert 2012, Cole, Ma, and Frautschy 2010), however like this anal-

ysis, Mäkinen et al. (2022) also identified poly-unsaturated fatty acids as positively associated with

ageing. FA(22:6) was previously identified in MASALA as associated with animal protein and fried

snacks, sweets, high-fat dairy diets (Gadgil et al. 2022), suggesting the link between poly-unsaturated

fatty acids and health may be more complicated than the literature may suggest, and finding it as

positively age-associated may be due to including BMI as a covariate.
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Sphingomyelins (SM) & ceramides (Cer)

Many sphingomyelins (SM) were found to be positively associated with ageing, including the same

sphingomyelins previously identified as markers of longevity in centenarians (Montoliu et al. 2014),

and families (Gonzalez-Covarrubias et al. 2013): SM(d18:2/23:0), SM(d18:1/23:0), SM(d18:1/16:0).

Various ceramides were identified as age-associated, including Cer(d18:1/26:1), Cer(d18:1/25:0),

Cer(d18:2/24:0), Cer(d18:1/24:1). Sphingomyelin and ceramides have been detected in the aged hu-

man ocular lens (Deeley et al. 2010), and are also have been shown to be involved in skin ageing (Zhen

Wang et al. 2020).

Sphingosine-1-phosphate was found to be negatively associated with ageing. Many studies have

investigated sphingosine-1-phosphate and its relationship with ageing and age-related disorders (He et

al. 2021), and previously have found negative ageing trends for the sphingosine-1-phosphate chaperone

ApoM (Ding et al. 2020), its relationship with ageing and age-related disorders may be due a role in

cellular senescence (Trayssac, Hannun, and Obeid 2018).

Lipoproteins (LPA)

Lipoproteins were found to be positively age-associated, in line with the findings of previous studies

(Akita et al. 2002), and this association may be linked to its involvement in atherosclerosis and CVD

(Ference, Kastelein, and Catapano 2020, Arsenault 2019)

Food metabolites

Caffeine is a common stimulant found in coffee and tea, and has been found to be associated with

increased ageing via reduction in telomere length (Tucker 2017), and conversely with life-extension in

yeast (Rallis, Codlin, and Bähler 2013). Increased plasma caffeine levels in the elderly may be due

to changes in the age-related changes in lean mass distribution (Massey 1998), and increased caffeine

intake may be associated with non-alcholic fatty liver disease (NAFLD) and accelerated brain ageing

(Martins 2018). Paraxanthine is a caffeine metabolite (Gressner et al. 2009), as such it makes sense

that it too is age-associated.

Vitamins

Niacinamide (NAM) (vitamin B3) was found to be negatively associated with age (when using Spear-

man and Kendall partial correlation). Niacinamide and its related redox enzyme nicotinamide adenine

dinucletide (NAD+) have been found to be negatively associated with ageing in plasma and various

tissues (E. F. Fang et al. 2017, Yaku, Okabe, and Nakagawa 2018, Yoshino, Baur, and Imai 2018),

species (E. F. Fang et al. 2017, Clement et al. 2019, Mills et al. 2016), and age-associated diseases in-

cluding dementia (E. F. Fang et al. 2017) and CVD (Schandelmaier et al. 2017), and supplementation
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has been shown to improve the appearance of aged skin (Bissett, Oblong, and Berge 2006).

Caretenoid metabolism was identified by the iPath3 analysis to be associated with ageing. Retinol

metabolism (vitamin A) has been found to be associated with age-related disorders such as cognitive

decline and T2D (Huang et al. 2020), and caretenoids in general have been found to be associated

with ageing through their modulation of oxidative stress (B. L. Tan and Norhaizan 2019).

Small molecules

Various carnitines were identified as positively age-associated, including the previously identified

CAR(18:1-DC), CAR(12:1-OH), and CAR(18:1) (Z. Yu et al. 2012).

Hypoxanthine was found to be negatively associated with ageing, which may be related to it

being a downstream metabolite of adenosine-triphosphate (ATP) and cyclic adenosine-monophosphate

(cAMP). Negatively age-associated plasma hypoxanthine trends have previously been found in studies

of brown-adipose-tissue mitochondrial energy metabolism (Mancini et al. 2021). cAMP hydrolysis

inhibitors have been shown to mimic the anti-ageing effects of calorie-restriction (Sung-Jun Park

et al. 2012), and supplementation with exogenous cAMP has been found to improve age-associated

phenotypes (Zhuoran Wang et al. 2015). Conversely, elevated levels of plasma hypoxanthine have

been identified as a potential biomarker of the age and sex-related cardiac ischaemia (D. E. Farthing,

C. A. Farthing, and Xi 2015), and BMI and smoking (Furuhashi et al. 2020). These differences are

reflected in figure 5.17 where positive trends can be seen for females, highlighting the importance of

correcting for sex and BMI when studying age-associated metabolites.

Summary

All the age-associated metabolites (or metabolite classes) had age-related trends previously reported

in the literature, and all were concordant with at least one previous study. With the lack of further

harmonised confounders such as disease state or risk factors, it is not possible to conclude if the

identified age-associated metabolites are longevity markers, or if they are simply age-associated due

to their involvement in age-associated disorders.

The results of this literature review supports the findings of the analysis of age-related metabolites

in the integrated Airwave-Airwave2-FINGER-MASALA cohort, and support the overall findings that

PhenomeDB and the methods developed as part of it can be used as a platform for exploring molecular

trends in integrated, multi-cohort metabolomic datasets. This meets the final remaining use-case set

out in the introduction.

5.3.6 Comparison with existing Robinson et al. (2020) Airwave analysis

As part of the METAGE project, Robinson et al. (2020) previously analysed the Airwave cohort,

merging multiple metabolomics assays and platforms to produce predictive models of metabolomic
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Area Robinson 2020 This analysis

Cohorts Airwave Airwave, Airwave2, FINGER,
MASALA

Biofluds Blood and urine Blood

Assays Blood HPOS, blood LNEG,
blood LPOS, blood BiLISA
NMR, blood CPMG NMR,
urine HPOS, urine RNEG,
urine RPOS, urine NOESY
NMR

Blood HPOS, blood LNEG,
blood LPOS, blood BiLISA
NMR

Feature
type

Untargeted, unannotated LC-
MS (XCMS) and NMR, plus
annotated NMR (BiLISA)

Annotated LC-MS (PeakPan-
theR) and NMR (BiLISA)

Analysis
types

Multivariate predictive mod-
els

Univariate associations)

Pathway
enrich-
ment

Mummichog (Shuzhao Li et
al. 2013)

MWAS + iPath3 (Darzi,
Letunic, and Yamada 2018)

Enriched
pathways

Vitamin E, lysine, urea cy-
cle/amino groups, vitamin
D3, tryptophan, carnitine,
phospatidylinositol phos-
phate, aspartate and as-
paragine, cytochrome p450,
biopterin, xenobiotics, bu-
tanoate, tyrosine metabolism

Vitamin B3, vitamin A, sph-
ingolipids, glycerophospho-
lipids, carnitine, inositol
phosphate, fatty acids,
steroids, caffeine

Table 5.5: Comparison between Robinson et al. 2020 and the merged cohort analysis. Over-
lapping pathways highlighted in bold. In chapter 5, further pathways were found in to be
enriched when studying each cohort separately.

age. The analysis in this chapter has some similarities and differences to the Robinson et al. Airwave

analysis, and can be seen in table ??.

The main differences between this analysis and the Robinson analysis were in the cohorts, assays,

sample types, and methods used. Robinson et al. used Airwave, whereas in this analysis four cohorts

were combined, Airwave, Airwave2, FINGER, and MASALA. Robinson et al. combined features

from two sample types (blood and urine), whereas in this analysis just blood was used. Robinson et

al. used un-annotated LC-MS features and NMR spectra, as well as the annotated BiLISA method,

whereas in this analysis annotated metabolites from PeakPantheR and BiLISA were used. For analysis,

Robinson et al. used multivariate Elasticnet regression to build predictive models of metabolomic age,

and Mummichog for pathway analysis, whereas in this analysis univariate associations using linear

regression and partial correlation were used to identify age-associated metabolites and compare p-

values of the associations, and the enriched pathways were then visualised with iPath3.

Various enriched pathways overlap between the studies, including inositol phosphate metabolism

and carnitine metabolism. The finding of Vitamin A metabolism (retinol/caretonoid metabolism)

in the integrated cohort and vitamin E in the Robinson et al. analysis is interesting considering
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associations have been found between vitamin A and vitamin E in various mammals in studies going

back over 70 years, including rats (A. W. Davies and Moore 1941), chickens (Frigg and Broz 1984),

and cows (Schelling et al. 1995). Figure 5.25 shows the pathways enriched when studying each cohort

independently, and then integrated using late-stage integration, and there was greater overlap between

the Robinson et al. findings and the findings in this chapter, including tryptophan metabolism, valine,

isoleucine, and leucine metabolism (urea cycle/amino groups), and dioxin degradation (xenobiotic

metabolism). The analysis in this chapter was limited by the assays used for the demonstration,

as the HPOS assay had only six shared metabolite features across all cohorts, and the urine RPOS

and RNEG assays used in the Robinson et al. analysis have a wide coverage for moderately polar

metabolites such as amino acids, which have been shown to be heavily associated with ageing (Canfield

and Bradshaw 2019).

In this analysis, using the PeakPantheR annotated metabolites made inter-project feature matching

possible, as any retention time drift is corrected for during annotation, and also made interpretation

easier, as the metabolite labels were already assigned.

5.4 Future work

5.4.1 HILIC/HPOS metabolite coverage

The HILIC method used by the NPC for the different studies has over the years been much optimised

an improved. Data acquired with earlier versions of the method, such as Airwave, were suscepti-

ble to poor chromatographic peak-shape and other analytical stability issues that warranted heavy

QC-filtering, with many features removed from the final QC-filtered datasets. While in Airwave2,

FINGER, and MASALA, each dataset had at least 40 features post-filtering, Airwave only had 11.

This, in combination with the method of merging studies, whereby only those metabolite features

that passed QC in all studies were kept, severely limited the small-molecule coverage of the integrated

analysis (only six features/metabolites were consistent, and therefore included). To overcome this

poor small-molecule metabolite coverage, a few approaches could be taken.

Option 1. Re-acquire the Airwave data with the HPOS assay

With enough resources, it might be possible to re-acquire the original Airwave study with the newer,

more stable HILIC positive method, thereby increasing the number of features that pass QC. This

however would depend on enough of each sample having been kept in reserve in long-term −80◦C

storage, and that the sample quality has not degraded over time.
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Option 2. Run all the studies through the RPOS and RNEG assays

The NPC have 2 other small-molecule assays that have some over-lapping coverage with HPOS, these

are the RPOS and RNEG methods. Again, with enough of the samples kept in reserve in long-term

storage, it would be possible to analyse the samples with these methods, thereby increasing the total

number and consistent number of features.

Option 3. Annotate the NMR data

The easiest, cheapest, and most reliable method for increasing small-molecule coverage that does not

require re-acquiring data, or relying on the long-term viability of cold storage, is to annotate the exist-

ing NMR raw data with annotation software. SMolESY-select is a robust NMR quantification method

for small molecules, that currently can automatically identify and quantify at least 22 metabolites from

1D 1H NMR spectra of serum and plasma (Panteleimon G Takis et al. 2020, Panteleimon G. Takis

et al. 2021). By annotating all four studies with SMolESY-select, even without re-acquiring the data

we would now have at least 22 (NMR) + 6 (HPOS) small molecule metabolites for the integrative

analysis.

Option 4: Impute missing values

In this chapter, missing values were not imputed, instead only features that had non-zero values in

every cohort were included. This was to ensure fair comparisons when assessing the effect of integrating

cohorts, so that any imputation method used would not affect the underlying biological variance and

introduce bias. In a biological analysis, the use of imputation could be assessed for usage to increase

the coverage for metabolites with missing values.

5.4.2 Lipid pathway analysis

As the majority of the analysed metabolites were lipids, the KEGG-based iPath3 was of limited use

for pathway analysis of age-associated metabolites in the integrated cohort. The use of, or integration

with lipid-specific tools such as LION/web (Molenaar et al. 2019) or LINT-web (F. Li et al. 2021)

would improve the lipidomic pathway enrichment analysis, and aid in interpretation of future analyses.

5.4.3 Annotation versions

The LPOS and LNEG annotations for Airwave and Airwave2 used older versions of PeakPantheR

ROI configurations for annotating the datasets. These older annotations were harmonised with the

newer annotations in chapter 3, and two annotations that were removed in later ROI configurations

were excluded entirely. While this approach worked for harmonising the annotations, in the newer
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ROI configuration files (available in Matthew R Lewis et al. 2022), more annotated compounds exist.

Re-annotating with the newer versions would also increase the consistent lipid coverage.

5.4.4 Unbalanced cohorts

The studies used in the integrated four-cohort analysis were unbalanced with respect to the outcome

variable (age). This meant it was difficult to interpret if the systematic differences in abundance

between the cohorts were of biological or residual (post-scaling) technical sources, and whether any

biological variation was due to the outcome of interest (age), or any project-specific unknown con-

founders (e.g. disease state).

Uniform age distributions

Not only were the source cohorts from multiple different studies with differing age ranges and potential

confounders, but the distribution of integrated ages was strongly bi-modal, and skewed towards mostly

younger, or older individuals. Ideally, a uniform age distribution would have been better than a

strongly bi-modal age distribution. A proposed method to achieve this within PhenomeDB is outlined

in the discussion, chapter 6.

Adding further studies

The general aim of integrating metabolomics data for molecular epidemiology is to increase the sam-

ple size, and therefore the effect-size of significantly associated metabolites and study factors. By

integrating more cohorts into the analysis, the sample size will increase, and depending on the study

design of the source cohorts, may decrease the imbalance. For example if studying age-associated

metabolites, whole-life, healthy, non-interventionist studies will be the most useful. By adding further

studies, and increasing n, there is better likelihood of being able to create an integrated cohort with

sub-samples of each cohort, to create a uniformly distributed and balanced cohort with enough power

to identify significant trends.

To achieve this, more NPC datasets could be used, or data importers from the Metabolights or

Metabolomics Workbench repositories could be implemented. The data model developed in chapter 2

was designed with the Metabolights data model in mind, so implementation for Metabolights would

just require writing an ImportTask specific for Metabolights.

5.4.5 Identifying further sources of variation

In chapter 5, the PCPR2 method was used in a permutation pipeline to calculate the proportion of

dataset variation that was attributal to batch, project, and sample matrix, in the presence of age, sex,

and BMI, and was used to compare the effect of different scaling and transformation methods on the
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batch, project, and sample matrix effects, before and after scaling. These covariates were chosen as

they are the harmonised covariates available across all studies, and because they were the outcome-of-

interest and major known covariates, however other sources of biological and technical variation exist

and these could be assessed using the PCPR2 method. Doing so could help assess the effect of scaling

on further sources of biological and technical variation.

Other scaling/normalisation approaches

The unit-variance scaling method used to correct for inter-project technical variation may also have

had an effect on the biological variation, by setting the mean values for each metabolite in each cohort

to be zero. Mäkinen et al. (2022) used an approach that instead normalised by matching overlapping

sub-sets of samples between the different projects, normalising the cohort abundances using a per-

metabolite scaling factor of the mean differences between the 2 cohorts, using the following scaling

factor:

C = exp(mean(log(subset of B)− log(subset of A)))

Adding further covariates

Importing and harmonising further covariates, such as disease state, intervention, time last eaten, or

time sample taken, could help build better models, and overcome some of the unknown potentially

confounding effects, as well as begin to identify if the age-associated metabolites are longevity markers

or age-associated disease markers.

Stratification

The analysis undertaken in chapter 5 looked for age-associated metabolites in the presence of the

covariates sex, and BMI, as such they identified metabolites significantly age-associated in the general

population. In chapter 4, it was shown that there are differences in which metabolite are age-associated

in males and females, as such it would be interesting to stratify the integrated cohort by sex and

investigate age-associated metabolites in males and females separately.

Further stratifications could be used to potentially identify non-monotonic or undulating trends,

for example if some metabolites increase in early life, and decrease in late life, linear methods can

struggle to identify them. By stratifying the datasets into ranges of ages, for example under 40s and

over 40s, it may be possible to increase the significance of age-associated trends, even when using a

linear method such as Pearson correlation or linear regression. Lehallier et al. (2019) developed a

method of a sliding window analysis (DE-SWAN) for analysing ageing trends of differential expression

of proteins in humans. This method stratifies the dataset into 20 year windows, and in increments of

one year, analyses protein levels in two groups of 10 year parcels (e.g. 25-35 years vs 45-55 years),
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to identify proteins changing in waves at particular life stages. This analysis could be applied to the

integrated metabolomics cohorts to identify similar non-linear metabolite trends.

5.5 Contribution of this chapter

In this chapter, PhenomeDB has been utilised as a novel approach to integrating and analysing

molecular trends of ageing in balanced and unbalanced cohorts with data from multiple metabolomic

platforms, assays, and sample matrices.

The work has developed and tested an extensible approach for comparison and minimising technical

variability, including the development and utilisation of a pipeline for permuting between different

scaling and transformation methods, and a novel chart to visualise and compare PCPR2 results, to

aid a researcher in the selection of appropriate scaling and normalisation methods.

The main aim of this chapter was demonstrate the utility of PhenomeDB for investigating molecular

trends in an intermediate strategy integration of multiple cohorts. The results of the work outlined in

this chapter have provided evidence that multi-platform annotated metabolite features from different

cohorts can be successfully integrated using an intermediate-stage strategy to identify robust molecular

trends. Cohorts of a similar composition (e.g. balanced) can be merged to increase the power and

sensitivity of MWAS analyses. Cohorts of different compositions (e.g. unbalanced) can be merged,

and used to identify different kinds of molecular trends, including positive, negative, linear, non-linear,

and non-monotonic.

It has been shown that in some cases combining unbalanced cohorts can reduce the power and

sensitivity of analyses due to non-linear and non-monotonic trends of the underlying metabolites

and potentially post-scaling residual technical variation, and reduce the number of features anal-

ysed/metabolome coverage due to the feature-matching issue (if not using imputation), highlighting

how the benefits of combining cohorts may be off-set by these effects in an unbalanced integrated

cohort.
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Chapter 6

Discussion

The work in this thesis has outlined the research, development, validation, and application of a

platform for the harmonisation and integration of metabolomics data. The resulting software, Phe-

nomeDB, meets the core storage, processing, harmonisation, querying, and analysis challenges of

multi-cohort integrative metabolomics, and provides a user-friendly, scalable, and extensible platform

upon which further methods can be implemented as required. The platform’s utility was demonstrated

using use-cases set out in the introduction, and an investigation of age-associated metabolites in an

integrated four-cohort dataset.

In chapter 2, various database and data-processing technologies were explored for their suitability

for integrative storage of metabolomics data, and compared against criteria including scalability, query-

ability, extensibility, security, and usability. Following technology selection, a database and software

platform was implemented utilising Postgres, Python, and Apache-Airflow, and tools for dynamically

building and executing asynchronous pipelines and importing annotated metabolomics features from

NMR and untargeted LC-MS were developed. Metabolite features for the four cohorts were imported,

and the developed method was assessed against the identified criteria, including scalability.

In chapter 3, data models and software tools for sample and annotation metadata harmonisation

were developed and used to import and harmonise age, sex, and BMI from the four cohorts, and import

and populate an annotation metadata library consisting of compound identifiers and classifications,

and annotation versions were harmonised into consistent metabolite labels.

In chapter 4, user-friendly methods for building, saving, and executing queries, and for transforming

query results to standard m ∗ n matrices were developed, including the development of persistency

extension to Redis (Redis Labs 2022). Tools for scaling, normalisation, and batch correction were

implemented, as well as reproducible and robust implementations of PCA, PCPR2, and MWAS, for

running nPYc-toolbox reports, and for visualising the results of the analyses. The query and analysis

tools were then used to explore molecular trends in Airwave, and confirm concordant trends could be

found independently using the PCA and MWAS methods.
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In chapter 5, the four-cohorts were integrated using the developed query system, and different

scaling and transformation methods were compared using the methods developed and implemented

in the previous chapters, including the query system, the data pipeline generator, the scaling and

transformation methods, and the PCA, PCPR2, and MWAS methods. The effect of integrating cohorts

using intermediate-stage strategies was explored by integrating the cohorts one-by-one (Airwave &

Airwave2, then Airwave & Airwave2 & FINGER, then Airwave & Airwave2 & FINGER & MASALA)

and comparing the number of and p-values for metabolites identified as associated with age, using

four different MWAS association methods. In the analysis, covariates were set to sex, BMI, batch, and

project and sample matrix where multiple projects and multiple sample matrices are included in the

integrated dataset. The pathways of the significantly age-associated metabolites were visualised using

iPath3 (Darzi, Letunic, and Yamada 2018), and the identified metabolites found to be concordant

with existing literature.

6.1 Comparison with existing tools

Throughout the thesis, individual components/methods were compared to existing approaches for

large-scale or integrative metabolomics, including the combined database and data analysis platforms

MetHoS (Tzanakis et al. 2022) and MeltDB (Neuweger et al. 2008), as well as the integrative anal-

ysis system iMAP (D. Zhou et al. 2021), and the molecular epidemiology application development

framework Molgenis (Van Der Velde et al. 2019). A summary of these comparisons is presented here.

Both PhenomeDB and MetHoS provide vertical and horizontally scalable tools for data processing

and storage of metabolomics data, however they have key design, implementation, and use-case differ-

ences resulting from the differing aims of each system. MetHoS is for processing, storing, and analysing

LC-MS untargeted features, which as identified in chapter 2, have an exceedingly large number of po-

tential entities (MetHoS has been tested with two billion metabolite features), utilising the NoSQL

Cassandra database for its excellent scalability perfromance. PhenomeDB is for processing, storing,

and analysing annotated metabolite features from both LC-MS and NMR, is extensible to untargeted

features from both platforms, and is aimed specifically at modelling the technical and biological vari-

ation in metabolomics data for the purposes of integrative molecular epidemiology, as such it uses

the more query-able and flexible RDBMS Postgres, as well as data model capable of linking study

factors/metadata to metabolite features, while still providing appropriate scalability performance.

MeltDB and PhenomeDB both provide database and data analysis tools, however the data model

for MeltDB is less capable of modelling the complex biological and technical variation of metabolomics

data, and the only possible integration between studies is via annotation metadata such as metabolite

KEGG identifiers. MeltDB has also not been designed for large-scale studies.

iMAP has tools for creating analysis pipelines for integrative analysis, but it has no back-end
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database for storage, integration, and stratification, meaning all harmonisation steps must be under-

taken prior to upload.

Molgenis provides a flexible framework upon which molecular epidemiology tools can be built, and

provides tools for harmonisation and querying of datasets. PhenomeDB uses some similar techniques

and tools as Molgenis, including the underlying Postgres database, and methods for harmonisation,

querying, and visualisation of data, however PhenomeDB has been optimised specifically for the

purposes of scalable metabolomics integration, and is capable of more complex queries including

multi-table joins, meaning AND/OR queries can target any aspect of the data model, and retrieve

any target SQLAlchemy model via the join-route calculator. PhenomeDB also does not depend on

the usage of Elasticsearch, with its heavy RAM requirements.

None of these tools provide the same level of flexible, multi-table querying as PhenomeDB, nor

have been designed specifically for integrative metabolomics for molecular epidemiology.

6.2 Future work

PhenomeDB has been designed to be highly extensible, as such the following features could easily be

implemented to improve and expand on PhenomeDB.

Pipelines

The development of the PipelineFactory in chapter 2 greatly simplifies the generation and execu-

tion of tasks and pipelines with Apache-Airflow, and is extensible to other pipelining software as

required. While the low-level PipelineFactory API is capable of dynamically creating and executing

pipelines, currently only pre-existing pipelines can be executed via the user-interface, using either the

Apache-Airflow user-interface, or using the custom built AnalysisView plugin (for single-task pipelines

including pipeline executor tasks such as the RunBatchCorrectionAssessmentPipeline task). To im-

prove the functionality of the user interface, and to enable users to exploit the PipelineFactory without

programming expertise, a further view could be developed. This view would have an overview of a

pipeline, with buttons to add or edit pipeline tasks as required. This would enable users to dynamically

generate and execute custom pipelines, and to view the task output, change TaskRun parameters, and

re-run tasks. Tasks would then be executed via the horizontally-scalable Apache-Airflow executors.

Alongside this, the PipelineFactory could be added to the REST API, to facilitate the generation

and execution of dynamic pipelines from other software or clients such as Jupyter notebooks.

Data sources

With the database and data processing capabilities of PhenomeDB, it would be useful to allow users to

import and pre-process raw data. This could be acheived by implementing standardised pre-processing
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tasks for NMR and LC-MS data and adding them to the PipelineFactory task spec.json definition.

In chapter 2, untargeted (un-annotated) metabolite features for NMR and LC-MS were proposed

to be stored in a JSONB field in the SampleAssay object, enabling the query-able storage of these

types of data in an RDBMS, without quickly reaching scales requiring table partitioning and horizontal

scaling. In the future these types of data could be imported and this approach assessed for scalability

using real data, and these fields added to the QueryFactory to enable their filtering by a user-defined

SavedQuery.

With un-annotated features in the database, a metabolite manual annotation and identification

user interface could be created, whereby users explore un-annotated features, and mark them with

putative metabolite annotations, and associated evidence. This method could be used to simplify

metabolite identification practices, while standardising them into a centralised and fully audit-able

process.

It is desirable to enable the import of data from databases such as Metabolights to leverage the

ever growing number of studies published there. The data model developed in chapter 2 was designed

with the Metabolights data model in mind, so implementation for Metabolights would require simply

writing an ImportTask specific for Metabolights.

In chapter 5 it was identified that the small-molecule coverage of the analysis was relatively low,

and could be improved by utilising the SMolESY-select NMR annotation method to improve this.

This could be achieved by integrating this annotation method into PhenomeDB, including developing

an ImportTask for the required data format.

Metadata harmonisation

Sample metadata

The python lambda function harmonisation method can currently only utilise one variable (the meta-

data value) when defining curation lambdas. More complex transformation, requiring information

from other fields, is limited to in-built functions, limiting the usability of the system in some complex

cases. This could be overcome by expanding the system to enable users to select any related database

field or metadata field as one of multiple inputs to the lambda function. This could complemented by

developing a custom UI for selecting database fields to use as the input variables.

Further, a library of commonly used metadata curation lambdas could be added, with algorithms

recommended to users based on selected harmonised fields and type/value detection.

Annotation metadata

Currently only Refmet, LIPID MAPS, PubChem CIDs, ChEBI, ChEMBL, HMDB, ChemSpider and

KEGG are implemented, however the data model and import system is easily extensible to other
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database identifiers and ontologies as required, such as the COCONUT meta-database (Sorokina,

Merseburger, et al. 2021).

Data models and web-views for uploading and storing associated annotation evidence were also

created, but not tested or used in this thesis. This approach could be used for storing annotation

evidence (for example spectra or chemical standards information) related to a specific annotation.

This evidence could then be used for calculating and reporting annotation confidence to Metabolomics

Standards Initiative (MSI) standards (Sumner et al. 2007) and the lipid annotation system proposed

in McDonald et al. 2022.

Queries

The QueryFactory methods for creating, saving, executing queries, and retrieving datasets from the

cache, are not implemented in the REST API. The underlying QueryFactory python-API has clearly

defined hooks for creating, saving, and executing queries, and loading dataframes from the cache,

making implementation with the extensible FlaskAppBuilder API relatively trivial.

The column-wise dataset builder benchmarked in chapter 4 could be implemented in production,

greatly improving the speed of building datasets compared to the cell-wise method currently used.

Due to the way dynamic metadata fields are stored in the database, currently only one metadata

field can be stratified at a time in a SavedQuery. To add the capability of stratifying by more than

one metadata field the use of subqueries could be added to the QueryFactory, whereby multiple

SavedQueries are chained together as subqueries in a meta-query.

In chapter 5, the potential for integrating unbalanced cohorts was investigated, and a drawback

identified was the strongly bi-modal age distributions of the integrated cohort. To overcome this

a method could added to the QueryFactory to generate an integrated cohort with a uniform age

distribution. The following algorithm would achieve this:

1. If the outcome-of-interest is numerical, calculate the smallest bin-size that maximises the number

of samples per bin (up to some threshold), and bin the data. Ideally, no binning would be

necessary, but in cohorts with few samples this would not be practical.

2. Calculate the minimum number of samples per bin/category (binn)

3. For each bin, randomly sub-sample the source cohorts up to a maximum of binn

4. Copy the SavedQuery, and add a new filter with the randomly sub-sampled sample IDs (where

Sample.id IN(sample ids)).

The new query will have a uniform distribution with respect to the outcome-of-interest, and could

then be used in a subsequent analysis.
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While the flexible QueryFactory system provides exceptional querying flexibility while using an

RDBMS, the power of graph databases for enhanced query-ability and knowledge-graph generation

could be leveraged by enabling export of QueryFactory SavedQuery datasets to a graph database

platform such as JanusGraph or Neo4j.

Imputation, scaling, normalisation, and batch correction

Currently no imputation methods have been implemented, including these would reduce the effect of

losing inconsistent metabolite features when merging cohorts. Viallon et al. (2021) used imputation

to fill missing values in the datasets with batch of study-specific medians.

Scaling and batch correction between projects is still an open area of research in metabolomics. In

chapter 5, the RunBatchCorrectionComparisonPipeline permuted over different scaling methods, using

PCPR2 and PCA to compare the effect of scaling on the technical and biological variation. Two-sided

Mann-Whitney U tests were also undertaken comparing the metabolite features between the studies

in LTR samples. Viallon et al. (2021) used intra-metabolite correlation analysis of study samples,

instead of Mann-Whitney U tests of LTR samples. In the future, more scaling and normalisation

methods could be included in PhenomeDB, as well as more metrics for assessing and comparing their

effects, including intra-metabolite correlation analysis of all sample types, two-sided Mann-Whitney

U tests, and two-sided t-tests.

Analysis methods

These univariate methods, plus other methods such as Pearson correlation for intra-class correlation

analysis of metabolite features could be implemented as dedicated AnalysisTasks. With the Query-

Factory, the user could define multiple SavedQuery definitions and then use the univariate methods

to compare the metabolite abundances between the scaled datasets. Further, multivariate analyses

could be added to the system, including PLS, with tools for cross-validation, measuring goodness-of-

prediction, and predicting outcomes from other SavedQuery datasets.

Biomarker data model

In chapter 5, the results of MWAS analyses were stored and retrieved for comparison between cohorts

and association methods. The AnalysisView for MWAS allows users to select other MWAS analyses

to compare. In the existing implementation, the MWAS results are stored in the TaskRun output

cache, and loaded on demand for filtering, sorting, and comparing. This creates overhead in terms

of both development time and computation, and prevents the usage of SQL for selecting, filtering,

and comparing MWAS results. If instead of storing the MWAS results in the denormalised TaskRun

output cache, and instead they were stored directly in a dedicated database table, development of

new comparison features would be simpler, and more powerful comparisons could be made, without
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knowing a-priori which TaskRuns to compare, including queries to find which projects and metadata

are associated with specific metabolites.

In-database abundance comparisons

In chapter 3, in-database comparisons of project study sample abundances of ChEBI:17154 were

shown to be difficult due technical variation between the datasets. In chapter 5, different scaling and

transformation methods were applied and their effects on batch-correction investigated and compared

using the PCPR2 method. Unit-variance log scaling was selected for scaling all assays to ensure con-

sistent comparisons across all the assays, as it provided the best performance at reducing project and

sample matrix partial-R2, while maintaining age partial-R2. However, different scaling and transform

methods had different effects on different covariates partial-R2. If instead a researcher was interested

in metabolites associated with sex, they would want to scale the data with the method that best

reduced project and sample matrix partial-R2 while maintaining the sex partial-R2. This means that

is difficult to find a universal method for scaling the data, and to store that value in the database for

reliable, integrated in-database comparisons of associated metabolite abundances, the optimal scaling

and transform method would have to be identified and stored for each variable of interest, duplicating

the data potentially many times over. This suggests in-database abundance comparisons between

studies are not a valuable route to explore.

Other omics

PhenomeDB is aimed primarily at metabolomics data, however the core data model developed in chap-

ter 2 can be used for other omics technologies, including genomics, transcriptomics, and proteomics.

Any data that consists of m samples, n features, and m ∗ n abundances/intensities can be stored in

PhenomeDB, and the only changes that would be required would be to add some further fields for

storing omic-specific labels and metadata, for example for metabolomics the retention time and m/z

in the feature table to facilitate querying; for transcriptomics this might be the chromosome location.

For transcriptomic annotations, these would be genes instead of compounds.

6.3 Conclusions

PhenomeDB is a robust, validated, scalable, extensible, and secure software platform capable of in-

tegrating, stratifying, and analysing metabolomics data from multiple analytical platforms, including

tools for harmonisation, querying, scaling, and analysing integrated cohorts, and tools for generating

and executing dynamic data processing and analysis pipelines. The system has been demonstrated

to be capable of identifying robust molecular trends, concordant with existing literature. Exten-

sions to the system can be added and combined with the core data model, and widely-used and
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well-documented open-source technologies have been used throughout.
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A.1 Appendix for chapter 2

Listing A.1: Physical schema for PhenomeDB v0.9.3

--------------------------------------

-- DATABASE SCHEMA

-- PhenomeDB

--------------------------------------

--------------------------------------

-- TABLE unit

--------------------------------------

DROP TABLE IF EXISTS unit CASCADE;

CREATE TABLE unit (

id serial PRIMARY KEY ,

name text NOT NULL ,

description text NOT NULL ,

constraint unq_unit_name unique(name)

);

--------------------------------------

-- TABLE role

--------------------------------------

DROP TABLE IF EXISTS role CASCADE;

CREATE TABLE role (

id serial PRIMARY KEY ,

name text NOT NULL

);

--------------------------------------

-- TABLE saved_query

--------------------------------------

DROP TABLE if exists saved_query CASCADE;

CREATE TABLE saved_query (

id serial PRIMARY KEY ,

name text NOT NULL ,

description text NOT NULL ,

project_short_label text NOT NULL ,

json jsonb NOT NULL ,

code_string text ,

sql text ,

created_by text ,

date_added timestamp ,

type text NOT NULL ,

role_id integer REFERENCES role ON DELETE CASCADE ,

cache_state jsonb not null default ’{}’::jsonb ,

constraint unq_query_name unique(name)

);

--------------------------------------

-- TABLE pipeline

--------------------------------------

drop table if exists pipeline;

create table pipeline (

id serial primary key ,

name text ,

description text ,

definition jsonb ,

default_args jsonb ,

task_order jsonb ,

tags jsonb ,

start_date timestamp ,

date_created timestamp ,

schedule_interval text ,

hard_code_data boolean ,

pipeline_file_path text ,

sequential boolean ,
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username_created text ,

max_active_runs numeric ,

concurrency numeric ,

role_id integer references role ,

deleted boolean default False ,

constraint unq_pipeline_name unique(name)

);

--------------------------------------

-- TABLE task_run

--------------------------------------

drop table if exists task_run;

create table task_run (

id serial primary key ,

module_name text ,

class_name text ,

task_id text ,

pipeline_id integer references pipeline ON DELETE CASCADE ,

pipeline_run_id text ,

upstream_task_run_id integer ,

args jsonb ,

output jsonb ,

execution_date text ,

datetime_started timestamp ,

datetime_finished timestamp ,

run_time numeric ,

db_size_start numeric ,

db_size_end numeric ,

db_size_bytes numeric ,

db_size_megabytes numeric ,

username text ,

status text ,

saved_query_id integer references saved_query ON DELETE SET NULL ,

reports jsonb ,

db_env text ,

created_by_add_task boolean default False

);

--------------------------------------

-- TABLE missing_import_data

--------------------------------------

DROP TABLE if exists missing_import_data CASCADE;

CREATE TABLE missing_import_data (

id serial PRIMARY KEY ,

task_run_id integer REFERENCES task_run ON DELETE CASCADE ,

type text DEFAULT NULL ,

value jsonb DEFAULT NULL ,

comment text DEFAULT NULL

);

--------------------------------------

-- TABLE laboratory

--------------------------------------

DROP TABLE IF EXISTS laboratory CASCADE;

CREATE TABLE laboratory (

id serial PRIMARY KEY ,

name text UNIQUE ,

affiliation text ,

constraint unq_lab_name unique(name)

);

--------------------------------------

-- TABLE project

--------------------------------------

DROP TABLE IF EXISTS project CASCADE;

CREATE TABLE project (

id serial PRIMARY KEY ,

name text UNIQUE ,

description text ,
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lims_id integer ,

date_added timestamp NOT NULL ,

project_folder_name text ,

short_description text ,

laboratory_id integer REFERENCES laboratory ON DELETE CASCADE ,

persons JSONB ,

chart_colour text ,

constraint unq_project_name unique(name)

);

--------------------------------------

-- TABLE project_role

--------------------------------------

DROP TABLE IF EXISTS project_role CASCADE;

CREATE TABLE project_role (

id serial PRIMARY KEY ,

role_id integer REFERENCES role ON DELETE CASCADE ,

project_id integer REFERENCES project ON DELETE CASCADE

);

--------------------------------------

-- TABLE subject

--------------------------------------

DROP TABLE if exists subject CASCADE;

CREATE TABLE subject (

id serial PRIMARY KEY ,

name text NOT NULL ,

project_id integer REFERENCES project ON DELETE CASCADE ,

constraint unq_subject unique(name ,project_id)

);

--------------------------------------

-- TABLE sample

--------------------------------------

DROP TABLE if exists sample CASCADE;

CREATE TABLE sample (

id serial PRIMARY KEY ,

name text NOT NULL ,

sampling_date timestamp ,

sample_type text DEFAULT ’StudySample ’,

subject_id integer REFERENCES subject ON DELETE CASCADE ,

assay_role text DEFAULT ’Assay ’,

sample_matrix text ,

biological_tissue text ,

sample_metadata JSONB ,

CONSTRAINT unq_sample UNIQUE ( subject_id , name , sample_type , assay_role , sample_matrix )

);

---------------------------------------------------------------

-- TABLE assay

--------------------------------------

DROP TABLE IF EXISTS assay CASCADE;

CREATE TABLE assay (

id serial PRIMARY KEY ,

name text UNIQUE ,

platform text DEFAULT ’Other ’,

targeted text DEFAULT ’N’,

ms_polarity text DEFAULT ’NA ’,

annotated_feature_type text DEFAULT ’NA ’,

long_name text ,

long_platform text ,

quantification_type text DEFAULT ’Unknown ’,

constraint unq_assay unique(name)

);

---------------------------------------------------------------

-- TABLE annotation_method

--------------------------------------

DROP TABLE if exists annotation_method CASCADE;

CREATE TABLE annotation_method (
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id serial PRIMARY KEY ,

name text NOT NULL ,

description text ,

constraint unq_annotation_method unique(name)

);

---------------------------------------------------------------

-- TABLE compound

--------------------------------------

DROP TABLE IF EXISTS compound CASCADE;

CREATE TABLE compound (

id serial PRIMARY KEY ,

name text ,

inchi text ,

inchi_key text ,

chemical_formula text ,

monoisotopic_mass numeric ,

iupac text ,

smiles text ,

log_p numeric ,

CONSTRAINT unq_compound UNIQUE ( inchi_key , name ),

CONSTRAINT inchi_key_length CHECK (length(inchi_key) < 28)

);

---------------------------------------------------------------

-- TABLE external_db

--------------------------------------

DROP TABLE IF EXISTS external_db CASCADE;

CREATE TABLE external_db (

id serial PRIMARY KEY ,

name text NOT NULL ,

url text NOT NULL

);

---------------------------------------------------------------

-- TABLE compound_external_db

--------------------------------------

DROP TABLE IF EXISTS compound_external_db CASCADE;

CREATE TABLE compound_external_db (

id serial PRIMARY KEY ,

compound_id integer REFERENCES compound ON DELETE CASCADE ,

external_db_id integer REFERENCES external_db ON DELETE CASCADE ,

database_ref text NOT NULL ,

CONSTRAINT unq_compound_ref UNIQUE (compound_id , external_db_id , database_ref)

);

--------------------------------------

-- TABLE compound_class

--------------------------------------

DROP TABLE if exists compound_class CASCADE;

CREATE TABLE compound_class(

id SERIAL PRIMARY KEY ,

name text ,

description text ,

inchi_key_backbone text ,

type text ,

kingdom text ,

category text ,

main_class text ,

sub_class text ,

intermediate_nodes jsonb ,

direct_parent text ,

alternative_parents jsonb ,

molecular_framework text ,

substituents jsonb ,

ancestors jsonb ,

version text ,

CONSTRAINT unq_compound_class_ref UNIQUE (inchi_key_backbone ,type ,kingdom ,category ,main_class ,sub_class ,intermediate_nodes ,direct_parent ,version)
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);

-------------------------------------

-- TABLE compound_class_compound

--------------------------------------

DROP TABLE if exists compound_class_compound CASCADE;

CREATE TABLE compound_class_compound (

id SERIAL PRIMARY KEY ,

compound_id integer REFERENCES compound ON DELETE CASCADE ,

compound_class_id integer REFERENCES compound_class ON DELETE CASCADE ,

CONSTRAINT unq_compound_class_compound_ref UNIQUE (compound_id ,compound_class_id)

);

--------------------------------------

-- TABLE harmonised_annotation

--------------------------------------

DROP TABLE if exists harmonised_annotation CASCADE;

CREATE TABLE harmonised_annotation (

id SERIAL PRIMARY KEY ,

cpd_name text ,

cpd_id text ,

annotated_by text ,

confidence_score text ,

latest_version text ,

annotation_method_id integer REFERENCES annotation_method ON DELETE CASCADE ,

assay_id integer REFERENCES assay on DELETE CASCADE ,

multi_compound_operator text default null ,

CONSTRAINT unq_harmonised_compound_annotation_ref UNIQUE (annotation_method_id ,cpd_name ,assay_id)

);

--------------------------------------

-- TABLE annotation

--------------------------------------

DROP TABLE if exists annotation CASCADE;

CREATE TABLE annotation (

id SERIAL PRIMARY KEY ,

version text ,

cpd_name text ,

cpd_id text ,

annotated_by text ,

confidence_score text ,

default_primary_ion_rt_seconds numeric ,

default_primary_ion_mz numeric ,

config jsonb ,

annotation_method_id integer REFERENCES annotation_method ON DELETE CASCADE ,

assay_id integer REFERENCES assay on DELETE CASCADE ,

harmonised_annotation_id integer REFERENCES harmonised_annotation ON DELETE CASCADE ,

multi_compound_operator text default null ,

CONSTRAINT unq_compound_annotation_ref UNIQUE (assay_id ,annotation_method_id ,cpd_name ,cpd_id ,version)

);

--------------------------------------

-- TABLE annotation_compound

--------------------------------------

DROP TABLE if exists annotation_compound CASCADE;

CREATE TABLE annotation_compound (

id SERIAL PRIMARY KEY ,

compound_id integer REFERENCES compound ON DELETE CASCADE ,

harmonised_annotation_id integer REFERENCES harmonised_annotation ON DELETE CASCADE ,

CONSTRAINT unq_annotation_compound_ref UNIQUE (compound_id ,harmonised_annotation_id)

);

--------------------------------------

-- TABLE sample_assay

--------------------------------------

DROP TABLE if exists sample_assay CASCADE;

CREATE TABLE sample_assay (
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id serial PRIMARY KEY ,

sample_id integer REFERENCES sample ON DELETE CASCADE ,

assay_id integer REFERENCES assay ON DELETE CASCADE ,

acquired_time timestamp ,

raw_spectra_path text ,

processed_spectra_path text ,

excluded text ,

exclusion_details text ,

instrument text ,

sample_file_name text NOT NULL ,

sample_base_name text ,

position text ,

expno text ,

run_order integer ,

batch text ,

correction_batch text ,

dilution numeric ,

detector_voltage numeric ,

instrument_metadata JSONB ,

assay_parameters JSONB ,

unannotated_abundance_values JSONB ,

CONSTRAINT unq_sample_assay UNIQUE ( sample_id , assay_id , sample_file_name , sample_base_name )

);

--------------------------------------

-- TABLE feature_dataset

--------------------------------------

DROP TABLE if exists feature_dataset CASCADE;

CREATE TABLE feature_dataset (

id serial PRIMARY KEY ,

name text ,

feature_extraction_params jsonb ,

annotation_params jsonb ,

filetype text ,

unified_csv_filename text ,

intensity_data_filename text ,

sample_metadata_filename text ,

feature_metadata_filename text ,

assay_id integer REFERENCES assay ,

project_id integer REFERENCES project ,

sample_matrix text ,

sr_correction_parameters jsonb ,

sr_correction_task_run_id integer REFERENCES task_run ,

ltr_correction_parameters jsonb ,

ltr_correction_task_run_id integer REFERENCES task_run ,

saved_query_id integer REFERENCES saved_query ,

CONSTRAINT unq_feature_dataset UNIQUE (project_id ,assay_id ,sample_matrix)

);

--------------------------------------

-- TABLE feature

--------------------------------------

DROP TABLE if exists feature_metadata CASCADE;

CREATE TABLE feature (

id bigserial PRIMARY KEY ,

feature_name text ,

annotation_id integer REFERENCES annotation on DELETE SET NULL ,

feature_dataset_id integer REFERENCES feature_dataset ON DELETE CASCADE ,

rt_average numeric ,

rt_min numeric ,

rt_max numeric ,

mz_average numeric ,

mz_min numeric ,

mz_max numeric ,

lod numeric ,

lloq numeric ,

uloq numeric ,

ion_type text ,

ion_id text ,
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lower_reference_percentile numeric ,

upper_reference_percentile numeric ,

lower_reference_value numeric ,

upper_reference_value numeric ,

rsd_filter boolean ,

variance_ratio_filter boolean ,

correlation_to_dilution_filter boolean ,

blank_filter boolean ,

artifactual_filter boolean ,

excluded boolean ,

exclusion_details text ,

rsd_sp numeric default null ,

rsd_ss_rsd_sp numeric default null ,

correlation_to_dilution numeric default null ,

blank_value numeric default null ,

quantification_type text DEFAULT ’QuantOther ’,

calibration_method text DEFAULT ’NoCalibration ’,

feature_filtering_pass boolean ,

final_assessment_pass boolean ,

final_assessment_rename text default null ,

comment text default null ,

annotation_parameters jsonb default null ,

annotation_version text default null ,

feature_metadata jsonb default null ,

date_imported timestamp ,

CONSTRAINT unq_feature_metadata UNIQUE (feature_name ,feature_dataset_id)

);

--------------------------------------

-- TABLE abundance_value

--------------------------------------

DROP TABLE if exists abundance_value CASCADE;

CREATE TABLE abundance_value (

id bigserial PRIMARY KEY ,

intensity numeric ,

below_lloq boolean ,

above_uloq boolean ,

sample_assay_id integer REFERENCES sample_assay ON DELETE CASCADE ,

feature_id integer REFERENCES feature ON DELETE CASCADE ,

unit_id integer REFERENCES unit ,

comment text ,

sr_corrected_intensity numeric ,

ltr_corrected_intensity numeric ,

CONSTRAINT unq_annotated_feature_ref UNIQUE (sample_assay_id ,feature_id)

);

--------------------------------------

-- TABLE ontology_source

--------------------------------------

DROP TABLE if exists ontology_source CASCADE;

CREATE TABLE ontology_source (

id serial PRIMARY KEY ,

name text ,

url text ,

version text ,

description text

);

--------------------------------------

-- TABLE ontology_ref

--------------------------------------

DROP TABLE if exists ontology_ref CASCADE;

CREATE TABLE ontology_ref (

id serial PRIMARY KEY ,

ontology_source_id integer REFERENCES ontology_source ON DELETE CASCADE ,

accession_number text ,

compound_class_kingdom_id integer REFERENCES compound_class ON DELETE CASCADE ,

compound_class_category_id integer REFERENCES compound_class ON DELETE CASCADE ,
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compound_class_main_class_id integer REFERENCES compound_class ON DELETE CASCADE ,

compound_class_sub_class_id integer REFERENCES compound_class ON DELETE CASCADE ,

compound_class_direct_parent_id integer REFERENCES compound_class ON DELETE CASCADE

);

--------------------------------------

-- TABLE metadata_harmonised_field

--------------------------------------

DROP TABLE if exists harmonised_metadata_field CASCADE;

CREATE TABLE harmonised_metadata_field (

id serial PRIMARY KEY ,

name text UNIQUE ,

unit_id integer REFERENCES unit ON DELETE SET NULL ,

datatype text NOT NULL ,

classes jsonb ,

ontology_ref_id integer REFERENCES ontology_ref ON DELETE SET NULL ,

CONSTRAINT unq_harmonised_metadata_field UNIQUE( name , unit_id )

);

--------------------------------------

-- TABLE metadata_field

--------------------------------------

DROP TABLE if exists metadata_field CASCADE;

CREATE TABLE metadata_field (

id serial PRIMARY KEY ,

name text NOT NULL ,

project_id integer REFERENCES project ON DELETE CASCADE ,

harmonised_metadata_field_id integer REFERENCES harmonised_metadata_field ON DELETE SET NULL ,

CONSTRAINT unq_metadata_field UNIQUE ( name , project_id )

);

--------------------------------------

-- TABLE metadata_value

--------------------------------------

DROP TABLE if exists metadata_value CASCADE;

CREATE TABLE metadata_value (

id serial PRIMARY KEY ,

raw_value text DEFAULT NULL ,

sample_id integer REFERENCES sample ON DELETE CASCADE ,

harmonised_numeric_value numeric DEFAULT NULL ,

harmonised_text_value text DEFAULT NULL ,

harmonised_datetime_value timestamp DEFAULT NULL ,

metadata_field_id integer REFERENCES metadata_field ON DELETE CASCADE ,

CONSTRAINT unq_metadata_value UNIQUE ( sample_id , metadata_field_id )

);

--------------------------------------

-- TABLE data_repository

--------------------------------------

DROP TABLE if exists data_repository CASCADE;

CREATE TABLE data_repository (

id serial PRIMARY KEY ,

name text ,

accession_number text ,

submission_date timestamp ,

public_release_date timestamp ,

project_id integer REFERENCES project on DELETE CASCADE

);

--------------------------------------

-- TABLE protocol

--------------------------------------

DROP TABLE if exists protocol CASCADE;

CREATE TABLE protocol (

id serial PRIMARY KEY ,

name text ,

type text ,

description text ,

uri text ,

version text

);
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--------------------------------------

-- TABLE protocol_parameter

--------------------------------------

DROP TABLE if exists protocol_parameter CASCADE;

CREATE TABLE protocol_parameter (

id serial PRIMARY KEY ,

protocol_id integer REFERENCES protocol on DELETE CASCADE ,

name text ,

value text ,

ontology_ref_id integer REFERENCES ontology_ref on DELETE SET NULL

);

--------------------------------------

-- TABLE publication

--------------------------------------

Create table publication(

id serial primary key ,

pubmed_id text ,

doi text ,

author_list jsonb ,

title text ,

status text ,

project_id integer REFERENCES project on DELETE CASCADE

);

--------------------------------------

-- TABLE sample_assay_protocol

--------------------------------------

DROP TABLE if exists sample_assay_protocol CASCADE;

CREATE TABLE sample_assay_protocol (

id SERIAL PRIMARY KEY ,

protocol_id integer REFERENCES protocol ON DELETE CASCADE ,

sample_assay_id integer REFERENCES sample_assay ON DELETE CASCADE ,

CONSTRAINT unq_sample_assay_protocol_ref UNIQUE (protocol_id ,sample_assay_id)

);

-----------------------------------

-- INDEXES

-----------------------------------

CREATE INDEX subject_name_index ON subject (name);

CREATE INDEX subject_project_index ON subject (project_id );

CREATE INDEX sample_name_index ON sample (name);

CREATE INDEX sample_subject_index ON sample (subject_id );

CREATE INDEX sample_sample_matrix_index ON sample (sample_matrix );

CREATE INDEX sample_assay_assay_index ON sample_assay (assay_id );

CREATE INDEX sample_assay_sample_index ON sample_assay (sample_id );

CREATE INDEX sample_assay_sample_file_name_index ON sample_assay (sample_file_name );

CREATE INDEX sample_assay_sample_base_name_index ON sample_assay (sample_base_name );

CREATE INDEX metadata_field_project_index ON metadata_field (project_id );

CREATE INDEX metadata_field_name_index ON metadata_field (name);

CREATE INDEX metadata_value_sample_index ON metadata_value (sample_id );

CREATE INDEX metadata_value_metadata_field_index ON metadata_value (metadata_field_id );

CREATE INDEX annotation_compound_compound_index ON annotation_compound (compound_id );

CREATE INDEX annotation_compound_harmonised_annotation_index ON annotation_compound (harmonised_annotation_id );

CREATE INDEX harmonised_annotation_annotation_method_index ON harmonised_annotation (annotation_method_id );

CREATE INDEX harmonised_annotation_assay_index ON harmonised_annotation (assay_id );

CREATE INDEX harmonised_cpd_name_index ON harmonised_annotation (cpd_name );

CREATE INDEX annotation_cpd_name_index ON annotation (cpd_name );

CREATE INDEX annotation_version_index ON annotation (version );

CREATE INDEX annotation_harmonised_annotation_index ON annotation (harmonised_annotation_id );

CREATE INDEX compound_class_compound_compound_id_index ON compound_class_compound (compound_id );

CREATE INDEX compound_class_compound_compound_class_id_index ON compound_class_compound (compound_class_id );

CREATE INDEX compound_external_db_compound_index ON compound_external_db (compound_id );

CREATE INDEX compound_external_db_external_db_index ON compound_external_db (external_db_id );

CREATE INDEX abundance_value_sample_assay_index ON abundance_value (sample_assay_id );

CREATE INDEX abundance_value_feature_metadata_index ON abundance_value (feature_id );
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CREATE INDEX abundance_value_intensity_index ON abundance_value (intensity );

CREATE INDEX feature_metadata_feature_name_index ON feature (feature_name );

CREATE INDEX feature_metadata_rt_average_index ON feature (rt_average );

CREATE INDEX feature_metadata_mz_average_index ON feature (mz_average );

CREATE INDEX feature_metadata_annotation_index on feature (annotation_id );

CREATE INDEX publication_project_index ON publication (project_id );

CREATE INDEX data_repository_project_index ON data_repository (project_id );

CREATE INDEX task_run_saved_query_index ON task_run (saved_query_id );

CREATE INDEX ontology_ref_ontology_source_index ON ontology_ref (ontology_source_id );

CREATE INDEX ontology_ref_compound_class_kingdom_index ON ontology_ref (compound_class_kingdom_id );

CREATE INDEX ontology_ref_compound_class_categoy_index ON ontology_ref (compound_class_category_id );

CREATE INDEX ontology_ref_compound_class_main_class_index ON ontology_ref (compound_class_main_class_id );

CREATE INDEX ontology_ref_compound_class_subclass_index ON ontology_ref (compound_class_sub_class_id );

CREATE INDEX ontology_ref_compound_class_direct_parent_index ON ontology_ref (compound_class_direct_parent_id );

CREATE INDEX ontology_ref_harmonised_metadata_field_index ON harmonised_metadata_field (ontology_ref_id );

CREATE INDEX pipeline_run_id ON task_run (pipeline_run_id );

Listing A.2: config.ini for desktop use
1 [HPC]

2 user =

3 password =

4

5 [RDS_ACCOUNT]

6 username =

7 password =

8

9 [TEST]

10 username = testuser

11

12 [DB]

13 dir = /Library/PostgreSQL/12/data/

14 rdbms = postgresql

15 user =

16 password =

17 name = phenomedb

18 host = 127.0.0.1

19 test = phenomedb_test

20 beta = phenomedb_beta

21 port = 5433

22 pool_size = 10

23 max_overflow = 20

24 create_script = phenomedb_v0.9.3_postgres.sql

25

26 [WEBSERVER]

27 url = http:// localhost:8080/

28

29 [API]

30 custom_root = custom

31

32 [REDIS]

33 port = 6380

34 host = 127.0.0.1

35 user = default

36 password =

37 memory_expired_seconds = 86400

38

39 [R]

40 exec_path = /usr/local/bin/R

41 script_directory = /tmp/phenomedb/r_scripts/

42

43 [SMTP]

44 enabled = true

45 host =

46 port = 25

47 user =

48 password =

49 from =
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50

51 [DATA]

52 project_data_base_path = /mnt/projects/

53 app_data = ./ phenomedb/appdata/

54 test_data = ./ phenomedb/phenomedb -dev/data/test/

55 compounds = ./ phenomedb/phenomedb -dev/data/compounds/

56 task_directory = ./ phenomedb/phenomedb -dev/phenomedb/tasks/

57 sql = ./ phenomedb/phenomedb -dev/sql/

58 config = ./ phenomedb/phenomedb -dev/data/config/

59 cache = ../ appdata/cache/

60

61 [API_KEYS]

62 metabolights =

63 chemspider =

64

65 [LOGGING]

66 dir = /tmp/phenomelog/

67

68 [PIPELINES]

69 pipeline_manager = apache -airflow

70 pipeline_folder = ./ phenonmedb/phenomedb -dev/dags

71 pipeline_manager_user = admin

72 pipeline_manager_password = testpass

73 pipeline_manager_api_host = localhost:8080

74 task_spec_file = ./ phenomedb/phenomedb -dev/phenomedb/task_typespec.json

75 docker = false

Listing A.3: task spec.json
1 {

2 "compounds.ParseKEGGtoPubchemCIDTask": {

3 "output_file_path": {"type":"file_path_remote","label": "Output file path","remote_folder_path": "exports","required":

true,"project_folder": false}

4 },

5 "compounds.ParseHMDBXMLtoCSV": {

6 "input_file_path": {"type":"file_upload","label": "Input file path","remote_folder_path": ".","required": true,"

project_folder": false},

7 "output_file_path": {"type":"file_upload","label": "Output file path","remote_folder_path": ".","required": true,"

project_folder": false}

8 },

9 "compounds.ImportROICompounds": {

10 "roi_file": {"type":"file_upload","label": "roi_file file","remote_folder_path": "uploads","required": true,"

project_folder": false},

11 "assay_name": {"type":"dropdown","label": "Assay Name (only for LC-MS)","options": {"LC -QqQ Bile Acids": "LC-QqQ Bile

Acids","LC -QqQ Amino Acids": "LC-QqQ Amino Acids","LC-QqQ Tryptophan": "LC-QqQ Tryptophan","LC-QqQ Oxylipins": "LC -

QqQ Oxylipins","LPOS": "LPOS","HPOS": "HPOS","RPOS": "RPOS","LNEG": "LNEG","RNEG":"RNEG"},"required":false},

12 "roi_version": {"type":"float","label": "ROI version (eg 1.0)","required": true},

13 "update_names": {"type":"float","label": "Update the names to refmet ?","required": false}

14 },

15 "compounds.ImportBrukerBILISACompounds": {

16 "lipoprotein_file": {"type":"file_upload","label": "Lipoprotein long names file","remote_folder_path": "uploads","required

": true,"project_folder": false},

17 "version": {"type":"float","label": "Version (eg 1.0)","required": true}

18 },

19 "imports.ImportSampleManifest": {

20 "project_name": {"type":"project","label": "Project", "required":true},

21 "sample_manifest_path": {"type":"file_upload","label": "Sample manifest file","remote_folder_path": "uploads","required":

true,"project_folder": false},

22 "columns_to_ignore": {"type":"list","label": "Comma -separated list of subject columns to ignore"}

23 },

24 "imports.ImportBrukerIVDRAnnotations": {

25 "project_name": {"type":"project","label": "Project","required":true},

26 "annotation_method": {"type":"dropdown","label": "IVDR annotation method","options": {"BI -QUANT": "Bruker IVDR BI -QUANT","

BI-LISA": "Bruker IVDR BI-LISA"},"required": true},

27 "unified_csv_path": {"type":"file_upload","label": "Unified CSV file","remote_folder_path": "uploads","required": true,"

project_folder": false},

28 "sample_matrix": {"type":"dropdown","label": "Sample matrix","options": {"Serum": "Serum","Plasma": "Plasma","Urine": "

Urine"},"required": true}
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29 },

30 "imports.ImportPeakPantherAnnotations": {

31 "project_name": {"type":"project","label": "Project","required":true},

32 "intensity_data_csv_path": {"type":"file_upload","label": "Intensity CSV file","remote_folder_path": "uploads","required":

true,"project_folder": false},

33 "sample_metadata_csv_path": {"type":"file_upload","label": "Feature Metadata CSV file","remote_folder_path": "uploads","

required": false,"project_folder": false},

34 "roi_csv_path": {"type":"file_upload","label": "PPR ROI CSV file","remote_folder_path": "uploads","required": false,"

project_folder": false},

35 "sample_matrix": {"type":"dropdown","label": "Sample matrix","options": {"serum": "serum","plasma": "plasma","urine": "

urine","faecal": "faecal","organic tissue": "organic tissue","cell culture": "cell culture","nasal swab": "nasal swab

"},"required": true},

36 "assay_name": {"type":"dropdown","label": "Assay","options": {"LPOS": "LPOS","HPOS": "HPOS","RPOS": "RPOS","LNEG": "LNEG",

"RNEG":"RNEG"},"required": true},

37 "roi_version": {"type":"float","label": "ROI version (eg 1.0)","required": true},

38 "batch_corrected_data_csv_path": {"type":"file_upload","label": "Batch corrected data CSV file","remote_folder_path": "

uploads","required": false,"project_folder": false}

39 },

40 "imports.ImportMetadata": {

41 "project_name": {"type":"project","label": "Project","required":true},

42 "filepath": {"type":"file_upload","label": "File path","remote_folder_path": "uploads","required": true,"project_folder":

false},

43 "id_type": {"type":"dropdown","label": "Match on Subject or Sample ?","options": {"subject": "subject","sample": "sample"},

"required": true},

44 "id_column": {"type":"str","label": "Column containing the Sample/Subject name to match on (default ’ID_for_matching ’)","

required":true},

45 "columns_to_import": {"type":"list","label": "Specify columns to include", "required": false}

46 },

47 "metadata.CurateMetadataField": {

48 "project_name": {"type":"project","label": "Project","required":true},

49 "metadata_field_name": {"type":"str","label": "Metadata field raw name","required":true},

50 "harmonised_metadata_field_name": {"type":"str","label": "Metadata Curated Field","required":true},

51 "inbuilt_transform_name": {"type":"dropdown","label": "Inbuilt transform function","options": {"Simple Assignment": "

simple_assignment","Transform DOB and Sampling Date to Age": "transform_dob_and_sampling_date_to_age"},"required":

false},

52 "lambda_function_string": {"type":"lambda","label": "Custom Lambda function eg ’lambda x : x * 2’","required":false}

53 },

54 "cache.CreateSavedQueryDataframeCache": {

55 "saved_query_id": {"type":"float","label": "ID of the SavedQuery","required":true},

56 "output_model": {"type":"str","label": "The model to use, defaults to AnnotatedFeature","required":false},

57 "master_unit": {"type":"str","label": "Master unit to convert units to","required":false},

58 "harmonise_annotations": {"type":"bool","label": "Harmonise annotations?, defaults to False","required":false},

59 "class_type": {"type":"dropdown","label": "Which class source ?","options": {"":"","hmdb": "hmdb","classyfire": "classyfire

","lipidmaps": "lipidmaps"}, "required": false},

60 "class_level": {"type":"dropdown","label": "Which class level to aggregate ?","options": {"":"","kingdom": "kingdom","

category": "category","main_class": "main_class","sub_class": "sub_class","direct_parent": "direct_parent"}, "

required": false},

61 "aggregate_function": {"type":"dropdown","label": "Which aggregation function ?","options": {"":"","mean": "mean","max": "

max","min": "min","median": "median","sum": "sum"}, "required": false},

62 "correction_type": {"type":"dropdown","label": "Correction type","options": {"":"","LTR": "Long Term Reference (LTR)","SR"

: "Study Reference (SR)"},"required":false},

63 "reload_cache": {"type":"dropdown","label": "Reload Cache?","options": {"true": "true","false": "false"},"required":false}

64 },

65 "cache.CreateSavedQuerySummaryStatsCache": {

66 "saved_query_id": {"type":"float","label": "ID of the SavedQuery","required":true}

67 },

68 "analysis.RunPCA": {

69 "saved_query_id": {"type":"float","label": "ID of the SavedQuery","required":true},

70 "max_components": {"type":"float","label": "The max number of Principle Components, defaults to 10","required":false},

71 "transform": {"type":"dropdown","label": "Which transformation to use","options": {"":"","log": "log","sqrt":"sqrt"}, "

required": false},

72 "scaling": {"type":"dropdown","label": "Which scaling to use","options": {"":"","med":"median -fold -change","mc": "mean -

centred","uv": "unit -variance","pa": "pareto"}, "required": false},

73 "minQ2": {"type":"float","label": "minQ2 for number of PC optimisations, defaults to 10","required":false},

74 "annotations_only": {"type":"bool","label": "Use only those measurements with annotations, defaults to False","required":

false},

75 "saved_query_model": {"type":"dropdown","label": "Which query model?","options": {"AnnotatedFeature": "AnnotatedFeature","

CompoundClass": "CompoundClass"}, "required": false},

76 "class_type": {"type":"dropdown","label": "Which class source ?","options": {"":"","hmdb": "hmdb","classyfire": "classyfire
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","lipidmaps": "lipidmaps"}, "required": false},

77 "class_level": {"type":"dropdown","label": "Which class level to aggregate ?","options": {"":"","kingdom": "kingdom","

category": "category","main_class": "main_class","sub_class": "sub_class","direct_parent": "direct_parent"}, "

required": false},

78 "aggregate_function": {"type":"dropdown","label": "Which aggregation function ?","options": {"":"","mean": "mean","max": "

max","min": "min","median": "median","sum": "sum"}, "required": false},

79 "correction_type": {"type":"dropdown","label": "Correction type","options": {"":"","LTR": "Long Term Reference (LTR)","SR"

: "Study Reference (SR)"},"required":false},

80 "harmonise_annotations": {"type":"dropdown","label": "Harmonise annotations ?","options": {"true": "true","false": "false"}

,"required":false},

81 "reload_cache": {"type":"dropdown","label": "Reload Cache?","options": {"false": "false","true": "true"},"required":false}

,

82 "upstream_task_run_id": {"type":"float","label": "Upstream task run ID","required":false},

83 "exclude_features_not_in_all_projects": {"type":"dropdown","label": "Exclude features not in all projects ?","options": {"

true": "true","false": "false"},"required":false},

84 "sample_types": {"type":"list","label": "Which SampleTypes to include? ie StudySample,StudyPool,ExternalReference.

Defaults to StudySample,StudyPool", "required": false},

85 "assay_roles": {"type":"list","label": "Which AssayRoles to include? ie Assay,LinearityReference,PrecisionReference.

Defaults to Assay,PrecisionReference", "required": false}

86 },

87 "analysis.RunPCPR2": {

88 "saved_query_id": {"type":"float","label": "ID of the SavedQuery","required":true},

89 "pct_threshold": {"type":"float","label": "How much variability do you wish to explain, defaults to 0.95","required":false

},

90 "exclude_na_metadata_columns": {"type":"bool","label": "Whether to exclude metadata columns with NA values, defaults to

False","required":false},

91 "exclude_na_metadata_samples": {"type":"bool","label": "Whether to exclude samples with NA metadata values, defaults to

False", "required": false},

92 "columns_to_include": {"type":"list","label": "Specify columns to explicitly include, defaults to Unique Batch - highly

correlated columns must be analysed separately", "required": false},

93 "columns_to_exclude": {"type":"list","label": "Specify columns to explicitly ignore", "required": false},

94 "scaling": {"type":"dropdown","label": "Which scaling to use","options": {"":"","med":"median -fold -change","mc": "mean -

centred","uv": "unit -variance","pa": "pareto"}, "required": false},

95 "transform": {"type":"dropdown","label": "Which transformation to use","options": {"":"","log": "log","sqrt":"sqrt"}, "

required": false},

96 "include_harmonised_metadata": {"type":"bool","label": "Whether to include harmonised metadata, defaults to True", "

required": false},

97 "only_harmonised_metadata": {"type":"bool","label": "Whether to include only harmonised metadata, defaults to True", "

required": false},

98 "only_metadata": {"type":"bool","label": "Whether to include only metadata, defaults to True", "required": false},

99 "saved_query_model": {"type":"dropdown","label": "Which query model?","options": {"AnnotatedFeature": "AnnotatedFeature","

CompoundClass": "CompoundClass"}, "required": false},

100 "class_type": {"type":"dropdown","label": "Which class source ?","options": {"":"","hmdb": "hmdb","classyfire": "classyfire

","lipidmaps": "lipidmaps"}, "required": false},

101 "class_level": {"type":"dropdown","label": "Which class level to aggregate ?","options": {"":"","kingdom": "kingdom","

category": "category","main_class": "main_class","sub_class": "sub_class","direct_parent": "direct_parent"}, "

required": false},

102 "aggregate_function": {"type":"dropdown","label": "Which aggregation function ?","options": {"":"","mean": "mean","max": "

max","min": "min","median": "median","sum": "sum"}, "required": false},

103 "correction_type": {"type":"dropdown","label": "Correction type","options": {"":"","LTR": "Long Term Reference (LTR)","SR"

: "Study Reference (SR)"},"required":false},

104 "harmonise_annotations": {"type":"dropdown","label": "Harmonise annotations ?","options": {"true": "true","false": "false"}

,"required":false},

105 "reload_cache": {"type":"dropdown","label": "Reload Cache?","options": {"false": "false","true": "true"},"required":false}

,

106 "upstream_task_run_id": {"type":"float","label": "Upstream task run ID","required":false},

107 "exclude_features_not_in_all_projects": {"type":"dropdown","label": "Exclude features not in all projects ?","options": {"

true": "true","false": "false"},"required":false},

108 "sample_types": {"type":"list","label": "Which SampleTypes to include? ie StudySample,StudyPool,ExternalReference.

Defaults to StudySample", "required": false},

109 "assay_roles": {"type":"list","label": "Which AssayRoles to include? ie Assay,LinearityReference,PrecisionReference.

Defaults to Assay", "required": false}

110 },

111 "analysis.RunMWAS": {

112 "saved_query_id": {"type":"float","label": "ID of the SavedQuery","required":true},

113 "model_Y_variable": {"type":"str","label": "Model Y Variable (outcome)","required":false},

114 "model_X_variables": {"type":"list","label": "Model X Variables (covariates)", "required": false},

115 "method": {"type":"dropdown","label": "Which association method to use","options": {"linear":"linear","logistic": "

logistic","pearson": "pearson","spearman": "spearman","kendall":"kendall"}, "required": false},
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116 "multiple_correction": {"type":"dropdown","label": "Which multiple correction method to use","options": {"":"","BH": "

Benjamini and Hochberg", "bonferroni": "Bonferroni", "holm": "Holm", "hochberg": "Hochberg", "hommel": "Hommel", "BY"

: "Benjamini and Yekutieli", "qvalues": "Q Values"}, "required": false},

117 "exclude_na_metadata_samples": {"type":"bool","label": "Whether to exclude samples with NA metadata values, defaults to

False", "required": false},

118 "scaling": {"type":"dropdown","label": "Which scaling to use","options": {"":"","med":"median -fold -change","mc": "mean -

centred","uv": "unit -variance","pa": "pareto"}, "required": false},

119 "transform": {"type":"dropdown","label": "Which transformation to use","options": {"":"","log": "log","sqrt":"sqrt"}, "

required": false},

120 "saved_query_model": {"type":"dropdown","label": "Which query model?","options": {"AnnotatedFeature": "AnnotatedFeature","

CompoundClass": "CompoundClass"}, "required": false},

121 "class_type": {"type":"dropdown","label": "Which class source ?","options": {"":"","hmdb": "hmdb","classyfire": "classyfire

","lipidmaps": "lipidmaps"}, "required": false},

122 "class_level": {"type":"dropdown","label": "Which class level to aggregate ?","options": {"":"","kingdom": "kingdom","

category": "category","main_class": "main_class","sub_class": "sub_class","direct_parent": "direct_parent"}, "

required": false},

123 "aggregate_function": {"type":"dropdown","label": "Which aggregation function ?","options": {"":"","mean": "mean","max": "

max","min": "min","median": "median","sum": "sum"}, "required": false},

124 "correction_type": {"type":"dropdown","label": "Correction type","options": {"":"","LTR": "Long Term Reference (LTR)","SR"

: "Study Reference (SR)"},"required":false},

125 "harmonise_annotations": {"type":"dropdown","label": "Harmonise annotations ?","options": {"true": "true","false": "false"}

,"required":false},

126 "reload_cache": {"type":"dropdown","label": "Reload Cache?","options": {"false": "false","true": "true"},"required":false}

,

127 "upstream_task_run_id": {"type":"float","label": "Upstream task run ID","required":false},

128 "exclude_features_not_in_all_projects": {"type":"dropdown","label": "Exclude features not in all projects ?","options": {"

true": "true","false": "false"},"required":false},

129 "model_Y_min": {"type":"float","label": "Model Y min, excludes samples with Y below","required":false},

130 "model_Y_max": {"type":"float","label": "Model Y max, excludes samples with Y above","required":false},

131 "model_Y_ci": {"type":"float","label": "Model Y confidence interval, ie 0.9, excludes samples outside range","required":

false}

132 },

133 "analysis.RunNPYCReport": {

134 "saved_query_id": {"type":"float","label": "ID of the SavedQuery","required":true},

135 "report_name": {"type":"dropdown","label": "Which report to run","options": {"multivariate_report": "multivariate_report",

"feature summary": "feature summary","sample summary": "sample summary","correlation to dilution": "correlation to

dilution","batch correction assessment": "batch correction assessment","batch correction summary": "batch correction

summary","feature selection": "feature selection","final report": "final report","final report abridged": "final

report abridged","final report targeted abridged": "final report targeted abridged"}, "required": true},

136 "with_exclusions": {"type":"bool","label": "If True, only report on features not masked by the sample and feature masks,

defaults to False","required":false},

137 "with_artifactual_filtering": {"type":"bool","label": "If None use the value from Attributes[’artifactualFilter ’]. If True

apply artifactual filtering to the feature selection report and final report, defaults to None", "required": false},

138 "samples_to_exclude": {"type":"list","label": "Specify sample ids to explicitly ignore", "required": false},

139 "exclusion_comments": {"type":"list","label": "Exclusion comments, same order as samples_to_exclude", "required": false},

140 "exclude_on": {"type":"bool","label": "Whether to exclude samples", "required": false},

141 "transform": {"type":"dropdown","label": "Which transformation to use","options": {"":"","log": "log","sqrt":"sqrt"}, "

required": false},

142 "scaling": {"type":"dropdown","label": "Which scaling to use","options": {"":"","med":"median -fold -change","mc": "mean -

centred","uv": "unit -variance","pa": "pareto"}, "required": false},

143 "comment": {"type":"str","label": "Comment for the correction","required":false},

144 "class_type": {"type":"dropdown","label": "Which class source ?","options": {"":"","hmdb": "hmdb","classyfire": "classyfire

","lipidmaps": "lipidmaps"}, "required": false},

145 "class_level": {"type":"dropdown","label": "Which class level to aggregate ?","options": {"":"","kingdom": "kingdom","

category": "category","main_class": "main_class","sub_class": "sub_class","direct_parent": "direct_parent"}, "

required": false},

146 "aggregate_function": {"type":"dropdown","label": "Which aggregation function ?","options": {"":"","mean": "mean","max": "

max","min": "min","median": "median","sum": "sum"}, "required": false},

147 "correction_type": {"type":"dropdown","label": "Correction type","options": {"":"","LTR": "Long Term Reference (LTR)","SR"

: "Study Reference (SR)"},"required":false},

148 "harmonise_annotations": {"type":"dropdown","label": "Harmonise annotations ?","options": {"true": "true","false": "false"}

,"required":false},

149 "reload_cache": {"type":"dropdown","label": "Reload Cache?","options": {"false": "false","true": "true"},"required":false}

,

150 "upstream_task_run_id": {"type":"float","label": "Upstream task run ID","required":false},

151 "exclude_features_not_in_all_projects": {"type":"dropdown","label": "Exclude features not in all projects ?","options": {"

false": "false","true": "true"},"required":false}

152 },

153 "batch_correction.RunCombatCorrection": {
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154 "saved_query_id": {"type":"float","label": "ID of the SavedQuery","required":true},

155 "correction_type": {"type":"dropdown","label": "Correction type","options": {"":"","LTR": "Long Term Reference (LTR)","SR"

: "Study Reference (SR)"},"required":false},

156 "model_Y_variable": {"type":"str","label": "Model Y Variable to preserve","required":false},

157 "model_X_variables": {"type":"list","label": "Model X Variables to preserve", "required": false},

158 "batch_variable": {"type":"str","label": "Batch variable to use for correction","required":false},

159 "comment": {"type":"str","label": "Comment for the correction","required":false},

160 "transform": {"type":"dropdown","label": "Which transformation to use","options": {"":"","log": "log","sqrt":"sqrt"}, "

required": false},

161 "scaling": {"type":"dropdown","label": "Which scaling to use","options": {"":"","med":"median -fold -change","mc": "mean -

centred","uv": "unit -variance","pa": "pareto"}, "required": false},

162 "reload_cache": {"type":"dropdown","label": "Reload Cache?","options": {"false": "false","true": "true"},"required":false}

,

163 "harmonise_annotations": {"type":"dropdown","label": "Harmonise annotations ?","options": {"true": "true","false": "false"}

,"required":false}

164 },

165 "batch_correction.RunNormResidualsMM": {

166 "saved_query_id": {"type":"float","label": "ID of the SavedQuery","required":true},

167 "correction_type": {"type":"dropdown","label": "Correction type","options": {"":"","LTR": "Long Term Reference (LTR)","SR"

: "Study Reference (SR)"},"required":false},

168 "columns_fixed_to_keep": {"type":"list","label": "Fixed effects variables to preserve (ie model vars)", "required": false}

,

169 "columns_fixed_to_correct": {"type":"list","label": "Fixed effects variables to correct", "required": false},

170 "columns_random_to_correct": {"type":"list","label": "Random effects variables to correct (ie Project/Batch)", "required":

false},

171 "heteroscedastic_columns": {"type":"list","label": "List of random effects that are heirarchical (ie Project/Batch)", "

required": false},

172 "identifier_column": {"type":"str","label": "Unique ID column to use","required":false},

173 "comment": {"type":"str","label": "Comment for the correction","required":false},

174 "transform": {"type":"dropdown","label": "Which transformation to use","options": {"":"","log": "log","sqrt":"sqrt"}, "

required": false},

175 "scaling": {"type":"dropdown","label": "Which scaling to use","options": {"":"","med":"median -fold -change","mc": "mean -

centred","uv": "unit -variance","pa": "pareto"}, "required": false},

176 "reload_cache": {"type":"dropdown","label": "Reload Cache?","options": {"false": "false","true": "true"},"required":false}

,

177 "harmonise_annotations": {"type":"dropdown","label": "Harmonise annotations ?","options": {"true": "true","false": "false"}

,"required":false}

178 },

179 "pipelines.RebuildPipelinesFromDB":{

180 "type": {"type":"dropdown","label": "Type - dynamic or all","options": {"all": "all","dynamic": "dynamic"},"required":

false}

181 },

182 "pipelines.GenerateSingleTaskPipelines":{},

183 "pipelines.NPCSetup":{},

184 "pipelines.GenerateMetadataImportPipeline":{},

185 "pipelines.GenerateMetadataHarmonisationPipeline":{},

186 "pipelines.BatchCorrectionComparisonPipelineGenerator":{},

187 "pipelines.RunBatchCorrectionComparisonPipeline":{

188 "saved_query_id": {"type":"float","label": "ID of the SavedQuery","required":true},

189 "correction_type": {"type":"dropdown","label": "Correction type","options": {"":"","SR": "Study Reference (SR)","LTR": "

Long Term Reference (LTR)"},"required":false},

190 "run_combat_and_norm_mixedresiduals": {"type":"dropdown","label": "Run NormResidualsMM and COMBAT batch correction methods

","options": {"false": "false","true": "true"},"required":false},

191 "variable_of_interest": {"type":"str","label": "Variable of interest","required":false},

192 "metadata_covariates": {"type":"list","label": "Metadata covariates","required":false},

193 "reload_cache": {"type":"dropdown","label": "Reload Cache?","options": {"false": "false","true": "true"},"required":false}

194 }

195 }

Listing A.4: JSON definition for age-analysis
1 {

2 "units": [

3 ["noUnit", "no unit, for dimensionless variables (ie untargeted LC -MS)"],

4 ["-/-", "no unit"],

5 ["nM", "nano -mole"],

6 ["$\mu$M", "micro -moles"],

7 ["M", "Mole"],
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Figure A.1: Home screen of Apache-Airflow, with registered DAGs listed. The PhenomeDB
plugin menu bar can be seen at the top.

Figure A.2: Airflow view for ImportPeakPantheRAnnotations, with 2 pipelines executed, one
red (failed) and one green (success). The button to trigger the pipeline can be seen in the top
right (’play’ button). Clicking each task square allows for viewing the log file or rerunning the
task by changing the task status.
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Figure A.3: Apache-Airflow view for executing a pipeline with a JSON configuration, and
the FINGER LPOS config shown as example

8 ["fg/$\mu$L", "femtograms per microlitre"],

9 ["ng/mL", "nanograms per millilitre"],

10 ["mg/dL", "milligrams per decilitre"],

11 ["nmol/L", "nanomoles per litre"],

12 ["mmol/L", "millimoles per litre"],

13 ["Years", "Discrete number of years, ie Age"],

14 ["seconds", "seconds"]

15 ],

16 "annotation_methods": [

17 ["Bi -Quant -P","Bruker IVDr Bi -Quant Blood Method"],

18 ["Bi -LISA", "Bruker IVDr Lipoprotein Blood Method"],

19 ["PPR", "PeakPanther RT/mz ion match"]

20 ],

21 "harmonised_metadata_fields": [

22 ["Age","Years","numeric"],

23 ["Sex", "noUnit", "text"],

24 ["BMI", "noUnit", "numeric"]

25 ],

26 "assays": [

27 ["HPOS","MS","N","-ve","Liquid Chromatography MS - positive - HILIC","mass spectrometry","relative"],

28 ["LPOS", "MS", "N", "+ve", "Liquid Chromatography MS - positive - lipid","mass spectrometry","relative"],

29 ["LNEG", "MS", "N", "-ve", "Liquid Chromatography MS - negative - lipid","mass spectrometry","relative"],

30 ["NOESY", "NMR", "N", null, "NOESY NMR", "nuclear magnetic resonance","absolute"],

31 ],

32 "lab": ["National Phenome Centre","Imperial College London"],

33 "projects": [

34 ["AIRWAVE","npc -airwave"],

35 ["AIRWAVE2","npc -airwave2"],

36 ["FINGER","npc -fingers"],

37 ["MASALA","npc -masala"],

38 ],

39 "compounds": [

40 {

41 "task_class": "ImportROICompounds",

42 "roi_file": "HPOS_ROI_V_3_1_1.csv",

43 "assay_name": "HPOS",

44 "roi_version": "3.1.1",

45 "update_names": true

46 },

47 {

48 "task_class": "ImportROICompounds",

49 "roi_file": "LPOS_ROI_V_5_1_0.csv",

50 "assay_name": "LPOS",
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Figure A.4: Log view of the ImportPeakPantherAnnotations task, with example output of a
task (importing FINGER LPOS annotations)
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51 "roi_version": "5.1.0",

52 "update_names": true,

53 "na_none": true,

54 "na_values": ["na","nan"]

55 },

56 {

57 "task_class": "ImportROICompounds",

58 "roi_file": "LNEG_ROI_V_5_1_1.csv",

59 "assay_name": "LNEG",

60 "roi_version": "5.1.1",

61 "update_names": true,

62 "na_none": true,

63 "na_values": ["na","nan"]

64 },

65 {

66 "task_class": "ImportBrukerBiLISACompounds",

67 "bilisa_file": "ivdr -bilisa -all.csv",

68 "version": "2.0"

69 },

70 {

71 "task_class": "ImportBrukerBiQuantCompounds",

72 "biquant_compounds_file": "ivdr -bi -quant -all.csv",

73 "version": "2.0"

74 },

75 ],

76 "compound_external_dbs": [

77 ["LipidMAPS","http://www.lipidmaps.org/data/LMSDRecord.php?LMID={}"],

78 ["ChemSpider","http://www.chemspider.com/Chemical -Structure.{}.html"],

79 ["HMDB","http://www.hmdb.ca/metabolites/{}"],

80 ["CAS","http:// webbook.nist.gov/cgi/cbook.cgi?ID={}"],

81 ["PubChem CID","https:// pubchem.ncbi.nlm.nih.gov/compound/{}"],

82 ["ChEMBL","https://www.ebi.ac.uk/chembl/compound/inspect/{}"],

83 ["ChEBI","http://www.ebi.ac.uk/chebi/searchId.do?chebiId={}"],

84 ["KEGG","https://www.genome.jp/dbget -bin/www_bget?cpd:{}"],

85 ["Refmet","https://www.metabolomicsworkbench.org/databases/refmet/index.php"]

86 ]

87 }
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A.2 Appendix for chapter 3

Figure A.5: Screenshot the Compound list view, showing the first 22 compounds in the
database. The compounds can be searched using the search bar *JMS1

Listing A.5: Taken from: https://wiki.postgresql.org/wiki/Aggregate Median|

CREATE FUNCTION _final_median(anyarray) RETURNS float8 AS $$

WITH q AS

(

SELECT val

FROM unnest($1) val

WHERE VAL IS NOT NULL

ORDER BY 1

),

cnt AS

(

SELECT COUNT (*) as c FROM q

)

SELECT AVG(val):: float8

FROM

1This view was developed by Jazz Mack Smith under my direction
2This view was developed by Jazz Mack Smith under my direction
3This view was developed by Jazz Mack Smith under my direction
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Figure A.6: Screenshot the Compound view2for Glycoursodeoxycholic acid, with links to
external databases, annotation views, and the mapped classes, and the structure created with
the NCI Cactus Chemical Property web-service (Nicklaus 2022)

.

290



Figure A.7: Screenshot the HMDB sub class for Glycinated Bile acids and derivatives, with
links to the other annotated Compounds in the same HMDB sub class.

.

Figure A.8: Screenshot the Annotation view for Glycoursodeoxycholic acid, with imported
data, including the JSON PeakPanther ROI entry, and form for viewing and storing annotation
evidence records3.
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(

SELECT val FROM q

LIMIT 2 - MOD(( SELECT c FROM cnt), 2)

OFFSET GREATEST(CEIL(( SELECT c FROM cnt) / 2.0) - 1,0)

) q2;

$$ LANGUAGE sql IMMUTABLE;

CREATE AGGREGATE median(anyelement) (

SFUNC=array_append ,

STYPE=anyarray ,

FINALFUNC=_final_median ,

INITCOND =’{}’

);

Listing A.6: Query to get the integrated counts of participants stratified by sex

select sq.harmonised_text_value , sum(sq.count) from (

select mv.harmonised_text_value , count(su.id) as count

from subject su

inner join sample s on su.id = s.subject_id

inner join project p on p.id = su.project_id

inner join metadata_value mv on s.id = mv.sample_id

inner join metadata_field mf on mf.id = mv.metadata_field_id

inner join harmonised_metadata_field hmf on hmf.id = mf.harmonised_metadata_field_id

where p.name in (’AIRWAVE ’,’AIRWAVE2 ’,’FINGER ’,’MASALA ’)

and s.sample_matrix in (’plasma ’,’serum ’)

and s.sample_type = ’StudySample ’

and mv.harmonised_text_value in (’Male ’,’Female ’)

group by mv.harmonised_text_value , su.id) sq

group by sq.harmonised_text_value;

Listing A.7: Query to get the integrated counts of participants stratified by project and sex

select sq.project_name , sq.harmonised_text_value , sum(sq.count) from (

select p.name as project_name , mv.harmonised_text_value , count(su.id) as count

from subject su

inner join sample s on su.id = s.subject_id

inner join project p on p.id = su.project_id

inner join metadata_value mv on s.id = mv.sample_id

inner join metadata_field mf on mf.id = mv.metadata_field_id

inner join harmonised_metadata_field hmf on hmf.id = mf.harmonised_metadata_field_id

where p.name in (’AIRWAVE ’,’AIRWAVE2 ’,’FINGER ’,’MASALA ’)

and s.sample_matrix in (’plasma ’,’serum ’)

and s.sample_type = ’StudySample ’

and mv.harmonised_text_value in (’Male ’,’Female ’)

group by p.name , mv.harmonised_text_value , su.id) sq

group by sq.project_name , sq.harmonised_text_value

order by sq.project_name , sq.harmonised_text_value;

Listing A.8: Query to get the abundance value counts per assay and project

select ha.cpd_id , ha.cpd_name ,p.name count (1) as count

from sample s

inner join sample_assay sa on s.id = sa.sample_id

inner join abundance_value af on sa.id = af.sample_assay_id

inner join subject su on su.id = s.subject_id

inner join project p on p.id = su.project_id

inner join feature fm on af.feature = fm.id

inner join annotation an on an.id = fm.annotation_id

inner join harmonised_annotation ha on ha.id = an.harmonised_annotation_id

inner join annotation_compound ac on ac.harmonised_annotation_id = ha.id

inner join compound c on ac.compound_id = c.id

inner join compound_class_compound ccc on ccc.compound_id = c.id

inner join compound_class cc on cc.id = ccc.compound_class_id

where p.name in (’AIRWAVE ’,’AIRWAVE2 ’,’FINGER ’,’MASALA ’)

and s.sample_matrix in (’plasma ’,’serum ’)

292



and cc.type = ’hmdb ’

and cc.sub_class = ’Amino acids , peptides , and analogues ’

and am.name in (’PPR ’,’Bi -LISA ’)

group by ha.id, ha.cpd_name ,p.name

order by ha.id,ha.cpd_name ,p.name;

Listing A.9: Query to get the median and standard deviation of abundance values for

ChEBI:17154, per project and sample type

select p.name as project , s.sample_type as sample_type , count (1) as count ,

round(median(af.sr_corrected_intensity ),3) as median ,

round(stddev(af.sr_corrected_intensity ),3) as stddev

from abundance_value af

inner join sample_assay sa on sa.id = af.sample_assay_id

inner join sample s on s.id = sa.sample_id

inner join subject su on su.id = s.subject_id

inner join project p on p.id = su.project_id

inner join feature f on af.feature_id = fm.id

inner join annotation an on an.id = fm.annotation_id

inner join harmonised_annotation ha on ha.id = an.harmonised_annotation_id

inner join annotation_compound ac on ac.harmonised_annotation_id = ha.id

inner join compound c on ac.compound_id = c.id

inner join compound_external_db ce on ce.compound_id = c.id

inner join external_db e on ce.external_db_id = e.id

where p.name in (’AIRWAVE ’,’AIRWAVE2 ’,’FINGER ’,’MASALA ’)

and s.sample_matrix in (’plasma ’,’serum ’)

and e.name = ’ChEBI ’

and ce.database_ref = ’17154’

group by p.name , s.sample_type;

Listing A.10: Query to get the median and standard deviation of abundance values for

ChEBI:17154, per project and sex

select p.name as project , mv.harmonised_text_value , count (1) as count ,

round(median(af.sr_corrected_intensity ),3) as median ,

round(stddev(af.sr_corrected_intensity ),3) as stddev

from abundance_value af

inner join sample_assay sa on sa.id = af.sample_assay_id

inner join sample s on s.id = sa.sample_id

inner join subject su on su.id = s.subject_id

inner join project p on p.id = su.project_id

inner join feature f on af.feature_id = fm.id

inner join annotation an on an.id = fm.annotation_id

inner join harmonised_annotation ha on ha.id = an.harmonised_annotation_id

inner join annotation_compound ac on ac.harmonised_annotation_id = ha.id

inner join compound c on ac.compound_id = c.id

inner join compound_external_db ce on ce.compound_id = c.id

inner join external_db e on ce.external_db_id = e.id

inner join metadata_value mv on s.id = mv.sample_id

inner join metadata_field mf on mf.id = mv.metadata_field_id

inner join harmonised_metadata_field hmf on hmf.id = mf.harmonised_metadata_field

where p.name in (’AIRWAVE ’,’AIRWAVE2 ’,’FINGER ’,’MASALA ’)

and s.sample_matrix in (’plasma ’,’serum ’)

and e.name = ’ChEBI ’

and ce.database_ref = ’17154’

and s.sample_type = ’StudySample ’

and mv.harmonised_text_value in (’Male ’,’Female ’)
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group by p.name , mv.harmonised_text_value;
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A.3 Appendix for chapter 4

Listing A.11: Using the QueryFactory python API for defining a query to Airwave samples

under 40

#1. I n s t a n t i a t e the QueryFactory

que ry f a c t o ry = QueryFactory ( query name=’Airwave under 40 ’ , q u e r y d e s c r i p t i o n =’ t e s t

d e s c r i p t i o n ’ )

#2. I n s t a n t i a t e the QueryFi l t e r

f i l t e r = QueryFi l t e r ( ’AND’ )

#3. Add the Pro j e c t . name == ’ Airwave ’ match

f i l t e r . add match ( model=’ Project ’ , property =’name ’ , operator =’eq ’ , va lue =’Airwave ’ )

#5. Add the QueryFi l t e r to the QueryFactory

que ry f a c t o ry . a d d f i l t e r ( q u e r y f i l t e r=f i l t e r )

#6. I n s t a n t i a t e the next f i l t e r s

f i l t e r = QueryFi l t e r ( ’AND’ )

#7. Add the HarmonisedMetadataField . name == ’Age ’ match

f i l t e r . add match ( model=’HarmonisedMetadataField ’ , property =’name ’ , operator =’eq ’ , va lue =’

Age ’ )

#8. Add the MetadataValue . harmonised numer ic value match

f i l t e r . add match ( model=’MetadataValue ’ , property =’ harmonised numeric value ’ ,

operator =’ l t ’ , va lue =40)

#10. Add the QueryFi l t e r to the QueryFactory

que ry f a c t o ry . a d d f i l t e r ( q u e r y f i l t e r=f i l t e r )

#11. Save the query in the SavedQuery data model

que ry f a c t o ry . save query ( )

Listing A.12: Using the QueryFactory simplified constructor methods for defining a query of

Airwave samples under 40

#1. I n s t a n t i a t e the QueryFactory

que ry f a c t o ry = QueryFactory ( query name=’Airwave under 40 s i m p l i f i e d ’ , q u e r y d e s c r i p t i o n

=’ t e s t d e s c r i p t i o n ’ )

#3. Bui ld and add the Pro j e c t f i l t e r

que ry f a c t o ry . a d d f i l t e r ( model=’ Project ’ , property =’name ’ , operator =’eq ’ , va lue =’Airwave ’ )
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#3. Build and add the Harmonised Age f i l t e r

f i l t e r = QueryFi l t e r ( model=’HarmonisedMetadataField ’ , property =’name ’ , operator =’eq ’ ,

va lue =’Age ’ )

f i l t e r . add match ( model=’MetadataValue ’ , property =’ harmonised numeric value ’ , operator =’ l t

’ , va lue =40)

que ry f a c t o ry . a d d f i l t e r ( q u e r y f i l t e r=f i l t e r )

#11. Save the query in the SavedQuery data model

que ry f a c t o ry . save query ( )

Listing A.13: Using the QueryFactory simplified constructor methods for defining a query of

Airwave samples under 40

#1. I n s t a n t i a t e the QueryFactory

que ry f a c t o ry = QueryFactory ( query name=’Airwave under 40 MetadataFi l ter example ’ ,

q u e r y d e s c r i p t i o n =’ t e s t d e s c r i p t i o n ’ , db env=’TEST’ )

#2. Bui ld and add the Pro j e c t f i l t e r

que ry f a c t o ry . a d d f i l t e r ( QueryFi l t e r ( model=’ Project ’ , property =’name ’ , operator =’eq ’ ,

va lue =’Airwave ’ ) )

#3. Bui ld and add the Pro j e c t f i l t e r

que ry f a c t o ry . a d d f i l t e r ( MetadataFi l ter ( ’ Age ’ , ’ l t ’ , va lue =40) )

#4. Save the query in the SavedQuery data model

que ry f a c t o ry . save query ( )

Listing A.14: Loading and executing a query

#1. I n s t a n t i a t e the QueryFactory , l oads e x i s t i n g query with name from database

que ry f a c t o ry = QueryFactory ( query name=’Airwave under 40 MetadataFi l ter example ’ ,

q u e r y d e s c r i p t i o n =’ t e s t d e s c r i p t i o n ’ )

#2. Get the count o f the number o f sample as says

number o f sample assays = que ry f a c t o ry . execute query ( output model=’SampleAssay ’ , type=’

count ’ )

#3. Get the AnnotatedFeatures ( d e f a u l t type=’ a l l ’ )

anno ta t ed f ea tu r e s = que ry f a c t o ry . execute query ( output model=’AnnotatedFeature ’ )

Listing A.15: Loading & executing a query and building the 3 file format files

#1. I n s t a n t i a t e the QueryFactory , l oads e x i s t i n g query with name from database

que ry f a c t o ry = QueryFactory ( query name=’Airwave under 40 MetadataFi l ter example ’ ,

q u e r y d e s c r i p t i o n =’ t e s t d e s c r i p t i o n ’ )
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#2. Get the AnnotatedFeatures ( d e f a u l t type=’ a l l ’ )

anno ta t ed f ea tu r e s = que ry f a c t o ry . execute query ( output model=’AnnotatedFeature ’ )

#3. Generate the combined dataframe

combined dataframe = que ry f a c t o ry . bu i l d anno ta t ed f ea tu r e da ta f r ame ( )

#4. Generate the nPYc 3 f i l e format dataframe

sample metadata , feature metadata , i n t e n s i t y d a t a = que ry f a c t o ry .

bu i l d in t en s i ty da ta samp l e metada ta and f ea tu r e metada ta ( )

Listing A.16: Using the QueryFactory simplified constructor methods for defining a query of

Airwave samples under 40

from phenomedb . que ry f a c t o ry import ∗

import pandas as pd

import numpy as np

#1. I n s t a n t i a t e the QueryFactory

que ry f a c t o ry = QueryFactory ( query name=’Airwave LNEG under 40 MetadataFi l ter example ’ ,

q u e r y d e s c r i p t i o n =’ t e s t d e s c r i p t i o n ’ )

#2. Add the Pro j e c t f i l t e r

que ry f a c t o ry . a d d f i l t e r ( q u e r y f i l t e r=QueryFi l t e r ( model=’ Project ’ , property =’name ’ ,

operator =’eq ’ , va lue =’Airwave ’ ) )

#3. Add the Metadata f i l t e r

que ry f a c t o ry . a d d f i l t e r ( q u e r y f i l t e r=MetadataFi l ter ( ’ Age ’ , ’ l t ’ , va lue =40) )

#4. Add the LNEG f i l t e r

que ry f a c t o ry . a d d f i l t e r ( q u e r y f i l t e r=QueryFi l t e r ( model=’Assay ’ , property =’name ’ ,

operator =’eq ’ , va lue =’LNEG’ ) )

que ry f a c t o ry . a d d f i l t e r ( q u e r y f i l t e r=QueryFi l t e r ( model=’AnnotationMethod ’ , property =’

name ’ , operator =’eq ’ , va lue =’PPR’ ) )

#5. Save the query in the SavedQuery data model

que ry f a c t o ry . save query ( )

#6. Load the dataframes

i n t e n s i t y d a t a = que ry f a c t o ry . load data f rame ( ’ i n t e n s i t y d a t a ’ , c o r r e c t i o n t y p e =’SR’ ,

harmonise annotat ions=True )

sample metadata = que ry f a c t o ry . load data f rame ( ’ sample metadata ’ , c o r r e c t i o n t y p e =’SR’ ,

harmonise annotat ions=True )

f eature metadata = que ry f a c t o ry . load data f rame ( ’ feature metadata ’ , c o r r e c t i o n t y p e =’SR

’ , harmonise annotat ions=True )
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#7. Unit var iance s ca l e , l og transform , and f i l t e r na metadata values , unharmonised

metadata , and zero f e a t u r e s

sample metadata , feature metadata , i n t e n s i t y d a t a = que ry f a c t o ry . t rans form dataf rame

( ’3 f i l e format ’ , i n t e n s i t y d a t a=i n t e n s i t y d a t a , sample metadata=sample metadata ,

f eature metadata=feature metadata , s c a l i n g =’uv ’ , t rans form =’ log ’ ,

e x c l u d e f e a t u r e s n o t i n a l l p r o j e c t s=True , only harmonised metadataTrue ,

e x c l u d e f e a t u r e s w i t h n a f e a t u r e v a l u e s=True )

#8. Export f i l e s

sample metadata . expor t c sv ( ’/ path/ to / export / l o c a t i o n / dataset name sampleMetadata . csv ’ )

f eature metadata . expor t c sv ( ’/ path/ to / export / l o c a t i o n / dataset name featureMetadata . csv

’ )

np . save txt ( ’ / path/ to / export / l o c a t i o n / datase t name intens i tyData . csv ’ , i n t e n s i t y d a t a ,

d e l i m i t e r = ’ , ’ )

Listing A.17: The base.r template, with boiler plate for setting the job folder and writing out

the results to JSON, and the extendable methodspecific block in the middle

l i b r a r y ( threadr )

l i b r a r y ( j s o n l i t e )

o u t p u t f o l d e r = ’{{ o u t p u t f o l d e r }} ’

setwd ( ’{{ j o b f o l d e r }} ’ )

{% block methodspec i f i c %}{% endblock %}

r e s u l t s <− toJSON( output , f o r c e=T, d i g i t s=NA)

o u t p u t f i l e p a t h <− paste ( ou tput f o lde r , ’ r e s u l t s . j son ’ , sep = ’/ ’)

w r i t e j s o n ( r e s u l t s , o u t p u t f i l e p a t h , p re t ty=F)

summary( output )

Listing A.18: The pcpr2.r template, with methodspecific block contents shown. Works in

combination with the base.r template shown in ??

{% extends base template %}

{% block methodspec i f i c %}

l i b r a r y ( pcpr2 )

i n t e n s i t y c h a r d a t a <− read . csv ( ’{{ i n t e n s i t y d a t a f i l e p a t h }} ’ )

i n t e n s i t y d a t a <− data . matrix ( i n t e n s i t y c h a r d a t a )

sample metadata <− read . csv ( ’{{ s amp l e metadata f i l e pa th }} ’ , s t r i ng sAsFac to r s=T)

p c t t h r e s h o l d = {{ p c t t h r e s h o l d }}

pcpr2 <− t ry (runPCPR2( i n t e n s i t y d a t a , sample metadata , pct . th r e sho ld = p c t t h r e s h o l d ) )

i f ( e x i s t s (” pcpr2 ”) ) {

output <− pcpr2

#output$pct thre sho ld = p c t t h r e s h o l d

}

{% endblock %}
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Figure A.9: Screenshot of the QueryFactory UI list view, showing the results of filtering all
the SavedQuery entries with id 133. The SavedQuery JSON definition, generated SQLAlchemy
code and raw SQL for output model SampleAssay, as well cache status can be easily viewed
from this UI view.
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Figure A.10: A) Screenshot of the QueryFactory control panel for creating combined Abun-
danceValue dataset caches, for raw, SR, and LTR corrected intensities. Without this cache
existing, the datasets cannot be exported. B) Screenshot of the data export control panel
(available when the top-level cache exists). Fields for binning harmonised metadata fields,
as well as specifying feature intensity type (ie Raw/SR/LTR), harmonising annotations, the
file format, various options for column headers can be specified, and whether to scale and/or
transform the data
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Figure A.11: Screenshot of the AnalysisView results common panels, with UI elements for
viewing the specified parameters, re-running the Task with new parameters, viewing and down-
loading the TaskRun.data as CSVs (sample metadata, feature metadata, intensity data), and
viewing and downloading the results found in TaskRun.output as JSON.
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Figure A.12: Screenshot of the MWAS results figure for metabolites found to be signifi-
cantly age associated in Airwave LNEG, with batch, sex, and BMI as confounders, using linear
regression and Bonferroni correction.
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Figure A.13: QueryFactory view SavedQuery 134 filter definition for AIRWAVE LNEG,
demonstrating the filters used.
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Figure A.14: 1D loadings plots for PC5 and PC6 for AIRWAVE LNEG (SavedQuery 134),
unit-variance log scaled, generated by the PhenomeDB RunPCA task and displayed using the
web-view. URL: https://phenomedb.npc.ic.ac.uk/analysisview/analysisresult/5333
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Figure A.15: QueryFactory view SavedQuery 203 filter definition for AIRWAVE LNEG Fe-
males, demonstrating the filters used.
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Figure A.16: PCA scores and 2D loadings plots for PC5 and PC7 for AIRWAVE LNEG
Females (SavedQuery 203), unit-variance log scaled, generated by the PhenomeDB RunPCA
task and displayed using the web-view
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Figure A.17: 1D MWAS coefficients and Bonferroni corrected p-values AIRWAVE LNEG
Females (SavedQuery 203), unit-variance log scaled metabolites significantly associated with
age, with BMI and Batch as confounders, generated by the PhenomeDB RunMWAS task and
displayed using the web-view. Metabolights labelled in the PCA 2D loadings in figure A.16 are
highlighted in bold.
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Figure A.18: Heatmap of Bonferroni corrected p-values for AIRWAVE LNEG metabolights
found to be significant for either Males and Females, using unit-variance log scaling, with BMI
and Batch as confounders, generated by the PhenomeDB RunMWAS task and displayed using
the web-view. Red is positively associated, blue is negatively associated, grey is not significant.

308



A.4 Appendix for chapter 5
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Figure A.19: The effect of different scaling and transformation methods on PCPR2 values of
the Airwave-Airwave2-FINGER-MASALA cohort LPOS SR-corrected LC-MS data. A shows
the relative contributions of age, sex, BMI, and project. B shows the relative contributions of
age, sex, BMI, and sample matrix
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Figure A.20: The results of different scaling and transformation methods on PC1 and PC2
PCA scores of the Airwave-Airwave2-FINGER-MASALA cohort LPOS SR-corrected LC-MS
data, including unit-variance scaling, median scaling, and mean-centering scaling. Studies are
individually coloured, each plot is showing the Study Samples only.
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Figure A.21: The results of different scaling and transformation methods on PC1 and
PC2 PCA scores of the integrated cohort (Airwave-Airwave2-FINGER-MASALA) LPOS SR-
corrected LC-MS data, including unit-variance scaling, median scaling, and mean-centering
scaling. Long Term Reference samples from each study are individually coloured, and the
Study Samples from each cohort is grey.

312



Figure A.22: The effect of different scaling and transformation methods on PCPR2 values
of the integrated cohort (Airwave-Airwave2-FINGER-MASALA) LNEG SR-corrected LC-MS
data. A shows the relative contributions of age, sex, BMI, and project. B shows the relative
contributions of age, sex, BMI, and sample matrix
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Figure A.23: The results of different scaling and transformation methods on PC1 and
PC2 PCA scores of the integrated cohort (Airwave-Airwave2-FINGER-MASALA) LNEG SR-
corrected LC-MS data, including unit-variance scaling, median scaling, and mean-centering
scaling. Studies are individually coloured, each plot is showing the study samples only.
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Figure A.24: The results of different scaling and transformation methods on PC1 and PC2
PCA scores of the integrated LC-MS cohort (Airwave-Airwave2-FINGER-MASALA) LNEG
SR-corrected LC-MS data, including unit-variance scaling, median scaling, and mean-centering
scaling. LTR samples from each study are individually coloured, and the study samples from
each cohort is grey.
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Figure A.25: Unit-variance scaled, log transformed feature intensities vs age for a selection of
strongly age-associated LNEG metabolites from the Airwave-Airwave2 cohort, with the mean
and standard deviation added.
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Figure A.26: Unit-variance scaled, log transformed feature intensities vs age for a selection of
strongly age-associated HPOS metabolites from the Airwave-Airwave2 cohort, with the mean
and standard deviation added.

317



Figure A.27: Unit-variance scaled, log transformed feature intensities vs age for a selection
of strongly age-associated Bi-LISA fractions from the Airwave-Airwave2 cohort, with the mean
and standard deviation added.
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Figure A.28: Heatmap of LPOS metabolites significantly age-associated in at least one asso-
ciation method but not all in Airwave-Airwave2-FINGER-MASALA. Bonferroni m = 280
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Figure A.29: Feature plots for 6 LPOS metabolites significantly age-associated in Airwave-
Airwave2-FINGER-MASALA
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Figure A.30: Feature plots for 6 LNEG metabolites significantly age-associated in Airwave-
Airwave2-FINGER-MASALA

321



Figure A.31: Feature plots for 5 HPOS metabolites significantly age-associated in Airwave-
Airwave2-FINGER-MASALA
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Figure A.32: Heatmap of Bi-LISA metabolites significantly age-associated in at least one
association method in Airwave-Airwave2-FINGER-MASALA. Bonferroni m = 280
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Figure A.33: Feature plots for 6 Bi-LISA metabolites significantly age-associated using all
association methods in Airwave-Airwave2-FINGER-MASALA
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