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a b s t r a c t

With the plethora of omics data becoming available for mammalian cell and, increasingly, human cell 
systems, Genome-scale metabolic models (GEMs) have emerged as a useful tool for their organisation and 
analysis. The systems biology community has developed an array of tools for the solution, interrogation and 
customisation of GEMs as well as algorithms that enable the design of cells with desired phenotypes based 
on the multi-omics information contained in these models. However, these tools have largely found ap
plication in microbial cells systems, which benefit from smaller model size and ease of experimentation. 
Herein, we discuss the major outstanding challenges in the use of GEMs as a vehicle for accurately analysing 
data for mammalian cell systems and transferring methodologies that would enable their use to design 
strains and processes. We provide insights on the opportunities and limitations of applying GEMs to human 
cell systems for advancing our understanding of health and disease. We further propose their integration 
with data-driven tools and their enrichment with cellular functions beyond metabolism, which would, in 
theory, more accurately describe how resources are allocated intracellularly.

© 2023 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY license (http://creative

commons.org/licenses/by/4.0/).

1. Introduction

Genome-scale metabolic models (GEMs) are a comprehensive 
representation of the link between genotype and phenotype, sum
marising information on genome, proteome and metabolome of a 
cell [1]. This information is organised in the form of matrices relating 
genes to metabolic reactions and reactions to metabolites, as well as 
a set of gene-protein-reaction (GPR) associations [2,3], as shown in 
Fig. 1. The construction of the matrices and GPR associations relies 
on genomic, transcriptomic, proteomic and metabolomic data [4]. 
Given this information and a set of metabolite uptake/secretion rates 
that act as constraints, GEMs can calculate the rates of intracellular 
reactions, thus providing fluxomic information.

GEMs have been constructed for over 6000 organisms [5,6], in
cluding the well-studied Escherichia coli [7], Mus musculus [8,9], Pi
chia pastoris [10], Saccharomyces cerevisiae [11] and Homo sapiens 
[12–14], with reconstructions regularly updated to include more 
complete GPR associations and remove blocked reactions and dead- 
end metabolites. GEMs can be used to study cell metabolism, opti
mise bioprocesses, and design strains with enhanced or custom 

functionality. Historically, GEMs have found greater application in 
microbial organisms, owing to the smaller model size and relative 
ease of experimental validation/manipulation compared to mam
malian cell systems. The smaller metabolic network size of microbial 
model systems such as, for example, E.coli cells, has also led to the 
development of a variety of solution methodologies and optimisa
tion algorithms for the design of cells with desired phenotype 
(summarised in [15]). Although the transfer of the entire repertoire 
of techniques to mammalian cell systems is often hampered by in
creased model size and complexity leading to highly under
determined models, there are already developments in the use of 
mammalian cell GEMs for strain and process engineering (e.g., 
[16–18]), as well as recent algorithm development work applied for 
understanding the nutritional needs of bioprocessing-relevant or
ganisms but also Atlantic salmon (Salmo salar) [19].

In this work, we outline the main remaining challenges in the 
application of GEMs and related toolkits to mammalian cell systems 
and zoom in on their application to human cells as a vehicle for 
understanding health and disease.

2. On the use of GEMs for understanding human cell systems

Advances in clinical sample analysis and in vitro disease models 
are now enabling the generation of similar datasets for human 
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physiology and pathophysiology. It is therefore opportune to ex
amine how learnings and techniques developed for analysing data 
from biotechnologically relevant organisms using GEMs can be ap
plied in a clinical context to further our understanding of health and 
disease (Fig. 2). For example, within industry, it is commonplace to 
generate GEMs specific to a cell line via the integration of ‘omics data 
to prune inactive reactions using techniques such as GIMME [20]
(cell line specific model generation is reviewed in depth in [21]). The 
same holds true in health and disease research, with thousands of 
patient-derived GEMs having been published for cancer alone [22]. 
As these models are specific to each disease type, they can be ef
fectively used to explore essential genes in diseased tissue and to 
identify drug targets. In a recent study, for instance, single-gene 
knockouts were performed on GEMs of NCI-60 cancer cell line panel 
to identify and rank genes responsible for the growth of cancerous 
cells in an effort to identify potential drug targets that would reduce 
the growth rate of cancer cells but not that of normal cells [23]. This 
type of analysis is not only limited to chronic diseases; it has also 
been used in infectious disease studies. In one body of work, flux 
balance analysis (FBA) was applied to human lung cells infected with 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and 
host-specific essential genes and gene pairs were determined 
through in silico knockouts that were theorised to reduce viral bio
mass production without affecting the host biomass [24].

These examples highlight the potential of GEMs for analysing 
large clinical omics datasets in a systematic way that links multiple 
levels of information. In our opinion, it is possible to envisage the 
use of GEMs and related methodologies, such as strain design al
gorithms, in a health setting to generate optimal strategies that re
duce disease-associated phenotypes, while improving desirable 
healthy phenotypes. Herein, we outline the main outstanding chal
lenges towards this end.

2.1. Challenges when building mammalian GEMs

Eukaryotes are known to be more biologically complicated that 
prokaryotes, meaning that applying GEM techniques to eukaryotic 
organisms is more challenging with respect to obtaining accurate 
predictions. One of the key sources of difference in complexity be
tween prokaryotes and eukaryotes is the presence of subcellular 
organelle structures, such as mitochondria, peroxisomes, and nu
cleus, that do not exist in prokaryotes. Any well annotated eu
karyotic GEM must contain these structures and the reactions 
associated with them for truly accurate predictions [25]. Sig
nificantly however, the presence of sub compartments means there 
is a requirement to gap fill the model using intracellular transport 
reactions. These transport reactions are often poorly studied and can 
lead to models with many reversible reactions, which, in turn, may 
lead to futile cycles, freely exchanging metabolites and protons 
across compartments, and erroneous energy generation calculations 
[26]. These cycles have been shown to inflate maximal biomass 
production rates by 25 % and are known to be present in the majority 
of published genome scale models [27], with eukaryotic models at 
greater risk thanks to the increased presence of intracellular ex
changes. Ultimately, these results highlight the importance of using 
an appropriate combination of gap filling algorithms (reviewed in 
depth here [28,29]) and manual curation when moving from pro
karyotic to more complex, eukaryotic models of metabolism to en
sure accurate predictive performance.

While GEMs have been developed for many different species across 
all domains of life (reviewed in [6]), given the complexity of building 
eukaryotic GEMs, there has been a lack of regularly updated and 
publicly curated GEMs for mammalian model organisms such as Mus 
musculus (mouse) and Rattus norvegicus (rat) [30]. Instead, recent 
research developing new modelling techniques using non-human 

Fig. 1. Reconstruction of a generic GEM from the different layers of ‘omics datasets’. 
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mammalian GEMs has predominantly focused on industrially relevant 
organisms such as Chinese Hamster Ovary (CHO) cells. To help address 
this, a framework has recently been published that combines multiple 
data sources, including the Kyoto Encyclopaedia of Genes and Genomes 
(KEGG) [31], and generates a coherent collection of GEMs for major 
model animals using the Human1 GEM as a template [30,32]. This 
approach allows for the straightforward development and main
tenance of GEMs for multiple species. Since small rodents account for 
90% animals used annually in medical research [33], the development 
of these models using a high-quality model as a backbone opens the 
possibility to better utilise GEMs in medical research settings, reduce 
the reliance on model animals and understand differences between 
model animal and human metabolism.

2.2. Determining effective exchange reaction constraints

One of the first challenges that occurs when running GEMs is 
gathering sufficient extracellular metabolomic data to effectively 
calculate metabolite uptake rates to constrain the GEM of interest. 
Within industrial biotechnology, the calculation of these uptake 
rates is straight-forward, thanks to the relative ease at which ex
tracellular metabolomics can be measured in bioreactors. This 
means that industrially relevant cultured mammalian cells, such as 
CHO cell lines, often have detailed constraints for many exchange 
reactions. This has allowed researchers to understand how the ac
curacy of this data can affect GEM predictions. For instance, using 
the CHO cell GEM, researchers have demonstrated that the mea
surement of low exchange rates of essential amino acids has the 
biggest impact on the growth rate prediction [34] and that the highly 
accurate quantification of all uptake and secretion rates was essen
tial for reliable predictions generated by FBA [35].

The generation of such extracellular time-course metabolomics is 
far more challenging in multicellular organisms. While researchers 

can culture the cells of interest in vitro, this may not be fully re
presentative of how a tissue behaves in vivo. This means that gen
erating in vivo constraints is of vital importance to accurately 
understand diseased states, toxicology, and nutrition. A potential 
method to do this is the use of nutrition databases to calculate the 
approximate composition of metabolites in a diet that are available 
for uptake by a cell. One such database is the Virtual Metabolic 
Human [36], which contains the composition of 11 pre-defined diets 
that can be downloaded as a flux rate (in mM per person per day). 
This data can be directly used to constrain the human metabolic 
model. Significantly, while this resource acts as an excellent baseline 
for constraining the human GEM to understand differences in diet, 
given that small changes in the exchange rates of essential amino 
acids can significantly impact the accuracy of predictions in the CHO 
GEM [35], it seems unlikely that such a database would provide 
enough accuracy to consistently give meaningful outputs from a 
GEM in all use cases.

To overcome this obstacle, techniques that rely on true in vivo 
measurements, such as arterio-venous blood metabolomics (AVBM) 
profiles, may be considered. In this approach, blood samples are 
taken from an artery directly before and a vein directly after the 
tissue type of interest. The difference in metabolite concentrations 
between these two samples is then presumed to be the amount of 
metabolite exchanged by the tissue of interest, which can be used to 
constrain the GEM. This approach has recently been applied to the 
genome scale modelling of multi-cellular organisms. In one body of 
work, researchers used AVBM measurements to constrain a GEM to 
study the global metabolism of liver and intestine of a minipig 
model of obesity, leading to the identification of upregulated path
ways in obese subjects, such as tryptophan metabolism [37]. 
Nonetheless, while this approach may be appropriate for the 
genome scale modelling of animal models in the lab, it is highly 
invasive and unlikely to be acceptable for humans.

Fig. 2. Summary of areas where knowledge can be transferred from mammalian cell GEMs to wider health and disease research. 
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2.3. Determining appropriate objective functions

The common selection of a biomass maximisation as an objective 
function for performing FBA of mammalian GEMs is a methodology 
that largely remains from microbial GEMs, despite that fact it is well 
known to not be representative of the true ‘objective’ of a mam
malian cell, especially outside the exponential growth phase [38]. 
This lack of suitability of a biomass objective is even more apparent 
for in vivo systems where, unless the tissue of interest is cancerous, 
cells rarely maximise their proliferation. As a result, researchers 
trying to model in vivo systems must consider the use of alternate 
objective functions and draw inspiration from mammalian bio
technology solutions. For instance, an unconventional objective 
function based on the minimisation of non-essential nutrient uptake 
has been designed for the CHO cell GEM [39]. This method directly 
estimates essential amino acid uptake fluxes by solving for the 
“essential minimum” consumption requirements based on cellular 
growth measurements. This unconventional objective function was 
shown to distinguish metabolic differences between three distinct 
CHO cell lines not directly observed using the conventional biomass 
maximisation. This highlights how the use of more appropriate ob
jective functions may render GEM outputs more information rich, 
improving their practical application in health and disease research.

The identification of more appropriate objectives may either be 
achieved applying well established knowledge around the tissues of 
interest (e.g., a GEM of a B cell may be set to maximise antibody 
production) or by inferring cell functions through data, such as the 
analysis carried out by Richelle et al. [40]. In this work, the functions 
of a cell were inferred from transcriptomics data by considering the 
gene expression level associated with a metabolic pathway and the 
number of reactions involved. During this work, a list of tasks was 
curated resulting in a collection of 210 tasks covering seven major 
metabolic activities of a cell (energy generation, nucleotide, carbo
hydrates, amino acid, lipid, vitamin & cofactor and glycan metabo
lism). These tasks were used to protect selected metabolic features 
using context-specific model generation algorithms for human, CHO, 
and mouse cell GEMs. The results highlight that these context-spe
cific models better capture the actual biological variability across cell 
lines. Similar methodologies can therefore be considered when 
trying to determine the ‘goal’ of a tissue when selecting an objective 
function.

In addition to the lack of suitability of maximising biomass, it is 
important to consider that the biomass formation of mammalian 
cells is highly variable, depending on factors such as environmental 
conditions, cell type or culture phase, meaning the biomass equation 
must be customised for optimal model performance. For example, 
research in CHO cells has demonstrated cell lines display highly 
variable total protein content, cell dry mass and lipid composition 
across cell lines [35]. Moreover, work using the human GEM showed 
that metabolite composition and associated coefficients of the bio
mass function had a large impact on the growth rate prediction 
accuracy of cancer cell lines. In addition, metabolite composition of 
the biomass equations significantly impacted gene essentiality ac
curacy [41], meaning a new biomass equation should arguably be 
determined in each case. To this end, tools originally designed for 
microbial systems may be used, such as BOFdat [42], to generate 
custom biomass reactions for mammalian cell systems based on 
experimental ‘omics data.

2.4. On the integration of data-driven modelling with GEMs

In recent years, advances in artificial intelligence and machine 
learning have revolutionised many areas of biological research [43]. 
Such approaches have started to be coupled with GEMs to help 
improve predictions and aid model output analysis. The coupling of 
GEMs with data- driven methods has been proposed as a method to 

effectively reduce the solution space by predicting biologically re
levant constraints from experimental data (reviewed in depth in 
[15,44,45]). As with the previously discussed methodological areas 
of genome-scale modelling, this coupling of machine learning with 
GEMs to improve predictions is at a more advanced stage in bio
technologically relevant mammalian cell systems than it is in human 
health and disease research. For instance, a recently published 
method, termed HybridFBA, coupled unsupervised machine learning 
with a CHO cell GEM. In this approach additional flux constraints 
were deduced by Principal Component Analysis (PCA) of experi
mental flux data [46]. Specifically, the authors used each principal 
component to impose a constraint on the direction of variation of 
groups of fluxes. This method was shown to significantly improve 
growth rate predictions compared to standard FBA and was used to 
design a culture feed in silico that led to desired phenotype from 
target cell lines. This highlights how the coupling of mammalian cell 
GEMs with machine learning algorithms can improve their perfor
mance.

In addition, machine learning methods may be used to better 
analyse outputs and extract meaning from complex model predic
tions. For example, flux distribution predictions may be analysed 
using supervised and unsupervised machine learning methodologies 
to pick apart key aspects of metabolism that may influence a dis
eased phenotype of interest. This methodology has already been 
well applied within health and disease research using GEMs 
[15,44,45]. For example, researchers have used unsupervised 
learning with GEMs to identify the fluxes that explain most of the 
data variation in breast cancer patients, reduce dimensionality and 
create patient groupings [47]. Furthermore, researchers have applied 
personalised FBA models of patient tumours to predict metabolite 
production rates. These were input into machine learning classifiers 
for the identification of metabolite biomarkers associated with ra
diation resistance. The results demonstrated improved classification 
accuracy and identification of clinical patient subgroups, marking a 
significant step toward personalised classifiers for radiation treat
ment response [48]. These approaches demonstrate the power of 
using these two techniques synergistically.

3. A case for resource allocation models

3.1. Benefits of resource allocation

There has been a drive in the systems biology community away 
from classical stoichiometric network study and towards the study 
of metabolism through an optimised cellular economy. Resource 
allocation models (RAMs), as recently reviewed in [49–52] and with 
key methods summarised in Table 1, can describe many aspects of 
metabolism and cellular behaviour [53,54], where simple stoichio
metric balances fall short. So far this drive towards RAMs has been 
almost exclusively carried out in microbial systems, due to their 
relative simplicity. Enzyme constrained FBA (ecFBA) models are also 
considered in this review due to their similarities with RAMs and are 
included in Table 1.

One key advantage of a RAM approach to metabolic modelling is 
that the additional constraints greatly reduce the feasible solution 
space by placing more restrictive bounds on fluxes. This lowers the 
variability of metabolic fluxes and guides flux towards more biolo
gically feasible solutions. This would be particularly useful for 
mammalian GEMs, which contain many thousands of reactions 
[9,55,56][refs], and hence have extremely large potential solution 
spaces.

As well as reducing the solution space of metabolic models, the 
additional constraints also predict and explain key phenotypes that 
are not possible with traditional stoichiometric models [57–60]. 
Classical models ignore costs related to synthesis and usage of 
proteins and are limited only by the stoichiometry of metabolites 
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exchanged by the cell with its surroundings, meaning, even if a re
action is unlikely to occur due to the production of an expensive 
catalysing enzyme, the model is unable to account for this. The 
communal usage of resources drastically effects the distribution of 
fluxes through the model. Phenomena such as overflow metabolism 
do not make sense from a purely stoichiometric point of view and 
can only be explained in the context of the trade-off between ‘in
efficient’ metabolism, protein cost and cell growth [58,61,62]. The 
ability to predict overflow metabolism is an important feature of 
mammalian cell modelling, such as the Warburg Effect in cancer 
cells. Being able to better predict peripheral overflow metabolism 
would be beneficial in the metabolic modelling for clinical research 
of diseases such as cancer, where non central pathways are known to 
play a key role [63–66].

In addition to cancer cell biology, overflow metabolism is im
portant in biopharmaceutical production using mammalian cells e.g., 
CHO cells. CHO cells typically undergo a lactate-producing phase, in 
which overflow metabolism is high, followed by a lactate consuming 
phase as growth rate subsides [67]. The accumulation of lactate is 
toxic to cell cultures, causing the addition of base to maintain pH set 
point and subsequently raising osmolality and lowering growth rates 
[68,69]. The ability to accurately capture lactate producing and 
consuming phases through metabolic modelling would aid in pro
cess and cell line optimisation.

More recently, other phenomena have been effectively modelling 
through proteome allocation, for example arginine catabolism in L. 
lactis [70]. The application of resource allocation to mammalian 
metabolism would be able elucidate features that have yet to be 
observed in traditional metabolic modelling.

A further benefit of expanding classical models with resource 
allocation machinery is the ability to incorporate omics data more 
effectively. With the increased availability of omics data, GEMs 
provide an excellent framework for the integration of this data into a 
combined workflow. As RAMs can consider transcription and 
translation machinery, transcriptomics and proteomics can be used 
to constrain metabolism in a more targeted manner, as opposed to 
current methods which rely on assumptions on the link between 
reaction rate and gene expression/protein translation [71–73].

The broadened scope of RAMs allows a more complete under
standing of cell behaviour and the relationship between cellular pro
cesses. This allows predictions that could not be captured with classical 
models, such as identifying bottlenecks and gene engineering targets as 
well as biological parameters e.g., condition-dependent biomass com
position [74,75] and transcription/translation machinery [74].

3.2. Challenges in implementation to mammalian systems

While the benefits of RAMs and ecFBA in mammalian systems are 
numerous, there are obstacles on the path to achieving this goal. One 

of the main challenges is the scarcity of enzyme data. EcFBA, in 
particular, rely on the choice of turnover number (kcat) values, which 
are difficult to source for mammalian cells. For example, Yeo et al. 
were able to find kcat values for 16 % of enzymes in their CHO GEM 
[76], and several of these were taken from other organisms (e.g., 
rodent and human) when there was no Chinese hamster data 
available. Additionally, in vitro kcat measurements may differ from 
those in vivo, although the two have been shown to be correlated 
[77]. These factors render the application of ecFBA to mammalian 
cell systems difficult and prevent their full utilisation. A potential 
solution is to use machine learning approaches for kcat prediction 
[78], which the enzyme amino acid sequences and the structures of 
their substrates are used to estimate kcat values. Another solution is 
to infer the apparent kcat value (kapp) in vivo, using measured pro
teomics and transcriptomics data [77,79].

A second issue is the aforementioned complexity of mammalian 
biology compared to simpler systems for which RAMs are more 
developed. There still exists a knowledge gap for protein sequences 
and gene-protein-reactions associations in mammalian cells, pre
venting the construction of effective transcription/translation ma
chinery and integration into metabolism. This could be overcome by 
considering a reduced system, for example central carbon metabo
lism, for which biological understanding is more complete. This can 
then be expanded to consider peripheral pathways when the re
quired data becomes available.

A third issue is the computational burden of fine-grained RAMs. 
As an example, one of the original E.coli RAMs [80], contains around 
80,000 reactions from an original GEM of around 2000 reactions. 
Applying this 40-fold change to Recon 2.2 [55], one of the latest 
human GEMs, would result in a model of around 300,000 reactions. 
This makes simulation more computationally expensive, which is 
particularly problematic for sampling-based approaches. Again, fo
cusing on a reduced system would alleviate this computational 
burden. Overcoming these challenges is imperative to progress 
mammalian cell metabolic modelling and to access the benefits that 
RAMs can offer to the community.

4. Concluding remarks

Herein, we summarised the main challenges for applying GEMs 
and related methodologies to mammalian cell systems, including 
human cell systems representative of health and disease states. 
These centred around (a) model size, which makes it cumbersome to 
apply advanced methodologies and algorithms developed for mi
crobial cell systems in the absence of significant computational 
power, (b) time course data availability, which may be limited to in 
vitro studies to avoid intrusive sampling, and (c) the choice of ap
propriate objective functions that are representative of highly spe
cialised human cells. Potential solutions involve (a) the integration 

Table 1 
Resource allocation models and the current challenges in their application to mammalian systems. 

Method Method Class Description Current challenges for application to mammalian systems

FBAwMC [57] ecFBA Global constraint on enzyme solvency capacity and 
kinetics

Achieved already [76]

MOMENT [81] ecFBA Inclusion of enzyme concentration in solvency 
capacity and kinetics

More accurate kcat values, further genome annotation

GECKO [60] ecFBA Kinetic and solvency capacity of enzymes with 
integration of proteomic data

More accurate kcat values, further genome annotation, quantitative 
proteomic data

RBA [82] RAM Inclusion and constraining of translation, replication 
and transcription machinery

Accurate parameterisation

CAFBA [83] RAM Global constraint modelling tradeoff between growth 
and biosynthetic cost

Accurate parameterisation

ME models [53,84] RAM Addition and coupling of transcription and translation 
with metabolism

Further genome annotation, quantitative proteomic data, knowledge of 
expression machinery, computational burden

ETFL [85] RAM Integration of expression machinery with 
thermodynamics

Further genome annotation, quantitative proteomic data, knowledge of 
expression machinery, computational burden
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of data-driven elements with GEMs, either to derive appropriate 
constraints that restrict the solution space or to analyse and visualise 
GEM results, and (b) the development of RAMs for mammalian and, 
eventually, human cell systems. The flexibility that RAMs offer 
means that models are widely applicable, beyond exponential cell 
growth, where traditional metabolic modelling approaches are less 
effective. The main factors restricting mammalian RAM develop
ment include lack of data and, again, computational burden for large 
models. However, it is possible to make small steps towards the goal 
of creating full-scale mammalian cell RAMs using microorganism 
models as inspiration.
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