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Abstract

Modeling the uncertainty in partial least squares (PLS) is made difficult because of

the nonlinear effect of the observed data on the latent space that the method finds.

We present an approach, based on bootstrapping, that automatically accounts for

these nonlinearities in the parameter uncertainty, allowing us to equally well repre-

sent confidence intervals for points lying close to or far away from the latent space.

To show the opportunities of this approach, we develop applications in determining

the Design Space for industrial processes and model the uncertainty of spectroscopy

data. Our results show the benefits of our method for accounting for uncertainty far

from the latent space for the purposes of Design Space identification, and match the

performance of well established methods for spectroscopy data.
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1 | INTRODUCTION

Practitioners working within chemical manufacturing often have to

deal with high dimensional data, where a key step in any analysis is

reducing the dimensionality of the data to make predictions. One

method for combining dimensionality reduction with prediction is

partial least squares (PLS).1–4 PLS projects the input variables to a

lower dimensional latent space, that can both predict the output

space and describe a significant portion of the variance of the input

space. This latent space allows PLS to perform particularly well in

situations with large numbers of highly correlated input variables.

Building a PLS regression model means finding linear relationships

between the input, output and latent spaces. The typical method

for calculating PLS parameters is the NIPALS algorithm (see Appen-

dix A). This method finds each dimension of the latent variables (t)

iteratively, by finding latent variables that maximize covariance

between the input and output, then deflating the data and repeating

the process.3,5

When we refer to uncertainty of a prediction, we are describing a

distribution of the probable values which would be observed if the

experiment was carried out and the output was measured. This distri-

bution is calculated based on a new specified input and a set of train-

ing data that has historic input values and the measured output in

those cases. We note that this approach differs from other

approaches where the uncertainty may only be given as a confidence

interval. There are many reasons that the predictions from a model

will not match up with the measured values, for example there will be

noise in the quantities being used for the training data, the PLS pre-

diction may be a linear approximation for a system which is not

exactly linear, or the system being predicted may contain a certain

inherent amount of unavoidable variation. PLS, and the uncertainty

prediction method that we propose to build for it, does not
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differentiate between these different sources of variability. Our

approach incorporates all of these real sources of uncertainty into

two categories. The first one is a random, unpredictable variation that

we describe as a Gaussian noise on the output. The other source is

uncertainty in the PLS parameters, which arises because the training

data are finite. As there are a finite number of data points, a number

of different parameters of PLS could match the training data quite

well and could be capturing the underlying relationship between

inputs and outputs more accurately. The novelty of our method is in

how to weight different sets of PLS parameters according to how well

they describe the data.

Calculating prediction uncertainty in PLS is nontrivial because of

a complicated relationship between noise in the output and the pre-

dictions coming from PLS.5 We discuss some of the many different

approaches to overcome this difficulty later in this article. Much of

the previous work was done on PLS in the 1980s and 1990s,3,5–7

when limited computational power was available. This required the

use of approximations with known limitations, but that were compu-

tationally quick. We use the massive increase in computational power

to apply a Monte Carlo Bootstrap method, as described by Fushiki,8

to PLS. By sampling with replacement to create synthetic data sets,

our method allows the nonlinearities in the PLS parameters to be

included in any prediction.

Our method produces a continuous distribution that is free from

any assumption that the change in the prediction of PLS can be mod-

eled using linear expressions. Instead of assuming linearity, we allow

variation in the parameters of PLS to be driven by variation in the data

used to train the PLS model. Explicitly, the assumptions of the method

that we propose below are that the prediction error can be modeled

by a normal distribution, that PLS is a reasonable prediction model for

the data of interest, and that the training data are drawn from a similar

distribution to the data for which the model will be used to make

future predictions.

This article first overviews PLS and the different existing methods

for uncertainty prediction. Next, we develop a novel bootstrapping

method to provide a probabilistic prediction density for PLS. Finally,

we demonstrate the applicability of our approach in five case studies.

The first three of these case studies focus on Design Space

identification,9 that is, identifying process parameters which are likely

to result in a desired output. The final two case studies focus on gen-

erating prediction intervals for real data, with one case study perform-

ing similarly to existing techniques and the other illustrating how our

method's predictions can differ. Finally, the main outcomes of these

case studies are summarized and potential avenues of further

research are highlighted.

2 | PARTIAL LEAST SQUARES

PLS is a regression technique for making predictions from an input

space (x�ℝnx ) to an output space (y�ℝny ). Generally speaking, PLS is

used when nx is large and the training data are highly correlated, that

is, when the training data are well-described by a low dimensional

vector (t�ℝnl ) plus a small amount of unexplained variance. It is com-

mon when describing the PLS algorithm to introduce matrices

X¼ x1,…,xNð ÞT , Y¼ y1,…,yNð ÞT , and T¼ t1,…,tNð ÞT , where the lower

index i indicates a specific data point in a training data set

(D¼ xi,yif gNi¼1). This allows the relationships between the training data

points to be written as

X¼1Nx
T þTPT þE, ð1Þ

and

Y¼1Ny
T þTQT þF, ð2Þ

where x and y are the mean of the observed input and output data,

1N �ℝN is a vector containing N ones P�ℝnx�nl and Q�ℝny�nl are

least squares mappings from the latent space to the input and output

spaces, respectively,10 E¼ e1,…,eN½ �T represents the variance in the

input training data discarded by the PLS model, and F¼ f1,…, fN½ �T rep-

resents the prediction error for PLS in each of the training data

points.11 There is an additional relationship between the input vari-

able and the latent variable12: T is a linear transformation of X

given by

T¼XW PTW
� ��1

, ð3Þ

whereW is a ℝnx�nl matrix.

In this article, we are interested in making a prediction from any

point in the input space (x�ℝnx ) to the likely points in the output

space (y�ℝny ). When being used to make a prediction for a single

data point, the PLS equations become

x¼ xþPtþe, ð4Þ

y¼ yþQtþ f, ð5Þ

and

t¼ WTP
� ��1

WTx: ð6Þ

For a given data set, once the practitioner has specified the num-

ber of latent variables, the values of P, Q, and W are all found deter-

ministically using the NIPALS algorithm (see Appendix A).

2.1 | Existing uncertainty techniques in PLS

The focus of this article is on calculating a distribution for possible

output values, conditioned on the training data. Consider a set of

training data D¼ xi,yið Þf gNi¼1 that contains measured input values and

response values. We wish to compute the probability that a given out-

put y is measured if a new input x is observed. This probability should
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take into account the different possible parameters of a model by mak-

ing the probability a weighted average of the predictions that come

from these possible parameters—a process known as marginalization.

For a PLS model with normally distributed noise, the parameters con-

tainW,P,Q and an estimate for the standard deviation of the noise (σ).

p y j x,Dð Þ¼
ð
p yjx,ωð Þp ωjDð Þdω: ð7Þ

In many situations Bayesian methods can be used to find the dis-

tribution of parameters. This combines prior information (p ωð Þ) with

the likelihood of a set of parameters leading to the training data

(p Djωð Þ) to find a distribution known as the posterior for the parame-

ters ω. In order to maintain normalization, the product of the likeli-

hood and prior needs to be divided by a constant (p Dð Þ) which is

known as the evidence. The expression for the posterior is therefore

p ωjDð Þ¼ p Djωð Þp ωð Þ
p Dð Þ : ð8Þ

Multiple articles have applied Bayesian techniques to data-sets

with low dimensional structures, such as those that PLS excels at. This

has lead to a technique referred to as Probabilistic PLS,13–18 where

the data are assumed to be generated according to

x¼ tsPsþ tpPpþe ð9Þ

y¼ tsQsþ f, ð10Þ

where ts is a set of latent variables which describes both the input and

output data through Ps and Qs, respectively, and tp is a set of variables

which is only responsible for describing the input through Pp. This

structure of problem can be solved using standard Bayesian estima-

tion techniques and allows researchers to tackle many types of prob-

lems. However, this formulation does not provide the same solution

as the standard NIPALS algorithm, and gives up many of NIPALS's

advantages such as speed, familiarity and memory efficiency.

A widely used approach for studying the uncertainty of PLS is to

treat it like other linear estimators.7,19–22 For a one dimensional output,

there are closed form analytic solutions, which make equivalent predic-

tions to the NIPALS algorithm.6,12 This closed form expression allows

analogies to the techniques used to analyze ordinary least squares and

principle component regression to be made. These methods have been

widely discussed in the literature and we refer readers to Faber and

Kowalski7 and Zhang and García-Muñoz23 for a detailed descriptions of

several of these estimators. The key idea shared by all of these estima-

tions is that the uncertainty in the linear transformation in PLS can be

found by considering the effect of adding Gaussian noise to the obser-

vations, typically focusing on the outputs. These methods then simplify

the relationship between the prediction from PLS to be only linearly

dependant on the changes in the observed outputs. This allows the lin-

ear transformation that describes the prediction from PLS to be approx-

imated by a multivariate normal distribution, which in turn allows the

prediction output to be approximated by a student-t distribution.5,19

This idea was later extended by Faber and Kowalski20 to include pertur-

bations in the input space as well, which also affect the parameters of

PLS in a nonlinear way.24

An advantage of the methods described above is that they allow

standard results from linear regression to be used, meaning that the

output prediction is a normal distribution with unknown mean and

variance. Combining these two sources of uncertainty results in a

student-t distribution.23 This allows us to write the prediction, condi-

tional on the input x and a training data set D¼ xi,yið Þf gNi¼1, as

p y j x,Dð Þ¼ 1
s xð Þ T y�by x;W,P,Qð Þ

s xð Þ ;N�nl

� �
, ð11Þ

where T z,νð Þ denotes the probability density function (p.d.f.) of a stu-

dent distribution with ν degrees of freedom evaluated at z,

by x;W,P,Qð Þ is the prediction from the PLS model—as calculated by the

algorithm given in Appendix B. The derivation for Equation (11) can be

found in Appendix C. The approximate change in the prediction from

PLS when noise is added is captured by s xð Þ, which is calculated using

s xð Þ2 ¼ σ2 1þ 1
N
þh xð Þ

� �
, ð12Þ

where σ is an estimate for the output noise. The parameter uncertainty

in the prediction is captured by the leverage, h xð Þ, which is given by

h xð Þ¼ xTΣx, ð13Þ

where x is a new point for which we are trying to predict the output

and Σ is the covariance of the linear transformation that gives the

same prediction as PLS.

The method by which the covariance matrix of the multivariate

normal distribution is estimated varies, but we wish to highlight two

common approaches. One popular method is to assume that the span

of the latent space in the input does not vary. This leads to an esti-

mate of the covariance sometimes called the zeroth-order approxima-

tion.19 This allows s xð Þ to be calculated using Equation (12) with

h xð Þ¼
t xð ÞT TTT

� ��1
t xð Þ

N�1
and σ2 ¼ 1

N�nl

XN
i¼1

yi�byið Þ2: ð14Þ

These expressions are used in combination with Equation (11) to

generate a probabilistic distribution to compare our results to.

Another method we wish to discuss for estimating the covariance

matrix for the linear transformation is to use bootstrap techniques.

Faber21 investigated the performances of both bootstrap by residuals

and bootstrap by objects in spectroscopy. This study preferred boot-

strap by residuals for estimating the covariance of the uncertainty in

the linear transformation describing PLS in spectroscopy, noting the

similarity of its performance to the zeroth order method. This article

removes the assumption that the parametric uncertainty in the

ODGERS ET AL. 3 of 16
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predictions from PLS can be modeled by a normal distribution, which

the methods discussed in Faber21 do not address.

Other authors have also considered methods which do not assume

that the prediction uncertainty from PLS can be modeled by a normal

distribution. This was first examined by Denham,5 who proposed a

method to form predictive intervals for PLS prediction using bootstrap

by residuals (see Tibshirani and Efron25 for a detailed description of

bootstrap by residuals). In Denham's method, synthetic data sets are

generated by adding random noise, following the empirical distribution

of the prediction errors, to the predictions from PLS. These synthetic

data sets are then used to generate different sets of PLS parameters.

For a new input, the set of parameters are used to calculate a distribu-

tion of predictions from PLS, which can be convoluted with the empirical

distribution of errors to generate confidence intervals. A similar method

for estimating prediction intervals was also used by Reis and Saraiva,26

but with the focus on situations with high dimensional outputs that con-

tain a structure that is being found by PLS. One aspect not considered

by these methods is the effect of variations in the input. If the inputs are

of full rank and go directly to the outputs then simply considering the

effects of perturbing the output considers all of the noise in the system

and can lead to better estimates for the uncertainty.25 However, latent

variable models, such as PLS, assume that only a portion of the input is

of interest to predict the output and estimates which portion should be

used from the data. As this is a quantity measured from the data it is

important to consider that the wrong portion of the inputs has been

selected. This can be seen clearly in probabilistic PLS, where ignoring the

uncertainty in Ps and Pp is clearly unjustified. In NIPALS PLS the por-

tion of the input which is selected depends on both the input and the

output data, so by not considering possible changes in the input an

important source of uncertainty is missed by bootstrap by residuals,

our method captures this by using bootstrap by pairs.

The approach proposed in this article builds on the work by

Denham.5 Our work applies the method proposed by Fushiki

et al.,27 where a distribution for the parameters p ωjDð Þ is not esti-
mated by the posterior—but by a set of maximum likelihood esti-

mates (MLEs) for different possible data sets that are approximated

using the bootstrap by pairs method. Our method lends itself to the

NIPALS algorithm as each parameter can individually be seen as a

MLE,4 although we are unaware of any result that indicates that the

parameters of PLS are a joint MLE. Our approach uses the regular

NIPALS algorithm, does not assume any parametric form of uncer-

tainty from the predictions of PLS, and considers all sources of

uncertainty.

3 | METHOD

Given a training data set D¼ xi,yið Þf gNi¼1, we wish to predict the out-

put for a new observation x�ℝnx using a PLS model. More specifi-

cally, we want to construct a predictive distribution p y j x,Dð Þ taking

into account the uncertainty in the estimation of the PLS model

parameters due to finite training data. To do so we use bootstrapping,

a widely used technique for uncertainty quantification of statistical

inference procedure. Efron and Gong28 present a good overview of

bootstrapping.

Figure 1 depicts our approach to construct the predictive distribu-

tion p y j x,Dð Þ using bootstrapping. The key idea is that the random-

ness in the training data set is a good approximation of the

randomness that would be observed in any future observations.

Therefore, the uncertainty of the values found in any parameters that

arise from the data can be evaluated by examining how the random-

ness from the observed training data effects the estimated parame-

ters. The first step of our method therefore consists of randomly

simulating B new synthetic data sets of length N, denoted by

D�
bð Þ ¼ xi ,yið Þ�bð Þ

n oN

i¼1
, b¼1…B, by sampling from the empirical distribu-

tion. Note that generating a N sample synthetic data set from the

empirical distribution simply requires sampling with replacement N

data points from the training data set. For each of these new synthetic

data sets D�
bð Þ, we estimate the PLS parameters W�

bð Þ, P
�
bð Þ, and Q�

bð Þ as

well as the MLE for the variance of the prediction noise defined by

σ�2bð Þ ¼
1
N

XN
i¼1

y�i, bð Þ �by x�i, bð Þ;W
�
bð Þ,P

�
bð Þ,Q

�
bð Þ

� �� �2
, ð15Þ

where by x�i, bð Þ;W
�
bð Þ,P

�
bð Þ,Q

�
bð Þ

� �
is the prediction from the PLS algorithm

for input x�i, bð Þ using parameters W�
bð Þ, P�bð Þ, and Q�

bð Þ. Appendix B

describes the method for finding this by prediction. Given these esti-

mates, we compute the prediction probability of observing y given the

new input x for each of the B sets of parameters. Here we assume

that the prediction error is normally distributed, so

p y j x,W�
bð Þ,P

�
bð Þ,Q

�
bð Þ,σ

�
bð Þ

� �
¼N y;by x;W�

bð Þ,P
�
bð Þ,Q

�
bð Þ

� �
,σ�bð Þ

� �
ð16Þ

where N y;μ,σð Þ denotes the p.d.f of a normal distribution with mean

μ and variance σ2 evaluated at y. The overall prediction is found by

averaging the predictions of the B individual bootstrapped predictions.

Algorithm 1 presents the method.

Mathematically, our method constructs a bootstrap predictive

distribution by computing the expectation of the predictive distribu-

tion over different possible bootstrap data sets, similar to Fushiki

et al.27 The resulting predictive distribution is given by

p y j x,Dð Þ¼ ED� p yjx,bω D�ð Þð Þ½ � ¼
ð
p yjx,bω D�ð Þð Þ p D�jbpð Þ dD�, ð17Þ

where bω D�ð Þ¼ P�,Q�,W�,σ�ð Þ denote the estimated parameters for a

given data set D�. The expectation is taken over the boostrap data set

D�, which consists of N samples drawn independently from the empir-

ical distribution

bp x,yð Þ¼ 1
N

XN
i¼1

δ x,yð ÞT � xi,yið ÞT
� �

, ð18Þ

where δ �ð Þ is the Dirac delta function. The integral in Equation (17) is

approximated using Monte Carlo integration as follows

4 of 16 ODGERS ET AL.
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p y j x,Dð Þ≈ 1
B

XB
b¼1

p yjx,bω D�
bð Þ

� �� �
, ð19Þ

where D�
bð Þ, b¼1…B, are bootstrapped data sets.

One aspect to note about our method is that the standard devia-

tions of any individual predictions do not depend on the location of

the input. Instead, we achieve a prediction uncertainty that is depen-

dant on the inputs by changes in the mean of the predicted distribu-

tions. Points further from the mean of the training data will produce

prediction means that are further from one another, resulting in a

wider overall distribution for p y j x,Dð Þ, despite each individual predic-

tion having constant variance.

4 | APPLICATIONS

4.1 | Setup

This section illustrates the performance of the proposed approach

(see Section 3) on different case studies. We claim that the boot-

strapping approach is especially strong in generating good probabilis-

tic predictions in low-data settings that do not follow a standard linear

model, that is, a more complex model than ordinary least squares

regression. These low-data, nonstandard settings frequently arise in

practice. To show the potential of the bootstrapping approach, we

proceed by demonstrating its performance on a series of examples:

the purpose of these examples is to show that the probabilistic boot-

strapping approach performs how we would expect in straightforward

examples and offers compelling advantages for real-world test

instances.

This section studies two major applications for the bootstrapping

approach, which constructs a probabilistic prediction for the output y

given an input x and a set of training data D. The first application is

identifying a Design Space, that is, the multidimensional set of input

variables (including both material and process parameters) that results

in a product of the desired quality.9 Our simple example and two

industrially-relevant case studies in Michael Addition and Reductive

Amination consider Design Space identification. The second applica-

tion, calculating probabilistic prediction densities for the output y

space, is demonstrated for applications in High Shear Wet Granulation

and Spectroscopy.

We compare the bootstrapping approach to the results

achieved using the zeroth order approximation in Equations (11)

and (12). Due to the linear approximation in the zeroth order

method, authors have typically used PLS only as an intermediate

step to find the Design Space.29–32 However, we compare to the

zeroth order method because it is widely used when considering

uncertainty in PLS.23,29,30 We use these comparisons to illustrate

F IGURE 1 Diagram of the proposed method for generating a probabilistic prediction from PLS using bootstrap. (a) The original data set is
sampled with replacement to produce bootstrapped data sets. (b) The bootstrapped parameters are estimated using the standard NIPALS
algorithm described in Appendix A. (c) The bootstrapped parameters are used to generate a prediction for the output of PLS using a normal
distribution with mean given by the prediction from PLS and variance given by the mean squared error of prediction. (d) The estimates from each
of the bootstrapped samples are averaged out to give an estimate for the overall probabilistic distribution of the output given the input and
observed data.

ODGERS ET AL. 5 of 16
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the performance of our method under a range of different

circumstances.

All of the computations were carried out on a 2020 M1 MacBook

Pro with 16GB of ram. The code can be found at https://github.com/

jamesacodgers/bootstrapPLS. The code for the third Design Space

example and the spectroscopy example, is not included for confidenti-

ality reasons.

4.1.1 | Identifying a Design Space

The Design Space is the set of input values to a manufacturing pro-

cess which will produce a desired set of output parameters with a

probability above a given threshold based on a given model and train-

ing data set. Peterson33 defines the Design Space mathematically and

probabilistically as

DS¼ x�ℝnx j p y� ydes j x,Dð Þ>1�αf g, ð22Þ

where 1�α is a minimum acceptable probability. Sections 4.2–4.4

consider applications identifying a Design Space.

Identifying Design Spaces has received much study within the

literature.34–37 There has also been notable work using PLS to help

identify the Design Space, for example, by identifying a region, known

as the Experimental Space, within which the Design Space is predicted

to fall.29,30,32 Another Design Space identification example uses PLS

to perform dimensionality reduction to find suitable samples to exam-

ine using a Bayesian model.31

Applying the bootstrapping approach to Design Space identifica-

tion requires integrating the probability distribution function over all

acceptable values of the output (y). When the output is one dimen-

sional, Equation (21) can be simply adapted to replace the normal

probability distribution functions with the difference between the

cumulative distribution function (c.d.f.) values at the minimum and

maximum acceptable values for the output, resulting in the equation

p y j x,Dð Þ≈ 1
B

XB
b¼1

Φ ymaxjby x;W�
bð Þ,P

�
bð Þ,Q

�
bð Þ

� �
,σ�bð Þ

� �
�Φ yminjby x;W�

bð Þ,P
�
bð Þ,Q

�
bð Þ

� �
,σ�bð Þ

� �
, ð23Þ

where Φ � jbyb,σbð Þ is the c.d.f. of the normal distribution with mean byb
and standard deviation σb.

For multidimensional outputs a Monte Carlo approach is used,

where samples are randomly drawn from the predicted probability dis-

tribution and the fraction of the samples which are within the desired

output range is taken as the estimate for the probability of the output

falling in the desired range. To draw random samples first a random

integer (b) between 1 and B is drawn, then a point is drawn from the

p.d.f. of a multivariate normal distribution using the parameter values

found using the bth parameter values. In order to fully define this mul-

tivariate normal distribution the variance σ�bð Þ needs to be replaced by

the covariance matrix Σ�
bð Þ with elements defined by

σ�bð Þ,kl ¼
1
N

XN
i¼1

y�i, bð Þ,k�byk x�i, bð Þ;W
�
bð Þ,P

�
bð Þ,Q

�
bð Þ

� �� �
y�i, bð Þ,l�byl x�i, bð Þ;W

�
bð Þ,P

�
bð Þ,Q

�
bð Þ

� �� �
,

ð24Þ

where k and l indicate the output dimension that is being referred

to. This process is described in Algorithm 2.

ALGORITHM 1 Method for calculating

probabilistic bootstrap PLS predictions

1. For b = 1 to B

a. Generate a data set D�
bð Þ ¼ x�i ,y

�
i

� �
bð Þ

n oN

i¼1
from the

empirical distribution by sampling with replacement

from the training data. D¼ xi ,yið Þf gNi¼1

b. Calculate the PLS parameters P�bð Þ,Q
�
bð Þ,W

�
bð Þ

� �
and

estimate the variance of the noise from a single boot-

strapped data set (σ�bð Þ), using

σ�2bð Þ ¼
1
N

XN
i¼1

y�i, bð Þ �by x�i, bð Þ;W
�
bð Þ,P

�
bð Þ,Q

�
bð Þ

� �� �2
, ð20Þ

2. Calculate the predictive distribution

p y j x,Dð Þ≈ 1
B

XB
b¼1

N y;by x;W�
bð Þ,P

�
bð Þ,Q

�
bð Þ

� �
,σ�bð Þ

� �
, ð21Þ

where N y;μ,σð Þ is the p.d.f. of a normal distribution with

mean μ and standard deviation σ evaluated at position y,

and by x;W�
bð Þ,P

�
bð Þ,Q

�
bð Þ

� �
is the prediction from the PLS

algorithm for input x using parameters W�
bð Þ, P�bð Þ,

and Q�
bð Þ.

ALGORITHM 2 Monte Carlo method for

calculating the probability of an output falling in the

desired range

1. For m = 1 to M:

a. Randomly select integer b between 1 and B.

b. Draw a random number y0m from the multivariate nor-

mal N by x�i, bð Þ;W
�
bð Þ,P

�
bð Þ,Q

�
bð Þ

� �
,Σ�

bð Þ

� �
.

2. The probability can then be calculated using

p¼ 1
M

XM
m¼1

Yny
k¼1

I ymin,k < y
0
m < ymax,k

� �
, ð25Þ

where I �ð Þ is the indicator function and the subscript k

indicates which output dimension is being referred to.
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One point which we would like to acknowledge is that Design

Space identification problems often do not follow the latent structure

implicitly assumed by PLS. We believe that considering PLS in this

type of setting is reasonable, as in these cases the dimensionality

reduction acts as a type of variable selection, which can allow PLS to

perform well. In fact, PLS has been studied in the literature for similar

applications for a significant period of time.38 However, there is a

requirement that any practitioner interested in applying any PLS

uncertainty technique first considers whether a PLS model is appro-

priate for a given task, or whether a task specific model—such as the

ones put forward by Reis et al.39—performs better.

4.1.2 | Calculating probabilistic prediction densities

One downside of using real data for Design Space identification is

that we are unable to compare to the true Design Space, as this is an

unknown we are trying to estimate. To show the validity of our

method for real data, Sections 4.5–4.6 compare the calculated predic-

tion densities to the observed outputs in High Shear Wet Granulation

and Spectroscopy. This comparison allows us to show that our

method is able to make predictions that meaningfully capture the

uncertainty of the model for real data.

4.2 | Simple simulated example

A very simple Design Space identification example illustrates the tech-

nique. In this example, a two dimensional input (x1,x2) generates a one

dimensional output (y), via the equation

y¼ x2þϵ, ð26Þ

where ϵ is a Gaussian noise term with variance 0:2. A training data set

D with N¼40 samples was generated by sampling input values from

a multivariate normal distribution x1,x2ð Þ�N 5,5ð ÞT ,5 
� �

and the

output y was generated using Equation (26).

To identify the Design Space for ydes ¼ 8,12½ � with α¼0:9

based on the training data D, we estimate the bootstrap predictive

distribution using B¼1000 bootstrap data sets and construct the

Design Space. Figure 2 represents the resulting Design Space.

The contours depicted in Figure 2 come from calculating the probabil-

ity that the given input results in the desired output of each point in a

100�100 grid, which was interpolated to produce the contours.

The full details of the implementation can be found in the provided

code. An important feature of our approach is that it considers

uncertainty in the latent space through bootstrapped data sets.

Figure 2 illustrates how the latent space estimated using all the train-

ing data differs from the latent spaces estimated using each of the

1000 bootstrapped data sets. We observe that, by incorporating

the uncertainty via bootstrapping, the Design Space constructed

using our approach is naturally restricted to be close to the latent

space.

We now compare the Design Space found by our method to the

one obtained using the zeroth order method as well as to the so-

called true Design Space, that is the Design Space if one knew the

data-generating process, that is,

x�ℝ2 j p y� 8,12½ � j xð Þ>1�α
� 	

¼ x�ℝ2jp 8�x2 ≤ ϵ≤12�x2ð Þ>1�α
� 	

:

Figure 2 shows that the Design Space constructed using the

probabilistic bootstrap approach is included within the true Design

Space, while the Design Space constructed using the zeroth order

method only overlaps with the true Design Space. Recall that the

zeroth order method makes predictions that are invariant with respect

to the distance of the point from the latent space. In other words, the

zeroth order method assigns equal probability to all points within the

input space (x) that map to the same point in the latent space (t).

Therefore, the Design Space resulting from the zeroth order method

is a band orthogonal to the estimated latent space. In contrast, the

probabilistic bootstrap approach produces curves that reflect the

uncertainty arising from the portion of the input not typically consid-

ered by a PLS model.

Figure 3 shows the estimated predictive distributions p y j x,Dð Þ
for two different values of x, indicated by the purple and red points in

Figure 2, using both the zeroth order and probabilistic bootstrap pre-

diction methods. The two values of x have identical positions in the

latent space. As the zeroth order method described in Equations (11)

and (12) only considers the projections of the two points on the latent

space, the two posterior predictive distributions using the zeroth

order method are identical. In contrast, the bootstrap method, which

does consider the uncertainty in the position of the latent space, pro-

duces two distinct posterior predictive distributions. The probabilistic

bootstrap approach emphasizes the importance of the distance to the

latent space as a source of uncertainty.

The prediction arising from the bootstrap method is strongly neg-

atively skewed. This is in contrast to any uncertainty method for PLS

models that relies on the student-t distribution, including the zeroth

order method. As discussed earlier, the student-t distribution arises

from assuming that the distribution can be described by just an

unknown mean and variance. By relaxing the assumption that uncer-

tainty in PLS parameters, plus Gaussian noise with unknown variance

results in a student-t distribution, we see that the resulting distribu-

tion is markedly skewed and different from any student-t distribution.

This skew is due to the known nonlinearities in the parameter estima-

tion of PLS.

4.3 | Michael addition reaction

The next example explores Design Space identification for the

Michael Addition reaction. The full details on the simulation of

this reaction are given by Kusumo et al.37 For this article, the real

data generating process will be treated as a black box that accepts

two process inputs (the molar ratio of two reactants, and time in a

continuous stirred reactor vessel) and predicts two outputs (a

ODGERS ET AL. 7 of 16
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greater than 90% conversion of the carbon, and a residual molar con-

centration of an intermediate product). Twenty-five training data

points were simulated in a grid arrangement across the inputs, with

molar ratio varying between 10 and 30, and the time in the continu-

ous stirred reactor vessel was varied between 400 and 1400 minutes.

Training data were initially generated without noise, then a Gaussian

error term was added. The standard deviation of the error term was

set as 1% of the mean of the training data before the noise was

added.

These data were fit with a two component PLS model, which

was used to calculate a Design Space with a greater than 90% con-

version of carbon and a residual molar concentration of less than

2mmol per liter. The results of these are shown Figure 4, with the

true probabilities of the outputs being in the Design Space shown as

F IGURE 2 Figure showing the Design Space for a simple simulated example. The dashed lines indicate the true probabilities of data generated at
that point falling in the desired range. The red and purple points indicate points of interest discussed in Figure 3. (a) The latent spaces (orange lines)
found by the bootstrapped data sets, and the resulting Design Spaces using probabilistic bootstrap prediction (shown as purple and yellow sollid
lines) —whose shape depends on the distance to the latent space. (b) The latent space (orange line) found by the regular PLS model using the training
data set, the resulting Design Spaces (purple and yellow solid lines), do not account for the distance to the latent space.

F IGURE 3 Comparison of the two predictions of the probability density function from the zeroth order approximation method and the
bootstrap prediction. The solid lines show the bootstrap method proposed here, the dashed line shows the prediction from the zeroth order
approximation method, and the shaded area is the desired output range for y. As can be seen above, there is no difference in the predictions from
the two points using the zeroth order approximation, whereas the bootstrap method applies significant weight to a far wider range of values.
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dashed lines, and the Design Spaces found by the two models shown

in solid lines. In this case it is obvious that the bootstrap method per-

forms significantly better, correctly capturing a significant portion of

the inputs in this range as having a greater than 90% chance of being

within the Design Space, while the zeroth order approximation fails to

predict any region of these inputs as having a greater than 90%

chance of being within the Design Space. While it is not possible to

identify the exact causes of the significant difference in the perfor-

mance between the two methods, previous results from Fushiki8 have

shown that in general bootstrap prediction method performs remark-

ably well in cases where no set of input parameters for the model

would recapitulate the true data generating process, as is the

case here.

4.4 | Reductive amination

The final Design Space identification example is an industrial case

study. In this example there are 15 input dimensions and two output

dimensions of interest, one conversion percentage for outputs with a

minimum required conversion rate and one contaminant with a maxi-

mum allowable presence in the final product. Due to the high dimen-

sional inputs, grid sampling, as was used in the Michael Addition

reaction is not possible, so instead a Markov Chain Monte Carlo

(MCMC) was used to sample the areas of higher probability of being

within the Design Space. In order to constrain the samples to be close

to the historic data, samples were only drawn from the Knowledge

Space defined by Facco et al.,29 and described in more detail in

Appendix D.

The results of both the bootstrap and the zeroth order approxi-

mation are shown in Figure 5. This plot shows the projection of points

down to a two dimensional subspace of the true input dimension—a

temperature of a reactant when added and the temperature of the

reaction. These points are color coded by the probabilities of the

given inputs producing an output fulfilling both a greater than 90%

conversion to the desired output, and a less than 1% presence of an

impurity generated by the reaction. For these acceptance criteria the

zeroth order method fails to find any points that would constitute a

Design Space at a confidence level of 90%. Meanwhile the bootstrap

method proposed here predicts that a large number of the points will

fulfill the required Design Space criteria. While it is not possible to

comment on the accuracy of this Design Space, there are many situa-

tions in which it is preferable to have a larger Design Space, even at

an inevitable risk of incorrectly assigning some points that should not

truly be in the Design Space.

4.5 | High shear wet granulation

This data set arises from a wet granulation process.40 Vemavarapu

and Badawy40 consider how six input dimensions: aqueous solubil-

ity, contact angle, water holding capacity, two distinct measures of

particle size, and surface area affected a number of response

variables. In this article, we only consider the percentage of parti-

cles larger than 1.4 mm as the response of interest. We abstract

away specifics and refer to the inputs as xj , j� 1,…,6f g and the out-

put as y. We scale the data as described by Vemavarapu and

Badawy40 in order to improve the model performance, that is, we

F IGURE 4 Design Spaces for the Michael addition reaction using bootstrapped and zeroth order methods. (a) The Design Space from the
bootstrap method and (b) the zeroth order method. The axes indicate different values for two independent inputs to the manufacturing process.
The contours indicate the different probabilities of given inputs being within the Design Space, with the solid lines indicating the probabilities
from the PLS methods, while the dashed lines indicating the true probabilities of that input resulting in an acceptable output.
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apply a logarithm to xj for j� 1,3,4,5f g and a cube root to x6. For each

prediction a different training set, excluding the point that is being

predicted, but including all other points was created. This new data

set was used to train a PLS model and find the uncertainty

predictions.

Figure 6 shows a violin plot of the prediction density between

the 0.025 and 0.975 quantiles of the predicted distribution, along with

the true observed value and the deterministic prediction from PLS.

The prediction from the zeroth order method is also included for the

sake of comparison. Both of these methods produce credibility

F IGURE 5 Projection of randomly sampled points in the input space to the two dimensional space of just reaction temperature and nitrogen
addition temperature. The differently colored points indicate the different probabilities for the given input resulting in an acceptable output. (a)
The probabilities found using the bootstrap method proposed here, (b) the probabilities using the zeroth order method. The same point appears
to have different probabilities of being within the Design Space as they have been projected down from a higher dimension—in reality these
points are separated along one or more of the other dimensions not shown here.

F IGURE 6 Violin plot for the data given in Vemavarapu and Badawy.40 The blue shapes indicate the probability distribution found by the
bootstrap prediction, whereas the orange show the prediction from the zeroth order approximation method. The points are the predictions from
PLS before uncertainty is included and the crosses are the true values of the % oversized particles. The blue horizontal line is the mean value of
the training data outputs. For the sake of clarity both violin plots are truncated at the 0.025 and 0.0975 quantiles of the plot to remove tails from
both distributions.
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intervals that contain the majority of data points, with the bootstrap

prediction only failing to predict the interval for sample number

18 and the zeroth order approximation missing samples 18 and 25.

The primary difference between these predictive densities is that the

bootstrap prediction generally places more weight on the samples

being closer to the mean observed values in the training set - shown

as a blue horizontal line in the figure. This preference for predicting

the mean by the bootstrap method shifts the intervals upward when

the prediction is significantly below the mean and downward when

the prediction is above the mean. This effect is the reason why the

bootstrap prediction finds sample number 25 within its predicted

interval, while the zeroth order approximation does not.

4.6 | Spectroscopy

The last example looked at here uses spectroscopic data.41,42 The raw

data were preprocessed with the methods described by Hetrick

et al.,41 where only wavelengths from 1626 to 1993 nm are used with

Standard Normal Variate transformation applied (transforming the

data to have mean zero and variance one), and a three latent variable

PLS model. Spectroscopy was chosen to evaluate how our method

performed in high dimensional settings. Additionally, this case study

provided a good chance to evaluate our method in comparison to the

zeroth order approximation method, where it has already been shown

to perform well.21 Note again that the data for this case study has not

been released for confidentiality reasons.

Two PLS models were fit from this preprocessed data, one using

50 training data points and one using 1000 training data points, these

are shown in Figure 7. As can be seen for this data set the zeroth

order approximation and the prediction from the bootstrapped PLS

method are indistinguishable. This is a boon for our method as it has

been found on multiple occasions that for spectroscopy data sets the

zeroth order approximation method is very effective in finding accu-

rate predictions,21 suggesting that even in cases where established

methods perform well, our method is not out performed.

(A)

(B)

F IGURE 7 The prediction
from bootstrap and zeroth-order
approximation for spectroscopic
data. The blue shapes indicate the
probability distribution found by
the bootstrap prediction, whereas
the red show the prediction from
the zeroth-order approximation
method. The points are the

predictions from PLS before
uncertainty is included and the
crosses indicate the observed
values for the API fraction. The
two predictions are
indistinguishable for the 1000
point training data set, and nearly
identical for the 50 point training
data set.
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5 | CONCLUSIONS

This article applies the techniques described by Fushiki et al.,27 which

allows us to make principled probabilistic predictions from PLS. The

probabilistic bootstrapping approach considers the uncertainty arising

from the interaction between the parameter uncertainty and the por-

tion of the input variables typically ignored by PLS. In addition to the

theoretical justifications for this method, the probabilistic bootstrapping

approach finds meaningful for prediction intervals for real world data,

and runs efficiently enough to provide useful Design Spaces.

Although prediction and Design Space identification are the two

topics chosen to demonstrate the power of our method here, they are

by no means the only uses that our method could be put to. For

example, our method could also be adapted to identify regions where

it is likely that the Design Space could be—similar to finding experi-

mental spaces as described by Facco et al.29 and Bano et al.30 This dif-

fers from finding a Design Space, as the Design Space combines both

parametric uncertainty and uncertainty from inherent random fluctua-

tions, however regions with high parametric uncertainty should still

be considered when looking for inputs that potentially result in the

desired outputs.

Another direct application of the method presented in this article

is in pharmaceutical manufacturing, specifically in the implementation

of a Real Time Release Testing solution using a PLS model. The

method presented here allows the uncertainty of the model to be

accounted for in the decision making process (e.g., to accept or to

reject product), without making (invalid) assumptions regarding the

trustworthiness of the predictions. The consideration of uncertainty

can be of particular interest in applications near a physical boundary,

like a decay curve in continuous manufacturing, or the estimation of

drug content for a low dose product.

One short fall of our method is that it assumes that the system

can be well approximated by a linear prediction and that the differ-

ence between the predicted and the true values of the output are

explainable by noise. However, many relationships in chemical

manufacturing and chemometrics cannot be well modeled by a linear

relationship between input and output variables. The current work is

unable to distinguish the models uncertainty due to noise and uncer-

tainty arising from mismatch between PLS and the true system being

investigated. An open avenue for PLS research is to consider methods

to incorporate the uncertainty arising from model mismatch.

NOTATION

x input variable

y response variable

xi,yið Þf gNi¼1 training data set

x�i ,y
�
i

� �
bð Þ

n oN

i¼1
bootstrapped training data set

P least squares transformation from t to x

Q least squares transformation from t to y

W concatenated, transposed values of wl

x sample mean of X

y sample mean of Y

P�bð Þ bootstrapped calculation of P using data set b

Q�
bð Þ bootstrapped calculation of Q using data set b

W�
bð Þ bootstrapped calculation of W using data set b

x�bð Þ bootstrapped sample mean of the input data in data

set b

y�bð Þ bootstrapped sample mean of the output data in

data set b

t latent variable found from PLS

e variance in input variable not considered by PLS

f noise from the Prediction to the true value of PLS

wl direction of maximum covariance between Xl and Y

pl least squares prediction between the lth compo-

nent of t and Xl

ql least squares prediction between the lth compo-

nent of t and Y

X matrix of input training data

Y matrix of output training data

Xl transformed input variables for the jth component

of PLSbCa,b MLE of the covariance matrix of vectors a and b

by prediction of response variable from PLS given an

input x

nx number of dimensions of the input variables

ny number of dimensions of the output variables

nL number of latent variables of PLS

N number of training data points

s xð Þ standard error of sample output variable

tν student-t distribution with ν degrees of freedom

DS Design Space

ydes desired range of response variables for a

manufacturing process

α error acceptance rate for the Design Space

B number of bootstrap replications

N y;μ,σð Þ probability density function for a normal distribu-

tion with mean μ and variance σ2 evaluated at y

δ �ð Þ Dirac delta function
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APPENDIX A: NIPALS ALGORITHM

The description of PLS is often not given by a single objective func-

tion, but rather by an algorithm. Presented below is a description of

the PLS algorithm adapted from the work of Gusstafsson (2001),4

which frames the algorithm in a probabilistic way.

For a PLS model with nl latent variables and N data points

1. Estimate the mean of both x and y, using

x¼ 1
N

XN
i¼1

xi ðA1Þ

y¼ 1
N

XN
i¼1

yi, ðA2Þ

where xi and yi are the data points in the training set.

2. Set l¼1

xi,l ¼ xi�x ðA3Þ

yi,l ¼ yi�y: ðA4Þ

3. Calculate wl �ℝnx , which is the component in xl that is believed

to have the maximum covariance with y. This is equivalent to

finding the first left singular vector of the estimated covariance

matrix. This can be solved using the following maximization

problem:

maxwl
wT

l
bCxly

bCT

xly
wl s:t:




wl




¼1, ðA5Þ

where the notation bCab �ℝdim að Þ�dim bð Þ denotes the MLE of the covari-

ance matrix between variables a and b, with components given by

cj,k ¼
1
N

XN
i¼1

xi,jyi,k , ðA6Þ

where xi,j and yi,k are the input component j and response component

k for the ith sample.

4. Calculate the latent variable ti,l

ti,l ¼wT
l xi,l: ðA7Þ

5. Calculate the ordinary least squares regressors (p�ℝ1�nx and

q�ℝ1�ny ) for Xl ¼ x1,…,xN½ �T and Y¼ y1,…,yN½ � given the latent var-

iable tl ¼ t1,l,…,tN,l½ � using

pl ¼
tTl Xl

tTl tl
ðA8Þ

ql ¼
tTl Y

tTl tl
, ðA9Þ

where Tl �ℝN�1 is a matrix of the lth latent variable of the train-

ing data.

6. If l< nL then transform the input and response variables using

exlþ1 ¼exl�plt
T
l ðA10Þ

eylþ1 ¼eyl�qlt
T
l , ðA11Þ

set l¼ lþ1 and go to Step 3. This step is called deflation.

7. Generate W �ℝnx�nl , P�ℝnx�nl , and Q�ℝny�nl by concatenating tl,

pl, and ql

W¼ w1,w2…,wnL½ � P¼ pT1,p
T
2…,pTnL

h iT
Q¼ qT1,q

T
2…,q

T
nL

h iT
:

ðA12Þ

APPENDIX B: PREDICTING A RESPONSE GIVEN AN INPUT

VALUE AND PLS PARAMETERS

PLS is able to predict the response (y) from a new input (x). Here the

estimate for y is denoted using by x;W,P,Qð Þ, and is calculated in the

following way:

1. Set l¼1 and x1 ¼ x�x.

2. Calculate the scalar tl using

tl ¼wT
l xl: ðB1Þ

3. If i< nL transform the input variable using

xlþ1 ¼ xl� tlp
T
l , ðB2Þ

set l¼ lþ1 and return to Step 2.

4. Calculate the value for y using

by x;W,P,Qð Þ¼ yþQt, ðB3Þ

where t¼ t1,t2,…tnL½ �T .
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APPENDIX C: STUDENT-T DERIVATION

For a given input x, the studentized residuals, denoted here by τ,

is defined as

τ¼ y�by xð Þ
s xð Þ ðC1Þ

and follows a student-t distribution with ν degrees of freedom. Its

probability density function is given by

p τð Þ¼T τ;νð Þ: ðC2Þ

The change of variables formula for probability distributions is

p yð Þ¼ p τð Þjdτ
dy

j: ðC3Þ

Substituting in the result that

dτ
dy

¼ 1
s xð Þ , ðC4Þ

along with the identities in Equation (C1) and Equation (C2) gives the

result in Equation (11).

APPENDIX D: DEFINING THE KNOWLEDGE SPACE

The PLS model is only considered valid in the same region as the train-

ing data were from. The valid region is found by assuming training

data are drawn from a multivariate normal distribution and finding its

confidence limits.

There are two statistics used for this: the T2 statistic and the

Squared Prediction Error (SPE) statistic. In order for a point to be con-

sidered to have been drawn from the same region the SPE and the T2

statistic need to both be below predefined thresholds.

The T2 statistic for an input x� is given by

T2
i ¼

Xnl
j¼1

t�2j
λj

, ðD1Þ

where nl is the number of latent variables, t�j is the value of the data

point x� along the jth latent variable and λj is the variance along the jth

latent variable.

The value of the squared prediction error (SPE) for a data point x�

is given by

SPE¼ e�Te�, ðD2Þ

where e� is the portion of x� that was discarded by the PLS model.

The upper confidence limit for T2 is given by

UCL T2
� �

α
¼
nl N2�1
� �
N N�nlð Þ F nl , N�nlð Þð Þ,α, ðD3Þ

where N is the number of samples in the training data, α is a desired

confidence level, and F nl , N�nlð Þð Þ,α is the α quantile of F distribution with

nl and N�nl degrees of freedom.

The upper confidence limit for SPE is given by

UCL SPEð Þα ¼
v
2b

χ2
2b2=vð Þ,α, ðD4Þ

where b is the mean of the training points, v is the variance, χ2
2b2=vð Þ,α

is the α quantile of a χ2 distribution with 2b2=v degrees of freedom.
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