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Abstract

Constitutive laws characterise the stress-strain relationship in a material. Determining a consti-

tutive law experimentally typically involves subjecting the material to a prescribed deformation

and measuring the force required to achieve it. There are numerous constitutive laws which

have been developed to model the stress response of viscoelastic fluids, and the decision on

which constitutive law should be fitted to data is largely based on the rheologist’s knowledge

about the fluid in relation to the catalogue of standard models appearing in the literature. In

this thesis, we present an alternative approach for determining a viscoelastic fluid’s constitutive

law based on methods related to Koopman operator theory and Dynamic Mode Decomposition

in the context of control. Our approach systematically extracts the material parameters that

arise in stress-evolution equations of viscoelastic fluids directly from simulation or experimen-

tal data. We will present results from various applications of the framework that highlight

its accuracy and robustness in identifying material parameters and reconstructing the under-

lying constitutive law. We will discuss how data should be supplied to the method, and also

demonstrate how data from recently developed experimental protocols, as well as combined

data from multiple experiments, can be used to improve resolution. Finally, we will show that

our approach provides a natural way to utilise data from the nonlinear regime and extends to

higher-dimensional data sets where spatial data within a sample is available.
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Chapter 1: Introduction

Complex fluids are ubiquitous: in foods such as ketchup and chocolate [1], cosmetics like sham-

poo [2], industrial processing of materials like polymers and plastics [3, 4], in biological fluids

including blood and mucus [5], and natural disasters such as volcanic lava and mudslides [6].

While they may all fall under the umbrella term of ‘fluids’ when in the state we model them,

it is clear that they behave di↵erently and require di↵erent equations in order to be modelled

accurately. The di↵erence lies in each fluid’s constitutive law : the equation required in addition

to the standard momentum balance equation for fluid flow, which describes the relationship

between the fluid’s stress and its deformation.

For a Newtonian fluid like water at a constant temperature, the shear stress and rate of strain

are linearly proportional and the constant of proportionality is defined as the viscosity µ,

� = �pI+ 2µe, (1.1)

where I is the identity matrix, p is the isotropic pressure, and e = 1
2(ru + (ru)T ) is the rate

of strain tensor where u is the velocity field. Meanwhile, constitutive laws for complex fluids

can vary significantly, from simple modifications of Eq. 1.1 up to systems of highly nonlinear

equations containing various invariants of the stress, strain and rate of strain tensors, and may

also include other variables such as temperature, material aging, and so on.

Constitutive laws have been derived in both a bottom-up manner, from the kinetic theory of the

fluid molecules which is then taken to a continuum limit, and in a top-down, phenomenological

manner to describe the behaviour of a fluid observed during experiments. There is a catalogue
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of constitutive laws that have been developed over decades in order to represent the dynamics

of di↵erent complex fluids, and modifications can be made to these laws in order to better

represent a given system, provided that physical constraints are still maintained [7]. Choosing

an appropriate constitutive law involves balancing the benefits of a simple law that is easy to

interpret in a given environment, with a complex law that can encapsulate all the properties of

the fluid in question in a variety of scenarios, and also a level of reliance on the practitioner’s

own knowledge and experience.

Once a suitable constitutive law for a given fluid has been selected, the parameters for each of

the terms in the law are determined by fitting it to rheological data recorded from experiments,

with the assumption that the data is su�ciently detailed to identify the model parameters

uniquely [8]. A classical rheometry experiment involves applying a deformation to the fluid

and measuring its mechanical response. For example, in an oscillatory shear test, a Couette

rheometer (or Couette cell) formed of two concentric cylinders is filled with the fluid, and then

the inner cylinder is rotated while the force on the outer cylinder from the fluid is measured.

Oscillating the cylinder at low amplitudes provokes a linear rheological response, while experi-

ments taken at higher amplitudes can probe any nonlinear terms that are present in the fluid’s

constitutive law. The methods for analysing linear rheological data are well-established, while

the analysis and interpretation of nonlinear rheological data is an active area of research.

An important assumption made during these experiments is that an a�ne deformation is carried

out across the rheometer, meaning that the force measurements at the rheometer wall are

su�cient to obtain the stress response of the entire fluid. Work in recent years has established

the existence of a phenomenon known as shear banding, where the velocity is di↵erent in one or

multiple subsections of the rheometer [9], and its importance in understanding the dynamics of

a fluid undergoing large deformations. Shear banding can be indicated by analysing time-series

data at the rheometer wall [10], and can be viewed fully when 2D or 3D images are taken during

the experiment [11]. While the data for fitting a constitutive law and the data for analysing

shear banding stems from the same experiments, they have so far been considered separately

in the rheological community.
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Broadly speaking, determining a fluid’s constitutive law is equivalent to finding the function

which best relates the input to the experiment - the experimental parameters and the applied

deformation - to the output - the forces measured on the rheometer or images taken during the

experiment. This type of problem fits within the wider realm of ‘system identification meth-

ods’ [12], and we will seek solutions to this problem from a system identification perspective.

The family of methods we employ to achieve this goal stems from work in the 1930s by Bernard

Koopman [13] and has had an explosion of interest in the past two decades. These methods

are based on the idea of transforming a data set coming from a finite-dimensional, nonlinear

dynamical system, into one coming from an infinite-dimensional, linear dynamical system, using

the so-called Koopman operator [14]. The approach received renewed interest when Schmid

introduced Dynamic Mode Decomposition (DMD) as a method to produce a finite-dimensional

approximations to the Koopman operator [15]. DMD was originally developed for turbulence

research to understand the dynamics of turbulent flow [16] - however, it has since been applied

in a range of fields, such as monitoring power networks [17], modelling the spread of infectious

diseases [18], and for the development of algorithmic trading strategies [19]. It is applicable

to such disparate topics due to it being a data-driven method: any underlying dynamics are

identified entirely based on features in the data that it has been provided. A huge number

of variants and extensions to DMD have been proposed since this initial publication, of which

we will discuss several in Chapter 3, with particular emphasis on a version of DMD called

Koopman with inputs and control (KIC) [20].

In this thesis we present an application of KIC, which we will refer to as rheoKIC, that can be

used as a system identification tool for both linear and nonlinear constitutive laws. We believe

that this is the first time that a method based on Koopman operator theory has been used to

analyse and identify the constitutive law of a complex fluid. Rather than fitting the parameters

to a pre-selected constitutive law as is typical in the field, we instead aim to fit the entire

stress evolution equation of the fluid, so that the data itself determines which constitutive

law should be used. Given a dictionary of candidate terms that could be included in the

constitutive law, rheoKIC computes a linear combination of them that optimally (with respect

to the Frobenius norm) maps the input and output data from a rheometry experiment. We
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use our knowledge of how constitutive laws are constructed to choose the initial dictionary

of possible terms in the law, and investigate various techniques to balance the accuracy and

simplicity of the resulting constitutive law during the rheoKIC process. We begin by looking at

linear constitutive laws, and then systematically build on the problem complexity until we are

dealing with systems of equations containing multiple nonlinear terms. We focus on data sources

that align with the types of data extracted from rheometry and investigate how combinations

of experimental data can aid in the identification of the terms and increase the accuracy of their

approximated coe�cients. Lastly, we show how the rheoKIC method naturally incorporates

any spatial variation in the data when higher-dimensional data is provided.

1.1 Thesis layout

The structure of the thesis is as follows:

Chapter 2 We first establish the rheological background and scope of the fluid types that

we will analyse. We discuss what a constitutive law should do and the physical

laws it must follow, and specifically introduce the structure of constitutive laws

of viscoelastic fluids. We additionally provide an explanation of the experimental

protocols that we will simulate in order to generate the data used throughout the

thesis.

Chapter 3 We establish the methodology behind Koopman operator theory and in particular

DMD. We provide the specific extensions to DMD, namely Dynamic Mode De-

composition with control (DMDc) and Koopman with inputs and control (KIC),

that serve as the main sources of inspiration to our method (rheoKIC). We then

lay our the principal steps for applying rheoKIC to rheological data.

Chapter 4 We apply rheoKIC to data from the linear Maxwell model. We show that, for a

specific choice of observables, rheoKIC applied to this data set reduces to DMDc.

We compare our results to those from the analytic solution and analyse sources
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of error. We show how to recognise that nonlinear terms are unnecessary when

constructing the constitutive law, and we show the e↵ects of using data sets from

di↵erent types of simulations both in isolation and when combined.

Chapter 5 We show how rheoKIC can be applied to the simple/scalar fluidity model, which

has a term that depends nonlinearly on the shear rate amplitude. We show that

rheoKIC identifies a linear model when the shear rate amplitude of the provided

data is not su�ciently high, but identifies the full, nonlinear model when the

shear rate is large and/or the experimental data is appropriately complex. We

introduce more complex data sets to investigate how this e↵ects the performance

of rheoKIC, and evaluate the e↵ects of data noise on our results.

Chapter 6 We apply rheoKIC to the non-stretching Rolie-Poly model comprising a nonlinear

system of two equations. We use combinations of experimental data to improve

accuracy, and demonstrate various approaches to reducing the number of candi-

date observables that are initially supplied: by applying rheoKIC sequentially to

data from di↵erent experiments; by combining data sets that demonstrate non-

linear behaviour; and by repeatedly applying rheoKIC while pruning any unused

observables.

Chapter 7 We apply rheoKIC to nonlinear, spatially inhomogeneous rheological data which

replicates a fluid demonstrating shear banding behaviour. We show that rheo-

KIC is still able to successfully reconstruct the constitutive law when provided

only with measurements taken at the rheometer wall, and that rheoKIC can be

used to determine any di↵erences in the properties of the fluid within the two

banded regions. Finally, we show that analysis using rheoKIC naturally extends

to incorporate spatial inhomogeneity such as shear banding within the provided

data, and that the coe�cients generated by the method are generalised extensions

to the fluid parameters that incorporate information about the spatially-varying

response of the fluid.

Chapter 8 Conclusions and suggestions for future work.



Chapter 2: Characterisation of consti-

tutive laws for viscoelastic

fluids

Throughout the entirety of this thesis we will be looking at fluids that follow the momentum

equation

⇢
Du

Dt
= �r · � + f (2.1)

for the Cauchy stress tensor � and body forces acting on the fluid f . The stress tensor is

symmetric under the assumption that there is no angular momentum within the fluid [21]. The

operator
Dx

Dt
=

@x

@t
+ u ·rx is the material derivative which we will discuss further in Sec. 2.1.

Eq. 2.1, along with the assumption that the fluid is incompressible,

r · u = 0. (2.2)

together form the incompressible Navier-Stokes equations for a Newtonian fluid. We assume

that we are considering fluids where viscous e↵ects dominate over any inertial e↵ects, allowing

us to reduce Eq. 2.1 and Eq. 2.2 to the Stokes equations for an incompressible fluid,

30
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r · � + f = 0, (2.3a)

r · u = 0. (2.3b)

The lack of inertial terms in comparison to the full Navier-Stokes equations means that Stokes

flow, also known as ‘creeping flow’, is determined instantaneously from the e↵ects of body

forces. However, Eqs. 2.3 are not closed, as there is no equation that describes the dynamics

of �: this is the constitutive law which we must also provide. For a Newtonian fluid, the

constitutive law is given by

� = �pI + 2µe, (2.4)

where I is the identity tensor, µ is the fluid’s viscosity, and e is the rate-of-strain tensor,

e =
1

2
(ru+ (ru)T ). (2.5)

The dynamics of a Newtonian fluid in Stokes flow defined by Eq. 2.4 and Eqs. 2.3 are there-

fore entirely linear and can be solved using well-known methods for solving linear di↵erential

equations. For a complex fluid, Eq. 2.4 no longer holds and an alternative, possibly nonlinear,

equation must be used in its place.

2.1 Constitutive laws

The constitutive law determines how the stress in the fluid will evolve over time and under the

influence of applied forces. For a Newtonian fluid, the stress is linearly proportional to the rate

of strain and the constant of proportionality is the shear viscosity, µ. The situation is less clear

if the fluid is not Newtonian and this relation no longer holds. Constitutive laws for complex
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fluids include extra terms that may be nonlinear in both the stress tensor and the rate of strain

tensor, as well as their invariants.

While it is unquestionable that constitutive laws cannot violate the laws of thermodynamics,

it was additionally noted by Oldroyd [22] that the evolution of the stress tensor should be

independent of how it is observed and laid out a list of criteria to this end. In brief, a constitutive

law should:

1. Remain the same despite a change in frame of reference;

2. Remain the same despite the fluid element under observation changing position, or its

translational or rotational motion;

3. Remain the same despite any changes to nearby sections of the fluid (with the exception

of enforcing boundary conditions for continuity).

If a constitutive law has all three of these properties then it is known as ‘rheologically invariant’

or ‘admissible’ [3]. The most convenient form for writing a constitutive law so that it can be

checked for admissibility is within a convected coordinate system [23]. This is a coordinate

system that is frame-invariant with respect to tensors, and as such the stress tensor will not

appear to change if the frame of reference is changed. Similar to how the time derivative of

the velocity vector is replaced by a material derivative for the Stokes equations in Eq. 2.3, we

must replace the derivatives of our tensor with a convected derivative in a convected coordinate

system [24] that deforms with the flow (represented in Fig. 2.1).
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e1
e2

e� 1

e� 2

Figure 2.1: Left: Points represented on a two-dimensional Cartesian grid, e1, e2. Right: The
same points mapped onto a convected grid, e01, e

0
2.

The most commonly used frame-invariant derivatives are the upper-convected derivative,

r
� =

@�

@t
+ u · � � [(ru)T · � + � · (ru)], (2.6)

the lower-convected derivative [25],

4
� =

@�

@t
+ u · � + [(ru)T · � + � · (ru)], (2.7)

and the co-rotational, or ‘Jaumann’, derivative [3]

�
� =

@�

@t
+ u · � +

1

2
(! · � � � · !) (2.8)

where ! is the vorticity tensor r⇥ u and ‘⇥’ denotes the cross product. The upper-convected

derivative is used more regularly over the lower-convected derivative as it is able to produce the
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well-known rod-climbing phenomenon, or ‘Weissenberg e↵ect’ seen with some complex fluids:

if a rod is rotated within a polymer suspension, the polymers will align with the circular

streamlines around the rod and are ‘pushed’ upwards and out of the fluid [25]. Additionally,

the Oldroyd-B model, which uses the upper-convected derivative, can be derived directly from

the kinetic theory of a suspension of dumbbells, while the Oldroyd-A model, which uses the

lower-convected derivative, cannot [26].

The well-known Oldroyd-B constitutive law can be derived in a bottom-up manner from mod-

elling the kinetic theory of a suspension of non-interacting pairs of beads connected by Hookean

springs [27]. Zhao et al.. [28] were able to use a meso-scale particle dynamics simulation to

learn the parameters to fit a generalised Newtonian fluid, which could then serve as the closure

equation for a continuum-level model of a polymer solution. However, these models often re-

quire access to detailed information concerning the microstructure of the fluid, which may not

be available, and their analysis is challenging except for in simple cases.

In contrast, other laws have been developed in a top-down, phenomenological manner by con-

structing models that match the behaviour of the fluid in question. For example, the Cross

model, given by

� = µ(e)e, (2.9a)

µ(e) = µ1 +
µ0 � µ1

1 + (Ce)m
, (2.9b)

was designed to empirically fit data from a fluid that had two plateaus for its viscosity at

low and high shear rates [29]. The ‘Cross time constant’ C and ‘Cross rate constant’ m are

parameters that can be tuned to most accurately interpolate between the plateaus.

It is also possible to augment known constitutive laws with extra terms, along with fitting

the model parameters, in order to represent the data more accurately [7]. Kim et al. [30]

carried out experiments of a sphere settling in a Carbopol suspension that would typically be

modelled with the Herschel-Bulkley constitutive law, and then compared the measured sphere
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resistance with finite-element simulations that used the Herschel-Bulkley model directly. After

quantifying the sources of error stemming from both experimental and model parameters, they

found that the inclusion of a term in the constitutive law to represent slip on the sphere reduced

the discrepancy between the sphere resistance predictions from 26% to 18%. Te addition of the

slip term produced a new model, not previously identified in the literature, that nevertheless

fully satisfied the admissibility criteria and physical constraints of a constitutive law.

One issue with empirically fitting constitutive models to a data set is that multiple models

can seemingly produce the same level of accuracy by using di↵erent sets of coe�cients for

the parameters. This was investigated by comparing the fits of various constitutive models

commonly used for blood [8], and it was found that, if the experimental data did not cover

a large enough range of shear rates, a wide range of parameter coe�cients were capable of

producing the same level of accuracy when fitting the data. Fluids modelled using these sets of

parameter coe�cients would then produce drastically di↵erent velocity profiles when used in a

simulation with a di↵erent geometry, in this case a simulation of pressure-driven pipe flow.

Within materials science, the modified error in constitutive equation (MECE) [31–35] method

has been developed to estimate parameters such as the elastic modulus of a material, while

ensuring that the constitutive law always remains physically admissible as it is optimised.

Parameters of the constitutive law are updated according to ‘reliable’ information (such as initial

conditions) with rigid constraints such as Lagrange multipliers, and according to ‘unreliable’

information (such as the measured data itself) with less rigid constraints such as penalty terms.

This method has the benefit of remaining equation-free by re-framing the problem as one

of energy minimisation, but applications have so far been limited to problems such as truss

structures where highly granular data is available.

An alternative system for deriving constitutive equations from physical laws is via the ‘General

Equation for Non-Equilibrium Reversible-Irreversible Coupling’ (GENERIC) formalism [36].

Under this formalism, the evolution equations for the fluid are derived from a combination

of a reversible equation, for the mechanical evolution, and an irreversible equation, describing

the thermodynamic evolution of the fluid dynamics. The GENERIC method ensures that all
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thermodynamic restrictions are observed and it has been shown to successfully produce well-

known polymeric constitutive equations [37]; however, applications to data from simulations

and experiments have so far been limited.

2.2 Viscoelastic fluids

Throughout this thesis we focus exclusively on analysing data from simulations of viscoelastic

fluids. In contrast to ideally viscous fluids (such as water and oil) and ideally elastic solids (such

as rubber), viscoelastic fluids demonstrate a combination of viscous and elastic behaviours. Gels

are considered to be viscoelastic solids, while viscoelastic liquids have behaviour more aligned

with viscous liquids, and include shampoos [2], glues [38], polymers [3, 4], micellar surfactant

solutions [39], emulsions [40], and liquid crystals [41].

Viscoelastic fluids are produced by suspending macro-molecular chains, which have elastic

behaviour, in a viscous liquid. As such, the constitutive law for a viscoelastic fluid has both a

viscous part and an elastic part, the proportions of which are dependent on the microstructure

of the fluid. Linear, one-dimensional models for describing fluids as a combination of viscous

and elastic responses were first developed in the early 20th century [42]. The idea behind the

simplest linear viscoelastic models is to combine the equation for a Hookean spring

� = G�̇ (2.10)

to represent the non-instantaneous, elastic response from the macro-molecules (where �̇ repre-

sents the rate of strain tensor), with the equation for a linear dashpot:

� = µ�̇. (2.11)

The dashpot represents the instantaneous, viscous response of the surrounding fluid and allows

for the presence of a fluid memory. The constants G and µ refer to the elastic modulus and the
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fluid viscosity, respectively. The typical diagrammatic representation of springs and dashpots

are shown in Fig. 2.2. The springs and dashpots may be combined either in series or in parallel

to produce spring-dashpot elements.

A single spring-dashpot element with one coe�cient can be used to represent the fluid’s relax-

ation rate, defined as the characteristic time scale for the fluid to return to its initial state after

being deformed. A spring-dashpot element can be a viscoelastic model in its own right, such as

the linear Maxwell model which is defined by one spring and one dashpot in series. Elements

can be combined additively to produce other models - for example, the addition of a spring in

parallel with a Maxwell element produces the standard linear model, also known as the Zener

model [43]. Generalised models formed from many elements are able to represent fluids with

multiple deformation time scales, such as suspensions of long polymer chains [44]. An example

of this, the generalised Maxwell model, is shown in Fig 2.2. Increasing the number of modes

increases the degrees of freedom in the generalised model, allowing for a closer fit to the data,

but the subsequent increase in the model complexity can cause over-fitting of the model to the

data [7].

…
G �

G

�

G1 G2 G3

�1 �2 �3

(a) (b) (c) (d)

Figure 2.2: Schematics for spring-dashpot models. (a) A spring with elastic modulus G; (b) A
linear dashpot with viscosity coe�cient µ; (c) The linear Maxwell model; (d) The generalised
Maxwell model.
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2.3 Constitutive law frameworks

By restricting our scope to single-mode viscoelastic models that do not involve material aging

or changes in temperature, the constitutive laws under examination may only contain frame-

invariant combinations of the stress tensor and the rate of strain tensor, along with their

spatial and temporal (convected) derivatives. As such, it is possible to develop frameworks for

constitutive models by including all the combinations of permissible terms up to a given order.

For example, the Oldroyd 8-constant model [45] contains all possible terms that are linear in

�, linear in e, and quadratic in e. The framework then reduces to well-known constitutive

laws such as the Oldroyd-B model and the Johnson-Segalman model when setting di↵erent

combinations of the 8 available coe�cients to zero [46].

A recent extension to the Oldroyd 8-constant model, the generalised nonlinear Maxwell model

(GNMM) [47], allows for all terms up to cubic order in both � and e. Starting with the

multi-modal, corotational Je↵reys model:

� + �1

D�

Dt
= ⌘0

⇣
�̇ + �2

D�̇

Dt

⌘
(2.12)

where
Dx

Dt
⌘

Dx

Dt
+

1

2
(! · x � x · !) is the corotational derivative as described in Eq. 2.8, we

add a term F (�, �̇) which is a nonlinear function of � and �̇. With the additional constraints

that the fluid is isotropic, incompressible, and undergoing simple shear, all possible terms in

F (�, �̇) can be enumerated up to a given order [48], which here we set as cubic. The cubic

expansion contains twenty terms, of which some make use of the first I(x) = tr(x) and second

x : y = tr(x · y) tensor invariants. The full equation for the GNMM is [47]
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The GNMM can also be readily extended to models with multiple relaxation times. All of the

coe�cients aside from ⌘0 and ⇣ have dimensions of time, while the specific physical description

for each coe�cient will be dependent on the model it is being used within. It encompasses 18

di↵erent constitutive laws and asymptotically approximates a further three constitutive laws.

All of the constitutive laws contained within the model have three non-zero parameters ⌘0, �1,

and �2, corresponding to the linear terms and derivatives in the equation.

Working with the GNMM framework allows for great flexibility in modelling the fluid accurately

but requires the cumbersome fitting of many parameters to the data and the entire framework

should not to be used to fit a data set. Further, as is the case with the generalised spring-

dashpot models described previously, including extra terms for diminishing gains of representing

the fluid accurately can lead to overfitting to the data, which may cause the resulting model to

be inaccurate when applied to data from the same fluid in a di↵erent scenario.

2.4 Rheometry

The process of carrying out experiments to analyse the properties of a complex fluid is known as

rheometry, while the instruments for carrying out rheological experiments are called rheometers.

In this thesis we will analyse data from simulations - however, to maintain that the approach

we develop is transferable to experimental data, we set up our simulations to produce data that
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mimic the outputs from rheometry.

We will be focusing our e↵orts on data from the shear type of rheometer, and primarily ro-

tational rheometers. Some of the main types of rotational rheometer are laid out in Fig. 2.3

below. The rheometer is operated by prescribing the rotational speed or shear rate represented

by the curved arrow. The shear stress or strain, depending on the type of scenario the rheologist

is aiming to emulate, is then measured by the sensors positioned at the locations of the dashed

red lines in the figure.

(b)(a) (c)

Figure 2.3: Common types of rotational rheometer. (a) Cone-plate; (b) Parallel plates; (c)
Concentric cylinders (Couette).

Two common experiment types which probe the linear responses of a viscoelastic material are

the stress relaxation experiment and the shear startup experiment. Representative data from

both experiments are shown in Fig. 2.4.

When carrying out a stress relaxation experiment, shown in Fig. 2.4 (left), a constant shear

is applied to an initially quiescent fluid, causing the stress to jump in value and then decay

exponentially. The inverse of the stress relaxation experiment is the ‘creep experiment’, where

instead a constant stress is applied and the strain is recorded. Measurements at very short

intervals may be necessary in order to capture the fluid response if the relaxation time is

small. For a shear startup experiment, shown in Fig. 2.4 (right), the shear is instead applied
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at a constant rate while the stress is recorded until it settles. Multiple applications of a shear

startup and a stress relaxation experiment can also be combined in series to produce a sawtooth

pattern for the applied shear rate [49].

In both cases, for a Newtonian fluid the stress would respond instantaneously; any di↵erence

in the stress response from being linearly proportional to the shear rate is what sets the fluid

apart from being Newtonian.

t

t

�

�

t

t

�

�

Figure 2.4: Applied strain (top row) and resulting stress (bottom row) from commonly used
experiments to probe the linear viscoelasticity of a material. (left) stress relaxation experiment;
(right) constant shear rate experiment.

2.5 Oscillatory Rheometry

Oscillatory rheometry is the most common method to capable of probing both the linear and

nonlinear features of a viscoelastic fluid. A diagram of the dynamics involved in an oscillatory

test is displayed in Fig. 2.5 where flow is assumed to be homogeneous in the z-direction.

During oscillatory experiments, the applied deformation is time-dependent and oscillatory, with

angular frequency ! and amplitude �0. Oscillatory experiments are carried out in a rotational

rheometer, which has two operational modes:
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1. Enforce a prescribed rotational speed or shear rate on one of the plates and record the

shear stress.

2. Enforce a prescribed torque or shear stress on one of the plates and record the shear rate.

A

L

F

y = 0

y = L
s

y z

x

Figure 2.5: Illustration of an oscillatory shear experiment carried out in a parallel-plate model,
with shear area A, gap width L, shear force F , and shear displacement s.

For a shear-controlled oscillatory test, a sensor on the moving plate in the rheometer records

the o↵-diagonal component of the strain tensor as

�xy =
s

L
(2.14)

where s is the displacement of the plate and L is the distance between the plates as indicated

in Fig. 2.5. The sensor on the stationary plate then records the amount of force required to

keep the plate in position without moving,

�xy =
F

A
(2.15)
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where A is the area of the plate. It is generally assumed that the gap L is small enough and

that the deformation is controlled such that the dynamics across the rheometer are spatially

homogeneous [50]. Later in this thesis we will look at the e↵ects on a constitutive model if we

incorporate the spatial inhomogeneity in the y-direction on the fluid.

2.5.1 Linear oscillatory experiments
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Figure 2.6: Representative data from a small amplitude oscillatory shear test. (Left) Applied
oscillatory shear (orange, dashed) and resulting stress (blue, solid). (Right) Breakdown of the
stress signal into sine and cosine components, showing amplitudes of the di↵erent signals and
the phase shift.

Linear oscillatory tests use a shear amplitude �0 small enough to not disturb the fluid’s mi-

crostructural state, causing any response to be linear. An example of the type of data extracted

from a small amplitude test is shown in Fig. 2.6. For an experiment where a small amplitude

oscillatory shear strain (SAOStrain) is applied in the x-direction, the applied shear is

�xy(t) = �0 sin (!t) (2.16)

and the corresponding shear rate is
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�̇xy(t) =
@�

@t
= �0! cos (!t) = �̇0 cos (!t) (2.17)

where �̇0 = �0! is the shear rate amplitude. The shear stress response will be

�xy(t) = �0 sin (!t+ �). (2.18)

The phase-shift angle, or mechanical loss angle, �(!) defines the speed of the fluid’s response

to the applied strain rate, and is also depicted in Fig. 2.6. If the fluid is ideally elastic with

no viscous part, then � = 0 and �xy is completely in-phase with �xy. If the fluid is ideally

viscous with no elastic part, then � = ⇡/2 and �xy is completely out-of-phase with �xy - it is

in-phase with �̇xy instead. For a viscoelastic fluid, once any transients from initialisation of the

experiment have died away, the shear stress response can be decomposed into a combination of

a sine wave and a cosine wave, both with frequency ! (dropping subscripts),

�(t) = G
0(!) sin (!t) +G

00(!) cos (!t) = G
0(!)�(t) +

G
00(!)

!
�̇(t). (2.19)

The elastic storage modulus G0(!) represents the stored energy from the deformation while the

viscous loss modulus G00(!) represents the energy from the deformation that is dissipated via

friction within the fluid. We can combine the storage and loss moduli and write them as the

complex shear modulus G⇤(!) = G
0(!) + iG

00(!), which describes the entire linear viscoelastic

behaviour of the fluid [51]. The relationship between G
⇤(!), �, G0(!), and G

00(!), is shown

in Fig 2.7(a). It can be seen that tan(�) = G
00
/G

0, and as such describes the ratio between

the viscous and elastic behaviour. This relationship can also be shown via Lissajous-Bowditch

curves, also shown in Fig. 2.7, where the stress and strain are used as axes to plot the data: an

elastic solid will show a straight line, a viscous fluid will show a circle, while a linear viscoelastic

fluid will show an ellipse rotated at an angle �.
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Figure 2.7: Alternative ways of representing data from a SAOS experiment. (a) Connections
between �, G

0, G
00, and G

⇤. (b) Lissajous-Bowditch curve for a linearly elastic solid. (c)
Lissajous-Bowditch curve for a linearly viscous fluid. (d) Lissajous-Bowditch curve for a linearly
viscoelastic fluid.

The storage and loss moduli are material functions : intermediate values that depend on the

experimental setup (in this case, the oscillatory frequency !) rather than being intrinsically

related to properties of the fluid. Other material functions include the dynamic viscosity

⌘(�xy) =
�xy

�̇0
(2.20)

and the first and second normal stress di↵erences N1 = �xx��yy and N2 = �yy ��zz. Material

functions serve to bridge the gap between a constitutive law and the measurements taken during

an experiment: they can be calculated directly from the equations of a constitutive law, while

also being straightforward to compute from measurements taken from an experiment due to

their simple dependencies on experimental parameters. They are a useful conduit for checking

whether a proposed constitutive law can accurately model the behaviour of the fluid under

investigation. On the other hand, their usage is restricted to the type of experiment for which

they are designed.



46 Chapter 2. Characterisation of constitutive laws for viscoelastic fluids

2.5.2 Nonlinear oscillatory experiments

Many nonlinear constitutive laws will produce identical linear behaviour under small enough

deformations [46,52]. It is therefore necessary to carry out large deformation experiments which

probe the nonlinear response of the fluid in order to distinguish between constitutive laws in

a given framework, and also to produce models that describe the fluid in a wider range of

environments.

For a SAOS experiment, �0 is fixed at a small enough value to provoke a linear response in

the fluid and separate experiments are carried out for a range of values of ! typically spanning

several orders of magnitude. It is then possible to use plots of G0 and G
00 to extract parameters

which appear in the constitutive law: for example, the characteristic relaxation time �, first

described in Section 2.2, can be found as the reciprocal of ! at which G
0 and G

00 intersect [53].

Confirming that the fluid is no longer in the linear viscoelastic region can be done by fixing

! and carrying out experiments over a range values for �0, then observing when G
0 and G

00

are no longer independent of the deformation magnitude, or by observing where the Lissajous-

Bowditch curves begin to deviate from the ellipse shape that is the signature of viscoelastic

fluids [54]. The method which follows most directly from SAOS analysis is to compute the

discrete Fourier transform (DFT) of the data, once any initial transients have decayed, according

to

�(t;!, �̇0) =
1X

n=1,odd

[an(!, �̇0) sin (n!t) + bn(!, �̇0) cos (n!t)], (2.21)

in a process known as FT-rheology [55]. The higher order frequencies appear only at odd har-

monics since the stress response should be independent of shear direction but should change sign

with the shear [56]. An example of stress response data from an oscillatory shear experiment,

and its corresponding frequency spectrum, is shown in Fig. 2.8.
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Figure 2.8: Representative data of the stress response to an oscillatory shear experiment (top
row) and its corresponding frequency spectrum (bottom row). (Left) SAOS; (Middle) MAOS;
(Right) LAOS.

If the stress response to the applied oscillatory strain is weakly nonlinear with non-trivial

frequencies at the first and third harmonics only, the experiment is referred to as medium am-

plitude oscillatory shear (MAOS). A decidedly nonlinear response with non-trivial frequencies

at harmonics higher than this is referred to as large amplitude oscillatory shear (LAOS). For

the case of Fig. 2.8, the stress response looks very similar in all three simulations - it is only

when the Fourier transform is applied that the higher order frequencies of the stress response

can be observed.

While the analysis of viscoelastic fluids under linear oscillatory shear is well established, there

are currently several competing theories for how to analyse nonlinear viscoelastic data [54,56–61]

with no general consensus. These methods can be broadly described as determining a set of

basis functions upon which the nonlinear stress response data can be decomposed. The ideal

set of basis functions should be orthogonal and produced in a methodical manner, but at the

same time be easily relatable to the physical attributes of the fluid. For example, the set of

basis functions in FT-rheology is of course orthogonal, and it has the benefit that the classical

SAOS analysis can be retrieved by setting n = 1 and therefore an = �̇0G
0(!), bn = �̇0G

00(!).

However, the resulting coe�cients from directly applying FT-rheology to nonlinear data su↵er
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from a lack of physical interpretation.

An alternative method known as the ‘stress decomposition’ (SD) method [57] decomposes the

stress data into a viscous response and an elastic response,

� = �
0 + �

00 (2.22a)

�
0 =

1X

k=1

g
0
2k+1(�0 sin (!t))

2k+1 = g
0
1�0 sin (!t) + g

0
3�

3
0 sin

3 (!t) + . . . (2.22b)

�
00 =

1X

k=1

g
00
2k+1(�0 cos (!t))

2k+1 = g
00
1�0 cos (!t) + g

00
3�

3
0 cos

3 (!t) + . . . (2.22c)

The benefit of this method is that the decomposition is unique and the coe�cients can be

directly related to viscous and elastic contributions. On the other hand, if straightforward

polynomial regression is used to fit the coe�cients as proposed in the initial paper [57], the

coe�cient values will change based on the chosen order of the truncation. An extension to the

SD method resolves this issue by using Chebyshev coe�cients for the fitting step instead [62];

however, the physical interpretation for higher order dynamics is not fully developed, and in

theory an infinite number of these basis functions is necessary to fully represent the dynamics.

An approach which focuses on directly representing the fluid’s physical phenomena within the

choice of basis terms was presented by Klein et al [59]. Here, the stress response is decomposed

into the following characteristic functions: a sinusoidal function for the linear viscoelastic re-

sponse; a rectangular function for strain softening; a triangular function for strain hardening;

and a sawtooth function to represent wall slip and/or shear banding (discussed in further de-

tail in Chapter 7). The ability to directly attribute each basis function to a characteristic of

the fluid is useful, but the choice of functions is not uniquely determined and the proposed

characteristic functions are not orthogonal.

All of the basis function decompositions listed above were developed with oscillatory experi-

ments in mind. An exception to this is a recently developed framework where an orthogonal

basis is constructed from invariants of the rate of strain tensor [63]. This decomposition is
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agnostic to the experiment type, which allows coe�cients determined in a steady flow to be

generalised to model the fluid in more complex geometries, such as a contraction flow.

2.5.3 More complex nonlinear oscillatory experiments

Modifications to oscillatory experiments have been suggested as procedures to further probe

the nonlinear features of a fluid. These often involve combining features from more standard

linear experiments to form new experimental protocols.

Superposition rheometry, initially proposed by Tanner in 1968 [64], consists of superimposing

an oscillatory shear on a steady-state shear flow. They are applied in the same direction

during parallel superposition rheometry (PSR), and perpendicular to each other in the case

of orthogonal superposition rheometry (OSR). It is possible to translate the results between

PSR and OSR by writing the stress as a Fréchet series and combining the results from both as

measure of flow anisotropy [65]. OSR requires data from simulations in at least two dimensions

in order for both types of flow to be applied, but the e↵ects from each flow are then easily

separable. On the other hand, PSR can be carried out in one dimension with the caveat that

there is a more direct interaction between the two types of shear. An example of the applied

strain � from a PSR experiment is shown in Fig. 2.9(a).

The PSR test reduces to the constant shear rate test as the oscillatory amplitude reduces to

zero. The standard material functions G0(!) and G
00(!) are not applicable to data from a PSR

scenario: instead, linear perturbation analysis is carried out on the stress tensor to find their

analogues G0
|| and G

00
|| in integral form [66]. These cannot be converted to the standard storage

and loss moduli, most notably because they both may become negative at high shear rates.
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Figure 2.9: Examples of the applied shear for (left) a parallel superposition rheology scenario
and (right) a MAPS scenario.

An alternative approach to superposition rheometry is to combine simultaneous oscillatory

shear experiments at di↵erent frequencies, first proposed as ‘Fourier transform mechanical spec-

troscopy’ (FTMS) [67] or the ‘multiwave technique’ [68]. The applied shear becomes

�(t) = �0

NX

j=1

sin (nj!
⇤
t+ �j) (2.23)

and an example waveform is shown in Fig. 2.9. Initial analysis from these types of experiments

focused exclusively on identifying the fluid’s linear viscoelastic response [69]; recent work has

involved finding sets of the nj frequencies such that the stress response of the fluid will also

show features at the intermediate frequencies between nj values, via a process called ‘inter-

modulation’ [70, 71]. Setting N = 3 is su�cient to provoke the medium amplitude response,

and the resulting method is known as the medium amplitude parallel superposition (MAPS)

technique [47].

Similar to the PSR data, results from MAPS experiments cannot be directly compared to data

from standard oscillatory shear experiments. In its place, the proposed method of interpreta-

tion involves expanding the stress response as a Volterra series [47] and projecting the resulting
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coe�cients onto a three-dimensional surface. The rich data set resulting from a MAPS protocol

has also been shown to successfully identify a third-order constitutive model for a data set com-

puted using the reptation-reaction (RR) model, which has a much more complex mathematical

structure [72].

A final subset of more complex experiments to which there has recently been renewed interest

involve running oscillatory tests with a fixed amplitude but exponentially increasing the oscil-

latory frequency over time. This procedure was initially inspired by the echolocation processes

of bats [73] and dolphins [74], and these signals are known as ‘chirps’ [75] when applied to radar

and acoustic measurements. The chirp signal is given by [76]

x(t) = x0 sin

 
!1T

log(!2/!1

h
exp

⇣
log(!2/!1)

t

T

⌘
� 1
i!

(2.24)

where !1 and !2 are the initial and final frequencies of the chirp, respectively, and T is the

total length of the signal. Using Eq. 2.24 directly as the value of the applied strain �(t), and

its subsequent analysis, has been referred to as ‘optimal Fourier rheometry’ since it is both

optimal in terms of the frequency resolution and the signal-to-noise ratio [68, 77]. An example

of a chirp of this type is given in Fig. 2.10 where x0 = !1 = 1 and !2 = 10.
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Figure 2.10: Example of the applied shear for a chirp experiment.
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The typical process for analysing data from chirp experiments involves applying the discrete

Fourier transform and then computing G
0(!) and G

00(!). However, the constant amplitude in

Eq. 2.24 produces ripples, known as ‘Fresnel ripples’, in the frequency spectrum which muddies

the data from experiments. The optimally windowed chirp (OWCh) experimental protocol [76]

applies a chirp signal within a cosine-tapered window function designed to optimally reduce

the e↵ect of Fresnel ripples. The data from a single OWCh protocol produces measurements

in around one hundredth of the time that a standard oscillatory frequency sweep would take

in order to produce the same level of accuracy [78].

2.6 Summary

In this chapter we have detailed the stages of the standard process for fitting a constitutive

model to a viscoelastic fluid. They can be broadly considered as follows:

1. Choose a rheometry process that probes the behaviour of the fluid that the model should

be able to reproduce;

2. Choose a suitable constitutive model based on a combination of known information re-

garding the fluid and the rheologist’s own experience;

3. Fit the data to the model via the parameters in the chosen constitutive law.

In the following chapters, we seek to automate some of the decisions that must be made during

this process and attempt to answer the following question: Given an appropriately-detailed

rheological data set, are we able to directly infer both the coe�cients and the terms in the

constitutive law which produced the data?
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We have identified that in a rheological experiment there is an unknown equation (the consti-

tutive law) evolving the dynamics of the fluid, with known inputs (the experimental setup and

applied shear strain) and measured outputs (one or more elements of the shear stress tensor).

With all of this data to hand, we aim to identify the constitutive law in a data-driven and

rheologically-informed manner.

We are seeking both the terms of the constitutive equation and the coe�cients that scale

them, rather than seeking purely the coe�cients for a constitutive law that have already been

determined. This problem has been broken down into two sub-problems within rheology [30]

and quantitative biology [79]:

1. ‘Model-form uncertainty’ or ‘structural identifiability’: whether the correct underlying

dynamics for the chosen model can be inferred from the data.

2. ‘Parametric uncertainty’ or ‘practical identifiability’: whether the model parameters can

been computed correctly, given errors in measurement from noise or other issues regarding

data quantity and quality.

This chapter covers some existing methods that tackle structural identifiability; the question of

practical identifiability will arise repeatedly in the following chapters. We develop our approach

based on modal decomposition methods, an area which has seen rapid growth within the fluids

community in recent years. We will introduce the Koopman operator, followed by its most

well-known successor Dynamic Mode Decomposition (DMD). We then move onto the most

53
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recent developments of DMD that are suited to system identification for nonlinear rheological

constitutive laws, in particular Koopman with Inputs and Control (KIC). We intersperse de-

scriptions of the extensions and modifications to DMD and other Koopman-inspired methods

that are most relevant to this work; however, this list is by no means exhaustive and research in

this area is developing at a phenomenal rate. Recent and comprehensive reviews can be found

here [80–82].

3.1 The singular value decomposition and proper or-

thogonal decomposition

As a precursor to the rest of the chapter, we will first formally introduce the singular value

decomposition (SVD) as it will be used extensively throughout the methods described later.

The SVD is a matrix factorisation method that can be thought of as a generalisation of the

eigenvalue decomposition to rectangular matrices. Given a matrix X 2 Rn⇥m, the SVD pro-

duces three matrices

X = USV
T (3.1)

with dimensions U 2 Rn⇥n, S 2 Rn⇥m, V 2 Rm⇥m, and using T to denote the matrix transpose.

S is a rectangular diagonal matrix where all of its entries are non-negative and its entries are

the ‘singular values’ of X. U and V are orthogonal matrices whose columns are the left and

right ‘singular vectors’ of X, respectively. Since the dimensions of the left and right singular

vectors are di↵erent, they represent di↵erent bases: the columns of VT span the domain m,

while the columns of U span the range n.

If n 6= m, a ‘compact’ or ‘economy’ version of the SVD can be created by removing all rows

and columns in U and V associated with the zero rows in S, as illustrated in Fig. 3.1. The

matrices are typically written so that the singular values are in descending order, ensuring that
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the SVD is unique up to sign changes in U and V.
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Figure 3.1: The SVD applied to (top row) a matrix with more columns than rows, and (bottom
row) a matrix with more rows than columns. The rows and columns filled with zeros can be
removed to produce the ‘compact’ SVD.

The rank ofX, R, will be at most min(n,m). If R < min(n,m), entries after the first R diagonal

entries in S will be zero, or at least close to zero when accounting for numerical precision. X

can then be reconstructed using the first R columns of U, rows of V, and diagonal entries of

S,

X =
RX

i=1

siuiv
T
i . (3.2)

According to the Eckart-Young-Mirsky theorem [83], truncating the SVD to r < R will produce

the best possible rank-r approximation of X with respect to the Frobenius norm

||X||F =

vuut
mX

j=1

nX

i=1

x2
ij. (3.3)

The SVD is fundamental for computing the proper orthogonal decomposition (POD) of a data
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set. POD was first coined for applications within fluid dynamics by Lumley [84], however

POD or very minor variants to it are also known as Principal Component Analysis (PCA),

the Hotelling transform, the Karhunen–Loeve transform, quasi-harmonic modes, and empirical

component analysis, across di↵erent fields of research [85]. Within rheology, POD has been

applied to data from an Oldroyd-B fluid simulated within in a four-roll mill to interpret its

transitions to di↵erent dynamics [86, 87].

The steps for carrying out POD are as follows: we first assume that we have captured data

snapshots of a state x, for example the velocity of a fluid, at n locations in space and at m

regular intervals in time. The data from each snapshot can be formed into a column, so that

we end up with an X 2 Rn⇥m matrix of snapshots

X =

2

66664

| | |

x1 x2 . . . xm

| | |

3

77775
. (3.4)

The temporal mean is also removed from each column of X. We may then compute the SVD,

truncated to r, as described earlier. The first r columns from the left singular matrix U are the

POD modes ofX. They can be used to perform a Galerkin-type projection, which optimally [88]

projects the data X onto the reduced subspace spanned by U such that

rX

i=1

||uiu
T
i xi � xi||22 (3.5)

is minimised [89], where the norm here is the standard L2-norm. The accuracy of the truncation

increases monotonically as r is increased. If the data contains incoherent noise, it will typically

appear in the higher modes which are usually truncated, and as such POD is often used as a

denoising tool and for data compression. POD was developed with data that has high spatial

dimension but low temporal dimension in mind, n >> m. The ‘method of snapshots’ [90]

approach to POD circumvents computing the potentially costly application of the SVD to an

n⇥m matrix by instead computing the eigendecomposition of XT
X 2 Rm⇥m,
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X
T
X�i = �i�i, i = 1, 2, . . .m. (3.6)

The same POD results as before can then be found with a simple linear transformation

ui =
1

�i
X

T
X�i, i = 1, 2, . . . r. (3.7)

If x describes a velocity field, the magnitude of each �i will represent the amount of kinetic

energy represented by each mode [80]. This may not always be beneficial, however, as important

dynamical features in the flow are not necessarily those corresponding to the highest kinetic

energy [81].

3.2 Dynamic Mode Decomposition

The SVD and POD can be used to identify underlying features on ‘static’ data sets, such

as identifying the main features of an image from its pixels, without issue, but cannot also

incorporate features that change over time, such as how a feature changes across time in a

video clip. In other words, the matrix X will have the same POD modes even if the columns xi

are shu✏ed. Various extensions to POD exist which aim to resolve this issue, but either require

computing adjoint equations [91,92], which may not be feasible with experimental data, or are

restricted to statistically stationary data sets [93].

In contrast, the Dynamic Mode Decomposition (DMD) was developed to identify dynamics of

autonomous systems that vary over both space and time - it can be thought of as an ideal

combination of both POD for interpreting the spatial domain and the Fourier transform for

interpreting the temporal domain [94].

Since its introduction within the fluids community in 2008 [95] and subsequent paper in

2010 [15], DMD has been applied to a wide array of problems where complex spatiotempo-

ral data is present, such as modelling the spread of infectious diseases [18] and the development
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of algorithmic trading strategies [19]. A similar method in molecular dynamics, named ‘time-

lagged independent component analysis’ (TICA), has also been independently developed for

recognising the slow time scales in molecular dynamics simulations [96].

While the initial method for computing the DMD involved constructing a companion matrix

of the data [81], a subsequent alternative method which utilises the SVD instead has been

accepted as the standard approach, called the ‘method of snapshots’ [90]. This version has also

been shown as more well-conditioned [15] than when using the companion matrix approach.

Consider data snapshots of a state xi 2 Rn⇥1 have been taken, i = 1, 2, . . .m, which do not

necessarily need to come from the same experiment [81]. We consider pairs of these snapshots

(xi,xi+1) recorded at a time interval �t apart and assume the relationship between them is

approximately linear,

xi+1 = Axi, i = 1, . . .m� 1, (3.8)

where A is a linear operator. We use the snapshots xi to form two n⇥m� 1 matrices

X =

2

66664

| | |

x1 x2 . . . xm�1

| | |

3

77775
, X

0 =

2

66664

| | |

x2 x3 . . . xm

| | |

3

77775
, (3.9)

such that Eq. 3.8 can then be rewritten in matrix form as

X
0 = AX. (3.10)

where A 2 Rn⇥n. We then take the SVD of X as before, X = USV
T . If the spatial dimension

of the data n is large, we can approximate X as described in Section 3.1 such that X ⇡ ÛŜV̂
T

where each matrix is truncated to produce a rank r approximation of X. The number of

truncated modes r is chosen as described in Section 3.1. An existing modification to the
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method includes adding an L1 restriction so that a smaller number of modes are identified

in the first place [97], although these new modes may not be dynamically optimal. It is also

important to check that the energy content of the data set is not represented by so few modes

that one mode can end up representing multiple frequencies [98], as this has implications on

the ability of the method to represent data over long time scales. If the spatial dimension of

X is large, an initial projection step can be carried out on X by using Û. Taking advantage of

the fact that the columns of Û are orthogonal,

Û
T
X

0 = (Û
T
AÛ)Û

T
X (3.11a)

�! X̂
0
= ÂX̂, (3.11b)

where X̂, X̂
0 2 Rr⇥m�1 and Â 2 Rr⇥r. If the initial projection step is not applied, then an n⇥n

approximation of A can be found by computing

Ã = X
0
V̂Ŝ

�1
Û

T
. (3.12)

If the projection from Eq. 3.11 has been applied, instead we have

Ã = Û
T
X

0
V̂Ŝ

�1
Û

T
Û (3.13)

which produces an r ⇥ r approximation for A instead. The eigendecomposition of Ã,

Ãṽj = µjṽj, (3.14)

has eigenvalues µj which are the same as the eigenvalues of A, while the DMD modes



60 Chapter 3. rheoKIC

vj =
1

µj
X

0
VS

�1
ṽj, (3.15)

are the eigenvectors of A [89]. We have been therefore been able to find both the eigenvalues

and DMD modes of A without having to construct the (potentially very large) A explicitly.

Each DMD mode has a single characteristic frequency of oscillation and growth/decay rate [99].

While discrete Fourier transform (DFT) based decompositions of the data will produce frequen-

cies of a fixed magnitude, the growth/decay rate allows for modes to converge or diverge over

time [94].

DMD normally requires data collected at twice the rate of any frequency of interest - in other

words, it must obey the Nyquist-Shannon sampling theorem analogously to the DFT [81]. It is

possible to overcome this restriction with compressed sensing techniques where measurements

of the data are taken at random rather than at regular intervals [100]. Furthermore, while either

an integer number of oscillatory periods must be supplied to a DFT or an additional windowing

step must be used on the data to prevent spectral leakage, DMD can identify frequencies when

only part of an oscillatory period is present [94].

If noise is present in the data then it may prove di�cult to neatly separate frequencies contain-

ing dynamically important information and frequencies containing purely noise. Fortunately,

the e↵ects of noise on the accuracy of DMD have been well investigated. Duke et al. [101]

investigated the e↵ects of di↵erent noise types when applying DMD to synthetic wave forms

and found that the most sensitive parameters are the signal-to-noise ratio and if the data con-

tained sawtooth or square waveforms. Later, Pan et al. [102] focused on the e↵ect of noise on

identifying instabilities generated over time and found that noise can a↵ect the identification

of sub-structures with lower energetic dominance than the primary structure. When using

regular DMD, computing the phase average of data sets will improve performance more than

concatenating noisy data from multiple experiments [103]. A battery of modifications to DMD

have also been proposed which aim to correct for noise issues [103–106]. Further analysis on

noisy data in identifying the constitutive law parameters can be found in Section 5.6.
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3.3 DMD with Control

For all of the data where we will be looking to use Koopman-based decomposition, the system

will have an applied external force given by the rheometer deforming the fluid. DMD is designed

for autonomous systems, and there are negative impacts to the system analysis if the e↵ects of

external control to the system are not taken into account [86]. The natural linear extension to

DMD which accounts for external control is DMD with control, abbreviated to DMDc [107].

In addition to assuming a linear relationship between data X and X
0, we assume that we also

have l measurements of some control input at each time step that can similarly used to construct

a matrix Y,

X
0 =

2

66664

| | |

x2 x3 . . . xm

| | |

3

77775
, X =

2

66664

| | |

x1 x2 . . . xm�1

| | |

3

77775
, Y =

2

66664

| | |

x1 y2 . . . xm�1

| | |

3

77775
. (3.16)

The new assumed relationship between the data snapshots is

X
0 = AX+BY. (3.17)

where we now have an additional linear operator B 2 Rn⇥l. The two terms on the right-hand

side can be combined to form larger matrices G = [AB] 2 Rn⇥n+l and � = [XT
Y

T ]T 2

Rn+l⇥m�1. The relationship between them is then

X
0 = G�. (3.18)

Taking the SVD of �, � = USV
T , and truncating it to some number of modes p  n+ l, we

can either compute or approximate G via



62 Chapter 3. rheoKIC

G = X
0
VS

�1
U

T
. (3.19)

It is now possible to directly retrieve approximations for A and B by computing Eq. 3.19 using

just the first n rows of U, defined as U1 or just the last l rows of U, defined as U2, respectively.

However, as described in Section 3.2, the dimensions of these matrices are based on the number

of spatial measurements taken per time step and may be prohibitively large. Reducing the

dimensions of these matrices further will ideally also make the underlying dynamics more clear.

In Section 3.2 we used the left singular vectors of the input data for this purpose, but we cannot

do this here as the dimensions of the input and output space are not the same. Instead, a second

SVD is performed on the output space data, X0 = ÛŜV̂
T
, with some truncation r < p. The

new, reduced-order approximations for the coe�cient matrices are

A ⇡ Ã = Û
T
X

0
VS

�1
U

T
1 Û 2 Rr⇥r (3.20a)

B ⇡ B̃ = Û
T
X

0
VS

�1
U

T
2 2 Rr⇥l

. (3.20b)

The eigendecomposition of A can then be computed similarly to before,

Ãṽj = µjṽj (3.21a)

vj =
1

µj
X

0
VS

�1
ṽj, (3.21b)

which can then be used to analyse the stability of the system. This is where the original

description of the DMDc method concludes [107], but it is worth reiterating that the dimensions

of the final approximations of the coe�cient matrices are r ⇥ r for Ã and r ⇥ l for B̃ - that

is, the number of columns in B̃ is still dependent on the spatial dimension of the measurement

data. An additional SVD could be applied to Y to remove this dependency, with the added
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complication that the control data may then exist in a di↵erent subspace to the dynamics data.

We will investigate this proposed additional step in later chapters.

3.4 Koopman decomposition

Both DMD and DMDc are meant to represent the data of linear dynamical systems and are often

used as linear approximations to nonlinear systems. In fact, they both have roots in Koopman

operator theory, initially introduced in 1931 for analysing Hamiltonian flows [13], which can

alternatively be thought of as a generalisation of the eigenvalue/eigenvector decomposition to

nonlinear systems [81]. We describe the Koopman decomposition method from this operator

theoretic framework below.

We define a discrete, nonlinear dynamical system

xt+1 = f(xt), (3.22)

where xk 2 M, M is a smooth manifold and f : M ! M. We also define a set of scalar-valued

functions g : M ! R known as ‘observables’ [80]. The observables are functions applied to

measurements from the state space of the system - for example, if x were to describe the entire

flow field during an experiment, g could be polynomial functions of the velocity field, or the first

normal stress di↵erence, or radial basis functions applied to the same. The Koopman operator

U is a linear operator that maps g to a new function Ug such that [108]

Ug(x) = g(f(x)). (3.23)

Comparing Eqs. 3.22 and 3.23, we can see that U has described the evolution of the observables

from one time point to the next, while the original function f did the same for x. U is linear

but the data itself is from a nonlinear dynamical system. The downside is that the initial
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system existed on a finite-dimensional manifold M, whereas our linear operator U is infinite-

dimensional.

More formally, the Koopman operator, also known as the composition operator, is the left-

adjoint to the Perron-Frobenius operator, which describes the evolution of densities [109]:

hPf, gi = hg, Ugi, (3.24)

with respect to the standard duality pairing h·, ·i, defined by hf, gi =
R
X f(x)g(x)dx, and where

P is the Perron-Frobenius (push-forward) operator applied to the density f [110]. It has been

shown how both operators can be treated within the same formalism, although this is beyond

the scope of this thesis [82].

Since U is linear, we can compute its eigendecomposition

U'j(x) = �j'j(x), j = 1, 2, . . .1. (3.25)

Each of the observables g can be expanded in terms of the eigenvalues and eigenvectors of U ,

g(x) =
1X

j=1

'jvj, (3.26)

where vj are the ‘Koopman modes’, or ‘dynamic modes’ [94] of the mapping f , provided that

all of the observables lie in the span of 'j. If this is the case, in other words Eq. 3.22 is

conservative, then the Koopman modes can be computed using the standard inner product as

vj =

2

66666664

h'j, g1i

h'j, g2i
...

h'j, gKi

3

77777775

(3.27)
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where K is the total number of observables [82]. We may then write the observables as [20,108]

Ug(x) = g(f(x)) =
1X

j=1

�j'j(xk)vj. (3.28)

This is the Koopman mode decomposition first introduced in 2005 [111], which describes an

infinite-dimensional operator. A finite-dimensional representation of the Koopman operator is

possible provided that U is restricted to an invariant subspace, in other words a subspace that

is spanned by any set of the eigenfunctions of U [112, 113]. Using this technique, a nonlinear

system identification problem in state space can be reframed as the identification of the linear

Koopman operator in the space of the observables we have chosen [114].

If the underlying system is linear and the observable is restricted to the set of direct measure-

ments of the system, g(x) = x, then the '(x) are constant so can be incorporated with the

Koopman modes and we may rewrite Eq. 3.22 as Eq. 3.10 [108]. The correspondence between

DMD and the Koopman operator then becomes clear - the Koopman modes are the eigenvec-

tors of A. If the underlying equations are in fact nonlinear, then the observables generally will

not span a Koopman-invariant subspace of the system, which means it may fail to pick up on

nonlinear features of the system [115].

3.5 Koopman with inputs and control

DMD is able to compute, or at least approximate, the Koopman operator when the observables

are constrained to linear functions of the state [108]. This can be too restrictive when trying to

understand the dynamics of a nonlinear system and the Koopman decomposition may not be

able to recreate the dynamics well. Recent work has looked at how the set of observable func-

tions g, sometimes referred to as a ‘dictionary’ when applied to data [116], can be augmented

to include nonlinear observables also.

The extended DMD (or ‘eDMD’) [117] method is the nonlinear counterpart to DMD: the dic-

tionary can now also contain nonlinear observables but is still restricted for use on autonomous
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systems. Suggested choices for the observables include polynomials, Fourier modes, radial basis

functions, and spectral elements. A subsequent paper from the same authors suggests a kernel

trick [118] to reduce the computational cost of the SVD step on large dictionaries. Sparse re-

gression techniques can also be employed to reduce the size of dictionary if some of the entries

appear to be superfluous [119]. It is also possible to use stochastic gradient descent, a founda-

tional technique from machine learning, to ‘learn’ the right dictionary [119], which also allows

online updates to the dictionary for large and streaming data sets, or to ‘train’ the correct

dictionary using an artificial neural network [120].

Analogous to how eDMD is a nonlinear extension to DMD, Koopman with Inputs and Con-

trol (KIC) is the nonlinear extension to DMDc [20]. A direct extension to eDMD for non-

autonomous systems, eDMDc, does not allow for observables that are nonlinear in u [121].

The KIC and EDMD methods are also both closely related to the variational approach of

conformation dynamics (VAC) method [96] developed independently for analysing molecular

dynamics.

For KIC, we define a Koopman operator on the observables g(x,u) rather than simply g(x),

but which still evolves only the state x. The new Koopman operator will have eigenfunctions

that depend on both x and u. For our scenario, we consider a discrete nonlinear dynamical

system which depends on both the state x and the inputs u,

xt+1 = f(xt,ut) (3.29)

where x 2 M as before, u 2 N , and the set of observables g are functions of both the state

space and the input space, g : M⇥N ! R. For the constitutive laws we are considering in this

thesis, we know the control input u exactly - it is the deformation applied by the rheometer.

We therefore do not need to make predictions for u or approximate its evolution over time

as we do with x, which somewhat simplifies the application of the KIC method. Similarly to

Eq. 3.23, the KIC operator K for our case can be defined as
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Kg(xt,ut)) = g(f(xt,ut),ut+1). (3.30)

Here, the ‘ut+1’ signifies that the dynamics of u are known and do not need to be predicted also

- otherwise, we would need to utilise ut instead. The set of observables g can be separated into

functions just of x, functions just of u, and mixed functions. If only linear observables of the

state and input are chosen and consequently there are no mixed functions, then KIC reduces

to DMDc as described in Section 3.3.

The input space and output space of the system no longer have the same dimension - the

right-hand side contains all of our observables, while our left-hand side only contains the mea-

surements for which we want to understand the evolution. In contrast to Eq. 3.25 for the regular

Koopman operator U , we can write the relationship between the input and output spaces of

the KIC operator K as

K'j(x,u) = �j�j(x,u), j = 1, 2, . . .1. (3.31)

Here, 'j spans the full set of observables while �j only spans the observables that we wish

to evolve [20]. The di↵erent input and output spaces allows for us to separate the e↵ects

of di↵erent observables on the evolution of the data, in the same way that DMDc allows for

separation of the state space and the control space, but now with the ability to include nonlinear

observables and mixed observables. The eDMD method requires the input and output space to

be the same [122], which causes issues on closing the system of equations if the dynamics are

nonlinear [99, 123].

3.6 Choice of observables

Choosing a universally correct set of nonlinear observables for the Koopman mode decom-

position is an open challenge. The correct dictionary will transform the data such that the
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relationship between the input and output to the system can be represented by a linear op-

erator. In practice, the set of observables is selected based on known information about the

underlying system. It is also necessary to consider the complexity of the final model with

respect to potential overfitting of the data, and taking into consideration the computational

resources available for testing sets containing large numbers of observables.

An approach that is rapidly being developed for system identification while taking the issue of

locating the correct observables into account is the Sparse Identification of Nonlinear Dynamics

(SINDy) technique [124]. Given data regarding a state, X and its time derivative Ẋ, SINDy

finds the terms and coe�cients of the underlying ODE for a given data set by solving

Ẋ = �(X)⌅ (3.32)

where �(X) is the library of candidate observables and ⌅ is the corresponding vector of coef-

ficients. A standard regression technique could then be applied to compute ⌅, but a library

of K observables would require 2K � 1 regressions if every combination were to be tested.

However, the key assumption behind this approach is that the underlying ODE contains only

a few terms, causing ⌅ to be sparse. Eq. 3.32 can therefore be solved using sparse regression

techniques such as LASSO or the sequentially-thresholded least squares method to drastically

improve the computational speed. When using a SINDy-type approach, it is necessary that the

time derivative for the data, Ẋ, to be available, and if not it must be found using automatic

di↵erentiation techniques [125]. Placing the time derivative explicitly on the left-hand side of

the equation additionally causes the input-output relationship between the two sides of the

equation to be lost, which is necessary for Koopman analysis.

There has been a huge number of extensions to the original SINDy method, the most rele-

vant for us being SINDyC, which incorporates control inputs in accordance with the DMDc

extension to DMD [126]. Other notable modifications include incorporating uncertainty quan-

tification [127], evaluating the results using information criteria [128, 129], detecting abrupt

system changes [130], and extending the technique for identifying PDEs [131]. We certainly do
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not rule out the potential for SINDy to be successfully employed for analysing rheological data

in the future.

SINDy-type techniques overcome the issue of locating the correct observables by beginning with

an oversized library of candidates, and then iteratively pruning any entries whose coe�cients are

smaller than a prescribed tolerance. The initial library however still needs to be chosen. In our

case, by restricting ourselves to fluids represented under existing, well-researched frameworks

of constitutive laws, we have a great deal of knowledge regarding the nonlinear observables we

expect to be present in the underlying equation. By assuming that the constitutive law for the

viscoelastic fluid in question exists within a larger framework of constitutive laws, we may use

the set of all terms in the framework as our library of candidate observables.

We will use the GNMM framework initially introduced in Section 2.3 as the foundation for our

library of observables. Assuming a time-dependent shear rate, the components of the tensors

in the GNMM are

�̇ =

2

64
0 0

@yux 0

3

75 =

2

64
0 0

�̇ 0

3

75 , ! =

2

64
0 �̇

��̇ 0

3

75 , � =

2

64
�xx �xy

�xy �yy

3

75 . (3.33)

The full GNMM equations written component-wise for the evolution of �xx, �xy, and �yy can

be found in Appendix A. The most noteworthy points from writing Eq. 2.13 in this way are:

1. Every combination of �̇ and the components of � up to cubic order are included, with the

exception of �̇�xx�yy. There is also a time derivative of the strain rate, �̈.

2. The terms found in the equation for �xy, and the terms found in the equation for �xx and

�yy, form disjoint sets.

The terms present in each of the equations for the elements of � are shown in Table 3.1.

Using the GNMM framework as our set of observables thus produces a restricted library of

33 polynomial basis functions up to cubic order, with disjoint subsets of this library for the

diagonal and o↵-diagonal components of the stress tensor. For example, when only the data
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for �xy is available, Table 3.1 shows that 7 observables are required rather than 10, as none of

the quadratic combinations of �̇ and �xy are found within the �xy equation.

�xx �xy �yy �̇

�xx x - x -

�xy - x - x

�yy x - x -

�
2
xx �

2
xy �

2
yy �̇

2
�xx�xy �xx�yy �xy�yy �̇�xx �̇�xy �̇�yy

�xx x x x x - x - - x -

�xy - - - - x - x x - x

�yy x x x x - x - - x -

�
3
xx �

3
xy �

3
yy �

2
xx�xy �

2
xx�yy �

2
xy�xx �

2
xy�yy �

2
yy�xx �

2
yy�xy �xx�xy�yy

�xx x - - - - x x x - -

�xy - x - x - - - - x x

�yy - - x - x x x - - -

�̇
3

�̇
2
�xx �̇

2
�xy �̇

2
�yy �̇�

2
xx �̇�

2
xy �̇�

2
yy �̇�xx�xy �̇�xx�yy �̇�xy�yy �̈

�xx - x - - - - - x - x -

�xy x - x - x x x - - - x

�yy - - - x - - - x - x -

Table 3.1: Terms present (marked with ‘x’) and absent (marked with ‘-’) for each of the elements
of � making up the GNMM.

3.7 The rheoKIC method

We will be applying the KIC method, using terms from the GNMM framework as our initial

library of candidate observables, to the identification of constitutive laws for viscoelastic fluids.
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For brevity, we name this combination of methods and application as ‘rheology using KIC’ or

‘rheoKIC’, but stress that it is not a new technique - it is a specific usage of the KIC method

for understanding the constitutive laws of rheological data.

Below we lay out the steps for rheoKIC when the data comprises one measurement of the stress

tensor at each time step i.e. there is no spatial variation:

1. Data collection: Collect data from one or more sources i.e. simulation or experimental

data. Record time-resolved data at m + 1 time steps for the force input �̇ and elements

of the stress tensor. The linearity of the stress response can be confirmed by checking the

number of peaks in its frequency spectrum.

2. Create data matrices: Build an ‘output’ matrix ⌃
0, from all of the � data except for the

first entry. Build ‘input’ matrices ⌃ and �̇ using all entries of the � and �̇ data apart

from the last entry. Re-scale each observable so that they have the same magnitude [132].

3. Create library of observables: Use the input matrices to compute �, a K ⇥m library of

the K candidate observables determined using the GNMM framework. If � was shown

to be linear, set � = [�, �̇]. We aim to find the vector of coe�cients c to solve

⌃
0 = c�. (3.34)

4. Compute the SVD of the observables: Compute the SVD of the library of observables,

� = USV
T (3.35)

and check the rank of � via the entries in S. If it is rank-deficient then more data will

need to be supplied or the number of observables needs to be reduced. Use data from

di↵erent experiments, or more instances of the same experiment with di↵erent experi-

mental parameters, and check if this increases the rank of �. Ideally the data should

probe the linear and nonlinear response of the fluid. Repeat this process until � is no

longer rank-deficient.
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5. Compute observable coe�cients: Use the SVD to find c:

ck = ⌃
0
V

T
S
�1
uk (3.36)

where ck is the kth entry of c and uk is the kth column of U. If any of the coe�cients are

very small relative to the others, remove the corresponding observable from the library

and rerun steps 4 and 5 with the updated library.

6. Repeat across a range of experiments: The steps above will typically be carried out on

multiple data sets that form part of a parameter sweep - for example, data from a SAOS

experiment where the frequency is swept over a range of values. A good indicator that

the correct observable and associated coe�cient has been found is if the value of the

coe�cient remains stable across the range of experiments.

7. Construct the final constitutive law: Once all observables and coe�cients are determined,

reconstruct the final equation. Any rescaling of the data should be reverted. The coef-

ficients for all the observables except for � should be divided by the time step size �t,

while the coe�cient for � (the characteristic relaxation time) is reverted via

�̃ =
�t

1� k1
. (3.37)

The details of these steps will be developed further across the subsequent chapters as we apply

rheoKIC to increasingly challenging data sets. We will further generalise the rheoKIC method

to account for data sets with multiple spatial measurements per snapshot in Chapter 7.



Chapter 4: Application to linear con-

stitutive laws

We start by observing how rheoKIC performs on data from a simulation that employs a lin-

ear constitutive law, namely the linear Maxwell model. This model is appropriate when the

magnitude of the applied force is small enough to not disturb the fluid’s microstructure such

that the stress response is in the linear viscoelastic regime. It is beneficial to first check the

validity of the rheoKIC method on a linear model as rheoKIC is an extension of the DMDc

method that only considers linear observables. As such, when applying rheoKIC to linear data

and only providing linear observables, the method reduces to DMDc and simplifies the analysis

of the underlying system significantly.

4.1 The linear Maxwell model

One of the simplest viscoelastic constitutive laws is the linear Maxwell model [3]. The single-

mode linear Maxwell model, first described in Chapter 2, is given by

@�

@t
= �1

�
�(t) +G�̇(t), (4.1)

where � is the characteristic relaxation time of the fluid and G is the elastic modulus which

dictates the sti↵ness of the material. Under simple shear with small deformations and no spatial

dependence, the linear Maxwell model has the standard time derivative rather than a convected

73
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derivative. The analytic solution for Eq. 4.1 is

�(t) = G

Z t

�1
e

t0�t
� �̇(t0)dt0. (4.2)

We assume that a small-amplitude oscillatory shear is applied in the x-direction which results

in a rate of strain given by

�̇ =

2

64
0 0

�̇ 0

3

75 , (4.3)

where

�̇(t) = �̇0 cos (!t) (4.4)

and �̇0 = �0!. With the additional assumption that the fluid is initially at rest, �(t = 0) = 0,

Eq. 4.1 has a closed-form solution for �xy

�xy(t) = � G�0(!�)

1 + (!�)2
e
� t

� +
G�0(!�)2

1 + (!�)2
sin (!t) +

G�0(!�)

1 + (!�)2
cos (!t), (4.5)

while �xx and �yy have trivial solutions. The first term will decay at an exponential rate that is

dependent on �: the shorter the relaxation time, the faster the fluid will respond to the applied

deformation and the exponential term will decay more quickly. We will begin to record � from

our oscillatory shear simulations after 10 periods have elapsed to ensure that no transient e↵ects

from starting the simulation remain within the data.

If the experiment is run until the first term in Eq. 4.5 can be neglected, it can be rewritten as

(dropping subscripts)

�(t) =
G�0(!�)2

1 + (!�)2
sin (!t) +

G�0(!�)

1 + (!�)2
cos (!t) = G

0(!)�(t) +
G

00(!)

!
�̇(t), (4.6)
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such that the equations for the material functions G0(!) and G
00(!) are

G
0(!) =

G�0(!�)2

1 + (!�)2
, (4.7a)

G
00(!) =

G�0(!�)

1 + (!�)2
. (4.7b)
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Figure 4.1: Representative data of the type typically produced by an oscillatory rheometer for
a Maxwell fluid under small amplitude shear. G = 1 can be found as the value of G0 for high
frequencies, while � = 1 can be found as the reciprocal of ! where G

0 and G
00 coincide.

In a standard rheological test, G0(!) and G
00(!) are computing by decomposing � into sine

and cosine signals and finding their respective coe�cients. The values for G0 and G
00 are then

plotted over a range of frequencies as exemplified in Fig. 4.1. The loss modulus G00 is small at

high frequencies as there are no changes to the material’s microstructure if the time scale of the

oscillation frequency is significantly faster than the time scale of the fluid [58]. Approximations

for the Maxwell equation coe�cients can then be extracted from the material parameters: � as

the reciprocal of ! where G
0 and G

00 intersect, and G as the asymptote of G0.
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4.2 Errors from time derivative approximation

Using the first-order Euler approximation for the time derivative, Eq. 4.1 can be written in the

form suitable for rheoKIC as

�n+1 =
⇣
1� �t

�

⌘
�n +�tG�̇n, (4.8)

where the subscript n indicates that this is the data from the the n
th snapshot. The approxi-

mation for the time derivative will introduce an error of order O(�t). We can see the e↵ects

of the error on the results by comparing the coe�cients of Eq. 4.8 with those found with the

analytic solution to the Maxwell model. For snapshot n+ 1, we have that

�n+1 =
G�0(!�)2

1 + (!�)2
sin (!n+ !�t) +

G�0!�

1 + (!⌧)2
cos (!n+ !�t)

= cos (!�t)�n +

"
G�0(!�)2

1 + (!�)2
sin (!�t)

#
cos (!n) +

"
� G�0�

1 + (!�)2
sin (!�t)

#
sin (!n).

(4.9)

Rearranging Eq. 4.6 for sin (!n),

sin (!n) =
1 + (!�)2

G�0(!�)2
�n �

1

�0!�
�̇n. (4.10)

Substituting, we retrieve

�n+1 = [cos (!�t)� 1

!�
sin (!�t)]�n +

G

!
sin (!�t)�̇n. (4.11)

These are the exact values for the coe�cients of � and �̇ when we put the Maxwell model into

a form suitable for applying rheoKIC. We can retrieve Eq. 4.8 by approximating sin (!�t) and

cos (!�t) by their single-term Taylor expansions. By extending the Taylor expansion to one
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more term, we can quantify the error between our equation for computing G and � versus when

the solution for � is known explicitly:

�n+1 =

"
1� �t

⌧

#
�n +G�t�̇n + (!�t)2

 h 1

6�
�t� 1

2

i
�n �

G�t

6
�̇n

!
+O((!�t)4). (4.12)

The e↵ect of using approximations of di↵erent orders is shown in Fig. 4.2 where the number

of time steps per oscillatory period with frequency ! = 1 is varied between 10 and 10010,

corresponding to time step sizes between O(10�4) and O(100).

As expected, larger time step sizes increase the amount of discrepancy between the analytic

solution and the Taylor expansions. The most notable e↵ect on the accuracy can be seen on

the value of the � observable coe�cient shown in the top figure. For this observable, there is

significant deviation for both Taylor approximations when �t > 10�2, corresponding to 512

time steps per period. Meanwhile, only the one-term Taylor approximation appears to deviate

for time steps sizes as large as 10�1 in the case of the �̇ observable shown in the lower part of

Fig. 4.2.

It is important to balance the number of measurements per period with the oscillatory frequency

of the experiment. At high frequencies, measurements will need to be taken at small time

intervals in order to see the dynamics of the stress response for each period, but using the same

time interval at low frequencies could mean taking a large number of unnecessary measurements.

Equally, while we are aware that rheoKIC will work best with the smallest time step size

possible, our choice of time step size should also be feasibly achievable when using experimental

data. We choose to limit ourselves to a maximum of 512 measurements per oscillatory period

as a compromise between these arguments. This corresponds to �t = 0.0001 � 1.2272 for the

frequency range ! = 10�2 � 102.
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Figure 4.2: Values of the � = [�, �̇] coe�cients for the linear Maxwell model. (Solid line) Exact
values using Eq. 4.11. (Dashed line) Taylor expansion with one term. (Dot-dashed line) Taylor
expansion with two terms. Top: � coe�cient. Bottom: �̇ coe�cient.
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4.3 Reduction of rheoKIC to DMDc

Now that we understand the source of error from the time derivative approximation, we move

onto an application of rheoKIC where we use only linear observables instead of the full set of

candidate observables. If � = [�, �̇], then not only do we have exactly the observables we need

to identify the linear Maxwell model, but � also matches the conditions for DMDc as described

in Section 3.3. The corresponding coe�cients that we are trying to find are therefore

�t+1 =
⇣
1� �t

�

⌘
�t +�tG�̇t = k1�t + k2�̇t. (4.13)
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Figure 4.3: Predicted values for the coe�cient multiplying each observable � = [�, �̇], nor-
malised k1 and k2 respectively. G = � = �̇0 = 1, data taken from one stationary period of data,
512 measurements taken per period.

We run a sweep of simulations where �̇0 = 1 and ! = 10�2 � 102. Data is recorded for one

oscillatory period once the data is stationary. The simulation itself is run for 12800 time steps

per period and subsequently down-sampled so that 512 measurements are recorded per period.
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The predicted values of k1 and k2, k̃1 and k̃2, are shown in Fig. 4.3 where they have been

normalised by their true values, k1 and k2 respectively.

The values of k̃1 and k̃2 are highly accurate, with some error at low ! for k̃1 due to the larger

time step size. However, the coe�cients for the observables still have to be converted back to

their parameters from the Maxwell model via

�̃ =
�t

1� k1
, G̃ =

k2

�t
. (4.14)

The values for �̃ and G̃ using these transformations are shown in Fig. 4.4. We can see that,

while k̃1 has high accuracy regardless of !, �̃ su↵ers due to the sensitivity of the transformation

in Eq. 4.14. The accuracy before the transformation is meanwhile very stable regardless of the

time step size.
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Figure 4.4: The di↵erence between the predicted observable coe�cients k̃1 and their actual
values, alongside the predictions for � and G compared to their actual values, computed using
Eq. 4.14.

Another important consideration concerning the data snapshots is the total simulation length.

The results from applying DMDc do not change as we increase the number of oscillatory periods

in the simulation. Furthermore, it is possible to retrieve good predictions of the coe�cients even
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when less than a full oscillatory data set is provided, while Fourier transform-based analysis of

oscillatory data requires a full period of data in order to prevent spectral leakage [94]. This is

interesting as it means we may be able to pick up features in a data set that are evolving over

longer time scales than that of the data set itself, which a Fourier transform approach may

miss. However, using shorter data sets of incomplete oscillatory periods may make the results

more susceptible to the e↵ects of measurement noise.

4.4 Inclusion of higher-order observables

It is not surprising that we were able to retrieve the linear observables somewhat easily if �

only contains the linear observables that make up the equation. It should also be clear that

only the linear observables are necessary in this regime from looking at the Fourier spectrum

of the stress response. Be that as it may, can we show that only the � and �̇ observables are

required to reconstruct the constitutive law from data if higher order signals are provided? The

full set of candidate observables from the GNMM model that do not include �xx and �yy is

� = [�, �̇, �3
, �

2
�̇, ��̇

2
, �̇

3] (4.15)

where the subscript for �xy has been dropped. The fact that the data is linear means that

the �̈ observable is automatically redundant. We have K = 6 candidate observables, of which

we want to pick out only the two linear observables as necessary for modelling the provided

simulation data. The full equation can be written as

�n+1 =


k1 k2

�
2

64
�

�̇

3

75

n

+


k3 k4 k5 k6

�

2

66666664

�
3

�
2
�̇

��̇
2

�̇
3

3

77777775

n

(4.16)
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where �t has been absorbed into the ki coe�cients. With this in mind, rheoKIC aims to find

the values ki that minimises

���n+1 �
KX

i=1

ki�i

��
F

(4.17)

with respect to the Frobenius norm, where �i, i = 1, . . . K are the observables in �. Once the

ki are computed, all of the ki aside from k1 must be divided by �t, while k1 is transformed

according to Eq. 4.14.
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Figure 4.5: rheoKIC applied to data from the linear Maxwell model where G = � = �0 = 1
and � is constructed according to Eq. 4.15.

In Fig. 4.5 we have used a � which contains every combination of �xy and �̇ up to cubic

order to demonstrate that the GNMM equations have correctly determine that the quadratic

combinations of �xy and �̇ not required. An evident result is that all of the coe�cients for the

quadratic observables are extremely small, clearly indicating that the underlying constitutive

law does not contain quadratic terms. Even if we were not aware of the constraints from

the GNMM equations and instead used a regular polynomial basis expansion to form �, we
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can decide based on the output shown in Fig. 4.5 to rerun the method without supplying the

quadratic observables, e↵ectively forcing the coe�cients for the quadratic observables to be

zero. This is similar to how the SINDy method and its extensions [124, 126] uses a form of

sequentially-thresholded least squares to narrow down the terms in the equation they wish to

identify.
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Figure 4.6: rheoKIC applied to data from the linear Maxwell model where G = � = �0 = 1
and � contains linear and cubic observables only.

The results using the set of observables recognised in the GNMM equations is shown in Fig. 4.6.

The rheoKIC method was applied in its most straightforward form: there was no truncation of

the SVD of � and all of the candidate observables were supplied simultaneously. We identify

constant values for the linear observables at frequencies 10�3
< ! < 10�1, indicating both that

these observables are required and that the coe�cients have been identified correctly. On the

other hand, at these frequencies the predicted coe�cients for the cubic observables are noisy

and are at a similar order of magnitude. At higher frequencies, rheoKIC is substituting � with

a linear combination of the cubic observables to reconstruct the output signal.
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4.4.1 Cause of redundancy for the cubic observables

We can see whether the higher order observables are actually necessary by initially applying

a Fourier transform to the � measurements and checking the number of di↵erent frequencies

that are visible. For this case, as expected, there is only a single frequency and the order of

� can be reduced accordingly. Alternatively, we can check the reconstruction error using only

the linear observables,

|�n+1 � (k1�n + k2�̇n)|, (4.18)

with the reconstruction error using the full set of observables as defined in Eq. 4.17. This can

be seen in Fig. 4.7. The reconstruction error is very small in both cases, across the entire

range of !, so it is reasonable to conclude that a constitutive law with only linear observables

is su�cient to model the data.
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Figure 4.7: Reconstruction error for rheoKIC when the set of candidate observables contains
only � and �̇, and when all cubic order combinations of � and �̇ are also provided.
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Since we are looking for constant values of the coe�cients independent of !, it could be argued

that this result indicates that the � and �̇ are necessary while the others are not. However, we

should also understand why the coe�cients for the cubic observables seem to overwhelm those

of the linear observables, in particular at high frequencies. We can understand more about this

phenomenon by checking the rank of �: it is always equal to four, while there are six candidate

observables in total. Truncating the SVD of � to four produces the predicted coe�cients

shown in Fig. 4.8. The values for all the predicted coe�cients are significantly smoother and

at frequencies ! < � the cubic observables are clearly unnecessary to reconstruct the data. At

high frequencies, the coe�cients for the cubic observables are still large and interfere with the

predictions for � and G.
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Figure 4.8: Data from the same scenario as in Fig. 4.6, but the SVD of � has been truncated
to four.

We investigate this further by taking advantage of the fact that we know the analytic solutions

for � and �̇ exactly, shown in Eqs. 4.4 and 4.6 respectively. We rewrite each of the observables

in terms of trigonometric basis functions:
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2

666666666666664
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�̇
2
0(B sin (!t) + A cos (!t)) cos (!t)2

�̇
3
0 cos (!t)

3

3

777777777777775

. (4.19)

By expanding the powers of the trigonometric terms, we can see that this is a linear transfor-

mation of a Fourier basis expansion containing only odd terms,

2
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(4.20)

If the quadratic order observables are still included, then the rank of � never rises above seven

- the accompanying transformation is provided in Appendix B. Using only data from a SAOS

experiment will subsequently always result in an under-determined system if higher order terms

are used. We will need to find a way to increase the complexity of the data so that each of the

observables in � is linearly independent to each other.
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4.5 Increasing the data complexity

The issues with the cubic observables have arisen because � is rank-deficient for the given set

of data and the linear Maxwell model. We will explore two di↵erent ways that the experimental

data can be augmented so that � is full rank.

1. Combining data from di↵erent experiment types, namely stress relaxation and constant

shear rate experiments.

2. Combining data from oscillatory experiments at di↵erent frequencies.

Other, more complex experiments described in Section 2.5.3 will be applied to data in subse-

quent chapters where the constitutive laws contain nonlinear terms.

4.5.1 Combined data sets from di↵erent experiments

We first look at how the rank of � can be augmented by using data from other commonly-used

experiments that probe the linear viscoelastic regime: the stress relaxation experiment and the

constant start rate, or shear start up, experiment.

As described in Chapter 4, the stress relaxation experiment involves shearing the fluid until the

stress reaches a prescribed value, then removing the source of shear and observing the fluid as

it returns to its quiescent state. Using the analytic solution for the Maxwell model, we know

that the equations for our fluid in a stress relaxation experiment is

�̇ = 0, � = �0e
� t

� , �(t = 0) = �0. (4.21)

The shear rate is simply zero in this case. Any observables in � that involve �̇ will therefore

also be zero, and the standard set of candidate observables reduces to
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� = [� �
3]. (4.22)

From Eq. 4.21 we can also see that G cannot be approximated for this experiment. The approx-

imation for �, at least, is reasonable over a range of time step sizes, as shown in Fig. 4.9(left).

The coe�cient for the �
3 observable is O(10�10)�O(10�15). At time step sizes � ⇡ 10�t, the

distance between the measurements is too large to suitably resolve the exponential decay of the

stress response.

For the constant shear rate protocol, the analytic solution to the Maxwell model is

�̇ = �0, � = �G�0(1� e
� t

� ). (4.23)

The constant shear rate experiment is able to find an approximation for both � and G, since

the equation in the form suitable for rheoKIC is

�n+1 =
⇣
1� �t

�

⌘
�n +�tG�0. (4.24)

None of the observables in � will be set to zero. However, the observables �̇ and �̇
3, and �

and ��̇
2, will be scalar multiples of each other. The rheoKIC approach will not automatically

choose one observable over another in these scenarios: instead, it will divide the coe�cient

associated to the signal equally amongst them. This fact is reflected in the rank of �, which

is four. Since it is reasonable to assume that the lower order observables are more likely to

be part of the underlying constitutive law than the higher order observables, we approach this
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issue by keeping the lowest order duplicate of each signal, as follows:


�̇ �̇

3

�
�!


�̇

�
(4.25a)


� ��̇

2

�
�!


�

�
(4.25b)

� =


� �̇ �

3
�
2
�̇ ��̇

2
�̇
3

�
�!


� �̇ �

3
�
2
�̇

�
. (4.25c)

10-4 10-3 10-2 10-1 100 101

1.1

1.2

1.3

1.4

1.5

1.6

1.7

�t

�̃
�

10-4 10-3 10-2 10-1 100 101

 t

0.6

0.8

1

1.2

1.4

1.6

�t

Figure 4.9: Normalised approximations for observable coe�cients where the data set is com-
puted to resemble (left) data from a stress relaxation experiment with � = [� �

3] and (right)
data from a constant shear rate experiment with � = [� �̇ �

3
, �

2
�̇].

The predictions for � and G using just data from the constant shear rate experiment, with this

reduced set of candidate observables, are shown in Fig. 4.9(right). Both approximations are

good for low frequencies but deviate at higher frequencies and rank(�) = 4 for each simulation.

As in the stress relaxation data test, the coe�cients for the cubic observables are O(10�10) �

O(10�15).

Concatenating the data from both the stress relaxation experiment and the constant shear rate

experiment maintains the same number of observables K = 4 and keeps � at full rank. The
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approximations for � and G are virtually identical to that when only the constant shear rate

data is used.

We then check the e↵ects of using concatenated data from all three types of simulation intro-

duced in this chapter: for a given oscillatory frequency, we compute the data to resemble a

SAOS experiment and then the corresponding stress relaxation and constant shear data with

the same time step size. The resulting set of candidate observables when using this data set is

full rank and no observables need to be discarded. The approximations for � and G are shown

in Fig. 4.10 (left), and alongside the approximated coe�cients for the higher order coe�cients

in Fig. 4.10 (right).
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Figure 4.10: Normalised approximations for observable coe�cients where, at each frequency, the
data set consists of data from a stress relaxation simulation, a constant shear rate simulation,
and a SAOS simulation. (Left) Normalised values of �̃ and G̃ only, corresponding to the linear
observables. (Right) Coe�cients for all the observables in rheoKIC.

We can see that both approximations are accurate across a wider range of frequencies than

when data from any of the experiments was supplied individually. While all the coe�cients are

of a similar magnitude at the lowest frequencies, the coe�cients for the higher order observables

rapidly decay to significantly smaller values for the majority of the frequency spectrum. The

approximations are similar in quality to when using SAOS data and only the linear observables

were supplied, which required using existing knowledge about the linearity of the underlying
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constitutive law - here, the full set of candidate observables was supplied and no assumptions

about linearity of the data were required.

4.5.2 Combining multiple SAOS data sets

Instead of introducing further types of experimental data, we look at how we can exploit our

oscillatory data set further to improve the accuracy of our model. We carry out 50 experi-

ments at frequencies !i, i = 1, . . . 50 distributed logarithmically between 10�2 and 102, and

concatenate the data for � according to

� =


�
!1
1 �

!1
2 . . . �

!1
n�1 �

!2
1 �

!2
2 . . . �

!50
n�1

�
(4.26)

and

�̇ =


�̇
!1
1 �̇

!1
2 . . . �̇

!1
n�1 �̇

!2
1 �̇

!2
2 . . . �̇

!50
n�1.

�
(4.27)

The data we are trying to reconstruct is


�
!1
2 �

!1
3 . . . �

!1
n �

!2
2 �

!2
3 . . . �

!50
n .

�
(4.28)

While the KIC method is capable of handling combined data sets that have di↵erent time

step sizes [20], here for simplicity we have fixed the time step size so that the highest frequency

contains 512 measurements per oscillatory period. Fig. 4.11 shows the approximations for � and

G, normalised by their true values, when using the data set from each experiment individually

and when all the data sets are concatenated. In this case the full set of candidate observables

is provided i.e. K = 6.
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Figure 4.11: Approximations for � (left) and G (right), normalised by their true values. The
solid lines correspond to approximations where the provided data is only the data at that fre-
quency, while the dashed lines correspond to approximations using data sets from all frequencies
at once.

The data set of combined frequencies produces approximations for �̃ and G̃ with errors of

0.39% and 0.013%, respectively, and the combined data set of all the SAOS experiments,

which would each be rank-deficient individually under this choice of �, is full rank. The

coe�cients for the higher order observables range from 10�2 to 10�9 in magnitude, and so

can comfortably be regarded as unnecessary for the data reconstruction. Using a concatenated

data set, representing frequencies spanning several orders of magnitude within a single data set,

therefore produces the most accurate results when using rheoKIC out of all the more complex

data sets that we have investigate here.

4.6 Conclusions

For this first chapter of results, we have applied rheoKIC to data from a constitutive law of

a viscoelastic fluid, namely the linear Maxwell model, as a pathological example on which to

build in subsequent chapters.
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Before applying rheoKIC at all, we found that the first-order approximation for the time deriva-

tive required by rheoKIC introduces errors on the order of the time step size. It is therefore

important to use data that is as well time-resolved as possible. A variation of DMD called

‘Higher order DMD’ [133, 134] has the potential to reduce this error by incorporating time

lagged snapshots in the methodology such that more accurate approximations for the time

derivative can be used instead, although we do not investigate this here. Additionally, the

transformation from the observable coe�cient for the stress signal to its actual value in the

Maxwell model can also introduce error. Using data from lower oscillatory frequencies, or from

a di↵erent type of experiment to oscillatory, can help to mitigate this issue.

Using a data from a linear constitutive law has allowed us to reduce rheoKIC, which uses a set

of candidate observables that are linear and nonlinear in � and �̇ and may contain superfluous

entries, to DMDc, which uses only linear observables and no extra signals by definition. Ap-

plying DMDc to this linear data, as expected, returned better results than when superfluous

observables were added.

Applying rheoKIC with the full set of GNMM observables correctly identifies the linear observ-

ables for low frequencies, but also identifies the cubic observables as relevant at high frequencies.

The quadratic observables were shown to be unnecessary throughout, in agreement with the

fact that these terms are absent in the GNMM equation for the o↵-diagonal element of the

stress tensor. The set of candidate observables was observed to be rank-deficient when using

a single data set from an oscillatory simulation. The cause of the degeneracy was found by

looking at the analytic solution to the Maxwell model and noting that, in this case, the set of

candidate observables for rheoKIC can be linearly transformed into the standard Fourier basis.

Finally, we investigated how the complexity of the observables could be increased so that none

of the observables are degenerate. Using concatenated data sets of oscillatory data across a

range of frequencies resulted in both high accuracy for the coe�cients and a clear separation

between the necessary and unnecessary observables. Using DMDc to produce excellent results

was only possible because the model was known a priori to be linear; by using a combination

of di↵erent data sources on the full set of GNMM observables, we were able to produce results
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at a comparable level of accuracy without this knowledge.



Chapter 5: Application to weakly non-

linear laws

As a next step in complexity for the types of constitutive laws we aim to identify, we add a

term to the linear Maxwell model that is nonlinear in the shear rate and form the simple (or

‘scalar’) fluidity model (SFM) [70]

@�

@t
= G�̇(t)� 1

�
g(�̇(t)2)�(t), (5.1)

which is a simplified, non-spatial form of a model often used to describe soft glassy materials [10].

The elastic contribution to the stress evolution comes from the G�̇(t) term, while the relaxation

time is described by the nonlinear function of the shear rate. We choose a simple form for g by

approximating it with a Taylor expansion:

g(�̇(t)2) = g(0) + ��̇
2 +O(�̇4). (5.2)

We set g(0) = 1 as this value will only change the coe�cient multiplying �, which here is simply

the relaxation rate of the fluid. The equation for the stress evolution then becomes

@�

@t
= G�̇(t)� 1

�
�(t)� �

�
�̇
2(t)�(t). (5.3)

The general solution to Eq. 5.3 with initial condition �(t = 0) = 0 is given by

95
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� = e
�

R
P (t)dt

⇣Z
�̇(t)e

R
P (t)dt

dt� 1
⌘
. (5.4)

In our case when the strain rate is oscillatory, �̇(t) = �̇0 cos (!t), and we find that

Z
P (t)dt =

1

�

h
��̇

2
0

4!
sin (2!t) + (1 +

��̇
2
0

2
)t
i
. (5.5)

Eq. 5.3 is the linear Maxwell model from Chapter 4 with an extra term that is quadratic in

�̇ and linear in �. Fluids with larger magnitudes of � relative to the other coe�cients will

produce a stress response to the applied shear that deviates further from the Maxwell model.

On the other hand, even for cases when � is relatively small, the magnitude of the shear rate

will also e↵ect the linearity of the stress response. The e↵ect of the oscillation amplitude is

demonstrated in Fig. 5.1 where � = G = 1 and � = 0.4.
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Figure 5.1: Stress response for a fluid governed by the SFM with fluid parameters G = � = 1
and � = 0.4.

At values �̇0 > 1, it is possible to see the stress response deviating from the Maxwell model

purely by visual inspection. For �̇0 < 1 it is unclear whether it is su�cient to model the stress
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response with the linear Maxwell model or not. It would be reasonable to assume a linear

response when �̇0 << 1.

5.1 Linear/Maxwell regime

Discretising Eq. 5.3 and substituting the time derivative with its forward Euler approximation,

the SFM can be rewritten in the form suitable for rheoKIC as

�n+1 = (1� �t

�
)�n +�tG�̇n �

�t�

�
�̇
2
n�n. (5.6)

We will be aiming to identify that �, �̇ and �̇
2
� are the observables that we need from �, using

the same observables as in Eq. 4.15, and that their corresponding coe�cients are

k1 = 1� �t

�
, k2 = �tG, k3 = ��t�

�
. (5.7)

Since any direct approximation for � will be dependent on our approximation of �, we will

focus instead on the accuracy of our approximation of k3 as a whole. For small enough strain

rate amplitudes, |�̇02| = (�0!)2, the �̇2
� observable in the SFM will be negligibly small and we

retrieve the equation for the linear Maxwell model.

To produce a data set within the linear viscoelastic regime, we carry out the same frequency

sweep ! = 10�2 � 102 as in the previous chapter while fixing �0 = 10�5 to simulate a small

amplitude oscillatory test. We compute the stress response from Eq. 5.1 with the ode45 solver

and use data after 100 periods have elapsed to ensure any initial transients have decayed.
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Figure 5.2: rheoKIC applied to SAOS data where �0 = 10�5 and ! = 10�2 � 102, such that
�̇0 = 10�7 � 10�3. The supplied observables are (left) � and �̇, and (right) �, �̇, and �̇

2
�.

Fig. 5.2 shows the performance of rheoKIC on this data for the cases where we supply only the

linear observables, � = [�, �̇], and only the correct observables, � = [�, �̇, �̇2
�]. Using only

the linear observables produces the same approximations as in the linear Maxwell model from

Chapter 4. When the extra nonlinear term from SFM is included, rheoKIC recognises that it

is unnecessary for modelling the data and sets its coe�cient to O(10�4) across the full range of

�̇0.

We can confirm that the stress response is linear by checking that the Fourier transform of

the data at each frequency has a single peak, confirming that only the linear observables are

required. Alternatively, we can use the rank-deficiency of � before computing the coe�cients

as a metric for determining whether the stress response is linear. When observing the raw data

from a simulation, we can see that the �̇
2
� observable has such a small magnitude relative to

the other observables that it appears to e↵ectively be a vector of zeros causing rank(�) = 2.

However, we usually scale the signals for each observable to have the same magnitude before

performing the SVD step,

� ! �

|�| , �̇ ! �̇

|�̇| , (5.8)
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and then scale back afterwards while computing the constitutive law parameters from the ki

coe�cients. Once � is rescaled we find that it is full rank and the impact from the �̇
2
� signal

appears to be as important as that of the other signals. It is therefore important to only apply

this rank-deficiency metric on the raw entries of � in order to interpret the linearity of the data

set correctly.

In Fig. 5.3, we fix ! and vary �0 to find where the �̇2
� term ‘kicks in’ and is considered necessary

by rheoKIC for di↵erent frequencies. We find that �0 can be several orders of magnitude smaller

than ! before the stress response falls within the linear regime, and that we require �0 > 10�3

for all values of ! that we check.

Figure 5.3: Re-scaled approximations for k3 where ! has been fixed while �0 = 10�5 � 10. The
supplied observables are � = [�, �̇, �̇2

�].

5.1.1 Frequency-sweep MAOS

We want to find a strain amplitude large enough to produce a stress response that no longer

resembles that of the linear Maxwell model. The crux of the issue is that the importance of the

extra term in the SFM equation is dependent on both �0 and !, while we want the combination

�̇0 = (�0!)2 to have a large enough value across an entire frequency sweep.
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Figure 5.4: rheoKIC applied to !-sweep MAOS data using � = [�, �̇, �̇2
�]. The legend in

the top right describes the value of �̇0 for all cases. Top left: Approximations for �. Top left:
Approximations for G. Bottom left: Approximations for �, �̇0 = 10�2 � 10. Inset: � for ! = 4.
Bottom right: Approximations for k3, �̇0 = 10�5 � 10�3.

The issue of finding this ‘sweet spot’ for medium amplitude oscillatory tests has already been

investigated [135]: their proposed resolution is ‘frequency-sweep MAOS’, or ‘!-sweep MAOS’,

whereby �0 is dependent on ! such that �̇0 remains fixed across a frequency sweep at a value

which produces the desired response. The original intention for !-sweep MAOS was to ensure

that the stress response always remained weakly nonlinear, since a fully nonlinear response

requires a di↵erent form of analysis when using the FT-rheology approach. For our case, we

use !-sweep MAOS primarily to ensure that the stress response does not become linear at low

frequencies, where our approximation for � is the most accurate.
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The results for !-sweep MAOS with di↵erent choices of �̇0 are shown in Fig. 5.4, where � =

[�, �̇, �̇2
�]. Our approximations for G only slightly deviate at the highest amplitudes. The

approximations for � are virtually independent of �̇0 except for at the largest value �̇0 = 10.

The stress response deviates strongly from a sine curve at ! ⇡ �, as shown by the inset figure,

which causes this reduction in accuracy. The stress response then appears be more linear as ! is

increased further and the oscillation frequency dominates significantly over the fluid’s relaxation

rate.

We find very good accuracy for k̃3 when �̇0 � 10�2. When �̇0  10�3 we return to the linear

regime and k̃3 deviates considerably from the correct value. We can conclude that we will only

be able to retrieve all the terms in the SFM model when the strain rate amplitude is high

enough to produce a nonlinear stress response. Otherwise, rheoKIC cannot ‘see’ the relevance

of the higher order term and the prediction will revert to the linear Maxwell model. Since the

strain rate amplitude is dependent on both strain amplitude �0 and oscillation frequency !, the

stress response can span both the linear and nonlinear regimes during a frequency sweep if �0

is fixed. The !-sweep MAOS approach, where �̇0 = �0! is fixed instead, resolves this issue.

5.2 GNMM observables

We initially chose to use a reduced set of candidate observables � = [�, �̇, �̇2
�] in order to

focus on finding a range of values for the experimental parameters where the higher order term

is well-represented. It is no surprise that rheoKIC is capable of retrieving good approximations

for both the linear and nonlinear observables when only the correct observables are supplied.

We intend for rheoKIC to be used when the terms in the constitutive law are unknown, and as

such we now look at results where � is constructed according to Eq. 4.15, with the inclusion

of �̈ since we are looking at a nonlinear data set, so that now K = 7:

� = [�, �̇, �3
, �

2
�̇, ��̇

2
, �̇

3
, �̈]. (5.9)
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Figure 5.5: rheoKIC applied to !-sweep MAOS data using the full set of observables, The value
of �̇0 is fixed for each sweep. In all cases G = ! = 1 and � = 0.4.

Fig. 5.5 shows the approximations for each coe�cient when applying !-sweep MAOS and using

this full set of candidate observables. Ideally, the three observables that are originally contained

in the SFM equation should have coe�cients with magnitudes large enough to separate them

from the other observables, and these coe�cients should remain consistent across a range of

frequencies.

We were previously able to find a good approximation for k3 using �̇0 = 10�2 when only the

correct observables were provided. Now that � is aligned with what would be used in practice,

it is no longer clear that the �̇
2
� observable has di↵erent behaviour to the other nonlinear

observables until �̇0 = 10�1. The coe�cient for the �̇2
� observable becomes increasingly regular
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across the range of ! as �̇0 increases further. We find that � is full rank for all cases where

�̇0 � 10�1. When �̇0 = 10�2, � is rank-deficient at both low and high frequencies. Using

the QR decomposition of �, we find that the linearly dependent observables causing this rank

deficiency are a combination of �3, �2
�̇, and �̇

2
� which varies depending on the specific value

of ! involved.

Throughout Fig. 5.5 there are intrusions by the cubic observables which should be discarded by

the method onto the observables we wish to keep, particularly at the highest frequencies.We can

see e↵ect of this interference in Fig. 5.6 where we isolate the approximations for �, G, and k3 for

the �̇0 = 1 and �̇0 = 10 cases. We can clearly see the impact at the highest frequencies, where a

combination of signals from the other observables is being used to reconstruct the data instead

using of the �̇
2
� signal. Based on the results in Fig. 5.5 it is highly likely that a practitioner

would consider some of the cubic signals necessary for reconstructing the constitutive law based

on the magnitude of their coe�cients. For example, in the �̇0 = 10 case we might decide that the

�̈ observable and one of the cubic observables should be discarded. We will explore modifications

to the methodology along this line of thought to prevent this intrusion from occurring.
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Figure 5.6: Approximations for SFM constitutive parameters when rheoKIC is applied to !-
sweep MAOS data using the full set of observables.
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5.3 Combined data sets

As in the previous chapter, our first strategy for dealing with this issue is to employ combined

data sets from across a full frequency sweep. We set the time step size so that there are 512

data points per period at the highest frequency, while using the same number of data points

for each frequency, to ensure that there is no outsize influence from the lower frequency data

sets. The approximations for each observable coe�cient are shown in Table 5.1. We retrieve

excellent approximations with less than 1% error for G independently of �̇0, and similarly for �

when �̇0 < 10. When �̇0 = 10�1 or higher, our approximations for k3 have less than 1% error.

The errors increase slightly for the largest shear rate amplitude value of �̇0 = 10.

This approach fails to find good approximations for k3 when �̇0 = 10�2 or 10�3. We can see

why this is the case by comparing the computed coe�cient for the �̇
2
� observable relative

to the coe�cients of the other higher order observables: when the accuracy for k3 is high, it

is at least two orders of magnitude larger than the others. Meanwhile, for the cases where

a good approximation for k3 is not found, the �̇
2
� coe�cient has the same or smaller order

of magnitude as the other higher order observables. The method does not identify that this

observable is necessary because the stress response is within the linear regime, and uses this

signal to the same extent as the other unnecessary signals that have been provided. When

�̇0 = 10, the discrepancy between the coe�cients is smaller but there is still an order of

magnitude di↵erence between them.

�̇0 �̃ (%) G̃ (%) k̃3 (%) �
3

�
2
�̇ �̇2� �̇

3
�̈

10�3 0.999 (0.11) 1.000 (0.006) 13.6 35 45 13 1 10�5

10�2 0.999 (0.11) 1.000 (0.006) 32.9 0.35 0.45 0.53 0.01 10�5

10�1 0.999 (0.11) 1.000 (0.006) 0.4 (0.3) 10�3 10�3 0.4 10�5 10�5

1 1.0 (0.01) 1.000 (0.003) 0.40 (0.03) 10�5 10�5 0.4 10�5 10�5

10 1.01 (0.5) 1.001 (0.14) 0.39 (0.25) 0.07 0.01 0.4 10�5 10�5

Table 5.1: Approximated coe�cients when concatenating the data sets used for !-sweep MAOS.
The ‘10�x’ entries indicate that the coe�cients are of order O(10�x) or smaller.
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Each of the rows of results in Table 5.1 are within the same viscoelastic regime since �̇0 is fixed

for each concatenated data set. Alternatively, by fixing ! and concatenating data sets with

di↵erent values of �̇0, each data set can span both the linear and nonlinear viscoelastic regime.

Table 5.2 shows the results of applying rheoKIC to five concatenated data sets with a fixed

value for ! and �̇0 = [10�3
, 10�2

, 10�1
, 1, 10].

! �̃ (%) G̃ (%) k̃3 (%) �
3

�
2
�̇ �̇2� �̇

3
�̈

10�2 1.003 (0.25) 0.998 (0.29) 0.399 (0.29) 0.001 10�4 0.398 10�7 10�5

10�1 0.996 (0.39) 0.999 (0.13) 0.399 (0.27) 0.003 0.003 0.399 105 10�4

1 0.98 (2.0) 0.994 (0.59) 0.403 (0.77) 0.060 0.065 0.403 10�4 10�4

10 0.823 (17.7) 0.996 (0.39) 0.413 (3.28) 2.678 0.229 0.413 10�4 0.002

100 0.321 (67.9) 1.000 (0.011) 0.400 (0.215) 7.23 0.515 0.400 10�6 10�4

Table 5.2: Approximated coe�cients when concatenating data sets with a fixed frequency and
�̇0 = [10�3

, 10�2
, 10�1

, 1, 10].

At the lowest frequencies, we find the ideal combination of both excellent accuracy for the

coe�cients of the observables we need and relatively small coe�cients for all the observables

we should discard. As expected, the accuracy for �̃ decreases at higher frequencies due to the

errors from the Euler approximation. There is remarkably very little change in the accuracy as

! is increased for both G̃ and k̃3. However, for ! = 10 and ! = 100 we see that the coe�cients

for �
3 and �

2
�̇ are now large enough to not be discarded by the method. At these higher

frequencies the � observable is not used as accurately due to the Euler approximation, which

is reflected in the reduced accuracy of �̃, and causes the signals from the other observables to

be used in its place.

Overall, we see that rheoKIC applied to these combined data sets will produce a good recon-

struction of the data provided the right choice of experimental parameters is made. Fixing �̇0

and varying ! produces excellent accuracy for the linear observables but varying levels of ac-

curacy for the higher order observable. Fixing ! and varying �̇0 produces good approximations

for the higher order observable, but we find that the coe�cients for the other observables start
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to intrude at the highest frequencies. It is likely that a battery of tests as in the tables above

would be required to determine the experimental parameters for the data sets to be combined.

The increase in the number of data sets, and therefore the number of experiments/simulations

to run, causes this approach to be expensive to carry out. Additionally, increasing the number

of data sets leads to many questions during the data collection phase, including: the span of

values for the experimental parameter that is varied; the values at which to produce a data set;

and the number of data sets to supply in total. The answer to these questions are most likely

data-specific and could lead to significant complications during analysis.

5.4 Sequential analysis

In this section and the following, we will look at ways to reduce the number of data sets and

the number of choices that must be made when generating the data from that of the combined

data set approach in Section 5.3. We first propose a sequential approach to the analysis, which

was suggested in the original work presenting the GNMM framework [47] and is reminiscent of

the step-wise selection technique more widely used in nonlinear system identification [136].

At this point it is clear we can identify the linear observables as necessary terms in the con-

stitutive law across both the linear and nonlinear regimes. In fact, the terms �, �̇, �̇, and

�̈ are common across all constitutive laws that lie within the GNMM framework [47]. We

therefore know that all these terms must be identified when rheoKIC is applied to one of these

data sets. We can enforce that non-zero coe�cients for the linear observables are retrieved

by first supplying data from within the linear viscoelastic regime and only the linear observ-

ables as candidates, which will also prevent the higher order observables reducing the accuracy

of our predicted coe�cients. The original suggestion was that all the linear terms are found

together [47]; however, for the oscillatory strain rates that we use here, the �̈ observable de-

rived from this term will automatically be redundant in the linear regime and cause � to be

rank-deficient, so we instead include it along with the higher order observables. Our steps for

applying sequential rheoKIC are as follows:
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1. Apply rheoKIC to data from within the linear viscoelastic regime while setting � = [�, �̇].

2. Use the approximations for the coe�cients to construct

�n+1 =
⇣
1� �t

�̃

⌘
�n +�tG̃�̇n. (5.10)

3. Produce data from within the nonlinear viscoelastic regime and using !  1
�̃

4. Subtract the right-hand side of Eq. 5.10 from data in the nonlinear viscoelastic regime,

�2:T �
⇣
1� �t

�̃

⌘
�1:T�1 ��tG̃�̇1:T�1 = ��t

�

�
(�̇2

�)1:T�1. (5.11)

5. Apply rheoKIC to this data where � contains only the higher order observables.

6. Reconstruct the full constitutive law.

The importance of Step 3 is twofold. Firstly, we know that rheoKIC struggles the most at

high frequencies due to the influence of the Euler approximation step, so a lower frequency

will reduce numerical error. The second reason is illustrated in Fig. 5.7: when !  1/�, the

stress response can be fully developed over one oscillatory period and it can be observed as

highly nonlinear from looking at its power spectrum. Meanwhile, when ! > 1/�, the stress

response is cut short by the rapid change in direction of the applied force on the fluid, and the

power spectrum of the stress response indicates that it is only weakly nonlinear. By finding an

approximation for � and setting !  1/�̃, we can ensure that rheoKIC ‘sees’ the full dynamics

of the fluid in the nonlinear regime.
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� = 4

� = 100

Figure 5.7: Stress response when �̇0 = 10 and (top row) ! = 4 and (bottom row) ! = 100, and
their corresponding power spectra.

Before proceeding, it is important to mention very recent work on the e↵ect of fitting data

sequentially rather than the standard, simultaneous approach when finding the parameters

for a viscoelastic model [137]. By fitting the data sequentially, any cross-correlations between

di↵erent parameter values are ignored, which can result in falsely high levels of certainty in the

parameters that are retrieved. A key di↵erence between our approach and these findings is that

they are searching for the material functions G0(!) and G
00(!) as well as their counterparts in

the weakly nonlinear regime, whereas we are directly seeking the parameters in the constitutive

equation across both the linear and nonlinear regimes. Nevertheless, with this warning in mind

we will check our coe�cient approximations from the sequential and simultaneous approaches

throughout to ensure that they are consistent.

Using data from the linear regime, we set �̇0 = 10�3 and choose the lowest value of ! from
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the range that we look at, which for our case is ! = 10�2. This ensures to the best of our

abilities that we can observe the full relaxation time of the fluid. Under these values for the

experimental parameters, we find �̃ and G̃ with 0.004% and 0.003% error, respectively.

Next, we need to choose values for ! and �̇0 to produce data from within the nonlinear viscoelas-

tic regime, and then apply rheoKIC using data described by Eq. 5.11 and where � contains the

five higher order observables. Based on the results from the linear regime, we know the ranges

for these parameters are ! = 10�2 � �̃ and �̇0 > 10�3. Table 5.3 shows the results for this step

using ! = [10�2
, 10�1

, 1/�̃] and �̇0 = [1, 10].

! �̇ �
3

�
2
�̇ �̇2� �̇

3
�̈

10�2 1 6.98 22.40 23.47 8.45 10�8

10�2 10 56.2 16.70 16.58 54.6 10�5

10�1 1 2.42 1.45 3.83 3.3 10�4

10�1 10 0.44 1.05 1.24 0.22 10�3

1/�̃ 1 0.02 0.04 0.36 0.01 10�3

1/�̃ 10 0.39 0.07 0.41 10�5 10�3

Table 5.3: Approximated coe�cients for the higher order observables when applying sequential
rheoKIC.

We would like the coe�cient for the �̇
2
� to be significantly larger than all the other higher

order observables. For the oscillatory frequency, from Table 5.3 it is clear that the second stage

of the sequential method should use ! = 1/�̃ to produce the best outcome. The situation is

less clear when it comes to choosing an ideal value for �̇0. Smaller values of �̇0 increases the

influence of the higher order parameters, indicating that in general the data must be highly

nonlinear for the correct observable to be recognised, although there appears to be a limit to

this assumption as using �̇0 = 10 produces less satisfactory results than when using �̇0 = 1: we

find k3 with the smallest amount of error (1.2%), but we also find that the coe�cient for the

�
3 observable is of a similar magnitude.

Since we have previously shown how combining multiple data sets strengthens results, we use
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this idea again and combine the �̇0 = 1 and �̇0 = 10 data sets while ! = 1/�̃ to improve on our

results. This is shown in Table 5.4.

Final equation

Correct �̇ = �1.0� + 1.0�̇ � 0.4�̇2
�

Reconstructed �̇ = �1.0� + 1.0�̇ � 0.405�̇2
� � 0.1279�3 + 0.0491�2

�̇ + 0.000�̇3 � 0.001�̈.

Table 5.4: Final reconstructed constitutive law when applying rheoKIC using the sequential
approach and two data sets ! = 1/�̃, �̇0 = 1, 10.

The approximation for the �̇
2
� observable using this combined data set is better than the

approximations when using the �̇0 = 1 and �̇0 = 10 data sets individually. The observables

�̈ and �̇
3 have small enough coe�cients to be removed from the reconstruction with minimal

disruption, while the coe�cient for the �3 observable is smaller than in the �̇0 = 10 case but is

still not small enough to reasonably be discarded.

5.5 MAPS data

We need to find a method which consistently ensures that only the correct observables are

identified. To this end, we look at how data from di↵erent experimental protocols can improve

our results. In comparison to Section 4.5, which focused on alternative experiments to probe the

linear response of the fluid, we now require data that will probe the fluid’s nonlinear response

to di↵erentiate the signals from the higher order observables.

In Section 5.3 we were successful in identifying the correct terms and their coe�cients when

concatenating multiple data sets at a di↵erent frequencies. The medium amplitude parallel

superposition (MAPS) [70] technique instead applies three oscillatory shear tests in concert, as

first described in Section 2.5.3. The MAPS protocol used on the SFM results in
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Figure 5.8: RheoKIC applied to MAPS data where [!1, !2, !3] = [1, 4, 16]!0.

The three frequencies !j are written in terms of a fundamental frequency !0, [!1, !2, !3] =

[n1, n2, n3]!0. We focus on simulations where there are no phase shifts, ↵j = 0, and use two

sets of frequency triplets which have been proven to probe the higher order frequencies of the

data without interfering with each other, [!1, !2, !3] = [1, 4, 16]!0 and [5, 6, 9]!0 [71]. This

leaves us with two remaining experimental parameters, !0 and �0, to analyse. As in the !-
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sweep MAOS cases, we vary �0 based on ! so that �̇0 is fixed. The simulation is run for 100

of periods of the fastest frequency !3, and then snapshots are recorded for one period of the

slowest frequency !1. The time step size has been chosen so that there are 512 measurements

for !3.
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Figure 5.9: RheoKIC applied to MAPS data where [!1, !2, !3] = [5, 6, 9]!0.

The results are shown in Fig. 5.8 for the case where [!1, !2, !3] = [1, 4, 16]!0 and Fig. 5.9

for the case where [!1, !2, !3] = [5, 6, 9]!0. For both triplets we find that the smaller strain

rate amplitudes �̇0 = 10�2 and �̇0 = 10�1 produce the longest range of values for !0 where

�̃ and G̃ are stable and also where k̃3 is the most distinguishable coe�cient from the higher

order observables. As before, rheoKIC does not consider the �̇
2
� observable necessary when

setting �̇0  10�3. In general we find that the [1, 4, 16]!0 frequency triplet produces marginally
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better results than the [5, 6, 9] triplet. In both cases, � has full rank when �̇0 � 10�1, while

rank(�) = 6 for ! > 30 when �̇ = 10�2, .

Fig. 5.10 shows the approximations for exclusively the terms in the SFM constitutive law

parameters when �̇ = 10�1. In contrast to Fig. 5.6, we retrieve good approximations for all

parameters despite the inclusion of the full set of GNMM observables, and the largest deviations

are found at the low frequencies rather than at the high frequencies. The k̃3 value is most

influenced by the presence of the other observables.

Figure 5.10: Approximations for the SFM constitutive law parameters applied to MAPS data
where (left) [!1, !2, !3] = [1, 4, 16]!0 and (right) [!1, !2, !3] = [5, 6, 9]!0. The full set of 7
GNMM observables has been provided in both cases.

In Section 5.4, through judicious choice of the experimental parameters we were able to isolate

the correct observables and find good approximations for their parameters with just two data

sets, although unfortunately with the inclusion of one extra higher order observable which

could not be discarded. The MAPS experimental protocol was originally designed to speed

up material identification by producing the same results as when carrying out a full frequency

sweep of experiments within just one experiment. Since we have no ability to narrow down the

choice of values for the experimental parameters between data sets as we did in the sequential

method, we need the separation of the correct observables from the higher order observables to



114 Chapter 5. Application to weakly nonlinear laws

be robust across a wide range of ! and �̇0.

We can compare the robustness of MAPS data to that of other experimental protocols by

looking at the coe�cients before the final rescaling step,

C = X’VS
�1
U

T
, (5.13)

where X’ is the data for � from the second snapshot onward, and the other matrices come

from the SVD of �. If it is possible to reliably separate the correct observables from the

unnecessary observables at this stage, then the unnecessary observables could be removed as

in the sequential method described earlier but without having to run multiple experiments.
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Figure 5.11: Values for the coe�cients C described in Eq. 5.13 using data from (left) MAPS
data where [!1, !2, !3] = [1, 6, 14]!0 and (right) !-sweep MAOS data. In both cases, �̇0 = 10�1

and the full set of 10 GNMM observables has been provided.

In Fig. 5.11 we compare the coe�cients produced by MAPS with those produced by a !-sweep

MAOS simulation, both carried out when �̇0 = 10�1. All MAPS data sets apart from those

at the very highest values of ! show a clear separation between the correct observables and

the others. Meanwhile, for the !-sweep MAOS case, the correct observables are significantly

closer in magnitude to the observables which should be discarded and there is considerable
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interference at high frequencies. With this in mind, we propose the following steps for including

a ‘thresholding’ step when using MAPS data:

1. Use the MAPS protocol setting a low value of !0. The choice for �̇0 needs to be just high

enough such that � is full rank.

2. Compute the SVD of � containing the full set of GNMM observables constructed from

the MAPS data.

3. Determine which observables are necessary from observing the magnitude of the coe�-

cients computed with Eq. 5.13.

4. Create a new, reduced � containing only the necessary observables and proceed with the

rest of the steps of rheoKIC.

This process is slightly di↵erent from the sequential rheoKIC steps described earlier in that here

we are using a single, nonlinear data set, and choosing the entries in � based on the coe�cients

from the pseudo inverse step. The threshold for the coe�cient size must be determined on a

case-by-case basis by considering the entries in C. The constitutive laws produced from this

protocol using !0 = 10�2 are presented in Table 5.5.

�̇0 Final equation

Correct �̇ = �1.0� + 1.0�̇ � 0.4�̇2
�

10�3
�̇ = �0.999� + 1.0�̇

10�2
�̇ = �0.999� + 0.999�̇ � 0.389�̇2

�

10�1
�̇ = �0.998� + 0.999�̇ � 0.398�̇2

�

1 �̇ = �0.975� + 0.997�̇ � 0.399�̇2
�

10 �̇ = �0.649� + 0.92�̇ � 0.368�̇2
�

Table 5.5: Reconstructed constitutive laws when applying rheoKIC to a single MAPS data set,
then reducing the set of candidate observables based on the coe�cients from the pseudo inverse
step. � = G = 1, � = 0.4, [!1, !2, !3] = [1, 4, 16]10�2 in all cases.
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As before, at very low strain rate amplitudes we retrieve the linear Maxwell model and the �̇2
�

observable is discarded. The correct three observables are successfully selected for all other

choices of �̇0. We find excellent accuracy to within a fraction a percentage of error for most of

the coe�cients, with decay in the accuracy for the � observable at �̇0 = 10. With these results

in mind, we can say that the MAPS protocol allows for a constitutive law containing higher

order terms to be reconstructed using a single data set - however, there is only a window of

strain rate amplitudes where it is successful, and the identification of this window may require

more measurements to be taken.

Returning to the sequential approach from Section 5.4, applying this thresholding technique re-

duces� in the second stage of the method to� = [�3
, �̇

2
�]. The final reconstructed constitutive

law is

�̇ = �1.0� + 1.0�̇ � 0.400�̇2
� � 0.0692�3

. (5.14)

The approximation for k3 is found with just a 0.03% error. The �
3 observable is smaller by

around one order of magnitude than the �̇2
� observable and so it is possible that a practitioner

would remove it during thresholding, but ideally we would like the di↵erence between the

magnitudes to be larger than this for it to be more definitive. Using a combination of sequential

analysis, combined data sets, and thresholding, we therefore appear to achieve successful results

when using oscillatory data only. This approach required several more data sets and decisions to

be made by the practitioner in comparison to the MAPS approach, but the fact that we achieve

very high accuracy for the coe�cients we do correctly identify makes it worthy of exploring

further.

5.6 E↵ect of noise on rheoKIC

Before moving onto more complex constitutive laws, it is important that we address the poten-

tial issue of noisy data when applying rheoKIC. It has been found [101] that one of the most
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sensitive parameters when using DMD is the signal-to-noise (SNR) ratio: the ratio between the

strength of the ‘true’ signal we wish to record and the strength of the background noise [138].

Fortunately, advances in rheometer technology and sensor hardware have meant that noise in

the output signal is kept small, with reported values of the true signal being up to four orders of

magnitude higher than noise during LAOS experiments [138]. Be that as it may, it is necessary

that we understand any impact noise produces on the results when applying rheoKIC. We will

also provide various solutions for how noisy signals should be treated during its application.

We will consider two main sources of noise:

1. Error during the applied deformation �̇(t) ! �̇(t) + ˜̇�(t).

2. Error during the measurement of the stress response �(t) ! �(t) + �̃(t).

Alternative sources of error include uncertainties from the geometry of the rheological setup [30]

as well as rheometer calibration errors [50], but we consider these beyond the scope of this thesis.

We will additionally consider only the impact of Gaussian noise with zero mean, and entrust

that structural errors such as measurement drift are identified and corrected for during the

experimental process.

We first look at the results from rheoKIC where we apply di↵erent levels of noise to vary the

SNR of the resulting signal and where no measures have been taken to remove it. For each

of the data sets used to produce the coe�cient approximations, additional noise has first been

applied to �̇, which is then used to compute �, and finally additional noise with the same SNR

is added to �, incorporating both types of error listed above. The Matlab function awgn is used

in both cases, which applies white Gaussian noise to the signal in order to achieve the specified

SNR.

Fig. 5.12(left) shows the coe�cient approximations when applying the protocol we developed

in Section 5.4 to oscillatory data, while Fig. 5.12(right) shows the coe�cient approximations

using a data set from a MAPS simulation. For the oscillatory data case, we find there is no

impact on the accuracy of our results once SNR> 200, while the results from the MAPS data

are not a↵ected until the SNR< 100.
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Signal-Noise Ratio Signal-Noise Ratio

Figure 5.12: Approximated coe�cients (normalised) as Gaussian white noise is added to both
�̇ and � to produce data with di↵erent SNR values. (Left) Oscillatory data analysed with
the method developed in Section 5.4. (Right) MAPS data with thresholding applied during
analysis.

t

Figure 5.13: MAPS data where ! = 0.01, �̇0 = 1, [!1,!2,!3] = [1, 4, 16], and with a SNR of 50.

Since we will be considering spatial measurements in Chapter 7, which potentially will incur

much greater levels of noise than that expected from a standard rheometer, we will also focus

on data with a low SNR. An example of � from a MAPS data set where white noise has been
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applied to both �̇ and � with a SNR of 50 is shown in Fig. 5.13. The reconstructed constitutive

law using this data is

�̇ = �1.452� + 0.659�̇ � 0.263�̇2
�. (5.15)

Remarkably, the correct observables have still successfully been isolated despite the level of

noise, although the coe�cients themselves are not very accurate. We have multiple options for

pre-processing this data at our disposal to remove the noise and potentially improve upon this

result.

A straight-forward way to remove noise from data is to apply a low-pass filter, which removes

higher frequencies from data, or a low-pass filter which removes the lower frequencies [104].

In either case we must choose an attenuation point at which these frequencies are reduced to

zero in the data set. We can use our knowledge of the construction of the MAPS signal to

determine the attenuation point of a low-pass filter: from the process of intermodulation [139],

and taking into account the fact that we are are only considering constitutive laws with terms

up to cubic order, we know that the triplet of frequencies used to produce this data will only

appear at frequencies up to 48! [70]. We can therefore use 48! as the start of our low-pass filter

and be confident that we are not removing essential features from the data. The reconstructed

constitutive law after applying a low-pass filter with this attenuation point becomes

�̇ = �1.187� + 0.813�̇ � 0.325�̇2
�. (5.16)

This is a very straightforward method which relies exclusively on known features of the applied

input signal, but all of the approximated coe�cients are now significantly more accurate. The

are many ways in which the method of removing noise could be improved upon, including

averaging over multiple data sets [103] and applying more complicated filters such as rolling

average filters [140]. There are also multiple modifications to DMD-type methods to account

for data noise, of which we listed several in Section 3. However, this exploration has served to
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confirm that rheoKIC can comfortably handle the levels of noise that one might expect to see

within standard rheological data without requiring modification.

5.7 Conclusions

In this chapter we have demonstrated that rheoKIC can be readily extended to the identification

of a constitutive law containing a nonlinear term. The SFM constitutive law reduces to the

linear Maxwell model when the amplitude of the strain rate, �̇0, is small. We can observe

this transition to nonlinearity the classical way, by looking at the frequency spectrum of �, or

alternatively by checking whether � is under-determined.

Since the nonlinear term in the model depends quadratically on �̇0 = �0!, it is di�cult to

perform a sweep across multiple frequencies while staying within the weakly nonlinear regime.

Using the !-sweep MAOS technique ensures that viscoelastic regime remains the same across

all frequencies.

We investigated several modifications to the rheoKIC method and the data sets themselves to

improve our results. Combining data sets across frequencies and across strain rate amplitudes

produces good results, but this approach required multiple experiments and the outcome is

highly dependent on the practitioner’s decisions regarding which data sets to use. Applying

rheoKIC sequentially to a SAOS and then a LAOS data set allows us to find the linear observ-

ables robustly and with excellent accuracy. Using a single nonlinear data set for the second

stage of rheoKIC approximated the coe�cient for the correct higher order observable we know

we need to good accuracy, but the other higher order observables are predicted to have coe�-

cients with a similar order of magnitude which makes them di�cult to discard. Using both of

these methods in concert - a linear data set first, followed by a combined data set from two non-

linear simulations - allows us to discard the majority of the spurious higher order observables

from our final equation.

With a data set inspired by the MAPS experimental protocol, rheoKIC consistently identifies

which observables are necessary over a wide choice of values for the experimental parameters.
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We can then discard observables with small coe�cients by using a thresholding technique and

rerun rheoKIC using the reduced set of candidate observables on the same data set to improve

our model accuracy. The reconstructed equation for the SFM constitutive law requires analysis

upon only one data set, retrieves exactly the correct observables, and returns predictions for

the coe�cients with only fractions of percentage points in error.

Finally, we investigated the performance of rheoKIC on oscillatory and MAPS data with varying

levels of Gaussian noise. We found that both data sets performed well for signal-to-noise ratios

as low as 100 : 1. A simple low-pass filter was shown to significantly improve results when using

data with higher levels of noise, and the attenuation point of the filter can be determined based

on our knowledge of the applied shear rate. We also identified multiple avenues that could be

pursued both within signal pre-processing and throughout the method to improve these results

further.
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nonlinear equations

The previous chapters have focused exclusively on constitutive laws where the only non-trivial

equation for the stress evolution is a function of �̇ and �xy exclusively. We now move onto con-

sidering a more complex constitutive law which is expressed by a system of evolution equations

that includes multiple elements of the stress tensor.

The constitutive law we have chosen to analyse is the non-stretching Rolie-Poly model, which

we will refer to as the ‘nRP’ model throughout. The origins of the nRP model lie in the GLaMM

constitutive law [141], a detailed model for linear, entangled polymer chains that incorporates

relaxation from multiple sources: chain stretching, convective constraint release, contour length

fluctuations, and chain di↵usion. While highly sophisticated, it is computationally expensive

and requires detailed information concerning the molecular structure of the suspension. A

course-grained version of the GLAMM model is the ‘ROuse LInear Entangled POLYmers’

(Rolie-Poly) model [142] where the fluctuations of contour length are not considered. A final

assumption of fast chain stretch relaxation reduces this to the nRP model.

We firstly assume that the total stress ⌃ can be decomposed into a combination of a viscoelastic

component � and a Newtonian component with viscosity ⌘,

⌃ = � + 2⌘e� pI (6.1)

where e = 1
2(ru+(ru)T ) is the symmetric rate of strain tensor and p is the isotropic pressure.
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We continue to assume that the fluid is incompressible

r · u = 0 (6.2)

and also divergence-free

r · ⌃ = 0 (6.3)

which determines p in Eq. 6.1. Writing the viscoelastic stress � in terms of a conformation

tensor W ,

� = G(W � I), (6.4)

ensures that the isotropic stress is zero when no external force is being applied. Under this

type of flow, the evolution of W governed by the nRP equations is [49]

@Wxy
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i
� 1

�
(Wyy � 1). (6.5b)

The equation for Ẇxx can be decoupled and solved trivially [142]. With initial conditions

Wxy(t = 0) = 0, (6.6a)

Wyy(t = 0) = 1, (6.6b)

we update Wxy and Wyy according to Eq. 6.5, then compute the elements of � and ⌃ according
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to Eq. 6.4 and Eq. 6.1 respectively. We use 12800 time steps per oscillatory period for accuracy,

and then down-sample so that 512 data points per period are used for analysis.
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Figure 6.1: Examples of ⌃xy and ⌃yy from the nRP model after 20 oscillatory periods have
elapsed, for di↵erent values of �̇0. In all cases G = � = ! = 1, � = 0.4, ⌘ = 10�5.

Examples of the stress response for di↵erent values of �̇0 = �0! are shown in Fig. 6.1. We

find that the magnitude of �yy is always smaller than that of �xy. When �̇0 is very small, for

example when �̇0 = 10�4 as in the bottom right of Fig. 6.1, �yy ⇡ 0 to order O(10�9) while

�xy is of order O(10�5). For this reason, it is important to check whether � is rank-deficient

at low strain rate amplitudes similarly to how the �̇
2
� term degenerated at small amplitudes

when analysing the SFM data in Chapter 5.

While Eq. 6.5 is the standard set of equations when referring to the nRP model, we cannot

measure W directly - we can only record the total stress response of the fluid ⌃. Using Eqs. 6.1-
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6.5, we write the nRP evolution equations in terms of ⌃ as

⌃̇xy � ⌘�̈ = �1

�
⌃xy + (G+

⌘

�
)�̇ + �̇⌃yy �

2

3G
(1 + �)�̇⌃2

xy +
4⌘

3G
(1 + �)�̇2⌃xy �

2⌘2

3G
(1 + �)�̇3

(6.7a)

⌃̇yy = �1

�
⌃yy �

2

3
�̇⌃xy +

2⌘

3
�̇
2 � 2

3G
(1 + �)�̇⌃xy⌃yy +

2⌘

3G
(1 + �)�̇2⌃yy. (6.7b)

We need to determine the observables to include in �. Since we now have a system of two

equations to reconstruct, the terms involving ⌃yy must also be included. Based on the terms

in the GNMM laid out in Section 3.6, the sets of candidate observables for the elements of the

stress tensor being evolved become

�xy = [⌃xy, �̇,⌃xy⌃yy, �̇⌃yy,⌃
3
xy,⌃xy⌃

2
yy, �̇

3
, �̇

2⌃xy, �̇⌃
2
xy, �̇⌃

2
yy, �̈], (6.8a)

�yy = [⌃yy,⌃
2
xy,⌃

2
yy, �̇

2
, �̇⌃xy,⌃

3
yy,⌃

2
xy⌃yy, �̇

2⌃yy, �̇⌃xy⌃yy]. (6.8b)

We find that for the o↵-diagonal element of the stress tensor there are four more observables

in comparison to the previous chapters so that in total Kxy = 11. We also see that quadratic

order terms, which in Chapter 4 we demonstrated were not needed in �xy, all are present in

�yy. There are Kyy = 9 observables in total which may represent the evolution of �yy.

6.1 Initial analysis

Eq. 6.7 can be rewritten in a form suitable for rheoKIC as



126 Chapter 6. Applications to systems of nonlinear equations

2

64
⌃xy

⌃yy

3

75

n+1

=

2

64
1� �t

� 0 �t(G+ ⌘
�)

0 1� �t
� 0

3

75

2

66664

⌃xy

⌃yy

�̇

3

77775

n

+�t

2

64
1 � 2

3G(1 + �) 0 0

0 0 �2
3 � 2

3G(1 + �)

3

75

2

66666664

�̇⌃yy

�̇⌃2
xy

�̇⌃xy

�̇⌃xy⌃yy

3

77777775

n

+�t⌘

2

64
1 4

3G(1 + �) 0 0

0 0 2
3 � 2

3G(1 + �)

3

75

2

66666664

�̈

⌃xy�̇
2

�̇
2

⌃yy�̇
2

3

77777775

n

+�t⌘
2

2

64
� 2

3G(1 + �)

0

3

75 �̇
3
n.

(6.9)

The terms have been separated as much as possible by their order with respect to ⌘, the reason

for which we will explain in Sec. 6.1.1. Fig. 6.2 shows the results from applying rheoKIC

to nRP data with di↵erent values of �̇0 and using �xy and �yy from Eq. 6.8. All signals

have been rescaled to unit magnitude before the pseudoinverse is applied to ensure that no

rank deficiency is causes by the relative magnitudes of the signals being large. The scaling

is then reverted back when the signal coe�cients are approximated. As usual, we find that

the correct observables are more easily distinguishable from the other observables as �̇0 is

increased. The predicted coe�cients for the correct observables are not stable across the full

range of frequencies. Furthermore, several of the other observables have coe�cients of a similar

or higher magnitude and so would not be discarded using the thresholded type approach in the

previous chapter.
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�yy�xy

·�0 = 10�2

·�0 = 10�1

·�0 = 1

·�0 = 10

Correct observables Other observablesCorrect observables Other observables Correct observables Other observables

Figure 6.2: Predicted coe�cients for observables using �xy and �yy from Eq. 6.8 and data from
the nRP model where G = � = 1, � = 0.4, ⌘ = 10�5.
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Figure 6.3: The rank of �xy where Kxy = 11 and data comes from the nRP model, for di↵erent
strain rate magntiudes �̇0.

In Fig. 6.3 we show the rank of �xy for the di↵erent choices of �̇0. The set of observables is

rank deficient for the majority of ! when �̇0 = 10�2 and �̇0 = 10�1, then becomes full rank

for roughly when ! > 5. When �̇0 = 10, �xy is primarily full rank and sometimes rank 10 or

lower, which we can find is due to either the ⌃2
yy⌃xy or �̇⌃2

yy observable being degenerate. �yy

is always full rank regardless of �̇0, bearing in mind that Kyy = 9.

6.1.1 E↵ect of the viscosity term

In Eq. 6.8 we separated the terms as much as possible by the order of the solvent viscosity,

⌘. The solvent viscosity is typically of order O(10�4) or smaller [143] for fluids that can be

modelled appropriately with the nRP equations, while the coe�cients G, �, and � for the types

of fluids we are looking at are often O(1) (and in fact 0  �  1 by construction) [142]1. It

therefore may not be reasonable to expect rheoKIC to be able to pick out the terms multiplied

by ⌘ or ⌘2 when their relative magnitudes are so much smaller, especially when the full set of

GNMM observables is being used or when the data is corrupted with some level of measurement

1In theory, it may be possible to enforce that any approximation for � lies within this range by including an
additional constraint during the pseudo inverse step, although this lies beyond the scope of the thesis [136].
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noise.

While ⌘ = 10�5 for the fluid we are looking at, as is recommended in the literature [49],

we can vary its value in our simulations to see how its magnitude relative to the other fluid

parameters a↵ects our predictions. Fig. 6.4 shows the predicted and actual coe�cient values

for an experiment where ! = �̇0 = 1 but ⌘ is varied.

Figure 6.4: Predicted (red crosses) versus correct (blue circles) coe�cients for observables where
(top left) ⌘ = 10�5, (top right) ⌘ = 10�2, and (bottom) ⌘ = 1. In all cases ! = �̇0 = 1. The
exact observables have been supplied for clarity.

Using a physically realistic value for ⌘, ⌘ = 10�5, means that the coe�cients for the terms

multiplied by ⌘ and ⌘
2 cannot be identified correctly. The discrepancy between the ⌘ and

⌘
2 coe�cients and the predicted coe�cients has decreased for ⌘ = 10�2, while for ⌘ = 1 we

retrieve a similar level of approximation for all coe�cients including the one multiplied by ⌘
2.

However, this type of test is not feasible in reality: changing the value of ⌘ means the fluid

under observation is also being changed. We see two possible avenues for resolving this issue:



130 Chapter 6. Applications to systems of nonlinear equations

1. We assume that the dynamic viscosity for the solvent is well-characterised and can be

subtracted from the calculations according to Eq. 6.1;

2. In the cases where the solvent viscosity of the solvent is so small as to be negligible for

modelling the fluid, the terms with a magnitude of O(⌘) or smaller have negligible impact

on the constitutive law and can be discarded with little e↵ect on the reconstruction error.

Either avenue results in dismissing the O(⌘) and O(⌘2) terms from the equation as unnecessary

during the rheoKIC process. The nRP equations without these terms involving ⌘ are then

⌃̇xy = �1

�
⌃xy +G�̇ + �̇⌃yy �

2

3G
(1 + �)�̇⌃2

xy (6.10a)

⌃̇yy = �1

�
⌃yy �

2

3
�̇⌃xy �

2

3G
(1 + �)�̇⌃xy⌃yy. (6.10b)

6.2 Combined data sets

Even when we no longer consider terms involving ⌘, there are still many observables which are

unnecessary for reconstructing the constitutive law that have large coe�cients - in other words,

there are ‘false positive’ terms which we must somehow remove. The values of the coe�cients are

also not consistent over a range of oscillatory frequencies. As before, we approach the problem

by first creating data sets at a fixed value of �̇0 but di↵erent choices of !, and concatenate

the data sets before using them in rheoKIC to see if this improves our approximations. We

also look at applying rheoKIC to data from the converse scenario, where ! is fixed and we

use concatenated data where �̇ = [10�2
, 10�1

, 1, 10]. The results are shown in Fig. 6.5 and

Fig. 6.6, respectively.

Firstly, for the combined ! data set shown in Fig. 6.5, we see that we accurately locate the

coe�cients for the linear and quadratic coe�cients for all values of �̇0, but we only find the

coe�cient for the cubic observable �̇⌃xy⌃yy when �̇0 � 1. In all cases we find that there are

many false positives, and increasing �̇0 causes the magnitudes of their coe�cients to decrease
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until they are of a similar magnitude to the correct observables coe�cients. Choosing even

higher values of �̇0 causes the accuracy of the coe�cients for the correct observables to degrade.

·�0 = 10�2 ·�0 = 10�1

·�0 = 1 ·�0 = 10

Figure 6.5: Predicted (red crosses) versus correct (blue circles) coe�cients for observables where
the data has been concatenated from simulations where �̇0 is fixed and ! is varied.

When we combine data from multiple amplitudes at a fixed frequency, shown in Fig. 6.6, the

issue of failing to find the cubic observable coe�cient in some cases does not occur - this is

because each data set contains a combination of linear, weakly nonlinear, and fully nonlinear

data, causing the higher order dynamics to be visible. Instead, we find that in general the

accuracy of the predicted coe�cients improves as the chosen value for ! is increased, while the

issue of false positives is still prevalent.

For both choices of combined data sets from multiple oscillatory experiments, we still find that
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the coe�cients for some of the higher order observables are so large as to be considered ‘neces-

sary’ for reconstructing the constitutive law, despite � being full rank. We can see the impact

of these extra observables by comparing the normed di↵erence between a data reconstruction

using the predicted coe�cients for the correct observables only, and a reconstruction using the

predicted coe�cients for all the observables. The total improvement in the data reconstruction

when using these extra observables is O(10�4). The unnecessary observables are therefore be-

ing used for marginal gains in increasing the reconstruction accuracy, which is a key indicator

that the signals are overfitting to the data.

� = 10�1

� = 10

� = 1

� = 100

Figure 6.6: Predicted (red crosses) versus correct (blue circles) coe�cients for observables where
the data has been concatenated from simulations where ! is fixed and �̇ = [10�2

, 10�1
, 1, 10].
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6.3 Sequential analysis

Instead of supplying all the candidate observables simultaneously, we try the same procedure

as in Sec. 5.4 and apply sequential analysis to the standard oscillatory data: compute a low

frequency, small amplitude data set to find the parameters for the linear terms, then find the

higher order observables and their coe�cients with a nonlinear data set. At small amplitudes,

Eqs. 6.7 reduce to

⌃̇xy = �1

�
⌃xy + (G+

⌘

�
)�̇ (6.11a)

⌃̇yy = �1

�
⌃yy. (6.11b)

Notably, the equation for ⌃yy can be solved using the initial condition ⌃yy(t = 0) = 1 to find

⌃yy = e
� t

� . (6.12)

Since we are considering data at longer time scales t >> 0, Eq. 6.12 reduces to zero and the

evolution for ⌃yy becomes trivial. We subsequently retrieve the linear Maxwell model

⌃n+1
xy =

⇣
1� �t

�

⌘
⌃n

xy +G�̇
n (6.13)

for the nRP equations at small strain rate amplitudes, to which we apply rheoKIC. Setting

� = [⌃xy, �̇], and the experimental parameters as ! = 10�2 and �̇ = 10�2, we find the

coe�cients for ⌃xy and �̇ with errors of 0.0015% and 0.02% respectively.

After computing �̃ and G̃ as in Eq. 4.14, we subtract the linear terms from the higher order

data via
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⌃0
xy ! ⌃0

xy �
⇣
1� �t

�̃

⌘
⌃xy ��tG̃�̇ (6.14a)

⌃0
yy ! ⌃0

yy �
⇣
1� �t

�̃

⌘
⌃yy (6.14b)

,

where the presence of an apostrophe indicates the data matrices of snapshots 2, . . . , T and the

absence indicates the data matrices of snapshots 1, . . . , T � 1. The equations we intend to

reconstruct using rheoKIC once the linear terms have been successfully removed are the nRP

equations containing only the higher order terms,

⌃0
xy = �̇⌃yy �

2

3G
(1 + �)�̇⌃2

xy (6.15a)

⌃0
yy = �2

3
�̇⌃xy �

2

3G
(1 + �)�̇⌃xy⌃yy. (6.15b)

Fig. 6.7 shows the predicted values for the quadratic and cubic observables once a second

simulation is carried out using ! = 1
�̃
and �̇0 = 1, as the results in the previous chapter have

shown these are suitable choices for the second round of the sequential method. The sets of

candidate observables are full rank (�xy = 9 and �yy = 8) for the second pass of the method.

We see that we have good accuracy for the ⌃yy coe�cients, while the ⌃xy coe�cients are

slightly less accurate. This is due to the influence of spurious higher order observables rather

than an issue with the sequential method itself: if only the correct observables �̇⌃yy and �̇⌃2
xy

are provided, we retrieve all coe�cients with excellent accuracy.
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Figure 6.7: Predicted (red crosses) versus correct (blue circles) coe�cients when applying
sequential rheoKIC to data representing an nRP fluid. The black dashed line is located at
10�1.

We can also see in Fig. 6.7 that there is a separation in the magnitudes of the observable co-

e�cients, indicated by a dashed black line at 10�1. In Chapter 4, we looked at removing the

quadratic observables due to their small coe�cients and rerunning the analysis on the subse-

quent reduced �. Here, we may need to choose di↵erent thresholds for each stress evolution

equation based on the relative magnitudes of the coe�cients. Using 10�1 as our threshold as a

first pass, we reduce the number of observables to 5 for both ⌃xy and ⌃yy, although the actual

terms themselves are di↵erent in each equation.

The results of re-applying the second stage of rheoKIC to only the observables above the

threshold are shown in Fig. 6.8. For ⌃yy we have lost accuracy in predicting the coe�cient for

�̇⌃xy⌃yy and all of the coe�cients are of a very similar size, ranging between 0.6 and 1. It is

unlikely that someone would reduce �yy further based on these results. For ⌃xy, we can see that

the next logical step would be to discard the ⌃xy⌃yy and �̇⌃2
yy observables. The consequences

of iterating the thresholding step using the threshold shown in Fig. 6.8 are laid out in Fig. 6.9.

We eventually identify the correct observables and predict their coe�cients to within 2% error.
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Figure 6.8: Predicted (red crosses) versus correct (blue circles) coe�cients when the second
step of sequential has been applied using only the observables with coe�cients above the black
dashed line in Fig 6.7.

Figure 6.9: Predicted (red crosses) versus correct (blue circles) coe�cients from an application
of rheoKIC where the results in the top row are as in Fig. 6.8, then rheoKIC is iteratively
applied while the candidate observables for ⌃xy are removed based on the thresholds shown by
the dashed lines.

The reconstructions for both equations from Fig. 6.8 and Fig. 6.9 are laid out in Table 6.1. The

accuracy for the linear terms in both equations is very good due to the initial linear step. While
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we have managed to reconstruct the equation for ⌃xy very well, we have significant errors in

both the observables and their coe�cients for ⌃yy. It is also possible that, given a data set with

di↵erent values for the experimental or fluid parameters, the accuracy of the final result might

be entirely di↵erent. It is clear that iteratively removing observables based on their coe�cients

is not going to be universally successful here, despite it being essentially an analogue version

of the sequentially-thresholded least squares method used in SINDy and its extensions [124].

⌃̇xy

Correct �1.000⌃xy + 1.000�̇ + 1.000�̇⌃yy � 0.933�̇⌃2
xy

Predicted �1.000⌃xy + 1.000�̇ + 0.973�̇⌃yy � 0.964�̇⌃2
xy

⌃̇yy

Correct �1.000⌃yy � 0.667�̇⌃xy � 0.933�̇⌃xy⌃yy

Predicted �1.000⌃yy � 0.669�̇⌃xy � 0.804�̇⌃xy⌃yy � 0.598⌃2
yy + 0.933⌃3

yy � 0.767⌃2
xy⌃yy

Table 6.1: Final reconstructed equations for ⌃̇xy and ⌃̇yy when applying rheoKIC sequentially,
then reducing the set of candidate observables based on the coe�cients from the pseudo inverse
step. � = G = 1, � = 0.4.

6.3.1 Combined data sets with sequential and thresholded analysis

In the previous chapter, we tested a combination of the three tools we have developed for ro-

bustly identifying the constitutive equations: using combined data sets to improve the ability

to locate the correct higher order observables; extracting approximations for the linear observ-

ables first with high accuracy by applying rheoKIC sequentially; and applying a SINDy-inspired

‘thresholded’ technique to remove from consideration any observables whose coe�cients are

relatively small compared to the others. We now have significantly more quadratic and cu-

bic observables that need to be removed and the combinations of these tools requires further

investigation.

Based on the results we have been building up over this chapter and those preceding it, we

propose the following steps for reconstructing the constitutive law using oscillatory data:
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1. Produce a data set within the linear viscoelastic regime and with low !.

2. Use this data set to extract the approximated coe�cients G̃ and �̃ for the linear observ-

ables that must be present in the constitutive law.

3. Produce multiple data sets where ! = 1/�̃ and �̇0 is high enough to induce a nonlinear

stress response and concatenate them.

4. Use Eq. 6.14 on this data to remove the impact of the linear observables.

5. Apply rheoKIC to this data to retrieve first approximations to the coe�cients for the

higher order observables.

6. If any coe�cients are significantly smaller than the others, use the thresholding tech-

nique to remove the corresponding observables from those under consideration and rerun

rheoKIC on the data set with the reduced �.

Within Step 6, we use the ‘rule of thumb’ that a distinction can be drawn between groups of

observables to keep and observables to discard if there is a gap larger than an order of magnitude

in size between them. The value of the threshold may therefore vary between each iteration as

the coe�cient predictions are updated rather than a fixed threshold being used for an entire

data set. Other metrics to determine the threshold location include the Akaike information

criterion and the Bayesian information criterion, which would be particularly well-suited to

cases where there are many more candidate observables than the number proposed here [128].

The results of this approach are shown in Fig. 6.10 where for Step 2 we used two data sets with

strain rate amplitudes �̇0 = 1 and �̇0 = 10.
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�xy �yy

Figure 6.10: Predicted (red crosses) versus correct (blue circles) coe�cients from an applica-
tion of rheoKIC using a combination of concatenated data sets, the sequential method, and
thresholding.

The reconstructed nRP equations are shown in Table. 6.2. The correct observables have been

isolated. Most coe�cients have been predicted with less than 1% error, and the maximum error

is 3% for the �̇⌃2
xy observable.
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⌃̇xy

Correct �1.000⌃xy + 1.000�̇ + 1.000�̇⌃yy � 0.933�̇⌃2
xy

Predicted �1.000⌃xy + 1.000�̇ + 0.982�̇⌃yy � 0.961�̇⌃2
xy

⌃̇yy

Correct �1.000⌃yy � 0.667�̇⌃xy � 0.933�̇⌃xy⌃yy

Predicted �1.000⌃yy � 0.669�̇⌃xy � 0.938�̇⌃xy⌃yy

Table 6.2: Final reconstructed equations from the last thresholding step in Fig. 6.10.

These results were found using data from three oscillatory data sets, one in the linear viscoelastic

regime for the first sequential step and two from the nonlinear viscoelastic regime to find

the higher order terms. The steps outlined above have narrowed down the decisions to be

made somewhat, but it is worth bearing in mind that there are still many moving parts to

consider when combining all of the techniques we have developed to correctly identify a fluid’s

constitutive law. Nevertheless, this is a drastic improvement in results in comparison to those

at the beginning of the chapter.

6.4 MAPS data

Finally, we investigate whether rheoKIC applied to this highly nonlinear system of constitutive

equations can be streamlined by using data that is inherently more complex. As described in

Chapter 5, we replicate data from the MAPS protocol by setting the strain rate according to

�̇(t) = �0!0

3X

j=1

nj cos (nj!0t+ ↵j), (6.16)

and choosing ↵j = 0 8j, !0 = 1 and nj = [5, 6, 9]. As in the previous chapter, the time

step size is set such that there are 512 measurements for the fastest frequency, while we take

measurements for the length for the slowest frequency to ensure that all the frequencies can be



6.4. MAPS data 141

fully observed. We use data after 20 periods have elapsed to ensure that the data is stationary.

·� = 10�2 ·� = 10�1

·� = 1 ·� = 10

Figure 6.11: Predicted (red crosses) versus correct (blue circles) coe�cients from an application
of rheoKIC on MAPS data where nj = [5, 6, 9].

Fig. 6.11 shows the results for di↵erent values of �̇0. In contrast to the previous sections, we

do not employ data from a small amplitude simulation to find the linear terms and instead use

data from only one simulation to find the terms at every order. As expected, the smallest values

of �̇0 produces less accurate predictions for the higher order observables as they are less well

represented in the data. The coe�cients are all identified well when �̇0 � 1. Some of the higher

order observables, such as �̈ for the ⌃xy case and �̇
2 for the ⌃yy case, can be easily seen as

unnecessary for reconstructing the data, while others cannot be separated from the observables

we know that we need.
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We focus on the data set from the �̇0 = 1 MAPS simulation since it is suitably nonlinear to

find all the observables. We iteratively apply rheoKIC while removing observables from �xy

and �yy with much smaller coe�cients relative to others in the set. The results are shown in

Fig. 6.12.

�xy �yy

Figure 6.12: Predicted (red crosses) versus correct (blue circles) coe�cients from an application
of rheoKIC where the results in the top row are as in Fig. 6.11 for �̇0 = 1, then rheoKIC is
iteratively applied with reduced numbers of observables.

We see that for both the ⌃yy and ⌃xy cases, we require three rounds of thresholding for all

incorrect observables to be discarded. At each iteration there is always a clear separation of the

coe�cients into two groups based on their sizes, causing a straightforward decision for where

the threshold should be located. The corresponding reconstructed constitutive laws for the

final round of thresholding are shown in Table 6.3, with all coe�cients having < 1% error.
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⌃̇xy

Correct �1.000⌃xy + 1.000�̇ + 1.000�̇⌃yy � 0.933�̇⌃2
xy

Predicted �0.999⌃xy + 0.998�̇ + 0.992�̇⌃yy � 0.937�̇⌃2
xy

⌃̇yy

Correct �1.000⌃yy � 0.667�̇⌃xy � 0.933�̇⌃xy⌃yy

Predicted �0.999⌃yy � 0.670�̇⌃xy � 0.941�̇⌃xy⌃yy

Table 6.3: Final reconstructed equations for ⌃̇xy and ⌃̇yy when applying rheoKIC to a single
MAPS data set, then reducing the set of candidate observables based on the coe�cients from
the pseudo inverse step. � = G = 1, � = 0.4, [!1, !2, !3] = [5, 6, 9].

6.5 Conclusions

Increasing the complexity of our target constitutive law with respect to both the number of

equations and the number of higher order terms naturally causes our approach for reconstructing

the law to increase in complexity. The number of terms that could possibly be included in the

equations increases to twenty in total, and as such there is a higher possibility that we may

overfit our solution to the data available.

We first found that terms involving the solvent viscosity had coe�cients multiple orders of

magnitude smaller than those of the other terms, meaning that, without incredibly well time-

resolved data, it would be virtually impossible to separate these signals from the noise of other

candidate terms which should be discarded. Assuming that the viscosity is already known or

so small as to be negligible on the impact of the constitutive equations, we started the analysis

by applying a ‘naive’ approach where all possible candidate observables were supplied simul-

taneously. As expected, the increase in the number of candidate observables caused multiple

false positives to be present.

From here, we followed the same template as in Chapter 5 to explore various methods to break

down the set of observables to more e↵ectively isolate the subset of correct observables we
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knew we wanted and to prevent overfitting. Combining data sets produced accurate predic-

tions for the coe�cients of the correct observables but still erroneously indicated that some of

the unnecessary observables should be included. We showed how using data from the linear

viscoelastic regime reduced the nRP equations to the linear Maxwell model, where we can pro-

duce excellent accuracy for the linear coe�cient terms as rheoKIC can be reduced to DMDc.

Using the ‘sequential’ approach to then extract the higher order term produced good accuracy

for the coe�cient we hoped to find, but we were unable to remove the observables we needed

to discard. The ‘thresholded’ approach, informed by the sequentially-thresholded least-squares

method used within SINDy-type methods [124], successfully isolated the correct observables in

some cases, but there were other cases where the incorrect observables were saved and correct

observables were discarded. Using a combination of all three techniques - combined data sets,

sequential analysis, and thresholding - required three data sets in total and allowed us to find

exactly the correct observables and the coe�cients to 2% error.

Finally, we compared these results to those using data emulating that from a MAPS experiment.

By choosing a data set with strain rate amplitude high enough to for the data to definitely

exist in the nonlinear viscoelastic regime, but not so high that the predictions for the linear

observables did not degrade, we were able to reconstruct the exact terms from the constitutive

law with < 1% error.
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mogeneity

When carrying out a rheometry experiment, an equation for the input strain or strain rate is

inputted to the rheometer and the raw data of the stress response is recorded. Built-in software

from the rheometer manufacturers can be used to instantly convert this raw data to produce

common measurements such as the dynamic viscosity of the data, or the storage and loss moduli

if the experiment is within the linear viscoelastic regime [55]. An important assumption made

implicitly throughout this form of analysis is that the deformation is a�ne: there is no spatial

variation in the strain rate. This assumption, along with the fluid being translationally or

rotationally invariant, means that a measurement at the wall of the rheometer at each time

step is su�cient to characterise the stress response of the fluid, and this is what is used during

traditional rheology. In this chapter, we will explore how rheoKIC is able to incorporate non-

a�ne data and its subsequent e↵ects on the constitutive law of the fluid. We will investigate

this by using data from simulations that exhibit shear banding behaviour. We will compare

how rheoKIC performs using data just from the rheometer wall, as we have assumed to be the

case in the previous chapters, and then data from each spatial region with di↵erent dynamics.

Lastly, we show how rheoKIC represents data with spatially varying dynamics in the observable

coe�cients that it produces.

Advances in rheometry have allowed for the expansion of measurements to two and even

three dimensions. Particle image velocimetry (PIV) [144] and particle tracking velocimetry

(PTV) [145] techniques involve adding tracer particles to the fluid and tracking either their

145
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movement or displacement during the experiment with high-frequency cameras [146], from

which the trajectories of the particles are interpolated to recreate the dynamics for the entire

fluid. Care must be taken during this process that the number of particles isn’t enough to alter

the fluid’s microstructure, and the particles must be visible to the type of camera used to take

the images. Alternative, less intrusive techniques include ultrasound imaging [147], magnetic

resonance imaging (MRI), and nuclear magnetic resonance (NMR) imaging [148].

The ability for an experiment to be visualised in multiple dimensions has confirmed the existence

of a phenomenon known as ‘shear banding’ [149]; a spatial localisation of the fluid’s deformation

under a critically high applied stress or strain rate whereby multiple (usually assumed to be

two, although three or more have also been observed [150]) regions of the fluid exhibit di↵erent

apparent viscosities, as illustrated in Fig. 7.1. The region l determines the width of the interface

between the two larger banding regions where di↵usion may occur, and prevents discontinuities

of the spatial gradient where the bands coincide [151,152].

·̄�

·�

·̄�

·�1

·�2

l
L

L1

L2

Figure 7.1: Illustration of the shear banding phenomenon in an oscillatory cell. (left) Homoge-
neous flow. (right) shear banding has separated the fluid’s strain local rate into two regions in
the gapwise direction.

The applied strain rate is typically described as being decomposed according to the ‘lever rule’

¯̇� = f �̇1 + (1� f)�̇2, (7.1)
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where f is the volume fraction occupied by the upper band [148] and �̇1 and �̇2 are the local

shear rates for the upper and lower bands, respectively.

Shear banding can occur as gradient banding, the type presented here where the regions lie

along the direction of the flow gradient, and also as vorticity banding, where the regions lie

in the vorticity direction (facing out of the page in Fig. 7.1). Both types may appear only

transiently during the initial start-up of the flow [153] or as steady-state banding that persists

once the initial e↵ects of start-up have decayed. We focus exclusively on the gradient banding,

assuming that the fluid is invariant in the vorticity direction, and on steady-state banding for

stationary data.

Shear banding was first discovered in the study of metals [154] and soils [155], then was later

found to exist in wide range of complex fluids, encompassing foams [156], entangled DNA

solutions [157], and polymer solutions [9]. We will be focusing on shear banding behaviour

in wormlike micellar solutions [158]. These are fluids containing surfactant molecules at high

enough concentrations that they aggregate to form semi-flexible, rod-like chains, which are then

capable of breaking, entangling, and recombining under shear [159]. If the applied shear rate

is high enough, shear banding occurs due to a region near the moving wall containing micelles

that are short and/or aligned with the wall having a higher shear rate [11], while the rest of

the fluid containing the unbroken and unaligned micelles moves at a slower rate [160,161].

It is possible to observe theoretically when shear banding would take place by examining the

stress response under a given constitutive law against the applied strain rate - its ‘flow curve’

or ‘constitutive curve’ - and noting a region where the stress is nonmonotonic, an illustration

of which is shown in Fig. 7.2. This region is found due to enforcing homogeneity of the shear

rate in simulations and is not seen with experimental data; instead, a region of flat or gradually

increasing stress can be observed [149]. The range of values �̇1 < �̇ < �̇2 over which the

stress response is nonmonotonic is known as the ‘stress plateau’ and indicates where the fluid

has become unstable and is no longer spatially homogeneous [162]. For the case of wormlike

micellar solutions, the width of the high shear rate region then increases linearly with the shear

rate past �̇1 [163]. Spatial homogeneity is restored once �̇ > �̇2 as the behaviour of the high
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shear rate band has expanded to fill the entire gap.

·�

�

�p

·�1 ·�2

Stress plateau

Figure 7.2: Example flow curve for a constitutive law demonstrating shear banding. The dotted
line illustrates the theoretical stress response produced by constitutive law with constrained
spatial homogeneity, while the dashed line illustrates the type of stress response recorded from
experiments.

Pushing the strain rate further past �̇2 leads to the appearance of Taylor vortices at the interface

between the bands and eventually lead to ‘elasto-inertial turbulence’, a form of turbulent fluid

behaviour that can exist even within the Stokes regime due to the presence of nonlinearities in

the fluid’s stress-strain relationship [164–167]. While this domain is beyond the scope of the

thesis, applications of rheoKIC to data from this regime would be a highly interesting topic for

future investigation.

7.1 Inducing shear banding

We follow the procedure given by Carter et al. [49, 168] for establishing the nRP equations in

the Stokes regime in a form that allows for shear banding to occur. Among other results, this

paper presented the parameter space for large amplitude oscillatory shear simulations of the

Rolie-Poly model where shear banding behaviour can be observed, and analysed the causes of

its onset. In this chapter we will continue to use the non-stretching Rolie-Poly (nRP) model



7.1. Inducing shear banding 149

first described in Chapter 6 for our analysis. The nRP model is widely used for the modelling

of both polymeric and wormlike micellar solutions, of which both have been shown capable of

producing shear banding [150,151,165].

We envision the fluid in two dimensions only, existing between places parallel plates that can

be considered infinitely long separated by a distance L, as shown in Fig. 7.3. We assume the

top plate is being moved under an oscillatory strain scenario with velocity u = (¯̇�(t)L, 0, 0),

where ¯̇�(t) = �̇0 cos (!t), and that the system is invariant in the flow and vorticity directions.

We use the over-bar to indicate the mean across the channel.

y

xy = 0

y = L
·̄�(t) = ·�0 cos(�t)

Figure 7.3: Illustration of an oscillatory shear experimental protocol in two dimensions where
the fluid response (dashed line) is assumed to be spatially homogeneous.

The equations for the nRP model must be modified slightly to allow for changes in the local

strain rate:

⌃ = � + 2⌘e� pI, (7.2a)

� = G(W � I), (7.2b)

@Wxy
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= ¯̇�

h
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@y2
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The additional final terms in Eqs. 7.2c-d are stress di↵usion terms [169] that allows for variation

in the shear rate, and thus the fluid velocity, across the width of the channel. Setting our

interface region to have width l = 2 · 10�2
L =

p
D�, we find a non-zero value for the di↵usion

constant of D = (l�)2 = 0.0004 that is necessary to model the strongly inhomogeneous flow

between the banded regions [170].

An assumption that the field is incompressible determines the pressure field in Eq. 7.2a. We

assume that there is no slip and no permeation for the fluid velocity to enforce the boundary

conditions at the systems’ walls, and that there is also zero spatial gradient of the conformation

tensor

@Wxy

@y
=

@Wyy

@y
= 0. (7.3)

When simulating the stress response for the nRP model, the assumption that we are in the

Stokes regime produces a divergence-free condition on the stress,

r · ⌃ = 0. (7.4)

This means there will be no spatial variation of ⌃xy overall in the fluid. However, allowing

spatial variations within each of the components of ⌃xy, �xy and �̇, is necessary for shear

banding to be possible. Taking the spatial gradient of Eq. 7.2a and rearranging, we have that

@⌃xy

@y
= G

@Wxy

@y
+ ⌘

@�̇

@y
= 0 �! GWxy + ⌘�̇ = K(t) (7.5)

for the o↵-diagonal term, whereK(t) allows for the initial conditions to be enforced. Integrating

over the width of the gap L,

G

L

Z L

0

Wxydy +
⌘

L

Z L

0

�̇dy = GW̄xy(t) + ⌘¯̇�(t) = K(t) (7.6)
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and, using Eq. 7.5 (since the initial conditions hold across both equations),

GWxy(y, t) + ⌘�̇(y, t) = GW̄xy(t) + ⌘¯̇�(t). (7.7)

We use the over-bar on Wxy to separate the average response across the rheometer gap from

the inhomogeneous response. This leads to our final equation for the local shear rate

�̇(y, t) = ¯̇�(t) +
G

⌘
[W̄xy(t)�Wxy(y, t)]. (7.8)

Grouping the spatial and non-spatial terms together, Eq. 7.2(c-d) can be written as

@tWxy = Rxy(Wxy,Wyy,
¯̇�) +D@

2
yWxy, (7.9a)

@tWyy = Ryy(Wxy,Wyy,
¯̇�) +D@

2
yWyy. (7.9b)

We discretise L into J grid points spaced �y apart, j = 0,�y, . . . , L, and simplify the notation

such that W (y = j, t) = W
t
j . To discretise the transport equation, the nonlinear term is

discretised in time using the forward Euler method, while the linear di↵usive term is treated

by combining the the trapezoidal rule for the time discretisation with a second-order central

di↵erencing for the spatial discretisation (the Crank-Nicholson method) [171]. Each of the

equations for W can then be approximated as

(1 + 2↵)W t+1
j � ↵(W t+1

j+1 +W
t+1
j�1) = (1� 2↵)W t

j + ↵(W t
j+1 +W

t
j�1) +�tR

t
j.

(7.10)

where ↵ = D�t
2(�y)2 . Note that this causes Eq. 7.10 to reduce to the Euler approximation for the

time derivative when D = 0. Eq. 7.10 can be written in matrix form as



152 Chapter 7. Incorporating spatial inhomogeneity

W
t+1 = [I � ↵CN ]

�1{[I + ↵CN ]W
t +�tR

t}, (7.11)

where

CN =

2

666666666666664

�2 2 0 0 . . . 0

1 �2 1 0 0 . . . 0

. . . . . . . . .

1 �2 1

0 0 0 2 �2

3

777777777777775

2 RJ⇥J
. (7.12)

The di↵erent o↵-diagonal terms on the first and last rows stem from the divergence-free bound-

ary conditions on the plates [168, 171] described in Eq. 7.3, which enforce the values of the

phantom points at j = 0 and j = J + 1 to be equal to the values at j = 2 and j = J � 1.

We apply an initial spatial heterogeneity to the system at t = 0 in a way that mimics the

curvature of a Taylor-Couette cell rheometer [49] to introduce an instability to the system,

⌃xy(y, t = 0) ! ⌃xy(y, t = 0)(1 + qh(y)). (7.13)

where h(y) = cos ( ⇡Ly) and q = 10�4. The total stress is then

2

64
⌃xy

⌃yy

3

75 = G

2

64
Wxy

Wyy � 1

3

75+ ⌘

2

64
�̇

0

3

75 (7.14)

such that initially
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2
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75 (1 + qh(y)). (7.15)

The initial values for the conformation tensor can then be found by substituting the initial

values for ⌃,
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Once the next values for Wxy and Wyy are found with Eq. 7.10, the total stress is updated

according to Eq. 7.2(a-b)

⌃xy = GWxy + ⌘¯̇�, (7.17a)

⌃yy = G(Wyy � 1). (7.17b)

Finally, the local force balance is updated according to Eq. 7.8 and the velocity field at each

time step is found by numerically integrating �̇ across the width of the gap while enforcing the

boundary conditions for the velocity at the rheometer walls. It is important to note that the

no-slip condition for u is a fundamental assumption throughout these calculations. There has

been significant discussions regarding the e↵ect of wall slip on shear banding and whether it is

an origin for shear banding in itself [172]. The presence of wall slip can appear to a↵ect the

validity of the lever rule presented in Eq. 7.1 [173], and has been shown to alter the values for �̇

at which the high shear rate band appears [174]. Care would therefore need to be taken when

directly comparing this simulation data to experimental data when wall slip may be occurring.
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Figure 7.4: (l-r) Stress vs. strain rate, stress vs. strain, and velocity profiles for the nRP
model in both the spatially homogeneous and inhomogeneous cases. Top row: � = 0.4, �0 = 1,
! = 100.5. Bottom row: � = 1, ! = 1, �0 = 0.1 · 100.75. J = 512 when � = 0.4 and J = 1024
when � = 1. The symbols in the stress vs. strain curves correspond to the points in time where
the velocity profiles have been plotted.

Fig. 7.4 shows the comparison between the stress-strain and stress-strain rate curves for the

nRP model with and without spatial heterogeneity once 20 periods have elapsed, validating

that our simulation matches that originally presented by Carter et al [49]. We also confirm

that the spatially homogeneous results align with those presented in Chapter 6 by finding that

the di↵erence between the data sets is O(10�12).

In the following, we will present results using data sets simulating two di↵erent fluids by altering

the value of the fluid parameter � to show how this causes structural changes in the shear

banding behaviour. This is exemplified in the velocity profiles also shown in Fig. 7.4: while

the di↵erence between the stress-strain curves is much more pronounced when � = 0.4, the

high shear rate region only spans a very thin slice (< 1%) of the rheometer gap. Meanwhile,

a more modest di↵erence between the stress-strain and stress-strain rate curves for the � = 1

case results in a high shear rate region of approximately f = 0.15.
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7.2 Methodology for interpreting spatial data

One reason for applying techniques related to Koopman operator theory to data recorded from

shear banding scenarios is that they are built for dealing with large and multi-dimensional data

sets. The methodology presented in Chapter 3 can therefore be generalised to cases where

J > 1 and there are multiple measurements of the stress response in each snapshot. We assume

here that J is the same for each observable, but in theory rheoKIC is capable of dealing with

di↵erent numbers of measurement points provided that the number and location of those points

remains consistent across the data set [81]. The measurements from each snapshot are stacked

to form vectors so that the total recorded data is a J⇥T matrix. We claim that the relationship

between the input candidate observables data and the output value for the elements of the stress

tensor can be written in matrix form as

⌃
0 = C�, (7.18)

where ⌃
0 = ⌃0

xy or ⌃0
yy 2 RJ⇥T�1, C 2 RJ⇥KJ , � 2 RKJ⇥T�1, and K is the number of

candidate observables. We assume that ⌃xy and ⌃yy are being treated separately using disjoint

sets of observables as in the previous chapters. We may take the SVD of � and truncate it to

p  KJ modes,

� ⇡ ŨS̃Ṽ
T
, (7.19)

Ũ 2 RKJ⇥p, S̃ 2 Rp⇥p, and Ṽ
T 2 Rp⇥T�1. Using this SVD directly to apply the (potentially

truncated) pseudoinverse would give

C ⇡ C̃ = ⌃
0
ṼS̃

�1
Ũ

T 2 RJ⇥KJ
, (7.20)

a rank p approximation for C. At this point C̃ is di�cult to compare with the scalar coe�cients
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in the original constitutive law, as the size of both dimensions of C̃ depend on the number of data

points at each time step J . We would ideally like our predicted coe�cients to be independent of

the number of measurements we have available. Firstly, we can follow the same route as in the

DMDc method [107] and reduce the output space by computing the SVD of ⌃0 and truncating

to r modes, ⌃0 ⇡ ÛŜV̂
T
where r  J and r < p. The reduced-order approximation of C is

then

Ĉ = Û
T
C̃ = Û

T
⌃

0
ṼS̃

�1
Ũ

T 2 Rr⇥KJ
. (7.21)

The updated version of Eq. 7.18 taking this projection into account is

Û
T
⌃

0 = ⌃̂
0
= Ĉ� 2 Rr⇥T�1

. (7.22)

The number of rows in Ĉ now depends on the number of spatial modes in ⌃̂
0
, while there are

J columns in Ĉ for each of the K candidate observables,

Ĉ =

2

66664

. . . . . . . . . . . .

ĉ1,1 ĉ1,2 . . . ĉ1,J ĉ2,1 ĉ2,2 . . . ĉ2,J . . . ĉK,1 ĉK,2 . . . ĉK,J

. . . . . . . . . . . .

3

77775
2 Rr⇥KJ

. (7.23)

To remove the dependence on the number of measurements J from the number of columns

in Ĉk, we project each of the candidate observables �k onto their own truncated left-singular

vectors Ŭk,

�̆k = Ŭ
T

k �k 2 RJ⇥qk (7.24)

where qk is the number of spatial modes in the k
th observable. Eq. 7.22 can be updated to

include the projections of the input data as
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⌃̂
0
=

KX

k=1

˘̂
CkŬ

T

k �k. (7.25)

We are required to to use a summation in contrast to Eq. 7.18 and Eq. 7.22 because the

truncated SVD of the entire set of observables � is not necessarily equal to a matrix formed

by concatenating the truncated SVDs from each individual observable �k. From the properties

of the SVD,

⌃̂
0
=

KX

k=1

˘̂
CkŬ

T

k �k (7.26a)

⇡
KX

k=1

ĈkŬkŬ
T

k �k (7.26b)

⇡
KX

k=1

ĈkŬkŬ
T

k ŬkS̆kV̆
T

k (7.26c)

=
KX

k=1

ĈkŬkS̆kV̆
T

k (7.26d)

=
KX

k=1

ĈkŬk�̆k. (7.26e)

At this point, it is possible to e↵ectively enforce that the observable coe�cients are scalar by

solving Eq. 7.26 as a matrix-vector problem for a vector ĉk. The resulting generalised coe�cient

for each observable k may be computed via

ĉk =

2

66664

Û
T

1⌃
0(Û

T

1 Ŭ1:qkŬ
T

1:qk
�k)†

...

Û
T

r ⌃
0(Û

T

r Ŭ1:qkŬ
T

1:qk
�k)†

3

77775
2 Rr⇥1

, (7.27)

where the † symbol denotes the Moore-Penrose pseudoinverse. After reversing any rescaling

carried out on the data, we are left with a generalised, one-dimensional coe�cient approximation

for each observable.
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We will show in Sec. 7.4 that the entries of these coe�cients align remarkably well with the

coe�cients from the underlying, homogeneous equation while only using the first singular mode

from the spatial measurements of the output data. We believe that this could be a useful

approach for extracting an underlying a�ne constitutive law from a data set where there are

multiple spatial measurements per time step available.

While the outputs of the approach above appear to be successful, we would additionally like to

see if it is possible for both dimensions of our generalised coe�cients to be dependent on the

amount of spatial detail in the data. We do this by including the instance of Ŭk in Eq. 7.26

within our definition of ˘̂
Ck:

˘̂
Ck = ĈkŬk = Û

T
C̃kŬk = Û

T
⌃

0
ṼS̃

�1
Ũ

T

k Ŭk 2 Rr⇥qk (7.28)

where Ũ
T

k only contains the columns of Ũ
T
related to the kth observable. Care must be taken to

ensure that the operations are performed in an order such that the dimensions of the matrices

in Eq. 7.28 are still aligned. The generalised coe�cient for an observable with qk spatial modes,

being used to reconstruct output data ⌃
0 with r spatial modes, will then have the form

˘̂
Ck =

2

66666664
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Ũ
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T

2⌃
0
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k Ŭ2 . . . Û
T

2⌃
0
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77777775

2 Rr⇥qk . (7.29)

If the output data and the observable can be represented with a single spatial mode, then

r = qk = 1 and the approimated coe�cients will be scalars. If the data is spatially homogeneous,

then this coe�cient can be converted back to the original parameters in the constitutive law

identically to how we have done in previous chapters.

Spatial inhomogeneity is reflected in the dimensions and entries of ˘̂
Ck for each observable.
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Equally, if the kth candidate observable is not required then the entries in ˘̂
Ck will be very small

and should indicate that the observable can be removed during the thresholding process. On

the other hand, their construction means that they are significantly more complex to interpret

relative to the one-dimensional coe�cients ĉk described in Eq. 7.27.

7.2.1 Interpreting the generalised coe�cients

Returning to the theory behind the KIC method [20] originally described in Chapter 3, we are

seeking to represent the output data as a linear combination of the observables �k

⌃(t+�t, y) =
X

k

Lk[�k(t, y
0)](y) (7.30)

where Lk are the spatial linear operators corresponding to each observable. We write each of

the observables in terms of an orthonormal expansion

�k(t, y) =
X

qk

'
k
qk
(t)akqk(y) (7.31)

which separates the data into the product of spatially-dependent functions a
k
qk
(y) and time-

dependent functions '
k
qk
(t). The output of the system can similarly be written in its own

orthonormal basis

⌃(t+�t, y) =
X

n

�n(t+�t)bn(y). (7.32)

We wish to rewrite Eq. 7.30 in terms of the time-dependent functions �n(t + �t) defined in

Eq. 7.32, as this will restrict all possible spatial dependencies to within the function evolving
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the observables. Using the fact that the bn(y) are orthonormal,

�n(t+�t) = hbn(y),⌃(t+�t, y)i (7.33a)

! �n(t+�t) = hbn(y),
X

k

Lk[�k(t, y)]i, (7.33b)

where hf, gi =
R L

0 f(y)g(y)dy is the standard vector inner product and we assume that the

functions are continuous and square-integrable within [0, L]. Substituting using Eq. 7.31 and

rearranging,

�n(t+�t) =
X

k

X

qk

'
k
qk
(t)hbn(y),Lk[a

k
qk
(y0)](y)i. (7.34)

Since the '
k
qk
(t) represent purely the temporal aspect for each of the observables, Eq. 7.34 is

a summation over the observables, where the spatial linear operator has been applied to its

spatial modes, and then these results have been projected onto the n
th spatial mode of the

output data - in other words, it is the continuous form for the generalised coe�cients described

in Eq. 7.25 and Eq. 7.29 where the spatial linear operator Lk is represented by C̃k.

Meanwhile, the underlying constitutive equations for the cases we are looking at take the general

form

@⌃(t, y)

@t
= �1

�
⌃(t, y) +D

@
2⌃(t, y)

@y2
+
X

k

↵k�k(t, y) (7.35)

for both ⌃ = ⌃xy and ⌃ = ⌃yy, where ↵k are the (scalar) material coe�cients in the constitutive

law. Replacing each of the terms with their respective spatiotemporal decompositions,
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X

n

@�n(t+�t)

@t
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X

n

�n(t)bn(y) +
X

n

D�n(t)
@
2
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@y2
+
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k
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X

qk

'
k
qk
(t)akqk(y).

(7.36)

Taking the inner product with bn(y),

X

n

@�n(t+�t)

@t
=
X

n

"
� 1

�
+Dh@

2
bn(y)

@y2
, bn(y)i

#
�n(t) +

X

k

↵k

X

qk

'
k
qk
(t)
X

n

hakqk(y), bn(y)i.

(7.37)

For the first term in Eq. 7.37, we compute the inner product using integration by parts and

use the fact that the flow is divergence-free at the domain boundaries to find

h@
2
b

@y2
, b(y)i = �

Z L

0

��@b
@y

��2@y. (7.38)

This is the magnitude of the spatial gradient across the rheometer and can be computed numer-

ically using the data we have available, allowing us to directly extract our predicted coe�cient

for ⌃xy and ⌃yy from the first term in Eq. 7.37. Substituting Eq. 7.38 into Eq. 7.37, we retrieve

X

n

@�n(t+�t)

@t
=

"
� 1

�
�D

Z L

0

��@b
@y

��2@y
#
X

n

�n(t) +
X

k

↵k

X

qk

'
k
qk
(t)
X

n

hakqk(y), bn(y)i.

(7.39)

The resulting linear operator for the ⌃ data will be the identity matrix, scaled by �1

�
and minus

the magnitude of the spatial gradient. The remaining terms in the equation can be written as
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X

k

↵k

X

qk

'
k
qk
(t)
X

n

hakqk(y), bn(y)i (7.40a)

= ↵1

X

q1

'
1
q1(t)

X

n

ha1q1(y), bn(y)i+ · · ·+ ↵K

X

qK

'
K
qK
(t)
X

n

haKqK (y), bn(y)i. (7.40b)

These terms describe the dynamics for all of the observables which are not directly evolved

by the equation, where the input space and output space for the data are no longer the same.

Writing the equations in this form does not take into account that some of the �k terms are

constructed using ⌃xy and ⌃yy, which means that they are also being evolved by the equation.

On the other hand, it allows us to write a discrete approximation for L which separates ↵k

from the inner product operations.

We will no longer be left with the identity matrix when we are computing the inner product

between the spatial modes a
k
qk
(y) and bn(y). However, since they both have unit length by

construction, their inner product can be thought of as a measurement of the correlation between

the spatial modes of the input data and the output data. From the properties of the SVD, the

a
k
qk
(y) have a hierarchy: the first entry is related to the rank-one approximation of its observable

and will contribute the most to the reconstruction of the left-hand side of Eq. 7.40, followed by

the second entry related to the rank-two approximation, and so on.

Comparing Eq. 7.40 and Eq. 7.34, we see that the assumption underlying this method is that,

for the n
th spatial mode of the output data,

X

k

X

qk

'
k
qk
(t)hbn(y),Lk[a

k
qk
(y0)](y)i ⇡

X

k

↵k

X

qk

'
k
qk
(t)hbn(y), akqk(y)i. (7.41)

In other words, we are attempting to write the linear operator acting on the spatial modes of

each observable as a matrix of ones scaled by the corresponding coe�cient from the spatially

homogeneous underlying equations. The generalised coe�cient vector ĉk described in Eq. 7.27

enforces this structure for the linear operator given in Eq. 7.41, which allows us to extract the

↵k from the inner product operations.
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Meanwhile, for the generalised coe�cient ˘̂
Ck described in Eq. 7.29, each entry instead contains

the J ⇥ J matrix ⌃
0
ṼS̃

�1
Ũ

T

k = C̃k. This acts as the linear operator on the retained spatial

modes of the observable, and cannot be extracted from the inner product. From Eq. 7.18 we can

see that, while C̃k will contain ↵k, it will also contain information regarding the spatiotemporal

evolution of the entire data set. In fact, as described in Chapter 3, this is the the section of the

approximated Koopman operator describing the nonlinear dynamics of the system with respect

to the kth observable. The generalised coe�cients ˘̂
Ck, while more di�cult to relate back to the

underlying material coe�cients ↵k, pave the way for future Koopman-type investigations on

the temporal evolution of the data.

7.2.2 Determining the number of modes to keep

An important decision to make at this juncture is how to determine the truncation point for

the spatial projections at a value which balances the accuracy and complexity of the resulting

model. We would like to accurately reflect the spatial inhomogeneity incurred when shear

banding is present, but choosing to retain all the information about every observable results

in a J ⇥ J matrix for each coe�cient. These matrices would be likely ill-conditioned if J is

large since we are only expecting at most two distinct regions for the dynamics of the fluid,

and larger matrices will be more di�cult to compare with the scalar coe�cients produced

during standard analysis when assuming spatial homogeneity. Using the Eckart-Young-Mirsky

theorem [83] first described in Chapter 3, we know that a truncation of the SVD to r will

produce the best possible rank r approximation of the data (with respect to the Frobenius

norm). We can determine how many modes to keep by computing

min
rR

Pr
i=1 siPR
i=1 si

� e, (7.42)

whereR is the rank of the data set, si is its ith singular value, and 0 < e  1 is a value determined

by the user. If we were applying this to a velocity vector, then e could be considered as the

amount of kinetic energy that we choose to retain when approximating the data.
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7.3 E↵ects of shear banding on rheoKIC

We will be considering data representing two di↵erent fluids, which require di↵erent experi-

mental parameters to produce shear banding behaviour:

1. G = � = 1, � = 0.4, ! =
p
10, �̇0 = 10.

2. G = � = 1, � = 1, ! = 10, �̇0 = 101.75.

To begin with we consider the following scenario: we have data from a fluid showing shear

banding behaviour, but we continue to characterise the fluid’s entire stress response from a

single data point at the rheometer wall opposite to that of the imposed shear. The coe�cients

for the output will therefore always be scalar, regardless of the number of spatial modes actually

required to represent the data.

For the data used to construct the shear rate observable applying exogenous input to the system,

we can maintain the typical assumption of an a�ne deformation and use the imposed shear ¯̇�,

or we can use the local shear rate �̇ at the same wall as where we collect the stress response

data. We will compare the output from rheoKIC using these di↵erent choices of data below.

As described in the previous chapters, when carrying out rheoKIC we first use data from a

low frequency, small strain rate amplitude simulation which will be spatially homogeneous to

pick out the coe�cients for the linear terms, then run frequency sweeps at higher strain rate

amplitudes to find approximations for the higher order observables. We use the parameter

space diagrams from Carter et al. as a guide [49] to choose �̇0 such that there are both

spatially homogeneous and inhomogeneous data sets as ! is varied. In agreement with their

results, both fluids demonstrate shear banding behaviour when ! = {100.5, 10} and are spatially

homogeneous when ! = {101.5, 100}.
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� = 0.4, � = 101.5

� = 1, � = 101.5 � = 1, � = 102

� = 0.4, � = 102

Figure 7.5: Predicted higher order coe�cients (red crosses) in comparison to the coe�cients
from the homogeneous nRP equations (blue circles) when ! = {100.5, 10}, the fluid is spatially
homogeneous, and stress data is only recorded at the rheometer wall. The results are the same
whether we use the imposed strain rate ¯̇� or the local strain rate to construct the �̇ observable.

For the spatially homogeneous cases ! = {101.5, 100}, as expected our results are virtually

identical when using either source of shear rate since the value of �̇ is spatially independent.

We show these results for both fluids in Fig. 7.5. We find good approximations of the co-

e�cients for the observables we know we need, and at least some of the other observables

have predicted coe�cients with significantly smaller magnitudes, making them ideal for the

thresholding process.
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� = 100.5, Applied strain rate � = 100.5, Local strain rate

� = 101, Local strain rate� = 101, Applied strain rate

Figure 7.6: Predicted higher order coe�cients (red crosses) and coe�cients from the homoge-
neous nRP equations (blue circles) for the � = 0.4 fluid when �̇0 = 10 and ! = [100.5, 10]. We
show the results when using the applied strain rate ¯̇� (left) and the local strain rate �̇ for the
shear rate observable.
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� = 100.5, Applied strain rate � = 100.5, Local strain rate

� = 101, Local strain rate� = 101, Applied strain rate

Figure 7.7: Predicted higher order coe�cients (red crosses) and coe�cients from the homoge-
neous nRP equations (blue circles) for the � = 1 fluid when �̇0 = 10 and ! = [100.5, 10]. We
show the results when using the applied strain rate (left) and the local strain rate for the �̇

observable.

In Fig. 7.6 and Fig. 7.7 we show the results from rheoKIC from using the shear banding data

! = {100.5, 10} when � = 0.4 and � = 1, respectively. When using the applied shear rate ¯̇�, we

see significant errors for our predicted coe�cients, in particular when predicting the coe�cients

for the ⌃xy evolution equation and when ! = 100.5. Once the local strain rate is used instead,

we find the same high level of accuracy for our coe�cients as in Fig. 7.5 where the data is

spatially homogeneous. We can choose to avoid handling spatial inhomogeneity if we have

access to to strain rate measurements at the same wall as the stress measurements since this

ensures that, if shear banding is present, we are using input and output data from the same
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shear banding regions with the same dynamics.

In Table 7.1 we present the reconstructed constitutive laws when combining the data for each

value of ! and using the local strain rate for the �̇ observable. We apply thresholding iteratively

to the results using the combined higher order data which is able to successfully identify the

correct observables in all cases. Most of the coe�cient errors are around 2% or less, with the

largest error being 8% for the �̇⌃xy⌃yy observable in the � = 0.4 case.

Correct, � = 0.4

⌃̇xy = �1.000⌃xy + 1.000�̇ + 1.000�̇⌃yy � 0.933�̇⌃2
xy

⌃̇yy = �1.000⌃yy � 0.667�̇⌃xy � 0.933�̇⌃xy⌃yy

Predicted, � = 0.4

⌃̇xy = �1.000⌃xy + 1.000�̇ + 0.993�̇⌃yy � 0.951�̇⌃2
xy

⌃̇yy = �1.000⌃yy � 0.677�̇⌃xy � 1.012�̇⌃xy⌃yy

Correct, � = 1

⌃̇xy = �1.000⌃xy + 1.000�̇ + 1.000�̇⌃yy � 1.333�̇⌃2
xy

⌃̇yy = �1.000⌃yy � 0.667�̇⌃xy � 1.333�̇⌃xy⌃yy

Predicted, � = 1

⌃̇xy �0.976⌃xy + 1.000�̇ + 0.999�̇⌃yy � 1.335�̇⌃2
xy

⌃̇yy �1.000⌃yy � 0.666�̇⌃xy � 1.332�̇⌃xy⌃yy

Table 7.1: Final reconstructed equations when using the combined data sets from the wall of
the rheometer, where the fluid within the rheometer may be experiencing shear banding.

Taking the SVD of the observables individually is unnecessary when there is only one data point

per snapshot: we would find the left singular vector to be a scalar value, and also equal to one

since the vectors are orthonormal by construction. If only one data point is available, evidence

for shear banding being present can be found by plotting the flow curve from a constant shear

scenario, as illustrated in Fig. 7.2, and determining whether the stress response plateaus or is

non-monotonic for a region of shear rates.
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y y

y

Figure 7.8: First spatial modes for ⌃0
xy, ⌃

0
yy, and u(y) for the � = 0.4 fluid when ! = 100.5 and

�̇0 = 101.75. (Left) The fluid is spatially homogeneous. (Right) The fluid has shear banding
behaviour, with inset zoomed in to the high shear banding region.

We can directly determine the level of spatial inhomogeneity when more data points per snap-

shot are available by looking at shape of the first left singular vectors of ⌃xy, ⌃yy, and the

velocity field u(y) computed across the width of the channel. In Fig. 7.8 we show these modes

from data both with and without shear banding. When there is no shear banding, as expected

we find straight lines for all the modes, indicating spatial homogeneity. Any spatial variation

without structure, perhaps due to measurement noise, would be contained within the higher

order modes. With shear banding, we see there that the high shear rate region near the wall

has been represented with each spatial mode, and the inset figure shows the shape of these

modes within this narrow layer. Analysing just the first spatial mode of this data, regardless of

the number of spatial measurements in total, could therefore be a useful guide for determining

whether any variation in the fluid response across the rheometer has an underlying structure.

7.3.1 Applying rheoKIC to each band separately

A key assumption behind the type of shear banding we have chosen to focus on is that there

are exactly two disparate regions with di↵erent dynamics, separated according to the lever
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rule given in Eq. 7.1. Previous work in the field of identifying the mechanisms behind shear

banding has in fact treated them as two entirely di↵erent fluids [175], while particle simulations

undergoing dynamics that result in shear banding have shown that it is possible to produce

di↵erent particle concentrations within two di↵erent regions of the system [176].

In this section we will apply rheoKIC to data collected from each of the two regions from a fluid

separately to see how their dynamics are reflected in the predicted coe�cients. We focus on

data from a simulation of a fluid where � = 1, ! = 10, and �̇ = 101.75. We take points recorded

from within each region, with some tolerance around the band interface so that any e↵ects from

the di↵usion region are not incorporated, and such that the data is adequately modelled with

a single spatial mode. This results in region L1 (the high shear rate band) being represented

by points 1 : 60, while the low shear rate band L2 is represented by points 100 : 512 from the

total of J = 512 measurements.

We then apply rheoKIC separately to each of these sets of points, using either the local shear

rate recorded at the same points as the stress data within each region or the applied shear

rate ¯̇�. Since we retain only one spatial mode for each observable and the output data, all the

approximated coe�cients will be scalar and so we are able to use the more complex generalised

coe�cient ˘̂
Ck without su↵ering from di�culties in interpretability.

Observable Correct L1, ¯̇� L1, �̇ L2, ¯̇� L2, �̇

�̇⌃yy 1.000 0.820 0.998 1.008 0.997

�̇⌃2
xy -1.333 -1.538 -1.335 -1.438 -1.340

�̇⌃yy -0.667 -0.760 -0.668 -1.005 -0.663

�̇⌃xy⌃yy -1.333 -1.484 -1.336 -2.261 -1.323

Table 7.2: Reconstructed constitutive laws using spatially inhomogeneous data where the di-
mensions of the coe�cients are enforced to be scalar.

Table 7.2 shows the coe�cients from our reconstructed constitutive laws for each region. We

find that using the local shear rate to construct the set of candidate observables is crucial for

extracting good approximations of the coe�cients for each observable. The predicted coe�-
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cients when using the local shear rate are consistent across both bands, while they can di↵er by

up to a factor of two when the imposed shear rate ¯̇� is used instead. We are able to determine

that the entire fluid can be modelled with a single constitutive law by using the local shear

rate when creating the candidate observables. RheoKIC applied to data from a fluid that has

developed di↵erent properties within each band, for example due to di↵ering particle concen-

trations within each region [176], would produce constitutive laws with di↵erent coe�cients

and potentially also di↵erent observables for each banded region.

7.4 Generalised coe�cients for shear banding data

We now look at how the coe�cients for the observables generalise when spatial measurements

spanning the entire rheometer channel are included within the data, to see how our method

generalises to include the e↵ects of multiple regions with di↵erent dynamics. We will focus on

data from the following two simulations:

1. ! = 100.5, �̇0 = 101.75, G = � = � = 1.

2. ! = 10, �̇0 = 101.75, G = � = � = 1.

The spatial modes we have retained for ⌃xy and ⌃yy using e = 0.99 for both simulations are

displayed in Fig. 7.9. We have chosen to use data from these simulation for analysis as both

bands are clearly visible: Simulation 1 has bands that are close to equal in size with a di↵usive

region taking up around 10% of the channel, while Simulation 2 has a smaller high-shear rate

channel with f ⇡ 0.15 and a much narrower di↵usive region. The shape of the spatial modes

coincides with the two di↵erent banding regions in the fluid as expected. One mode su�ces to

represent all the data apart from ⌃yy for Simulation 2: here, the first mode represents 98.86%

of the data while the second mode represents 0.9%. We will investigate the results from each

simulation separately in the following subsections.
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Mode 1
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Figure 7.9: Primary spatial modes needed to represent more than 99% of the ⌃xy and ⌃yy data
for (top row) Simulation 1 and (bottom row) Simulation 2.

Table 7.3 shows how many spatial modes are retained for each observable for each simulation

while we continue to fix e = 0.99. The dimensions for each coe�cient can be interpreted from

this table: the number of rows depends on the modes required for the observable acting as the

input to the equation, while the number of columns depends on the output data ⌃xy or ⌃yy.

While a rank-1 approximation is su�cient for some of the observables, others require up to 6

modes to meet our 99% reconstruction criteria.
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⌃̇xy equation �xy ⌃0
xy ⌃xy �̇ �̇⌃yy �̇⌃2

xy

Simulation 1 5 1 1 3 3 3

Simulation 2 6 1 1 6 6 6

⌃̇yy equation �yy ⌃0
yy ⌃yy �̇⌃xy �̇⌃xy⌃yy

Simulation 1 4 1 1 3 3

Simulation 2 6 2 2 6 6

Table 7.3: Number of spatial modes required to represent each observable for Simulation 1 and
Simulation 2, using e = 0.99 in both cases.

7.4.1 Analysis of Simulation 1

For Simulation 1 there are n = 1 spatial modes for the output data, which allows us to simplify

Eq. 7.39 for both ⌃0
xy and ⌃0

yy to

@�(t+�t)

@t
=

"
� 1

�
�D

Z L

0

��@b
@y

��2@y
#
�(t) +

X

k

↵k

X

qk

'
k
qk
(t)hakqk(y), b(y)i. (7.43)

We first focus on the coe�cients for the ⌃xy and ⌃yy observables, which are 1 ⇥ 1 scalars

since n = 1 and are found via the square bracket in Eq. 7.43. We compute the integral term

numerically for both equations and find it to be very small - O(10�12) for ⌃xy and O(10�9) for

⌃yy - so it has negligible impact on the final predicted coe�cients. Furthermore, since there

is only one spatial mode, we can directly compare the scalar coe�cients for the ⌃xy and ⌃yy

observables to their counterparts from the underlying nRP equations as we did in the previous

chapters.
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y

Mode 1
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Figure 7.10: Spatial modes needed to represent more than 99% of the �̇ data for Simulation 1.

All of the other observables have three spatial modes. The actual shape of the spatial modes

themselves will di↵er between each observable. We take the generalised coe�cient for the �̇

observable as an example and plot the first three spatial modes of �̇ in Fig. 7.10. Modes 1-3

represent 84.21%, 12.67%, and 2.35% of the total data, respectively, calculated using Eq. 7.42.

Interestingly, the third spatial mode is very reminiscent of the spatial gradient of the first mode.

Using the method which produces r⇥ 1 generalised coe�cient vectors ĉk will result in approxi-

mated coe�cients that are scalar for all observables. These predicted coe�cients are displayed

in Table 7.4 alongside the inner products hakqk(y), b(y)i between the spatial mode of the out-

put data and the spatial modes from the observables. Aside from the prediction for the �̇⌃yy

coe�cient which has ⇠ 5% error, all other coe�cients have been found with < 1% error.
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Observable From nRP equations Inner product correlations ĉk

⌃xy 1.000 1.000 0.998

⌃yy 1.000 1.000 0.998

�̇ 1.000 [0.919,�0.390, 0.062] 0.9830

�̇⌃yy 1.000 [�0.912, 0.404,�0.073] 0.9464

�̇⌃2
xy -1.333 [0.915,�0.395, 0.073] �1.3552

�̇⌃xy -0.667 [�0.921, 0.384,�0.067] �0.6669

�̇⌃xy⌃yy -1.333 [0.915,�0.395,�0.075] �1.3341

Table 7.4: Spatial mode vector correlations and approximated scalar coe�cients for each ob-
servable from Simulation 1.

The entries for each of the generalised coe�cients are shown in Table 7.5 for Simulation 1. It

is di�cult to find a relation between the non-scalar generalised coe�cients and the original

coe�cients also provided in the table. The approximations for the original coe�cients using ĉk

were found by enforcing the linear operators to be rank one matrices. Here, the J ⇥ J linear

operators C̃k within each entry of ˘̂Ck are in fact rank four matrices. From this we may conclude

that the cause of the discrepancy is the spatial complexity of C̃k, for which we do not have a

clear method of interpretation.

Observable From nRP equations ˘̂
C

⌃xy 1.000 0.998

�̇ 1.000 [0.107, �0.050, 0.028]

�̇⌃yy 1.000 [0.032, �0.018, 0.023]

�̇⌃2
xy -1.333 [�0.135, 0.053, 0.011]

⌃yy 1.000 0.999

�̇⌃xy -0.667 [0.010, �0.010, 0.033]

�̇⌃xy⌃yy -1.333 [�0.001, �0.004, �0.033]

Table 7.5: Generalised coe�cients for each observable for Simulation 1, alongside the original
coe�cient for that term in nRP equations.
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t t

Figure 7.11: (Left) Reconstructed modes for the �̇ observable. (Right) Values for �̇ at each of
the wall edges.

Our generalised coe�cients ˘̂
Ck multiplied by their corresponding spatial modes for the case

of the �̇ observable are displayed in Fig. 7.11, alongside �̇ recorded at each of the rheometer

walls in the simulation for comparison. We can see that the first entry emulates the shape of

�̇ for the larger, lower shear rate region, while the second entry emulates the smaller, high-

shear rate region. Based on our observation from Fig. 7.10, we expect the third entry to

represent the spatial gradient of �̇ between the regions. Similar behaviour can be found for

the reconstructed modes across the other observables. We therefore find overall that the 1⇥ 3

generalised coe�cients from Simulation 1 appear to correspond to the low shear rate band, the

high shear rate band, and the di↵usive region, in that order. The level of ‘importance’ of each

entry is dictated by the percentage that its corresponding mode approximates the observable,

rather than the value of the entry itself.

7.4.2 Analysis of Simulation 2

For Simulation 2, again we may compute the r⇥1 generalised coe�cient vectors ĉk as described

in Section 7.2.1. These are displayed in Table 7.6. There are two predictions for the observables
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involving ⌃yy as we find one prediction per spatial mode of the output data. The largest error is

⇠ 5% for the �̇⌃yy observable coe�cient, while all of the other predictions are highly accurate.

Interestingly, there is very little change in accuracy for the predicted material coe�cient when

using the data from the second spatial mode of the ⌃0
yy output data instead of the first.

Observable nRP Eq. Inner product correlations ĉk

⌃xy 1 1.000 0.999

⌃yy 1 1.000

2

64
0.999

1.000

3

75

�̇ 1


0.479 �0.874 �0.078 �0.021 �0.024 0.012

�
0.983

�̇⌃yy 1


�0.459 �0.876 0.133 0.034 0.034 �0.024

�
0.946

�̇⌃2
xy -1.333


0.462 0.865 �0.185 �0.037 �0.046 0.024

�
�1.3541

�̇⌃xy -0.667

2

64
�0.507 �0.851 0.132 0.024 0.030 �0.014

�0.832 0.452 �0.207 �0.124 �0.150 0.114

3

75

2

64
�0.6673

�0.6649

3

75

�̇⌃xy⌃yy -1.333

2

64
0.494 0.843 �0.202 �0.037 �0.045 0.024

0.839 �0.415 0.235 0.124 0.151 �0.124

3

75

2

64
�1.3351

�1.3298

3

75

Table 7.6: Spatial mode vector correlations and predicted scalar coe�cients for each observable
from Simulation 2.

We now turn to the analysis of the generalised coe�cients ˘̂
Ck with dimensions r ⇥ qk. As in

Simulation 1, we find that the coe�cient for the ⌃xy observable will be scalar. The contribution

to the predicted coe�cient from the magnitude of the di↵usive region is O(10�10), again leaving

behind only the contribution from the material parameter
1

�
. As we have explained the mech-

anism behind the generalised coe�cients with scalar and vector dimensions in Section 7.4.1,

here we will focus on interpreting the results from the ⌃yy equation which have generalised

coe�cients in the form of matrices.

We first look at the coe�cient for the ⌃yy observable, which produces a generalised coe�cient
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with dimensions 2⇥ 2 that is nearly diagonal. The fact that it is diagonal is evident since each

entry contains the inner product between the corresponding spatial modes of ⌃yy, which are

orthogonal by construction:

˘̂
C⌃yy =

1

�
I�D ·

2

6664

hb1(y), b1(y)i
R L

0

��@b1(y)
@y

��2@y hb1(y), b2(y)i
R L

0

��@b1(y)
@y

��2@y

hb2(y), b1(y)i
R L

0

��@b2(y)
@y

��2@y hb2(y), b2(y)i
R L

0

��@b2(y)
@y

��2@y

3

7775
(7.44a)

=
1

�
I� 4 · 10�4 ·

2

64
1 · 10�7 10�16 · 10�7

10�16 · 10�5 1 · 10�5

3

75 (7.44b)

=
1

�
I�

2

64
4 · 10�11 4 · 10�27

4 · 10�25 4 · 10�9

3

75 . (7.44c)

It is apparent that the contribution from the term representing the di↵usive region has negli-

gible impact on our final prediction, and the di↵erence between the two diagonal terms in our

generalised coe�cient can be accredited to errors accumulated during the rheoKIC process.

We can visualise the behaviour of each entry from the 2 ⇥ 2 generalised coe�cient by looking

at their reconstructed modes, shown in Fig. 7.12. By comparing them to ⌃yy at each of the

rheometer walls (also shown in Fig. 7.12), we can see that the entry in the first row and column

of ˘̂
Ck matches with the shape of ⌃yy for both shear banding regions, which is also represented

by the first projected spatial mode of ⌃0
yy. The second diagonal entry in Eq. 7.44 and the

second projected spatial mode of ⌃0
yy appear to correspond to the di↵usive region, based on its

shape in comparison to the entries we saw in Section 7.4.1. Unlike previously, there is not a

one-to-one correspondence between an entry in the generalised coe�cient and a specific spatial

behaviour. The o↵-diagonal terms from the generalised coe�cient appear to make little to no

impact on the reconstruction of the output data from the equation.
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t

t t

Figure 7.12: (Top-left) Reconstructed modes for the ⌃yy observable. (Top-right) ⌃yy recorded
at each wall of the rheometer. (Bottom) First two projected spatial modes for ⌃0

yy.

Table 7.7 shows the generalised coe�cients ˘̂
C for all of the observables in Simulation 2. Again,

we find that the non-scalar approximations cannot be directly related to the coe�cients from

the original homogeneous equations. In this case, we find that linear operator approximations

C̃k have rank six for all observables in both the ⌃xy and ⌃yy equations. The linear operator

is therefore still expressing spatial features of the data which we are not able to separate from

the scalar coe�cient.
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Observable From nRP equations ˘̂
C

⌃xy 1.000 1.000

�̇ 1.000 [0.086, �0.170, �0.020, �0.005, �0.019, 0.008]

�̇⌃yy 1.000 [0.049, 0.071, �0.012, �0.000, �0.014, 0.006]

�̇⌃2
xy -1.333 [�0.131, �0.197, 0.034, 0.006, �0.006, 0.003]

⌃yy 1.000 0.999

�̇⌃xy -0.667

2

64
0.0028 0.0252 �0.012 �0.005 10�4 10�5

0.002 0.016 �0.004 0.006 �0.029 0.035

3

75

�̇⌃xy⌃yy -1.333

2

64
10�4 0.0018 �0.012 �0.005 10�4 10�6

�0.002 �0.029 0.008 0.011 �0.022 0.0341

3

75

Table 7.7: Generalised coe�cients for each observable for Simulation 2, alongside the original
coe�cient for that term in nRP equations.

Focusing on the 2⇥ 6 generalised coe�cients, we show the reconstructed modes for each entry

in the coe�cient for the �̇⌃xy observable in Fig. 7.13. The first spatial modes align with the

low shear rate region containing the y = 0 measurements, the second spatial modes align with

the high shear rate region lying next to the y = L wall, and the third spatial mode represents

the di↵usive region. We can check the correlations between the spatial modes for each entry in

the coe�cient, which are found to be

2

64
�0.507 �0.851 0.132 0.024 0.030 �0.013

�0.832 0.452 �0.207 �0.124 �0.150 0.114

3

75 . (7.45)

There are no very small values indicating there are spatial modes orthogonal to each other.

Instead, we find that the two values with the largest magnitudes are the o↵-diagonal entries

in the first two columns. From this we can conclude that the second spatial mode of the �̇⌃xy

observable is correlated to the first spatial mode of ⌃0
yy, and vice versa.
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t t

t t

Figure 7.13: Reconstructed modes for the �̇⌃yy observable where each of the entries in the

generalised coe�cient has been multiplied by its corresponding entry in Ŭ
T

k �k.

7.5 Conclusions

While the existence of shear banding has been known for a long time, it is still an emerging topic

in rheology as only recently has it been possible to record data from rheological experiments

in multiple dimensions and at high fidelity. Nonlinear rheological analysis is able to avoid the

subject of spatial heterogeneity through the implicit assumption that the fluid response is a�ne,

which in turn justifies the decision to consider time series data exclusively.

Our intention for this chapter is to demonstrate that the mathematics behind rheoKIC and
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Koopman methods extends to incorporate spatial behaviour within a data set. We continue

to use the nRP equations introduced in Chapter 6 but use a simulation that allows for shear

banding to occur. If measurements across the rheometer gap are not available, we show that

rheoKIC can successfully reconstruct the constitutive law from time series measurements at

the rheometer wall, regardless of whether shear banding is present or not, by using the local

shear rate when constructing the set of candidate observables. Previous chapters demonstrated

that combining multiple data sets which exhibit nonlinear behaviour improves the accuracy of

the results from rheoKIC with respect to the higher order observables. Here, we show that

this result holds even when data sets with and without spatial homogeneity are combined. We

also suggest that the spatial modes from multidimensional data sets could be used as a tool for

determining whether any underlying spatial structure in the data is present, as it will filter out

any unstructured spatial variation from measurement noise. When measurements from within

each band are available, we demonstrate that we are able to determine whether the fluid has the

same properties in both regions despite their di↵ering dynamics. We highlight that this could

be used on both experimental and particle simulation data to identify and construct di↵erent

constitutive laws for di↵erent regions of the system.

Lastly, we looked at how rheoKIC responds to a data set that contains measurements across

the entire rheometer gap where shear banding is present. The existence of shear banding is

reflected in the number of spatial modes required to reconstruct each observable and the stress

response data, and thus the dimensions of each generalised coe�cient. We found that these

coe�cients reduce to approximately the identity matrix for the ⌃xy and ⌃yy observables where

the input and output data have the same spatial modes.

For the other observables, the computation for each entry in the generalised coe�cient contains

a linear operator approximation for the dynamics of the system which acts on the spatial modes

of the observable. Our methodology for interpreting the results of spatial rheoKIC assumes that

this operator can be written as a rank-one matrix. In fact, when we enforce the structure of

the linear operator to be as such by solving the system as a matrix-vector problem, we retrieve

the underlying coe�cients remarkably successfully, with < 1% error in most cases.



7.5. Conclusions 183

When we look to interpret the generalised coe�cients without enforcing structure, we find that

we can use the values of the inner products of the spatial modes between the input and output

data to understand how each entry relates to the di↵erent regions of behaviour within the fluid.

Looking at the entries of the generalised coe�cients themselves, we find that the linear operator

approximations are no longer rank one, and therefore encode spatial information which is then

projected onto the spatial modes of the observable. We are hopeful that further analysis of

this operator in the future could be used for understanding the dynamics of more complex

rheological data, for example when transitioning to or undergoing elasto-inertial turbulence.
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This thesis is concerned with applying an existing branch of methods in data analysis to the

field of rheology. The e↵ect of small amplitude deformations and the subsequent response from

a viscoelastic fluid is well characterised, but establishing material parameters in the nonlinear

regime is still an open problem. We have conceived of and developed a method based on

the Koopman with Inputs and Control (KIC) technique [20], which we call rheoKIC, for the

identification of viscoelastic constitutive laws using linear and nonlinear data. We believe

rheoKIC to be the first application of Koopman operator-type methods to constitutive law

identification for rheological data.

By fitting the equation for the constitutive law rather than its solution, our method is able to

interface with data from many standard rheological measurements, and throughout the thesis we

explore how the choice of data set a↵ects the performance of rheoKIC. A crucial aspect of these

types of system identification methods is the selection of a dictionary of observables: by using

the terms from a generalised constitutive framework [70] as our dictionary, we tailor rheoKIC

to the identification of constitutive laws lying within this framework. Chapters 4-7 describe the

development the steps underpinning the rheoKIC method in response to increasingly complex

data. The results from each of these chapters are laid out below.

Chapter 4 We showed how rheoKIC simplifies to Dynamic Mode Decomposition with Con-

trol (DMDc) when applied to data from within the linear viscoelastic regime,

in this case from the linear Maxwell model. We quantified the e↵ects of the

Euler approximation for the time derivative and determined that a minimum

of 512 snapshots per oscillatory period suitably balanced the accuracy of our

184
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approximations with the level of data resolution we expect from rheological ex-

periments. Using this measurement interval retrieved approximations for our

coe�cients with < 1% error. We then found that supplying higher order observ-

ables when analysing linear data can be shown to be redundant via a negligible

decrease in data reconstruction error when these terms are additionally supplied

to rheoKIC. By exploiting the known analytic solution to the Maxwell model, we

proved that rheoKIC reduced to a standard Fourier basis expansion when applied

to linear data from small amplitude oscillatory shear (SAOS) simulations. Lastly,

by combining data sets which emulated the data of standard linear experiments

- stress relaxation, shear startup, and SAOS - we found approximations for the

material parameters � and G with < 0.5% error.

Chapter 5 We increased the problem complexity by augmenting the Maxwell model with a

cubic order term to produce the simple/scalar fluidity model (SFM). Applying

rheoKIC directly to this data resulted in large errors in the approximations for

the nonlinear observables. Inspired by the !-MAOS experimental protocol, we

showed that fixing �̇0 across an oscillatory frequency sweep ensured that the cubic

order term stayed relevant in the rheoKIC reconstruction of the model, which

was additionally reflected in the rank of the set of candidate observables. We

introduced a sequential approach which first identifies the linear coe�cients using

linear data with excellent accuracy. We then used the approximated relaxation

time from the linear data to inform our simulation parameters for a nonlinear

data set, with which we located approximations for the higher order observable

with < 1% error. We then compared this approach, which used three data sets

in total, to rheoKIC applied to a single MAPS data set with high shear rate

amplitude, and found the results to be quantitatively similar while the MAPS

data set also allowed us to remove all the unwanted observables. Finally, we

confirmed that the performance of rheoKIC was not a↵ected by Gaussian noise

for signal-to-noise ratios as low as 100 : 1. We found that a simple low-pass

filter dramatically improved our approximations for higher noise levels than this,
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and described how our knowledge of the imposed shear rate could be used to

determine an appropriate filter attenuation point.

Chapter 6 We extended the complexity of the constitutive law to the non-stretching Rolie-

Poly (nRP) system of equations for two components of the stress tensor, which in

turn increased the number of candidate observables to twenty. This left a naive

application of rheoKIC exposed to overfitting. We recognised that attempting

to include terms involving the solvent viscosity exacerbated this issue as they

were several orders of magnitude smaller, and concluded that these terms should

not be considered within the constitutive law reconstruction. The increase in

the number of observables heightened the need for e↵ective application of the

thresholding process. Through a combination of the sequential method, combined

nonlinear data sets, and thresholding, we correctly identified the observables from

the underlying constitutive law and found the corresponding coe�cients with

< 3% error. Lastly, applying thresholding to a MAPS data at high strain rate

amplitude retrieved the results with a similar level of accuracy.

Chapter 7 We explored the potential for rheoKIC to be used on data sets with multiple

data points per measurement and where the fluid demonstrates shear banding

behaviour. After first producing data sets for the nRP equations that allow for

spatial inhomogeneity, we showed that the quality of results from rheoKIC was

una↵ected if only data from the rheometer wall was supplied and that rheoKIC

successfully determined that the fluid has the same properties in each region when

data from each of the banded regions was provided to rheoKIC separately. Fi-

nally, we generalised the rheoKIC analysis so that it could be applied to spatially

varying data, and found that each entry in the generalised coe�cient contained

information about the relationship between the spatial modes for each observ-

able and the output data. We showed how we can extract the coe�cients for

the constitutive law from this data with < 5% error, and explained how the

generalised coe�cients contain further information regarding the evolution of the

system dynamics which may be useful for future rheological analysis.
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8.1 Future work

We have brought together two areas of research for what we believe to be the first time and

so it is natural to separate our thoughts regarding extensions of the work into two main areas:

those broadening the applications in rheology, and those extending the methodology itself.

8.1.1 Extensions within Rheology

From the outset, we restricted the scope of the fluids under analysis to viscoelastic fluids whose

constitutive law falls within the GNMM framework. Viscoelastic behaviour often coincides

with yield stress behaviour [177], where the fluid behaves as an elastic solid below a critical

stress but behave as a solid above this point [178], and the corresponding constitutive laws

are often two di↵erent equations depending on the regime [179]. Carrying out rheoKIC on a

data set from above and below the critical stress value would in theory construct two di↵erent

constitutive laws, while carrying out rheoKIC on combined data sets spanning both regimes

has the potential to create a unified equation representing both types of material behaviour.

We have also restricted our focus to models assuming a single relaxation time for the fluid.

The initial derivation of the GNMM framework allows for the inclusion of multiple relaxation

times [70], and analysis of MAOS data using Chebyshev basis functions has already been ex-

tended to this aim [180,181] by using nonlinear regression with a regularisation term to deter-

mine the number of modes to retain. We imagine a similar procedure during an initial iteration

of rheoKIC could similarly determine how many relaxation modes to use in the analysis.

A key component in the motivation behind this thesis is that rheoKIC should be applicable to

experimental data sets with minimal modifications. Applying rheoKIC to experimental data

should therefore be a priority for future work. A comparison of the results using multiple data

sets from the same experiment but with varying dimensions (for example, stress data from the

wall of a rheometer coupled with PIV data of the fluid dynamics within the rheometer [150])

could also prove very enlightening. We have focused on data regarding the applied strain rate
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and the stress response, but an important additional channel of information is the presence

of any normal stress di↵erences [182], particularly because extracting the individual diagonal

elements of the stress tensor may prove to be challenging [183]. We believe that, given the

right data is provided, rheoKIC could reconstruct an equation for the normal stress di↵erences

analogously to how we use it at present for the stress evolution equation.

We have looked at data sets that emulate the results from several rheometry experiments

which probe both the linear and nonlinear viscoelastic regimes. Further work could be carried

out in analysing the results from other recently introduced experimental protocols, such as

the superposition rheometry experiments [64, 65] and chirp experiments [76, 78] introduced in

Chapter 2. Regarding more interesting data sets from simulations, we would be interested

to see how rheoKIC would construct a constitutive law for a particle simulation where the

constitutive law has not been specified explicitly, and if rheoKIC could be used as a method

for combined analysis of data from low-fidelity and high-fidelity simulations [184].

Koopman-inspired methods such as KIC and DMDc are often used for open loop control and

model predictive-control type problems [132], where the stability of the computed linear op-

erator determines how the input to the system should be adapted in real time [126]. An

‘interrogation system’ approach has already been proposed for the identification of ordinary

di↵erential equations [185]: data from an initial experiment is used to produce a battery of

candidate models, then new sets of initial conditions for subsequent experiments are proposed

to probe the regions where the candidate models disagree most. Over a longer time horizon,

we imagine utilising the control-related attributes of the rheoKIC approach, which have yet to

be explored, as an interrogation method during rheological experiments to produce the best

possible data sets for analysis.

8.1.2 Extensions within the methodology

The original paper presenting the KIC method was published in 2018 [20], ten years after the

initial release of the Dynamic Mode Decomposition (DMD) [95] method which first demon-

strated how the Koopman operator could be approximated with finite dimensions. Within this



8.1. Future work 189

decade, there has been a constellation of modifications and extensions to the original DMD

method, of which comprehensive reviews are available [85]. There are undoubtedly features

from these e↵orts which could be incorporated into future extensions of rheoKIC. More gen-

erally, the question of identifying an equation driving the underlying dynamics of a system

generally falls under the area of inverse problems ; this is a field of research within its own right,

of which there are a huge quantity of methods, applications, and entire journals dedicated to

studying [186,187].

We first noted within Chapter 4 that the Euler approximation for the time derivative required

by DMD introduces numerical error of the order of the time step size. A way of mitigating

this problem is by introducing time delay embedding of the data sets. This has been intro-

duced within ‘higher order DMD’ [133,134] and in deep learning approaches to learning system

dynamics [113, 188], and which have strong connections to Takens’ embedding theorem [189].

Another extension to rheoKIC would be to replace the SVD step, which computes a linear sub-

space for the nonlinear data to lie on, with a nonlinear autoencoder, where the final subspace

can remain nonlinear [188,190]. This results in a simpler and more accurate final model at the

cost of significantly more complex computation [191]. Finally, it would be beneficial to incorpo-

rate further techniques within rheoKIC that account for measurement noise above the methods

discussed in this thesis, for which several methods have already been proposed [103,104]. This

would allow for the inclusion of confidence intervals to accompany the resulting terms and

coe�cients for the reconstructed constitutive law [136], which would be highly advantageous

during practical applications of rheoKIC.

By using the GNMM framework to inform our set of observables, and by using a sequential

method that enforces the presence of linear terms in the model, we intend for constitutive laws

built using rheoKIC to be physically admissible by default. Future work could be carried out

to confirm this theoretically. It would also be highly interesting to investigate how further

constraints could be incorporated within the methodology, such as the range of values each pa-

rameter can take, by taking advantage of extensions to DMD which already exist with this goal

in mind [192]. Neural network (NN) models [193] have already been modified to include physical

constraints as ‘physics-informed neural networks’ (PINNs) [194–196], to preserve symmetries
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within the underlying dynamics [197], and even with a particular focus on learning constitu-

tive laws [198] as well as learning and representing the set of candidate observables [116, 120].

However, these techniques require large amounts of training data and the final representation is

usually di�cult to interpret [199]. As yet unpublished work claims to have combined a consti-

tutive law framework with a NN to maintain admissibility and intelligibility of the final model

while allowing flexibility to represent data from di↵erent environments [200].

Finally, while we established the theoretical framework behind constructing the Koopman oper-

ator for a nonlinear constitutive law, in this thesis we did not move onto applying this framework

to scenarios where its benefits can be fully understood - namely, in the interpretation of com-

plex nonlinear dynamics that may be evolving over time and space. We believe that rheoKIC

could be used for understanding the formation of coherent structures in systems undergoing

transition or experiencing elasto-inertial turbulence, as it has the potential to disambiguate

nonlinearities due to turbulence from those arising naturally due to the constitutive law of the

fluid.

8.2 Closing remarks

We hope that the work presented in this thesis has shown that the rheoKIC method is a

novel, powerful, and generalisable method for interpreting rheological data. The underlying

mathematics behind the rheoKIC method is simple - the singular value decomposition is often

taught to second-year mathematics undergraduates - but it has deep strong connections to both

well-established and cutting-edge methods of studying fluid dynamics. The simplicity of the

approach allows for the unification of linear and nonlinear analysis, using data from multiple

experiments and under di↵erent experimental protocols. We see a huge number of potential

avenues for further investigation of this approach within the field of rheology, and we hope that

any rheologists reading this conclusion feels similarly.
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Appendix A: GNMM equation

Eq. 2.13 written in terms of the evolution of �xx, �yy, and �xy.

�1�̇xx + (1 + ⇣)�xx + ⇣�yy + (⌫1 � µ1 � �1)�̇�xy

+((↵1 � ↵0 + �0 � �1/2)/⌘0)�
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�1�̇xy + �xy + 0.5(µ0 + �1 � µ1)�̇�xx + 0.5(µ0 � �1 � µ1)�̇�yy
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Appendix B: Full transformation of

GNMM observables to

Fourier basis functions

In Chapter 4, we showed a transformation matrix between a set of observables containing the

linear and cubic order combinations of � and �̇ and a Fourier basis containing only odd terms.

Here we show the complete transformation with the inclusion of quadratic order observables

and the even terms of the Fourier basis.


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(B.1)

where
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It is entirely possible to choose � to be the terms from a Fourier expansion explicitly. However,

it should be noted that this will not produce exactly the same results as FT-rheology described

in Section 2.5.2. We can show this explicitly for the case where � is generated from the linear

Maxwell model. Using the the analytic solution of �, we find

�n = A cosn +B sinn

�! �n+1 = [A cos (!�t) + B sin (!�t)] cosn +[B cos (!�t)� A sin (!�t)] sinn

= A
0 cosn +B

0 sinn .

(B.3)

Using the Fourier basis as the set of observables does not locate A and B exactly because we

are relating the data from time n to n + 1, whereas standard FT-rheology involves taking the

Fourier transform of the entirety of the � signal.
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