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Abstract

Determining which quantum tasks we can perform with currently available tools and devices

is one of the most important goals of quantum information science today. To achieve this

requires careful investigation of the capability of current quantum tools as well as development

of classical protocols which can assist quantum tasks and amplify their abilities. In this thesis,

we approach this problem through two different topics in quantum information theory: Gaussian

resource theories and semidefinite programming hierarchies.

In the first part of this thesis, we examine the possibility of implementing quantum information

processing tasks in the Gaussian platform through the eyes of quantum resource theories.

Gaussian states and operations are primary tools for the study of continuous-variable quantum

information processing due to their easy accessibility and concise mathematical descriptions,

although it has been discovered that they are subject to a number of limitations for advanced

quantum information processing tasks. We explore the capability of the Gaussian platform

further in the first part of this thesis. Firstly, we investigate whether introducing convex

structure to the Gaussian framework can circumvent the known no-go theorem of Gaussian

resource distillation. Surprisingly, we find that resource distillation becomes possible — albeit

in a limited fashion — when convexity is introduced. Then, we consider the quantum resource

theory of Gaussian thermal operations when catalysts are allowed, and examine the abilities of

catalytic Gaussian thermal operations by characterising all possible state transformations under

them.

In the second part of this thesis, we address the problem of characterising quantum cor-

relations via semidefinite programming hierarchies. In particular, we focus on characterising

quantum correlations of fixed dimension, which is practically relevant to the field of semi-

device-independent quantum information processing. Semidefinite programming is a special

type of mathematical optimisation, and it is known that some important but difficult problems

in quantum information theory admit semidefinite programming relaxations; these include

the characterisation of general quantum correlations in the context of non-locality and the

distinction of quantum separable states from entangled states. In this second part, we show

how to construct a hierarchy of semidefinite programming relaxations for quantum correlations

of fixed dimension and derive analytical bounds on the convergence speed of the hierarchy. For

the proof, we make a connection to a variant of quantum separability problem and employ

multipartite quantum de Finetti theorems with linear constraints.
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The eternal mystery of the world is its comprehensibility.
... The fact that it is comprehensible is a miracle.

- Albert Einstein (1936)
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Chapter 1

Introduction

Quantum information science is the study of information processing based on the fundamental

theory of quantum mechanics. It is a highly interdisciplinary field borrowing ideas from many

different subjects, including quantum mechanics, computer science, information theory and

cryptography. Each of these fields has experienced a major breakthrough at similar times in the

last century: the birth of quantum mechanics in the mid-1920s; the discovery of universal Turing

machine in 1930s followed by a series of researches on the Church-Turing thesis in 1960-70s

which have become the foundation of computational complexity theory in computer science;

and Shannon’s remarkable research on the concept of information and communication in 1940s.

All of these breakthroughs together contributed to the birth of quantum information science

and enabled rich discussions and advances in the field.

The main question that has driven people working in quantum information science is

whether there exist quantum information processing tasks which can outperform their classical

counterparts. As quantum mechanics often exhibits counter-intuitive features or, more precisely,

phenomena which are classically impossible, scientists questioned whether applying quantum

theory to information processing could open the door for a new technological development

resulting in more powerful information processing devices than the ones based on classical

mechanics. This idea was further supported by the discoveries of such as Shor’s factoring

algorithm [2], Grover’s search algorithm [3], and quantum key distribution protocols [4] which

all demonstrated some quantum advantage over their classical counterparts. However, due to

16



CHAPTER 1. INTRODUCTION

the difficulty in building high-fidelity and large-scale quantum devices which are feasible to run

these algorithms or protocols, it is still far from being able to apply them to any real-world

applications or demonstrate the advantage in real life.

Recently, researchers started concentrating on a more present-focused question: which

practical quantum tasks can we perform with currently available tools and quantum devices?

This idea was emphasised by the emergence of the noisy intermediate-scale quantum (NISQ) era.

As Preskill pointed out in his landmark article [5], answering this question not only involves

finding quantum information processing protocols implementable in current quantum devices

but also a vast amount of research taking different approaches: such as understanding the

limitations of current tools for further improvement, developing classical tools which can assist

quantum tasks, re-investigating classical protocols to make a fair comparison with quantum

counterparts etc.

In this thesis, we also joined this current of research and present several results investigating

the ability of currently available tools for quantum information science. We address this point

via two different topics, each of which forms a separate part of this thesis: (i) Gaussian resource

theories where we examine the capability of Gaussian platforms for quantum tasks and (ii)

semidefinite programming hierarchies where we develop a classical algorithm for characterising

an important quantum feature, quantum correlations.

In Part I, we explore the possibility of implementing quantum information processing

tasks with Gaussian states and Gaussian operations from the perspective of quantum resource

theories. Gaussian states and operations are often regarded as easily accessible resources in

many experimental set-ups. Indeed, there are a large number of proposed physical platforms for

quantum information processing in the continuous-variable regime which can be described by the

Gaussian framework; including photonics, optomechanics, atomic ensembles, and trapped ions.

The Gaussian framework is also a favourable tool for a theoretical research due to the existence

of finite-dimensional representations of the Gaussian dynamics. Despite being a manageable and

useful tool for quantum information science, it is known that Gaussian platforms are subject

to several limitations when implementing advanced quantum information processing tasks,

such as universal quantum computing [6–8], error correction [9] and resource distillations [10].
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Nevertheless, non-Gaussian elements are difficult to employ and tend to be more vulnerable

to errors/noise, and thus it is beneficial to have more studies on the capabilities of Gaussian

platforms for quantum tasks or finding solutions to circumvent those limitations. In this regard,

we address in this thesis the tasks of (i) resource distillations and (ii) thermodynamical processes

with catalysts using Gaussian platforms.

In Part II, we proceed to the next topic and consider the problem of characterising quantum

correlations via semidefinite programming hierarchies. Quantum correlations are an important

concept in quantum information science which does not have any counterpart in the classical

world. For example, it is known that some quantum correlation can violate locality constraints

(known as Bell inequalities) which must be satisfied by any local (classical) correlations, and it was

one of the earliest demonstrations of quantum advantage. This feature has been widely exploited

to construct useful quantum information processing tasks, notably in quantum communication

and cryptography [11]. Such attempts were highlighted by the field of device- or semi-device-

independent quantum information processing [12], which has significant practical applications

within the NISQ era; in device-independent or semi-device-independent quantum information

processing protocols, the violation of such constraints is used to certify a desired quantum

feature of the device. To construct protocols exploiting these quantum correlations, it is essential

to be able to characterise quantum correlations and understand their properties. Characterising

quantum correlations is a difficult task, but nevertheless it has been pointed out that borrowing

tools from the mathematical optimisation theory in classical computer science could make this

particular task more manageable. In such an approach, the set of quantum correlations are

approximated via a hierarchy of constraints for a special type of optimisation problems, called

semidefinite programming. We follow this approach in this thesis and explore the characterisation

of quantum correlations with fixed dimension via semidefinite programming hierarchy.

1.1 Overview

Here, we explain the structure of this thesis and provide a short summary for each chapter.
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Part I

The main theme of Part I is Gaussian resource theories. In the first two chapters, Chapter 2 and

3, we provide preliminary information for Part I. In Chapter 2, we revise the background theory

of continuous-variable quantum systems. We give the definition of continuous-variable quantum

systems and explain why they necessarily admit an infinite-dimensional Hilbert space as their

state space. Then, we introduce the Gaussian states, operations and measurements and consider

how they make studying continuous-variable quantum systems more tractable by admitting

finite-dimensional representations. We also provide useful mathematical tools for studying the

Gaussian framework, such as normal-mode decomposition and phase-space representation. In

Chapter 3, we introduce another important mathematical framework for Part I, called quantum

resource theories. We first look at the definition and the general structure of quantum resource

theories. Then, we introduce the state-convertibility problem, which is one of the basic quantum

information processing tasks that can be studied within the framework of quantum resource

theories. We explain that the state-convertibility problem can provide some insights into how

we can quantify the amount of resource present in an arbitrary quantum state. This idea leads

to the introduction of resource monotones, key resource measures in quantum resource theories.

Finally, we discuss how to generalise the aforementioned framework to the case when there

exists more than one relevant physical resource.

In Chapter 4, which is the first chapter containing novel results, we explore the task of

resource distillation using Gaussian states and operations. Gaussian resource theories, the main

theme of Part I, are quantum resource theories with the additional physical restriction that one

is only allowed to use Gaussian states and operations. It is known that resource distillation

is in general impossible in such Gaussian resource theories [10]. To overcome this limitation,

we examine whether the non-convex structure of the Gaussian framework contributes to this

impossibility by investigating convex Gaussian resource theories, which are Gaussian resource

theories equipped with classical randomness and conditional Gaussian operations, i.e., Gaussian

resource theories that have an additional convex structure. This approach is well-motivated

from the practical point of view, since classical randomness and conditional Gaussian operations

are more accessible in a laboratory than non-Gaussian elements. Surprisingly, we find that
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resource distillation becomes possible for convex Gaussian resource theories albeit in a limited

fashion; the impossibility of resource distillation is replaced by a limitation on the amount of

distillable resources in convex Gaussian resource theories. We fully characterise this limitation by

studying a new resource measure for convex Gaussian states. We also provide explicit examples

of resource distillation protocols for squeezing and entanglement, showing that the derived upper

bound on the amount of distillable resource can be saturated in a special case — which implies

that the derived upper bound is tight.

In Chapter 5, we continue to look at another instance of Gaussian resource theories: the

Gaussian resource theory of quantum thermodynamics. Quantum thermodynamics in continuous-

variable quantum systems through the framework of quantum resource theories is not a well-

studied topic despite a vast amount of results for the discrete-variable case. Especially, the

role played by catalysts, which have a significant influence in discrete-variable quantum ther-

modynamics, remains unclear in continuous-variable quantum thermodynamics. Our main

goal in this chapter is to characterise the capability of catalytic Gaussian thermal operations,

which are defined as all energy-preserving Gaussian operations in the presence of catalysts.

We carry out this goal by characterising all possible state transformations for Gaussian states

under Gaussian thermal operations when catalysts are allowed. We introduce two different

models for catalysts: strong catalysts, where final correlations with the system are forbidden,

and weak catalysts, where final correlations with the system are allowed. We show that strong

catalysts are useless for the single-mode case in the sense that they do not expand the set of

achievable states for a given initial state via Gaussian thermal operations. Then, we prove that

weak catalysts are instead capable of reaching a larger region of final states and derive exact

conditions for state transformation for the single-mode case. We also derive necessary conditions

for the general multipartite case for strong catalysts and approximate transformation as well as

for weak catalysts. As the notion of catalysts generalises any thermal machine that operates in

a cycle, we discuss the implications of our results for thermal devices operating with Gaussian

elements.
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Part II

In Part II, we address the topic of semidefinite programming hierarchies for quantum information

science. Chapter 6, the first chapter of Part II, contains necessary background materials for

Part II without any novel results. In Chapter 6, we explain two main concepts used in Part II,

semidefinite programming relaxations and quantum de Finetti theorems. We start with studying

some mathematical background including convex sets and convex functions and move on

to the topic of semidefinite programming, a special sub-class of mathematical optimisation

problems. We show that one can construct semidefinite programming relaxations for some

general optimisation problem that is difficult to solve and provide two widely-used hierarchies

of semidefinite programming relaxations in quantum information theory: the Doherty-Parrilo-

Spedalieri (DPS) and Navascués-Pironio-Aćın (NPA) hierarchy. Then, we continue to the second

topic, quantum de Finetti theorems, and give a short introduction including the connection to

the DPS hierarchy.

Chapter 7 contains our novel results on characterising quantum correlations of fixed dimension

via a hierarchy of semidefinite programming relaxations. As we discussed before, characterising

quantum correlations of fixed dimension is related to the field of semi-device-independent

quantum information processing where the dimensionality of quantum devices plays an important

role. In this chapter, we show how to construct a converging semidefinite programming hierarchy

of outer approximations for the set of quantum correlations of fixed dimension. More specifically,

we employ non-local games, which can be seen as a generalisation of the Bell scenario, for

formulating correlations and derive a hierarchy of constraints in the form of semidefinite

programming, which can approximate quantum correlations of fixed dimension. We derive

analytical bounds on the convergence speed of the hierarchy using improved multipartite

quantum de Finetti theorems with additional linear constraints, which we also derive in the

same chapter. As a way to improve the relaxations, we provide a procedure to combine our

semidefinite programming relaxations with the dimension-agnostic NPA hierarchy. We compare

the performance of our semidefinite programming relaxations with previous work in the literature

before summarising the chapter.
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1.2 Notations

In this section, we establish some basic notations used throughout this thesis.

A mathematical set is denoted with bold symbol or capital letter, and when there are a

finite number of elements in the set, says n elements, we often denote it for instance by {xi}ni=1,

or if the number of elements is clear in the context we simply write {xi}i. The cardinality of

a given set X is denoted by |X|. We use the following notations for different ranges of real

numbers: R≥0 for all non-negative real numbers, R≤0 for all non-positive real numbers, and

likewise for similar cases. A vector is also denoted by bold symbol; x = (x1, ..., xn)T.

Let H be a either finite- or infinite-dimensional Hilbert space over C with inner product

⟨·, ·⟩. For a linear operator A on H, the complex conjugate A∗ of A is the operator whose

matrix representation has entries that are complex conjugates of the ones for A. The transpose

AT of A is the operator whose matrix representation is obtained by transposing the matrix

representation of A. Then, the adjoint A† of A is the operator obtained by taking the complex

conjugate and transpose of A. A self-adjoint (for an infinite-dimensional H) or hermitian (for a

finite-dimensional H) operator is a linear operator A such that ⟨x,Ay⟩ = ⟨Ax, y⟩ for all x, y ∈ H.

We denote the set of all bounded linear operators acting on H by B(H). A self-joint or hermitian

operator A is called positive semidefinite and denoted by A ≥ 0 (or A ⪰ 0) if Tr [A |ψ⟩⟨ψ|] ≥ 0

for all ψ ∈ H, and called positive definite and denoted by A > 0 (or A ≻ 0) if Tr [A |ψ⟩⟨ψ|] > 0

for all ψ ∈ H. A density operator ρ is a positive semidefinite operator with trace one. We

denote the set of all density operators on H by D(H). We denote the identity operator acting

on d-dimensional H by 1d. When it is obvious in the context, we often omit the dimension

subscription and use the notation 1.

A map Γ : B(H) → B(H) is called positive if Γ(A) ≥ 0 for all A ≥ 0 and completely-positive

(CP) if (Ik⊗Γ)(A) ≥ 0 for any positive semidefinite operator A on Ck⊗H and any k ∈ N, where

Ik denotes the identity map on Ck. We denote the set of all CP maps from B(Hin) to B(Hout)

by C(Hin,Hout). A map Γ : B(H) → B(H) is called trace-preserving (TP) when it preserves

the trace of the argument. Then, a quantum map (also called quantum channel or quantum

operation) is a completely-positive and trace-preserving (CPTP) map acting on D(H). The
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most general quantum measurements are described by positive operator valued measurements

(POVMs). A POVM with k measurement outcomes is defined with a set of positive semidefinite

operators {Mi}ki=1 such that
∑k

i=1Mi = 1.

Given a vector ψ in d-dimensional H, we define the ℓp norm of the vector ψ for 1 ≤ p <∞

as ∥ψ∥p =
(∑d

i=1 |ψi|p
)1/p

, where {ψi}i are the components of the vector ψ. We can also

define a similar concept, the Schattern p-norms, for a linear operator A on H with any real

number p ≥ 1 as ∥A∥p =
(

Tr
[(
A†A

)p/2])1/p
. We particularly call the case with p = 1 the

trace norm. The fidelity between two positive semidefinite operators A and B is defined as

F (A,B) = Tr
[√√

AB
√
A
]
.

We say a matrix U acts by congruence on A when UAUT. When we consider continuous-

variable quantum systems, we denote operators acting on the infinite-dimensional Hilbert space

with hat, for example x̂, with the exception of density operators ρ, and denote operators acting

on a finite-dimensional space such as the phase space without hat, for example x, following the

notation in [13].

For a tensor-product of Hilbert spaces involving multiple copies of identical quantum

registers, for example
⊗k

i=1HA, we use the concise notation HA⊗k or HAk . We do likewise for

the subscription in quantum states; for example, ρA⊗k or ρAk .
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Gaussian Resource Theories
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Chapter 2

Background theory: quantum

continuous variables

Continuous variable quantum systems, along with discrete variable quantum systems (e.g.,

qubits), are one of the two forms for realising quantum information processing tasks and play an

important role in quantum information science. A vast amount of physical platforms proposed

for quantum information processing are described by continuous variable quantum systems;

some famous examples are quantised modes of bosonic systems including electromagnetic fields,

motional degrees of freedom in trapped ions and atomic ensembles, and various platforms within

the field of optomechanics. In particular, the theory of quantum continuous variables is highly

related to quantum communication and cryptography which have propagating photons as their

natural platform [14–18]. However, the study of dynamics in continuous variable quantum

systems is often restricted to Gaussian states and operations since infinite-dimensional repre-

sentations of continuous variable quantum systems in general make their dynamics intractable.

The Gaussian resources, namely Gaussian states, operations, and measurements, are thus a

primary tool for continuous variable quantum information science.

In this section, we revise the fundamental theory of continuous variable quantum systems

focusing on the Gaussian framework. The main purpose of this section is to understand how

the Gaussian framework resolves the intractability problem of working with continuous variable

quantum systems. In Section 2.1, we define continuous variable quantum systems together
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with the important canonical commutation relation and canonical observables. We explain

why any continuous variable quantum system admits an infinite dimensional representation.

Then, we start introducing the Gaussian framework with the definition of Gaussian states in

Section 2.2, where we show that any Gaussian state can be fully characterised by a finite number

of elements. We continue to introduce Gaussian operations and measurements in Section 2.3,

where we provide their concise descriptions in terms of statistical moments and list some notable

examples. In Section 2.4, we present a useful mathematical tool in the Gaussian framework

called the normal-mode decomposition of Gaussian states, which is largely exploited in later

chapters (especially in Chapter 5). We present some famous examples of pure Gaussian states in

Section 2.5 and introduce the phase-space representation of Gaussian states in Section 2.6. This

chapter is written based on the following textbook and review papers on quantum continuous

variables: [13, 19, 20].

Notations

Unless stated otherwise, we always assume the natural unit ℏ = 1, where ℏ is the reduced

Plank constant. In this section, we mainly consider a quantum system associated with an

infinite dimensional Hilbert space H. We emphasise again that operators on the Hilbert space

are denoted with hat, x̂, with exception of quantum states (e.g., ρ), and operators on finite-

dimensional spaces such as the phase space are denoted without hat, e.g., x. Unless we indicate

with ρG, most definitions, formulas, and concepts presented in this chapter are valid for general

continuous variable quantum states.

2.1 Continuous variables quantum systems

Continuous variable (CV) quantum systems naturally arise when we consider canonical quantisa-

tion procedure, one way of quantising a classical theory. Consider a pair of canonical conjugate

quantities, for example position and momentum. We can define corresponding quantum me-

chanical operators x̂ and p̂ for these variables, so-called quadrature operators, satisfying the
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following canonical commutation relation (CCR)

[x̂, p̂] = iℏ1̂, (2.1)

which replaces Poisson brackets in classical Hamiltonian dynamics. CV quantum systems are

quantum systems which obey this CCR. It is not difficult to observe that the CCR cannot be

satisfied for operators x̂ and p̂ acting on finite-dimensional spaces; taking the trace on both sides

of Eq. (2.1) always leads to a contradiction in finite dimensions unless ℏ vanishes, since the left

hand side (LHS) becomes zero due to the linearity and the cyclic property of the trace. Thus,

quantum CV systems inevitably have infinite-dimensional Hilbert spaces as their state spaces.

It is well known that there exist infinite-dimensional representations for CV quantum systems.

Let us consider the space of square-integrable functions on the real space, L2(R), which forms

a Hilbert space. Then, the canonical operators x̂ and p̂ can be defined as operators acting on

L2(R) in the following way:

x̂ |ψ⟩ = x |ψ⟩ , p̂ |ψ⟩ = −iℏ d

dx
|ψ⟩ ∀ |ψ⟩ ∈ L2(R) .

We can check that these two operators satisfy the CCR.

[x̂, p̂] |ψ⟩ = x̂p̂ |ψ⟩ − p̂x̂ |ψ⟩ = −iℏx̂d |ψ⟩
dx

− p̂x |ψ⟩ = −iℏxd |ψ⟩
dx

+ iℏ |ψ⟩ + iℏx
d |ψ⟩
dx

= iℏ |ψ⟩ .

CV quantum systems necessarily adopt this infinite-dimensional Hilbert space L2(R) as their

state spaces. Any element in L2(R), which now represents a state of CV quantum systems,

can be decomposed into the eigenstates of x̂ or p̂.1 Their eigenvalues form continuous spectra

covering the whole real numbers, and the terminology ‘quantum continuous variables’ came

from this factor.

We can find another expedient basis set for a CV quantum system. We can define the ladder

1Even though we use the eigenstates of x̂ and p̂ as basis of L2(R) here, they are not parts of L2(R). They are
Dirac delta distributions centred at their eigenvalues x and p in the position and momentum space respectively,
which do not belong to L2(R).
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operators in terms of the canonical operators as

â =
x̂+ ip̂√

2
, â† =

x̂− ip̂√
2

,

where natural unit is adopted, i.e., ℏ = 1. In the context of quantum harmonic oscillators , â

and â† corresponds to the annihilation and creation of a quantum of energy respectively, and in

bosonic quantum field theory, they describe the creation and destruction of particles. The CCR

in Eq. (2.1) can be also expressed with the ladder operators;

[â, â†] = 1 .

We now define a Hermitian operator n̂ := â†â in terms of the ladder operators and call it the

number operator. The state space of a CV quantum system with single degree of freedom,

which we denote H, is then spanned by the eigenstates of this number operator, {|n⟩}∞n=0 with

n̂ |n⟩ = n |n⟩, and this countable basis is called the Fock or number state basis. Thus, the

Hilbert space H is infinite-dimensional and separable2 while it admits continuous representations

with the operators x̂ or p̂.

When N degrees of freedom are considered, we have N pairs of canonical operators {x̂i}Ni=1

and {p̂i}Ni=1 satisfying [x̂i, p̂j] = iδij1 ∀i, j, and each pair is connected to the ladder operators

of the corresponding degree of freedom via âi = (x̂i + ip̂i)/
√

2 and â†i = (x̂i − ip̂i)/
√

2. In CV

quantum systems, we often call each degree of freedom a mode borrowing the name from the

area of quantum optics. The total state space of an N -mode CV quantum system is then a

tensor-product Hilbert space
⊗N

i=1Hi where each Hi is the single-mode Hilbert space. We

define a vector of canonical operators as

r̂ = (x̂1, p̂1, ..., x̂n, p̂n)T

2This means that H has infinitely many but countable orthonormal basis.
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and the symplectic form matrix

Ω =
N⊕
i=1

Ω1 with Ω1 =

 0 1

−1 0

 . (2.2)

Then, the CCRs for an N -mode CV quantum system can be written as [r̂i, r̂j] = iΩij where we

now omitted the identity operator on the right-hand side (RHS) and adapted the ‘c-numbers’3

notation. More concisely, we can express the CCRs as

[r̂, r̂T] = iΩ ,

where the commutator between row and column vectors is applied in the same way as an outer

product, and the relation is satisfied element-wise with the omitted identity operator on the

RHS. Note that the symplectic form matrix is a real orthogonal matrix, i.e., ΩTΩ = 1, and

also satisfies ΩT = −Ω and Ω2 = 1. We will sometimes denote by Ωn the 2n× 2n-dimensional

symplectic form matrix for n modes. Without subscription, it denotes the symplectic form

matrix with right dimension in the context.

In summary, even with finite degrees of freedom, a CV quantum system admits an infinite-

dimensional Hilbert space, and it requires an infinite number of elements to represent its states.

This makes the analysis of their dynamics intractable, and in general, it is very cumbersome

to work with CV quantum systems analytically. In the next section, we will discuss how to

circumvent this problem.

2.2 Gaussian states

One way to make CV quantum systems more tractable is to be restricted to Gaussian states. In

this section, we will revise the definition of Gaussian states and how they can avoid the problem

of infinite-dimensional representations. We will largely follow the approach described in [13] and

introduce Gaussian states as ground and thermal states of second-order Hamiltonians, which

3A c-number refers to the identity operator times a complex number.
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provides a plenty of intuitions proven to be useful later in this part of the thesis.

Second-order Hamiltonians are the Hamiltonians which include canonical operators at most

to the power of two, i.e., which can be written as a polynomial of order two in terms of the

canonical operators. In terms of the vector of the canonical operators r̂, a generic second-order

Hamiltonian Ĥ of an N -mode CV quantum system can be parametrised as

Ĥ =
1

2
r̂TH r̂ + r̂Tr (2.3)

with a 2N × 2N symmetric matrix H and a 2N -dimensional real vector r. H is sometimes

called the Hamiltonian matrix and should not be confused with the Hamiltonian operator

Ĥ itself; H does not act on the state space L2(RN). Eq. (2.3) includes all strictly quadratic

Hamiltonians as well as all linear Hamiltonian. Such second-order Hamiltonians are common

among experimental set-ups in physics, e.g., quantum optics and optomechanics, and emerge

whenever we have negligible higher-order terms. Henceforth, we will only consider the case when

H > 0 for our convenience. Positive definite Hamiltonian matrices imply that Hamiltonian

operators are bounded from below, which is necessary for stable systems.

We now define Gaussian states as all ground and thermal states of second-order Hamiltonians

with H > 0.

Definition 1. (Gaussian states) Any Gaussian state ρG can be written as either

ρG =
e−βĤ

Tr
[
e−βĤ

] (2.4)

or

ρG = lim
β→∞

e−βĤ

Tr
[
e−βĤ

] (2.5)

with β ∈ R+ and some second-order Hamiltonian Ĥ as defined in Eq. (2.3).

Note that Gaussian states of the form in Eq. (2.4) are necessarily mixed states, and any pure

Gaussian state should have the form in Eq. (2.5), which describes the ground state of some
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second-order Hamiltonian Ĥ.

Definition 1 shows that Gaussian states can be parametrised by the Hamiltonian Ĥ and

the (inverse-temperature like) parameter β. Following the parametrisation of Ĥ in Eq. (2.3),

Gaussian states are thus fully characterised by the Hamiltonian matrix H and the vector r

describing Ĥ, and the parameter β. This is a crucial point worth stressing as the Hamiltonian

matrix H and the vector r are finite-dimensional while Ĥ as well as the state ρG are operators

on the infinite-dimensional Hilbert space. This property of Gaussian states makes the study of

their dynamics tractable and manifests the benefit of being restricted to Gaussian states.

The fact that we can represent Gaussian states with finite number of elements is reminiscent

of classical Gaussian distributions, which are fully characterised by their first and second

statistical moments. Let us strengthen this connection further. For an N -mode Gaussian state

ρG, we define a vector of first moments of the canonical operators as

r := ⟨r̂⟩ρG =
(
⟨x̂1⟩ρG , ⟨p̂1⟩ρG , ..., ⟨x̂N⟩ρG , ⟨p̂N⟩ρG

)T
,

where
〈
Â
〉
ρ

= Tr
[
Âρ
]

is the expectation value of the operator Â for the state ρ. We also define

the symmetrised version of the second moments, so called the covariance matrix (CM), as

σ = Tr
[{

(r̂− r), (r̂− r)T
}
ρG
]
, (2.6)

where the anti-commutator between a column vector and a row vector acts like an outer product.

More specifically, Eq. (2.6) is equivalent to σij = ⟨{(r̂i − ri), (r̂j − rj)}⟩ρG ∀i, j. It is not a

coincidence that the vector of first moments is denoted by the same symbol as the parameter r

of the Hamiltonian operator Ĥ. It can be shown that the vector of first moments of a Gaussian

state ρG always coincides with the parameter r of the Hamiltonian operator Ĥ which describes

the state ρG via Definition 1. We will later see that the CM of a Gaussian state ρG also

contains all information about the Hamiltonian matrix H of the operator Ĥ and the parameter

β describing ρG (see Section 2.4). As a result, any Gaussian state can be fully characterised

by a pair of its r and σ. This fact will become more clear when we talk about the phase-space

representation of Gaussian states in Section 2.6.
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By definition, all covariance matrices of an N -mode CV quantum system are 2N × 2N , real

and symmetric matrices. However, not all real symmetric matrices are CMs of quantum states.

The CM of any quantum state (not only Gaussian states) must satisfy the following uncertainty

principle:

σ + iΩ ≥ 0 , (2.7)

where 0 denotes the null matrix with appropriate dimension. Note that taking the transpose of

the LHS of Eq. (2.7) should not change the positivity of the matrix so that σ− iΩ ≥ 0. One can

show that the relation in Eq. (2.7) implies that σ > 0, i.e., all CMs must be positive definite.

The important point to remember from this section is that, despite the underlying infinite-

dimensional Hilbert space, any Gaussian state can be characterised by a finite number of

elements, which provides a remarkable platform for exploring CV quantum systems. We will

look at some notable examples of Gaussian states later in this chapter.

2.3 Gaussian operations and measurements

Gaussian operations in general refer to completely positive (CP) channels which map Gaussian

states into Gaussian states. There are two types of Gaussian operations, Gaussian unitary

operations and (more general) Gaussian non-unitary maps. In this chapter, we look at these two

different categories of Gaussian operations as well as some important Gaussian measurement.

2.3.1 Gaussian unitary operations

All Gaussian unitary operations are the ones generated by a second-order Hamiltonian as

described in Eq. (2.3); eiĤt = ei(
1
2
r̂TH r̂+r̂Tr)t for some time duration t. As all Gaussian states

can be characterised by a finite-dimensional representation – by the first and second statistical

moments of r̂ – it is convenient to find out the effect of the unitary operation ei(
1
2
r̂TH r̂+r̂Tr)t on

this finite-dimensional representation.

Let us consider an N -mode CV quantum system. We firstly introduce an important operator
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called a Weyl operator defined as

D̂r := eir
TΩr̂

for some vector r ∈ R2N . Note that D̂†
r = D̂−r. The action of Weyl operators on the vector of

canonical operators r̂ is

D̂−rr̂D̂r = r̂− r , (2.8)

where the Weyl operator acts on each element of the vector r̂.4 Thus, Weyl operators simply

shift the expectation values of the first statistical moments of the canonical operators. Due to

this property, Weyl operators are also known as displacement operators in the quantum optics

context. Using Weyl operators, we can derive an alternative form of a generic second-order

Hamiltonian as

Ĥ =
1

2
(r̂− r)TH(r̂− r) =

1

2
D̂−rr̂

TH r̂D̂r . (2.9)

This new form is equivalent to Eq. (2.3) up to redefining r and an irrelevant constant. Eq. (2.9)

shows that any linear term in a second-order Hamiltonian shifts the vector of the canonical

operators r̂ by the constant vector r and can be represented by an action of displacement

operators on r̂.

Now, let us consider effects of the purely quadratic term 1
2
r̂TH r̂ in a second-order Hamiltonian

upon the vector of the canonical operators r̂. By definition, any valid unitary transformation

must preserve the CCRs when applied on the canonical operators. It can be shown that, in the

finite-dimensional picture, this condition is equivalent to preserve the symplectic form matrix Ω.

The group of such transformations is well known from classical Hamiltonian mechanics; the real

symplectic group in dimension 2N , Sp(2N), defined as the set of transformations such that for

4Note that D̂r is an operator acting on the full Hilbert space and thus acts on each canonical operator r̂i.
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all S ∈ Sp(2N)

SΩST = Ω .

Then, using the Heisenberg evolution of r̂ under the purely quadratic Hamiltonian 1
2
r̂TH r̂, we

can derive that

Û r̂Û † = SH r̂ , (2.10)

where Û = ei
1
2
r̂TH r̂ and SH = eΩH ∈ Sp(2N) [13, Section 3.2.2]. Here, we include the time t in

the Hamiltonian matrix H for simplifying the notation. Note that on the LHS, the unitary

operation Û acts on each entry of r̂, but on the RHS, the 2N ×2N symplectic matrix SH acts on

the 2N -dimensional vector r̂. Eq. (2.10) shows that applying the unitary operations induced by

1
2
r̂TH r̂ to the vector of the canonical operators r̂ has the same effect as applying the symplectic

transformation SH = eΩH to r̂ in the finite-dimensional picture. This manifests that not only

Gaussian states but also Gaussian unitary dynamics admit finite-dimensional representations.

The above observations allow us to derive the full description of Gaussian unitary dynamics

in the level of the statistical moments of r̂. A linear term in the second-order Hamiltonian

generates a displacement D̂r for some r ∈ R2N and maps the first moments r and the CM σ of

the initial state ρ into

r 7→ r + r ,

σ 7→ σ .

Similarly, a purely quadratic term 1
2
r̂TH r̂ in the second-order Hamiltonian generates a unitary

operation e
i
2
r̂TH r̂ and maps r and σ of the initial state ρ into

r 7→ SHr ,

σ 7→ SHσS
T
H ,
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where SH = eΩH ∈ Sp(2N).

Now, let us look into more details about the symplectic transformations generated by purely

quadratic Hamiltonians and what they can do. Symplectic transformations admit many useful

decompositions, and we will introduce the most relevant one here.

Proposition 1. (Singular value decomposition of symplectic transformations) Any symplectic

matrix S ∈ Sp(2N) admits the following decomposition:

S = O1ZO2 ,

where O1 and O2 are orthogonal symplectic matrices, i.e., O1, O2 ∈ Sp(2N) ∩O(2N)5, and

Z =
N⊕
i=1

zi 0

0 z−1
i

 .

The proof of Proposition 1 is outside of the scope of this thesis, and we refer to [13, Appendix

B.2] for the proof. We look into this decomposition more closely in the next two sections.

Passive transformations: phase shifters and beam splitters

Let us consider the free Hamiltonian Ĥfree which is an equally weighted sum of squares of all

canonical operators. It is not difficult to figure out that the Hamiltonian matrix H of Ĥfree

is the 2N × 2N identity matrix. The transformations O1 and O2 in Proposition 1 preserve

this identity matrix as they are orthogonal, i.e., OOT = OTO = 1. Physically, this means

that the transformations O1, O2 preserve the energy of the system. Thus, such transformations

are often called passive or energy-preserving transformations. There are two types of passive

transformations: phase shifters and beam splitters, and any passive symplectic transformation

can be decomposed into these two types of transformations.

A phase shifter is defined as the following symplectic transformation on the vector of (x̂i, p̂i)
T

5O(2N) refers to the orthogonal group in dimension 2N .
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of the corresponding mode i:

SPS(ϕ) :=

 cosϕ sinϕ

− sinϕ cosϕ


for some angle ϕ. If we consider the ladder operator âi = (x̂i + ip̂i)/

√
2 and its expectation

value αi = ⟨âi⟩, a phase shifter introduces an additional phase eiϕ to αi, which corresponds

to a rotation in the single-mode phase space associated with x̂i and p̂i. In other words, when

it’s applied to a coherent state |α⟩, which will be defined in Section 2.5, it maps the state into

another coherent state
∣∣eiϕα〉.

A beam splitter acts on two different modes and is defined with

SBS(ϕ) :=



cosϕ 0 sinϕ 0

0 cosϕ 0 sinϕ

− sinϕ 0 cosϕ 0

0 − sinϕ 0 cosϕ


for some angle ϕ. The value cos2 ϕ is often called the transmittivity of the beam splitter. Again,

if we consider the expectation values of the corresponding ladder operators, αi and αj, a beam

splitter rotates αi and αj of i-th and j-th modes to which it is applied.

Squeezing transformations

Now, let us move on to the other type of transformations, Z in Proposition 1. They are called

squeezing transformations and in general require additional energy to be realised.

A single-mode squeezing transformations is characterised by the following symplectic trans-

formation

S1SQ(r) :=

e−r 0

0 er

 (2.11)

for some r ∈ (−∞,∞). It contracts a canonical variable and expand the conjugate one. Single-
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mode squeezing transformations are generated by the Hamiltonian x̂p̂ = i(â†2 − â2).6 This

Hamiltonian does not commute with the free Hamiltonian, and thus it requires energy from an

external source to be realised. A two-mode squeezing transformation is defined with following

symplectic matrix:

S2SQ(r) :=



cosh r 0 sinh r 0

0 cosh r 0 − sinh r

sinh r 0 cosh r 0

0 − sinh r 0 cosh r


(2.12)

for some r ∈ (−∞,∞). This transformation is generated by the Hamiltonian of the form

i(â†1â
†
2 − â1â2) and requires an external energy source to be realised as well. When applied to

the vacuum state, these single- and two-mode squeezing transformations generate the single-

and two-mode squeezed vacuum states respectively, which will be defined in Section 2.5.

2.3.2 General Gaussian maps

Tensor products and partial trace

Appending another Gaussian state and discarding a subsystem both preserve the Gaussianity

of the initial state and thus are valid Gaussian operations. In the Hilbert space description,

they correspond to tensor product and partial trace, respectively. Here, we give their effects on

the finite dimensional description with the statistical moments r and σ. Firstly, consider a two

Gaussian states ρA and ρB which is characterised by (rA, σA) and (rB, σB), respectively. The

6Such Hamiltonian does not have a positive definite Hamiltonian matrix, i.e., H ̸> 0, and thus its thermal
state is not well-defined.
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tensor-product of two states, ρA ⊗ ρB, is characterised by

r =

rA

rB

 = rA ⊕ rB ,

σ =

σA 0

0 σB

 = σA ⊕ σB .

Thus, the tensor-product structure of the Hilbert space is converted into the direct-sum structure

in the finite dimensional description. Now, let us consider a Gaussian state ρAB which consists

of two subsystems A with m modes and B with n modes and is described by

r =

rA

rB

 and σ =

 σA σAB

σT
AB σB

 . (2.13)

Then, the state TrB [ρAB] (TrA [ρAB]) is a Gaussian state described by rA (rB) and σA (σB). It

is worth remarking that the off-diagonal term σAB in a CM with two subsystems of the form in

Eq. (2.13) can be related to the correlation between two subsystems.

Gaussian completely positive maps

Interaction with external environment, regardless of whether it was intended or not, often causes

non-unitary dynamics on the quantum system. The dynamics of open CV quantum systems

therefore allows us to define more general Gaussian operations, a class of Gaussian CP maps

or channels, which physically describe decoherence or noisy channels. There are two types of

Gaussian CP maps: trace-preserving maps and non-trace-preserving maps.

An N -mode Gaussian CPTP channel (or map) is a linear map EG acting on quantum states,

i.e., EG : ρ→ EG(ρ) ∈ D(HN ). A simple way to understand this channel is to use the Stinespring

dilation [21]. Consider a system in the input state ρ and an ancillary mode in the vacuum state

|0⟩E. The most general Gaussian CPTP channel can be represented by applying a Gaussian
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unitary operation ÛG to the system and the ancilla and then tracing out the ancillary mode:

EG(ρ) = TrE

[
ÛG (ρ⊗ |0⟩⟨0|E) Û †

G

]
.

It is shown that an ancilla with less than 2N modes is sufficient to realise any N -mode Gaussian

CPTP map [22, 23]. The action of a generic Gaussian CPTP channel on an N -mode Gaussian

state ρG with statistical moments r and σ can be fully described by two 2N × 2N real matrices

X and Y and a real vector r ∈ R2N as follows [24]:

r 7→ Xr + r , (2.14)

σ 7→ XσXT + Y .

The matrices X and Y must satisfy that

Y + iΩ ≥ iXΩXT ,

which ensures that the final CM satisfies the uncertainty relation Eq. (2.7).

For the case of non-trace preserving maps, we introduce one notable example in Section 2.3.3,

and for more general information, we refer to references [13, Section 5.4] since we do not explicitly

make use of them in this thesis.

Classical mixing

The set of Gaussian states is not convex; in general, classically mixing Gaussian states does

not preserve the Gaussianity of the initial state, and is a cheap way to create a non-Gaussian

state. A convex combination of Gaussian states is Gaussian only if they are weighted by a

Gaussian distribution. This Gaussian classical mixing, where the weight function is Gaussian, is

one simple example of Gaussian CPTP channels.

Gaussian classical mixing EGmix is the Gaussian CPTP-map defined in Eq. (2.14) with X = 1,

Y ≥ 0 and r = 0. When Y > 0, the N -mode Gaussian classical mixing can be simply expressed
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as

EGmix(ρ) =

∫∫
R2N

dr′
e−r′TY −1r′

πN
√

det(Y )
D̂r′ρD̂

†
r′ .

2.3.3 Homodyne detection

Gaussian measurements refer to all POVMs which preserve the Gaussianity of the initial state

after the detection, and form one example of non-trace-preserving Gaussian maps. In this

section, we will briefly revise homodyne detection, which is one of the Gaussian measurements

in the general-dyne category. This detection scheme will frequently appear in Part I.

A homodyne detection scheme performs the projective measurement of a canonical operator.

In other words, for a given state ρ, it aims at measuring the general quadrature operator

x̂ϕ = cosϕx̂+ sinϕp̂ with outcome probability

p(xϕ) = ⟨xϕ| ρG |xϕ⟩ ,

where {|xϕ⟩} are the eigenvectors of x̂ϕ.

It is well known that homodyne detection can be implemented with a clever optical trick

using a high intensity laser [20]. Let us assume that we want to measure the quadrature operator

x̂ϕ = cosϕx̂+ sinϕp̂. In terms of the ladder operators, it can be written as

x̂ϕ =
e−iϕâ+ eiϕâ†√

2
.

We mix the initial state ρ with a laser in a strong coherent state |α⟩ with α ≫ 17 at a 50:50

beam splitter. Then, the two output-modes of the beam splitter are described by

â1 =
â+ b̂√

2
, â2 =

â− b̂√
2
,

where b̂ denotes the ladder operator of the laser mode. What we want to do is to subtract the

7Coherent states are eigenvectors of the ladder operator â, i.e., â |α⟩ = α |α⟩, and can be generated by
applying the displacement operator to the vacuum state. They will be discussed in more details in Section 2.5.
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detected intensities of these two output-modes. Let us see how this process results in quadrature

measurements of x̂ϕ. What we observe is the following operator:

b⟨α|
(

1

2
(â+ b̂)†(â+ b̂) − 1

2
(â− b̂)†(â− b̂)

)
|α⟩b = b⟨α|

(
â†b̂+ âb̂†

)
|α⟩b ≈ αâ† + α∗â .

By adjusting the phase of the laser mode |α⟩b to ϕ, we can measure the target quadrature

operator up to a constant factor:

√
2|α|

(
e−iϕâ+ eiϕâ†√

2

)
=

√
2|α|x̂ϕ .

2.4 Normal-mode decomposition of Gaussian states

In this section, we will introduce a useful mathematical tool called the normal-mode decomposi-

tion, which leads to some significant observation about Gaussian states.

According to Williamson’s theorem [25], the following proposition holds:

Proposition 2. (Normal-mode decomposition) For any 2N × 2N real positive definite matrix

A, there exists a symplectic transformation S ∈ Sp(2N) such that

SAST = D with D =
N⊕
i=1

di12 (2.15)

with di > 0 ∀i, where 12 denotes the identity matrix of dimension 2.

Proof. Since A and D are real positive definite matrices, there exist the matrices A−1/2 and

D1/2. Then, the real matrix S satisfying Eq. (2.15) may be constructed by S = D1/2QA−1/2

for some Q ∈ O(2N). The remaining thing to show is that there exists an orthogonal matrix

Q ∈ O(2N) such that S is symplectic, i.e.,

SΩST =
(
D1/2QA−1/2

)
Ω
(
D1/2QA−1/2

)T
= D1/2QA−1/2ΩA−1/2QTD1/2 = Ω ,

where we used the facts that D = DT and A = AT. Let us focus on the matrix Ω′ ≡ A−1/2ΩA−1/2

in the middle. Ω′ is a real, anti-symmetric matrix: (i) It is real since both A and Ω are real
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matrices, and (ii) it is anti-symmetric as

(
A−1/2ΩA−1/2

)T
= A−1/2ΩTA−1/2 = −A−1/2ΩA−1/2 .

It is known that real anti-symmetric matrices are normal matrices and can be therefore

diagonalised via the spectral theorem. More specifically, there exists a unitary matrix which

transforms such matrix into a diagonal matrix with pure imaginary eigenvalues of the form

(id1,−id1, ..., idN ,−idN). Due to this property, it is also known that there exists an orthogonal

matrix Q ∈ O(2N) which brings a real anti-symmetric matrix Ω′ to the block-diagonal form

⊕N
i=1

1
di

Ω1, where Ω1 =

 0 1

−1 0

 is the 2 × 2 block in the symplectic form defined in Eq. (2.2).

If we choose such orthogonal matrix Q for Ω′, then we have

SΩST = D1/2Q
(
A−1/2ΩA−1/2

)
QTD1/2 = D1/2

(
QΩ′QT

)
D1/2 = D1/2

(
N⊕
i=1

1

di
Ω1

)
D1/2 .

If we choose D =
⊕N

i=1 di12, then we finally obtain

SΩST = D1/2

(
N⊕
i=1

1

di
Ω1

)
D1/2 =

N⊕
i=1

did
−1
i Ω1 = Ω .

Note that {di}i are all strictly positive since A is positive definite.

The diagonal elements {di}i are often called symplectic eigenvalues, and the normal mode

decomposition is also known as symplectic diagonalisation. Let us now consider a Gaussian state

ρG characterised by a number β > 0 and Hamiltonian Ĥ with Hamiltonian matrix H > 0 and r

according to the parametrisation in Definition 1. We apply Proposition 2 to the Hamiltonian

matrix H as follows:

H = S−1

(
N⊕
i=1

ωi12

)(
S−1

)T
(2.16)

for some S ∈ Sp(2N). Note that S is the symplectic transformation that maps H into the

normal form as described in Proposition 2, and its inverse always exists since H > 0. In the
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Hilbert space description, Eq. (2.16) leads to

r̂TH r̂ = r̂TS−1

(
N⊕
i=1

ωi12

)(
S−1

)T
r̂ = ÛS−1 r̂T

(
N⊕
i=1

ωi12

)
r̂Û †

S−1 (2.17)

= ÛS−1

(
N∑
i=1

ωi
(
x̂2i + p̂2i

))
Û †
S−1 ,

where ÛS−1 is the unitary operations defined as ÛS−1 r̂Û †
S−1 = S−1r̂. It is worth remarking what

Eqs. (2.16)-(2.17) imply. The symplectic transformation S−1 defines a new canonical degrees

of freedom since it preserves the CCRs. In this new set of degrees of freedom, all modes are

dynamically decoupled and oscillate like independent free harmonic oscillators. Thus, every

purely quadratic Hamiltonian with H > 0 is unitarily equivalent to a set of decoupled free

harmonic oscillators. The diagonal elements {ωi}i are the symplectic eigenvalues of H and

correspond to eigenfrequencies of the normal modes.

For our convenience, we will denote the Hamiltonian for a simple harmonic oscillator with

eigenfrequency ω as

Ĥω =
ω

2

(
x̂2 + p̂2

)
.

Then, using the expression in Eq. (2.9), a generic second-order Hamiltonian can be written as

Ĥ =
1

2
(r̂− r)TH (r̂− r) = D̂−rÛS−1

(
N∑
i=1

Ĥωi

)
Û †
S−1D̂r .

Applying this result to the expression of the Gaussian state ρG in Definition 1 obtains

ρG = D̂−rÛS−1

(⊗N
i=1 e

−βĤωi

)
∏N

i=1 Tr
[
e−βĤωi

] Û †
S−1D̂r , (2.18)

which shows that every Gaussian state is also unitarily equivalent to a tensor-product of single-

mode thermal states, where each mode has the eigenfrequency ωi. For the pure-state case, the
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expression becomes

lim
β→∞

ρG = D̂−rÛS−1

(
N⊗
i=1

|0⟩⟨0|
)
Û †
S−1D̂r .

Therefore, all pure Gaussian states are the consequences of applying Gaussian unitary operations

to the vacuum state.

Now, let us look at the consequence of Eq. (2.18) for the CM of the Gaussian state ρG.

Using the Fock basis and the fact that the Hamiltonian of a simple harmonic oscillator can

be rephrased as Ĥω = ω
(
n̂+ 1

2

)
, we can derive the representation of ρG in the Fock basis as

follows:

ρG =

(
N∏
i=1

(
1 − e−βωi

))
D̂−rÛS−1

(
N⊗
i=1

(
∞∑
n=0

e−βωin |n⟩⟨n|j

))
Û †
S−1D̂r , (2.19)

where |n⟩j refers to the corresponding number state of j-th mode. Calculating the CM of ρG

using Eq. (2.19) obtains

σ = Tr
[{

(r̂− r), (r̂− r)T
}
ρG
]

=

(
N∏
i=1

(
1 − e−βωi

))
Tr

[
Û †
S−1D̂r

{
(r̂− r), (r̂− r)T

}
D̂−rÛS−1

(
N⊗
i=1

(
∞∑
n=0

e−βωin |n⟩⟨n|i

))]

=

(
N∏
i=1

(
1 − e−βωi

))
Tr

[
Û †
S−1

{
r̂, r̂T

}
ÛS−1

(
N⊗
i=1

(
∞∑
n=0

e−βωin |n⟩⟨n|j

))]

=

(
N∏
i=1

(
1 − e−βωi

)) (
S−1

)T
Tr

[{
r̂, r̂T

}( N⊗
i=1

(
∞∑
n=0

e−βωin |n⟩⟨n|j

))]
S−1

=
(
S−1

)T( N⊕
i=1

1 + e−βωi

1 − e−βωi
12

)
S−1 ≡

(
S−1

)T( N⊕
i=1

νi12

)
S−1 , (2.20)

where in the third line we exploited the property of displacement operators in Eq. (2.8), and

in the last line we used the properties of the Fock basis to evaluate the expectation values of

different combinations of the canonical operators8 and defined νi ≡ 1+e−βωi

1−e−βωi
≥ 1 in the last line.

8For more details, please see [13, Section 3.3].
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The last expression in Eq. (2.20) is referred to as the normal-mode decomposition of the CM,

and {νi}i are called the symplectic eigenvalues of the CM. The normal-mode decomposition

of the CM indicates that the CM contains all the information about S−1 and the symplectic

eigenvalues of the Hamiltonian matrix H generating the Gaussian state, which is consistent

with the fact that any Gaussian state can be fully characterised by its r and the CM σ.

The normal-mode decomposition of the CM in Eq. (2.20) can give more implication regarding

the uncertainty relation σ + iΩ ≥ 0 introduced in Eq. (2.7). As any symplectic transformation

preserves the symplectic form matrix Ω, applying the symplectic transformation, which maps σ

into its normal form, to the both sides of the uncertainty relation obtains

(
N⊕
j=1

νj12

)
+ iΩ =

N⊕
j=1

νj i

−i νj

 ≥ 0 ,

which is equivalent to

νj ≥ 1 ∀j . (2.21)

Also, if we look at a single-mode case, we can infer that

det

νj i

−i νj

 ≥ 0 ⇐⇒ ν2j ≥ 1 ⇐⇒ det (νj12) ≥ 1 .

Since (i) the determinant is a multiplicative map and (ii) all symplectic matrices have the

determinant 1, det
(
S (νj12)S

T
)
≥ 1 still holds for a generic CM σ = S (νj12)S

T . Then, we

have σ11σ22 − σ12σ21 ≥ 1 where σij denotes the (i, j)th-element of σ, and it implies σ11σ22 ≥ 1.9

If we remind ourselves that the diagonal elements of the CM is related to two times the variance

of the corresponding canonical operator, 2∆r̂2i = 2
(
⟨r̂2i ⟩ − ⟨r̂i⟩2

)
, the above relation recovers

the usual Heisenberg uncertainty relation for a pair of the canonical operators:

∆x̂2∆p̂2 ≥ 1

4
. (2.22)

9Any CM is a symmetric matrix, and thus σ12 = σ21.
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2.5 Examples of pure Gaussian states

In this section, we provide a few notable examples of pure Gaussian states frequently appeared

in the literature.

Coherent states

The coherent state |α⟩ of a single-mode CV quantum system is the eigenvector of the ladder

operator â = (x̂+ ip̂)/
√

2 with eigenvalue α = (x+ ip)/
√

2:

â |α⟩ = α |α⟩ .

It can be generated from the vacuum state |0⟩ via the Displacement operator D̂−r = D̂α =

eαâ
†−α∗â where r = (x, p)T such that α = (x+ ip)/

√
2:

D̂α |0⟩ = |α⟩ .

It is also well-known that coherent states can be expressed in the Fock basis as

|α⟩ = e−
|α|2
2

∞∑
n=0

αn√
n!

|n⟩ .

The coherent states form a non-orthogonal but complete set for the Hilbert space, in a sense

that

1

π

∫
C
|α⟩⟨α| d2α = 1̂ .

In terms of the finite dimensional description, a coherent state |α⟩ is characterised by the CM

σ = 1 and the first moment vector r =
√

2 (Re(α), Im(α))T. Note that coherent states saturate

the inequality in Eq. (2.21) as well as the uncertainty relation in Eq. (2.22).
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Squeezed states

A single-mode squeezed state is a state resulted from applying a single-mode squeezed transfor-

mation, defined via symplectic matrix S1SQ(r) in Eq. (2.11), to a coherent state |α⟩;

|α, r⟩1SQ := Û1SQ(r)D̂α |0⟩ ,

where Û1SQ(r) = er(â
2−â†2) is the squeezing operator associated with S1SQ(r). When the original

coherent state is the vacuum state, the state is particularly called the single-mode squeezed

vacuum state. |α, r⟩1SQ has the same first moment vector r =
√

2 (Re(α), Im(α))T as the original

coherent state but a different CM

σ1SQ =

e−2r 0

0 e2r

 . (2.23)

Notice that one of the diagonal elements is squeezed, but the other one is anti-squeezed compared

to the CM of coherent states. σ1SQ in Eq. (2.23) also saturates the uncertainty principle in

Eq. (2.22), but one of the variances of the canonical operators is below the vacuum level. This

property is desirable when one needs a small statistical deviation. For example, squeezed

states are widely used to enhance precision measurements in a wide range of physical platforms

including phase-squeezed light in interferometric measurements [26] and spin squeezed states for

atomic clocks [27, 28].

A two-mode squeezed state can be generated by applying a two-mode squeezed transformation

defined with Eq. (2.12) to a two-mode coherent state |α⟩:

|α, r⟩2SQ := Û2SQ(r)D̂α |0⟩

with α = (α1, α2)
T. Û2SQ(r) = er(â1â2−â

†
1â

†
2) is the two-mode squeezing operator in the Hilbert

space. When the original coherent state is the vacuum state, the resulting state is often called

the two-mode squeezed vacuum state. Two-mode squeezed states have the first moment vector
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r =
√

2 (Re(α1), Im(α1),Re(α2), Im(α2))
T and the CM

σ2SQ =



cosh(2r) 0 sinh(2r) 0

0 cosh(2r) 0 − sinh(2r)

sinh(2r) 0 cosh(2r) 0

0 − sinh(2r) 0 cosh(2r)


. (2.24)

The two-mode squeezed vacuum state can be decomposed into the Fock basis as

|0, r⟩2SQ =
1

cosh r

∞∑
n=0

(tanh r)n |n, n⟩ .

This expression clearly shows that the two modes of the two-mode squeezed vacuum state

are entangled. Indeed, we can establish this entanglement in another way. Let us define new

operators x̂± := (x̂1 ± x̂2)/
√

2 and p̂± := (p̂1 ± p̂2)/
√

2. From the CM in Eq. (2.24), we can

check that

∆x̂2− = ∆p̂2+ = e−2r , ∆x̂2+ = ∆p̂2− = e2r .

Thus, each two canonical operators are correlated and have one direction with squeezed variance

and the other with anti-squeezed variance. When r → ∞, the state |0, r⟩2SQ goes to the uniform

superposition of the tensor products of the same number states, which is analogous to the

maximally entangled state in discrete variable quantum systems. Therefore, this non-physical

state with r → ∞ is sometimes referred to as the EPR state in CV quantum systems.

2.6 Phase-space representation of Gaussian states

The finite-dimensional description of Gaussian states with their statistical moments of the

canonical operators opens the door for us to develop another expedient description of quantum

states: the phase space representation. In this section, we describe how we can characterise

quantum states in the phase space associated with the canonical operators, which is remindful

of the classical phase space.

48



CHAPTER 2. BACKGROUND THEORY: QUANTUM CONTINUOUS VARIABLES

The construction of the phase space starts from the Fourier-Weyl relation, which is a

mathematical tool connecting operators on the Hilbert space of a CV quantum system to

functions of 2N variables. The relation is based on the fact that the displacement operators D̂r

form an orthogonal complete set in L2(RN ) with respect to the Hilbert-Schmidt scalar product.

It can be stated as

ρ =
1

(2π)N

∫
R2N

drTr
[
D̂−rρ

]
D̂r ≡

1

(2π)N

∫
R2N

drχ(r)D̂r , (2.25)

where dr = dx1dp1...dxNdpN , and we define a function

χ(r) := Tr
[
D̂−rρ

]
.

Note that Eq. (2.25) holds for not only density operators but for general bounded operators on

the Hilbert space. The function χ(r) offers full information about the state ρ and is often called

the characteristic function of the quantum state. We can observe that

χ(0) = Tr [ρ] = 1 ,

and thus the normalisation condition of the density operator indicates that the value of the

characteristic function at the origin is 1. Due to the hermiticity of ρ, the function χ(r) also

satisfies

χ(r) = χ∗(−r) .

Taking the Fourier transform of the characteristic function χ(r) gives us the quasi-probability

distribution W (r) in the phase space:

W (r) =
1

(
√

2π)2N

∫
R2N

dr′e−ir
′TΩTrχ(r′) .

The function W (r) is often called the Wigner function named after Eugene Wigner who first

introduced the concept [29]. To see the physical implication of W (r), let us consider a simple
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single-mode case. We can observe that

W (x, p) =
1

2π2

∫∫
R2

dx′dp′ei(px
′−xp′)χ(x′, p′) =

1

2π2

∫∫
R2

dx′dp′ei(px
′−xp′)

∫
R

dq ⟨q| D̂−rρ |q⟩

=
1

2π2

∫∫
R3

dx′dp′dqei(px
′−xp′) ⟨q| D̂− r

2
ρD̂− r

2
|q⟩ ,

where we used the quadrature eigenvectors {|q⟩} to evaluate the trace. The displacement

operator D̂− r
2

can be expressed as

D̂− r
2

= e−
i
2
(x′p̂−p′x̂) = e−i

x′
2
p̂ei

p′
2
x̂ei

x′p′
8 = ei

p′
2
x̂e−i

x′
2
p̂e−i

x′p′
8

using the Baker-Campbell-Hausdorff formula

eÂ+B̂ = eÂeB̂e−[Â,B̂]/2 .

Then, we have

W (x, p) =
1

2π2

∫∫
R3

dx′dp′dq eipx
′
eip

′(q−x)
〈
q +

x′

2

∣∣∣∣ ρ ∣∣∣∣q − x′

2

〉
=

1

π

∫
R

dx′eipx
′
〈
x+

x′

2

∣∣∣∣ ρ ∣∣∣∣x− x′

2

〉
=

2

π

∫
R

dx′e2ipx
′ ⟨x+ x′| ρ |x− x′⟩ .

This implies that

1

2

∫
R

dp W (x, p) = ⟨x| ρ |x⟩ ,

and thus the integral of the Wigner function over one quadrature gives the physical probability

distribution of measuring the conjugate quadrature, which is same as the outcome probability

distribution of homodyne detection for the conjugate quadrature. This argument is phase

invariant; it works for any general quadrature operator defined as x̂θ = cos θx̂− sin θp̂.

The characteristic function and Wigner function of a generic N -mode Gaussian state ρG
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have the forms

χρG(r) = e−
1
4
rTΩTσΩreir

TΩTr

WρG(r) =
2N

πN
√

det(σ)
e−(r−r)Tσ−1(r−r) ,

where r and σ are the first moment vector and the CM of ρG, respectively. This again

demonstrates that every Gaussian state can be fully characterised by its first moments and CM

and strengthens the connection with the classical Gaussian distributions.

2.7 Further reading

In this section, we introduce some selected topics on continuous variable quantum systems,

which help us read through this thesis. We omitted some derivations and detailed calculations

of mathematical results in this section when they are not particularly helpful for this thesis. CV

quantum systems and the Gaussian framework are broad research topics which may require

a whole text book to provide all relevant information. We kindly refer to a textbook [13] or

review papers [19, 20] for more broad introductions on CV quantum systems and CV quantum

information processing.
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Chapter 3

Background theory: quantum resource

theories

A physical task in general comes with restrictions, such as a limited set of tools or a distance

between parties. These restrictions play an important role of determining which physical

operations we can or cannot perform without requiring more resources. An optimal way to

succeed the task would be to achieve the goal with these ‘allowed’ operations and as least

additional resources as possible. Resource theories capture this basic structure existing in any

physical task and provide a mathematical framework in which we can explore the physical

implications that this structure draws.

In this chapter, we introduce a useful, versatile mathematical tool in quantum information

theory called quantum resource theories (QRTs). Although the concept of resource theories can

be applied far beyond quantum physics, in this thesis we only focus on the ones admitting the

structure of quantum theory. The mathematical platform provided by QRTs helps us identify

resourceful physical quantities or effects for given restrictions, and this allows us to derive state

transformation conditions without using any identified resources. The state transformation

conditions imply a hierarchical structure of quantum states which is then related to a question

of quantifying the resource present in each state. QRTs have been successfully applied to

various topics in quantum information theory including the most notable example of the resource

theory of entanglement [30] as well as resource theories of magic [31, 32], asymmetry [33, 34]
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and thermodynamics [35, 36]. Although the details depend on the specific choice of physical

resources, QRTs admit a well-established universal structure, and there have been developed

systematic ways of quantifying the resource of interest, such as entropic measures and geometric

measures [30, 37]. There are also mathematical techniques proven to be useful in different QRTs

like majorisation [38].

In Section 3.1, we first look at the general structure of quantum resource theories including

their two key ingredients, allowed operations and free states, and the relation between the two.

Then, we move on to the state-convertibility problem in Section 3.2, which is one of the basic

physical tasks that can be studied via QRTs. We introduce a useful mathematical tool called

majorisation whilst discussing about the single-shot convertibility problem. In Section 3.3, we

study how to quantify the amount of resources present in a state and introduce an important

concept called resource monotones. Lastly, we generalise all these concepts to the case when

there exist more than one resource in Section 3.4. This chapter is written based on [37, 39].

3.1 The general structure of quantum resource theories

In this section, we describe the general mathematical structure of QRTs. We only focus on

the construction of QRTs for static resources; in other words, QRTs involving interconversions

between quantum states. For the case considering resource theories of quantum processes, we

refer to [40, 41].

Our main objects in this section are quantum systems with some given physical restrictions

and state transformations acting on these systems. A quantum system is associated by a Hilbert

space H which can be either finite- or infinite-dimensional, and a possible state of the system is

represented by a density operator acting on H. Recall that we denote the set of all bounded

operators on H by B(H), the set of all quantum states (density operators) in H by D(H), and

the set of all CP maps from B(Hin) to B(Hout) by C(Hin,Hout)
1. A quantum resource theory R

of resource f can be defined with two key ingredients: the set of free states F and the allowed

operations O. In simple words, the set of free states F is a subset of all quantum states D(H),

1If the input and output Hilbert spaces are the same, i.e., Hin = Hout = H, we simply denote it by C(H).
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i.e., F ⊆ D(H), consisting of all states which do not possess any resource f ; i.e., it is the set

of all states which can be produced for free under the given restrictions. The set of allowed

operations O is a set of linear maps acting on H which preserve F , i.e., which do not create any

resource from a free state. We state the formal definition of the QRT as follows.

Definition 2. A quantum resource theory R of resource f is defined by the tuple R = (F ,O),

where each of F and O is a subset of D(H) and C(H) respectively, satisfying the following

golden rule of QRTs: for any ρ ∈ F and Γ ∈ O, it holds that Γ(ρ) ∈ F .

Note that we allow the input and output Hilbert spaces to be different. In that case, a more

rigorous description of F should be made. As any quantum state can be regarded as a quantum

channel preparing the state, we can define the set of free states F(H) as a subset of C(C,H) for

the corresponding Hilbert space H. Then, free states F(Hin) and allowed operations O(Hin,Hout)

are a subset of C(C,Hin) and C(Hin,Hout) respectively, and the golden rule can be stated that

for any ρ ∈ F(Hin) and Γ ∈ O(Hin,Hout), it holds that Γ(ρ) ∈ F(Hout). Imposing the golden

rule of QRTs is important as it prevents the QRT to become trivial; otherwise, there exists a

pair of a free state ρfree and an allowed operation Γ such that Γ(ρfree) ∈ D(H) \ F(H), which

means that the resource can be obtained for free.

By definition, we always include the identity channel in the allowed operations. We also

assume that QRTs admit the tensor-product structure, which means that (i) all allowed

operations are completely free, i.e., if ΓA ∈ O(HA), then IE ⊗ ΓA ∈ O(HE ⊗HA) with identity

map IE on B(HE), (ii) appending an ancillary system in a free state ρE ∈ F(HE) is free, and (iii)

discarding subsystems (partial trace) is free. These last two points imply the interconvertibility

between free states via allowed operations; for any pair of free states, ρ and σ, ρ can be

transformed into σ by allowed operations, and vice versa.

When defining a QRT, one can start from either given free states or given allowed operations.

In both cases, the other element should be chosen carefully so that the golden rule of QRTs is

satisfied. For example, in the QRT of entanglement, the given physical restrictions, spatially

separated parties without quantum communication channel, naturally determine the allowed

operations as the set of local operations and classical communications (LOCC). Then, the free

states are defined as all states which can be prepared with LOCC operations, which are separable
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states. When the allowed operations are given first, the set of free states F(H) consistent with

the golden rule of QRTs is unique2 and given by

Fmin(H) := {ρ | ∀σ ∈ D(H), ∃Γ ∈ O s.t. Γ(σ) = ρ} . (3.1)

On the other hand, in the QRT of coherence, it is more natural to define the set of free states as

all quantum states without coherence in certain basis and then figure out the appropriate allowed

operations. In this case, there can be many different choices of the allowed operations for given

free states, which are consistent with the golden rule of QRTs. For example, we can consider as

allowed operations the set of resource non-generating (RNG) operations defined as all CPTP

maps Γ ∈ C(Hin,Hout) such that Γ(ρ) ∈ F(Hout) for all ρ ∈ F(Hin), or the set of ‘completely’

resource non-generating (CRNG) operations, which are all CPTP maps Γ ∈ C(Hin,Hout) such

that Ik ⊗ Γ ∈ C(Ck ⊗Hin,Ck ⊗Hout) is a resource non-generating map for all positive numbers

k. The two sets are not the same — in fact, it holds that CRNG ⊂ RNG — and each is a valid

set of allowed operations satisfying the golden rule.

We learned how to define QRTs and their general structure in this section. States belonging

to D(H)\F(H) are regarded as resourceful states. We now want to look at some simple physical

task which can be studied based on the defined structure of QRTs: the convertibility between

resourceful states.

3.2 State convertibility

One of the basic information-theoretic tasks that can be studied with QRTs is the convertibility

between different quantum states via allowed operations; namely, under the given restrictions.

Let us consider a QRT R = (F ,O). For simplicity, we henceforth assume that the input and

output Hilbert spaces are the same and omit H in the notations of F and O.

2This is true when we assume that QRTs admit the tensor-product structure.
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3.2.1 Single-shot case

The most basic scenario of the convertibility problem is the conversion of one resourceful state

into another using allowed operations. For some quantum states ρ and σ, if there exists Γ ∈ O

such that Γ(ρ) = σ, we write

ρ
O−→ σ . (3.2)

We are interested in finding the necessary and sufficient conditions for the transformation of a

given input state into a given output quantum state via allowed operations. In general, it is

a difficult task to derive precise state-transformation conditions, and they highly depend on

detailed properties of the free states and the allowed operations. Nevertheless, we present one

example, the QRT of pure bipartite entanglement [38], which has well-established single-shot

state-transformation conditions. It provides a good demonstration of the important role played

by the mathematical tool called majorisation, which is also applicable to other QRTs.

Before looking at the state-transformation conditions in the QRT of pure bipartite entan-

glement, let us introduce the notion of majorisation. Majorisation is a preorder between real

vectors defined as follows.

Definition 3. (Majorisation) Given two vectors x,y ∈ Rd with non-negative elements, we say

that x ‘majorises’ y written as x ≻ y if and only if

k∑
i=1

x↓i ≥
k∑
i=1

y↓i ∀k ∈ {1, ..., d} ,

where z↓ for some real vector z denotes the vector with same components but sorted in descending

order.

Majorisation has many applications in areas beyond physics such as gambling theory and

economics, and it has also demonstrated its usefulness when applied to QRTs, mainly in the

QRT of entanglement and thermodynamics.

The QRT of pure bipartite entanglement considers two spatially separated quantum systems

without quantum communication channel. The allowed operations are naturally identified as
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LOCC. As the allowed operations are given, we can easily find the consistent free states using

Fmin defined in Eq. (3.1) but with state space restricted to pure quantum states, i.e., unit

vectors in H. By construction, this set includes all pure quantum states which can be generated

by LOCC starting from any other pure states and is given by all pure product states3. Then,

using the Schmidt decomposition, any pure bipartite state |ψ⟩AB ∈ HAB can be written in the

form of

|ψ⟩AB =
d∑
i=1

√
λψi |ai⟩A ⊗ |bi⟩B ,

where λψi ≥ 0 for all i and
∑d

i=1 λ
ψ
i = 1. We assumed that the two Hilbert spaces HA and HB

have the same dimension d, i.e., dim(HA) = dim(HB) = d. The values {λψi }i are often called

Schmidt coefficients of the state |ψ⟩AB. For a given pure bipartite state |ψ⟩AB, let us define a

vector of its Schmidt coefficients as S(|ψ⟩) = (λψ1 , ..., λ
ψ
d )T. Then, Nielsen majorisation theorem

[38] states that for given pure bipartite states |ψ⟩AB , |ϕ⟩AB ∈ HAB,

|ψ⟩AB
LOCC−−−−→ |ϕ⟩AB iff S(|ψ⟩) ≺ S(|ϕ⟩) . (3.3)

Thus, the necessary and sufficient conditions of the single-shot convertibility in the QRT of

pure bipartite entanglement are simply given by the majorisation relation between vectors of

Schmidt coefficients.

The state transformation condition like Eq. (3.3) gives preorders to resourceful states, which

implies a hierarchical structure of the state space in a QRT under the allowed operations. This

allows us to compare resources present in different resourceful states even without defining a

proper resource measure; for given two states ρ, σ, if ρ
O−→ σ, it is safe to assume that ρ is at least

as resourceful as σ since we can generate σ from ρ without any additional resource. However,

comparing resources based on the convertibility is restricted as there are lots of states which are

not interconvertible, and state transformation conditions usually fail to form a total order. This

highlights a necessity of more sophisticated ways to quantify and compare resources present in

arbitrary resourceful states, and this is the topic of Section 3.3. Before moving on to that, we

3For the case of general bipartite entanglement, the free states Fmin identified by LOCC are separable states.
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introduce a few important variants of the convertibility problem.

Catalytic transformation

Majorisation also implies a remarkable concept in QRTs, the existence of catalysis. A catalyst,

named after catalysts in chemical catalysis process, is a state of an ancillary system which makes

a certain state transformation with allowed operations possible while remaining unchanged

during the process. More specifically, a state τ is called a resource catalyst for the transformation

from ρ to σ if

ρ
O
̸→ σ and ρ⊗ τ

O−→ σ ⊗ τ . (3.4)

The existence of such catalysts in QRTs is not obvious but was first spotted by the authors of

[42] for the QRT of pure bipartite entanglement. Let us consider two bipartite quantum states

|ψ⟩AB and |ϕ⟩AB with following vectors of Schmidt coefficients

S(|ψ⟩) =

(
2

5
,
2

5
,

1

10
,

1

10

)T

, S(|ϕ⟩) =

(
1

2
,
1

4
,
1

4
, 0

)T

.

Using the definition of majorisation in Definition 3, we can check that neither S(|ψ⟩) ≺ S(|ϕ⟩)

nor S(|ϕ⟩) ≺ S(|ψ⟩); up to the first element, 2/5 < 1/2 but up to the second element,

2/5 + 2/5 > 1/2 + 1/4. Thus, they are not interconvertible, i.e., neither can be converted

into each other via LOCC. However, if we introduce an ancillary system in |χ⟩A′B′ with

S(|χ⟩) = (3/5, 2/5)T, then it is not difficult to check that

S(|ψ⟩) ⊗ S(|χ⟩) ≺ S(|ϕ⟩) ⊗ S(|χ⟩) .

That is, the state |χ⟩ acts as a catalyst which enables the otherwise impossible transformation

|ψ⟩ LOCC−−−−→ |ϕ⟩.

As we have seen with the above example, allowing catalysts generally enlarges the set of

allowed operations in QRTs. We call the new set of allowed operations with possibility of

using catalysts as catalytic allowed operations. Catalysts play an important role in QRTs.
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Especially, in the QRT of quantum thermodynamics, introducing catalysts is operationally

motivated as it allows us to study the full picture of quantum thermodynamical processes

involving experimental apparatus. It has been shown that the state transformation conditions

for cyclic thermal processes including catalysts are characterised by a family of free energies,

which generalises the traditional second law of thermodynamics [35]. Similar results, that the

state transformation conditions under catalytic allowed operations are characterised by a family

of functions, have been reported for the bipartite pure entanglement [43] and also for the more

general case of the mathematical majorisation relation [44].

Non-exact convertibility

We have so far studied exact state transformations as in Eq. (3.2) and (3.4). However, considering

exact state transformations is usually too strict and not physically relevant as real experiments

always involve errors or noise. There have been developed several variants of alternative resource

transformations inspired by this issue, and we introduce a couple of notable examples in this

section.

The first variant is to consider the approximate transformation in which the initial state

is transformed to a state ‘close’ enough to the final state. The ‘closeness’ between states can

be determined by fidelity or a mathematical distance measure of choice [35, 45]. A common

technique for this generalisation is to introduce the smoothing. Let us consider a quantum state

ρ. We define an ϵ-smoothing ball around ρ as

BD
ϵ (ρ) := {ρ̃ | D(ρ, ρ̃) ≤ ϵ} ,

for some distance measure D. Then, we write

ρ
O−→ϵ σ

if there exists Γ ∈ O such that Γ(ρ) = σ′ where σ′ ∈ BD
ϵ (σ). When also including catalysts

to approximate transformation, one faces different ways to define the ‘closedness’, and this

has been a fruitful source of interesting results across different QRTs. One notable example
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is resource embezzling, first discovered in [45] in the QRT of entanglement, where any state

transformation becomes possible under allowed operations with large enough catalysts if the

bound on ϵ is not carefully chosen. Also, in the QRT of thermodynamics, it has been shown

that one can recover a single inequality condition describing the second law of thermodynamics

when one allows final correlation between the system and the catalyst and only requires the

local catalytic state to return to the original state [46].

Another variant is to relax the condition that the state transformation should be deterministic.

One can instead consider a probabilistic or stochastic transformation from one quantum state to

another. For quantum states ρ, σ, we say a probabilistic transformation from ρ to σ is possible

and write

ρ
O−→p σ

if there exists Γ ∈ O such that Γ(ρ) results in σ with nonzero probability. A notable result in

this direction is the work by Bennett et al. showing that every bipartite partially entangled

state can be transformed into a maximally entangled state with nonzero probability [47].

3.2.2 Many-copy case

In this section, we consider the case when we have access to many copies of the initial state

and investigate the convertibility of multiple copies of quantum states under allowed operations.

Considering this many-copy scenario, which is also called the asymptotic scenario, can be seen

as one approach to relax the exact state transformation and make more states interconvertible.

The generalisation of F and O to the many-copy case is straightforward. We now consider an

initial state of the form ρ⊗N ∈ D(H⊗N). For this tensor-product Hilbert space H⊗N , the sets

of allowed operations O(H⊗N) and free states F(H⊗N) are subsets of C(H⊗N) and D(H⊗N)

respectively and satisfy the golden rule of QRTs.

In the asymptotic scenario, the primary research topic is the rate of conversion between two

quantum states. For given two quantum states ρ, σ on H, a rate of conversion from ρ to σ is

a number R such that for every R′ < R and ϵ > 0 there exists a sufficiently large integer N
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satisfying

ρ⊗N
O−→ϵ σ

⊗⌊NR′⌋.

The optimal rate R(ρ → σ) is then defined as the supremum of all Rs satisfying the above

condition. As free states can be prepared for free by definition, R(ρ→ σ) = +∞ for any σ ∈ F .

Also, one can expect that R(ρ→ σ) = 0 for any ρ ∈ F and σ ̸∈ F .

An important protocol in the asymptotic scenario is resource distillation. In resource

distillation protocols, one studies the possibility/optimal rate of conversions of multiple copies

of a less resourceful state ρ into less copies of a more resourceful state σ, in which R(ρ → σ)

is less than 1. For example, in the QRT of bipartite entanglement, it is of interest to distill

the maximally entangled state |Φ⟩AB from many copies of a partially entangled state with

LOCC [47–49]. The quantity R(ρ→ |Φ⟩⟨Φ|) is particularly called the distillable entanglement

of ρ, and the rate for the reverse protocol R(|Φ⟩⟨Φ| → ρ) is called the entanglement cost of ρ.

This asymptotic scenario also raises the interesting problem known as reversibility. For given

quantum states ρ, σon H, they are called reversible if R(ρ→ σ)R(σ → ρ) = 1. In this case, we

can perform a cyclic transformation ρ→ σ → ρ without loss of any resources in the asymptotic

rate. Except a few examples with specific sets of allowed operations [50, 51], most QRTs however

exhibit resource irreversibility in their state transformations; R(ρ→ σ)R(σ → ρ) < 1 for some

ρ, σ. The irreversibility in QRTs then revealed the existence of states with bound entanglement

[52], which have non-zero entanglement cost but zero distillable entanglement, and analogs in

other QRTs [53, 54].

3.3 Quantifying resources: monotones

In this section, our focus is on quantifying the amount of resources in an arbitrary quantum

state for the given QRT R. As we have already mentioned, state transformation conditions

under allowed operations give us some guidance to how we develop resource measures. If a state

ρ can be transformed into another state σ under allowed operations, we can rightfully assume

that ρ is at least as resourceful as σ. In addition, the structure of QRTs provides some insights
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into desirable properties of resource measures.

A typical resource measure in QRTs is a resource monotone. A resource monotone is a

non-negative function M : D(H) → R≥0 such that

M(ρ) ≥M(Γ(ρ)) ∀ρ ∈ D(H) ,∀Γ ∈ O . (3.5)

The property in Eq. (3.5) is called the monotonicity under allowed operations, from which the

name ‘monotone’ came from. It assures that the amount of resource present in a quantum

state never increases under allowed operations and reflects the golden rule of QRTs. Another

fundamental property of any resource measure is that it should vanish for any free state:

M(ρ) = 0 if ρ ∈ F . (3.6)

Due to our assumption on the interconvertibility between free states, the monotonicity auto-

matically implies M(ρ) = M(σ) for any ρ, σ ∈ F , and we can always make this property in

Eq. (3.6) satisfied by adding a constant to M so that M(ρ) = 0 for any ρ ∈ F .

There are a few non-essential but desirable properties for resource measures easily found

in the literature. The first one is faithfulness saying that the converse of Eq. (3.6) is also true:

M(ρ) = 0 if and only if ρ ∈ F . This property is convenient when one’s task is to distinguish

resourceful states from free states, but for example distillable entanglement famously does not

satisfy the faithfulness [52]. The second property is the convexity defined as

M(
∑
i

piρi) ≤
∑
i

piM(ρi)

for any ensemble of quantum states {ρi}i and probability distribution {pi}i. It is a desirable

property as computing a resource monotone, which often involves optimisation, can take

advantage of well-studied convex optimisation problems if the monotone satisfies the convexity

[55]. Another desirable property is the subadditivity: a function f is called subadditive if

f(ρ⊗ σ) ≤ f(ρ) + f(σ)
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for any ρ, σ ∈ D(H). If the equality holds, the function f is called additive. The subadditivity

is common among resource monotones in QRTs while the additivity is a very strong property

and rare. Nevertheless, there is a procedure called regularisation for constructing a new resource

monotone which is additive on multi-copies of the same state. For a given resource monotone

M : D(H) → R≥0, the regularised version M∞ is defined as

M∞(ρ) = lim
n→∞

1

n
M(ρ⊗n)

with assumption that the limit exists. By definition, M∞ is additive on the same state;

M∞(ρ⊗n) = nM∞(ρ).

Different QRTs have different resource monotones, and there can be also several different

monotones for the same QRT. In the remaining of this section, we will introduce one famous

type of resource monotones applicable to general QRTs.

Distance-based monotones

Distance-based monotones are a family of monotones that can be constructed in any QRTs

when given the set of free states. The idea is that we can quantify the amount of resource in a

quantum state by measuring how far the state is from the set of free states. To measure this

‘distance’ between a given quantum state and the set of free states, we employ a contractive

metric for the state space. A metric function d : (D(H),D(H)) → R≥0 is called contractive if

for any pair of quantum states ρ, σ ∈ D(H) and for any CPTP map Φ, it holds that

d(Φ(ρ),Φ(σ)) ≤ d(ρ, σ) .

With such d, we can then define a resource monotone for any QRT as

Md(ρ) = inf
σ∈F

d(ρ, σ) .
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It is not difficult to check the monotonicity of Md: let us consider a quantum state ρ and an

allowed operation Γ ∈ O. Then, we have

Md(Γ(ρ)) = inf
σ∈F

d(Γ(ρ), σ)

≤ inf
σ′∈F

d(Γ(ρ),Γ(σ′))

≤ inf
σ′∈F

d(ρ, σ′) = Md(ρ) ,

where we restricted the optimisation set to the image of Γ in the second line as Γ(F) ⊆ F for all

Γ ∈ O and used the contractive property of d in the last line. Typical contractive metrics used

in QRTs are quantum relative Rényi entropies [56] of which the quantum relative entropy is an

example: for ρ, σ ∈ D(H) such that supp(ρ) ⊆ supp(σ), the quantum relative entropy between

ρ and σ is defined as

D(ρ|σ) := Tr [ρ(log ρ− log σ)] .

3.4 Multi-resource theories

We have so far considered the case when there exists only one resource (or one type of physical

restrictions) with one pair of allowed operations O and free states F . However, it is often true

that a physical task involves more than one resource or more than one type of restrictions. For

example, we later in Chapter 4 see the case when one’s task is to distill some resource f , such

as entanglement or purity, only using Gaussian states and Gaussian operations. This is the case

when there are two different resources which are resource f and the non-Gaussianity. Another

example is quantum thermodynamics where one might regard energy and entropy as separate

resources with different allowed operations and free states.

The general framework of QRTs that we have studied so far in this chapter can be generalised

to the cases with more than one resource [57]. Let us consider a set of n different QRTs {Ri}ni=1

with corresponding sets of allowed operations {Oi}ni=1 and free states {Fi}ni=1. Then, the

combined multi-resource theory Rmulti is defined by a new set of allowed operations Omulti
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defined as the intersection between all different sets of allowed operations:

Omulti := ∩ni=1Oi . (3.7)

Then, the new set of free states Fmulti consistent with Omulti is followed using Eq. (3.1):

Fmulti := {ρ | ∀σ ∈ D(H), ∃Γ ∈ Omulti s.t. Γ(σ) = ρ} .

It has been pointed out in [57] that there could be no free states in a quantum multi-resource

theory. This is the case when all free states in one resource theory Ri are resourceful states

in another resource theory Rj, i.e., when the interception between Fi and Fj is an empty set.

However, in this thesis, we only study the case when Fmulti is not an empty set.

Starting from this general structure of multi-resource theories, we can repeat the same

procedures as the ones for single-resource theories studied in the previous sections to develop,

for example, appropriate resource measures. In multi-resource theories, new types of protocols,

such as interconversion between different resources, become important. We refer to [57] for more

detailed discussions of resource interconversion and the reversibility in quantum multi-resource

theories.

3.5 Further reading

This chapter provides a brief introduction of quantum resource theories. We introduce some

selected topics which are necessary for this thesis. For a more extensive review of QRTs,

please see [37]. There are also separate reviews on QRTs of different topics, such as quantum

entanglement [30], quantum thermodynamics [58], quantum reference frames [59] and Bell

nonlocality [60].
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Convex Gaussian resource theories

The Gaussian framework is a preferable tool for exploring quantum theory due to its easy

accessibility in experiments and concise mathematical description, which we have already seen

in Section 2. Indeed, many early physical platforms for implementing quantum information

processing tasks include systems described by the Gaussian framework such as optical and

optomechanical systems [14–16, 61–63]. However, it was soon discovered that several limitations

hold for the Gaussian framework when applied to various quantum information processing tasks.

For example: quantum computation with Gaussian elements does not provide any advantage

over classical computation [6–8, 64]; it is impossible to correct Gaussian errors with Gaussian

operations and measurements [9]; and entanglement distillation from Gaussian states using

Gaussian operations and measurements is impossible [65–67].

Recently, more general resource distillation in the Gaussian framework has been discussed in

[10], where the authors proposed Gaussian resource theories, quantum resource theories further

restricted to Gaussian states and operations. They showed that resource distillation, not only

entanglement distillation, is in general impossible in such Gaussian resource theories. One

obvious way to overcome this limitation is to introduce non-Gaussian resources, and it is known

that entanglement distillation [68], error correction [68, 69] and other tasks [6, 7, 9] become

possible when non-Gaussian elements are introduced. Non-Gaussian elements are however

expensive resources to be generated in experiments, and it is desirable to find a simpler solution

to circumvent these limitations.
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In this chapter, we examine whether classical randomness and post-selection can lift the

limitations on resource distillation in Gaussian resource theories. We extend Gaussian resource

theories in [10] to convex Gaussian resource theories so that the theories include these new tools,

classical randomness and post-selection. These tools enable operations such as mixing Gaussian

states or conditional Gaussian operations based on the outcomes of Gaussian measurements.

The inclusion of these operations is well-motivated from an operational point of view since they

are less difficult resources to be employed in a laboratory than non-Gaussian elements. Here,

we formulate convex Gaussian resource theories based on the multi-resource perspective and

then investigate resource distillation within convex Gaussian resource theories. Interestingly, we

find that the restrictions on resource distillation can be relaxed in convex Gaussian resource

theories; the impossibility of resource distillation is replaced by a limitation on the amount of

distillable resources, which still leaves some possibility of resource distillation. We explore this

possibility and construct explicit resource distillation protocols using the newly allowed tools in

convex Gaussian resource theories. In particular, these examples show that our derived upper

bound on the distillable resources is tight and can be saturated in special cases.

This chapter is based on the paper [H. H. Jee et al. Phys. Rev. A, 103 (2021)] and structured

as follows. Firstly, in Section 4.1, we study the Gaussian resource theories introduced in [10] with

the multi-resource theoretical perspective and revise the no-go theorem for Gaussian resource

distillation (Proposition 3). In Section 4.2, we then define the notion of convex Gaussian resource

theories with allowed operations defined in Definition 4 which particularly includes conditional

Gaussian operations. In Section 4.3, we introduce a new resource measure for convex Gaussian

resource theories and derive some of its useful properties (Lemma 4), which lead to our main

result, Corollary 6, describing a general upper bound on the amount of distillable resources

in convex Gaussian resource theories. Then, in Section 4.4, we construct as examples explicit

distillation protocols showing that resource distillation becomes possible in a limited fashion in

convex Gaussian resource theories. We summarise our results in Section 4.5.
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4.1 Gaussian resource theories

Gaussian resource theories are QRTs further restricted to Gaussian states and operations. For

examples, the Gaussian resource theory of entanglement is the QRT of entanglement restricted

to those systems described by Gaussian states with allowed operations given by Gaussian LOCC.

Gaussian resource theories aim at investigating capabilities of the Gaussian platform in various

quantum information processing tasks. It is a practically relevant question as Gaussian elements

are desirable tools for the physical implementations of such tasks due to their easy accessibility.

Gaussian resource theories introduced in [10] can be reformulated as an instance of multi-

resource theories (see Section 3.4). More specifically, a Gaussian resource theory of resource f

can be seen as a QRT with two resources: non-Gaussianity and resource f . Each of these two

resources forms a separate resource theory. We denote the QRT of resource f by Rf = (Ff ,Of )

and the QRT of non-Gaussianity by RG = (FG,OG).1 For example, if we consider the Gaussian

resource theory of entanglement, then Rf is the QRT of entanglement with separable states

as Ff and LOCC as Of . For the QRT of non-Gaussianity RG, the set of free states FG is the

set of Gaussian states, which we denote by G, and the allowed operations OG are all Gaussian

maps introduced in Section 2.3. The Gaussian resource theory RG
f is then the multi-resource

theory built from the set {Rf ,RG}. The new allowed operations, denoted by OG
f , are defined

as the interception between Of and OG following Eq. (3.7):

OG
f := Of ∩OG .

We call these operations Gaussian allowed operations. We can also construct the set of new free

states FG
f simply by taking the interception between Ff and FG (see Figure 4.1(a)). Therefore,

we define FG
f := Ff ∩FG as the set of free states consistent with OG

f with respect to the golden

rule of QRTs and call these states free Gaussian states.

The above construction of Gaussian resource theories are general so that it can be applied to

any Rf . However, to employ convenient mathematical results developed in [10], in this chapter,

1Here, we assume that the input and output Hilbert spaces are the same, L2(RN ) where N ∈ N is the number
of modes (degrees of freedom).
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we only consider Gaussian resource theories developed with Rf whose set of free states Ff

satisfies the following assumptions:

1. The set Ff is closed under tensor products, partial traces, and permutations of subsystems.

2. The set Ff is convex.

3. The set Ff is norm-closed.2

4. The set Ff is invariant under displacement operations.

1-3 are standard assumptions in QRTs, but 4 is additionally introduced for the Gaussian setting.

While there exist some exceptions such as the QRT of quantum thermodynamics [35] which

fails to satisfy 4, most QRTs studied in the literature satisfy these assumptions.

As we have seen in Chapter 2, any Gaussian state can be fully represented by its first two

statistical moments (r, σ) of the canonical operators. Moreover, Assumption 4 implies that

the first moment r does not contribute to the amount of resources present in a state. Thus,

we assume without loss of generality that r = 0 from now on. We can now characterise the

amount of resources in an arbitrary Gaussian state solely by its covariance matrix (CM) σ. It is

therefore convenient to have an alternative representation of FG
f , which is the set of the CMs of

all free Gaussian states and denoted by FG
f — an arbitrary Gaussian state ρG is a free state if

its CM σ is in FG
f .

4.1.1 No-go theorem for Gaussian resource distillation

In [10], the authors derived the no-go theorem for Gaussian resource distillation within the

formalism of Gaussian resource theories. Since this no-go theorem plays an important role in

this chapter, we introduce it in more details in this section. In a Gaussian resource theory RG
f ,

one can show that FG
f , the set of free CMs, has a property called upward closedness. That is,

for any CMs σ and τ , if σ ∈ FG
f and τ ≥ σ with respect to the matrix inequality, then τ ∈ FG

f .

This property sometimes results in the existence of the threshold matrix σth ∈ FG
f such that for

2It means that the set F is closed with respect to the topology induced by the trace norm.
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Quantum states

𝓕𝒇𝑮
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Figure 4.1: The geometrical illustration of the state spaces. (a) In Gaussian resource theories,
the set of free states is the interception of Ff , the set of free states for Rf , and the set of Gaussian
states G which is the set of free states for RG; FG

f = Ff ∩ FG. (b) In convex Gaussian resource
theories, the new set of free states is the convex hull of FG

f , i.e., FC
f = conv(FG

f ) = conv(Ff∩FG).

any CM σ, if σ ≥ σth then σ ∈ FG
f . For example, in Gaussian entanglement theory, it is known

that an N -mode Gaussian state with CM σ is a separable state (free state) if σ ≥ 1 [13].

By exploiting the upward closedness of FG
f , one can define a resource measure for the

Gaussian resource theory as

κ
(
ρG[σ]

)
:= min

{
t ≥ 1 | tσ ∈ FG

f

}
, (4.1)

where ρG[σ] denotes the Gaussian state with CM σ. This measure is a resource monotone

for any Gaussian resource theory satisfying Assumptions 1-4 (see [10, Appendix B]) and also

faithful in the sense that κ(ρG) = 1 if and only if ρG ∈ FG
f . Furthermore, it has a property that

κ
(
ρGA ⊗ ρGB

)
= max

{
κ
(
ρGA
)
, κ
(
ρGB
)}

(4.2)

for any Gaussian states ρGA, ρ
G
B ∈ G. This special property is often called the tensorisation

property in classical probability theory [70] and plays the main role in the proof of the following

no-go theorem for Gaussian resource distillation.

Proposition 3. (No-go theorem for Gaussian resource distillation [10, Theorem 1]) Consider a

Gaussian resource theory satisfying Assumptions 1-4 and two Gaussian states ρG, γG ∈ G. If

κ
(
ρG
)
< κ

(
γG
)
, there does not exist Γ ∈ OG

f such that Γ
((
ρG
)⊗N)

= γG for any N ∈ N.

It is worth pointing out that Proposition 3 is shown for OG
f including all completely positive
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and trace non-increasing Gaussian allowed operations. Therefore, Proposition 3 rules out the

possibility of not only deterministic resource distillations but also probabilistic ones. It is a

crucial limitation as we cannot generate a more resourceful state even with small probability

and as many copies of the initial state as we want.

4.2 Convex Gaussian resource theories

An important feature of the set of Gaussian states that we focus in this section is its non-convexity.

In general, classically mixing two arbitrary Gaussian states results in a non-Gaussian state.

Although working with non-Gaussian mixtures of Gaussian states can be more mathematically

demanding than with Gaussian states, it is not difficult to create these states in practice

using probabilistic Gaussian operations. For example, applying different Gaussian operations

to a Gaussian state depending on the outcome of measurements performed on other modes

can generate a non-Gaussian convex mixture of Gaussian states. Including non-Gaussian

mixtures in free states is therefore well-motivated from an operational point of view. It is

also worth remarking that this inclusion has been already discussed in the context of the QRT

of non-Gaussianity in [71], and conditional Gaussian operations were shown to be useful for

distillation of non-Gaussianity, which further motivated us to involve them for distillation of

general resources.

In this section, we introduce convex Gaussian resource theories which take into account

the easy accessibility of non-Gaussian convex mixtures of Gaussian states. We develop these

theories based on Gaussian resource theories studied in the last section. We first introduce a

new important set of quantum states in CV quantum systems, which is the convex hull3 of

Gaussian states given by

conv(G) =

{∫
dλ p(λ) ρGλ

∣∣∣∣ ρGλ ∈ G , p(λ) ≥ 0 ∀λ ,
∫

dλ p(λ) = 1

}
.

This set contains all Gaussian states as well as non-Gaussian convex mixtures of Gaussian states,

i.e., G ⊂ conv(G).

3For the definition of the convex hull of a set, see Section 6.1.
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To define the convex Gaussian resource theory of resource f , we start from the corresponding

Gaussian resource theory of resource f , RG
f = (FG

f ,OG
f ). Then, the set of free states for the

convex Gaussian resource theory of resource f , denoted by FC
f , is given by the convex hull of

FG
f . i.e., FC

f := conv(FG
f ), as depicted in Figure 4.1(b). The allowed operations for the convex

Gaussian resource theory, which we denote by OC
f , are defined as follows.

Definition 4. The allowed operations OC
f of the convex Gaussian resource theory constructed

from a Gaussian resource theory RG
f = (FG

f ,OG
f ) are composed by the following two kinds of

operations:

1. Appending an ancillary system described by a free state ρ ∈ FC
f .

2. Applying a mixture of free Gaussian operations conditioned on the outcome of a homodyne

measurement; namely, a map from HAB to HA of the form

ΓAB 7→A(ρAB) =

∫
dqΦq

A ⊗M q
B(ρAB) ,

where Φq ∈ OG
f for all q, and M q = ⟨q| · |q⟩ is a selective homodyne measurement.

Note that we made an assumption that the partial selective homodyne measurement M q is an

allowed operation of RG
f , i.e., M q ∈ OG

f . For resource theories that we consider explicitly in this

chapter, namely those of entanglement and squeezing, we show that this assumption is true

in Appendix A.1. Physically, this means that applying the homodyne measurement to a part

of the system cannot make the rest of the system more squeezed or entangled. Definition 4-2

also includes post-selection when the partial homodyne measurement on the input state has

zero-probabilities for some values/ranges of q.

The convex Gaussian resource theory, denoted by RC
f , is then defined as RC

f = (RC
f ,OC

f ). It

is not difficult to show that FC
f and OC

f defined above fulfill the golden rule of QRTs. Indeed, a

given generic free state

ρA =

∫
dλ p(λ) ρGA(λ) ,
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where ρGA(λ) ∈ FG
f (HA) for all λ, appending a free state γB ∈ FG

f (HB) (operation described

in Definition 4-1) to ρA does not map ρA outside the set of free states FC
f (HA ⊗HB). Also,

applying a conditional operations described in Definition 4-2 to a free state ρAB results in

ΓAB 7→A(ρAB) =

∫
dqdλ p(λ) Φq

A ⊗M q
B

(
ρGAB(λ)

)
. (4.3)

Since both Φq and M q are elements of OG
f , each state ρGAB(λ) ∈ FG

f (HAB) is mapped to a state

in FG
f (HA). Then, the state in Eq. (4.3) is a mixture of free states, which again belongs to

FC
f (HA).

We are now in a position where we can investigate resource distillation when new tools,

classical randomness and post-selection, are allowed. The main question we aim to address

hereafter is whether distillation is still impossible in convex Gaussian resource theories; i.e.,

whether Proposition 3 still holds for convex Gaussian resource theories. This is equivalent to

asking whether we can distill resource f from a resourceful state ρ in conv(G)\FC
f using allowed

operations in OC
f . It is worth remarking that the the other distillation scenario, distillation

of non-Gaussianity from a state ρ in Ff\FC
f only using allowed operations, has already been

studied in [71]. The authors showed that one can distill non-Gaussianity from any non-Gaussian

state by filtering out the Gaussian part using post-selection. Their distillation protocol consists

of a beam splitter and a homodyne measurement, which are allowed operations in most convex

Gaussian resource theories.

4.3 Limitations on resource distillation in convex Gaus-

sian resource theories

In this Section, we study resource distillation in convex Gaussian resource theories. We first need

an appropriate resource measure for the theories. The resource measure κ defined in Eq. (4.1)

cannot be directly applied to convex Gaussian resource theories; a generic state considered in

convex Gaussian resource theories is an element of conv(G), which is in general non-Gaussian,

and κ in Eq. (4.1) is not a valid resource monotone for non-Gaussian states. Therefore, we
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define the following new resource measure for the convex hull of Gaussian states, conv(G), which

serves as the state space in convex Gaussian resource theories: for any ρ ∈ conv(G), we define

κ̃(ρ) := inf
{p(λ),ρG(λ)}λ

s.t. ρ=
∫
dλ p(λ)ρG(λ)

∫
dλ p(λ)κ

(
ρG(λ)

)
, (4.4)

where the infimum is over all possible Gaussian decompositions of the state ρ including discrete

ones. This measure is the convex roof extension [72, 73] of the monotone κ in Eq. (4.1). We

can show that κ̃ is a valid resource monotone satisfying a few desirable properties for resource

measures (see Section 3.3).

Lemma 4. The resource measure κ̃ defined in Eq. (4.4) has the following properties:

1. It coincides with the resource measure κ for Gaussian states:

κ̃(ρG) = κ(ρG) ∀ρG ∈ G .

2. It is convex:

κ̃

(∫
dλ p(λ)ρ(λ)

)
≤
∫

dλ p(λ)κ̃(ρ(λ))

for any probability distribution p(λ) and set of states {ρ(λ)}λ in conv(G).

3. It inherits the tensorisation property from κ when applied to Gaussian states:

κ̃(ρG ⊗ γG) = max
{
κ̃(ρG), κ̃(γG)

}
∀ρG, γG ∈ G .

4. It is monotonic under the allowed operations OC
f :

κ̃(ρ) ≥ κ̃(Γ(ρ)) ∀Γ ∈ OC
f .
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5. It is faithful:

κ̃(ρ) = 1 ⇐⇒ ρ ∈ FC
f .

Proof. 1. Consider a Gaussian state ρG with covariance matrix σ. Any Gaussian decomposition

of a Gaussian state has the form

ρG =

∫
dλ pG(λ)ρG(λ) ,

where the probability distribution pG(λ) is Gaussian (if the state is mixed) or the Dirac delta

distribution (if the state is pure). Furthermore, each state ρG(λ) has a covariance matrix σ(λ)

such that σ(λ) ≤ σ for all λ [74, Lemma 3]. This implies that κ(ρG) ≤ κ(ρG(λ)) ∀λ for any

Gaussian decomposition of ρG. Given the optimal decomposition {popt(λ), ρGopt(λ)}λ of ρG with

respect to the measure κ̃, we then have

κ̃(ρG) =

∫
dλ popt(λ)κ(ρGopt(λ))

≥
∫

dλ popt(λ)κ(ρG) = κ(ρG) .

As ρG itself is a Gaussian decomposition of ρG, the converse also holds; κ̃(ρG) ≤ κ(ρG). Thus,

κ̃(ρG) = κ(ρG).

2. Consider a generic state ρ =
∫

dλ p(λ)ρ(λ); each ρ(λ) does not need to be Gaussian. Let

us denote {qopt(λ, µ), γGopt(λ, µ)}µ as the optimal Gaussian decomposition of each ρ(λ) such that

κ̃(ρ(λ)) =

∫
dµ qopt(λ, µ)κ

(
γGopt(λ, µ)

)
.

Then, the set {p(λ)qopt(λ, µ), γGopt(λ, µ)}λ,µ is a Gaussian decomposition of ρ as well , i.e.,

∫∫
dλdµ p(λ)qopt(λ, µ)γGopt(λ, µ) =

∫
dλ p(λ)ρ(λ) = ρ .
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It then follows that

κ̃(ρ) ≤
∫∫

dλdµ p(λ)qopt(λ, µ)κ(γGopt(λ, µ))

=

∫
dλ p(λ)κ̃(ρ(λ)) .

3. The third property can be easily shown using Property 1 and the tensorisation property

of the Gaussian resource measure κ in Eq. (4.2). For any Gaussian states ρG, γG ∈ G, we have

κ̃(ρG ⊗ γG) = κ(ρG ⊗ γG) (∵ Property 1)

= max
{
κ(ρG), κ(γG)

}
(∵ Eq. (4.2))

= max
{
κ̃(ρG), κ̃(γG)

}
(∵ Property 1) .

4. Firstly, let us show that the monotonicity under appending an ancillary system in a free

state (Definition 4-1). Consider a generic state ρ ∈ conv(G) with optimal Gaussian decomposition

{popt(λ), ρGopt(λ)}λ with respect to κ̃ and a free state γfree =
∫

dµ q(µ)γGfree(µ) ∈ FC
f

4. We have

κ̃(ρ⊗ γfree) = κ̃

(∫
dλ popt(λ)ρGopt(λ) ⊗

∫
dµ q(µ)γGfree(µ)

)
= κ̃

(∫∫
dλdµ popt(λ)q(µ)

(
ρGopt(λ) ⊗ γGfree(µ)

))
≤
∫∫

dλdµ popt(λ)q(µ)κ̃
(
ρGopt(λ) ⊗ γGfree(µ)

)
(∵ Property 2)

=

∫∫
dλdµ popt(λ)q(µ) max

{
κ̃
(
ρGopt(λ)

)
, κ̃
(
γGfree(µ)

)}
(∵ Property 3)

=

∫
dλ popt(λ)κ̃

(
ρGopt(λ)

)
= κ̃(ρ) .

For the monotonicity under mixtures of conditional Gaussian free operations (Definition 4-2),

let us consider again a generic state ρAB ∈ conv(G) with optimal Gaussian decomposition

{popt(λ), ρGAB(λ)}λ with respect to κ̃, and an operations ΓAB 7→A(·) =
∫

dqΦq
A ⊗M q

B(·) with

4Any free state in FC
f is a convex combination of free Gaussian states in FG

f .
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Φq
A ∈ OG

f ∀λ. We have

κ̃(ΓAB 7→A(ρAB)) ≤
∫∫

dλdq popt(λ)κ̃
(
Φq
A ⊗M q

B

(
ρGAB(λ)

))
(∵ Property 2)

=

∫∫
dλdq popt(λ)κ̃

(
Φq
A

(
1A ⊗M q

B

(
ρGAB(λ)

)))
.

Note that the partial selective measurement M q is a Gaussian measurement and preserves the

Gaussianity. Then, we obtain

κ̃(ΓAB 7→A(ρAB)) =

∫∫
dλdq popt(λ)κ

(
Φq
A

(
1A ⊗M q

B

(
ρGAB(λ)

)))
(∵ Property 1)

≤
∫∫

dλdq popt(λ)κ
(
ρGAB(λ)

)
(∵ monotonicity of κ under OG

f )

=

∫
dλ popt(λ)κ(ρGAB(λ)) = κ̃(ρAB) .

5. Let us start from the direction κ̃(ρ) = 1 =⇒ ρ ∈ FC
f . Consider a state ρ ∈ conv(G) with

optimal Gaussian decomposition {popt(λ), ρGopt(λ)}λ with respect to κ̃, which satisfies

κ̃(ρ) =

∫
dλ popt(λ)κ

(
ρGopt(λ)

)
= 1 .

Since κ(ρ) ≥ 1 for all states ρ ∈ G by definition, κ̃(ρ) = 1 implies that κ
(
ρGopt(λ)

)
= 1 for all

λ. Due to the faithfulness of κ, it follows that ρGopt(λ) ∈ FG
f for all λ. Then, ρ is a convex

combination of states in FG
f , and thus ρ ∈ FC

f = conv(FG
f ).

For the other direction, let us assume that ρ ∈ FC
f . Then, by definition of the set of free

states, a decomposition of ρ in terms of free Gaussian states in FG
f is possible:

ρ =

∫
dλ p(λ)ρGfree(λ) , (4.5)

where ρGfree ∈ FG
f for all λ. Since (i) κ

(
ρGfree(λ)

)
= 1 for all λ, (ii) Eq. (4.5) is one possible

Gaussian decomposition of ρ, and (ii) κ̃ is the infimum of all decompositions, it follows that

κ̃(ρ) ≤ 1. Since the value of κ is lower bounded by 1, we have κ̃(ρ) = 1.

Using the resource measure κ̃ and its properties in Lemma 4, we can prove the following
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theorem for resource distillation in convex Gaussian resource theories. This theorem shows that

no allowed operation can increase the value of the measure κ̃ above that of the most resourceful

state composing the initial mixture.

Theorem 5. Let Γ ∈ OC
f and ρ =

∫
dλ p(λ)ρG(λ) ∈ conv(G). Then, we have for any N ∈ N

that

κ̃
(
Γ(ρ⊗N)

)
≤ κ̃(ρGmax) ,

where ρGmax denotes the most resourceful element in the decomposition {ρG(λ)}λ with respect to

κ̃ .

Proof. Due to the monotonicity of κ̃ under the allowed operations OC
f , it holds that κ̃

(
Γ(ρ⊗N)

)
≤

κ̃(ρ⊗N). For the given decomposition of ρ, we have

ρ⊗N =

∫
dλ

N∏
i=1

p(λi)
N⊗
i=1

ρG(λi) ,

where λ = (λ1, ..., λN). Then, it follows that

κ̃
(
ρ⊗N

)
≤
∫

dλ
N∏
i=1

p(λi)κ̃

(
N⊗
i=1

ρG(λi)

)
(∵ Property 2)

≤
∫

dλ
N∏
i=1

p(λi)κ̃
((
ρGmax

)⊗N)
=

∫
dλ

N∏
i=1

p(λi)κ̃
(
ρGmax

)
= κ̃

(
ρGmax

)
(∵ Property 3) .

We can finally state the following corollary which identify a limitation on resource distillation

in convex Gaussian resource theories.

Corollary 6. Consider ρ =
∫
dλ p(λ)ρG(λ) ∈ conv(G) and γ ∈ conv(G) such that κ̃(ρGmax) < κ̃(γ)

where ρGmax is the most resourceful element in the decomposition {ρG(λ)}λ. For any N ∈ N,

there does not exist Γ ∈ OC
f such that Γ(ρ⊗N) = γ.
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Let us remark that this restriction is only applicable to states in conv(G), and it is not valid for

general CV states. Corollary 6 states that one can never distill more resourceful states than those

already present in the mixture in convex Gaussian resource theories, even with multiple copies

of the initial state. Possible resource distillation protocols are thus equivalent to identifying and

intensifying the resource already present in the mixture. As such, on the contrary to the case of

the no-go theorem in Gaussian resource theories (Proposition 3), Corollary 6 leaves a possibility

of resource distillation that might be useful in some specific scenarios. For example, it allows

the possibilities for error-correction or purification.

In the next section, we show that one can indeed find some simple examples of resource

distillation protocols in convex Gaussian resource theories. Particularly, we show that the upper

bound on the amount of distillable resources identified in Corollary 6 can be achieved in special

cases.

4.4 Convex distillation protocols

In this section, we provide explicit examples of possible resource distillation protocols in

convex Gaussian resource theories exploiting classical randomness and conditional operations.

These examples highlight the difference between the limitations in Gaussian resource theories

(Proposition 3) and in convex Gaussian resource theories (Corollary 6). We start with the

convex Gaussian resource theory of squeezing and then move on to discuss entanglement.

4.4.1 Squeezing distillation

In this section, we explore resource distillation when resource f is squeezing; i.e., we consider

resource distillation in the convex Gaussian resource theory of squeezing. Squeezing is often

considered as a resource for metrological tasks as we discussed in Section 2.5

One-shot deterministic case

We firstly look at the simplest scenario. Consider a single-mode squeezed vacuum (SMSV)

state with squeezing parameter r along the x̂ quadrature, |0, r⟩1SQ, studied in Section 2.5.
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Suppose the system experiences a random displacement noise with probability p, so that its

state becomes a mixture of a SMSV state and a displaced SMSV state. For simplicity, let us

assume that the displacement also occurs along the x̂ quadrature. The displaced SMSV state is

then
∣∣d/√2, r

〉
1SQ

, which is the SMSV state displaced by d along the x̂ quadrature. The state

after the displacement noise can be written as

ρin = (1 − p) |0, r⟩1SQ⟨0, r|1SQ + p
∣∣∣d/√2, r

〉
1SQ

〈
d/
√

2, r
∣∣∣
1SQ

. (4.6)

For a sufficiently large d, the state ρin does not have any squeezing along the x̂ quadrature

which can be exploited for a quantum task. Our goal is to distill the hidden squeezing resource

from this mixture.

A simple distillation protoco is shown in Figure 4.2(a).5 The main idea is to measure the x̂

quadrature of the mixture via weak measurement and correct the displacement noise accordingly.

To do so, we first need to correlate the main system with a pointer initialised in the vacuum

state |0⟩. The two systems interact with each other via a beam splitter with large transmissivity

t = cos2 θ. In this way, the pointer gets some information on whether the system was affected

by the displacement noise or not and as a result disturb the system, which results in reducing

the squeezing in the system. The larger the transmissivity of the beam splitter, the less the

squeezing of the system is compromised, while at the same time the less is learned about the

displacement affecting the system.

After the beam splitter, the x̂ quadrature of the pointer is measured via homodyne detection.

The measurement is described by the dichotomic POVM {Π,1− Π} where the measurement

effect Π is defined as

Π =

∫ ∆

−∞
dx |x⟩⟨x| , (4.7)

where |x⟩ is the position eigenstate, and ∆ = −d
2

sin θ. When the outcome of the POVM refers

to Π, it means that with high probability the main system was displaced along x̂, and then we

5It is worth noting that a similar squeezing distillation protocol has been reported in [75]. The difference is
that our protocol is deterministic while the protocol in [75] is probabilistic.
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(a)

(b)
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Figure 4.2: (a) Schematic of the deterministic one-shot squeezing distillation protocol. The
system, described by the state ρin, is fed into a beam splitter with transmissivity t = cos2 θ
together with a pointer system in the vacuum state. After the interaction, a homodyne
measurement is performed on the pointer system, and depending on the outcome the main
system is displaced or not. (b) Schematic of the probabilistic multi-copy squeezing distillation
protocol. The pointer system is now replaced by another copy of ρin, providing better performance
due to the fact that it is a mixture of squeezed states (resourceful states). The system and the
pointer interact via a 50:50 beam splitter, and a homodyne measurement is performed on the
pointer. If the outcome falls within a desired range, the protocol is successful, otherwise it is
aborted. The protocol can be iterated multiple times, with the output system of one iteration
being the input state of the next one.

can correct the noise by performing a displacement operations of −d cos θ on the system along

the same quadrature. On the other hand, if the outcome of the POVM refers to 1− Π, with

high probability the system was not affected by the noise, and thus we do not need to act on it.

Numerical simulation results, showing the performance of this protocol, are given in Figure 4.3.

We characterise the performance in terms of the fidelity to the SMSV state |0, r⟩1SQ as a function

of the distinguishability between the elements in the initial mixture; see Figure 4.3(a). The

distinguishability can be quantified by the ratio d/σ, where d is the displacement along the

relevant quadrature while σ = e−2r is the variance of |0, r⟩1SQ along the same quadrature. When

d ≈ σ, the protocol is not able to distinguish the two elements in ρin due to the large overlap,

and therefore the outcome has a lower fidelity to the target state |0, r⟩1SQ than the initial one

(dashed grey line). When instead d≫ σ, the protocol is able to distinguish the two elements,

and the displacement noise can be effectively corrected — the final fidelity is closer to 1 than the
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(a)

(b)
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Figure 4.3: Numerical simulation of the deterministic one-shot squeezing distillation protocol,
for two different beam splitter settings with transmissivity t = 90% and 65%. (a) The fidelity
between the target state ρsq = |0, r⟩1SQ⟨0, r|1SQ and the final state of the protocol as a function
of d/σ, which is the ratio between the amount of the random displacement noise d and the
x̂-variance σ = e−2r. While the low transmissivity t = 65% allows for correcting the displacement
noise when d/σ is small, it also degrades squeezing. Thus, it achieves a lower maximum fidelity
for the high d/σ region than the one achieved by the higher transmissivity t = 90%. (b) The
variance in the x̂ quadrature for the final state of the protocol is shown as a function of d/σ.
The protocol is regarded successful when the final state has a variance lower than the best free
state, the vacuum state. For the simulation, we set the squeezing parameter r = 0.7 and the
probability of random displacement p = 0.5.

initial state. We can also observe that the final fidelity has a higher fidelity to the target state

than the best free state, the vacuum state (dotted grey line), in a sense that it is the closest

free state to the target state |0, r⟩1SQ. With larger transmissivity it takes longer to reach higher

fidelity as d/σ increases, but higher fidelity is reached in the d ≫ σ region. This is because

less information is extracted by the pointer from the initial state after the beam splitter with

large transmissivity, which makes it harder to distinguish the two elements but preserve more

squeezing.

Additionally, we compute the variance along the displaced quadrature (the x̂-quadrature in
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this example) in Figure 4.3(b) as the variance is a relevant measure for the QRT of squeezing

[76]. We find that our protocol can indeed reduce the variance of the initial mixture when

d≫ σ, reaching values well below the ones of the vacuum, which is the free state with minimum

variance in all quadrature. Importantly, we can observe that the final state can never have a

smaller variance than the maximally squeezed element in the initial mixture (‘optimal squeezing’

in the graph), in accordance with the upper bound of distillable resource derived in Corollary 6.

We remark that the variance is not a valid monotone for the convex Gaussian resource theory

of squeezing when the allowed operations are of the form given in Definition 4. This is because

conditional operations can reduce this measure, and thus it does not satisfy the monotonicity

under the allowed operations. However, we show in Appendix A.2 that variance is a meaningful

monotone under a slightly different set of allowed operations, the set of all convex mixtures of

Gaussian operations, which is still natural over the convex hull of Gaussian states.

It is worth pointing out that we do not use the measure κ̃ in the analysis of the numerical

results, because the initial state and the target state |0, r⟩1SQ have the same resource with respect

to κ̃. Indeed, this measure is useful to derive the general limitation on resource distillation in

convex Gaussian resource theories, but it is not as good at reflecting the practical usefulness of

the resource contained in a state. Note that the presented protocol is deterministic and requires

only one copy of the initial state ρin.

Multi-copy probabilistic case

As we have seen in Section 3.2.2, having access to multiple copies of the initial state often

provides some benefit in QRTs. However, we have seen in [10] that it is in general not the

case for Gaussian resource theories. In the following example, we explore whether the same is

true for the convex Gaussian resource theory of squeezing as well. We show that the answer

is negative; with multiple copies of the initial state, it is possible to get information on the

displacement noise without compromising squeezing in the system, thus demonstrating some

advantage over the single-shot case.

The multi-copy squeezing distillation protocol, depicted in Figure 4.2(b), is similar to the one

in the one-shot case, but we now allow to use N independent and identically distributed (i.i.d.)
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copies of the initial state ρin, given in Eq. (4.6). In the first step, two copies of the system are

considered and fed into a 50:50 beam splitter, i.e., a beam splitter with transmissivity t = 1/2.

Since both states are composed of a mixture of squeezed states with same parameter r, the

beam splitter does not degrade the amount of squeezing contained in the two copies. In other

words, every element in the initial mixture has the same CM, and thus mixing with each other

via the beam splitter does not alter their CMs. After the beam splitter, the two systems are

classically correlated, and the global state would look like

ρ′12 =(1 − p)2 |0, r⟩⟨0, r|1 ⊗ |0, r⟩⟨0, r|2 (4.8)

+ p(1 − p) |d/2, r⟩⟨d/2, r|1 ⊗ |d/2, r⟩⟨d/2, r|2

+ p(1 − p) |−d/2, r⟩⟨−d/2, r|1 ⊗ |d/2, r⟩⟨d/2, r|2

+ (1 − p)2 |0, r⟩⟨0, r|1 ⊗ |d, r⟩⟨d, r|2 ,

where we omitted the subscription ‘1SQ’ of the SMSV state |α, r⟩1SQ for the concise notation.

In Eq. (4.8), we can observe that by measuring the quadrature of the second system, we can

infer the one of the first system.

The following step consists of a homodyne measurement on the second system, which

is playing the role of the pointer in this multi-copy case, followed by post-selection. This

measurement is composed by a dichotomic POVM {Π,1−Π} analogous to the one described in

the previous section. In particular, the effect is equal to the one in Eq. (4.7) with an exception

that the cut-off region is now given by (−∆′,∆′] where ∆′ = e−r. If the outcome of the

measurement is associated with the effect Π, the protocol is successful, and with high probability

the remaining system is described by |0, r⟩1SQ. Otherwise, the protocol fails and the remaining

system is discarded. The protocol can be iterated over multiple copies, obtaining the final state

that approaches the target state |0, r⟩1SQ while the success-probability decreases exponentially

in the number of iterations performed. An interesting open question left to address is whether

the displacement noise can be corrected for all values of d.

The numerical simulation is shown in Figure 4.4. Again, we plot the fidelity for |0, r⟩1SQ
as well as the variance of the x̂ quadrature of the final state as a function of d/σ for different

84



CHAPTER 4. CONVEX GAUSSIAN RESOURCE THEORIES

(a)

(b)

Figure 4.4: Numerical simulation of the multi-copy squeezing distillation protocol for different
numbers of copies N of the initial state. (a) The fidelity between the target state ρsq =
|0, r⟩1SQ⟨0, r|1SQ and the final state of the protocol as a function of d/σ, where σ = e−2ris the
x̂-variance of |0, r⟩1SQ. The success probability psucc of the protocol is shown in the inset. In most
regions, more copies lead to more successful performance even though the success probability
decreases significantly as N increases. However, for smaller d/σ, using multiple copies of the
initial state does not help to improve the performance. (b) The variance of the x̂ quadrature for
the final state as a function of d/σ. The protocol is regarded successful when the final state has
a smaller variance than the best free state, the vacuum state (dotted grey line). The ‘optimal
squeezing’ (dashed-dotted grey line) is the x̂-variance of |0, r⟩1SQ. For the simulation, we set
the squeezing parameter r = 0.7 and the probability of random displacement to p = 0.5.

numbers of copies N . The fidelity graph also shows the success probability psucc in the inset.

We observe that the performance is significantly improved compared to the one-shot case shown

in Figure 4.3 in two ways: (i) The fidelity is higher than that of the vacuum state (dotted grey

line) in most regions of d/σ, and (ii) the final state can reach fidelity 1 for large d/σ, which

was not possible in the one-shot case. The point (ii) means that the final state is extremely

close to |0, r⟩1SQ, which is the most resourceful element in the initial state ρin, and thus proves

that the upper bound in Corollary 6 can be saturated — it is a tight bound. On the other

hand, the success probability decreases significantly as N and d/σ increase; it decreases as N
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increases because we perform post-selection after every iteration and as d/σ increases because

when the elements in the input state are more distinguishable, there is less overlap between the

elements, which decreases the success probability in the post-selection (less contribution from

other filtered-out elements). Again, no matter what the values of N and d/σ are, the final state

can never be more squeezed than the ‘optimal squeezing’, the variance of |0, r⟩1SQ (dash-dotted

grey line in Figure 4.4(b)), as stated in Corollary 6. In most regions larger N results in a

better performance, but for small d/σ using more copies improves neither the x̂-variance nor the

fidelity. This is because when the two squeezed states in the initial state have a large overlap,

the post-selection procedure does not filter out the unwanted parts as effectively, and more

iterations just end up with more unwanted elements in the final state.

4.4.2 Entanglement distillation

We now move to the convex Gaussian resource theory of entanglement. In this section, we show

that entanglement can be distilled when convex mixtures of Gaussian states and conditional

Gaussian LOCC are allowed. This is achieved with a protocol very similar to the multi-copy

squeezing distillation protocol studied in the last section.

Consider the following setting. Alice prepares pure two-mode squeezed vacuum (TMSV)

states6 |0, r⟩2SQ, where 0 = (0, 0)T, and send one mode via a noisy channel to Bob. The noisy

channel either applies a finite displacement along a certain quadrature with probability p or

leaves the mode unchanged. This noise model is a convenient idealisation of random displacement

noise and produces a non-Gaussian mixture of Gaussian states from which entanglement can

be distilled. However, it is worth pointing out that this noise model is not realistic, since for

CV systems the most generic displacement noise would be continuous rather than discrete. We

assume this idealised noise model here as our main goal is to provide an example of entanglement

distillation using convex Gaussian resources, but it remains an interesting open question to see

whether entanglement could be distilled under a more realistic noise model.

6As we studied in Section 2.5, two-mode squeezed states play the role of entangled states in the Gaussian
framework.
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Figure 4.5: The marginal probability distribution obtained from the Wigner function of the
state ρin. In the x̂1, x̂2 space, the distribution is represented by two Gaussian blocks squeezed
along the x̂1 + x̂2 quadrature, one centred in the origin and the other displaced by d along the
x̂1 quadrature. If Bob was to measure his local quadrature x̂1 alone, the two Gaussian blocks
would overlap and distinguishing them would be more difficult than measuring the non-local
quadrature x̂1 + x̂2, where we see that two distributions have a smaller overlap.

The initial state shared by Alice and Bob after the noisy channel is

ρin = (1 − p) |0, r⟩⟨0, r|12 + pD̂1

(
d√
2

)
|0, r⟩⟨0, r|12 D̂1

(
d√
2

)†

,

where we omitted the subscription ‘2SQ’ in the TMSV state |0, r⟩2SQ for simplicity of the

notation, and D̂1(d) is the displacement operator D̂α on the system 1 with α = d. A convenient

way of visualising the above state is in the x̂1− x̂2 space, shown in Figure 4.5. It is clear that the

displacement in the x̂1 quadrature can be better detected by measuring the non-local quadrature

x̂+ = (x̂1 + x̂2)/
√

2 rather than x̂1 itself. We exploit this observation to construct a probabilistic

entanglement distillation protocol.

The protocol is shown in Figure 4.6. Alice and Bob use two copies of the state ρin at the

time, and feed their local modes into a 50:50 beam splitter. This operation creates classical
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Figure 4.6: Schematic of the probabilistic multi-copy entanglement distillation protocol. Alice
and Bob share two copies of the initial state and feed their local modes into 50:50 beam splitters.
Then, via classical communication they perform joint homodyne measurement on the quadrature
x̂+ = (x̂1 + x̂2)/

√
2. If the outcome is in the desired region, the protocol is successful, otherwise

it is aborted. The protocol can be iterated multiple times with the output state of one iteration
being the input state of the next one.

correlations between the two local modes on each side and produce the following state

ρ′ =(1 − p)2 |0, r⟩⟨0, r|12 ⊗ |0, r⟩⟨0, r|34

+ p(1 − p)D̂1

(
d

2

)
|0, r⟩⟨0, r|12 D̂1

(
d

2

)†

⊗ D̂3

(
d

2

)
|0, r⟩⟨0, r|34 D̂3

(
d

2

)†

+ p(1 − p)D̂1

(
d

2

)
|0, r⟩⟨0, r|12 D̂1

(
d

2

)†

⊗ D̂3

(
−d

2

)
|0, r⟩⟨0, r|34 D̂3

(
−d

2

)†

+ p2D̂1 (d) |0, r⟩⟨0, r|12 D̂1 (d)† ⊗ |0, r⟩⟨0, r|34 ,

where modes 1 and 3 are held by Bob while modes 2 and 4 by Alice. Alice and Bob now need

to identify whether their systems are displaced or not by measuring the system on the modes 1

and 2. Since the displacement was performed along the x̂1 quadrature, one way of detecting the

displacement is for Bob to measure the mode 1 locally. However, as we discussed earlier, it is

more advantageous to exploit the squeezing along the non-local quadrature x̂+ when detecting

this displacement; see Figure 4.5. Therefore, Alice and Bob can locally measure x̂2 and x̂1

respectively, communicate their outcomes classically, and process them. This makes it possible

to measure the non-local quadrature x̂+. Note that the displacement by δ along x̂1 results in the

displacement by δ/
√

2 along x̂+, which could reduce the distinguishability when measuring x̂+.

However, if the squeezing is significant, measuring x̂+ is still able to provide an advantageous
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over measuring x̂1. Alice and Bob then perform a dichotomic POVM {Π,1− Π} on modes 1

and 2, where

Π =

∫
dx1dx2χ(−∆′,∆′]

(
x1 + x2√

2

)
|x1⟩⟨x1|1 ⊗ |x2⟩⟨x2|2 , (4.9)

where the indicator function χ(−∆′,∆]

(
x1+x2√

2

)
is equal to 1 when −∆′ < x1+x2√

2
≤ ∆′ and 0

otherwise, and ∆′ = e−r. The value x1+x2√
2

can be computed by Alice and Bob after they share

their outcomes.

After measuring the above POVM, Alice and Bob can decide whether to continue the

protocol or abort it. If x+ ∈ (−∆′,∆′], then they keep the systems in Modes 3 and 4, otherwise

discard the systems and start again with a new copy. Even in the case of success, the final

state is composed by a mixture, where the state |0, r⟩2SQ occurs with high probability, and the

displaced components have a much lower weight. Alice and Bob can iterate the protocol many

times by suitably changing the interval of acceptance in Eq. (4.9) at each round, to increase the

weight of the desired state |0, r⟩2SQ. Since this protocol is non-deterministic, the probability of

success quickly decreases with the number of iterations. It should be stressed that Alice and

Bob can construct a fully deterministic protocol based on the same idea with more measurement

outcomes indicating different displacements; then one can correct the displacement depending

on the measurement outcome. Although this increases the success probability to 1, this new

protocol is less straightforward to be implemented since the number of elements with different

displacements increases at each iteration and requires more and more number of measurement

outcomes after each iteration.

The numerical simulation of the protocol in Figure 4.7 shows the fidelity to |0, r⟩2SQ of the

final state and the success probability psucc of the protocol as a function of d/σ for different

numbers of copies N . The results look similar to the multi-copy squeezing distillation case in

Figure 4.4 as the idea is same. The performance of the entanglement distillation is generally

worse than the squeezing case, but we can still achieve fidelity 1 for large d/σ. Again, for

small d/σ, using more copies does not improve the performance as the filtering process via

post-selection doe not work as effectively due to the large overlap between elements in the initial
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Figure 4.7: Numerical simulation of the multi-copy entanglement distillation protocol for
different N copies of the initial state. The graph shows the fidelity between the target state
ρsq = |0, r⟩2SQ⟨0, r|2SQ and the final state of the protocol as a function of d/σ. The success
probability psucc of the protocol is shown in the inset. The protocol is regarded as successful
when the final state has a larger fidelity than the initial state as well as the the vacuum state
(the dotted grey line), which is the best free state, i.e., closest to |0, r⟩2SQ [1]. The results are
similar to the ones for the multi-copy squeezing distillation protocol. Using more copies leads to
a better performance at the expense of the small success probability for larger d/σ, but not for
small d/σ. For the simulation, we set the squeezing parameter r = 0.7, and the probability of
random displacement to p = 0.5.

state. It is also worth noting that the upper bound in Corollary 6 can be again achieved for large

d/σ; the fidelity reaches 1. The described protocol is largely related to the protocol known as

Gaussification, introduced in [77, 78], allowing for the distillation of Gaussian entanglement from

initial non-Gaussian states. The main difference between our protocol and the Gaussification

protocol is that we focus on a specific class of non-Gaussian states, convex mixtures of Gaussian

states, as the initial state, and this specification allows us to obtain a more efficient protocol in

terms of success probability.

4.5 Summary

In this chapter, we explored whether classical randomness and conditional operations can

help to overcome known limitations on resource distillation in Gaussian resource theories. In

Section 4.2, we introduced the notion of convex Gaussian resource theories, which is motivated
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by the easy accessibility of non-Gaussian convex mixtures of Gaussian resources and their

usefulness demonstrated in [71] in the context of non-Gaussianity distillation. We then defined

an appropriate resource monotone in Section 4.3 using the convex roof extension and fully

characterised the new limitation on resource distillation in convex Gaussian resource theories. In

comparison with the no-go theorem for Gaussian resource distillation in [10], this new limitation

does not rule out all possible resource distillation but restrict the amount of distillable resources,

which leaves some possibility for a certain type of resource distillation. In Section 4.4, we

explored this possibility and provided several explicit examples of resource distillation protocols

for squeezing and entanglement. These examples in particular manifested that the derived upper

bound on the amount of distillable resources is tight.

Although we showed that some limited resource distillation becomes possible in convex

Gaussian resource theories, it does not seem that the non-convexity of Gaussian resource

theories is the ultimate obstacle of resource distillation in the Gaussian platform. Even in convex

Gaussian resource theories, the tensorisation property of the resource monotone in Lemma 4-4

still plays a crucial role in limiting more general resource distillation.

It is worth remarking that making the convex roof extension of Gaussian resource measures

to the convex hull of Gaussian states seems quite general. Historically, the convex roof extension

has been used to extend resource measures from pure states to mixed states [30]. Even though

Gaussian states include mixed states, the relation between Gaussian states and convex mixtures

of Gaussian states is not very different from the one between pure states and mixed states.

Indeed, any monotone that is well-defined over the set of Gaussian states can be extended to

the convex hull of Gaussian states by taking the convex roof extension.
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Chapter 5

Catalytic Gaussian thermal operations

In this chapter, we will change our topic to a specific example of Gaussian resource theories,

the Gaussian resource theory of thermodynamics. Since this example does not satisfy the

assumptions described in Section 4.11, the previous results in Chapter 4 cannot be applied to

this specific example, and it is a new topic to explore.

The extension of thermodynamics outside of its original scope to include quantum systems

has required the development of novel conceptual and theoretical approaches. In this regard,

quantum resource theories have attracted attention for their application to thermodynamics. The

resource theory approach enables precise definition of work and heat as well as novel insights into

the role of quantum statistical quantities in small systems, such as entropy, entanglement, and

coherence [34]. Moreover, it led to the appropriate mathematical formulation of the second law

in quantum thermodynamics in terms of a family of free energy quantities [35]. However, these

works have typically considered discrete-variable quantum systems and have limited applicability

to continuous-variable (CV) quantum systems, some of the most important physical platforms

for testing quantum thermodynamics. These include harmonic oscillators ranging from optics

to mechanical systems, and in such systems the range of available operations and interactions

is often limited to Gaussian elements. Thus, it is desirable to have a better adapted resource

theory of quantum thermodynamics in the Gaussian regime. The first steps in this direction

were made in [79, 80], which defined the resource theory of thermodynamics in Gaussian CV

1In quantum thermodynamics, the free states are no longer invariant under displacement operations.
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systems. [80] identified a set of thermodynamical resources under passive linear interactions with

a thermal environment and found some second law-like statements, while [79] analysed a slightly

more general context with arbitrary quadratic Hamiltonian and provided a full characterisation

of the possible dynamics of a single mode.

One element not yet considered in these works is the role played by catalysts. The notion

of catalyst — a system that can be used but must be returned back to its initial state — is

central even to classical thermodynamics; applies to any machine that operates in a cycle. The

importance of catalysts to quantum resource theories beyond thermodynamics was demonstrated

famously in the resource theory of entanglement (see Section 3.2.1). In discrete-variable

thermodynamics, it is known that one recovers a single inequality describing the second law

involving the Helmholtz free energy when looking at approximate transitions in the identical

and independently distributed (i.i.d.) limit [35] or we allow for correlations between systems

and catalysts in the final state [46].

In this paper, we characterise possible state transformations for Gaussian states under

Gaussian thermal operations (GTOs) when catalysts are allowed; this is equivalent to characterise

the action of allowed operations in the Gaussian resource theory of thermodynamics in the

presence of catalysts. Our work can be considered an extension of the initial studies [79, 80]

in two ways: (i) we now allow for catalysts, and (ii) we obtain state transition conditions

for the multi-mode case. As the possible state transformations under non-catalytic Gaussian

thermal operations characterised in [79, 80] were very limited, we ask whether catalysts can

help us perform more interesting thermodynamic tasks in the Gaussian regime. We consider

two different models for catalysts. The first type is called a strong catalyst, which must not

only come back to its original state but also end up uncorrelated from the system. The second

type, a weak catalyst, allows for final correlation with the system and requires the catalyst only

locally to return to its initial state. Despite the general usefulness of catalysts, we find that

strong catalysts do not enlarge the range of possible state transformations for a given initial

state, while we can achieve more — yet still limited — state transformations with weak catalysts.

Furthermore, we determine the full necessary and sufficient conditions for single-mode catalytic

Gaussian thermal operations. For the multi-mode case, we introduce a new set of resource
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monotones with clear physical interpretation and provide state transition conditions in terms of

them.

To aid the reader, we provide a short summary of our results in this chapter here.

• Introduce a new set of resource monotones. We introduce a new set of resource mono-

tones, principal mode temperatures and asymmetries2, and rephrase the state transition

conditions under GTOs without catalysts in terms of these new monotones: Proposition 8

for the single-mode case and Theorem 9 for the multi-mode case.

• Define catalytic Gaussian thermal operations. We then formally define two types of

catalysts in Definition 6: strong and weak catalysts. Strong catalysts are required to not

only come back to its original state but also be uncorrelated to the system at the end of

the process. Weak catalysts are allowed to have a remaining correlation with the system

at the end of the process.

• Fully characterise single-mode catalytic Gaussian thermal operations. We

fully characterise the possible state transformations under single-mode catalytic GTOs.

Theorem 10 describes the state transition conditions for strong catalytic GTOs, which

is exactly same as the conditions without catalyst in Proposition 8 — this implies that

strong catalysts are not helpful. Theorem 11 describes the case for weak catalytic GTOs,

which shows a limited improvement on the case without catalysts.

• Characterise multi-mode catalytic Gaussian thermal operations. For the multi-

mode case, we derive several new state transition conditions in terms of principal mode

temperatures and asymmetries. In particular, for strong catalysts, we expand the discussion

to the approximate case and characterise approximate transformations with strong catalysts

in Theorem 12. For weak catalysts, the state transition conditions are given in Theorem 13

and 14.

This chapter presents result from [Benjamin Yadin*, Hyejung H Jee* et al. Journal of

Physics A. 55:325301 (2022)] and is structured as follows. In Section 5.1, we revise the definition

2Principal mode temperatures have been already introduced in [80], but principal mode asymmetries are
newly introduced in our work.
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and known properties of Gaussian thermal operations and introduce a useful representation

of Gaussian states and operations. We first look at state transitions under non-catalytic

Gaussian thermal operations in Section 5.2 and then formally define two different types of

catalytic Gaussian thermal operations in Section 5.3. The full characterisation of possible

state transformations under single-mode catalytic Gaussian thermal operations is presented

in Section 5.4, and the state transition conditions in the multi-mode case are discussed in

Section 5.5. We discuss the physical implications of our results in Section 5.6 before summarising

the chapter in Section 5.7.

As discussed in Chapter 2, we denote operators acting on the full Hilbert space with hat,

e.g., x̂, and operators acting on a finite dimensional space without hat, e.g., x. Also, the

set of all passive transformation acting on an N -mode CV quantum system is denoted by

K(N) ≡ Sp(2N) ∩O(2N).

5.1 Preliminaries

5.1.1 Gaussian thermal operations

Gaussian thermal operations (GTOs) are a sub-class of Gaussian operations which can be realised

by energy-preserving interaction between a system and a thermal bath. More specifically, for a

given second-order system Hamiltonian ĤS and an inverse temperature β = 1/kBT , GTOs are

defined as operations obtained by

1. Preparing a thermal state with arbitrary second-order Hamiltonian ĤB, i.e.,

e−βĤB

Tr
[
e−βĤB

] ,

2. Applying an energy-preserving Gaussian unitary ÛSB = e−iĤSB such that

[ĤSB, ĤS + ĤB] = 0 .
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The following theorem describes a representation of GTOs acting on covariance matrices.

Theorem 7. [79, Theorem 1] Let ĤS = 1
2
r̂THS r̂ be a system Hamiltonian with normal form

S−1HS(ST )−1 = ⊕lωl12nl
where nl is the mode degeneracy of an eigenfrequency ωl. For a given

system CM σ, the transformation under generic GTOs at background inverse temperature β can

be characterised by

σ 7→ S
(
⊕lWl ◦ Φl ◦ Zl

(
S−1 (σ)

))
, (5.1)

where Wl and Zl are passive transformations acting only on the modes with eigenfrequency ωl,

and Φl are CP maps describing thermalisation as a result of interacting with thermal baths, i.e.,

Φl(σl) = XlσlX
T
l + Yl,

where σl is the CM of the l-th degenerate sector, Xl =
⊕nl

k=1 cos θlk12 and Yl =
⊕nl

k=1
eβωl+1
eβωl−1

sin2 θlk12,

for some θlk ∈ R.

Note that in Eq. (5.1), apart from the symplectic transformation S which brings the system

Hamiltonian into the normal form, modes with different eigenfrequencies transform independently;

GTOs cannot make modes with different eigenfrequencies interact with each other. is intuitive

because GTOs are energy-preserving operations, and interactions between different energy levels

would require some energy exchange. The characterisation in Theorem 7 says that, once the

Hamiltonian is transformed to its normal form, a GTO can be implemented in three steps:

1. Adding thermal bath ancillae with same eigenfrequency and same number of modes to

each different eigenfrequency-sector of the system.

2. Applying passive transformations to each eigenfrequency-sector separately.

3. Tracing out the bath modes.

Since non-degenerate modes do not interact, in this chapter we only consider the interesting

case of degenerate modes, i.e., the case when all modes have the same eigenfrequency. Moreover,

we assume a mode basis has already been chosen such that the Hamiltonian is in its normal
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form HS = ω12n; equivalently ĤS = ω(n̂S + 1/2) acting on the Hilbert space, where n̂S is the

total number operator. Under these conditions GTOs effectively reduce to only the three types

of operations described above, which were introduced as bosonic linear thermal operations in

[80].

5.1.2 Principal mode temperatures and principal mode asymmetries

As we have seen in Chapter 2, a general Gaussian state can be represented by its vector of

first moments r and its CM σ. Here, we consider the case of vanishing first moments, r = 0,

and concentrate only on the thermodynamical properties of the CM. We employ a special

decomposition of the CM, first introduced in [81], that provides both a convenient mathematical

description for analysing transformations under GTOs and a set of quantities with interesting

physical interpretations. A 2N × 2N covariance matrix can be decomposed into two N ×N

matrices:

Mij :=
〈
â†j âi

〉
− δijν , Aij := ⟨âj âi⟩ ,

where ν = 1+e−βω

1−e−βω is the variance of any quadrature in a thermal state at background inverse

temperature β (see Eq. (2.20)). They are both complex matrices; M is Hermitian, and A is

symmetric. M is sometimes known as the single-particle density matrix, up to a constant shift.

In terms of these two matrices, we can recover the CM σ via

⟨x̂ix̂j⟩ = Re[Mij + Aij] + δijν +
1

2
,

⟨p̂ip̂j⟩ = Re[Mij − Aij] + δijν +
1

2
,

⟨{x̂i, p̂j}⟩ = 2 Im[Aij −Mij].

This representation is convenient since a thermal state at the background temperature is

characterised by M = A = 0. Furthermore, these matrices evolve simply under the passive

transformations on which GTOs are based. Under such an operation described by a unitary
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matrix U , the matrices M and A transform as

Mij 7→
∑
k,l

UikMklU
∗
jl , M 7→ UMU †

Aij 7→
∑
k,l

UikAklUjl , A 7→ UAUT .

It is therefore possible to diagonalise M with an appropriate choice of U .3 A can also be

diagonalised with a generally different unitary V . An advantage of using M and A instead of

CMs is that we can identify some quantities that are invariant under passive transformations and

thus equal for states that are thermodynamically equivalent due to being unitarily interconvertible

under GTOs.

In a basis where M is diagonal, we have M = diag(µ1, ..., µN). A is not in general diagonal

in this basis, but we are free to make arbitrary phase rotations of the form Uij → Uije
iϕj while

leaving M unchanged, under which Aij → ei(ϕi+ϕj)Aij . We can thus always leverage this freedom

to make the diagonals of A real and non-negative, i.e., Aii ≥ 0. Ordering the canonical operators

as (x̂1, p̂1, x̂2, p̂2, ...), the resulting form of the CM is

σ = 2 ×



µ1 + A11 + ν + 1
2

0 Re[A12] Im[A12] · · · · · ·

0 µ1 − A11 + ν + 1
2

Im[A12] −Re[A12] · · · · · ·

Re[A12] Im[A12] µ2 + A22 + ν + 1
2

0 · · · · · ·

Im[A12] −Re[A12] 0 µ2 − A22 + ν + 1
2

· · · · · ·
...

...
...

...
. . . . . .

...
...

...
...

. . . . . .


.

(5.2)

Aside from the eigenvalues {µi}i of M , another set of invariant quantities under passive

transformations are the singular values αi ≥ 0 of A, obtained by diagonalising A with the

unitary V by congruence [82, Chapter 4]. In this chapter, we characterise states in terms of

the parameter µ = (µ1, ..., µN) and α = (α1, ..., αN). Without loss of generality, we assume

3Note that diagonalisation of the CM with passive transformation is not in general possible, since Sp(2N) ∩
O(2N) is strictly smaller than the orthogonal group O(2N).
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that they are arranged in descending order. Individually, µ and α determine M and A up

to passive transformations, but it should be noted that they do not generally provide a full

characterisation of covariance matrices. The problem is that M and A are not in general

simultaneously diagonalisable. However, when they are, these parameters are sufficient to

determine σ up to a passive transformations:

Definition 5. A covariance matrix σ is called decouplable if there exists a passive transformation

that makes all the modes uncorrelated. In this case, the normal form in Eq. (5.2) is fully diagonal

and Aii = αi for all i.

The parameters µ and α have interesting physical interpretations (see Figure 5.1). The

quantities {µi + νi}i were named principal mode temperatures in [80] and described as the most

extreme effective temperatures that can be found in any mode decomposition of a state. The

mean energy of the i-th mode is a function of ⟨x̂2i + p̂2i ⟩ /2 = Mii+ν+1/2 in the case of vanishing

first moments. Given the ordering µ1 ≥ µ2 ≥ ..., µ1 is the greatest effective temperature found

in any mode decomposition. µ2 is the next greatest value found in any mode orthogonal to this,

and so on. The {αi}i instead describe the rotational asymmetry of modes in the phase space,

since ⟨x̂2i − p̂2i ⟩ /2 = Re[Aii] = Aii using the aforementioned phase freedom. We name them

principal mode asymmetries. Again ordering α1 ≥ α2 ≥ ..., we see that α1 describes the mode

with the greatest asymmetry, α2 describes the next greatest amongst modes orthogonal to that,

and so on. These are somewhat similar to squeezing, except that α > 0 does not necessarily

imply a sub-shot-noise quadrature variance.

For an example, let us consider a single-mode squeezed thermal state with the following CM:

σ =

2te−2r 0

0 2te2r

 ,

which can be generated by applying the single-mode squeezing transformation S1SQ(r) in

Eq. (2.11) to a thermal state with CM σth = diag(2t, 2t)4. In this case, the matrices M and A

are just numbers and naturally decouplable. Using the relation in Eq. (5.2), we can derive the

4This means that the variance of any quadrature of this thermal state is t.
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Figure 5.1: Illustration of the parameters in Section 5.1.2 (shown for a single mode). We use a
common visual representation of Gaussian states in the phase space, where an ellipse indicates
the region with high Wigner probability distribution. Note that the quantities indicated are the
squares of the lengths. Dashed circle: thermal state at the background temperature T , with
variance ν in all quadrature directions. Solid ellipse: arbitrary Gaussian state (with vanishing
first moments). µ is the principal mode temperature and α is the principal mode asymmetry.

principal mode temperature and asymmetry of this state:

µ =
1

2
t
(
e−2r + e2r

)
−
(
ν +

1

2

)
, α =

1

2
t
(
e−2r − e2r

)
,

where ν is the variance of a thermal state at background temperature.

5.2 Gaussian thermal operations without catalysts

In general, our goal is to understand when one state ρ of a system can be transformed into

another state ρ′ via a GTO in the presence of catalysts when all modes are degenerate. In this

section, we first revise state transformations under normal GTOs without catalysts in terms of

the principal mode temperatures and asymmetries.

When there exists a GTO which maps a state of a system to another state ρ′, we write

ρ
GTO−−−→ ρ′. For Gaussian states with vanishing first moments, this is equivalent to the conversion

of one CM into another, denoted by σ
GTO−−−→ σ′. Alternatively, a simpler question can be asked

using our decomposition of the CM: does a GTO exist that maps a state with matrix M into

one with matrix M ′, not concerned with what happens to the matrix A? When this is possible,

100



CHAPTER 5. CATALYTIC GAUSSIAN THERMAL OPERATIONS

we write M
GTO−−−→M ′; likewise, the notation A

GTO−−−→ A′ implies the matrix A can be transformed

into A′ via GTOs.

The following result from [79], which is restated in terms of the principal mode temperature

µ and the principal mode asymmetry α, answers when one single-mode CM can be transformed

into another CM via GTO.

Proposition 8. [79] Let σ, σ′ be covariance matrices of a single mode CV system. Then

σ
GTO−−−→ σ′ if and only if there exists p ∈ [0, 1] such that

µ′ = pµ, α′ = pα. (5.3)

Note that for the single-mode case, the matrices A and M reduce to single numbers and

necessarily commute to each other. Using the relation between the CM and the matrices A

and M in Eq. (5.2), one can state the condition in Eq. (5.3) alternatively as the existence of

p ∈ [0, 1] and S ∈ K(1) such that

σ′ = p SσST + (1 − p) ν12 . (5.4)

In simple words, any single-mode GTO is equivalent to applying a phase rotation and mixing

with thermal noise.5

5.2.1 Multi-mode case

For multiple modes, a set of necessary conditions in terms of principal mode temperatures

were found in [80]. We derive them again here with a different approach which we can

also use to derive analogous conditions for the principal mode asymmetries — the part two

of Theorem 9 which describes the condition for principal mode asymmetries is our novel

result. We first need to introduce some useful notation. The parameter µ can be divided into

super- and sub-thermal (or ‘hot’ and ‘cold’) parts, namely the positive and negative values:

5This is up to the symplectic transformation which brings the system Hamiltonian into the normal form, as
we have discussed in Section 5.1.1.
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µ = (µ+
1 , ..., µ

+
n+
, 0, ..., 0,−µ−

n− , ...,−µ−
1 ), where

µ+
1 ≥ µ+

2 ≥ · · · ≥ µ+
n+
> 0 ,

µ−
1 ≥ µ−

2 ≥ · · · ≥ µ−
n− > 0 .

It is sometimes convenient to extend these lists with zeroes, so that by convention µ±
i = 0 for

i > n±. Also, for two vectors x and y with same length, we write x ≤ y when xi ≤ yi for all i.

Theorem 9. 1. (Necessity proved in [80]) For M with eigenvalue vector µ and M ′ with µ′,

M
GTO−−−→M ′ if and only if µ′+ ≤ µ+ and µ′− ≤ µ−

2. (New result) For A with singular-value vector α and A′ with α′, A
GTO−−−→ A′ if and only

if α′ ≤ α.

The proof will be followed below. The main idea is that the matrices transform as M ′ =

PMP †, A′ = PAPT, where P is a sub-matrix of the unitary describing the coupling to the

bath. Since P is a contraction, it has a corresponding contractive effect on the eigenvalues

and singular values. The sufficiency of the conditions results from finding a type of elementary

GTO which applies what we call an L-transform on the parameters, which is able to perform

the required transformations applied to each mode independently. An L-transform is achieved

by simply mixing a single-mode system with a thermal mode at a beam splitter of arbitrary

transmissivity, and scales the parameters µ, α towards zero.

In simple words, this result says that the principal mode temperatures and asymmetries

all converge individually towards the thermal values, i.e., zero. While the inequalities in

Theorem 9 are necessary and sufficient for multi-mode GTO transformations between M and A

matrices independently, we are not able to say anything general about whether both sets of

conditions can be simultaneously satisfied. Thus, the inequalities are only necessary conditions

for transformations of covariance matrices, but not sufficient.

Proof of Theorem 9. Part 1: The initial covariance matrix is σS ⊕ σB where σB is thermal, so
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MSB = MS ⊕ 0B. Let us partition the interacting passive unitary U in the following way;

U =

P Q

R S

 .

The submatrix P is a contraction, meaning that P †P ≤ 1, PP † ≤ 1 with respect to the matrix

inequality. Partitioning the final matrix M ′ = UMU † in the same way (with stars denoting

unspecified elements),

M ′ =

M ′
S ∗

∗ ∗

 ,

we find that M ′
S = PMSP

†. An extension of Ostrowski’s theorem [82, Corollary 4.5.11] says that

there exist ri ∈ [p2n, p
2
1], where p1 ≥ · · · ≥ pn are the singular values of P , such that µ′

i = riµi.

The necessity of the conditions in Theorem 9-1 follows from P being a contraction, so that

ri ∈ [0, 1].

Sufficiency is seen from the fact that µ′ can be obtained from µ by multiplying each element

by some r ∈ [0, 1]. We call such an operation on each element an L-transform. This can

be performed on each mode by interacting with a single thermal mode via a beam splitter:

concentrating on just this pair of modes, take

U =

 √
r −

√
1 − r

√
1 − r

√
r

 .

Without loss of generality, we can assume the initial matrix M of the system to be diagonal, so

for this pair of modes,

M =

µ 0

0 0

 −→ M ′ = UMU † =

 rµ −
√
r(1 − r)µ

−
√
r(1 − r)µ (1 − r)µ

 ,

and tracing out the bath just gives the diagonal element rµ.

Part 2: We similarly have A′ = U(AS ⊕ 0B)UT so that A′
S = PASP

T . A related result for

complex symmetric matrices [82, Theorem 4.5.13] says that α′
i = riα, where ri ∈ [qn, q1] and
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q1 ≥ · · · ≥ qn are the eigenvalues of PP † — which again lie in the interval [0, 1]. Sufficiency

follows from starting in a basis with A = diag(α) and then applying the same U as above for

each mode. The calculation proceeds identically since all matrix elements are real.

5.3 Definition of catalytic Gaussian thermal operations

Our main interest in this chapter is state transformations under catalytic GTOs, namely GTOs

with the presence of catalysts. In this section, we define two different cases of catalytic GTO

transformations.

Definition 6. 1. (Strong catalysts) We say that a strong catalytic GTO transformation

from ρS to ρ′S is possible if there exists a state ρC such that

ρS ⊗ ρC
GTO−−−→ ρ′S ⊗ ρC .

The same terminology applies to transformations at the level of the matrices σ,M and

A— for example, MS ⊕MC
GTO−−−→M ′

S ⊕MC.

2. (Weak catalysts) We say that a weak catalytic GTO transformation from ρS to ρ′S is

possible if there exist a state ρC and a final state ρ′SC such that

ρS ⊗ ρC
GTO−−−→ ρ′SC with ρ′C = TrS [ρ′SC ] = ρC .

The same terminology applies to transformations at the level of the matrices σ,M and

A— for example, AS ⊕ AC
GTO−−−→ A′

SC with the catalyst sub-block A′
C = AC.

A strong catalyst must be not only returned to its original state but also uncorrelated from

the system at the end. This agrees with the most common definition that has been used,

for instance, in the resource theory of entanglement (see Section 3.2.1). For a weak catalyst,

arbitrary correlations between the system and the catalyst in the final state are allowed. This

weakening of the constraint has been studied recently and shown to result in sensible versions of

the second law [46, 83]. We would like to remark that although we use the same terminology for
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catalytic conditions on either the density matrix or the covariance matrix and its submatrices,

these conditions are not equivalent. Satisfying the catalytic condition on the density matrix

picture implies catalysis at the level of second moments, but the reverse is in general not true.

This is the case especially when one considers non-Gaussian inputs — one can have non-Gaussian

states under GTO where the state transformation is not catalytic but the second moments are;

for instance, a Fock state mixing at a beam splitter with a thermal mode with the same second

moment. However, these conditions are indeed equivalent for Gaussian inputs, aside from first

moments.

With the above definitions, a natural question is whether such catalytic GTO transformations

allow for more state transformations to be performed on a system. For the rest of this chapter, we

provide necessary or sufficient conditions for these two different catalytic GTO transformations

in terms of µ and α and compare them to the case where no catalyst is used.

5.4 Single-mode with catalysts: full characterisation

We first consider the simplest case of catalytic GTO transformations, where both the system

and the catalyst are composed of a single mode. This single-mode case is a special case of

our formulation — since the initial state ρS ⊗ ρC is naturally decouplable, µ = (µS, µC) and

α = (αS, αC) fully characterise the initial state of the system and the catalyst. Indeed, the

initial state MSC and ASC describing the system and the catalyst can be written as

MSC =

µS 0

0 µC

 , ASC =

αS 0

0 αC

 .

Since we can perform any GTO transformation using as many bath modes as the total modes

of the system and the catalyst [79], we add a two-mode thermal bath at inverse temperature β.

Then, the joint initial state of the system, the catalyst and the thermal bath is described by the
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following M and A matrices:

M =



µS 0 0 0

0 µC 0 0

0 0 0 0

0 0 0 0


= MSC ⊕ 0B , A =



αS 0 0 0

0 αC 0 0

0 0 0 0

0 0 0 0


= ASC ⊕ 0B ,

where 0B denotes the 2 × 2 null matrix. As discussed in Section 5.1.1, any GTO transformation

can be obtained by applying a passive transformation to the whole state and tracing out the

bath modes, and any passive transformation corresponds to a unitary U acting on M and A

matrices. Let us divide the interacting passive unitary U into four 2 × 2 blocks;

U =

P Q

R S

 .

Again, the sub-matrix P satisfies P †P ≤ 1 and PP † ≤ 1 with respect to the matrix inequality.

With this notation, the evolution of the system and the catalyst is only affected by the sub-matrix

P :

M ′
SC = PMSCP

†, A′
SC = PASCP

T . (5.5)

The main question is that for a given description of the initial system, µS and αS, which final

parameters µ′
S and α′

S can be reached via catalytic GTO transformations.

We first find that a strong catalyst does not enlarge the range of possible transformations

on a single mode:

Theorem 10. (Single-mode strong catalytic GTO) Let σ and σ′ be covariance matrices of

a single-mode CV quantum system. The state transition condition between σ and σ′ under

single-mode strong catalytic GTOs is exactly the same as the one under non-catalytic GTOs

described in Eq. (5.4): there exist p ∈ [0, 1] and S ∈ K(1) such that

σ′ = p SσST + (1 − p) ν12 .
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In terms of principal mode temperatures and asymmetries, the condition becomes same as

Eq. (5.3).

The proof is given at the end of this section.

On the other hand, with a weak catalyst, we show that a greater range of transformations

become possible.

Theorem 11. (Single-mode weak catalytic GTO) Consider a single-mode CV quantum system

described by the parameters µS and αS. It can be mapped to the final state described by µ′
S and

α′
S via single-mode weak catalytic GTOs if and only if there exist p, q ∈ [0, 1] such that p ≥ q,

and

µ′
S = pµS, α′

S = qαS. (5.6)

Again, the proof is given at the end of this section.

These two results are illustrated in Figure 5.2(a). With a strong catalyst (the red line),

the only possible kind of transformation in µ − α parameter space is to move along the line

towards the origin, which represents the thermal state. Physically, this implies that, apart from

the symplectic transformation S to the normal form, all possible state transformations under

single-mode strong catalytic GTOs can be described as thermalisation towards the bath mode,

which is same as the case of non-catalytic single-mode GTOs. On the other hand, with a weak

catalyst, a triangular region (the blue region) becomes accessible. This requires not only µ

and α to be non-increasing, but also the ratio α
µ
. This latter condition may be interpreted as

the ‘aspect ratio’ of the Gaussian distribution in the phase space becoming less extreme. The

same region is also redrawn in terms of the eigenvalues of the final CM, λ1, λ2 with λ1 ≤ λ2, in

Figure 5.2(b).

In the case of weak catalysts, any point in the triangular region can be reached by concate-

nating two simple processes: a reduction in α with fixed µ and a non-catalytic thermalisation

which scales both parameters similarly towards zero. The first process involves a catalyst but

no bath. In order to carry out the transformation (µS, αS) 7→ (µS, ᾱS), we take µC = µS and
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Figure 5.2: Visualisation of possible state transformations under single-mode strong or weak
catalytic GTOs, when the initial state of the system is described by the parameters µS, αS
or the CM σS. The grey regions represent physical regions in both figures. (a) In the state
space described by the principal mode temperature µ and asymmetry α. Each point in the
physical region (grey) fully describes a covariance matrix of the single-mode system up to
passive transformations, and the origin represents the thermal bath. The red line describes all
final states achievable by strong catalytic GTOs; it is same as the non-catalytic single-mode
case (thermalisation). The blue region represents all possible final states with weak catalytic
GTOs. In this case, we can additionally perform inverse squeezing to the system by coupling it
to the catalyst. (b) In the state space described by the eigenvalues of the CM of the system,
λ1, λ2 with λ1 ≥ λ2. σT denotes the CM of the thermal bath. Again, the red line represents all
possible state transformations with strong catalytic GTOs, and the blue region describes the
same with weak catalytic GTOs. Note that the red line is the same as what we could achieve
with non-catalytic single-mode GTOs discussed in Proposition 8.

αC = (αS − ᾱS)/2, and apply the following unitary operation to the system and the catalyst:

U =

 √
a i

√
1 − a

√
1 − a −i√a

 ,

where a = αS+ᾱS

3αS−ᾱS
∈ [1

3
, 1], which can be performed with a suitable beam-splitter and phase

shift.

Note that in the single-mode case the parameters µS and αS fully characterise the system

state up to passive transformations in the case of Gaussian input states. Thus, the conditions

stated in Theorem 10 and 11 are necessary and sufficient conditions for state transformations

under single-mode catalytic GTOs.
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Now we present the proofs of the two theorems. As Theorem 10 can be derived as a special

case of Theorem 11 with more constraints, we provide the proof of Theorem 11 first and then

the one of Theorem 10.

Proof of Theorem 11. (Necessary conditions) We start from Eq. (5.5),

M ′
SC =

 |p11|2µS + |p12|2µC p11p
∗
21µS + p12p

∗
22µC

p∗11p21µS + p∗12p22µC |p21|2µS + |p22|2µC

 ,

A′
SC =

 p211αS + p212αC p11p21αS + p12p22αC

p11p21αS + p12p22αC p221αS + p222αC

 ,

where pij = (P )ij are the elements of the sub-matrix P . The final state is described by

µ′
S = |p11|2µS + |p12|2µC

α′
S = p211αS + p212αC .

(5.7)

We want to find the relations between the initial parameters µS and αS and the final parameters

µ′
S and α′

S. To do so, we need to exploit the catalytic conditions given by

|p21|2µS + |p22|2µC = µC ,

p221αS + p222αC = αC .

(5.8)

Firstly, let us assume |p22|2 = 1. This is a trivial case as it implies p12 = p21 = 0, so that

µ′
S = |p11|2µS and α′

S = p211αS, which satisfies the conditions in Eq. (5.6). In the following, we

will assume |p22|2 ̸= 1.

Assuming µS ̸= 0 and αS ̸= 0, we can rewrite the catalytic conditions in Eq. (5.8) as

µC
µS

=
|p21|2

1 − |p22|2
,

αC
αS

=
p221

1 − p222
,

which implies that
p221

1−p222
must be real and non-negative.6 Substituting these to the expressions

6Recall the parameters α are real and non-negative — see Section 5.1.2.

109



CHAPTER 5. CATALYTIC GAUSSIAN THERMAL OPERATIONS

of the final state in Eq. (5.7) obtains

µ′
S = |p11|2 µS + |p12|2 µC =

(
|p11|2 +

|p12|2|p21|2
1 − |p22|2

)
µS ,

α′
S = p211 αS + p212 αC =

(
p211 +

p212p
2
21

1 − p222

)
αS ,

which again implies that both expressions in the brackets are real. Then, we have

p211 +
p212p

2
21

1 − p222
≤
∣∣∣∣p211 +

p212p
2
21

1 − p222

∣∣∣∣ ≤ ∣∣p211∣∣+

∣∣∣∣ p212p2211 − p222

∣∣∣∣
= |p11|2 + |p12|2

|p221|
|1 − p222|

≤ |p11|2 +
|p21|2|p12|2

1 − |p22|2
,

where we used the reverse triangle inequality, |x− y| ≥ ||x| − |y||, and |p22| ≤ 1 in the last

inequality. This shows α′
S/αS ≤ µ′

S/µS.

The remaining part is to prove µ′
S/µS ≤ 1. This can be easily shown using the condition of

P that 1− PP † ≥ 0. We have that

1− PP † =

1 − |p11|2 − |p12|2 −p11p∗21 − p12p
∗
22

−p∗11p21 − p12p
∗
22 1 − |p21|2 − |p22|2

 ≥ 0,

which implies

1 − |p11|2 − |p12|2 ≥ 0 ,

1 − |p21|2 − |p22|2 ≥ 0 .

(5.10)

Then, we obtain

|p11|2 +
|p12|2|p21|2
1 − |p22|2

≤ |p11|2 +
(1 − |p11|2)(1 − |p22|2)

1 − |p22|2
= 1 ,

where we used Eq. (5.10) in the first inequality. This completes the proof.

When µS = 0, the catalytic condition implies that either |p22|2 = 1 or µC = 0. If |p22|2 = 1,

from the earlier argument on the case when |p22|2 = 1, we have µ′
S = 0 and α′

S = p211αS ≤ αS. If

µC = 0, then µ′
S = 0, and all the results on α′

S are same as above; α′
S ≤ αS. A similar argument
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works for the case when αS = 0.

(Sufficient conditions) We would like to show that for any µ′
S and α′

S satisfying Eq. (5.6),

we can find a weak catalytic GTO transformation which maps the initial state to the final state

described by µ′
S and α′

S. To do so, we provide an explicit weak catalytic GTO transformation

which can map the initial state with µS and αS to the final state with µ′
S and α′

S. Consider a

weak catalytic GTO transformation consisting of the following two steps:

1. By coupling the system with the catalyst, reduce the αS to ᾱS = (µS/µ
′
S)α′

S whilst keeping

the same µS. This can be done with the catalyst described by µC = µS and αC = αS−ᾱS

2
,

and the following unitary operation U1 acting on the matrices M and A:

U1 =

 √
a i

√
1 − a

√
1 − a −i√a

 , (5.11)

where a = αS+ᾱS

3αS−ᾱS
∈ [1

3
, 1]. U1 can be realised by passive unitaries on the system and the

catalyst; coupling the system and the catalyst via a beam splitter with transmissivity a

together with a phase shift.

2. Couple the system with the thermal bath and thermalise the system to the final state

with µ′
S and α′

S. This can be done by applying a beam splitter with transmissivity µ′
S/µS

to the bath and the system, which is now described by µS and ᾱS, and tracing out the

bath mode.

It is not difficult to check that above two steps transform µS, αS to µ′
S, α

′
S, and the whole process

is a GTO transformation. Geometrically, the first step describes moving vertically (reducing

the principal mode asymmetry α) in Fig. 5.2(a), and the second step is moving towards to the

origin (pure thermalisation).

Now, we prove Theorem 10 borrowing a few results from the proof of Theorem 11.

Proof of Theorem 10. (Necessary conditions) We start again from Eq. (5.5), and the final state
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is described by

µ′
S = |p11|2µS + |p12|2µC

α′
S = p211αS + p212αC .

Again, we want to find the relations between the initial parameters µS, αS and the final

parameters µ′
S, α

′
S. This time, we can exploit not only the catalytic conditions in Eq. (5.8) but

also the no-correlation conditions given by vanishing off-diagonal elements,

p11p
∗
21µS + p12p

∗
22µC = 0 ,

p11p21αS + p12p22αC = 0 .

(5.12)

As we are looking at a more restricted case (with more conditions) than the one with weak

catalysts, the conditions for weak catalysts must hold regardless of the no-correlation conditions;

the condition in Eq. (5.6) automatically holds due to the proof of Theorem 11. Now, we just

need to show that the ratios p =
µ′S
µS

and q =
α′
S

αS
are the same.

Firstly, let us assume µS ̸= 0 and αS ≠ 0. We notice from the no-correlation conditions in

Eq. (5.12) that

µC
µS

= −p11p
∗
21

p12p∗22
∈ R ,

αC
αS

= −p11p21
p12p22

∈ R ,

which implies that µC/µS = ±αC/αS depending on the phase. Combining this result with the

catalytic conditions in Eq. (5.8) gives us

µC
µS

=
|p21|2

1 − |p22|2
= −p11p

∗
21

p12p∗22
=⇒ p11 =

p21p12p
∗
22

|p22|2 − 1
,

αC
αS

=
p221

1 − p222
= −p11p21

p12p22
=⇒ p11 =

p21p12p22
p222 − 1

,

where we assume that |p22| ≠ 1, p12 ̸= 0, and p22 ̸= 0. Then, using this together with the
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catalytic conditions, we can obtain from Eq. (5.7) that

µ′
S =

( |p21||p12||p22|
|p22|2 − 1

)2

µS + |p12|2
( |p21|2

1 − |p22|2
µS

)
=

|p21|2|p12|2|p22|2 + (1 − |p22|2)|p12|2|p21|2
(1 − |p22|2)2

µS =
|p12|2|p21|2

(1 − |p22|2)2
µS .

Also, we can obtain that

α′
S =

(
p21p12p22
p222 − 1

)2

αS + p212

(
p221

1 − p222
αS

)
=

p212p
2
21

(1 − p222)
2
αS =

p212
p221

× p421
(1 − p222)

2
αS ,

where we assume p21 ̸= 0 here7. Since p221/(1−p222) = αC/αS = ±µC/µS = ±|p21|2/(1−|p22|2) ∈

R, this leads to

α′
S = ±p

2
12

p221

|p21|4
(1 − |p22|2)2

αS = ±
∣∣∣∣p212p221

∣∣∣∣ |p21|4
(1 − |p22|2)2

αS = +
|p12|2|p21|2

(1 − |p22|2)2
αS ,

where we used the fact that the factor must be real in the second equality, and we chose a + sign

instead of a − sign at the end as α is always non-negative. This proves that α′
S/αS = µ′

S/µS.

We have to look at the remaining cases: (i) When p12 = 0, then either p11 or p21 must be

zero because of the no-correlation conditions in Eq. (5.12). When p12 = p11 = 0, µ′
S = α′

S = 0,

which means that the final state is thermal. When p12 = p21 = 0, then µ′
S = |p11|2µS, and

α′
S = |p11|2αS with |p11|2 ≤ 1. (ii) When p22 = 0, again either p11 or p21 must be zero. If

p22 = p11 = 0, µ′
S = |p12|2|p21|2µS, and α′

S = |p12|2|p21|2αS with |p12|2|p21|2 ≤ 1. If p22 = p21 = 0,

the catalyst is thermal, resulting in a normal non-catalytic single-mode GTO transformation.

(iii) When |p22|2 = 1, this implies p12 = p21 = 0, so that µ′
S = |p11|2µS, and α′

S = |p11|2αS with

|p11|2 ≤ 1. All three cases satisfy the conditions in Theorem 10.

When µS = 0, from the catalytic conditions, we have either |p22|2 = 1 or µC = 0, and from

the no-correlation conditions we have either p12 = 0 or p22 = 0 or µC = 0. It is not difficult to

check that in all possible cases, it holds that µ′
S = 0 and α′

S ≤ αS, which satisfies the conditions.

A similar argument also holds for the case when αS = 0.

(Sufficient conditions) If we define γ ≤ 1 such that |µ′
S| = γ|µS| and |α′

S| = γ|αS|, the state

7If p21 = 0, then |p22|2 = 1 due to the catalytic conditions in Eq. (5.8), but we already assumed |p22|2 ̸= 1.
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transition condition can be expressed in terms of CMs as

σ′
S = γσS + (1 − γ)σB,

where σB is the CM of the bath mode. Thus, the state transformation described by strong

catalytic GTO transformations is mixing the initial CM of the system with the thermal bath,

which can be achieved by a non-catalytic single-mode GTO transformation. As non-catalytic

single-mode GTOs are included in single-mode strong catalytic GTOs, any final state satisfying

the conditions in Eq. (5.3) or Eq. (5.4) can be also achieved by single-mode strong catalytic

GTO transformations.

5.5 Multi-mode with catalysts

In the last section, we looked at possible state transformations under catalytic GTOs when each

of the system and the catalyst is single-mode. We now want to explore state transformations

under GTOs involving systems and catalysts consisting of an arbitrary number of modes. Given

the difficulty of completely characterising the equivalence of covariance matrices under the set

of passive transformations, the same analysis used for solving the single-mode case does not

generalise to the multi-mode case. Thus, in this section, we employ different approaches to

determine necessary conditions for catalytic GTO transformations in terms of µ and α.

5.5.1 Approximate transformations with strong catalysts

In the last section, it was found that a strong catalyst permits no more state transformations

than are possible without a catalyst. Would it be because of the strict requirement that the

catalyst should be returned exactly to its initial state? To investigate this, we relax the condition

to allow for an error with respect to the trace distance between covariance matrices. This choice

of error measure is partly for mathematical convenience, but it is also more experimentally

relevant as the statistical moments, rather than the states represented by a density operator,

are the accessible quantities in experiments.
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Definition 7. (Approximate transformations) We write M
GTO−−−→
δ

M ′ if there exists M̃ such

that M
GTO−−−→ M̃ and ∥M ′ − M̃∥1 ≤ δ, where ∥ · ∥1 is the trace norm. An approximate strong

catalytic transformation then takes the form

MS ⊕MC
GTO−−−→
δ

M ′
S ⊕MC .

Note that δ-closedness in terms of the matrix M implies δ-closedness in terms of the

eigenvalues since the Wielandt-Hoffman inequality [82, Corollary 7.4.9] for the trace norm says

n∑
i=1

|µ′
i − µi| ≤ ∥M ′ −M∥1 ,

where as usual we assume non-increasing ordering for µ and µ′. In the following theorem, we

identify the necessary conditions for state transformations under approximate strong catalytic

GTOs when the system and the catalyst consist of multiple modes.

Theorem 12. Let [x]+ := max{x, 0} denote the positive part of a real number. Then, for given

matrix M and M ′, there exists MC such that M ⊕MC
GTO−−−→
δ

M ′ ⊕MC if and only if

∑
i

[
µ′+
i − µ+

i

]+
+
∑
i

[
µ′−
i − µ−

i

]+
≤ δ. (5.13)

Similarly, there exists AC such that A⊕ AC
GTO−−−→
δ

A′ ⊕ AC if and only if

∑
i

[α′
i − αi]

+ ≤ δ. (5.14)

The proof can be found in Appendix B.1.

Note that setting δ = 0 recovers the same transformation laws as the non-catalytic case

described in Theorem 9. Otherwise, the LHSs of Eqs. (5.13) and (5.14) quantify the total

amounts by which the laws are violated — and these totals are bounded by the error δ. Also,

note that there is no possibility for embezzlement in this case — such a phenomenon occurs,

for instance, in entanglement theory [84], whereby allowing for a small error in returning the

catalyst state can permit arbitrary transformations on the system. Rather, the result that a
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strong catalyst cannot enable any additional transformation is stable with respect to errors in

the catalyst.

5.5.2 Necessary majorisation conditions for weak catalysts

For a weak catalyst, instead of the ordering relation denoted by the inequality symbol (≤ or ≥)

we find that majorisation (≻ or ≺) and weak majorisation (≻w or ≺w) become relevant. For

given two non-increasingly ordered vectors x and y of length n, we say that y weakly majorises

x, written as x ≺w y, if [85]

k∑
i=1

xi ≤
k∑
i=1

yi ∀ k = 1, 2, . . . , n.

When in addition the total sum is the same, i.e.,

n∑
i=1

xi =
n∑
i=1

yi,

then recall that we say y majorises x, denoted by x ≺ y.

The transformation laws for M and A now differ from each other and from the non-catalytic

case. A weak catalyst on its own, without involving a thermal bath, is also able to make some

influence on µ as follows.

Theorem 13. 1. A weak catalytic transformation from M to M ′ is possible without use of a

thermal bath if and only if

µ′ ≺ µ.

If the system has n modes, then the catalyst only needs at most n− 1 modes.

2. Allowing for the use of a thermal bath, the transformation is possible if and only if

µ′+ ≺w µ+ and µ′− ≺w µ−.

The catalyst only needs at most n− 1 modes, and the bath needs at most n modes.
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The proof is given in Appendix B.2. Note that no statement can be made about the number of

positive or negative principal mode temperatures. It is also worth noting that the construction

of the operation in Theorem 13-2 shows that we may interact the system with just the catalyst

first, and then just with the bath as in the single-mode case in the last section.

For the principal mode asymmetries α, we find instead that the same set of transformation

is possible, whether or not a thermal bath is involved, as described in the following theorem:

Theorem 14. A weak catalytic transformation from A to A′ is possible either with or without

use of a thermal bath if and only if

α′ ≺w α.

If the system has n modes, we require at most 2n − 1 catalyst modes or otherwise n catalyst

modes plus n− 1 bath modes.

The proof is given in Appendix B.3.

The key additional transformation provided by a weak catalyst is an operation on a given

pair of modes. For instance, the result on the M matrix is a so-called T-transform [85, Lemma

2.B.1] on its eigenvalues, resulting in µ′
1 = (1− t)µ1 + tµ2, µ

′
2 = (1− t)µ2 + tµ1 for some t ∈ [0, 1].

Again it is important to remark that the above conditions are only necessary conditions

for state transformation due to the fact that M and A are in general not simultaneously

diagonalisable. Also, the derived multi-mode conditions do not fully recover the single-mode

results presented in Section 5.4 — we are missing the conditions on the ratio between µ and α.

It is an open question to see whether we can derive a generalised version of the condition on the

ratio in the multi-mode case.

5.6 Physical implications

In this section, we would like to discuss the physical implications of the monotonicity results

found for the parameters µ and α, the principal mode temperatures and asymmetries. We

summarise our results for different cases in Table 5.1 and also illustrate them in Figure 5.3.
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Table 5.1: Summary of ordering relations on the parameters µ and α for different types of GTO
transformations.

Transformation type Ordering

No catalyst µ′± ≤ µ±, α′ ≤ α

Strong catalyst µ′± ≤ µ±, α′ ≤ α

Weak catalyst, no bath µ′ ≺ µ, α′ ≺w α

Weak catalyst, with bath µ′± ≺w µ±, α′ ≺w α

Figure 5.3: Lorenz curves (i.e., partial sums) demonstrating the different kinds of orderings
encountered here. If the top curve (solid, black) is x, then the lower curves from top to bottom
satisfy respectively x′ ≺ x (solid, red), x′ ≺w x (dashed, blue), and x′ ≤ x (dotted, green).

5.6.1 Concentration of athermal resources

Let us first consider the matrix M . Given a choice of orthogonal modes, the diagonal Mii in

the corresponding basis are related to the mean energy in each mode, under the assumption of

vanishing first moments. The principal mode temperature µi are the diagonals in a basis where

M is diagonal. Due to the majorisation relation between the eigenvalues of a matrix and its

diagonal, the distribution of {Mii}i is generally more uniform than that of {µi}i. For a set of

initially uncorrelated modes isolated from the thermal environment and which interact via a

passive transformation, this relation describes an approach to equilibrium via what could be

described as heat exchange, since these components of energy are related to the quadrature

fluctuations. The {µi}i are intrinsic to the closed system, so are unchanged over this unitary

evolution.

An important common feature apparent in the relations in Table 5.1 is a restriction on

the concentration of resources. For instance, all the orderings ≤, ≺, ≺w require µ′+
1 ≤ µ+

1 .
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This means that it is impossible to concentrate the energy of multiple modes in such a way

that the ‘hottest’ mode becomes hotter. The same rule applies inversely to modes below

the background temperature; the coldest sub-thermal mode cannot be cooled. Therefore,

an absorption refrigerator is an impossible machine within the Gaussian framework. This

observation was also made in other literature [86–88] — however, we also see further that more

subtle conditions apply to concentration into larger subsets of modes. For instance, either with

no catalyst or with a strong catalyst, µ′+
2 ≤ µ+

2 , and thus the second hottest mode also cannot

become hotter. A weak catalyst instead opens up the possibility of heating this mode, subject to

a different constraint that the two hottest modes in total do not heat up, i.e., µ′+
1 +µ′+

2 ≤ µ+
1 +µ+

2 .

That is, energy in the first mode can be traded for heating of the second mode.

Note that the case of weak catalysts without interaction with a thermal bath makes no

distinction between super- and sub-thermal modes; this is to be expected since there is no

background reference temperature in this case. The effect of including a thermal bath is then

to separate the conditions on super- and sub-thermal modes, and also to allow for losses, in

the sense that the total
∑n+

i=1 µ
+
i can decrease, for instance. So the super-thermal modes can in

total lose energy to the bath, and the sub-thermal modes can in total gain energy from the bath.

Similar considerations apply to the principal mode asymmetries αi. A notable difference

compared with µi is that the ‘lossy’ property exists for a weak catalyst with no bath interaction.

Intuitively, this is due to the existence of operations that result in components of the asymmetry

being transferred to correlations between the system and the catalyst.

5.6.2 General limitations of Gaussian systems

In addition to the constraints described above, there is a deeper limitation preventing Gaussian

systems from making useful thermodynamical machines. In order to develop this argument, we

first need to understand how to describe work in the GTO framework. In the quantum resource

theory of discrete thermal operations [35, 89], a work battery is typically defined as a system

that transitions from one pure energy eigenstate to another so that it does not change entropy,

and a definite, non-fluctuating amount of work is exchanged with other systems. This definition

cannot be used in GTOs since no energy eigenstate other than the vacuum is Gaussian. Given
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the significance of quadratures in the Gaussian setting, it seems reasonable to instead define a

Gaussian work battery as a system that transitions from one Gaussian state to another under

the action of a displacement — thus, only its first moments can change, but not its CM. The

work is then defined as the change in mean energy of the battery. Apart from the change in first

moments, the energy distribution changes too, so this is necessarily a weakening of the usual

requirements. However, its entropy is a function of the CM and is constant.

Depending on whether the work battery is allowed to become correlated with the system, it

therefore functions at the level of the CM as either a strong or a weak catalyst. Either way,

the final CM of the system is only a function of the initial CM and completely independent

of the first moments. Thus, the possible transformations of the system’s CM are the same no

matter how much energy is stored in the battery. In this Gaussian setting, therefore, no useful

machine can be constructed whereby work is traded for resources at the CM level. What can a

Gaussian work battery do then? Only non-trivial transformations involving first moments alone

are possible. In general, given an NS-mode system S and an NW -mode work battery W with

first moments rS and rW , a joint passive transformation represented by S ∈ K(NS +NW ) has

the action  r′S

r′W

 = S

 rS

rW

 ,

i.e., the point in the combined phase pace is simply rotated about the origin by an orthogonal

symplectic matrix. For example, with one mode each, a beam-splitter with reflectivity r has the

effect on a pair of coherent states: |α1⟩S |α2⟩W →
∣∣rα1 +

√
1 − r2α2

〉
S

∣∣rα1 −
√

1 − r2α2

〉
W

. In

general, a displacement can be applied to the system S by choosing a battery W with the same

CM as the system’s and suitable chosen first moments along with a set of beam-splitters. Thus,

while displacements are not free within GTO, they can be accomplished with an additional

system that exchanges energy in the form of first moments but is strongly catalytic in its second

moments. Alternatively, if we do not want to adapt the system W to fit the CM of the system

S, we can use an arbitrary CM and a large displacement α; in the limit of α → ∞ with r × |α|

held constant, a displacement is performed on the system S [90]. For finite α, this is an instance

of an approximate strong catalytic transformation, so Theorem 12 guarantees that the thermal
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monotone laws found in the last section hold approximately.

At a broader level, it is also worthwhile noting that the direct-sum structure of multi-mode

Gaussian systems seems crucial for these general limitations in the Gaussian setting. The main

reason why introducing catalysts does not have as a dramatic impact on the ordering relations

of µ and α as in other resource theories is that catalysts do not change the pre-existing elements

of µ and α but just add more elements to such vectors. In contrast, in the tensor-product

structure of the full Hilbert space, the catalyst’s vector elements are multiplied with the system’s

elements, which can significantly affect vector ordering. The direct-sum structure of multi-mode

Gaussian systems also plays an important role in other limitations to Gaussian resource theories

as we have seen in Chapter 4; the tensorisation property of a resource monotone (Part 3 in

Lemma 4 in Chapter 4), due to the direct-sum structure of CMs, results in the limitations

for Gaussian resource distillation — having multiple input states does not help us distill more

resources.

5.7 Summary

In this chapter, we looked at possible state transformations under Gaussian thermal operations

when catalysts are allowed. We defined two different types of catalysts: a strong catalyst which

must not only come back to the original state but also end up uncorrelated to the system,

and a weak catalyst whose local state only needs to be reset. We asked whether exploiting

these catalysts permits more state transformations than the non-catalytic case. Despite the

general benefit of catalysts in other QRTs, we found that strong catalysts do not enable more

state transformations while weak catalysts can achieve more but limited state transformations

compared to the non-catalytic case. Alongside with the principal mode temperature introduced

in [80], we defined another resource monotone, the principal mode asymmetry, to describe

the state transition conditions. We fully characterised the necessary and sufficient conditions

for state transformations under single-mode catalytic GTOs for both types of catalysts, and

also provided new necessary conditions for the multi-mode case in terms of principal mode

temperatures and symmetries. We discussed physical implications of our results on Gaussian

121



CHAPTER 5. CATALYTIC GAUSSIAN THERMAL OPERATIONS

thermal machines such as Gaussian refrigerators and Gaussian work batteries.

In general, due to the stringent requirement imposed by the direct-sum composition of the

phase space, resource theories in the Gaussian regime allow for very limited operations. It is

therefore natural to inject non-Gaussian elements into the theory. In this regard, it would be

interesting to see what transformation would be unlocked if Gaussian thermal operations are

combined with resourceful non-Gaussian catalysts. The conditions determined in this chapter

would still hold at the level of second moments (since Gaussian states allow one to reproduce

all physical CMs, and their transformations would still be same as described here), but more

interesting dynamics could be allowed at the full Hilbert space level. More fundamentally,

however, non-Gaussian operations need to be included as resources to break the constraints we

have found on the manipulation of second moments.
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Chapter 6

Background theory

In Part I, we considered continuous-variable quantum systems associated with infinite-dimensional

Hilbert spaces. In Part II, we go back to the more standard setting of quantum information

science and consider discrete-variable quantum systems with finite-dimensional Hilbert spaces.

In this chapter, we dive into new topics: semidefinite programming and quantum de Finetti

theorems. These two concepts are used as main technical tools in Chapter 7 to characterise

quantum correlations of fixed dimensions in the context of non-local games. The first topic,

semidefinite programming, is a special type of mathematical optimisation problem involving

positive semidefinite matrices. As quantum states are mathematically represented by positive

semidefinite matrices with trace one, semidefinite programming can be easily found in many

different problems of quantum information theory when optimisation is involved. Indeed, it is

known that some of the famous problems in quantum information theory, such as quantum

separability problem and characterising quantum correlations, admit semidefinite programming

relaxations which can be effectively implemented. In this chapter, we formally introduce the

concept of semidefinite programming and the two important, widely-exploited semidefinite

programming hierarchies in quantum information science; the Doherty-Parrilo-Spedalieri (DPS)

and Navascués-Pironio-Aćın (NPA) hierarchy. Then, we move to the second topic, quantum de

Finetti theorems. Quantum de Finetti theorems address the close relation between quantum

separable states and effective outer-approximations of separable states known as extendible

states. Extendible states and quantum de Finetti theorems are key ingredients in the next
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Quantum correlations of fixed dimension

Rephrased as a 
quantum separability problem

Construct a hierarchy of 
semidefinite programming relaxations

Derive 
the convergence rate of the hierarchy

The DPS hierarchy
(Section 6.3.1)

Quantum de Finetti theorem
(Section 6.4)

The NPA hierarchy
(Section 6.3.2)

Figure 6.1: The schematic of how each ingredient will be used in the next chapter, where we
construct a new hierarchy of semidefinite programming relaxations for quantum correlations
with fixed dimension.

chapter, and we provide a short introduction on them in this chapter.

To motivate the reader through this chapter, we provide a brief summary (see Figure 6.1)

explaining how each ingredient introduced in this chapter will play their role in the next chapter.

The goal of Chapter 7 is to develop a new way to characterise quantum correlations which can be

realised by measuring quantum states on a Hilbert space of fixed dimension. We achieve this by

constructing a new hierarchy of semidefinite programming relaxations (the topic of Section 6.3)

for quantum correlations of fixed dimension. Firstly, we rephrase the problem as an instance of

quantum separability problem and construct a new semidefinite programming hierarchy using

the DPS hierarchy (Section 6.3.1), which is well-known semidefinite programming relaxations for

quantum separability problem. Then, we derive the convergence rate of the newly constructed

hierarchy using quantum de Finetti theorem (Section 6.4) — this is possible since quantum de

Finetti theorems can be related to the quantitative accuracy of the DPS hierarchy. Lastly, we

also exploit the NPA hierarchy (Section 6.3.2), which is a different hierarchy of semidefinite

programming relaxations for general quantum correlations without dimension constraint, and

combine it with our hierarchy to achieve a better result.

This chapter is structured as follows. In Section 6.1, we first provide some mathematical

background to study convex optimisation. In Section 6.2, we formally define general optimisation
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problems and convex optimisation, a sub-class of mathematical optimisation problem which

admits an effective algorithm for solving them, and introduce semidefinite programming as a

special case of it. We also discuss their useful mathematical properties. Then, we move on

to the topic of semidefinite programming relaxations in Section 6.3 and introduce two famous

examples, the DPS and NPA hierarchy. Finally, in Section 6.4, we provide a brief introduction

of quantum de Finetti theorems.

6.1 Convex sets and convex functions

Convex sets

In geometry, a set C is called convex if all points ‘between’ any two points in C lies in C, i.e., if

for any x1,x2 ∈ C and any µ ∈ [0, 1], we have

µx1 + (1 − µ)x2 ∈ C . (6.1)

A closed and bounded convex set is particularly called a convex body.

We call a point of the form in Eq. (6.1) a convex combination of x1 and x2, and such points

represent the points between or mixtures of x1 and x2. The concept of convex combination can

be straightforwardly extended to an arbitrary number of points: for given points x1, ...,xn, we

define convex combinations of these points as x such that

x = µ1x1 + ...+ µnxn , µ1 + ...+ µn = 1 , µi ≥ 0 ∀i.

When an infinite number of points are given, we can generalise the concept to include infinite

sums or integrals: for given {xi}i,

∞∑
i=1

µixi ,
∞∑
i=1

µi = 1 , µi ≥ 0 ∀i
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or for some probability distribution p(x)1 over points x in a given set S

∫
S

p(x)x dx .

The convex hull of a set S, denoted by conv(S), is defined as the set of all convex combinations

of points in S, i.e.,

conv(S) := {µ1x1 + ...+ µnxn|xi ∈ S, µ1 + ...+ µn = 1, µi ≥ 0 ∀i} .

A convex hull conv(S) is always convex and the smallest convex set containing S.

A set C is called a cone, if for every x ∈ C and λ ≥ 0, we have λx ∈ C. A cone is called

a convex cone if it is convex, which implies that for any x1,x2 ∈ C and λ1, λ2 ≥ 0, we have

λ1x1 + λ2x2 ∈ C. This concept can be extended to a generalised inequality such as the matrix

inequality. An important example is the cone of positive semidefinite matrices which can be

defined as the set of all matrices A such that A ⪰ 0, where we denote the matrix inequality

by ⪰ (or ⪯) to avoid the confusion with the scalar inequality. It is easy to check that this set

satisfies the property of convex cones with respect to the matrix inequality.

Convex bodies always have some special points which cannot be generated by convex

combinations of other points. We call these special points extreme points, or often pure points

in the physics community. The extreme points are very useful for characterising a convex set

thanks to the following two theorems we introduce here.

Theorem 15. (Minkowski’s theorem) Any convex body is the convex hull of its extreme points.

Theorem 16. (Carathéodory’s theorem) Any point in an n-dimensional convex set C can be

expressed as a convex combination of at most n+ 1 extreme points of C.

The dimension of a convex set is defined as the smallest dimension of an affine subspace

containing the convex set.

Convex sets are an important concept in quantum information theory. Firstly, the set of

quantum states, the primary object of quantum mechanics, is a convex set. This reflects the

1p(x) such that p(x) ≥ 0 for all x ∈ S and
∫
S
p(x)dx = 1.
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physical observation that any probabilistic mixture of valid states of a quantum system should

be also a physical state. Also, sets of free states in many QRTs are convex sets, which is a

result of treating classical mixing as an allowed operation for quantum tasks. Various sets of

correlations considered in the non-locality theory [60], such as the sets of local correlations,

quantum correlations and no-signalling correlations, are all examples of convex sets.

Convex functions

A real valued function f : Cn → R is called convex if the domain of f , denoted by dom(f), is a

convex set, and if for all x1,x2 ∈ dom(f) and µ ∈ [0, 1] we have

f(µx1 + (1 − µ)x2) ≤ µf(x1) + (1 − µ)f(x2) . (6.2)

If the strict inequality in Eq. (6.2) holds whenever x1 ̸= x2, the function is called strictly convex.

Similarly, a function is called concave if the function −f is convex, and strictly concave if −f

is strictly convex. Geometrically, the convexity in Eq. (6.2) means that for any two points

x1,x2 ∈ dom(f) the line connecting between (x1, f(x1)) and (x2, f(x2)) lies above the graph

of f .

One relevant class of functions over the real numbers is affine functions which are defined

as functions consisting of a sum of linear functions and a constant; for example, functions

f : Rn → Rm of the form f(x) = Ax + b where A ∈ Rm×n and b ∈ Rm. Affine functions

satisfy the equality in Eq. (6.2) and thus are both convex and concave. The converse holds as

well — any function that is convex and concave at the same time is affine. As affine functions

include all linear functions, linear functions are also convex and concave. Affine functions have

a nice property that for some convex set S ⊂ dom(f), the image of S under f is convex.

6.2 Semidefinite programming

In mathematics, an optimisation problem is a problem of finding an optimal solution from all

feasible solutions. Such problems can be naturally seen in all kinds of disciplines including

not only physics and computer science but also engineering, economics, product development
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etc. Finding good methods for optimisation problems has been therefore of interest for many

centuries. As a result of the long-running research, we now have some types of optimisation

problems which are well-studied and admit effective methods for solving them. We look at one

example in this section, called convex optimisation, and its important sub-class, semidefinite

programming.

Convex Optimisation

We consider a problem of the form

min
x∈CN

f0(x)

subject to fi(x) ≤ 0 i ∈ (1, ...,m) (6.3a)

hi(x) = 0 i ∈ (1, ..., p) , (6.3b)

which describes the problem of finding an optimal x that minimises f0(x) and satisfy the

constraints in Eq. (6.3a)-(6.3b) at the same time. We call x ∈ CN the optimisation variable and

the function f0 : CN → R the objective function. Eq. (6.3a)-(6.3b) are called the optimisation

constraints or simply constraints, and the functions {fi}i and {hi}i are called the constraint

functions. The domain D of the optimisation problem is defined as D = (
⋂m
i=0 dom(fi)) ∩

(
⋂p
i=1 dom(hi)). A point x ∈ D is called feasible if it satisfies constraints Eq. (6.3a)-(6.3b). The

feasible set is then defined as

{x|fi(x) ≤ 0, i ∈ (1, ...,m), hi(x) = 0, i ∈ (1, ..., p)} ,

which describes the set of all feasible points. The optimal value of the optimisation problem in

Eq. (6.3) is the value ω such that

ω = inf {f0(x)|fi(x) ≤ 0, i ∈ (1, ...,m), hi(x) = 0, i ∈ (1, ..., p)} .
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ω can take the values ±∞, and if the problem is infeasible, we have ω = ∞.2 Some x̃ is an

optimal solution or optimal point when x̃ is feasible and f0(x̃) = ω. There can be more than

one optimal solutions, and we call the set of all optimal solutions the optimal set.

While mathematical optimisation is in general difficult to solve, there are some classes of

optimisation which are known to admit effective algorithms. One example is convex optimisation.

A convex optimisation problem is a problem of the form in Eq. (6.3) where (i) the objective

function f0 is convex, (ii) the constraint functions {fi}mi=1 in Eq. (6.3a) are convex, and (iii)

the constraint functions {hi}pi=1 are affine functions, i.e., hi(x) = aT
i x − bi. The immediate

implication of these conditions is that the feasible set of a convex optimisation problem must be

convex. Thus, a convex optimisation problem is a problem of optimising a convex objective

function over a convex set. Another convenient property of convex optimisation is that any

local optimal point is also a global optimum, which makes finding an optimal solution easier.

We can also consider a problem of the form

max
x∈CN

f0(x)

subject to fi(x) ≤ 0 i ∈ (1, ...,m)

aT
i x = bi i ∈ (1, ..., p) .

(6.4)

If the objective function f0 is concave, and the constraint functions {fi}i in Eq. (6.4) are convex,

we also treat the problem in Eq. (6.4) as a convex optimisation problem. This is because this

concave maximisation problem can be solved by minimising the convex function −f0 over the

same convex feasible set.

Although there is in general no analytical formula to solve such convex optimisation problems,

there exist methods which are known to be very effective for them, such as interior-point method.

These methods work very well in practice, and for some special cases, it can be proven that

these methods provide polynomial-time algorithms for solving the cases. It is worth remarking

that an optimal value of a convex optimisation problem with affine objective function can

be obtained by an extreme point of the feasible set. To show this, let us consider a convex

2If the optimisation problem involves maximising the objective function and is infeasible, then ω = −∞.
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optimisation problem of the form in Eq. (6.3) with affine function f0 and the set of the extreme

points of its feasible set, {ei}i. We denote by ẽ the optimal extreme point among {ei}i such

that f0(ẽ) ≤ f0(ei) for all ei ∈ {ei}i. Then, since the objective function f0 is affine, for any

convex combination of the extreme points, x =
∑

i piei, we have

f0(x) =
∑
i

pif0(ei) ≥ f0(ẽ) .

Due to Carathéodory’s theorem (Theorem 16), any feasible point can be expressed as a convex

combination of n+ 1 extreme points where n is the dimension of the feasible set, and thus f0(ẽ)

is the global lower bound for the whole feasible set, which proves the claim. This observation

implies that we can focus on the extreme points rather than the whole feasible set when we

solve a convex optimisation problem with affine objective function.

Famous examples of convex optimisation problems are linear programming and least-squares

problems [91] as well as semidefinite programming, which is the main topic of the rest of this

section.

Semidefinite programming

Semidefinite programming (SDP) is a sub-class of convex optimisation where the optimisation

problem includes positive semidefinite constraints for matrices; namely, the optimisation set

is not only a convex set but also a subset of the cone of positive semidefinite matrices. The

standard form of SDP can be written as follows: for some Hilbert space H

min
X∈Herm(H)

Tr [CX]

subject to Φ(X) = B

X ⪰ 0 ,

(6.5)

where (i) the matrix C in the objective function is Hermitian, (ii) the constraint function Φ

is a Hermiticity-preserving linear map, and (iii) B is Hermitian. We can easily see that the

optimisation problem of the form in Eq. (6.5) is an instance of convex optimisation. The
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objective function is a linear function, which is convex, and the feasible set is the intersection

between the cone of positive semidefinite matrices and the affine space satisfying the equality

constraints, which is a convex set.

SDPs have an important property called the duality. Let us call the standard form of SDP in

Eq. (6.5) the primal problem. Then, every primal SDP problem has an associated dual problem

in the form of

max
Y ∈Herm(H)

Tr [BY ]

subject to Φ†(Y ) ⪯ C ,

where Φ† is the adjoint of Φ defined as Φ† such that Tr
[
Φ†(X)A

]
= Tr [XΦ(A)] for all linear

operators X and A. In particular, if an operator X is feasible for the primal problem, we call it

primal feasible, and if an operator Y is feasible for the dual problem, we call it dual feasible.

Then, we have the following proposition.

Proposition 17. (Weak Duality) Consider an SDP of the form in Eq. (6.5). Let α be the

optimal value of the primal problem and β be the optimal value of the dual problem. Then, we

have

α ≥ β .

Proof. If the SDP is infeasible, i.e., α = ∞ and β = −∞, then the proposition is trivial. If the

problem is feasible, for every primal feasible X and dual feasible Y , we have

Tr [CX] ≥ Tr
[
Φ†(Y )X

]
= Tr [Y Φ(X)] = Tr [Y B] .

This relation holds for all primal feasible X and dual feasible Y , and thus taking the supremum

over all X on the LHS and the infimum over all Y on the RHS proves the claim.

When the equality condition holds, i.e., α = β, we say that the problem has the strong duality.
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6.3 Semidefinite programming relaxations

In the last section, we have studied convex optimisation, a special type of mathematical

optimisation, and SDP as its sub-class. Such optimisation problems are useful tools since

there exist known effective algorithms for solving many of these problems. While a general

mathematical optimisation is NP-hard to solve, it is sometimes possible to derive relaxations

for such difficult optimisation problem, which can provide an approximation (lower or upper

bound) to the true solution but admit an effective algorithm. For example, we may replace

each non-convex constraint in a given general optimisation problem with a looser but convex

constraint. The resulting problem is then a convex optimisation problem which can be efficiently

solved, for example, using interior point method, and may provide a lower or upper bound

on the optimal value of the original general optimisation problem. In particular, when the

relaxed problem is an SDP, we call it semidefinite programming relaxation. In this section, we

introduce two famous semidefinite programming relaxations on important problems in quantum

information theory.

6.3.1 The Doherty-Parrilo-Spedalieri (DPS) hierarchy

Quantum separability problem

Entanglement is one of the key features in quantum mechanics for both practical and fundamental

reasons. Thus, the problem of identifying entanglement has been one of the long-standing

problems in quantum information theory. A bipartite quantum state is called separable if it can

be decomposed as a convex combination of pure product states3:

ρAB =
∑
i

pi |ψi⟩⟨ψi|A ⊗ |ϕi⟩⟨ϕi|B ,

for some pure quantum states |ψi⟩A ∈ HA and |ϕi⟩B ∈ HB and probability distribution {pi}i.

Any state that is not separable is called entangled. Identifying whether a given state is entangled

3Alternatively, one can define separable states as quantum states that can be written as convex combinations of
general product states (not pure states). Since any mixed quantum state can be written as a convex combination
of pure states, the two definitions are equivalent.
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or not is then equivalent to find whether the given state admits such separable decomposition

or not. This problem is often referred to as quantum separability problem although the concept

of quantum separability problem is more broad and covers any problem involving identifying

separable/entangled states; for example, an optimisation over the set of separable states is

also called quantum separability problem since it involves the problem of identifying separable

states. However, solving quantum separability problem is not very straightforward. In fact, it

has been shown by Gurvits [92] that it is NP-hard. It is therefore unlikely to be able to find a

computationally efficient method for quantum separability problem which scales well with the

Hilbert space dimension.

There still exist not complete but effective criteria for the separability problem, and these

are usually given by necessary but not sufficient conditions for quantum separability. The most

well-known example is the positive partial transpose (PPT) criteria introduced by [93]. It is not

difficult to observe that if a state is separable, it must have a PPT:

ρTA
AB =

∑
i

pi |ψ∗
i ⟩⟨ψ∗

i |A ⊗ |ϕi⟩⟨ϕi|B , (6.6)

since |ψ∗
i ⟩ is also a valid pure state. This implies that any state that does not have a PPT is

necessarily entangled. The PPT criteria is very easy to check computationally and has been

widely used as a simple entanglement test in quantum information science. Furthermore, it

was shown that they form both necessary and sufficient conditions for quantum separability in

HA ⊗HB when dim(HA) = 2, dim(HB) = 2 and dim(HA) = 3, dim(HB) = 2 [94]. For general

dimension, however, there are entangled states with PPTs, which are called bound entangled

states,4 and the PPT criteria fails to give a complete characterisation of separable states.

The DPS hierarchy

In this section, we introduce another useful criteria for quantum separability, introduced in [95].

These new criteria are easily implementable and form a ‘complete’ family of separability criteria

in a sense that any entangled state can be identified by an element in this family.

4We have looked at bound entanglement in Section 3.2.2 in the context of entanglement distillation.
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Let us consider a bipartite separable state ρAB on HA ⊗HB as in Eq. (6.6). We introduce a

new quantum state ρAB2 on HA ⊗HB ⊗HB given by

ρAB2 =
∑
i

pi |ψi⟩⟨ψi|A ⊗ |ϕi⟩⟨ϕi|B ⊗ |ϕi⟩⟨ϕi|B .

This ρAB2 has some special properties: (i) ρAB2 can be seen as an extension of the original state

ρAB to three parties such that

TrB [ρAB2 ] = ρAB .

(ii) ρAB2 is invariant (symmetric) under permutations between the second and third parties, i.e.,

ρAB2 = PB|BρAB2PB|B ,

where PB|B is the swap operator between the two copies of system B. (iii) ρAB2 has a PPT for

any partial transposition.

Therefore, we call ρAB2 a PPT symmetric extension of ρAB to two copies of system B. The

same idea can be easily extended to the general n-copy case: a PPT symmetric extension of

ρAB to n copies of system B can be written as

ρABn =
∑
i

pi |ψi⟩⟨ψi|A ⊗ |ϕi⟩⟨ϕi|B ⊗ |ϕi⟩⟨ϕi|⊗n−1
B .

As we have just demonstrated, we can construct PPT symmetric extensions for any separable

state, and thus the existence of such extensions is a necessary condition for separable states,

namely a separability criterion. We call this property of separable states extendibility. As

the extendibility condition for each n is an individual separability criterion, we now have a

countable-infinite family of separability criteria. Furthermore, this family of separability criteria

has a hierarchical structure. It is easy to see if some bipartite state ρAB has a PPT symmetric

extension to n copies of system B, denoted by ρABn , then automatically has a PPT symmetric

extension to n − 1 copies, which is just TrB [ρABn ]. This hierarchy of separability criteria is
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known as the Doherty-Parrilo-Spedalieri (DPS) hierarchy.

Let us now formally define the extendibility as follows.

Definition 8. (Extendibility) A bipartite quantum state ρAB is n-extendible if there exists a

PPT symmetric extension to n copies of system B, i.e., ρABn such that

TrBn−1 [ρABn ] = ρAB , (IA ⊗ Uπ
Bn) (ρABn) = ρABn ∀π ∈ S(Bn) ,

and ρABn has a PPT for any partial transposition, where S(Bn) is the symmetric group over

Bn, Uπ
Bn(·) = Uπ

Bn(·)(Uπ
Bn)† is the adjoint representation of the group, and Uπ

Bn is a unitary

permutation operator acting on Bn.

As we have discussed above, these extendible states form good approximations for separable

quantum states. This is related to the concept known as the monogamy of entanglement [96]; if

two quantum system A and B are strongly entangled, they cannot be entangled with another

quantum system. As the correlation between A and B in an n-extendible state ρAB can be

shared between A and n different B systems (due to the first condition in Definition 8), the state

ρAB cannot be very entangled and should be close to the set of separable states. Furthermore, a

quantum state is n-extendible for every n ≥ 2 if and only if it is separable — this was shown in

[97, 98] where the authors were interested in proving quantum version of de Finetti theorem,

which is the main topic of Section 6.4. As a result, the DPS hierarchy provides a complete

family of separability criteria. Since the set of (n+ 1)-extendible states is a subset of the set of

n-extendible states due to the natural hierarchical structure (see Figure 6.2), these extendible

states form a hierarchy of outer approximations for separable states, which converges to the set

of separable states when n goes to infinity.

The DPS hierarchy has another useful property that each test can be formulated as an

SDP. For example, given a bipartite state ρAB, the test of two-extendibility of ρAB can be
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…… 𝒏 → ∞
Separable States

𝒏 = 𝟏
𝒏 = 𝟐
𝒏 = 𝟑

…

Figure 6.2: Extendible states. Extendible states form a converging hierarchy of outer approx-
imations for the set of separable states. As n becomes larger, the set of n-extendible states
becomes tighter and closer to the set of separable states. It actually coincides with the separable
set when n goes to infinity.

implemented with the following optimisation problem: (with a slight abuse of the notation)

min
σ

0

subject to σ ≡ σAB2 ⊕ σTA

AB2 ⊕ σTB

AB2 ⪰ 0

TrB [σAB2 ] = ρAB

PB|BσAB2PB|B = σAB2 .

If such extension σAB2 exists, the above problem outputs 0, and if ρAB is not extendible so that

such extension does not exist, the problem is infeasible and outputs ∞. The above optimisation

problem is an SDP as it optimises the linear objective function over the intersection of the cone

of positive semidefinite matrices with the affine space satisfying the equality constraints. Thus,

the DPS hierarchy is an instance of SDP relaxations.

It is interesting to remark that the original quantum separability problem is in principle a

convex optimisation problem since the set of separable states on a finite-dimensional Hilbert

space is convex; optimising a linear function over separable states is then a convex optimisation

problem. The reason why it is hard to solve despite being a convex optimisation problem is that

there is no simple characterisation of the set of separable states in terms of linear equations and

inequalities. As in the DPS hierarchy, one needs an infinite number of constraints to characterise
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the feasible set, the set of separable states. Thus, quantum separability problem is a good

example showing that not all convex optimisation is efficiently solvable — one still needs an

effective characterisation of the convex feasible set.

We can extend the same idea to the multipartite case.

Definition 9. (Multipartite extendibility) A k-partite state ρA1A2···Ak
∈ HA1A2···Ak

is (n1, · · · , nk−1)-

extendible if there exists a PPT symmetric extension ρ
A1A

n1
2 ···A

nk−1
k

∈ H
A1A

n1
2 ···A

nk−1
k

such that

Tr
A

n1−1
2 A

n2−1
3 ···A

nk−1−1

k

[
ρ
A1A

n1
2 ···A

nk−1
k

]
= ρA1A2···Ak(

IA1 ⊗ Uπ1
A

n1
2

⊗ · · · ⊗ Uπk−1

A
nk−1
k

)(
ρ
A1A

n1
2 ···A

nk−1
k

)
= ρ

A1A
n1
2 ···A

nk−1
k

for any permutations π1 ∈ S(An1
2 ), · · · , πk−1 ∈ S(A

nk−1

k ), and ρ
A1A

n1
2 ···A

nk−1
k

has a PPT for any

partial transpose.

It is shown in [99] that it is sufficient to consider the case when n ≡ n1 = ... = nk for the

convergence of multipartite extendible states to the set of separable states. As in the bipartite

case, the set of (n, ..., n)-extendible states converges to the set of k-partite separable states when

n→ ∞.

In this section, we have constructed a converging hierarchy of SDP relaxations for quantum

separability, which can be effectively implemented. We can see that the relaxations are formed

in a way that each level is as powerful as the previous one, and the first level corresponding to

n = 1 is equivalent to the PPT criteria. The DPS hierarchy has a more fruitful structure that

the dual problem allows us to build an explicit entanglement witness to detect the entanglement

present in the given state. We refer to the original paper [95] of the DPS hierarchy for more

details.

6.3.2 The Navascués-Pironio-Aćın (NPA) hierarchy

In this section, we introduce another well-known hierarchy of SDP relaxations widely used in

the quantum information field. It was introduced in [100–102] and is called the Navascués-

Pironio-Aćın (NPA) hierarchy. The NPA hierarchy provides effective relaxations for optimisation
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problems of the form

min
X,ψ,H

⟨ψ|P (X) |ψ⟩

subject to Qi(X) ⪰ 0 i ∈ (1, ...,m) ,

(6.7)

where X = (X1, ..., XN ) is the set of non-commuting bounded operators on the Hilbert space H,

|ψ⟩ is a normalised vector in H, and P (X) and {Qi(X)}i are polynomials in the variables X.5

Note that the Hilbert space H is also subject to optimisation, so the dimension of the Hilbert

space is not fixed. The optimisation of the form in Eq. (6.7) is very general and has numerous

applications beyond the quantum theory.

The NPA hierarchy has an important application in quantum information science, which

is related to the problem of characterising quantum correlations in the context of non-locality.

Let us consider the well-known Bell scenario. There are two distant parties, Alice and Bob,

who perform measurements on a shared physical system. Alice performs a measurement

q1 ∈ Q1 on her part of the system and obtains an output a1 ∈ A1. Similarly, Bob performs a

measurement q2 ∈ Q2 and obtains an output a2 ∈ A2. Then, the joint conditional probability

p(a1, a2|q1, q2) observed by Alice and Bob represents the correlation shared by them via the

physical system. Quantum correlations are the correlations which can be realised by quantum

states and measurements and have the form

pQ(a1, a2|q1, q2) := ⟨ψ|AB (MA(a1|q1) ⊗NB(a2|q2)) |ψ⟩AB , (6.8)

where |ψ⟩ is the shared quantum state, and {M(a1|q1)}a1 and {N(a2|q2)}a2 for q1, q2 are the

POVMs performed by Alice and Bob respectively. Then, a typical problem in the non-locality

theory is to derive a quantum Bell inequality: for a given Bell function B, which is a linear

function of p(a1, a2|q1, q2) taking the form

B(p) =
∑

a1,a2,q1,q2

Bq1,q2
a1,a2

p(a1, a2|q1, q2)

5For example, they could be linear polynomials, such as
∑

i aiXi for ai ∈ R ∀i, or quadratic polynomials,
such as

∑
i(aiXi + bi)

2 for ai, bi ∈ R ∀i.

139



CHAPTER 6. BACKGROUND THEORY

with some constants Bq1,q2
a1,a2

∈ R, we want to find a quantum bound BQ such that B(pQ) ≤ BQ for

all quantum correlations pQ(a1, a2|q1, q2) of the form in Eq. (6.8). A conventional Bell inequality

with Bell function B can be then defined as B(pC) ≤ BC with classical bound BC satisfied by

all classical correlations pC(a1, a2|q1, q2). We study a more general form of Bell inequalities later

in Section 7.1.

Deriving such quantum Bell inequality involves finding the quantum bound BQ for a given

Bell function B, which is equivalent to maximising the Bell function B over all quantum

correlations of the form in Eq. (6.8):

BQ := max
ψ,M,N,H

∑
a1,a2,q1,q2

Bq1,q2
a1,a2

⟨ψ|AB (MA(a1|q1) ⊗NB(a2|q2)) |ψ⟩AB . (6.9)

Note that the Hilbert space H is again subject to optimisation. We can draw a connection

between the optimisation problems in Eq. (6.9) and Eq. (6.7). If we define new notations

{EAB(a1, q1)}a1,q1 ≡ {MA(a1|q1)⊗1B}a1,q1 and {EAB(a2, q2)}a2,q2 ≡ {1A⊗NB(a2|q2)}a2,q2 , then

we can rewrite the optimisation problem in Eq. (6.9) as

BQ = max
ψ,E,H

⟨ψ|
( ∑
a1,a2,q1,q2

Bq1,q2
a1,a2

E(a1, q1)E(a2, q2)

)
|ψ⟩ ,

where we omitted the system subscriptions for simplicity. Then, the expression in the brackets

is a polynomial of the variables E ≡ {E(a1, q1)} ∪ {E(a2, q2)}, which are bounded operators on

H, and thus the problem is exactly in the form of Eq. (6.7) considered by the NPA hierarchy.

Therefore, we have shown that the problem of calculating the quantum bound for a quantum

Bell inequality can take advantage of the NPA hierarchy. Although the set of quantum

correlations pQ(a1, a2|q1, q2) in Eq. (6.8) is convex, there is no method to characterise the set

with finite number of constraints as in the case of quantum separability studied in the last

section. The NPA hierarchy provides practical relaxations for this problem and is also complete

in the sense that the set of correlations characterised by the n-th level relaxation of the NPA

hierarchy converges to the set of quantum correlations when n→ ∞.
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The NPA hierarchy

To formally introduce what the NPA hierarchy is, we consider the same Bell scenario described

above: quantum correlations of the form

p(a1, a2|q1, q2) = Tr [E(a1, q1)E(a2, q2)ρAB]

for a quantum state ρAB and local measurements {E(a1, q1)}a1,q1 and {E(a2, q2)}a2,q2 performed

by Alice and Bob respectively. In the NPA hierarchy, we can always assume without loss of

generality that the measurements in {E(ai, qi)}ai,qi are composed by orthogonal projectors, and

ρAB is a pure quantum state, since the dimension of the system is unbounded.6 We assume the

following properties are satisfied by the measurement operators in {E(ai, qi)}ai,qi :

1. hermiticity: E(ai, qi)
† = E(ai, qi),

2. orthogonality: E(ai, qi)E(āi, q̄i) = δai,āiE(ai, qi) if qi = q̄i,

3. completeness:
∑

ai
E(ai, qi) = 1AB for all qi,

4. commutativity: [E(a1, q1), E(a2, q2)] = 0 for all a1, a2, q1, q2.

The orthogonality describes that the measurements are composed by orthogonal projectors. The

commutativity came from the condition that E(a1, q1) acts on Alice’s side, and E(a2, q2) acts

on Bob’s side although the two conditions are not equivalent7. We define the sets of indices

α := {(a1, q1)}a1,q1 and β := {(a2, q2)}a2,q2 . Then, we can simply denote the correlation as

Pαβ := p(a1, a2|q1, q2) where α = (a1, q1) ∈ α and β = (a2, q2) ∈ β. The set α has m1 = |A1||Q1|

elements, and the set β has m2 = |A2||Q2| elements.

Let us assume that a correlation Pαβ is a quantum correlation which has a quantum state

|ψ⟩ and measurements {E(ai, qi)}ai,qi . By taking product of E(ai, qi) or linear combinations of

such products, we can construct a set of n operators, S = {S1, ..., Sn}; in other words, we build

6Thanks to Stinespring dilation theorem, any POVMs can be realised by a projective measurement on a
larger Hilbert space, and any mixed quantum state can be viewed as a marginal state of a pure state in a larger
system.

7The two conditions are known to be equivalent in finite dimensions, but it has been recently shown that this
is no longer true in infinite dimensions [103].
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a set S of polynomials in the variables {E(ai, qi)}ai,qi . For a set S, we can construct an n× n

matrix Γ of the form

Γij = Tr
[
S†
iSjρAB

]
. (6.10)

From the construction, Γ is a Hermitian matrix which satisfies that

if
∑
i,j

cijS
†
iSj = 0 then

∑
i,j

cijΓij = 0 , (6.11)

as well as that

if
∑
i,j

cijS
†
iSj =

∑
α,β

dαβE(α)E(β) then
∑
i,j

cijΓij =
∑
α,β

dαβPαβ , (6.12)

where α ∈ α and β ∈ β. The coefficients cij and dαβ are determined by the set S — they are

related to any linear constraints on the set S. Moreover, we have

Γ ⪰ 0 . (6.13)

As a result, we get the following necessary conditions for quantum correlations.

Lemma 18. [100, 101] For a given set S = {S1, ..., Sn} constructed by polynomials in

{E(ai, qi)}ai,qi satisfying the conditions 1-4, a necessary condition for a correlation p(a1, a2|q1, q2)

to be quantum is that there exists a Hermitian n × n matrix Γ which satisfies the conditions

Eqs. (6.11)-(6.13).

The simplest example is when we choose S as {E(a1, q1)}a1,q1∪{E(a2, q2)}a2,q2 ≡ {E(ai, qi)}ai,qi .

For any given correlation p(a1, a2|q1, q2), the corresponding ΓS for S = {E(ai, qi)}ai,qi constructed

via Eq. (6.10) takes the form

ΓS =

 Q C

CT R

 , (6.14)
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where the m1 ×m2 sub-matrix C has the form

Cαβ = Pαβ = Tr [E(α)E(β)ρAB] ∀α ∈ α, β ∈ β ,

and the m1 ×m1 sub-matrix Q and m2 ×m2 sub-matrix R satisfy

Qαα = p(a1|q1) = tr [E(a1, q1)ρAB] , α = (a1, q1) ∈ α

Qαα′ = 0, α = (a1, q1), α
′ = (a′1, q

′
1) ∈ α when q1 = q′1

Rββ = p(a2|q2) = tr [E(a2, q2)ρAB] , β = (a2, q2) ∈ β

Rββ′ = 0, β = (a2, q2), β
′ = (a′2, q

′
2) ∈ β when q2 = q′2,

(6.15)

where p(a1|q1) =
∑

a2
p(a1, a2|q1, q2) and p(a2|q2) =

∑
a1
p(a1, a2|q1, q2) are the marginal proba-

bilities.8 Note that we are suppressing the conditioning arguments q2 and q1 in the marginals

since we assume the no-signalling condition:

p(a1|q1, q2) = p(a1|q1, q′2) ∀a1, q1, q2, q′2

p(a2|q1, q2) = p(a2|q′1, q2) ∀a2, q1, q′1, q2 .
(6.16)

With this construction, we can specify all entries of ΓS in terms of the given correlation

p(a1, a2|q1, q2) except the entries of Qαα′ when q1 ̸= q′1 and Rββ′ when q2 ̸= q′2. The matrix

ΓS automatically satisfies the conditions in Eq. (6.11) and (6.12) due to Eq. (6.15). The only

remaining check is whether we can find a matrix of the form ΓS in Eq. (6.14) which is positive

semidefinite by giving appropriate values to the undecided entries of ΓS. In other words, for

a given correlation p(a1, a2|q1, q2), we need to decide whether we can find ΓS of the form in

Eq. (6.14) such that

ΓS ⪰ 0 .

As different set S′ provide a different necessary condition for quantum correlations, we can

8It is worth noting that we have used the assumption that the measurements are composed by orthogonal
projectors to set some of the entries of the Q and R matrices to zero. When this assumption cannot be made,
one should replace these entries with new variables of the problem. We will see such example in the next chapter.
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build a hierarchy of necessary conditions by using a sequence of independent sets {Sk}k such

that Sk ⊂ Sk+1 for all k. Conventionally, in the NPA hierarchy, the first level is chosen as

S1 = S0 ∪ {E(ai, qi)} where S0 = {1}, the second level is S2 = S0 ∪S1 ∪ {E(ai, qi)E(aj, qj)},9

the third level is S3 = S0 ∪ S1 ∪ S2 ∪ {E(ai, qi)E(aj, qj)E(ak, qk)}, and so on. We denote the

k-th level NPA matrix by Γk;

(Γk)ij = Tr
[
S†
iSjρAB

]
(6.17)

for the set Sk. As we mentioned earlier, the completeness of the NPA hierarchy was shown

in [101]. That is, a correlation which satisfies the k-th level NPA condition for all k ≥ 1 is a

quantum correlation.

6.4 Quantum de Finetti theorems

In this last section, we give a short introduction of quantum de Finetti theorems which play

an important role in the next chapter. The original de Finetti theorem in classical probability

theory concerns the close relation between an infinite permutation-invariant sequence of random

variables and a mixture of independent and identically distributed (i.i.d.) sequences. There

have been developed multiple variants of this theorem since then, and the version in which

we are interested is the de Finetti theorem for finite symmetric quantum states. This type

of quantum de Finetti theorems says that if a global quantum state of a group of quantum

systems is invariant under permutations of the quantum systems, then the reduced state for

some sub-group must be close to a convex combination of identical product states. A simple

version of finite quantum de Finetti theorems can be stated as follows.

Theorem 19 (quantum de Finetti theorem [104]). Let A1, ..., An be identical quantum registers,

each having a d-dimensional associated Hilbert space, and let ρA1...An be a quantum state on the

Hilbert space HA1 ⊗ ...⊗HAn which is invariant under any permutations between A1, ..., An. For

any choice of k ∈ {1, ..., n}, there exists a finite set Γ, a probability distribution {pi}i, and a

9S2 represents the set of all products in {E(ai, qi)} up to the second order plus the identity.
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collection of density operators {σi}i such that

∥∥∥∥∥ρA1...Ak
−
∑
i∈Γ

piσ
⊗k
i

∥∥∥∥∥
1

<
4d2k

n
.

The theorem states that for any reduced state on k ≤ n subsystems of the permutation-

invariant quantum state ρA1...An , there exists a separable state, more precisely a convex mixtures

of identical product states, which is arbitrarily close to the given reduced state. Moreover, it

provides a quantitative bound on the trace-norm distance between the quantum state and the

separable state in terms of the dimension d and the numbers n and k.

One can make a connection from Theorem 19 to the extendible states introduced in Sec-

tion 6.3.1. Recall that an n-extendible state ρAB is a state which has a PPT symmetric extension

to n copies of system B, i.e., ρAB1···Bn such that TrBn−1 [ρAB1···Bn ] = ρAB, and ρAB1···Bn is invari-

ant under permutations of B1 · · ·Bn. If we discard the side quantum system A and consider the

reduced state ρB1···Bn of the PPT symmetric extension, it satisfies the condition of Theorem 19,

and we can apply the theorem to ρB1···Bn . Then, Theorem 19 tells us that any reduced state

of ρB1···Bn is very close to the set of separable states. Although this does not automatically

imply that the original state ρAB1···Bn with side quantum system A has the same property, we

can deduce that it would also have a similar property as ρAB1···Bn has a permutation-invariant

property on B1 · · ·Bn. Indeed, this version of quantum de Finetti theorem with side quantum

system has been studied in the literature [105], and it was shown that this deduction is correct;

the extendible state ρAB, which is a reduced state of a permutation-invariant extension ρAB1···Bn ,

is close to the set of separable states with respect to the bipartition A|B, and we can provide a

quantitative bound on the closedness via quantum de Finetti theorems. In the next chapter, we

make use of the multipartite version of this case; multipartite quantum de Finetti theorems

with quantum side information.
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Characterising quantum correlations of

fixed dimension

Thanks to the celebrated discovery of John Bell [106], it is now well-known that quantum

correlations can be used as a resource to overcome locality constraints, which are often expressed

in the form of Bell inequalities. This was one of the earliest examples of quantum advantages over

classical ones and led to the development of a vast number of quantum information processing

tasks that make use of quantum correlations. A prominent example is given by the field of device-

independent quantum information processing, where the violation of a certain locality constraint

is used to certificate the ‘quantumness’ of the underlying state describing the system even

when we have no a priori knowledge about the device used [12]. In a semi-device-independent

task, there is often an additional constraint on the dimensionality of the device. Since the

maximum amount of violation of a locality constraint could depend on the dimensionality, it has

been pointed out that this feature could be exploited as a dimension witness of the underlying

system (e.g., see [107]) if strong tools to characterise quantum correlations of fixed dimension

are available.

A common way to formulate locality constraints is a non-local game, which could be seen as a

generalisation of Bell scenario (see Section 7.1). In non-local games, the strength of a certain set

of correlations, such as classical or quantum correlations, is measured by the maximum winning

probability that can be achieved by the given set of correlations. For example, the classical value
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ωC(G) of a given non-local game G is the maximum winning probability achievable by classical

correlations shared between the distant players, and the quantum value ωQ(G) is the maximum

winning probability achievable by arbitrary quantum state shared between the players. The

dimension-bounded quantum value ωQ(T )(G), which is our main topic in this chapter, is then

the maximum winning probability achievable by using quantum states of dimension T × T

shared between the players. It holds that ωQ(1) = ωC(G)1 and ωQ(G) = supT≥1 ωQ(T )(G). For a

given game G, if ωC(G) < ωQ(T )(G) ≤ ωQ(G), it implies the quantum violation of the locality

condition associated with G — using a quantum correlation allows us to exceed the classical

upper bound on the winning probability of G.

Given the description of a non-local game G, computing these values is often computationally

hard, but nevertheless several methods have been developed. For the case of unbounded

dimension, the NPA hierarchy [100–102], studied in Section 6.3.2, provides a sequence of

asymptotically converging SDP upper bounds on ωQ(G), which has been widely used within

the quantum information field. However, the NPA hierarchy may give only loose bounds for

problems with dimensional constraint on quantum correlations. There have been a few results

trying to target this specific problem, the characterisation of quantum correlations with fixed

dimension: In [108], the authors constructed hierarchies of SDP upper bounds on ωQ(T )(G) by

exploiting a connection to the standard quantum separability problem; also, in [109, 110], the

authors employed the moment-matrix technique similar to the NPA hierarchy to derive SDP

relaxations with improved numerical performance compared to [108]. However, for these works

the asymptotic convergence speed is either not analytically quantified or at best exponential in

the number of possible questions Q and the number of possible answers A of the game.

In this chapter, we show how to construct algorithms for computing ωQ(T )(G) whose running

time has a significantly improved dependence on A and Q. More specifically, we construct a new

hierarchy of SDP upper bounds on ωQ(T )(G) and derive analytical bounds on the convergence

speed of the hierarchy. This result leads to bounds on the computational complexity of the

problem of calculating ωQ(T )(G) as a function of the size of the game G: A,Q and T . For

the case of two-player free games, i.e., games where the questions of the players are chosen

1A classical system can be seen as a quantum system with dimension 1.
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independently of each other, we provide a semidefinite program of size

exp

(
O
(
T 12

ϵ2
log(AT )(log(Q) + log(AT ))

))

for computing approximation of ωQ(T )(G) for an additive error ϵ. Note that the dependence

is quasi-polynomial in A and polynomial in Q, thereby improving on previously mentioned

approximation algorithms for which worst-case run-time guarantees are at best exponential in

Q and A [108–110]. We also give a program for general games, which is still quasi-polynomial

in A but exponential in Q. The main idea for deriving these algorithms is to make a connection

of the problem ωQ(T )(G) to a variant of the quantum separability problem where the states

involved are subject to additional linear constraints. Then, we obtain improved multipartite

quantum de Finetti theorems with linear constraints which allow us to quantify the convergence

speed of our hierarchy of SDP relaxations.

To help the readers, here we provide a short overview of this chapter emphasising each

important step.

• Connection with quantum separability. Our first step is to relate the problem of

calculating ωQ(T )(G) for a given non-local game G to an instance of tripartite quantum

separability problems with linear constraints. This is done in Lemma 20.

• Hierarchy of semidefinite programming relaxations We then construct our new

hierarchy of semidefinite programming relaxations for ωQ(T )(G) by simply employing the

DPS hierarchy for tripartite quantum separability problem but with additional linear

constraints. The resulting hierarchy is written in Eq. (7.7)-(7.12).

• Multipartite quantum de Finetti theorem with linear constraints. The standard

quantum de Finetti theorem can provide a quantitative bound on the accuracy of the DPS

hierarchy, but this is not possible in our setting due to the existence of additional linear

constraints. Thus, we derive an adapted one, namely multipartite quantum de Finetti

theorems with linear constraints, in Theorem 23 to prove the convergence rate of our new

hierarchy.
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Referee

Alice Bob

q1 q2
a1 a2

Yes or No
1         0

no communication

Figure 7.1: Non-local game. The referee gives Alice and Bob questions q1 ∈ Q1 and q2 ∈ Q2

according to the question probability distribution π(q1, q2), and then Alice and Bob give answers
a1 ∈ A1 and a2 ∈ A2 back to the referee depending on the questions they received. The referee
decides whether Alice and Bob win or lose according to the rule function V : A1×A2×Q1×Q2 →
{0, 1}, where 0 denotes losing the game, and 1 denotes winning the game. Alice and Bob cannot
communicate with each other during the game, but they can agree on a strategy beforehand.
We assume that |Q1| = |Q2| = Q and |A1| = |A2| = A.

• Convergence rate of the hierarchy. Using the multipartite quantum de Finetti theorem

with linear constraints, we can derive an upper bound on the asymptotic convergence rate

of our hierarchy. This is described in Theorem 28.

This chapter is written based on the paper [Hyejung H Jee et al., ICALP 2021, 198, 82 (2021)]

and structured as follows. In Section 7.1, we introduce the notion of non-local games and define

the maximum winning probabilities of such games for different sets of correlations. In Section 7.2,

we derive the constraints for characterising fixed-dimensional quantum correlations and state

a new hierarchy of SDP relaxations for ωQ(T )(G) of two-player free games. In Section 7.3, we

analytically prove the convergence rate of the derived hierarchy exploiting tripartite quantum

de Finetti theorems with additional linear constraints which we also prove in the same section.

Then, in Section 7.4, we discuss how to combine our derived constraints with the existing

dimension-agnostic NPA hierarchy. We compare our results with previous work in the literature

in Section 7.5 before concluding the chapter with some remarks in Section 7.6.
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7.1 Non-local games

There exist various mathematical formulations of the correlations between distant parties, but

in this chapter we use the notion of non-local games. Specifically, we consider two-player games

where two distant parties are considered. In this formulation, we consider the correlation

between two parties as a resource to win some specific games.

Let us consider two spatially separated players, called Alice and Bob, and a referee. When a

non-local game starts, the referee chooses questions q1 and q2 from the question set Q1 ×Q2

according to a given question probability distribution π(q1, q2) and sends them to Alice and

Bob, respectively. Then, Alice and Bob must provide answers a1 and a2 for their questions to

the referee; see Figure 7.1. The correct answers are determined by a given rule function

V : A1 × A2 ×Q1 ×Q2 → {0, 1} ,

where 0 means the answers are wrong, and 1 means the answers are correct. A specific two-

player game G can be represented by a question probability distribution π(q1, q2) and a rule

function V (a1, a2, q1, q2); thus, we hereafter represent a two-player game G by (V, π). Alice and

Bob cannot communicate with each other during the game, but they can agree on a strategy

beforehand, which can be represented by a conditional probability distribution p(a1, a2|q1, q2).

Depending on the resources the players can access to, this conditional probability distribution

describes different kinds of correlations. When no resources are shared, each player’s answer

only depends on the question they receive, so that the distribution takes the form

pC(a1, a2|q1, q2) = e(a1|q1)d(a2|q2) , (7.1)

where e(a1|q1) and d(a2|q2) are conditional probability distributions representing the strategy of

Alice and Bob, respectively. When quantum resources are allowed, the distribution takes the

more general form (recall from Eq. (6.8))

pQ(a1, a2|q1, q2) = Tr [ρT T̂ (ET (a1|q1) ⊗DT̂ (a2|q2))] ,
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where ρT T̂ is the (possibly entangled) quantum state shared between Alice and Bob, and for

fixed questions q1, q2, {ET (a1|q1)}a1 and {DT̂ (a2|q2)}a2 are POVMs performed by Alice and Bob,

respectively. Then, the difference in performance between classical and quantum correlations can

be quantified in terms of a non-zero gap between the maximum winning probabilities achieved

using the two different resources. For a given game G = (V, π), the classical value, namely the

classical maximum winning probability, is given by

ωC(V, π) := max
e,d

∑
q1,q2

π(q1, q2)
∑
a1,a2

V (a1, a2, q1, q2)e(a1|q1)d(a2|q2) , (7.2)

where
∑

a1
e(a1|q1) = 1 ∀q1, and

∑
a2
d(a2|q2) = 1 ∀q2, while the quantum value is given by

ωQ(V, π) := sup
E,D,ρ,HTT̂

∑
q1,q2

π(q1, q2)
∑
a1,a2

V (a1, a2, q1, q2) Tr [ρT T̂ (ET (a1|q1) ⊗DT̂ (a2|q2))] ,(7.3)

where Tr [ρT T̂ ] = 1,
∑

a1
ET (a1|q1) = 1T ∀q1, and

∑
a2
DT̂ (a2|q2) = 1T̂ ∀q2. Note that the

supremum is taken over all possible POVMs and quantum states as well as the Hilbert space

HT T̂ on which they act on. Then, denoting the winning probability for a given game (V, π)

with some classical strategy pC as pwin(V, π, pC), the Bell inequality of the game (V, π) can be

expressed as

pwin(V, π, pC) ≤ ωC(V, π)

for all classical correlations pC of the form in Eq. (7.1). The violation of such classical upper

bound with quantum correlations are called the violation of the Bell inequality. For example,

the CHSH inequality [111] can be derived from the CHSH game, which can be represented by

the uniform distribution πuni(q1, q2) as π(q1, q2) and VCHSH(a1, a2, q1, q2) as the rule function,

where

VCHSH(a1, a2, q1, q2) =


1 if q1 · q2 = a1 ⊕ a2

0 otherwise

.
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It is known that ωC(VCHSH, πuni) = 0.75, and thus the CHSH inequality can be expressed as

pwin(VCHSH, πuni, pC) ≤ ωC(VCHSH, πuni) = 0.75

for all classical correlations pC . It is also found that ωQ(VCHSH, πuni) = cos2
(
π
8

)
≈ 0.85355, and

thus we can violate the CHSH inequality with a suitable quantum correlation.

We can also think of a situation when Alice and Bob are only allowed to share a fixed-

dimensional quantum state such as a qubit- or qutrit-state; in other words, when the Hilbert

space HT T̂ is fixed. In this case, the relevant quantity is the maximum winning probability for

a given two-player game (V, π) with quantum assistance of fixed dimension T × T defined as

ωQ(T )(V, π) := max
E,D,ρ

∑
q1,q2

π(q1, q2)
∑
a1,a2

V (a1, a2, q1, q2) Tr [ρT T̂ (ET (a1|q1) ⊗DT̂ (a2|q2))] .(7.4)

In this chapter, we are interested in approximating ωQ(T ) for a given two-player game.

7.2 Semidefinite programming relaxations for ωQ(T )(V, π)

In this section, we show how to derive a hierarchy of semidefinite programming relaxations for

approximating ωQ(T )(G) for a given two-player game G. We restrict ourselves to two-player free

games, where π(q1, q2) = π1(q1)π2(q2), in the main context of this thesis and address general

games in Appendix C.1. This is because most non-local games considered in physics are indeed

free games (such as the CHSH game) and restricting to free games allows us to obtain a better

result in terms of the computational complexity compared to the general case.

7.2.1 Connection to quantum separability

In this section, as the first step to derive the SDP hierarchy, we connect the original formulation

of ωQ(T ) for a two-player free game to the quantum separability problem studied in Section 6.3.1.

In the following lemma, we show that computing ωQ(T ) in Eq. (7.4) for a given two-player free

game (V, π) can be rephrased as an instance of tripartite quantum separability problems subject

to additional linear constraints.
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Lemma 20. For a two-player free game with V (a1, a2, q1, q2) and π(q1, q2) = π1(q1)π2(q2)

assisted by T × T -dimensional quantum correlation, we have

ωQ(T )(V, π) = T 2 · max
(E,D,ρ)

Tr
[(
VA1A2Q1Q2 ⊗ ΦT T̂ |SŜ

)(
EA1Q1T ⊗DA2Q2T̂

⊗ ρSŜ

)]
s.t. ρSŜ ≥ 0 , Tr[ρSŜ] = 1

EA1Q1T =
∑
a1,q1

π1(q1) |a1q1⟩⟨a1q1|A1Q1
⊗ ET (a1|q1)

T
≥ 0

DA2Q2T̂
=
∑
a2,q2

π2(q2) |a2q2⟩⟨a2q2|A2Q2
⊗ DT̂ (a2|q2)

T
≥ 0

TrA1 [EA1Q1T ] =
∑
q1

π1(q1) |q1⟩⟨q1|Q1
⊗ 1T

T

TrA2

[
DA2Q2T̂

]
=
∑
q2

π2(q2) |q2⟩⟨q2|Q2
⊗ 1T̂

T
,

(7.5)

where ΦT T̂ |SŜ = |Φ⟩⟨Φ|T T̂ |SŜ is the (non-normalised) maximally-entangled state, i.e., |Φ⟩T T̂ |SŜ =∑
i |i⟩T T̂ |i⟩SŜ, and VA1A2Q1Q2 is a diagonal matrix whose entries are given by the rule function

V (a1, a2, q1, q2).

Note that the optimisation in Eq. (7.5) is now taken over all product states with respect to the

tripartition A1Q1T |A2Q2T̂ |SŜ, which satisfy the stated linear constraints. Since product states

are extreme points in the set of separable states, we can equivalently think of the above as an

optimisation over the convex hull of the feasible states, which are all product states satisfying

the linear constraints – the optimisation over the convex hull gives the same solution as the one

over product states. Thus, this new form of the optimisation problem can be regarded as an

instance of tripartite quantum separability problems with additional linear constraints.

To prove Lemma 20, we first need a simple mathematical trick called the swap trick. We

prove a slightly modified version here.

Lemma 21. Let MAB be an operator acting on HA⊗HB, and NA be an operator on HA. Then,

it holds that

Tr [(NA ⊗ 1B)MAB] = Tr
[(
FÂ|A ⊗ 1B

)
(NÂ ⊗MAB)

]
,
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where FÂ|A denotes the swap operator between systems Â and A, i.e., FÂ|A =
∑

i,j |ij⟩⟨ji|ÂA.

Proof. By inspection, we have that

Tr
[(
FÂ|A ⊗ 1B

)
(NÂ ⊗MAB)

]
= Tr

[(
FÂ|A ⊗ 1B

)(∑
i,j

nij |i⟩⟨j|Â ⊗
∑
k,ℓ,s,t

m(kℓ)(st) |k⟩⟨ℓ|A ⊗ |s⟩⟨t|B

)]

= Tr

[ ∑
i,j,k,ℓ,s,t

nijm(kℓ)(st) |k⟩⟨j|Â ⊗ |i⟩⟨ℓ|A ⊗ |s⟩⟨t|B

]

=
∑
i,j,s

nijm(ji)(ss) = Tr [(NA ⊗ 1B)MAB] ,

where we used NA =
∑

i,j nij |i⟩⟨j|A and MAB =
∑

k,ℓ,s,tm(kℓ)(st) |k⟩⟨ℓ|A ⊗ |s⟩⟨t|B.

We are now ready to prove Lemma 20.

Proof of Lemma 20. Let us start from the expression for ωQ(T ) in Eq. (7.5). For free games, we

have π(q1, q2) = π1(q1)π2(q2). By substituting the free-game condition and replacing all classical

systems with classical (diagonal) quantum systems, we can have

ωQ(T )(V, π) = T 2 max
E,D,ρ

Tr
[
(VA1A2Q1Q2 ⊗ ρT T̂ )

(
EA1Q1T ⊗DA2Q2T̂

)]
(7.6)

s.t. ρT T̂ ≥ 0 , Tr[ρT T̂ ] = 1

EA1Q1T =
∑
a1,q1

π1(q1) |a1q1⟩⟨a1q1|A1Q1
⊗ ET (a1|q1)

T
≥ 0

DA2Q2T̂
=
∑
a2,q2

π2(q2) |a2q2⟩⟨a2q2|A2Q2
⊗ DT̂ (a2|q2)

T
≥ 0

TrA1 [EA1Q1T ] =
∑
q1

π1(q1) |q1⟩⟨q1|Q1
⊗ 1T

T

TrA2

[
DA2Q2T̂

]
=
∑
q2

π2(q2) |q2⟩⟨q2|Q2
⊗ 1T̂

T
,

where we define VA1A2Q1Q2 :=
∑

a1,a2,q1,q2
|a1, a2, q1, q2⟩⟨a1, a2, q1, q2|. Then, using Lemma 21 we
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can rewrite the objective function in Eq. (7.6) as

Tr
[
(VA1A2Q1Q2 ⊗ ρT T̂ )

(
EA1Q1T ⊗DA2Q2T̂

)]
= Tr

[
(1A1A2Q1Q2 ⊗ ρT T̂ )

(
(VA1A2Q1Q2 ⊗ 1T T̂ )

(
EA1Q1T ⊗DA2Q2T̂

))]
= Tr

[(
1A1A2Q1Q2 ⊗ FT T̂ |SŜ

)((
(VA1A2Q1Q2 ⊗ 1T T̂ )

(
EA1Q1T ⊗DA2Q2T̂

))
⊗ ρSŜ

)]
(by Lemma 21)

= Tr
[((

VA1A2Q1Q2 ⊗ FT T̂ |SŜ

)(
EA1Q1T ⊗DA2Q2T̂

⊗ ρSŜ

))]
,

which has a similar form to the objective function in Lemma 20 with the exception that FT T̂ |SŜ

replaces ΦT T̂ |SŜ. To complete the proof, we need to express the swap operator FA|Â in terms of the

(non-normalised) maximally entangled state ΦA|Â = |Φ⟩⟨Φ|A|Â, where |Φ⟩A|Â =
∑dA

i=1 |i⟩A ⊗ |i⟩Â.

It is not difficult to see that

ΦTA
A|Â =

(∑
i,j

|ii⟩⟨jj|AÂ

)TA

=
∑
i,j

|ji⟩⟨ij|AÂ = FA|Â.

Redefining the variable ρSŜ as ρT
SŜ

, we then immediately obtain Eq. (7.5) in Lemma 20 as this

last step leaves the constraints invariant.

7.2.2 Semidefinite programming relaxations

In the last section, we showed that ωQ(T )(V, π) for a given free game G = (V, π) can be rephrased

as a variant of quantum separability problems which is subject to additional constraints. As we

have studied in Section 6.3.1, we have effective relaxations for quantum separable states; the

DPS hierarchy. In this section, we construct a hierarchy of SDP relaxations for the optimisation

problem derived in Lemma 20 using the DPS hierarchy.

The way to employ the DPS hierarchy is straightforward. We can simply replace the product

optimisation variable with (n1, n2)-extendible states with respect to the appropriate tripartition.
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Here is our new approximation algorithm for ωQ(T )(V, π) of a two player free game (V, π):

sdpn1,n2
(V, π, T ) := T 2 max

ρ
Tr
[(
VA1A2Q1Q2 ⊗ ΦT T̂ |SŜ

)
ρ(A1Q1T )(A2Q2T̂ )(SŜ)

]
(7.7)

s.t. ρ(A1Q1T )(A2Q2T̂ )n1 (SŜ)n2 ≥ 0 , Tr
[
ρ(A1Q1T )(A2Q2T̂ )n1 (SŜ)n2

]
= 1

ρ(A1Q1T )(A2Q2T̂ )n1 (SŜ)n2 perm. inv. on (A2Q2T̂ )n1 w.r.t. (A1Q1T )(SŜ)n2 (7.8)

ρ(A1Q1T )(A2Q2T̂ )n1 (SŜ)n2 perm. inv. on (SŜ)n2 w.r.t. (A1Q1T )(A2Q2T̂ )n1 (7.9)

TrA1 [ρ(A1Q1T )(A2Q2T̂ )n1 (SŜ)n2 ] =

(∑
q1

π1(q1) |q1⟩⟨q1|Q1
⊗ 1T

T

)
⊗ ρ(A2Q2T̂ )n1 (SŜ)n2 (7.10)

TrA2 [ρ(A1Q1T )(A2Q2T̂ )n1 (SŜ)n2 ] =

(∑
q2

π2(q2) |q2⟩⟨q2|Q2
⊗ 1T̂

T

)
⊗ ρ(A1Q1T )(A2Q2T̂ )(n1−1)(SŜ)n2

(7.11)

ρ
TA1Q1T

(A1Q1T )(A2Q2T̂ )n1 (SŜ)n2
≥ 0 , ρ

T(A2Q2T̂ )n1

(A1Q1T )(A2Q2T̂ )n1 (SŜ)n2
≥ 0, . . . , (7.12)

where the last line Eq. (7.12) contains all PPT conditions with respect to all the cuts. The

first line states that the optimisation variable ρ(A1Q1T )(A2Q2T̂ )n1 (SŜ)n2 must be a quantum state

(density operator). Eqs. (7.8)-(7.9) came from the (n1, n2)-extendibility conditions, permutation

invariance on (A2Q2T̂ )n1 and (SŜ)n2 . We also arrive at the additional linear constraints in

Eqs. (7.10)-(7.11) originated from the constraints in Eq. (7.5). The last line contains all PPT

conditions for the (n1, n2)-extendible state ρ(A1Q1T )(A2Q2T̂ )n1 (SŜ)n2 .

The derived algorithms are a hierarchy of semidefinite programs whose each level gives a

valid upper bound on ωQ(T )(V, π). As the set of (n1, n2)-extendible states gets closer to the set

of separable states when n1 and n2 increase, the higher-level relaxation gives a tighter upper

bound than the ones from lower-level relaxations; sdpn1,n2
≤ sdpn′

1,n
′
2

if n1 ≥ n′
1 and n2 ≥ n′

2.

However, implementing a high-level relaxation requires more computational resources, such as

memory size and run-time. In the next section, we discuss how to find the minimum level of the

relaxations for achieving a desired accuracy.

Before moving on to the next section, it is worth remarking that the value of sdpn1,n2
(V, π, T )

is naturally upper bounded by 1.

Proposition 22. Let sdpn1,n2
(V, π, T ) be the (n1, n2)-th level SDP relaxation for the T × T -
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dimensional two-player free game with rule matrix V and question probability distribution

π(q1, q2) = π1(q1)π2(q2). Then, we have that

0 ≤ sdpn1,n2
(V, π, T ) ≤ 1 .

Proof. Let ρ(A1Q1T )(A2Q2T̂ )n1 (SŜ)n2 be the state optimising the (n1, n2)-th level SDP relaxation.

As subsystems A1, A2, Q1, Q2 are classical, we can write its marginal appeared in the objective

function in Eq. (7.7) in the block-diagonal form:

ρ(A1Q1T )(A2Q2T̂ )(SŜ)
=

∑
a1,a2,q1,q2

|a1, a2, q1, q2⟩⟨a1, a2, q1, q2| ⊗ ρT T̂SŜ(a1, a2, q1, q2).

Then, we can simplify the A1, A2, Q1, Q2 part of the trace in the objective function and obtain

sdpn1,n2
(V, π, T ) = T 2 max

ρ

∑
a1,a2,q1,q2

V (a1, a2, q1, q2) Tr
[
ΦT T̂ |SŜρT T̂SŜ(a1, a2, q1, q2)

]
.

Using V (a1, a2, q1, q2) ≤ 1 for all a1, a2, q1, q2, we find

sdpn1,n2
(V, π, T ) ≤ T 2 max

ρ

∑
a1,a2,q1,q2

Tr
[
ΦT T̂ |SŜ ρT T̂SŜ(a1, a2, q1, q2)

]
= T 2 TrT T̂SŜ

[
ΦT T̂ |SŜ TrA1Q1A2Q2

[
ρ(A1Q1T )(A2Q2T̂ )(SŜ)

]]
. (7.13)

We can now use the linear constraints to write ρT T̂SŜ explicitly. Consider the first linear

constraint in Eq. (7.10), and taking the trace on the subsystem A1 gives us

TrA1A2

[
ρ(A1Q1T )(A2Q2T̂ )n1 (SŜ)n2

]
=

(∑
q1

π1(q1) |q1⟩⟨q1|Q1
⊗ 1T

T

)
⊗ TrA2

[
ρ(A2Q2T̂ )n1 (SŜ)n2

]
.(7.14)

If we now consider the second linear constraint in Eq. (7.11) and take the trace on the subsystems

A1Q1T and A2, then we get

TrA2

[
ρ(A2Q2T̂ )n1 (SŜ)n2

]
=

(∑
q2

π2(q2) |q2⟩⟨q2|Q2
⊗ 1T̂

T

)
⊗ ρ(A2Q2T̂ )n1−1(SŜ)n2 . (7.15)
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We combine Eq. (7.14) and (7.15) and take the trace on the remaining n1−1 subsystems A2Q2T̂

and n2 − 1 subsystems SŜ. Then, we can conclude that

TrA1A2

[
ρ(A1Q1T )(A2Q2T̂ )(SŜ)

]
=

(∑
q1

π1(q1) |q1⟩⟨q1|Q1
⊗ 1T

T

)
⊗
(∑

q2

π2(q2) |q2⟩⟨q2|Q2
⊗ 1T̂

T

)
⊗ ρSŜ.

If we take the trace over subsystems Q1Q2, we obtain the following explicit form of ρT T̂SŜ:

ρT T̂SŜ = TrA1Q1A2Q2

[
ρ(A1Q1T )(A2Q2T̂ )(SŜ)

]
=
1T T̂
T 2

⊗ ρSŜ.

By substituting the above expression in Eq. (7.13) and the swap trick, we find that

sdpn1,n2
(V, π, T ) ≤ TrT T̂SŜ

[
ΦT T̂ |SŜ (1T T̂ ⊗ ρSŜ)

]
= TrT T̂SŜ

[
FT T̂ |SŜ (1T T̂ ⊗ ρSŜ)

]
= TrT T̂ [ρT T̂ ] = 1,

where we have taken the partial transpose over T T̂ in the second line and used Tr
[
MABN

TA
AB

]
=

Tr
[
MTA

ABNAB

]
in the last line.

7.3 Convergence of the hierarchy

We have constructed approximation algorithms for calculating ωQ(T )(V, π) for a given two-player

free game (V, π) in the last section, which has the form of a hierarchy of SDP relaxations. A

natural following-up question is then how fast these SDP relaxations converge to the actual

solution, and to answer this question is the main topic of this section. Our approach is to find

the lowest level of the SDP hierarchy which can achieve a desired accuracy, which can be done

by the help of quantum de Finetti theorems. Then, this information can be further related to

the convergence speed of the hierarchy.
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7.3.1 Preliminary: conditional quantum mutual information

Before diving into proving the convergence speed of the SDP hierarchy, we would like to provide

some mathematical concepts necessary for the next section. In particular, we introduce the

mathematical quantity called conditional quantum mutual information whose multipartite

version is one of the main technical tools in the next section.

Let us consider a quantum state ρA on a Hilbert space HA. The von Neumann entropy of

the quantum state ρA is defined as

S(A)ρ := −Tr [ρA log ρA] ,

where we define 0 log 0 ≡ 0. When considering a quantum state with subsystems, such as ρA1···Ak
,

the quantum joint entropy is nothing but the von Neumann entropy of the whole system:

S(A1 · · ·Ak)ρ = −Tr [ρA1···Ak
log ρA1···Ak

] .

Then, for the bipartite setting, we can define the conditional entropy and quantum mutual

information of a quantum state ρAB on HAB by

S(A|B)ρ := S(AB)ρ − S(B)ρ

I(A : B)ρ := S(A)ρ + S(B)ρ − S(AB)ρ . (7.16)

There exist a few different ways to generalise the definition of quantum mutual information

in Eq. (7.16) to the multipartite setting [112]. In this chapter, we use the following definition:

given k quantum systems A1 · · ·Ak described by ρA1A2···Ak
, the multipartite quantum mutual

information is defined as

I(A1 : A2 : · · · : Ak)ρ :=
k∑
i=1

S(Ai)ρ − S(A1A2 · · ·Ak) ,

where S(Ai) = −Tr [ρAi
log ρAi

] is the von Neumann entropy of the reduced state ρAi
. This

definition is useful as it is equivalent to another measure of correlation between subsystems, the
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relative entropy distance between the given state and the tensor product of its marginals:

I(A1 : A2 : · · · : Ak)ρ = D(ρA1···Ak
||ρA1 ⊗ · · · ⊗ ρAi

) , (7.17)

where D(ρ||σ) := Tr [ρ(log ρ− log σ)] is the relative entropy between two state ρ and σ such that

supp(ρ) ⊆ supp(σ). Given k quantum systems A1 · · ·Ak and a classical system R, described by

the global state ρA1A2···AkR, the conditional multipartite quantum mutual information is defined

as

I(A1 : A2 : · · · : Ak|R)ρ :=
k∑
i=1

S(AiR) − S(A1A2 · · ·AkR) − S(R) .

The conditional multipartite quantum mutual information with classical system R can be

expressed in terms of the bipartite ones [113, Lemma 13]:

I(A1 : · · · : Ak|R)ρ = I(A1 : A2|R)ρ + I(A1A2 : A3|R)ρ + ...+ I(A1 · · ·Ak−1 : Ak|R)ρ .(7.18)

Another convenient property of quantum mutual information is the chain rule:

I(AB : C) = I(B : C) + I(A : C|B) , (7.19)

which holds for the conditional quantum mutual information as well:

I(AB : C|D) = I(B : C|D) + I(A : C|BD) . (7.20)

7.3.2 Tripartite quantum de Finetti theorem with linear constraints

As we discussed in Section 6.4, quantum de Finetti theorems can be related to a quantitative

bound on how close extendible states are to the set of separable states. This information can

then be converted to an upper bound on the accuracy of the SDP relaxations exploiting the

DPS hierarchy. However, the existences of both the side quantum system in extendible states

and the additional linear constraints in Eq. (7.5) prevent us to be able to exploit the standard
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quantum de Finetti theorem like Theorem 19, and thus we need an adapted version. What we

need is an upper bound on how close n-extendible states satisfying additional linear constraints

are to the convex hull of product states satisfying the same linear constraints.

In this section, we derive multipartite quantum de Finetti theorems with additional linear

constraints employing the information-theoretic proof technique based on quantum entropy

inequalities [113, 114]. Using the adapted quantum de Finetti theorem with improved distance

bound is crucial to obtain the improved complexity bounds on the problem of approximating

ωQ(T )(V, π) in the next section. Here, we state the tripartite version of the theorem.

Theorem 23. Let ρABn1Cn2 be a quantum state which is invariant under permutations on Bn1

with respect to ACn2 and on Cn2 with respect to ABn1, satisfying for linear maps EA→Ã, ΛB→B̃,

and ΓC→C̃ and operators XÃ, YB̃, and ZC̃ that

(EA→Ã ⊗ IBn1Cn2 ) (ρABn1Cn2 ) = XÃ ⊗ ρBn1Cn2 linear constraint on A

(ΛB→B̃ ⊗ IBn1−1Cn2 ) (ρBn1Cn2 ) = YB̃ ⊗ ρBn1−1Cn2 linear constraint on B

(IBn1Cn2−1 ⊗ ΓC→C̃) (ρBn1Cn2 ) = ZC̃ ⊗ ρBn1Cn2−1 linear constraint on C.

Then, there exist a probability distribution {pi}i∈I and sets of quantum states {σiA}i∈I , {ωiB}i∈I
and {τ iC}i∈I such that we have that

∥∥∥ρABC −
∑
i∈I

piσ
i
A ⊗ ωiB ⊗ τ iC

∥∥∥
1

≤ min
{

183/2
√

|ABC|, 4|BC|
}
×
√

2 ln 2

(√
log |A| + 8 log |B|

n2

+
log |A|
n1

) (7.21)

EA→Ã

(
σiA
)

= XÃ, ΛB→B̃

(
ωiB
)

= YB̃, ΓC→C̃

(
τ iC
)

= ZC̃ ∀i ∈ I.

To prove the above theorem, instead of directly working with the trace distance, we exploit

quantum entropy inequalities and their chain rules. This approach allows us to carefully quantify

how correlations are divided between different partitions of the extendible states.

For the first ingredient, we derive a general upper bound on the conditional multipartite
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quantum mutual information of a state with classical subsystems. Before then, we prove the

following lemma which is needed to prove the first ingredient.

Lemma 24. For a quantum state ρAZX with classical systems Z and X, it holds that

I(A : Z|X) ≤ log |A|.

Proof. For classical system X, the conditional quantum mutual information can be written as

I(A : Z|X) =
∑

x pxI(A : Z)ρAZ|x . We know that I(A : Z) ≤ log |A| when Z is classical, and

hence

I(A : Z|X) =
∑
x

pxI(A : Z)ρAZ|x ≤ log |A|.

Note that we denote the conditional state ρA|z of a state ρAZ with classical system Z as

ρA|z :=
TrZ [ρAZ(1A ⊗ |z⟩⟨z|Z)]

Tr [ρAZ(1A ⊗ |z⟩⟨z|Z)]
.

This describes the state after measurement on system Z, when the measurement outcome is z.

Now, we are ready to prove the first ingredient.

Lemma 25. Consider a quantum state ρAZn1Wn2 classical on systems Z and W . Then, there

exist m̄ ∈ {0, ..., n1 − 1} and l̄ ∈ {0, ..., n2 − 1} such that

I(A : Zm̄+1 : Wl̄+1|Zm̄W l̄) ≤ log |A|
n1

+
log |A| + log |Z|

n2

. (7.22)

Moreover, by Pinsker’s inequality, this implies that

Ezm̄wl̄

{∥∥∥ρAZm̄+1Wl̄+1|zm̄wl̄ − ρA|zm̄wl̄ ⊗ ρZm̄+1|zm̄wl̄ ⊗ ρWl̄+1|zm̄wl̄

∥∥∥2
1

}
(7.23)

≤ 2 ln 2

(
log |A|
n1

+
log |A| + log |Z|

n2

)
.
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Proof. The multipartite quantum mutual information I(A : Zm̄+1 : Wl̄+1|Zm̄W l̄) can be ex-

pressed in terms of bipartite ones using Eq. (7.18):

I(A : Zm̄+1 : Wl̄+1|Zm̄W l̄) = I(A : Zm̄+1|Zm̄W l̄) + I(AZm̄+1 : Wl̄+1|Zm̄W l̄). (7.24)

The two terms in the RHS are the bipartite mutual information between quantum and classical

systems, and this allows us to find an upper bound for each term using the chain rule in

Eq. (7.20) and Lemma 24.

First term: For any l, it holds that

I(A : Zn1|W l) =

n1−1∑
m=0

I(A : Zm+1|ZmW l) ≤ log |A|,

where the first equality is the chain rule in Eq. (7.20) and the second inequality is a result of

applying Lemma 24 to I(A : Zn1|W l). Then, summing over all l gives us

n1−1∑
m=0

n2−1∑
l=0

I(A : Zm+1|ZmW l) ≤ n2 log |A|. (7.25)

Second term: Using the same argument, for any m, it holds that

I(AZm+1 : W n2|Zm) =

n2−1∑
l=0

I(AZm+1 : Wl+1|ZmW l) ≤ log |A||Z|,

and summing over m gives us

n1−1∑
m=0

n2−1∑
l=0

I(AZm+1 : Wl+1|ZmW l) ≤ n1 (log |A| + log |Z|) . (7.26)

Combining Eq. (7.25) and Eq. (7.26) gives

n2 log |A| + n1 (log |A| + log |Z|)

≥
n1−1∑
m=0

n2−1∑
l=0

(
I(A : Zm+1|ZmW l) + I(AZm+1 : Wl+1|ZmW l)

)
≥ n1n2

(
I(A : Zm̄+1|Zm̄W l̄) + I(AZm̄+1 : Wl̄+1|Zm̄W l̄)

)
,
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where m̄ and l̄ are the indices of the smallest element in the sum. Dividing both sides by n1n2

gives us the desired relation,

I(A : Zm̄+1 : Wl̄+1|Zm̄W l̄) = I(A : Zm̄+1|Zm̄W l̄) + I(AZm̄+1 : Wl̄+1|Zm̄W l̄)

≤ log |A|
n1

+
log |A| + log |Z|

n2

.

This ends the proof of Eq. (7.22). Then, using Eq. (7.17) and Pinsker’s inequality2 we can

obtain Eq. (7.23).

We remark that the resulting bound is not symmetric under exchanging the systems Z and W

even though the conditions are symmetric. This is because we used the particular bipartite

expression for the conditional multipartite quantum mutual information in Eq. (7.24). The

same proof works with the roles of the systems Z and W exchanged, and one can freely choose

whichever bound is stronger. We also remark that it is straightforward to extend the above

result in Lemma 25 to the general k-partite case.

The next ingredient is a bound on the loss in distinguishability between quantum states

when they are processed with measurements – called minimal distortion.

Lemma 26. 1. There exist fixed measurements MA, MB, and MC with at most |A|8, |B|8,

and |C|8 outcomes, respectively, such that for every traceless Hermitian operator γABC on

HABC

∥γABC∥1 ≤ 183/2
√

|ABC| · ∥(MA ⊗MB ⊗MC) (γABC)∥1.

2. There exists a fixed measurement MB with at most |B|6 outcomes such that for every

traceless Hermitian operator γAB on HAB

∥γAB∥1 ≤ 2|B| · ∥(IA ⊗MB) (γAB)∥1. (7.28)

2For given two quantum states ρ and σ such that supp(ρ) ⊆ supp(σ), Pinsker’s inequality states that

∥ρ− σ∥21 ≤ 2 ln 2 ·D(ρ||σ) . (7.27)
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Note that as the trace distance is a contractive metric, it in general holds that ∥M(γ)∥1 ≤ ∥γ∥,

which represents the loss of information during the process M. The above lemma concerns

lower bounds, instead of this trivial upper bound, on the loss of information.

The first part is straightforward from [114, Lemma 14]. We remark that when a traceless

Hermitian operator already has a classical subsystem, for example γABCZ with classical system

Z, the dimension factor only includes the dimension of the quantum part; i.e.,

∥γABCZ∥1 ≤ 183/2
√

|ABC| · ∥(MA ⊗MB ⊗MC ⊗ IZ) (γABCZ)∥1. (7.29)

This follows from the property of classical-quantum states that

∥∥∥∥∥∑
z

ρzA ⊗ |z⟩⟨z|
∥∥∥∥∥
1

=
∑
z

∥ρzA∥1 .

The proof of the second part is given in Appendix C.2. We note that the second part

improves on the factor
√

18|B|3/2 given in [113, Eq. (68)]. As there exist quantum states ρAB

and σAB such that [115]

∥ρAB − σAB∥1 = 2 and sup
MB

∥(IA ⊗MB) (γAB)∥1 =
2

|B| + 1
,

our result establishes the dimension dependence Ω(|B|) for minimal distortion relative to quantum

side information. This answers a question left open in [116].

Proof of Theorem 23

Now, we prove Theorem 23. The idea is to apply one of the optimal measurements specified in

Lemma 26 to the given extendible state ρABn1Cn2 in Theorem 23 so that the resulting state is

partially classical, and then apply Lemma 25 to the resulting classical-quantum state. Here is

the proof.

Proof of Theorem 23. Let MB→Y be a quantum-to-classical measurement from B to the classical

system Y , and MC→Z be a quantum-to-classical measurement from C to the classical system

Z. We apply these measurements to the quantum state ρABn1Cn2 and will denote the outcome
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classical-quantum state as ρAY n1Zn2 . Then, according to Lemma 25, there exist m ∈ {0, · · · , n1−

1} and ℓ ∈ {0, · · · , n2 − 1} such that

Eymzℓ
{∥∥ρAYm+1Zℓ+1|ymzℓ − ρA|ymzℓ ⊗ ρYm+1|ymzℓ ⊗ ρZℓ+1|ymzℓ

∥∥2
1

}
≤ 2 ln 2

(
log |A|
n1

+
log |A| + log |Y |

n2

)
.

(7.30)

As ρABn1Cn2 is invariant under permutations of the systems Bn1 and Cn2 , we can always find m

and l satisfying Eq. (7.30).

Now, let us define a traceless Hermitian operator

γABC ≡ ρABm+1Cℓ+1|ymzℓ − ρA|ymzℓ ⊗ ρBm+1|ymzℓ ⊗ ρCℓ+1|ymzℓ .

Note that

IA ⊗MB→Y ⊗MC→Z (γABC) = ρAYm+1Zℓ+1|ymzℓ − ρA|ymzℓ ⊗ ρYm+1|ymzℓ ⊗ ρZℓ+1|ymzℓ .

Using the second part of Lemma 26 iteratively, we can obtain

∥γABC∥1 ≤ 2|C|∥(IAB ⊗MC→Z) (γABC)∥1

≤ 2|B| × 2|C|∥(IAC ⊗MB→Y ) (IAB ⊗MC→Z) (γABC)∥1

= 4|BC|∥(IA ⊗MB→Y ⊗MC→Z) (γABC)∥1,

with |Y | ≤ |B|6. We can also exploit the first part of Lemma 26 to obtain

∥γABC∥1 ≤
√

183|ABC| ∥(MA ⊗MB→Y ⊗MC→Z) (γABC)∥1

≤
√

183|ABC| ∥(IA ⊗MB→Y ⊗MC→Z) (γABC)∥1

with |Y | ≤ |B|8, where the second inequality follows from the monotonicity of the trace norm

under CPTP maps. Depending on the dimensions, we can freely choose the tighter bound
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between the two cases. Combining Eq. (7.30) with the above two results we obtain

Eymzℓ
{∥∥ρABm+1Cℓ+1|ymzℓ − ρA|ymzℓ ⊗ ρBm+1|ymzℓ ⊗ ρCℓ+1|ymzℓ

∥∥2
1

}
≤ min

{√
183|ABC|, 4|BC|

}2

× 2 ln 2

(
log |A|
n1

+
log |A| + 8 log |B|

n2

)
.

Then, we have

∥∥ρABm+1Cℓ+1
− Eymzℓ

{
ρA|ymzℓ ⊗ ρBm+1|ymzℓ ⊗ ρCℓ+1|ymzℓ

}∥∥
1

≤ Eymzℓ
{∥∥ρABm+1Cℓ+1|ymzℓ − ρA|ymzℓ ⊗ ρBm+1|ymzℓ ⊗ ρCℓ+1|ymzℓ

∥∥
1

}
≤
√

Eymzℓ
{∥∥ρABm+1Cℓ+1|ymzℓ − ρA|ymzℓ ⊗ ρBm+1|ymzℓ ⊗ ρCℓ+1|ymzℓ

∥∥2
1

}
≤ min

{√
183|ABC|, 4|BC|

}
×
√

2 ln 2

√ log |A|
n1

+
log |A| + 8 log |B|

n2

 ,

where we used the triangular inequality for Schatten p-norms in the second line and the

concavity of the square function in the third line. As Eymzℓ
{
ρA|ymzℓ ⊗ ρBm+1|ymzℓ ⊗ ρCℓ+1|ymzℓ

}
is a separable state with respect to the tripartition A|B|C, this proves the first half of the

theorem.

The remaining part is to check whether ρA|ymzℓ , ρBm+1|ymzℓ and ρCℓ+1|ymzℓ satisfy the desired

linear constraints. Let us denote Myi
Bi

and M zi
Ci

as the POVM elements of the measurements

MBi→Yi and MCi→Zi
corresponding to the measurement outcomes yi and zi, respectively. Then,

we find

EA→Ã

(
σiA
)

= EA→Ã

(
ρA|ymzℓ

)
=

TrBmCℓ

[
(1A ⊗My1

B1
⊗ · · · ⊗Mym

Bm
⊗M z1

C1
⊗ · · · ⊗M zℓ

Cℓ
)EA→Ã (ρABmCℓ)

]
Tr
[
(1A ⊗My1

B1
⊗ · · · ⊗Mym

Bm
⊗M z1

C1
⊗ · · · ⊗M zℓ

Cℓ
)ρABmCℓ

]
=

TrBmCℓ

[
(1A ⊗My1

B1
⊗ · · · ⊗Mym

Bm
⊗M z1

C1
⊗ · · · ⊗M zℓ

Cℓ
) (XÃ ⊗ ρBmCℓ)

]
Tr
[
(1A ⊗My1

B1
⊗ · · · ⊗Mym

Bm
⊗M z1

C1
⊗ · · · ⊗M zℓ

Cℓ
)ρABmCℓ

]
= XÃ.
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ΛB→B̃

(
ωiB
)

= ΛB→B̃

(
ρBm+1|ymzℓ

)
=

TrBmCℓ

[
(1B̃ ⊗My1

B1
⊗ · · · ⊗Mym

Bm
⊗M z1

C1
⊗ · · · ⊗M zℓ

Cℓ
)ΛB→B̃ (ρBm+1Cℓ)

]
Tr
[
(My1

B1
⊗ · · · ⊗Mym

Bm
⊗ 1Bm+1 ⊗M z1

C1
⊗ · · · ⊗M zℓ

Cℓ
)ρBm+1Cℓ

]
=

TrBmCℓ

[
(1B̃ ⊗My1

B1
⊗ · · · ⊗Mym

Bm
⊗M z1

C1
⊗ · · · ⊗M zℓ

Cℓ
) (YB̃ ⊗ ρBmCℓ)

]
Tr
[
(My1

B1
⊗ · · · ⊗Mym

Bm
⊗ 1Bm+1 ⊗M z1

C1
⊗ · · · ⊗M zℓ

Cℓ
)ρBm+1Cℓ

]
= YB̃.

ΓC→C̃

(
τ iC
)

= ΓC→C̃

(
ρCℓ+1|ymzℓ

)
=

TrBmCℓ

[
(1C̃ ⊗My1

B1
⊗ · · · ⊗Mym

Bm
⊗M z1

C1
⊗ · · · ⊗M zℓ

Cℓ
)ΓC→C̃ (ρBmCℓ+1)

]
Tr
[
(My1

B1
⊗ · · · ⊗Mym

Bm
⊗M z1

C1
⊗ · · · ⊗M zℓ

Cℓ
⊗ 1Cℓ+1

) (ρBmCℓ+1)
]

=
TrBmCℓ

[
(1C̃ ⊗My1

B1
⊗ · · · ⊗Mym

Bm
⊗M z1

C1
⊗ · · · ⊗M zℓ

Cℓ
) (ZC̃ ⊗ ρBmCℓ)

]
Tr
[
(My1

B1
⊗ · · · ⊗Mym

Bm
⊗M z1

C1
⊗ · · · ⊗M zℓ

Cℓ
⊗ 1Cℓ+1

) (ρBmCℓ+1)
]

= ZC̃ .

Theorem 23 describes a general setting; both the extendible state and the linear constraints

do not have any refined structures. However, if we have more information about the state

and the constraint, we can exploit the information to improve the dimension dependence of

the bound in Eq. (7.21). It is indeed our case. The extendible state ρ(A1Q1T )(A2Q2T̂ )n1 (SŜ)n2 in

sdpn1,n2
(V, π, T ), to which we apply the de Finetti theorem, already has some classical systems,

and the linear constraints are partial trace constraints. This information helps us obtain a

better bound in the quantum de Finetti theorem, and we state this special case as a lemma

with proof in Appendix C.3.

Lemma 27. Let ρ(AXX̃)Bn1 (CZZ̃)n2 be a quantum state with classical XX̃- and ZZ̃-systems

invariant under permutation on Bn1 and (CZZ̃)n2 with respect to the other systems, satisfying

TrX

[
ρ(AXX̃)Bn1 (CZZ̃)n2

]
= XAX̃ ⊗ ρBn1 (CZZ̃)n2 (7.31)

TrZ

[
ρ(AXX̃)Bn1 (CZZ̃)n2

]
= ZCZ̃ ⊗ ρ(AXX̃)Bn1 (CZZ̃)n2−1

for some operators XAX̃ , and ZCZ̃. Then, there exist a probability distribution {pi}i∈I and sets
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of quantum states {σi
AXX̃

}i∈I , {ωiB}i∈I and {τ i
CZZ̃

}i∈I such that

∥∥∥∥∥ρ(AXX̃)B(CZZ̃) −
∑
i∈I

pi σ
i
AXX̃

⊗ ωiB ⊗ τ i
CZZ̃

∥∥∥∥∥
1

≤ min
{

183/2
√

|ABC|, 4|BC|
}
×
√

4 ln 2

√ log |X| + 8 log |B|
n2

+
log |X|
n1

 (7.32)

with TrX
[
σi
AXX̃

]
= XAX̃ and TrZ

[
τ i
CZZ̃

]
= ZCZ̃ for all i ∈ I.

7.3.3 Convergence rate of the hierarchy

The variants of quantum de Finetti theorems derived in the last section allows us to find an

upper bound on the accuracy of the SDP relaxations in Eq. (7.7). We derive analytical bounds

on the convergence speed of our SDP hierarchy in terms of the quantum dimension T and the

size of the given two-player free game, |A| ≡ A and |Q| ≡ Q.

Theorem 28. Let sdpn1,n2
(V, π, T ) be the (n1, n2)-th level SDP relaxation for the T × T -

dimensional two-player free game with rule matrix V and question probability distribution

π(q1, q2) = π1(q1)π2(q2). Then, we have

0 ≤ sdpn1,n2
(V, π, T ) − ωQ(T )(V, π) ≤ O

(
T 6

√
log(TA)

n2

+
logA

n1

)
.

Proof. Let ρA1Q1TA2Q2T̂ SŜ
be the optimal state of the (n1, n2)-th level relaxation sdpn1,n2

(V, π, T ).

The state should be (n1, n2)-extendible since all feasible states must be (n1, n2)-extendible states
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satisfying the linear constraints. Then, we have

sdpn1,n2
(V, π, T ) = T 2 Tr

[(
VA1A2Q1Q2 ⊗ ΦT T̂ |SŜ

)
ρA1Q1TA2Q2T̂ SŜ

]
= T 2 Tr

[(
VA1A2Q1Q2 ⊗ ΦT T̂ |SŜ

)(∑
i

pi σ
i
A1Q1T

⊗ ωi
A2Q2T̂

⊗ τ i
SŜ

)]

+ T 2 Tr

[(
VA1A2Q1Q2 ⊗ ΦT T̂ |SŜ

)(
ρA1Q1TA2Q2T̂ SŜ

−
∑
i

pi σ
i
A1Q1T

⊗ ωi
A2Q2T̂

⊗ τ i
SŜ

)]

≤ ωQ(T )(V, π) + T 2 Tr

[(
VA1A2Q1Q2 ⊗ ΦT T̂ |SŜ

)(
ρA1Q1TA2Q2T̂ SŜ

−
∑
i

pi σ
i
A1Q1T

⊗ ωi
A2Q2T̂

⊗ τ i
SŜ

)]
,

where
∑

i pi σ
i
A1Q1T

⊗ωi
A2Q2T̂

⊗ τ i
SŜ

is one of the close separable states to ρA1Q1TA2Q2T̂ SŜ
specified

by Theorem 23. As sdpn1,n2
(V, π, T ) is an upper bound for ωQ(T )(V, π) we obtain

∣∣∣ sdpn1,n2
(V, π, T ) − ωQ(T )(V, π)

∣∣∣
≤ T 2

∣∣∣∣∣Tr

[(
VA1A2Q1Q2 ⊗ ΦT T̂ |SŜ

)(
ρA1Q1TA2Q2T̂ SŜ

−
∑
i

pi σ
i
A1Q1T

⊗ ωi
A2Q2T̂

⊗ τ i
SŜ

)]∣∣∣∣∣
≤ T 2

∥∥∥VA1A2Q1Q2 ⊗ ΦT T̂ |SŜ

∥∥∥
∞

∥∥∥∥∥ρA1Q1TA2Q2T̂ SŜ
−
∑
i

pi σ
i
A1Q1T

⊗ ωi
A2Q2T̂

⊗ τ i
SŜ

∥∥∥∥∥
1

(∵ Hölder’s inequality)

= T 2∥VA1A2Q1Q2∥∞
∥∥∥ΦT T̂ |SŜ

∥∥∥
∞

∥∥∥∥∥ρA1Q1TA2Q2T̂ SŜ
−
∑
i

pi σ
i
A1Q1T

⊗ ωi
A2Q2T̂

⊗ τ i
SŜ

∥∥∥∥∥
1

= T 4

∥∥∥∥∥ρA1Q1TA2Q2T̂ SŜ
−
∑
i

pi σ
i
A1Q1T

⊗ ωi
A2Q2T̂

⊗ τ i
SŜ

∥∥∥∥∥
1(

∵ ∥VA1A2Q1Q2∥∞ = 1,
∥∥∥ΦT T̂ |SŜ

∥∥∥
∞

= T 2
)

≤ T 4

183/2T 2
(√

2 ln 2
)

√√√√(log |A| + 8 log |SŜ|
)

n2

+
log |A|
n1


 (∵ Lemma 27)

= 183/2T 6
(√

2 ln 2
)√(logA+ 16 log T )

n2

+
logA

n1

 .

Here, we set A = T , X = A1, X̃ = Q1 B = SŜ, C = T̂ , Z = A2, and Z̃ = Q2 when we applied

Lemma 27.
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Corollary 29. Let sdpn1,n2
(V, π, T ) be the (n1, n2)-th level relaxation for the T ×T -dimensional

two-player free game with rule matrix V and question probability distribution π(q1, q2) =

π1(q1)π2(q2). Then, we have

ωQ(T )(V, π) = lim
n1,n2→∞

sdpn1,n2
(V, π, T ).

Theorem 28 provides us the convergence speed of our SDP relaxations. For simplicity, let us

assume n1 = n2 = n. To achieve a constant error ϵ, we need to go up to the following level of

the hierarchy:

O
(
T 6

√
log(TA)

n

)
≤ ϵ ⇐⇒ n ≥ O

(
T 12 log(TA)

ϵ2

)
.

When n1 = n2 = O
(
T 12 log(TA)

ϵ2

)
, the size of the variables in the SDP is

(AQT )O(T 12 log(TA)

ϵ2
), which is exp

(
O
(T 12

ϵ2
(
log2(AT ) + logQ log(TA)

) ))
. (7.33)

This implies that approximating ωQ(T )(V, π) of a two-player free game with fixed-dimensional

quantum correlation can be solved within the additive error ϵ > 0 in quasi-polynomial time

in terms of the sizes of answers and questions of the game. Note that this convergence rate

is derived only from the linear constraints in sdpn1,n2
(V, π, T ), and we did not use the PPT

constraints.

7.4 Combining with the NPA hierarchy

In this section, we discuss how to combine our sdpn1,n2
(V, π, T ) in Eq. (7.7) with the NPA

hierarchy studied in Section 6.3.2. Combining these two hierarchies is advantageous since the

resulting SDP relaxation always returns a bound which is equal or tighter than the ones obtained

with the individual relaxations.

As we have seen in Section 6.3.2, the NPA hierarchy provides a different set of necessary

conditions satisfied by quantum correlations in the form of the positive semidefinite conditions
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[100, 101]. Our aim in this section is to develop an appropriate procedure for constructing the

NPA matrix Γk, given in Eq. (6.17), in terms of the optimisation variable ρ(A1Q1T )(A2Q2T̂ )n1 (SŜ)n2

in our SDP relaxation sdpn1,n2
(V, π, T ) in Eq. (7.7). As an example, we show how to build the

first-level NPA matrix in this section and refer to Appendix C.4 for the general case.

We begin by recalling that the optimal winning probability for a two-player game (V, π)

with quantum correlations of dimension T × T can be written as,

ωQ(T )(V, π) = max
p∈QT

∑
q1,q2

π(q1, q2)
∑
a1,a2

V (a1, a2, q1, q2)p(a1, a2|q1, q2), (7.34)

where QT is the set of all quantum correlations of dimension T × T . When we take into account

that the systems A1, A2, Q1, Q2 are classical, the objective function of sdpn1,n2
(V, π, T ), given in

Eq. (7.7), can be expressed as

sdpn1,n2
(V, π, T ) = T 2 max

ρ

∑
a1,a2,q1,q2

V (a1, a2, q1, q2) Tr
[
ΦT T̂ |SŜ ρT T̂SŜ(a1, a2, q1, q2)

]
(7.35)

by using the following classical-quantum form of ρ(A1Q1T )(A2Q2T̂ )n1 (SŜ)n2 :

ρ(A1Q1T )(A2Q2T̂ )n1 (SŜ)n2 =
∑

a1,a2,q1,q2

|a1,a2, q1, q2⟩⟨a1,a2, q1, q2| ⊗ ρT T̂n1 (SŜ)n2 (a1,a2, q1, q2),

where a2 and q2 are the n1-dimensional vectors of indices for An1
2 and Qn1

2 respectively, and

ρT T̂SŜ(a1, a2, q1, q2) is the marginal state of ρT T̂n1 (SŜ)n2 (a1,a2, q1, q2).
3 Comparing Eqs. (7.34)

and (7.35) allows us to derive the relation between p(a1, a2|q1, q2) and the variables ρT T̂SŜ(a1, a2, q1, q2),

which is

p(a1, a2|q1, q2) =
T 2

π(q1, q2)
Tr
[
ΦT T̂ |SŜ ρT T̂SŜ(a1, a2, q1, q2)

]
. (7.36)

3It is the marginal state of ρT T̂n1 (SŜ)n2 (a1,a2, q1, q2) after tracing out T̂n1−1 systems and (SŜ)n2−1 systems,
and summing over n1 − 1 indices of each a2 and q2.
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The marginal probabilities for Alice are given by

p(a1|q1) =
∑
a2

p(a1, a2|q1, q2) =
T 2

π(q1, q2)
Tr

[
ΦT T̂ |SŜ

(∑
a2

ρT T̂SŜ(a1, a2, q1, q2)

)]

=
T

π1(q1)
Tr
[
ΦT T̂ |SŜ (1T̂ ⊗ ρTSŜ(a1, q1))

]
,

where we used the linear constraints of the program and the fact that we consider free games in

the second line. Similarly, the marginal probability distribution for Bob is given by

p(a2|q2) =
T

π2(q2)
tr
[
ΦT T̂ |SŜ (1T ⊗ ρT̂ SŜ(a2, q2))

]
.

Then, using these joint and marginal probabilities, we can construct the first level NPA matrix

Γ1, which has the form of Eq. (6.14). The sole entries of Γ1 which we cannot relate to the

optimisation variable are those in the sub-matrices Q and R with different inputs q; these

entries become new variables to the SDP relaxation. To impose the NPA constraint on our

sdpn1,n2
(V, π, T ), we just simply add the positive semidefinite condition Γ1 ⪰ 0, where Γ1 is

expressed in terms of the optimisation variables.

For any k ≥ 2, the k-th level NPA matrix involves some entries of the form

p(a1,a2|q1, q2) = Tr

[(
m∏
i=1

E(a1(i), q1(i))

)(
ℓ∏

j=1

E(a2(j), q2(j))

)
ρAB

]

with m+ ℓ ≤ 2k, where ρAB is the shared state between the players, and {E(a1, q1)}a1,q1 and

{E(a2, q2)}a2,q2 are the measurement operators for each player respectively (we followed the

notation in Section 6.3.2 in this equation). |a1| = |q1| = m and |a2| = |q2| = ℓ, and ai(j)

(qi(j)) is the j-th entry of the vector ai (qi). Among these entries, the ones that we can express

in terms of the optimisation variable ρ(A1Q1T )(A2Q2T̂ )n1 (SŜ)n2 are those with m = 1 (since we are

not extending the sub-system A1Q1T ) and ℓ ≤ n1. The relation between these entries is that
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for |a2| = |q2| = ℓ

p(a1,a2|q1, q2) (7.37)

=
T 2ℓ

π1(q1)
∏ℓ

j=1 π2(q2(j))
Tr

[(
P ℓ+1
cyclic

)TSŜ

((
ℓ⊗
i=2

1Ti

)
⊗ ρT T̂ ℓSŜ(a1,a2, q1, q2)

)]
∀ℓ : ℓ ≤ k ,

where P n
cyclic is a unitary operator acting on n copies of the subsystem T T̂ , implementing a cyclic

permutation over these copies described by the following action over tuples, (1, 2, 3, . . . , n) →

(2, 3, . . . , n, 1). The above equation is explicitly derived in Appendix C.4. Then, to impose the

k-th level NPA constraint, we can simply add the positive semidefinite condition Γk ⪰ 0 to the

SDP relaxation.

7.5 Comparison with previous work

In the last section, we introduced a procedure to construct the NPA matrix with the opti-

misation variable of sdpn1,n2
(V, π, T ) so that the corresponding NPA constraint can be added

to sdpn1,n2
(V, π, T ). We denote these new SDP relaxations with additional k-th level NPA

constraint by sdpNPAk
n1,n2

(V, π, T ); namely, sdpNPAk
n1,n2

(V, π, T ) is sdpn1,n2
(V, π, T ) in Eq. (7.7) with an

additional NPA constraint of the form Γk ⪰ 0. In this section, we investigate the performance

of these combined SDP relaxations sdpNPAk
n1,n2

(V, π, T ) and compare it with previous work in the

literature.

What we want is that the combined SDP relaxations sdpNPAk
n1,n2

(V, π, T ) can provide tighter

bounds for dimension-constrained settings compared to the ones we can get only from the

dimension-agnostic NPA hierarchy. Firstly, we remark that the following relation holds

sdp1,1(V, π, T ) = ωNS(V, π) ,

where ωNS(V, π) is the optimal winning probability of a two-player game (V, π) with the assistance

of general no-signalling correlations satisfying Eq. (6.16) — the so-called no-signalling value. The

174



CHAPTER 7. CHARACTERISING QUANTUM CORRELATIONS OF FIXED DIMENSION

Table 7.1: The rule matrix Vex with sdpNPA1
2,1 (Vex, πuni, 2) < NPA1(Vex, πuni), where NPA1 denotes

the value given by the first level of the NPA hierarchy. Here, πuni is the uniform probability
distribution, |A| = 3, and |Q| = 2. The table only shows the winning answers for each question
set, and all the other answers lose.

q1 = 0,q2 = 0 q1 = 0,q2 = 1 q1 = 1,q2 = 0 q1 = 1,q2 = 1

Winning
answers

a1 = 0, a2 = 1 a1 = 0, a2 = 2 a1 = 0, a2 = 0 a1 = 1, a2 = 2
a1 = 1, a2 = 2 a1 = 1, a2 = 0 a1 = 0, a2 = 2
a1 = 2, a2 = 1 a1 = 1, a2 = 2
a1 = 2, a2 = 2 a1 = 2, a2 = 1

proof is provided in Appendix C.5. As the NPA hierarchy already has no-signalling conditions

built-in, we need to combine a higher level of sdpn1,n2
(V, π, T ) with NPA constraints to see any

improvements over the plain NPA hierarchy. For the second-level relaxation sdpNPA1
2,1 (V, π, T ),

which is sdp2,1(V, π, T ) combined with the first-level NPA constraint, we give in Table 7.1 a rule

matrix Vex which improves for 2 × 2-dimensional quantum assistance on the plain first NPA

level. That is, we find that

sdpNPA1
2,1 (Vex, πuni, 2) = 0.79888 < 0.80157 = NPA1(Vex, πuni) ,

where NPA1(Vex, πuni) denotes the value given by the first-level of the NPA hierarchy. The

computations were carried out in Python using the SDP solver MOSEK [117], with at least 5

digits accuracy as given from the value obtained from the primal versus the corresponding dual

program.

We give in Appendix C.6.1 an adapted SDP hierarchy sdp
proj

n1,n2
(V, π, T ) which is valid

under the assumption of projective rank-one measurements for the special case |A| = |T | = 2.

These SDPs have smaller program sizes compared to the original sdpn1,n2
(V, π, T ) and are thus

advantageous for the implementation of higher levels. In particular, for |A| = |T | = 2, the

optimal measurements are necessarily projective rank-one, and we find that for |Q| questions on

each side distributed uniformly according to πuni

sdp
proj

n1=n2=|Q|(V, πuni, 2) ≤ 1

|Q|2 · sdpPPT(V, T ) ,

where sdpPPT(V, T ) denotes the PPT type SDP relaxations previously given in [108, Eq. (6)].
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Hence, for such settings, our SDP relaxations can be understood as adding more constraints to

the relaxations given in [108]. In the same spirit, we discuss in Appendix C.6.2 another adapted

SDP hierarchy sdpproj
n1,n2

(V, π, 2) which improves the asymptotic scaling of the hierarchy in [108]

from exponential to polynomial in |Q| for additive ϵ-approximations.

As an example, for the I3322 Bell inequality with the (non-binary) rule matrix V3322 in the

form of [118, 119],4 we can reproduce the dimension witness

ωQ(2)(V3322, πuni) ≤ sdp
proj

|Q|,|Q|(V3322, πuni, 2) ≤ 0.25 .

Overall, we note that adding the projective rank-one measurement assumption is typically very

useful for practical performance. Going beyond that, numerical tests for low-level relaxations

reveal that it seems challenging to compete with the further methods from [109, 110] that were

designed with practical purposes in mind but lack analytical bounds on the convergence speed.

7.6 Summary

In this chapter, we explored the characterisation of quantum correlations with dimension

constraints. More specifically, we gave a converging hierarchy of SDP relaxations for the set of

quantum correlations with fixed dimension and provided analytical bounds on the convergence

speed by means of multipartite quantum de Finetti theorems with linear constraints. In

particular, we showed that one can compute additive ϵ-approximations on the value of a two-

player free game with T × T -dimensional quantum correlations with a program of size that

scales polynomially in the number of questions |Q| and quasi-polynomially in the number of

answers |A|. This improves on previously known approximation algorithms for which worst-case

run-time guarantees are at best exponential in |Q| and |A|.

In the main text, we always considered free games where the given probability distribution

of the questions for Alice and Bob is not correlated, i.e., π(q1, q2) = π1(q1)π(q2). However, we

can also derive lower bounds on the computational complexity for general games using the

4For general Bell inequalities the rule matrix V (a1, a2, q1, q2) is not necessarily binary but can take general
real values.
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same procedure presented in this chapter. The key difference is to absorb π(q1, q2) into the

rule matrix V (a1, a2, q1, q2) instead of EA1Q1T and DA2Q2T̂
when we convert the problem into a

quantum separability problem. We refer to Appendix C.1 for the derivation, where we find that,

in contrast to the case of free games, the scaling becomes exponential in terms of |Q|.

Our approach can be applied to other problems of interest. The most obvious example would

be the multipartite extension of two-player games. In addition, as pointed out in [116], finding

the maximum success probability for transmitting a message under a given noisy channel can

be formalised as a quantum separability problem. The techniques presented in this chapter can

be applied to the multipartite generalisation of this quantum error-correction problem.

Compared to a given level of the NPA hierarchy, the corresponding level of sdpn1,n2
(V, π, T )

has the optimisation variable with larger size and more optimisation constraints. One way to

improve this aspect is to exploit the symmetry embedded in the semidefinite program. Our SDP

relaxations have a few symmetries: (i) ΦT T̂ |SŜ in the objective function is invariant under any

local unitary transformation, and (ii) depending on the game, the rule matrix V (a1, a2, q1, q2)

may be invariant under some group actions. Employing the symmetry-reduction technique like

[120] can potentially reduce the program size and improve the performance of sdpNPA
n1,n2

(V, π, T )

in numerical implementations.
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Chapter 8

Conclusions

In this thesis, we explored what we can achieve with currently available tools for quantum

information science. In Part I, we investigated the capability of Gaussian states and operations,

which are often regarded as easily accessible resources, for two particular quantum tasks: resource

distillations and quantum thermodynamical processes with catalysts. In Part II, we changed

the topic and developed a classical algorithm in the form of semidefinite programming hierarchy

for characterising quantum correlations of fixed dimension. In this section, we give overall

discussions and outlooks for each of these two parts.

In Part I, we presented two novel results within the topic of Gaussian resource theories. In

Chapter 4, we examined whether classical randomness and conditional Gaussian operations

can enable resource distillations in Gaussian platforms, which is known to be impossible only

using Gaussian states and operations. We found that some resource distillations indeed become

possible when using conditional Gaussian operations but in a limited fashion — the amount

of distillable resource is restricted. In Chapter 5, we changed the topic to the Gaussian

resource theory of thermodynamics and characterised the possible state transformations under

the allowed operations (Gaussian thermal operations) when catalysts are allowed. From the

characterisation, we found that catalysts are not much helpful for this particular setting, and

possible thermodynamical processes realisable by Gaussian thermal operations are limited even

with assistance of resourceful catalysts. In both results, we consistently encountered that the

direct-sum structure of multi-mode Gaussian systems leads to the limitations of Gaussian
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platforms: in Chapter 4, the tensorisation property of the Gaussian resource monotone, which

was originated from the direct-sum composition of covariance matrices, restricted our ability to

distill more resources even when starting with multiple input states; in Chapter 5, the direct-sum

structure of Gaussian systems prevented catalysts from having a dramatic impact on the ordering

relations of thermodynamical resources. It would be an interesting research direction to see

which other limitations of Gaussian platforms also stem from the direct-sum structure and

to formalise these general limitations of Gaussian systems in a comprehensive theory. Also,

there is another well-known class of quantum states and operations whose dynamics can be

described by the direct-sum structure: stabilizer states and Clifford operations. It would be

an interesting question to answer whether these limitations in Gaussian platforms due to the

direct-sum structure also hold for stabilizer states and Clifford operations.

In Part II, we developed a new hierarchy of semidefinite programming relaxations for two-

player non-local games and derived the analytical asymptotic convergence rate of the developed

hierarchy, which led to an upper bound on the computational complexity of calculating dimension-

bounded quantum values for two-player non-local games. We also showed how one can combine

our hierarchy with the NPA hierarchy to get a better result; this is particularly interesting as

we found a use-case where one can combine the DPS hierarchy and the NPA hierarchy, two

very different SDP hierarchies widely used in quantum information science. Despite having

quasi-polynomial scaling in the size of the game for free non-local games, our new hierarchy

could not prove itself being practical in numerical implementations. Thus, an obvious direction

of future research is to improve the numerical performance of our hierarchy so that it can give

tighter upper bounds for non-local games of interest than the currently best-known bounds

calculated by other methods [108–110]. As we already mentioned in the last section, one possible

way is to exploit symmetries embedded in the problem to reduce the size of the SDPs by

restricting the search to the set invariant under those symmetries. This method has been already

proven to be effective in other settings [121–123]. Also, as it is in general more effective to

use the bipartite DPS hierarchy, it would be interesting to see whether we can formulate the

problem in a way that the optimisation variables are described by bipartite separable states

rather than tripartite ones.
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Appendix A

Additional information for convex

Gaussian resource theories

In this appendix we provide some additional information for discussions in Chapter 2.

A.1 Partial selective homodyne measurement

In this appendix, we prove that the partial selective homodyne measurement introduced

within Definition 4 is an allowed operation for the Gaussian resource theories of squeezing and

entanglement. The operation, defined as

M q
B : HA ⊗HB → HA

ρAB 7−−−−−→ TrB [(1A ⊗ |q⟩⟨q|B) ρAB] ,

consists of applying the partial projector on the eigenvector |q⟩ of a quadrature operator q̂ and

tracing out the projected mode. Notice that the subsystems A and B can both be composed

by multiple modes. Even though the quadrature eigenvector |q⟩ is an infinitely squeezed state,

one can show that this does not increase the amount of squeezing (or entanglement) in the

state. Let us first recall how the partial selective homodyne measurement acts on the covariance

matrix of a state.
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Lemma 30. [66, 67] Let σ be the covariance matrix of an state describing a (n + m)-mode

system, which can be written as

σ =

 A B

BT C

 ,

where A,B, and C are real matrices with size 2n× 2n, 2n× 2m, and 2m× 2m respectively. The

covariance matrix σ′ of the state after a selective homodyne measurement on the last m modes

is then given by

σ′ = A−B (PCP )MP BT , (A.1)

where P = 1m⊕0m is a projection operator, and MP denotes the Moore Penrose pseudo-inverse.

Using this lemma, we can show that partial selective homodyne measurement is an allowed

operation for both the Gaussian resource theories of squeezing and entanglement.

Proposition 31. Partial selective homodyne measurements on Gaussian states are an allowed

operation for the Gaussian theory of squeezing. That is, we have for all ρAB ∈ FG
sq that

M q
B(ρAB) ∈ FG

sq.

Proof. Instead of considering the set of free states FG
sq, we focus on the set of free covariance

matrices, characterised by FG
sq = {σ |σ ≥ 1} for the theory of squeezing. Then, for any

(n+m)-mode free covariance matrix σ ∈ FG
sq, we can write

σ =

 A B

BT C

 ≥

12n 0

0 12m

 ≥

12n 0

0 02m

 .

The last inequality imply that the following matrix

W =

A− 12n B

BT C


is positive semidefinite. We can now construct a different matrix by applying the operator
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12n ⊕ P to W by congruence, where P = 1m ⊕ 0m.

V = (12n ⊕ P )W (12n ⊕ P )T =

A− 12n BP

PBT PCP

 .

Clearly, this matrix is positive semidefinite as well. Then, its Schur complement must be positive

semidefinite,

(A− 12n) −BP (PCP )MPPBT ≥ 0 .

Furthermore, one can easily show that P (PCP )MPP satisfies all four conditions to be the Moore

Penrose pseudo-inverse of PCP [104]. Due to the uniqueness of the pseudo-inverse, this implies

that P (PCP )MPP = (PCP )MP . Then, we conclude that

A−B(PCP )MPBT ≥ 12n .

In Lemma 30, we have seen that this is in fact the resulting covariance matrix after a partial

selective homodyne measurement is performed on a Gaussian state with covariance matrix σ.

This closes the proof.

The case of entanglement is also not difficult to deal with since the partial selective homodyne

measurement needs to be a local operation. Any separable Gaussian state has a covariance

matrix σAB = σA ⊕ σB, where σA (σB) is the covariance matrix of the state owned by Alice

(Bob). Then, if we act with M q on part of the subsystem of Bob, we obtain a final covariance

matrix σ′
AB = σ′

A ⊕ σ′
B, where σ′

B has the form given in Eq. (A.1), and similarly for Alice.

Clearly, the output covariance matrix is that of a separable state.

A.2 Monotones for squeezing

In Chapter 4, we use, together with the fidelity to the target state, the variance with respect to

a specific quadrature as a measure for squeezing. In this appendix, we aim to justify its use
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over convex mixtures of Gaussian states. Let us first introduce the measure

Mvar(ρ) = min
q̂

Var [q̂]ρ , (A.2)

where the minimization is performed over all quadrature operators q̂, and the variance is defined

as

Var [q̂]ρ = ⟨q̂2⟩ρ − ⟨q̂⟩2ρ ,

where ⟨Â⟩ρ = Tr
[
Â ρ
]
. It is worth noting that the above measure coincide with the minimum

eigenvalue of the covariance matrix of the state ρ, a squeezing measure for pure Gaussian

states [124]. The above measure is monotone under the allowed operations of the Gaussian

resource theory of pure squeezing, denoted by OG
sq, which are composed by the following

fundamental operations:

1. Appending modes in the vacuum state

2. Performing passive operations (beam splitter, phase shift, and displacements)

3. Trace out a subset of the system’s modes.

When the state space is extended to the set of all Gaussian states including mixed states, the

measure in Eq. (A.2) can be modified as

Mvar(ρ) = min {1,Mvar(ρ)} . (A.3)

Notice that we have to modify the measure since Mvar is not monotonic over states whose

covariance matrix has all eigenvalues higher than 1, for instance thermal states. Indeed, one

could always decrease the measure by replacing these states with the vacuum. To avoid this

problem, the minimization in Eq. (A.3) has been added. Finally, it is worth noting that in the

main text we do not explicitly consider Mvar, but rather we focus on the relevant quadrature

for the problem.
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From the examples in Sec. 4.4 of the main text, it is clear that Mvar is not a monotone under

the allowed operations in Def. 4 (since it can be decreased under allowed operations). However,

we would like to argue that this measure is still a meaningful one over the set of convex mixtures

of Gaussian states. To do so we take a different notion of allowed operations, that are still

relevant for the state space we are considering, but do not allow for conditional operations.1

The operations we consider here are mixtures of allowed operations for squeezing theory. The

most general map in this set can be written as

Γ(ρ) =

∫
dλ p(λ) Φλ(ρ) , (A.4)

where p(λ) is a probability distribution, and Φλ ∈ OG
sq.

Let us first show that the measure Mvar is monotone under OG
sq alone, when the state

space is given by the convex hull of Gaussian states. If a mixture of Gaussian states ρmix is

such that Mvar(ρmix) < 1, then it is easy to see that neither (i) appending ancillary systems

in the vacuum state nor (ii) performing passive operations can modify this value. Indeed,

passive operations are represented by orthogonal matrices acting over the covariance matrix

by congruence (irrespectively of whether the state is Gaussian or not) thus preserving the

eigenvalues of the matrix. Furthermore, (iii) partial tracing the system corresponds to selecting

a principal sub-matrix of the covariance matrix and discarding the rest. It is known [82] that

the smallest eigenvalue of the sub-matrix cannot be lower than the original matrix. Thus, when

Mvar(ρmix) < 1, we have that

Mvar (Φ(ρmix)) ≥Mvar (ρmix) , (A.5)

where Φ ∈ OG
sq. When Mvar(ρmix) ≥ 1, instead, it is easy to see that only operation (i) can

decrease the variance, since the vacuum’s covariance matrix is 1. However, the variance cannot

be reduced further than the unit, so that Mvar is monotonic under the allowed operations OG
sq

over mixtures of Gaussian states.

Monotonicity of this measure under maps of the form given in Eq. (A.4) follows from the

1These are the ones allowing for a reduction of the variance in the examples in Sec. 4.4.
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concavity of the variance. When the output state of the map has a minimum variance that is

smaller than one, we have that

Mvar (Γ(ρmix)) = Var
[
Q
]
Γ(ρmix)

≥
∫

dλ p(λ) Var
[
Q
]
Φλ(ρmix)

≥
∫

dλ p(λ)Mvar (Φλ(ρmix))

≥
∫

dλ p(λ)Mvar (ρmix) = Mvar (ρmix) ,

where Q is the quadrature operator minimising the variance of Γ(ρmix), and the first inequality

follows from the concavity of the variance and by the definition of Γ. The second inequality

follows from the fact that Mvar involves a minimisation over all quadrature operators (plus a

cut-off for values higher than the unit), and the last inequality follows from Eq. (A.5). When

the minimum variance of the output state is already higher than unit, the monotonicity relation

is trivially true. Thus, variance is a good measure of squeezing over convex mixtures of Gaussian

states, although it is not monotonic when the allowed operations include conditional maps.
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Appendix B

Additional information for catalytic

Gaussian thermal operations

B.1 Proof of Theorem 12

In this section, we present the proof of Theorem 12, which describes the necessary conditions

for state transformations under approximate strong catalytic GTOs when the catalyst and the

system involve multiple modes.

Firstly, we provide two intermediate results which will be used in the main proof.

Lemma 32. Let z, z′ and z̃ be non-increasingly ordered lists of length l such that

z̃ ≤ z and
l∑

i=1

|z̃i − z′i| ≤ δ.

Then
l∑

i=1

[z′i − zi]
+ ≤ δ.

Again, [x]+ := max{x, 0} denotes the positive part of a real number.
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Proof.

l∑
i=1

[z′i − zi]
+

=
∑

i : z′i>zi

z′i − zi

≤
∑

i : z′i>zi

z′i − z̃i

≤
∑

i : z′i>zi

|z′i − z̃i|

≤
l∑

i=1

|z′i − z̃i|

≤ δ.

Theorem 33. Let x = (x1, . . . , xn), x′ = (x′1, . . . , x
′
n) and y = (y1, . . . , ym) be non-increasing

lists of real numbers, and define the composite ordered lists z = (x,y)↓, z′ = (x′,y)↓. Suppose

that there exists z̃ such that

z̃ ≤ z and
n+m∑
i=1

|z̃i − z′i| ≤ δ.

Then

n∑
i=1

[x′i − xi]
+ ≤ δ.

Proof. The main useful idea is to construct a partition of the indices of z, z′ into contiguous

blocks B1, B2, . . . such that in each block, the xi values either all increase or all decrease when

going from z to z′ – see Fig. B.1 for an illustration. This will let us separate out those values

that break the monotonicity condition and bound how much they do so. Let p(xi) denote the

index position of xi in z, and similarly p′(x′i) for x′i in z′. Note that a unique designation of

indices is possible if we adopt the convention that, if yj = xi, then yj appears before xi in the

list z.

The end result of all this is that the set of indices i of all xi in Bb and x′i in Bb are the
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Figure B.1: Illustration of the block partitioning of non-increasingly ordered lists z = (x,y)↓,
z′ = (x′,y)↓. In this case, B1 is an increasing block, B2 is decreasing, and so on alternately.
Therefore x′1 > x1, x

′
2 > x2, x

′
3 ≤ x3 and x′4 ≤ x4.

same for each block Bb. Within an “increasing” block, x′i > xi and within a ‘decreasing’ block,

x′i ≤ xi ∀i. This claim will be proved separately below by showing how to construct the blocks.

Using this, it is easy to see that the set of yj is also the same in each corresponding block. In

other words, to send z → z′, in each block we apply a permutation of the elements and replace

xi → x′i.

Since the yj values match up in each block Bb, we have

∑
k∈Bb

z′k − zk =
∑

i : p(xi)∈Bb

x′i − xi.

Summing over all increasing blocks and using Lemma 32,

n∑
i=1

[x′i − xi]
+

=
∑

Bb increasing

∑
i : p(xi)∈Bb

x′i − xi

=
∑

Bb increasing

∑
k∈Bb

z′k − zk

≤
n+m∑
k=1

[z′k − zk]
+

≤ δ .

Construction of the block partition:

Starting from the beginning of the list, suppose that x′1 > x1, and find the lowest j such that
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x′j ≤ xj. The list {1, 2, . . . , p(xj−1)} is then called the first block B1 – this is an “increasing”

block, such that x′i > xi ∀p(xi) ∈ B1. If instead x′1 ≤ x1, then we find the lowest j such

that x′j > xj and B1 := {1, 2, . . . , p′(x′j−1)} is a ‘decreasing’ block. Moving along the list and

repeating the process, we can then partition z into blocks B1, B2, . . . which are alternately

increasing and decreasing.

We can say something about the index positions of the xi according to whether they are

increasing or decreasing:

x′i > xi ⇒ p′(x′i) ≤ p(xi), (B.1)

x′i ≤ xi ⇒ p′(x′i) ≥ p(xi). (B.2)

To see this: suppose first that p′(x′i) < p(xi), then there exists yj such that yj ≥ xi and

x′i > yj because x′i has moved earlier in the list and thus displaced yj – therefore x′i > xi. This

proves (B.2) via its contrapositive. The same argument works for the opposite inequality (B.1).

If p′(x′i) = p(xi), then either case is possible.

Now our main claim is that the blocks Bb have the following property:

∀Bb, p(xi) ∈ Bb ⇔ p′(x′i) ∈ Bb.

In other words, the blocks simultaneously partition z and z′ such that all pairs of xi and x′i are

in the same blocks in their respective lists. We prove this claim by construction.

• If B1 is increasing, then for all xi with p(xi) ∈ B1, we must have p′(x′i) ∈ B1 due to (B.1).

Also, whenever p′(x′i) ∈ B1, we must have p(xi) ∈ B1, otherwise p′(x′i) would be strictly

less than p(xi). Then, by (B.2) x′i > xi, and there would have been another increasing

xi not included in the block. (It is also not possible to have some increasing xi in some

later increasing block, for example B3, since then there would be some xj in B2 such that

xj > xi but x′i > x′j – and this is incompatible with the ordering j < i.)

• For the next block B2, which is decreasing, by definition all x′i are included. We already

know from the first step that there cannot be xi in B1 such that x′i is in B2. And by (B.2),
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for any x′1 in B2, p(xi) ≤ p′(x′i), so xi cannot be outside of B2.

• Iterate the procedure over all remaining blocks.

• If instead B1 is decreasing, then the argument proceeds similarly.

Using the above intermediate results, we now prove Theorem 12:

Proof of Theorem 12. First note that the sufficiency of the conditions in Eq. (5.13) is straight-

forward: for each µ′
i ≤ µi, we use the same construction as in Theorem 9, while for any violation

of that inequality, we simply do nothing to the corresponding mode. We can likewise prove the

sufficiency of the conditions in Eq. (5.14) for A matrices.

The proof of necessity for A is an immediate application of Theorem 33, setting x = αS,

x′ = α′
S, y = αC and z̃ = α̃SC .

For M we have more work to do because the eigenvalues must be divided into positive and

negative parts. Unlike the non-catalytic case, it is possible that µ′
S contains more positive

or negative values than µS. If the number n′
+ of positive µ′

S is greater than the number n+

of positive µS, then we set x = (µ+
S , 0, . . . ), padding with zeroes to a total length of n′

+. We

straightforwardly set x′ = µ′+
S and y = µ+

C . We also choose z̃ = (µ̃+
SC , 0, . . . ), similarly padded

to the same length as z — and need to check that this satisfies the assumptions of Theorem 33.

Since MS ⊕MC
GTO−−−→ M̃SC , Theorem 9 ensures that the number of positive elements l̃+ of µ̃SC

is no more than the length l+ of z. Thus, we have z̃ ≤ z. Moreover,

l+∑
i=1

|z̃i − z′i| =
∑
i≤l̃+

|z̃i − z′i| +
∑
i>l̃+

|z̃i − z′i|

=
∑
i≤l̃+

∣∣∣µ̃+
SC,i − µ′+

SC,i

∣∣∣+
∑
i>l̃+

µ′+
SC,i − 0

≤
∑
i≤l̃+

∣∣∣µ̃+
SC,i − µ′+

SC,i

∣∣∣+
∑
i>l̃+

µ′+
SC,i − µ̃SC,i

=

l+∑
i=1

∣∣µ′
SC,i − µ̃SC,i

∣∣ =: δ+,
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where the third line uses µ̃SC,i ≤ 0 for i > l̃+. So Theorem 33 can now be applied with the

distance bound δ+. The same calculation can be done in exactly the same way for the negative

values; summing the two results gives the claimed result since δ+ + δ− ≤ δ

B.2 Proof of Theorem 13

In this appendix, we provide the proof of Theorem 13, the state transformation conditions

for matrix M under weak catalytic GTOs in the general multi-mode case. We first prove the

following useful mathematical property of majorisation with an additive catalyst.

Lemma 34. For any y, (x′,y) ≺w (x,y) ⇔ x′ ≺w x and (x′,y) ≺ (x,y) ⇔ x′ ≺ x.

Proof. We use the following equivalent characterisation of majorisation [85, 4.B.3]: x ≺w y if

and only if

ga(x) ≤ ga(y) ∀ a ∈ R, where ga(x) :=
∑
i

[xi − a]+ .

For x ≺ y we just have to add in the condition
∑

i xi =
∑

i yi. Using additivity of ga,

(x′,y) ≺w (x,y) ⇔ ga(x
′) + ga(y) ≤ ga(x) + ga(y) ∀a

⇔ ga(x
′) ≤ ga(x) ∀a

⇔ x′ ≺w x.

For x ≺ x′, the sum condition is also clearly equivalent.

We now provide the main proof of Theorem 13

Proof of Theorem 13. For part (1): The initial M matrix is of the form M = MS ⊕MC , with

eigenvalues (µS,µC). The final matrix is of the block form

M ′ = UMU † =

M ′
S ∗

∗ MC

 .

191



APPENDIX B. ADDITIONAL INFORMATION FOR CATALYTIC GAUSSIAN THERMAL
OPERATIONS

Using local unitary rotations, we can diagonalise the principal blocks to obtain (µ′
S,µ

′
C) on the

diagonals of M ′ (although the off-diagonal blocks need not vanish). The Schur-Horn theorem [82,

Theorems 4.3.45, 4.3.48] says that the eigenvalues of a matrix majorise its diagonals in any basis

(and conversely that a basis can always be found giving any set of diagonals allowed by this

condition). Hence (µ′
S,µC) ≺ (µS,µC) and Lemma 34 gives the claimed condition as necessary.

For the converse, we use the fact [85, 2.B.1] that if x ≺ y, then x can be obtained from

y by a finite number (in fact, at most n− 1) T-transforms, namely partial swaps of pairs of

modes — represented by matrices of the form

T = t1 + (1 − t)Q,

where t ∈ [0, 1] and Q swaps two modes. In order to show that any T-transform can be

performed, we focus on an arbitrary pair of modes, labelling the eigenvalues without loss of

generality as µ1 ≥ µ2. This is equivalent to proving that any µ′
1 ≥ µ′

2 satisfying µ′
1 ≤ µ1 and

µ′
1 + µ′

2 = µ1 + µ2 can be achieved with a single catalyst mode. This requires a unitary U such

that

U


µ1 0 0

0 µ2 0

0 0 µC

U † =


µ′
1 0 ∗

0 µ′
2 ∗

∗ ∗ µC

 .

Choose any µC ∈ [µ′
2, µ

′
1], which by assumption is also contained in [µ2, µ1]. The necessary and

sufficient conditions for the existence of the eigenvalues µ′
1, µ

′
2 of the two-dimensional upper-left

block are [82, Theorem 4.3.21], bearing in mind the ordering µ1 ≥ µC ≥ µ2,

µ1 ≥ µ′
1 ≥ µC ≥ µ′

2 ≥ µ2.

Evidently these are always satisfied under the assumed conditions.

Part (2) uses part (1) after extending the system to include the bath modes. This immediately

gives the necessary condition

µ′
SB ≺ µSB = (µS,0B). (B.3)
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Since µ′
S are eigenvalues of a principal submatrix of M ′

SB, for any k ≤ n′
+ we have [82, Corollary

4.3.34]
∑k

i=1 µ
′
S,i ≤

∑k
i=1 µ

′
SB,i. Therefore

k∑
i=1

µ′+
S,i =

k∑
i=1

µ′
S,i

≤
k∑
i=1

µ′
SB,i

≤
k∑
i=1

µSB,i

≤
k∑
i=1

[µSB,i]
+

=
k∑
i=1

µ+
S,i,

where the second inequality follows from (B.3). Hence µ+′
S ≺w µ+

S. The corresponding

necessary condition for the negative values follows by symmetry.

For sufficiency, we use the following result [85, 2.C.6.a] analogous to that used in part (1)

but for weak majorisation: for x,y composed of non-negative elements, x ≺w y if and only

if x can be derived from y by a finite number (≤ n− 1) of T-transforms, followed by a finite

number (≤ n) of L-transforms. The T-transforms were dealt with above; an L-transform can

be performed simply by mixing a single mode at a beam splitter with a thermal mode as in

Theorem 9. The same construction works for the negative values independently.

B.3 Proof of Theorem 14

In this appendix, we prove the necessary condition of matrix A for state transformations under

weak catalytic GTOs for the general multi-mode case.

Proof of Theorem 14. We prove the necessary condition including a bath as this is the more

general case. As in Theorem 13, we have A′ = UAUT for some unitary U and the singular

values of A are (αS,0B,αC). The parameters (α′
SB,αC) are just diagonals of A′. A set of

necessary conditions relating the diagonals di of a complex symmetric matrix to its singular
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values si are [125]
k∑
i=1

|di| ≤
k∑
i=1

si ∀k.

This implies (α′
SB,αC) ≺w (αS,0B,αC) and by Lemma 34,

α′
SB ≺w (αS,0B).

Therefore

k∑
i=1

α′
S,i ≤

k∑
i=1

α′
SB,i

≤
k∑
i=1

αSB,i

=
k∑
i=1

αS,i.

Sufficiency is proved without using a bath, using the same statement about weak majorisation

used in Theorem 13. It is easy to see that T-transforms can be performed for each mode by just

considering real matrix elements, so that U is orthogonal and A′ = UAUT is real and symmetric.

The same statement [82, Theorem 4.3.21] also guarantees that the required sets of eigenvalues

can be achieved with purely real matrix elements. Then, L-transforms can be performed as

before using a thermal bath mode. Alternatively, a catalyst mode can be used instead with

the same unitary as in Eq. (5.11) for the single-mode case. So with no bath, we need 2n− 1

catalyst modes, otherwise we need n catalyst modes plus n− 1 bath modes.
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Additional information for

characterising quantum correlations

C.1 General games

In this appendix, we consider general games when the questions for Alice and Bob are correlated,

i.e., π(q1, q2) ̸= π1(q1)π2(q2). Recall that the value for a two-player game with quantum assistance

of dimension T × T can be written as

ωQ(T ) = max
E,D,ρ

∑
q1,q2

π(q1, q2)
∑
a1,a2

V (a1, a2, q1, q2) Tr [ρT T̂ (ET (a1|q1) ⊗DT̂ (a2|q2))] .

Let us divide this with T 2Q1Q2, where Q1 ≡ |Q1| and Q2 ≡ |Q2|, and then multiply by it again:

ωQ(T ) = Q1Q2T
2 max
E,D,ρ

∑
q1,q2

π(q1, q2)
∑
a1,a2

V (a1, a2, q1, q2) Tr

[
ρT T̂

(
ET (a1|q1)
TQ1

⊗ DT̂ (a2|q2)
TQ2

)]
.
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Writing classical systems as diagonal quantum systems, we obtain

ωQ(T )(V, π) = Q1Q2T
2 max
E,D,ρ

Tr
[(
V π
A1A2Q1Q2

⊗ ρT T̂
) (
EA1Q1T ⊗DA2Q2T̂

)]
s.t. ρT T̂ ≥ 0 , Tr[ρT T̂ ] = 1

EA1Q1T =
∑
a1,q1

|a1q1⟩⟨a1q1|A1Q1
⊗ ET (a1|q1)

TQ1

≥ 0

EQ1T =
∑
q1

|q1⟩⟨q1|Q1
⊗ 1T

TQ1

=
1Q1T

TQ1

DA2Q2T̂
=
∑
a2q2

|a2q2⟩⟨a2q2|A2Q2
⊗ DT̂ (a2|q2)

TQ2

≥ 0

DQ2T̂
=
∑
q2

|q2⟩⟨q2|Q2
⊗ 1T̂
TQ2

=
1Q2T̂

TQ2

,

(C.1)

where V π
A1A2Q1Q2

=
∑

a1,q1,a2,q2
π(q1, q2)V (a1, a2, q1, q2) |a1, a2, q1, q2⟩⟨a1, a2, q1, q2|. If we use the

same modified swap trick from Lemma 21, we can again rewrite this as an instance of quantum

separability problems with linear constraints: the optimisation with objective function

ωQ(T )(V, π) = Q1Q2T
2 max
E,D,ρ

Tr
[(
V π
A1A2Q1Q2

⊗ ΦT T̂ |SŜ

)(
EA1Q1T ⊗DA2Q2T̂

⊗ ρSŜ

)]
,

with the same constraints in Eq. (C.1). Then, using extendible states, we can write a hierarchy

of SDP relaxations for general two-player games as

sdpGn1,n2
(V, π, T ) := Q1Q2T

2 max
ρ

Tr
[(
V π
A1A2Q1Q2

⊗ ΦT T̂ |SŜ

)
ρ(A1Q1T )(A2Q2T̂ )(SŜ)

]
s.t. ρ(A1Q1T )n1 (A2Q2T̂ )n2 (SŜ) ≥ 0, tr

[
ρ(A1Q1T )n1 (A2Q2T̂ )n2 (SŜ)

]
= 1

Uπ
(A1Q1T )n1

(
ρ(A1Q1T )n1 (A2Q2T̂ )n2 (SŜ)

)
= ρ(A1Q1T )n1 (A2Q2T̂ )n2 (SŜ) ∀π ∈ S((A1Q1T )n1)

Uπ
(A2Q2T̂ )n2

(
ρ(A1Q1T )n1 (A2Q2T̂ )n2 (SŜ)

)
= ρ(A1Q1T )n1 (A2Q2T̂ )n2 (SŜ) ∀π ∈ S((A2Q2T̂ )n2)

trA1 [ρ(A1Q1T )n1 (A2Q2T̂ )n2 (SŜ)] =

(
1Q1T

TQ1

)
⊗ ρ(A1Q1T )n1−1(A2Q2T̂ )n2 (SŜ)

trA2 [ρ(A1Q1T )n1 (A2Q2T̂ )n2 (SŜ)] =

(
1Q2T̂

TQ2

)
⊗ ρ(A1Q1T )n1 (A2Q2T̂ )n2−1(SŜ)

ρ
TA1Q1T

(A1Q1T )(A2Q2T̂ )n1 (SŜ)n2
≥ 0, ρ

T(A2Q2T̂ )n1

(A1Q1T )(A2Q2T̂ )n1 (SŜ)n2
≥ 0, ...
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It is again easy to bound the computational complexity of these SDP relaxations using the

multipartite quantum de Finetti theorem derived in Section 7.3.2. We find that

| sdpGn1,n2
(V, π, T ) − ωQ(T )(V, π)|

≤ Q1Q2T
2

∣∣∣∣∣Tr

[(
V π
A1A2Q1Q2

⊗ ΦT T̂ |SŜ

)(
ρ̃A1Q1TA2Q2T̂ SŜ

−
∑
i

piσ
i
A1Q1T

⊗ ωi
A2Q2T̂

⊗ τ i
SŜ

)]∣∣∣∣∣
≤ Q1Q2T

2

183/2T 4
(√

4 ln 2
)√(logA1 + 16 log T )

n2

+
logA1

n1

 ,

where we assume that ρ̃A1Q1T (A2Q2T̂ )n1 (SŜ)n2 is the optimal solution of sdpGn1,n2
(V, π, T ), and∑

i piσ
i
A1Q1T

⊗ωi
A2Q2T̂

⊗τ i
SŜ

is one of the close separable states to the reduced state ρ̃A1Q1TA2Q2T̂ SŜ

specified by Lemma 27. The intermediate step is the same as in the proof of Theorem 28. The

additional Q1Q2 factor leads to a worse convergence rate; setting n := n1 = n2, the size of the

SDP for achieving a desired accuracy ϵ becomes

exp

(
O
(
T 12Q4

(
log2AT + logAT logQ

)
ϵ2

))
,

where Q1 = Q2 ≡ Q and |A1| = |A2| ≡ A. In contrast to the case for free games, Eq. (7.33),

this is exponential in terms of Q.

C.2 Distortion relative to quantum side information

In this appendix, we prove the second part of Lemma 26 which states that for a traceless

Hermitian operator γAB on HAB, there exists a measurement MB on HB with at most |B|6

outcomes such that ∥(IA ⊗MB) (γAB)∥1 ≥ 1
2|B|∥γAB∥1. The proof is inspired by [126, Theorem

16].

Proof of Lemma 26. Let us start with the maximally entangled state

ΦA′|B′ = |Φ⟩⟨Φ|A′|B′ where |Φ⟩A′|B′ =
1

|A′||B′|
∑
i

|i⟩A′ |i⟩B′ , and |A′| = |B′|.

We can create a separable state ωA′B′ by mixing ΦA′|B′ with another separable state σA′B′ =
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1A′B′−ΦA′|B′

|B′|2−1
as

ωA′B′ =
1

|B′|ΦA′B′ +
|B′| − 1

|B′| σA′B′ ∈ SEP(A’: B’),

where SEP(A’: B’) denotes the set of separable states with respect to the bipartition A′|B′.

Hence, we can write ωA′B′ =
∑

i piω
i
A′ ⊗ ωiB′ for some probability distribution {pi}i and states

{ωiA′}i and {ωiB′}i with at most |A′B′|2 elements [127]. Next, we define a measurement MB with

operators {M̃B(i, k)}i,k, as well as a set of measurements {Mi,k
A }i,k with operators {M̃ i,k

A (j)}j as

M̃B(i, k) = TrB′

[
piU

†
B(k)

√
ωiB′ΦBB′

√
ωiB′UB(k)

]
and (C.2)

M̃ i,k
A (j) = TrA′

[√
ωiA′U

†
A′(k)NAA′(j)UA′(k)

√
ωiA′

]
, (C.3)

where U(k) denote generalised Pauli operators, ωiA′ and ωiB′ are the elements of the decomposition

of ωA′B′ , and {NAA′(j)}j are measurement operators defined later. We can check that both

definitions indeed correspond to valid measurements:

∑
i,k

M̃B(i, k) = 1B,
∑
j

M̃ i,k
A (j) = 1A, and M̃B(i, k), M̃ i,k

A (j) ≥ 0 ∀i, k, j.

The goal is to show that MB defined in (C.2) gives rise to (7.28). Before showing that, however,

it is helpful to understand where these measurements came from. They are related to the

quantum teleportation protocol from [128]. Without loss of generality, let us assume that

|A| ≥ |B| = |A′| = |B′|. Then, the quantum teleportation protocol from B to A is a quantum

channel defined as [128]

τABA′B′→AA′(·) =

|B|2∑
k=1

UA′(k) TrBB′

[
(·)
(
1AA′ ⊗ UB(k)ΦBB′U †

B(k)
)]
U †
A′(k).

For a traceless Hermitian operator γAB, we then consider

∥τABA′B′→AA′ (γAB ⊗ ωA′B′)∥1 =
∑
j

|Tr [NAA′(j) (τABA′B′→AA′ (γAB ⊗ ωA′B′))]| ,
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where we used the expression ∥XA∥1 = max{MA(i)}i
∑

i |tr [MA(i)XA]| for the trace norm with

corresponding arg max {NAA′(j)}j to be used in (C.3). We have

∥τABA′B′→AA′ (γAB ⊗ ωA′B′)∥1

=
∑
j

∣∣∣∣∣∑
k

Tr
[
NAA′(j)

(
UA′(k) trBB′

[
(γAB ⊗ ωA′B′)

(
1AA′ ⊗ UB(k)ΦBB′U †

B(k)
)]
U †
A′(k)

)]∣∣∣∣∣
=
∑
j

∣∣∣∣∣∑
k

Tr
[(
U †
A′(k)NAA′(j)UA′(k) ⊗ 1BB′

)(
(γAB ⊗ ωA′B′)

(
1AA′ ⊗ UB(k)ΦBB′U †

B(k)
))]∣∣∣∣∣

=
∑
j

∣∣∣∣∣∑
k

Tr

[(
U †
A′(k)NAA′(j)UA′(k) ⊗ U †

B(k)ΦBB′UB(k)
)(

γAB ⊗
(∑

i

piω
i
A′ ⊗ ωiB′

))]∣∣∣∣∣
=
∑
j

∣∣∣∣∣∑
i,k

Tr

[((√
ωiA′U

†
A′(k)NAA′(j)UA′(k)

√
ωiA′

)

⊗
(
piU

†
B(k)

√
ωiB′ΦBB′

√
ωiB′UB(k)

))
(γAB ⊗ 1A′B′)

]∣∣∣∣∣

=
∑
j

∣∣∣∣∣∑
i,k

Tr
[
γAB

(
M̃ i,k

A (j) ⊗ M̃B(i, k)
)]∣∣∣∣∣ . (C.4)
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The measurement MB defined in (C.2) now gives rise to

∥(IA ⊗MB) (γAB)∥1

=
∑
i,k

∥∥∥TrB

[(
1A ⊗ M̃B(i, k)

)
γAB

]∥∥∥
1

=
∑
i,k

max
{M i,k

A (j)}j

∑
j

∣∣∣Tr
[(
M i,k

A (j) ⊗ M̃B(i, k)
)
γAB

]∣∣∣
≥
∑
i,k

∑
j

∣∣∣Tr
[(
M̃ i,k

A (j) ⊗ M̃B(i, k)
)
γAB

]∣∣∣
≥
∑
j

∣∣∣∣∣∑
i,k

Tr
[(
M̃ i,k

A (j) ⊗ M̃B(i, k)
)
γAB

]∣∣∣∣∣ (C.5)

= ∥τABA′B′→AA′ (γAB ⊗ ωA′B′)∥1 (by (C.4))

=

∥∥∥∥τABA′B′→AA′

(
γAB ⊗

(
1

|B|ΦA′B′ +
|B| − 1

|B| σA′B′

))∥∥∥∥
1

=

∥∥∥∥ 1

|B|τABA′B′→AA′ (γAB ⊗ ΦA′B′) +
|B| − 1

|B| τABA′B′→AA′ (γAB ⊗ σA′B′)

∥∥∥∥
1

≥ 1

|B|∥τABA′B′→AA′ (γAB ⊗ ΦA′B′)∥1 −
∥∥∥∥τABA′B′→AA′

(
γAB ⊗

( |B| − 1

|B| σA′B′

))∥∥∥∥
1

, (C.6)

where in the third line we substituted the measurement operators {M̃ i,k
A (j)}j instead of the

maximisation, and in the last line we used the reverse triangular inequality. Note that the first

term in the last line is equivalent to ∥γAB∥1 since ΦA′B′ is the maximally entangled state. Let

us investigate the second term more closely. We have the chain of elementary implications

|B| − 1

|B| σA′B′ ≤ |B| − 1

|B| σA′B′ +
1

|B|ΦA′B′ = ωA′B′

⇒ γAB ⊗ |B| − 1

|B| σA′B′ ≤ γAB ⊗ ωA′B′

⇒
∥∥∥∥τABA′B′→AA′

(
γAB ⊗

( |B| − 1

|B| σA′B′

))∥∥∥∥
1

≤ ∥τABA′B′→AA′ (γAB ⊗ ωA′B′)∥1

⇒
∥∥∥∥τABA′B′→AA′

(
γAB ⊗

( |B| − 1

|B| σA′B′

))∥∥∥∥
1

≤
∑
j

∣∣∣∣∣∑
i,k

Tr
[
γAB

(
M̃ i,k

A (j) ⊗ M̃B(i, k)
)]∣∣∣∣∣

(by (C.4))

⇒
∥∥∥∥τABA′B′→AA′

(
γAB ⊗

( |B| − 1

|B| σA′B′

))∥∥∥∥
1

≤ ∥(IA ⊗MB) (γAB)∥1 (by (C.5))

200



APPENDIX C. ADDITIONAL INFORMATION FOR CHARACTERISING QUANTUM
CORRELATIONS

and substituting this into (C.6) yields the claim

∥(IA ⊗MB) (γAB)∥1 ≥
1

|B|∥γAB∥1 − ∥(IA ⊗MB) (γAB)∥1.

It remains to quantify the number of measurement outcomes of MB with operators {M̃B(i, k)}i,k
defined in (C.2). The index i came from the number of elements in the separable state ωA′B′ ,

which is at most |A′B′|2 = |B|4, and the index k came from the number of generalised Pauli

operators, which is |B|2. Therefore, the number of outcomes is at most |B|6.

C.3 Tripartite quantum de Finetti theorem with partial

trace constraints

In this appendix, we prove Lemma 27, the special case of tripartite quantum de Finetti theorem

with linear constraints when (i) the linear constraints are partial trace constraints, and (ii) the

given extendible state includes some classical subsystems. This requires to prove an improved

version of Lemma 25 when there exists some specific partial trace constraint. Let us first consider

the bound on the conditional bipartite quantum mutual information for this special case.

Lemma 35. Let ρABCD be a quantum state such that TrA [ρABCD] = ρB ⊗ ρCD. Then, we have

that

I(AB : C|D)ρ ≤ 2 log |A|.

Proof. Using the chain rule for the conditional quantum mutual information in Eq. (7.20), we

have

I(AB : C|D)ρ = I(B : C|D)ρ + I(A : C|BD)ρ = I(A : C|BD)ρ,

where we used the fact that the systems BC are uncorrelated after tracing out the system A.
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Using the chain rule of the mutual information in Eq. (7.19) we get that

I(A : C|BD) = I(A : BCD) − I(A : BD) ≤ I(A : BCD) ≤ 2 log |A|.

Exploiting Lemma 35, we prove the following lemma, which is an improved version of

Lemma 25 for this special case.

Lemma 36. Consider a quantum-classical state ρ(AB)Z
n1
1 W

n2
1

with classical systems Z and W ,

which satisfies the linear constraint

TrA

[
ρ(AB)Z

n1
1 W

n2
1

]
= ρB ⊗ ρZn1

1 W
n2
1
.

Then, there exist integers m̄ ∈ [0, n1) and ℓ̄ ∈ [0, n2) such that

I(AB : Zm̄+1 : Wℓ̄+1|Zm̄
1 W

ℓ̄
1) ≤ 2

(
log |A|
n1

+
(log |A| + log |Z|)

n2

)
,

and

Ezm̄1 wℓ̄
1

[∥∥∥ρ(AB)Zm̄+1Wℓ̄+1|zm̄1 wℓ̄
1
− ρAB|zm̄1 wℓ̄

1
⊗ ρZm̄+1|zm̄1 wℓ̄

1
⊗ ρWℓ̄+1|zm̄1 wℓ̄

1

∥∥∥2
1

]
≤ 4 ln 2

(
log |A|
n1

+
log |A| + log |Z|

n2

)
.

Proof. As the first step, notice that for all m and ℓ, using the relation between multipartite

mutual information and bipartite ones in Eq. (7.18), we can express the multipartite conditional

mutual information as,

I(AB : Zm+1 : Wℓ+1|Zm
1 W

ℓ
1) = I(AB : Zm+1|Zm

1 W
ℓ
1) + I(ABZm+1 : Wℓ+1|Zm

1 W
ℓ
1). (C.7)

We now derive a bound for the RHS of the above equation, valid for a specific choice of m and
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ℓ. For any ℓ ∈ [0, n2), we have that

n1−1∑
m=0

I(AB : Zm+1|Zm
1 W

ℓ
1) = I(AB : Zn1

1 |W ℓ
1) ≤ 2 log |A|,

where we used the chain rule in Eq. (7.20) for the first equality and Lemma 35 for the second

inequality. By summing over ℓ, we obtain

n1−1∑
m=0

n2−1∑
ℓ=0

I(AB : Zm+1|Zm
1 W

ℓ
1) ≤ 2n2 log |A|. (C.8)

Similarly, for any m ∈ [0, n1), we find that

n2−1∑
ℓ=0

I(ABZm+1 : Wℓ+1|Zm
1 W

ℓ
1) = I(ABZm+1 : W n2

1 |Zm
1 ) ≤ 2 log |AZm+1|,

where the inequality follows from Lemma 35 when the first partition of the system is AZm+1.

Summing over m gives us

n1−1∑
m=0

n2−1∑
ℓ=0

I(ABZm+1 : Wℓ+1|Zm
1 W

ℓ
1) ≤ 2n1 (log |A| + log |Z|) . (C.9)

Combining Eq. (C.8) and Eq. (C.9), we obtain

2n2 log |A| + 2n1 (log |A| + log |Z|)

≥
n1−1∑
m=0

n2−1∑
ℓ=0

[
I(AB : Zm+1|Zm

1 W
ℓ
1) + I(ABZm+1 : Wℓ+1|Zm

1 W
ℓ
1)
]

≥ n1n2

[
I(AB : Zm̄+1|Zm̄

1 W
ℓ̄
1) + I(ABZm̄+1 : Wℓ̄+1|Zm̄

1 W
ℓ̄
1)
]

= n1n2 I(AB : Zm̄+1 : Wℓ̄+1|Zm̄
1 W

ℓ̄
1)

where m̄ and ℓ̄ are the indices of the smallest element in the sum, and the last equality follows

from Eq. (C.7). This proves the first part of the theorem. The second part is obtained as follows.

First notice that, when the conditioning system is classical, we can write the conditional mutual
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information as

I(AB : Zm̄+1 : Wℓ̄+1|Zm̄
1 W

ℓ̄
1) = Ezm̄1 wℓ̄

1

[
I(AB : Zm̄+1 : Wℓ̄+1)ρ

ABZm̄+1Wℓ̄+1|z
m̄
1 wℓ̄

1

]
.

Then, by using the fact that the mutual information can be expressed in terms of the relative

entropy, as in Eq. (7.17), and by using Pinsker’s inequality in Eq. (7.27), we can derive the

second part of the theorem.

Note that now we are missing the dimension factor of system B, which is uncorrelated from the

classical systems Zn1
1 W n2

1 after tracing out system A, in the two upper bounds in Lemma 35.

This leads to an improved bound in the special quantum de Finetti theorem in Lemma 27:

Proof of Lemma 27. Let MB→Y (MC→W ) be a quantum-to-classical channel, i.e. a measure-

ment, from the quantum system B (C) to the classical system Y (W ). By measuring both B

and C, we obtain the following quantum-classical state,

ρ(AXX̃)Y n1 (WZZ̃)n2 = (IAXX̃(ZZ̃)n2 ⊗M⊗n1
B→Y ⊗M⊗n2

C→W )
(
ρ(AXX̃)Bn1 (CZZ̃)n2

)
,

where M⊗n1
B→Y is composed of n1 independent and identical measurements MB→Y , each one

acting on a different B system, and M⊗n2
C→W is defined similarly as well. It is easy to see that

the post-measurement state still satisfies the linear constraint Eq. (7.31)

TrX

[
ρ(AXX̃)Y n1 (WZZ̃)n2

]
= XAX̃ ⊗ ρY n1 (WZZ̃)n2 ,

and therefore is compatible with the condition of Lemma 36. Then, we can find m ∈ [0, n1) and

ℓ ∈ [0, n2) such that

Eymwℓ

[∥∥∥ρ(AXX̃)Ym+1(WZZ̃)ℓ+1|ymwℓ − ρAXX̃|ymwℓ ⊗ ρYm+1|ymwℓ ⊗ ρ(WZZ̃)ℓ+1|ymwℓ

∥∥∥2
1

]
(C.10)

≤ 4 ln 2

(
log |X|
n1

+
log |X| + log |Y |

n2

)
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by Lemma 36. For given ym and wℓ, let us define the traceless Hermitian operator

γ(AXX̃)B(CZZ̃) ≡ ρ(AXX̃)Bm+1(CZZ̃)ℓ+1|ymwℓ − ρAXX̃|ymwℓ ⊗ ρBm+1|ymwℓ ⊗ ρ(CZZ̃)ℓ+1|ymwℓ .

This operator is related to the one in the LHS of Eq. (C.10) by a measurement on the B and

CC̃ systems via

(IAXX̃ZZ̃ ⊗MB→Y ⊗MC→W )
(
γ(AXX̃)B(CZZ̃)

)
= ρ(AXX̃)Ym+1(WZZ̃)ℓ+1|ymwℓ − ρAXX̃|ymwℓ ⊗ ρYm+1|ymwℓ ⊗ ρ(WZZ̃)ℓ+1|ymwℓ .

Again, we consider two ways to relate the trace norm of γ(AXX̃)B(CZZ̃) to (IAXX̃ZZ̃ ⊗MB→Y ⊗

MC→W )
(
γ(AXX̃)B(CZZ̃)

)
. Firstly, if we let the measurements MB→Y and MC→W be the

measurement described in the second part of Lemma 26, we get

∥∥∥γ(AXX̃)B(CZZ̃)

∥∥∥
1

≤ 2|C|
∥∥∥(IAXX̃BZZ̃ ⊗MC→W )

(
γ(AXX̃)B(CZZ̃)

)∥∥∥
1

≤ 2|B| × 2|C|
∥∥∥(IAXX̃WZZ̃ ⊗MB→Y )

(
(IAXX̃BZZ̃ ⊗MC→W )

(
γ(AXX̃)B(CZZ̃)

))∥∥∥
1

= 4|BC|
∥∥∥(IAXX̃ZZ̃ ⊗MB→Y ⊗MC→W )

(
γ(AXX̃)B(CZZ̃)

)∥∥∥
1
,

and |Y | ≤ |B|6. Secondly, if we use the first part of Lemma 26 instead, we obtain

∥∥∥γ(AXX̃)B(CZZ̃)

∥∥∥
1
≤
√

183|ABC|
∥∥∥(MAXX̃ZZ̃ ⊗MB→Y ⊗MC→W )

(
γ(AXX̃)B(CZZ̃)

)∥∥∥
1

≤
√

183|ABC|
∥∥∥(IAXX̃ZZ̃ ⊗MB→Y ⊗MC→W )

(
γ(AXX̃)B(CZZ̃)

)∥∥∥
1

with |Y | ≤ |B|8, where the second inequality follows from the monotonicity of the trace norm

under CPTP maps. Note that the classical systems do not contribute to the dimension factor in

the first inequality as we have discussed in Eq. (7.29). Combining Eq. (C.10) with the above
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two results gives

Eymwℓ

[∥∥∥ρ(AXX̃)Bm+1(CZZ̃)ℓ+1|ymwℓ − ρAXX̃|ymwℓ ⊗ ρBm+1|ymwℓ ⊗ ρ(CZZ̃)ℓ+1|ymwℓ

∥∥∥2
1

]
≤ min

{
183/2

√
|ABC|, 4|BC|

}2

(4 ln 2)

(
log |X| + 8 log |B|

n2

+
log |X|
n1

)
(C.11)

Depending on the dimensions, we can choose the tighter one between the two bounds. The

following chain of inequalities combining with Eq. (C.11) concludes the proof of the first part of

the theorem,

∥∥∥ρ(AXX̃)Bm+1(CZZ̃)ℓ+1
− Eymwℓ

[
ρAXX̃|ymwℓ ⊗ ρBm+1|ymwℓ ⊗ ρ(CZZ̃)ℓ+1|ymwℓ

]∥∥∥
1

≤ Eymwℓ

[∥∥∥ρ(AXX̃)Bm+1(CZZ̃)ℓ+1|ymwℓ − ρAXX̃|ymwℓ ⊗ ρBm+1|ymwℓ ⊗ ρ(CZZ̃)ℓ+1|ymwℓ

∥∥∥
1

]
(∵ Triangular Inequality)

≤
√

Eymwℓ

[∥∥∥ρ(AXX̃)Bm+1(CZZ̃)ℓ+1|ymwℓ − ρAXX̃|ymwℓ ⊗ ρBm+1|ymwℓ ⊗ ρ(CZZ̃)ℓ+1|ymwℓ

∥∥∥2
1

]
(∵ Concavity),

where the quantum state Eymwℓ

[
ρAXX̃|ymwℓ ⊗ ρBm+1|ymwℓ ⊗ ρ(CZZ̃)ℓ+1|ymwℓ

]
is separable over the

tripartite cut AXX̃|B|CZZ̃. It is worth noting that, since the state under consideration is

permutation invariant over Bn1 and (CZZ̃)n2 , the result we obtain is independent of the specific

m and ℓ considered. This closes the proof of Eq. (7.32).

To conclude the proof, we need to show that each state in the mixture still satisfies the

corresponding linear constraint. For a state ρAXX̃|ymwℓ describing the AXX̃ system, we have

TrX

[
ρAXX̃|ymwℓ

]
=

TrYm(WZZ̃)ℓ

[
(1AX̃(ZZ̃)ℓ ⊗Mym

Bm→Ym ⊗Mwℓ

Cℓ→W ℓ) TrX

[
ρ(AXX̃)Bm(CZZ̃)ℓ

]]
Tr
[
(1AXX̃(ZZ̃)ℓ ⊗Mym

Bm→Ym ⊗Mwℓ

Cℓ→W ℓ)ρ(AXX̃)Bm(CZZ̃)ℓ

]
=

TrYm(WZZ̃)ℓ

[
(1AX̃(ZZ̃)ℓ ⊗Mym

Bm→Ym ⊗Mwℓ

Cℓ→W ℓ)
(
XAX̃ ⊗ ρBm(CZZ̃)ℓ

)]
Tr
[
(Mym

Bm→Ym ⊗Mwℓ

Cℓ→W ℓ)ρBmCℓ

]
= XAX̃ ,
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where Mym

Bm→Ym is the measurement effect over Bm corresponding to the outcome ym, while

Mwℓ

Cℓ→W ℓ is the effect over Cℓ corresponding to the outcome wℓ. For a state ρ(CZZ̃)ℓ+1|ymwℓ , we

have

TrZ

[
ρ(CZZ̃)ℓ+1|ymwℓ

]
=

TrYm(WZZ̃)ℓ

[
(Mym

Bm→Ym ⊗Mwℓ

Cℓ→W ℓ ⊗ 1(ZZ̃)ℓ(CZ̃)ℓ+1
) TrZ

[
ρBm(CZZ̃)ℓ+1

]]
Tr
[
(Mym

Bm→Ym ⊗Mwℓ

Cℓ→W ℓ ⊗ 1(ZZ̃)ℓ(CZZ̃)ℓ+1
)ρBm(CZZ̃)ℓ+1

]
=

TrYm(WZZ̃)ℓ

[
(Mym

Bm→Ym ⊗Mwℓ

Cℓ→W ℓ ⊗ 1(ZZ̃)ℓ(CZ̃)ℓ+1
)
(
Z(CZ̃)ℓ+1

⊗ ρBm(CZZ̃)ℓ

)]
Tr
[
(Mym

Bm→Ym ⊗Mwℓ

Cℓ→W ℓ)ρBm(CZZ̃)ℓ

]
= Z(CZ̃)ℓ+1

.

C.4 Constructing NPA matrices with the optimisation

variable

In the main text, we explained how to add the NPA constraint to our SDP relaxations, and

we noticed that some of the entries of NPA matrices can be expressed in terms of linear

combinations of the optimisation variable ρ(A1Q1T )(A2Q2T̂ )n1 (SŜ)n2 in sdpn1,n2
(V, π, T ). In this

appendix, we explicitly show how these linear combinations are derived, for an alternative SDP

relaxation obtained by extending the subsystems A1Q1T and A2Q2T̂ instead of A2Q2T̂ and

SŜ. Then, using the obtained result, we derive the relation with the original SDP relaxation

sdpn1,n2
(V, π, T ) in Eq. (7.7), described in Eq. (7.37).

We define the following alternative SDP relaxations for ωQ(T )(V, π, T ) of a two-player free

207



APPENDIX C. ADDITIONAL INFORMATION FOR CHARACTERISING QUANTUM
CORRELATIONS

game (V, π):

sdpn1,n2
(V, π, T ) := T 2 max

ρ

∑
a1,a2,q1,q2

V (a1, a2, q1, q2) Tr
[
ΦT T̂ |SŜ ρT T̂SŜ(a1, a2, q1, q2)

]
s.t. ρTn1 T̂n2SŜ(an1

1 , a
n2
2 , q

n1
1 , q

n2
2 ) ≥ 0,

∑
a
n1
1 ,a

n2
2 ,q

n1
1 ,q

n2
2

Tr [ρTn1 T̂n2SŜ(an1
1 , a

n2
2 , q

n1
1 , q

n2
2 )] = 1

ρTn1 T̂n2SŜ(an1
1 , a

n2
2 , q

n1
1 , q

n2
2 ) perm. inv. on (A1Q1T )n1 w.r.t. to other systems

ρTn1 T̂n2SŜ(an1
1 , a

n2
2 , q

n1
1 , q

n2
2 ) perm. inv. on(A2Q2T̂ )n2 w.r.t. to other systems∑

a1

ρTn1 T̂n2SŜ(an1
1 , a

n2
2 , q

n1
1 , q

n2
2 ) = π1(q1)

1T

T
⊗ ρTn1−1T̂n2SŜ(an1−1

1 , an2
2 , q

n1−1
1 , qn2

2 )

∑
a2

ρTn1 T̂n2SŜ(an1
1 , a

n2
2 , q

n1
1 , q

n2
2 ) = π2(q2)

1T̂
T

⊗ ρTn1 T̂n2−1SŜ(an1
1 , a

n2−1
2 , qn1

1 , q
n2−1
2 )

PPT conditions w.r.t. T1|...|Tn1|T̂1|...|T̂n2 |SŜ ,

(C.12)

where we introduced the new notations ani for the n-dimensional vector ai and qni for the

n-dimensional vector qi. Note that in the above relaxation we extend subsystem A1Q1T rather

than SŜ. This relaxation has slightly worse analytical convergence bounds than sdpn1,n2
(V, π, T )

described in the main text, since we can no more exploit the improved quantum de Finetti theorem

with partial trace constraint in Lemma 27 if we extend the subsystem A1Q1T . Nonetheless, we

consider it here for the following reasons:

1. From the point of view of numerical implementation, the relaxation sdpn1,n2
(V, π, T )

requires a smaller number of optimisation variables than the original sdpn1,n2
(V, π, T ),

particularly when we add the NPA constraints. This is because, as we show in the

remaining of the appendix, we can rewrite more entries of Γk as linear combinations of the

optimisation variable ρTn1 T̂n2SŜ(an1
1 , a

n2
2 , q

n1
1 , q

n2
2 ) when considering sdpn1,n2

(V, π, T ). For

the relaxation sdpn1,n2
(V, π, T ), only a subset of these entries can be expressed as a linear

combination of the optimisation variable, and the remaining entries need to be accounted

as new variables.

2. The relation between the entries of Γk and the optimisation variable of the relax-

ation sdpn1,n2
(V, π, T ) is more straightforward than the one for the original relaxation

sdpn1,n2
(V, π, T ) used in the main text. For this reason, in this appendix, we explicitly
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derive the formal relation and briefly comment on how to re-purpose it for the original

sdpn1,n2
(V, π, T ).

3. The relaxation sdpn1,n2
(V, π, T ) scale better than sdpn1,n2

(V, π, T ) in numerical imple-

mentations. Extending the subsystem A1Q1T only increases the total dimension of the

quantum system in the variable by T , but extending the subsystem SŜ increases it by

T 2. Thus, even though sdpn1,n2
(V, π, T ) has a better analytical convergence speed, it is

practically more advantageous to use sdpn1,n2
(V, π, T ).

Our goal is to provide a set of instructions that allows us to express the elements of the

k-th level NPA matrix Γk as functions of the optimisation variable in the new relaxations

sdpn1,n2
(V, π, T ), where k ≤ min {n1, n2}. Let us first recall that our relaxation aims to

approximate the ωQ(T )(V, π, T ) of a two-player free game (V, π), which we rewrite here for

convenience

ωQ(T )(V, π) = max
E,D, ρ

∑
q1,q2

π(q1, q2)
∑
a1,a2

V (a1, a2, q1, q2) Tr [ρT T̂ (ET (a1|q1) ⊗DT̂ (a2|q2))] .

By direct comparison with the objective function in Eq. (C.12), we see that, for the sdpn1,n2
(V, π, T )

to obtain the optimal value ωQ(T )(V, π), the optimisation variable reduced to the system T T̂SŜ

needs to satisfy

ρT T̂SŜ(a1, q1, a2, q2) =
π(q1, q2)

T 2
ET (a1|q1) ⊗DT̂ (a2|q2) ⊗ ρT

SŜ
∀ a1, q1, a2, q2, (C.13)

where {ET (a1|q1)}a1,q1 and {DT̂ (a2|q2)}a2,q2 are the optimal measurements, and ρSŜ is the optimal

quantum state to be shared. In order to derive the full optimisation variable ρTn1 T̂n2SŜ(an1
1 , a

n2
2 , q

n1
1 , q

n2
2 ),

we need to first make use of the assumption that (V, π) is a free game. Thus, for a fixed value

of a1, q1, a2 and q2 we can rewrite Eq. (C.13) as

ρT T̂SŜ(a1, q1, a2, q2) = ET (a1, q1) ⊗DT̂ (a2, q2) ⊗ ρT
SŜ
,

where ET (a1, q1) ≡ π1(q1)
T

ET (a1|q1) and DT̂ (a2, q2) ≡ π2(q2)
T

DT̂ (a2|q2).
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We can extend this state by taking n1 i.i.d copies of the system in T , and n2 i.i.d copies of

the system in T̂ , obtaining the following assignment for the objective variable which is optimal

and satisfies all the constraints in sdpn1,n2
(V, π, T ),

ρTn1 T̂n2SŜ(an1
1 , a

n2
2 , q

n1
1 , q

n2
2 )

= ET1(a
(1)
1 , q

(1)
1 ) ⊗ . . .⊗ ETn1

(a
(n1)
1 , q

(n1)
1 ) ⊗DT̂1

(a
(1)
2 , q

(1)
2 ) ⊗ . . .⊗DT̂n2

(a
(n2)
2 , q

(n2)
2 ) ⊗ ρT

SŜ
,

where a
(j)
i (q

(j)
i ) is the j-th element in the vector ani

i (qni
i ). We can now make use of the explicit

form of the optimal variable to derive the NPA constraints for the SDP relaxations. The highest

level of the NPA hierarchy we can fully implement is given by the minimum between n1 and n2,

and in the following we assume without loss of generality that n1 ≥ n2. For a given k ≤ n2, the

element of the NPA matrix Γk which we can express as a function of the optimisation variable

are of the form,

p(am1 , a
ℓ
2|qm1 , qℓ2) (C.14)

= Tr
[(
ET (a

(1)
1 |q(1)1 ) . . . ET (a

(m)
1 |q(m)

1 ) ⊗DT̂ (a
(1)
2 |q(1)2 ) . . . DT̂ (a

(ℓ)
2 |q(ℓ)2 )

)
ρT T̂

]
,

where m, ℓ ≤ k. The other elements of the matrix are either zeros, if we make the additional

assumption that {ET (a1|q1)}a1 and {DT̂ (a2|q2)}a2 are projective measurements (PVMs) for each

q1 and q2 respectively, or they need to be considered as new variables of the problem.

To rewrite the elements of the NPA matrix in Eq. (C.14) in terms of ρTn1 T̂n2SŜ(an1
1 , a

n2
2 , q

n1
1 , q

n2
2 )

we first need to introduce the following lemma which generalises Lemma 21 in the main text.

Lemma 37. Consider a set of operators {Mi}ni=1, each of them acting over the Hilbert space H.

Then, it holds that

Tr
[
P n
cyclic (M1 ⊗M2 ⊗ . . .⊗Mn)

]
= Tr [M1M2 . . .Mn] , (C.15)

where P n
cyclic ∈ B(H) is the unitary operator associated with the cyclic permutation π, which acts

over the n-tuple as π (1, 2, 3, . . . , n) = (2, 3, . . . , n, 1).
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Proof. The lemma is proven by explicitly computing the RHS and LHS of Eq. (C.15). For the

RHS we have,

Tr [M1M2 . . .Mn] = Tr

[ ∑
i1,j1,i2,j2,...,in,jn

m
(1)
i1,j1

m
(2)
i2,j2

. . .m
(n)
in,jn

|i1⟩⟨j1|i2⟩⟨j2| . . . |in⟩⟨jn|
]

=
∑

i1,j1,i2,j2,...,in,jn

m
(1)
i1,j1

m
(2)
i2,j2

. . .m
(n)
in,jn

δj1,i2δj2,i3 . . . δjn,i1

=
∑

i1,i2,...,in

m
(1)
i1,i2

m
(2)
i2,i3

. . .m
(n)
in,i1

.

To compute the LHS, we first need the explicit form of the operator P n
cyclic,

P n
cyclic =

∑
k1,k2,k3,k4,...,kn

|k2⟩⟨k1|1 ⊗ |k3⟩⟨k2|2 ⊗ |k4⟩⟨k3|3 ⊗ . . .⊗ |k1⟩⟨kn|n ,

which takes a vector on the subsystem k and maps it to the subsystem k− 1, with the exception

of k = 1 which is mapped into the n-th subsystem. The LHS of Eq. (C.15) is then

Tr
[
P n
cyclic (M1 ⊗M2 ⊗ . . .⊗Mn)

]
=

∑
i1,j1,i2,j2,...,in,jn

m
(1)
i1,j1

m
(2)
i2,j2

. . .m
(n)
in,jn

Tr
[
P n
cyclic |i1⟩⟨j1|1 ⊗ |i2⟩⟨j2|2 ⊗ . . .⊗ |in⟩⟨jn|n

]
=

∑
i1,j1,i2,j2,...,in,jn

m
(1)
i1,j1

m
(2)
i2,j2

. . .m
(n)
in,jn

Tr [|i2⟩⟨j1|1 ⊗ |i3⟩⟨j2|2 ⊗ . . .⊗ |i1⟩⟨jn|n]

=
∑

i1,j1,i2,j2,...,in,jn

m
(1)
i1,j1

m
(2)
i2,j2

. . .m
(n)
in,jn

δi2,j1δi3,j2 . . . δi1,jn =
∑

i1,i2,...,in

m
(1)
i1,i2

m
(2)
i2,i3

. . .m
(n)
in,i1

,

which concludes the proof.

We can now derive the map between the elements of Γk and the optimisation variable

in sdpn1,n2
(V, π, T ). Without loss of generality, let us assume that m ≥ ℓ in Eq. (C.14); by
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reordering the operators we get

p(am1 , a
ℓ
2|qm1 , qℓ2)

= Tr

[((
ℓ∏
i=1

ET (a
(i)
1 |q(i)1 ) ⊗DT̂ (a

(i)
2 |q(i)2 )

)(
m∏

j=ℓ+1

ET (a
(j)
1 |q(j)1 ) ⊗ 1T̂

))
ρT T̂

]

= Tr

[
Pm+1
cyclic

(
ℓ⊗
i=1

ETi(a
(i)
1 |q(i)1 ) ⊗DT̂i

(a
(i)
2 |q(i)2 )

)
⊗
(

m⊗
j=ℓ+1

ETj(a
(j)
1 |q(j)1 ) ⊗ 1T̂j

)
⊗ ρSŜ

]
,

where the second equality follows from Lemma 37 with HT T̂ . The operator in the above equation

is close to the optimisation variable ρTn1 T̂n2SŜ(an1
1 , a

n2
2 , q

n1
1 , q

n2
2 ), whose dimension can be reduced

by summing over the classical variables while tracing out the quantum degrees of freedom

ρTmT̂mSŜ(am1 , a
ℓ
2, q

m
1 , q

ℓ
2)

=
∑

a
(m+1)
1 ,q

(m+1)
1 ,...,a

(n1)
1 ,q

(n1)
1 ,

a
(ℓ+1)
2 ,q

(ℓ+1)
2 ,...,a

(n2)
2 ,q

(n2)
2

TrTm+1...Tn1 T̂m+1...T̂n2
[ρTn1 T̂n2SŜ(an1

1 , a
n2
2 , q

n1
1 , q

n2
2 )]

=

(
ℓ⊗
i=1

ETi(a
(i)
1 , q

(i)
1 ) ⊗DT̂i

(a
(i)
2 , q

(i)
2 )

)
⊗
(

m⊗
j=ℓ+1

ETj(a
(j)
1 , q

(j)
1 ) ⊗

1T̂j

T

)
⊗ ρT

SŜ
,

where we have used the fact that
∑

a1,q1
ET (a1, q1) = 1T

T
and

∑
a2,q2

ET̂ (a2, q2) =
1T̂

T
. By

combining together the two equations above, we find that the elements of Γk can be expressed

in terms of the optimisation variable as

p(am1 , a
ℓ
2|qm1 , qℓ2)

=


T 2m∏m

i=1 π1(q
(i)
1 )

∏ℓ
j=1 π2(q

(j)
2 )

Tr
[(
Pm+1
cyclic

)TSŜ ρTmT̂mSŜ(am1 , a
ℓ
2, q

m
1 , q

ℓ
2)
]
, ∀ ℓ,m : ℓ ≤ m ≤ k

T 2ℓ∏m
i=1 π1(q

(i)
1 )

∏ℓ
j=1 π2(q

(j)
2 )

Tr
[(
P ℓ+1
cyclic

)TSŜ ρT ℓT̂ ℓSŜ(am1 , a
ℓ
2, q

m
1 , q

ℓ
2)
]
, ∀ ℓ,m : m ≤ ℓ ≤ k,

where we have included the case in which ℓ ≥ m, that can be derived analogously.

When the NPA constraints are applied to the original sdpn1,n2
(V, π, T ) in the main text,

the optimization variable is given by ρT (T̂ )n1 (SŜ)n2 (a1, a
n1
2 , q1, q

n1
2 ). The relation between this

variable and the entries of the NPA matrix Γk can be obtained by following the same procedure

presented in this appendix. The main difference is that the optimisation variable is defined
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over a single subsystem T . As a result, when ℓ ≥ 2 we need to pad the variable with the ℓ− 1

copies of the maximally-mixed state, so as to be able to apply the operator P ℓ+1
cyclic. The relation

between entries of Γk and the optimisation variable of the original sdpn1,n2
(V, π, T ) is thus given

by,

p(a1, a
ℓ
2|q1, qℓ2)

=
T 2ℓ

π1(q1)
∏ℓ

j=1 π2(q
(j)
2 )

Tr

[(
P ℓ+1
cyclic

)TSŜ

(
ℓ⊗
i=2

1Ti

)
⊗ ρT T̂ ℓSŜ(a1, a

ℓ
2, q1, q

ℓ
2)

]
∀ ℓ : ℓ ≤ k.

C.5 No-signalling value

Apart from the classical and quantum values defined in Eqs. (7.2) and (7.3) respectively, we can

define another quantity called the no-signalling value. This is the optimal winning probability

achieved by no-signalling correlations such as

ωNS(V, π) := max
p∈NS

∑
q1,q2

π(q1, q2)
∑
a1,a2

V (a1, a2, q1, q2) p(a1, a2|q1, q2),

where NS denotes the set of all no-signalling correlations such that

∑
a1

p(a1, a2|q1, q2) = p(a2|q2) ∀a2, q2 and
∑
a2

p(a1, a2|q1, q2) = p(a1|q1) ∀a1, q1.

As any classical or quantum correlation satisfies the no-signalling condition, the no-signalling

value gives an upper bound to the classical and quantum values

ωC(V, π) ≤ ωQ(T )(V, π) ≤ ωQ(V, π) ≤ ωNS(V, π).

In this section, we show that sdp1,1(V, π, T ) is equal to ωNS(V, π) for any T .

Lemma 38. Let sdp1,1(V, π, T ) be the first-level SDP relaxation for the game with V and

π(q1, q2) = π1(q1)π2(q2). Then, we have for all T that

sdp1,1(V, π, T ) = ωNS(V, π).
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Proof. We first show that sdp1,1(V, π, T ) ≤ ωNS(V, π). From sdp1,1(V, π, T ) we have the linear

constraint

∑
a2

ρT T̂SŜ(a1, a2, q1, q2) = π2(q2)
1T̂
T

⊗ ρTSŜ(a1, q1).

Then, using the expression for p(a1, a2|q1, q2) in Eq. (7.36), we can write the sum of p(a1, a2|q1, q2)

over a2 as

∑
a2

p(a1, a2|q1, q2) =
T 2

π1(q1)π2(q2)
Tr

[
ΦT T̂ |SŜ

(∑
a2

ρT T̂SŜ(a1, a2, q1, q2)

)]

=
T

π1(q1)
Tr
[
ΦT T̂ |SŜ (1T̂ ⊗ ρTSŜ(a1, q1))

]
.

Using a more general formula for p(a1|q1) without assuming the no-signalling, we obtain

p(a1|q1) =
∑
a2,q2

p(q2)p(a1, a2|q1, q2) =
T 2

π1(q1)
Tr

[
ΦT T̂ |SŜ

(∑
a2,q2

ρT T̂SŜ(a1, a2, q1, q2)

)]

=
T 2

π1(q1)
Tr

[
ΦT T̂ |SŜ

(∑
q2

π2(q2)
1T̂
T

⊗ ρTSŜ(a1, q1)

)]

=
T

π1(q1)
Tr
[
ΦT T̂ |SŜ (1T̂ ⊗ ρTSŜ(a1, q1))

]
,

which is same as the expression for
∑

a2
p(a1, a2|q1, q2). Similarly, we can also show the no-

signalling condition for a1 using the linear constraint on A1 in sdp1,1(V, π, T ). Thus, all the

states satisfying the linear constraints of sdp1,1(V, π, T ) are no-signalling and hence form a

smaller set for optimisation than the set of no-signalling correlations.

Next, we show that sdp1,1(V, π, T ) ≥ ωNS(V, π). For any no-signalling correlation p(a1, a2|q1, q2),

we can construct the Ansatz state

ρT T̂SŜ(a1, a2, q1, q2) = π1(q1)π2(q2)p(a1, a2|q1, q2)
1T T̂
T 2

⊗ ρSŜ,

where ρSŜ is an arbitrary state. We can easily check that this state is a valid feasible state of
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sdp1,1(V, π, T ), i.e. it satisfies all conditions in sdp1,1(V, π, T ). The objective function becomes

∑
a1,a2,q1,q2

V (a1, a2, q1, q2)π1(q1)π2(q2)p(a1, a2|q1, q2) Tr
[
ΦT T̂ |SŜ1T T̂ ⊗ ρSŜ

]
=

∑
a1,a2,q1,q2

V (a1, a2, q1, q2)π1(q1)π2(q2)p(a1, a2|q1, q2),

which is a success probability of the game with the strategy p(a1, a2|q1, q2). This implies that

the feasible states of sdp1,1(V, π, T ) can cover all no-signalling cases, and hence sdp1,1(V, π, T ) ≥

ωNS(V, π).

C.6 Rank-one projective measurements

C.6.1 Adapted SDP hierarchies

When implementing the SDP relaxations, it is always advantageous if we take into account

any additional structure available in order to reduce the computational resources for the

implementation. In particular, when considering rank-one projective measurements, we can

connect our results to the previous work [108] covering such cases. To exemplify this, we consider

here the restricted case A1 = A2 = {0, 1} with |T | = 2.

Let us recall the expression of the optimal winning probability ωQ(T )(V, π) after the swap

trick

ωQ(2)(V, π) = max
(E,D,ρ)

∑
a1,a2,q1,q2

V (a1, a2, q1, q2) Tr
[
ΦT T̂ |SŜ (ET (a1, q1) ⊗DT̂ (a2, q2) ⊗ ρSŜ)

]
,

where we redefine ET (a1, q1) ≡ π1(q1)ET (a1|q1) and similarly for DT̂ (a2, q2). Using that

ET (1|q1) = 1T − ET (0|q1) and DT̂ (1|q2) = 1T̂ −DT̂ (0|q2), we have

ωQ(2)(V, π) = max
(E,D,ρ)

∑
a1,a2,q1,q2

V (a1, a2, q1, q2) Tr [ΛT T̂SŜ(a1, a2) (ET (q1) ⊗DT̂ (q2) ⊗ ρSŜ)] ,

215



APPENDIX C. ADDITIONAL INFORMATION FOR CHARACTERISING QUANTUM
CORRELATIONS

where ET (q1) := ET (0, q1) and DT̂ (q2) := DT̂ (0, q2), and we defined the matrices

ΛT T̂SŜ(a1, a2) :=
(
a11TS + (−1)a1ΦT |S

)
⊗
(
a21T̂ Ŝ + (−1)a2ΦT̂ |Ŝ

)
.

When converting the Q1, Q2 systems to diagonal quantum systems, we obtain

ωQ(2)(V, π) = max
(E,D,ρ)

∑
a1,a2

Tr
[
(VQ1Q2(a1, a2) ⊗ ΛT T̂SŜ(a1, a2))

(
EQ1T ⊗DQ2T̂

⊗ ρSŜ

)]
s.t. ρSŜ ≥ 0 , tr [ρSŜ] = 1

EQ1T =
∑
q1

π1(q1) |q1⟩⟨q1|Q1
⊗ ET (0|q1) , TrT [EQ1T ] =

∑
q1

π1(q1) |q1⟩⟨q1|Q1

DQ2T̂
=
∑
q2

π2(q2) |q2⟩⟨q2|Q2
⊗DT̂ (0|q2) , TrT̂

[
DQ2T̂

]
=
∑
q2

π2(q2) |q2⟩⟨q2|Q2
,

where VQ1Q2(a1, a2) :=
∑

q1,q2
V (a1, a2, q1, q2) |q1, q2⟩⟨q1, q2|Q1,Q2

. We used the fact that the trace

of a rank-one projector is one. This then motivates the SDP hierarchy

sdp
proj

n1,n2
(V, π, 2) := max

ρ

∑
a1,a2

Tr
[
(VQ1Q2(a1, a2) ⊗ ΛT T̂SŜ(a1, a2)) ρQ1TQ2T̂ SŜ

]
s.t. ρ(Q1T )n1 (Q2T̂ )n2SŜ ≥ 0 , Tr

[
ρ(Q1T )n1 (Q2T̂ )n2SŜ

]
= 1

ρ(Q1T )n1 (Q2T̂ )n2SŜ perm. inv. on (Q1T )n1 w.r.t. (Q2T̂ )n2SŜ

ρ(Q1T )n1 (Q2T̂ )n2SŜ perm. inv. on (Q2T̂ )n2 w.r.t. (Q1T )n1SŜ

TrT

[
ρ(Q1T )n1 (Q2T̂ )n2SŜ

]
=
∑
q1

π(q1) |q1⟩⟨q1|Q1
⊗ TrQ1T

[
ρ(Q1T )n1 (Q2T̂ )n2SŜ

]
TrT̂

[
ρ(Q1T )n1 (Q2T̂ )n2SŜ

]
=
∑
q2

π(q2) |q2⟩⟨q2|Q2
⊗ TrQ2T̂

[
ρ(Q1T )n1 (Q2T̂ )n2SŜ

]
ρ
T(Q1T )n1

(Q1T )n1 (Q2T̂ )n2SŜ
≥ 0 , ρ

T(Q2T̂ )n2

(Q1T )n1 (Q2T̂ )n2SŜ
≥ 0 , ρ

TSŜ

(Q1T )n1 (Q2T̂ )n2SŜ
≥ 0, . . . .

We note that we do no longer have the T 2 pre-factor and that the size of the optimisation

variable is smaller compared to sdpn1,n2
(V, π, T ) in Eq. (C.12). This allows for more efficient

numerical implementations.
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In fact, again writing out the block-diagonal structure explicitly

ρ(Q1T )n1 (Q2T̂ )n2 (SŜ) =:
∑

q
n1
1 ,q

n2
2

|qn1
1 , q

n2
2 ⟩⟨qn1

1 , q
n2
2 | ⊗ ρTn1 T̂n2SŜ

(
qn1
1 , q

n2
2

)
,

and taking n1 = n2 = |Q|, one can check that the objective function can be expressed in terms

of the single renormalised block

WT |Q|T̂ |Q|SŜ :=
ρT |Q|T̂ |Q|SŜ(1, 2, · · · , |Q|, 1, 2, · · · , |Q|)

π1(1)π1(2) . . . π1(|Q|)π2(1)π2(2) . . . π2(|Q|)
,

where π1(q1)π2(q2) = π(q1, q2). Then, for |Q| questions on each side and, e.g., the uniform

distribution πunif = 1
|Q|2 for the questions, ignoring all other blocks and only enforcing the

positivity, normalisation, and PPT constraints give the outer relaxation such that

sdp
proj

|Q| (V, πunif, 2) ≤ 1

|Q|2 · sdpPPT(V ) (C.16)

with the SDP from [108, Equation (6)]

sdpPPT(V ) := max
W

∑
a1,a2,q1,q2

V (a1, a2, q1, q2) Tr
[
ΛT T̂SŜ(a1, a2)WTq1 T̂q2SŜ

]
s.t. WT |Q|T̂ |Q|SŜ ≥ 0 , Tr [WT |Q|T̂ |Q|SŜ] = 1

W
T
T |Q|

T |Q|T̂ |Q|SŜ
≥ 0, W

T
T̂ |Q|

T |Q|T̂ |Q|SŜ
≥ 0, . . . (PPT constraints),

where the |Q|−2 coefficient arises as we are considering a joint probability distribution p(a1, a2, q1, q2)

rather than a conditional one p(a1, a2|q1, q2).1 Hence, in this scenario for |Q| questions on each

side, the |Q|-th level of our hierarchy is never a worse upper bound than the previously studied

sdpPPT(V ).

1The inequality in Eq. (C.16) holds as sdp
proj

|Q| (V, πunif, 2) imposes more constraints than sdpPPT(V ).
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C.6.2 Asymptotic convergence analysis

Even in this specific setting with |A| = |T | = 2, an advantage of our techniques compared to

the previous sdpPPT(V ) and its extendibility extensions discussed in [108] is that for a slight

variation we can give an approximation scheme scaling polynomially in |Q|. Namely, when

extending as (Q1T )(Q2T̂ )n1(SŜ)n2 instead of (Q1T )n1(Q2T̂ )n2(SŜ), we get for the resulting

SDP hierarchy denoted by sdpproj
n1,n2

(V, π, 2) that

∣∣∣ sdpproj
n1,n2

(V, π, 2) − ωQ(2)(V, π)
∣∣∣ ≤ 128 ·

√
17

n1

+
1

n2

.

The asymptotic convergence analysis is done similarly as for the general sdpn1,n2
(V, π, T ) in the

main text.
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