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Abstract

Whether it is the signaling mechanisms behind immune cells or the change in animal

populations, mechanistic models such as agent based models or systems of differential

equations that define explicit causal mechanisms are used to validate hypothesises

and thereby understand physical systems. To quantitatively and qualitatively validate a

mechanistic model, experimental data is used to fit and estimate parameters within these

models, thereby providing interpretable and explainable quantitative values. Parameter

estimation tasks for mechanistic models can be extremely challenging for a variety of

reasons, especially for single-cell systems. One, measurements of protein abundances

can vary many orders of magnitude and often the number of model parameters exceeds

that of the data. Two, mechanistic simulations can often be computationally expensive

where parameter estimation can range from hours to days, and even more when fine-

tuning an optimization algorithm. Through building a framework BioNetGMMFit, we

show that we can readily account for the large variances within single-cell models using

generalized method of moments, and through leveraging deep learning in surrogate

modeling, we show that we can reduce the computational time complexity in parameter

estimation.
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1 Background and Motivation

Background: Within the physical sciences community, mechanistic modeling is a tool com-

monly used to generate and validate novel hypothesizes regarding on causal mechanisms based on

data and observations of a phenomenon of interest [Bak18]. Within these models contain rules

regarding the interactions between the studied elements of a physical system. These models may

come in the form of agent-based models, systems of differential equations, and other mathematical

formulations. Each model contains a set of parameters with some physical meaning that needed

to be estimated in order to be able to effectively explain the data. Among mechanistic models,

we focus specifically on three types that are commonly used in the computational biology field:

agent-based models, Gillespie simulations, and systems of differential equations.

Figure 1: Mechanistic Model Representations

Advancements in rule-based modeling such as the development of markup languages such

as Systems Biology Markup Language (SBML) ([HFS+03]) and Bionetgen Language (BNGL)

([HHT+16a]) and simulators such as libRoadRunner ([SBG+15]) have made mechanistic modeling

a more accessible task where scientists can now write and simulate any reaction network without

needing to manually write complex systems of differential equations or stochastic Gillespie models.
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Such models contain numerous parameters that all have some physical meaning, whether it’s rate

of cell proliferation or probability of the death of a cell. Fortunately, software packages such as

PyBioNetFit [MSC+19] have made it possible to estimate parameters from rule-based models using

bulk measurements for selected proteins (e.g. average protein abundances observed over time).

However, recent advances in new single-cell technologies have made it possible to capture cell-

to-cell differences ([HCZ+17, MP15]) in protein/mRNA abundances that allow for the evaluation

of higher-order moments such as variances and covariances across thousands of cells.

Parameter estimation, especially with the incorporation of higher moments, in mechanistic

modeling is nontrivial for a variety of reasons ([Ste18, AFNKB09, RKM+09]), one of which is that

the number of model parameters is larger than that of the available data.

Recent developments of experimental techniques for the longitudinal measurements of tran-

scripts and proteins at the single cell level (e.g., single-cell RNA seq([SWGV14]), CyTOF for

proteins([MJS+17b, SN16]) appear to alleviate this problem. For any time t, the cell-to-cell vari-

ability in the copy numbers of proteins and RNA arises from two sources: variation present at

the pre-stimulus state (aka extrinsic noise), and variation that arises from the stochasticity of bio-

chemical reactions (aka intrinsic noise) ([SES02, DJ18]). Especially, in developing models to

describe signaling kinetics when the protein abundances are large, extrinsic noise is known to play

a significant role ([FVD+08]) and single cell protein signaling kinetics can be well approximated

by ODEs and their corresponding stochastic Gillespie simulations.

The single-cell data provide information about the probability distribution of different proteins

due to extrinsic noise across cells. This extra information leads to the availability of more ob-

servables, e.g., the various moments of the protein numbers, than the number of parameters in an

ODE model. However, single-cell abundances of different protein species can vary by orders of
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magnitude ([HCZ+17, MP15]). Thus, mean values and variances of these abundances can differ by

many orders of magnitude. Hence, the challenge here is to reliably estimate the parameters given

that noisy observed values can vary over many orders of magnitude.

To illustrate this challenge, consider the simulated linear 3 protein and nonlinear 6 protein

models (labeled "simulated 1" and "simulated 2") with their following ground truth conditions as

defined in Figure 1, observe that in Figures 2 and 3, optimization methods such as L-BFGS and

particle swarm optimization (PSO) using a square residuals cost function are unable to effectively

fit the observed mean trajectories, and thereby unable to obtain the true parameter estimates. We

use the softwares COPASI and PyPesto to obtain the results below. Regarding PSO, 1,000 particles

and 30 steps were used for the parameter estimation.
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Figure 2: COPASI Parameter Estimates for 3 Protein Linear Model: We use particle swarm optimization
to obtain the shown fits.

Figure 3: PyPesto Parameter Estimates for 6 Protein Nonlinear Model: Please note that PySwarms is
the Python implementation of PSO.
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Seen above, two problems commonly arise in the parameter estimation problem when only

considering mean trajectories. One, parameter estimates may fit the data effectively (3 protein

linear model) but fail to capture the ground truth, and two, parameter estimates are unable to fit the

data as well as produce poor parameter estimates (6 protein nonlinear model).

Furthermore, technologies such as imaging mass cytometry (IMC) have expanded abundance

data into much higher dimensions [DBZ+22]. One can imagine the IMC data space to be an image

with possibly over 40 different color channels, one for each type of protein. IMC data is becoming

increasingly available, especially within the field of cancer research where snapshot images of

tumors are being collected from hundreds of patients [J+20]. Such spatial forms of biomedical

data is not limited to just tissue samples and is commonly seen in the spatial transcriptomics scene

where gene expressions are represented by a similarly high dimensional image. In addition to

new high dimensional datasets, other factors such as nonlinearity commonly leads to increased

computational costs. In Figure 4, an example of computational costs that can be accrued when

running a parameter estimation task is shown.

Figure 4: High Computational Costs from Nonlinear 6 Protein Model

Hyperparameter tuning is a vital task for machine learning tasks, and this is doubly true in

parameter estimation of mechanistic models. Observe from above, that for evaluating the efficacy of

one hyperparameter configuration of PSO takes approximately a minimum of 15 hours. Extrapolate

the above for tuning across multiple hyperparameter configurations, and it is not uncommon for

hyperparameter tuning times to range into weeks.
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Fortunately, recent advances in deep learning techniques can capture features within high di-

mensions and reliably make predictions [HS22]. However, such black-box optimization algorithms

often lack concrete structure needed for scientific explainability purposes [Bak18].

In recent years, there have been numerous innovations that have narrowed the gap between the

mechanistic and machine learning communities. One innovation between the two fields comes in

the form of physics inspired neural networks and its inspired software library DeepXDE that can

both solve for the parameters of systems of differential equations as well as model their respective

behaviors given enough data [LMMK19]. Another use of deep learning, surrogate modeling

where neural networks map input model parameters to stochastic model outputs are commonly

used to reduce computational time in parameter estimation. This method was shown to reduce

the computational complexity of stochastic cellular automaton models for epidemic models while

maintaining a reasonable level of error [PSB21]. Deep surrogate modeling provides a direct path

forward in tackling the problem of computational time of high dimensional dynamical systems, but

their efficacy when the complexity (i.e non-linearity) of the mechanistic model on data where noise

and a high levels of cell-to-cell variation remains to be fully explored, specifically in the biology

field. As a quick aside, while there are many other forms of surrogate modeling that have been

explored across a diverse range of disciplines from aerodynamics [YAV18] to climate sciences

[Boc23], we primarily only focus its application to single-cell trajectory data, and its potential

speedup application towards the biological mechanistic modeling.

We show three important findings in our work: (1) generalized method of moments improves

parameter estimation of nonlinear ODE models where cells heavily vary across orders of magnitude,

(2) hyperparameter tuning is key to getting good parameter estimates, and (3) deep surrogate

modeling can dramatically reduce computational costs and reshape the way we tackle parameter

8



estimation problems of large systems.

2 Methodology

2.1 GMM Optimization

Generalized Method of Moments (GMM), a method used widely in econometrics ([Han82,

Hal04]), has been used previously to estimate parameters in simple models describing transcription

and translation with intrinsic noise but no extrinsic noise fluctuations. We use GMM in conjunction

with Particle Swarm Optimization (PSO), a technique amenable to parallel computation without

the need for costly gradient calculations, ([PKB07]) to minimize the cost function of differences

between the sample and model moments. We show that this partnership has proved effective in

incorporating higher order moments and producing unbiased parameter estimates in ODE models

([WSJD22]).

2.1.1 GMM Method

While there can be many variations of the GMM method, we primarily use the method defined in

[WSJD22] where an inverse weight matrix is directly computed from either the sample covariance

matrix or a diagonal variance matrix. To begin, we must first define the problem statement. In the

case of single-cell analysis, cells are killed anytime measurements are taken, meaning cell-specific

evolution is never fully observed. As such, inferences and predictions are produced from different

cells at different time points. However, assuming valid experimental conditions, cell measurements

can be assumed to be sampled from approximately the same distribution with some level of noise.

Figure 5 describes this problem setup.
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Figure 5: GMM Problem Setup

To apply generalized method of moments, we first define the necessary variables. We have 𝑋0

the measured initial conditions, 𝑋𝑡 the evolved conditions at some time t, and 𝑓\ the mechanistic

model that evolves the initial conditions to the evolved conditions at time t given some set of

parameters \.

𝑓 (𝑋0)\ = 𝑋𝑡 , 𝑌𝑡

Now consider the loss function 𝐿 where 𝑌𝑡 are the observed conditions at time t, and 𝑊 the

GMM inverse weight matrix.

𝐿 = (𝑌𝑡 − 𝑋𝑡)𝑊𝑇 (𝑌𝑡 − 𝑋𝑡)

Defining W can be tricky as depending on the number of dimensions of the initial conditions,

the covariance matrix may not be invertible in high dimensional cases. As such, we define two

separate weight matrices, one in a situation where the sample covariance matrix is not singular and

one where the sample covariance matrix is singular.

In the case of invertibility, let’s zoom in on the first moment differences where 𝑖 represents

the index of a single sample measurement of 𝑋𝑡 or 𝑌𝑡 , 𝑗 and 𝑘 the specific dimensions of the

measurements (i.e a type of protein), and 𝑁 the total number of measurements. Let 𝑓 𝑚 be the
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matrix of first moment differences and 𝑌𝑡 to indicate a sample average. Please note that we are

doing element-wise operations here.

𝑓 𝑚𝑖 [ 𝑗] = 𝑌 𝑖
𝑡 [ 𝑗] − 𝑌𝑡 [ 𝑗]

and now the second moments 𝑠𝑚 matrix,

𝑠𝑚𝑖 [ 𝑗] = (𝑌 𝑖
𝑡 [ 𝑗] − 𝑌𝑡 [ 𝑗])2

and then the cross moments 𝑐𝑚 matrix where we compute pairwise differences,

𝑐𝑚𝑖 [ 𝑗 , 𝑘] = 𝑌 𝑖
𝑡 [𝑘] ∗ 𝑌 𝑖

𝑡 [ 𝑗] − 𝑌𝑡 [𝑘] ∗ 𝑌𝑡 [ 𝑗]

now we take the difference matrices, concatenate them into a single matrix, 𝐴

𝐴 = 𝑓 𝑚 ⌢ 𝑠𝑚 ⌢ 𝑐𝑚

from this differences matrix, we can now derive a sample covariance matrix of all the different

moment differences 𝐶

𝐶 = 𝑐𝑜𝑣(𝐴)

where we define a covariance term 𝐶 [𝑑, 𝑑′] where 𝑑, 𝑑′ are the respective dimensions (i.e type

of moment difference) of 𝐴 such that we have
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𝐶 [𝑑, 𝑑′] = 1

𝑁 − 1

∑︁
𝑖

(𝐴[𝑑]𝑖 − 𝐴[𝑑]𝑖) ∗ (𝐴[𝑑′]𝑖 − 𝐴[𝑑′]𝑖)

for all elements in the covariance matrix. Once computed, the GMM weight matrix is calculated

by taking its inverse.

𝑊 = 𝑖𝑛𝑣(𝐶)

Now, consider the case where the covariance matrix 𝐶 was not invertible. Instead of computing

the off-diagonal elements of the covariance matrix, only the diagonal variance elements of the

covariance matrix are computed such that 𝑑′ = 𝑑, hence we simply have

𝐶 [𝑑, 𝑑] = 1

𝑁 − 1

∑︁
𝑖

(𝐴[𝑑]𝑖 − 𝐴[𝑑]𝑖) ∗ (𝐴[𝑑]𝑖 − 𝐴[𝑑]𝑖)

for all elements in the covariance matrix with the same following weight matrix.

𝑊 = 𝑖𝑛𝑣(𝐶)

Now, plugging the weight matrix back into the loss function, we minimize the following to

obtain \. As a reminder 𝑓 (𝑋0)\ = 𝑋𝑡 , so we have

\ = 𝑚𝑖𝑛\ (𝑌𝑡 − 𝑋𝑡)𝑊𝑇 (𝑌𝑡 − 𝑋𝑡)

In practice, one can use any optimizer, but in our implementation, we use particle swarm

optimization (PSO) due to its improved robustness towards avoiding local minima, benefit of not
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having to compute a conjugate gradient, and its ease of parallelization.

We apply this method to a variety of mechanistic models such as the ones depicted in Figure 1,

but in particular to the CD8 T Cells model and the simulated nonlinear 6 protein model (Simulated

1).

2.1.2 Software Package

In the process, we also developed a software tool BioNetGMMFit which enables parameter

estimation in BioNetGen models using single-cell snapshot data with GMM. To use the tool, users

must supply a BioNetGen model file, time-stamped snapshot protein abundance data files, and run

configuration files. Based on the analysis of time-stamped protein abundances, BioNetGMMFit

estimates parameters of the BioNetGen model, provides confidence intervals, predicts moments

at future times, and reports a goodness of fit statistic (i.e the cost function), which is the distance

between the observed moments in the data and the predicted moments, computed by the model.

We include the ability to tune the built-in PSO hyperparameters for optimal performance and

precision of estimates. Furthermore, being parallelized and written in C++, BioNetGMMFit offers

ease of scalability with increasing data sizes on high-performance computing clusters. As C++

compilation is nontrivial across different operating systems, BioNetGMMFit is readily available

through Docker and a C++ compilable executable through Zenodo. Documentation and tutorials

are on its respective GitHub page (https://github.com/jhnwu3/BioNetGMMFit).

2.2 Parameter Estimation Benchmarking

Differences in datasets come from a variety of areas, structural and unstructural, all of which

affect which hyperparameters are required for which optimization algorithms. Such is the case in
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Mass Cytometry datasets where biophysicists commonly model biological systems using ordinary

differential equation (ODE) reaction networks [RWF19, LAM19, LMSZ+18]. In these networks,

parameter estimation, specifically of rate constants, is performed with a variety of "learning"

or optimization heuristics. One commonly used heuristic is the biologically inspired algorithm,

particle swarm optimization (PSO). In this heuristic, particles search the parameter-cost space for

the optimal set of rate constants that best fit the observed trajectories of time-stamped abundance

data in Mass Cytometry. The PSO’s update mechanism is driven by three weights, (1) the influence

of a particle’s current best estimate, (2) the influence of the global best estimate, and (3) each

particle’s inertia. To show the aforementioned differences in learning architecture performance by

dataset, we provide euclidean distances of ranking vectors of five configurations of PSO weights

for four different mass cytometry datasets.

The four datasets contain both experimental and simulated data. In the case of real data, time-

stamped protein species of CD8 T cells [KSM+14] and CD56 cells [MJS+17a] were measured. For

the two simulated datasets, initial conditions were randomly sampled from multivariate lognormal

distributions. Then, using the ODE reaction networks defined in BioNetGen [HHT+16b], initial

conditions were evolved to set time points. Each dataset’s time points are shown in Table 1.

Dataset Times (minutes)

CD56 NK Cells 16, 32

CD8 T Cells 1, 2

Simulated 1 0, 0.5, 2, 10, 20, 30

Simulated 2 0, 1.5

Table 1: Times Points in Each Dataset
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All reaction networks are shown and defined in Figure 6. Note that the \𝑖’s are the parameters

being estimated and that the labels on the left correspond to their respective datasets. Each of

the five different configurations of PSO weights and their respective labels are shown in Table

5. To provide reasonable computational constraints in the context of run time costs, each PSO

configuration was standardized to 200 particles and 20 epochs. Each PSO configuration is run 30

times against each dataset, giving us a set of estimates for each dataset’s respective ODE models.

A more rigorous explanation of the PSO used to generate the data can be found in [WSJD22].

Figure 6: ODE Reaction Networks used in BioNetGen

Configuration Particle Best Weight Global Best Weight Particle Inertia
A 3.0 1.0 6.0
B 4.0 2.0 5.0
C 5.0 3.0 4.0
D 5.0 2.0 10.0
E 3.0 4.0 3.0

Table 2: PSO Weight Configurations

We ranked each PSO configuration by the average standard deviation of estimates and by cost.

In this case, smaller deviations and costs are ranked higher (i.e the smallest standard deviation PSO

configuration would be ranked one). We define cost to be the square difference of means, variances,
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and covariances between the observed data and the data generated from estimates. We chose these

two metrics because the range of estimates roughly indicates the efficiency of PSO estimation while

the cost indicates a level of dataset fit.

We encode configurations of PSO to a vector. In this case, we map each configuration to an

index in the vector, creating the mapping <A, B, C, D, E> (e.g. Configuration A is mapped to index

0 of the vector). Using this mapping, ranking vectors of PSO configurations were formed for each

dataset. For instance, when estimating using the CD8 T Cells dataset, a ranking of D, E, C, B, and

A in descending order produces the vector <5, 4, 3, 1, 2>). Once encoded, relative distances of

ranking vectors were computed with respect to each dataset.

2.3 Surrogate Modeling

Surrogate models were constructed for three mechanistic models, a linear 3 protein model,

a nonlinear 6 protein model, and a agent-based spatial model. Model diagrams are shown in

Figure 8. While the linear 3 and nonlinear 6 protein models can be described by ODEs, they

are instead simulated through their corresponding Gillespie counterparts using the libRoadRunner

simulator [SBG+15], and thus contain both intrinsic and extrinsic noise variations in the system.

Extrinsic noise was added through the sampling of initial conditions from a lognormal distribution in

simulations. On the other hand, the agent-based spatial model does not have an exact mathematical

formulation, but is simulated using the spatial kinetics simulator SPPARKS [PBC+09]. Once initial

conditions and their corresponding models are defined, a grid scan of different parameter sets and

their corresponding simulated model outputs at a certain time point is performed. Information

related to the grid scan of parameter sets are shown in Figure 7. Such datasets can be found on the
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GitHub page (https://github.com/jhnwu3/ABMNet).

Figure 7: Grid Scan Generation of Data Please note by grid scan, we mean that we consider all combina-
tions of input model parameters with a certain specific step size (i.e if there’s 2 dimensional input parameters
bounded between 0 and 1 with a step size of 0.5, we consider all possible pairings such as (0,0), (0,0.5),
(0,1), (0.5, 0), (0.5, 0.5)... and so forth.)

Figure 8: Mechanistic Models Investigated (A) is an agent-based spatial model simulating CD8+ T cells
and cancer cells. (B) is a stochastic 3 protein linear model and (C) is a stochastic 6 protein nonlinear model.

In our exploration of deep surrogate modeling, we use a feed-forward artificial neural network

to map mechanistic model parameters to moment conditions derived from model outputs. In

specific, we map rate constants (i.e proliferation rates, death rates, etc.) to the means, variances,
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and covariances derived from the mechanistic model outputs. Figure 9 depicts this mapping. The

model was constructed using the PyTorch deep learning framework [PGM+19].

Figure 9: Surrogate Model Design (A) is an agent-based spatial model simulating CD8+ T cells and cancer
cells. (B) is a stochastic 3 protein linear model and (C) is a stochastic 6 protein nonlinear model.

To train the model, we use the three datasets generated for each of the three models described

in Figure 8. Training parameters and times are shown in Figure 10. Training and test sets were

generated by uniformly randomly sampling from their respective datasets. Furthermore, all model

outputs were min-max bounded between 0 and 1 as neural networks perform poorly on unbounded

datasets [ZLZ+20].
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Figure 10: Surrogate Training Model parameters indicates the dimensionality of the training and test input
while model outputs indicates the dimensionality of model outputs.

If anyone is confused about how a surrogate would fit into the original parameter estimation

framework, Figure 11 provides a flowchart representation.

Figure 11: Surrogate Framework
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3 Accounting for Large Variances in Dynamical Systems

3.1 Data Visualized

To better understand the utility of GMM, we have to be able to visualize the datasets over time.

Consider the simulated or "synthetic" 6 protein nonlinear model originally referenced in Figures 3

and 1, while only mean trajectories were used to illustrate poor fits, the actual datasets themselves

contain thousands of single-cell trajectories, giving rise to a plethora of information regarding cell-

to-cell differences. Such is also the case seen from experimental cytometry datasets. We illustrate

the trajectories of a single type of protein from both experimental and synthetic datasets below in

Figures 12 and 13.

Figure 12: Experimental CD8 T Cell Snapshot Data

Figure 13: Synthetic 6 Protein Nonlinear Snapshot Data
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As a first observe, variances and covariances are extremely large across time, whether due to

noise or cell-to-cell differences. Additionally, the mean trajectory may not fully characterize the

dataset completely as shown in Figure 12 where the mean trajectory is not in the middle of each

snapshot as the data is often skewed towards one direction.

3.2 Parameter Estimates and Fits

3.2.1 Synthetic Nonlinear 6 Protein Model

As a reminder from Figure 3, conventional methods only using a square loss function using

the mean trajectories results in poor estimation and data fits in the synthetic 6 protein nonlinear

system. Applying GMM to this system, we can reproduce tight fits on the snapshot data across

the mean trajectories, variance trajectories, and the covariance trajectories. Parameter estimates

were also performed across a variety of different moment conditions in the cost function. In

general, using means, variances, and covariances for parameter estimation yielded greatest results.

Unsurprisingly, using only means yields the worst parameter estimates with the highest error (bias)

as shown in Figure 14.
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Figure 14: Near optimal weights improve estimation, and higher moments can reduce bias. (A) Four
GMM estimators of the nonlinear model are shown. Two estimators consider differences in means (light blue
and dark blue), and two other estimators consider differences in all first, second, and mixed moments (light
red and dark red). Lighter colors indicate the use of equal weights; darker colors indicate the use of unequal
(i.e. near optimal) weights. The simulation truth is shown in the left margin, and for each rate constant, the
average estimate across replicates is in the right margin. (B-D) Shows comparison between the ground truth
(solid lines) and model with GMM estimated parameters (dashed lines) for (B) means, (C) variances, and
(D) covariances for the nonlinear model. Such results were developed using the near optimal weights and
the inclusion of mixed moments. The dashed vertical lines indicate the times of the snapshot data used in
parameter estimation, and the shaded region shows the comparison in the forecast. The scales in the y-axis
show the differences in the magnitudes in means, variances, and covariances in the data.

3.2.2 Experimental CD8+ T Cell Model

While the fits are not perfect as shown in Figure 15, the mechanistic model was not rigorously

designed for this experimental dataset. Its design was only meant as a simple example of what

one might do seeing the 4 trajectories of each of the proteins above in Figure 12. In this case,

we only chose to fit an interval of two time points, time 1 minute to time 2 minute where a large

change in mean protein abundances occur as shown in Figure 12. Furthermore, we can produce

tight confidence intervals around parameter estimates with GMM in Figure 15.
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Figure 15: CD8+ T Cells Parameter Estimates and Fits Panel A in Figure 2 shows the sample means,
variances, and covariances of CD8+ proteins for the observed time points that are calculated by BioNetG-
MMFit (GMM) and used for parameter estimation. Panel B in Figure 2 shows the ruled-based model and its
corresponding BioNetGen representation, which is indicated in Figure 1 Box (B). Panels C and D in Figure
2, shows the parameter estimates and predicted moments.
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As a final remark, while we cannot guarantee that using more moments is always better as each

problem often has its own requirements, GMM, due to its generalized algorithm, allows its user to

pick any combination of moments to fit. For instance, one can choose to fit using only the means

and variances, excluding the covariances or mixed moments as shown in Figure 16.

Figure 16: Fitting Only To The Means and Variances

3.3 Limitations

3.3.1 Unidentifiability

Partial unidentifiability issues are common as mechanistic models and its parameter estimation

problems are not guaranteed to have a convex cost function. Consider the CD8+ T Cell dataset and

its cost landscape across pairwise contour plots of its model parameters in Figure 17, observe that

the top right pairwise contour plot between the first and third rate constants or model parameters

produces almost a stepwise function where its shape is not of the circular bowl shape that one would
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expect to see in a convex cost function. In this case, there is a region of possible parameter sets

with almost equivalent cost values, making identification of the optimal set of model parameters

impossible.

Figure 17: Using GMM Improves Cost Function Landscape in Toy 6 Protein Linear Model

GMM does not resolve this issue. However, it can mitigate some of its issues. For instance,

consider a synthetic 6 protein linear model with some ground truth, taking contour plots of its cost

function with respect to the first two model parameters \1 and \2 as shown in Figure 18 reveals that

GMM can improve identifiability issues by reducing the size of the search region needed to discern

the optimal parameter set.
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Figure 18: Using GMM Improves Cost Function Landscape in Toy 6 Protein Linear Model Above the
contour plots is its mechanistic graph representation.

While certainly a reduced search region for parameter estimation is helpful in reducing the

computational complexity of a problem, the fact remains that hyperparameter tuning of optimization

algorithms, especially evolutionary algorithms, can be computationally taxing as shown in Figure

4. However, one cannot ignore the process of hyperparameter tuning as we explore this in the

following section.
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4 Why Hyperparameter Tuning is Important for Parameter

Estimation

As a reminder, we investigated five different PSO configurations and four datasets by deriving

ranking vectors across PSO configurations.

4.1 Differences Across Mass Cytometry Datasets

Figure 19: Distances Between Ranking Vectors of PSO Configurations

The four datasets contain both experimental and simulated data. In the case of real data, time-

stamped protein species of CD8 T cells [KSM+14] and CD56 cells [MJS+17a] were measured. For

the two simulated datasets, initial conditions were randomly sampled from multivariate lognormal

distributions. Then, using the ODE reaction networks defined in BioNetGen [HHT+16a], initial

conditions were evolved to set time points. Each dataset’s time points are shown in Table 1. For

sake of brevity, only the euclidean distances with respect to the CD8 T cells and Simulated 2 are

shown in Figure 19. As shown by the bottom two bar charts in Figure 19, in terms of cost, rankings

dramatically differ. This difference in rankings implies that the optimal PSO configuration in terms
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of dataset fit can be dataset-specific. Also, observe that the ranking differences remain between the

two synthetic datasets where although reaction networks differ their source probability distributions

remained the same, demonstrating that structural differences within a dataset may lead to different

optimal PSO configurations. As a final remark, the fact that all distance ranking vectors were

non-zero implies that there is no explicit trend to which combiination of hyperparameters would

produce better parameter estimates and fits.

5 Deep Surrogate Modeling for Speed

As hyperparameter tuning is expensive, we hope to show a possible path in surrogate modeling

towards resolving this very issue in mechanistic simulation. In our exploration of three surrogate

problems, we will show their fits to their mechanistic counterparts in primarily two ways, one,

in an 𝑅2 correlation plot, where the x-axis is the observed mechanistic output and the y-axis its

corresponding surrogate output, and two, their histogram plots where the bins are the model output

ranges and the y-axis the number of parameter sets, showing both quantitative and qualitative fits.

5.1 Linear 3 Protein Model

The linear 3 protein model was the least complex of the three surrogate models explored. In

particular, the shapes of its output distributions was the closest to a simple normal distribution.

The mechanistic model’s linear behavior simplifies the range of possible outputs and trajectories,

which to no surprise, the surrogate linear 3 protein model performs the best out of the three models

in terms of quantitatively and qualitatively fitting its original mechanistic model. We show these

fits in Figure 20.
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Figure 20: Linear 3 Protein Results

5.2 Nonlinear 6 Protein Model

The nonlinear 6 protein surrogate model qualitatively performs well, generally replicating the

shapes of the distributions of possible mechanistic outputs as shown in Figure 21. However,

when considering quantitative fits, as variances in single-cell models are quite large, especially in

nonlinear systems, there is a big discrepancy between how you visualize the quantitative fits. When

zooming out to originally scaled values, the relationship between mechanistic model outputs and

its surrogate trained output is very much linear, all falling on the perfect prediction line. However,

When scaling outputs between 0 and 1, one can clearly see that the surrogate does not fully fit the

mechanistic model with equivalent amounts of negative and positive bias in terms of outputs as

shown in Figure 22.
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Figure 21: Nonlinear 6 Protein Qualitative Results

Figure 22: Nonlinear 6 Protein Quantitative Results
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5.3 Spatial Model

In terms of complexity, the spatial agent-based model can be considered the most complex

of the three models due to its inclusion of spatial features. Due to its complexity, it is the most

computationally taxing model to generate data for, meaning its training dataset is the smallest of the

three surrogates investigated. Furthermore, the surrogate model does not incorporate any spatial

information in its attempt to replicate the mean and variance outputs that one would normally care

about in making statements about its correspondingly fit dataset. As such, out of all three of the

surrogate models, it quantitatively and qualitatively performs the worst with the majority of its

fitted points being biased. Furthermore, while the surrogate can replicate the bimodal distribution

of one of its mechanistic model’s mean outputs, it does not fully cover the entire shape that one

would hope to see out of a perfect surrogate.

Figure 23: Spatial Agent-Based Model Results

5.4 Computational Speedups

While each surrogate model has a certain amount of error in its mapping of its mechanistic

counterparts, the trade-off for the addition error in parameter estimation is tremendously faster run
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times and predictions. For instance, a possible surrogate architecture used to speed up the nonlinear

6 protein model was able to explore 3,125 different parameter sets in less than 3 seconds as shown

in the Table in Figure 24. Should one extrapolate this run time to the original particle swarm run

in Figure 4 of 1,500 particles and 30 steps or 45,000 parameter set evaluations, one would see a

possible new particle swarm time of 34.56 seconds, which compared to the original 14.84 hours

of run time, would potentially be approximately 1,500x speed up in run time. Such speed cannot

be understated and if surrogates can be advanced to fully mimic its mechanistic counterparts, we

could see a change in methodology on what one might do in order to do parameter estimation.

Figure 24: Parameter Set Exploration Run Time

5.5 Parameter Estimation Woes

However, as shown above with imperfect fits to their mechanistic models, simple deep surrogate

models are not fit for parameter estimation. In taking the best fit surrogate, the linear 3 protein

surrogate, given some ground truth set of parameters and mechanistic model outputs, we perform

attempt one parameter estimate using PSO and the surrogate model, and plot a set of parameter

pairwise contour plots for interpretability purposes.

32



Figure 25: Surrogate Single PSO Run using 1,500 particles, and 30 steps
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Figure 26: Contour Plots

Figure 25 shows the poor parameter estimates where three of the five parameter estimates are

far from the true parameters. Figure 26 depicts the cost landscape across a bunch of different

pairwise contour plots of the cost landscape. In this figure, observe that the bottom panel between
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theta 4 and theta 5 has a stair-like cost function, which indicates that there is possibly an infinite

range of values that have equal cost, which reveals that there is still a point of unidentifiability.

Furthermore, the regions surrounding the green dots of ground truths are quite large, which also

reinforces the idea that parameter estimation may never discern the ground truth of the original

mechanistic model.

6 Discussion

Optimizing for biological mechanistic models still remains to be a challenging task, especially

when one considers the high-dimensionality of new datasets. Incorporating new information

requires much greater levels of computation from conventional methods such as sampling methods

(i.e Monte Carlo simulations) or evolutionary optimization algorithms (PSO). While GMM and

other methods that incorporate some of variance (i.e Kalman Filters) in its optimization can improve

parameter estimates and reduce search times, they do not address the computational complexities

of the actual mechanistic model simulation. In our work, we show that deep surrogate modeling

provides a path forward to reduce such computational complexities, but at the cost of accuracy as

well as some amount of training and data collection time. Fortunately, there have been a number

of advances in neural network architectures that could tremendously cut down on the accuracy

loss that has not been pursued in this undergraduate thesis today. For instance, graph neural

networks have the capability of encoding relationships between entities of interest that can allow

for the construction of more physically accurate surrogatet models, which is now commonly used

for molecular dynamics [ZLZ+20]. Other architectures such as convolutional neural networks can

be utilized to learn from spatial features that can also be used to enhance surrogate modeling of
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spatial models [TPKT19]. As mechanistic models grow in complexity, future developments of

surrogate models are necessary to accelerate the scientific discovery process. Ultimately, we show

through our work two key methods that may be applicable to the problem of optimization in any

discipline, one for incorporating higher dimensional information in their estimation task, and one

for accelerating the simulation of higher dimensional models.
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