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Abstract 

Given the growing focus on environmentally sustainable practices and the desire 

for cost effective solutions, electric buses have caught the eye of many public 

transportation companies. To make electric buses an ideal addition to a fleet, they must 

complete required routes in all conditions, making accurate range finding of these buses 

an invaluable tool. A current approach for range estimation is to develop energy-based 

models of components and integrate them in a larger model that predicts the overall 

battery power draw, estimating the remaining range available. Such an analytical model 

is limited by the variety of extraneous variables affecting the system (traffic, temperature, 

passenger count), individual components which are difficult to model accurately, as well 

as finite access to required data and parameters for calibration and verification. In this 

context, the proposed research aims to improve the state of the art of range estimation for 

electric vehicles by combining data driven machine learning techniques with physics-

based analysis (PBA). This combined model is applied to a case study of the regenerative 

braking in electric buses. First, a feed forward neural network model was trained to 

estimate regenerative braking based on available experimental data, then this network 

was integrated into a physics-based bus model. This implementation was then used to 

assess the capabilities of the combined model to account for various lapses in data 

quality, and how the overall accuracy can be improved from using a strictly analytical 

model.  The combined model resulted in a clear improvement of the regenerative braking 

modeling, and therefore an improvement in the analytical modeling of the electric bus. 
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Chapter 1. Introduction 

For the successful deployment of an electric bus for public transit, it must be able 

to complete its routes in a variety of conditions. Weather, passenger load, number of 

stops, traffic, and more all affect the range of the vehicle, which makes predicting the 

range difficult [1]. Precisely estimating the range of an electric bus is vital to determining 

if it will be able to complete all required routes for deployment. Furthermore, with 

inaccurate range estimation a driver is forced to conserve more battery than is required, 

further reducing the effective range of the vehicle [2]. A common approach for range 

estimation is to use physics-based models (PBM) that predict the energy demand of each 

component in the electric powertrain. This approach is especially well suited to buses, 

due to the scheduled and recurrent nature of their operating goals [3]. However, there are 

distinct limitations to be overcome for this approach to be successful. Some components 

of the bus are unable to be described analytically, there are a number of assumptions 

introduced in the modeling phase [4-10], and there is often poor availability of high-

definition data to calibrate and verify such a model [3].  

A possible solution for improving the accuracy of PBMs is to combine them with 

data driven models. There is a significant body work that leverages the flexibility of 

Machine Learning (ML) with the physical consistency of PBM [2,11-14]. For example, 

Figure 1 outlines a variety of different structures used to fuse ML and PBM techniques 

[11]. These structures range in complexity of implementation and applications.  
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Figure 1: Examples of ML and PBM Integration 

Integration types A1 and A3 are of particular relevance for the application in this 

thesis, as they provide a clearer boundary between the prediction obtained from the data 

driven model and the analytical model.  

While machine learning is a powerful tool, it is limited by both quality and 

quantity of data available [12]. In many cases, high-fidelity data with consistent sampling 

time and proper synchronization is not available to take full advantage of a purely data 
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driven approach. Moreover, collecting a large enough sample of data for the training that 

is representative of the whole operating range of the system is often time and cost 

prohibitive. In the context of the electric bus range prediction, this process would require 

pulling a bus from service for several weeks, which would result in a disruption of 

service. For this reason, testing on a dynamometer system with the objective of collecting 

data for model calibration and verification is limited to only a day. 

 Alternatively, lower-fidelity data can be collected while the vehicle is deployed. 

While this option does not disrupt the service, there are several limitations related to the 

sampling rate of the data collected and test repeatability.  

Due to the practical limitations of performing exhaustive tests as well as 

collecting reliable and consistent data, a modeling approach that achieves the desired 

range prediction accuracy when only limited information is available is crucial.  

This thesis is structured as follows. Chapter 2 presents the analytical model used 

to simulate an electric bus servicing a Central Ohio Transit Authority (COTA) route that 

was developed as part of prior work. Then, Chapter 3 will outline how a data driven 

approach was combined with the analytical model to apply a Physics-Informed Machine 

Learning (PIML) approach to simulating bus behavior. Once the implementation and 

integration of the model was completed, a set of metrics including terminal SoC are 

assessed in Chapter 4. The model comparison shows that, while data driven modeling is 

known to be sensitive to quality and quantity of data, by combining a data driven 

approach to analytical modeling, this limitation can be overcome. Finally, conclusion and 

future work will be summarized in Chapter 5. 
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Chapter 2: Analytical Cota Bus Model 

Current Approach to Bus Range Modeling 

The work in this thesis leverages an energy-based electric bus model that was 

developed at The Ohio State University (OSU) – Center for Automotive Research (CAR) 

as part of a CAR Consortium project directed by COTA. The bus model is based on the 

Newflyer Xcelsior CHARGE NG 40 pictured in Figure 2. The main specifications of the 

bus are outlined in Table 1. 

 

Figure 2: Newflyer Xcelsior Electric Bus 
 

Table 1: Xcelsior Main Specifications 

Length 41 0 (12.50m) 

Width 102 (2.6m) 

Max. Passengers 40 Seated, 44 Standing 

Curb Weight 28,850 lb (13,086 kg) 
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Motor 160 kW, 1,033 lb-ft 

Battery Pack 440 kWh 

Range (Nominal) 213 mi 

 

The components of the bus are each isolated in the model, and a zeroth order 

approximation is used for the battery. The block diagram of the model is shown in Figure 

3.  

 

Figure 3: Block Diagram of Simulink Bus Model 
 

Governing Equations  

The foundation of the model is the Road Load equation: 

 (𝑀 + 𝑀𝑒𝑞)
𝑑𝑉

𝑑𝑡
= 𝐹𝑤 −

1

2
𝜌𝑎𝐶𝑑𝐴𝑓𝑉𝑒𝑓𝑓

2 − 𝐶𝑟𝑀𝑔𝑐𝑜𝑠(𝛼) −  𝑀𝑔𝑠𝑖𝑛(𝛼)   (1) 

where 𝐹𝑤 is the force at the wheels, M is the mass of the vehicle, 𝑀𝑒𝑞 is the equilibrium 

inertial mass of the vehicle, 𝜌𝑎 is the density of the air, 𝐶𝑑 is the drag coefficient of the 

vehicle, 𝐴𝑓 is the frontal area of the vehicle,𝑉 and 𝑉𝑒𝑓𝑓 are the velocity and effective 

velocity of the vehicle respectively, 𝐶𝑟 is the coefficient of rolling resistance, and 𝛼 is the 

grade coefficient [19]. The effective velocity is calculated as: 

 𝑉𝑒𝑓𝑓 = 𝑉𝑣𝑒ℎ − 𝑉𝑤𝑖𝑛𝑑   (2) 
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where 𝑉𝑣𝑒ℎ is the velocity of the vehicle, and 𝑉𝑤𝑖𝑛𝑑 is the wind velocity. The grade 

coefficient is calculated using the road grade: 

 
𝛼 = arctan (

𝑔𝑟𝑎𝑑𝑒

100
) 

(3) 

The wheel torque is: 

 𝑇𝑤 = 𝐹𝑤𝑅𝑤,𝑙𝑜𝑎𝑑𝑒𝑑 (4) 

where 𝑅𝑤,𝑙𝑜𝑎𝑑𝑒𝑑 is the loaded radius of the wheel which is 98% of wheel radius 𝑅𝑤: 

 𝑅𝑤,𝑙𝑜𝑎𝑑𝑒𝑑 = 0.98𝑅𝑤 (5) 

Finally, the relationship between wheel velocity and the wheel angular velocity is:  

 𝑉𝑤 = 𝜔𝑤𝑅𝑤,𝑒𝑓𝑓 (6) 

where 𝑉𝑤 is the wheel velocity which is assumed here to be the same as the vehicle speed 

𝑉𝑣𝑒ℎ, 𝜔𝑤 is the wheel angular velocity, and 𝑅𝑤,𝑒𝑓𝑓 is the effective radius at the wheel: 

 𝑅𝑤,𝑒𝑓𝑓 = 0.95𝑅𝑤 (7) 

The differential torque is then obtained with: 

 
𝑇𝑑𝑖𝑓𝑓 =

𝑇𝑤

𝜏𝑑𝑖𝑓𝑓 ⋅ 𝜂𝑑𝑖𝑓𝑓
 

 
(8) 

 

where 𝜂𝑑𝑖𝑓𝑓 is the efficiency of the differential, assumed constant, and 𝜏𝑑𝑖𝑓𝑓 is the 

constant final drive ratio (𝜏𝑑𝑖𝑓𝑓 = 0.176). Similarly, the differential output speed is: 

 𝜔𝑑𝑖𝑓𝑓 = 𝜔𝑤 ⋅ 𝜏𝑑𝑖𝑓𝑓 (9) 

Then, the power of the electric machine is then calculated by converting the mechanical 

power at the shaft into electrical power: 
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𝑃𝐸𝑀 = {

1

𝜂𝐸𝑀
𝑇𝑑𝑖𝑓𝑓𝜔𝑑𝑖𝑓𝑓 ,       𝑇𝑑𝑖𝑓𝑓𝜔𝑑𝑖𝑓𝑓 ≥ 0

𝜂𝐸𝑀𝑇𝑑𝑖𝑓𝑓𝜔𝑑𝑖𝑓𝑓,       𝑇𝑑𝑖𝑓𝑓𝜔𝑑𝑖𝑓𝑓 < 0
 

 
(10) 

 

where 𝜂𝐸𝑀 is the electric motor efficiency: 

 
𝜂𝐸𝑀 =  {

𝜂𝐸𝑀,𝑔𝑒𝑛 , 𝑇𝑑𝑖𝑓𝑓 > 0

𝜂𝐸𝑀,𝑟𝑒𝑔𝑒𝑛 , 𝑇𝑑𝑖𝑓𝑓 < 0
 

 
(11) 

𝜂𝐸𝑀,𝑔𝑒𝑛 is the efficiency of the machine while in traction, which is determined by a 

Willans line approximation [20].  This approximation is shown in Figure 4 as an 

efficiency map.  

 

Figure 4: Willans Line Model Estimated Efficiency Map 
 

Conversely, 𝜂𝐸𝑀,𝑟𝑒𝑔𝑒𝑛 is the regen efficiency, which is currently represented using a 

lookup table that is function of bus SoC, derived experimentally.  The maximum torque 

as a function of EM Speed can be found in figure 5. 
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Figure 5:  Max Torque as a Function of EM speed 

The inverter is modeled considering a static approximation with a constant efficiency that 

depends on whether the vehicle is operating in traction or regenerative mode:  

 

𝑃𝐸𝑀−𝐼𝑛𝑣 = {

1

𝜂𝑀−𝐼𝑛𝑣
𝑃𝐸𝑀, 𝑃𝐸𝑀 ≥ 0

𝜂𝑀−𝐼𝑛𝑣𝑃𝐸𝑀, 𝑃𝐸𝑀 < 0

 

 
(12) 

 

where  𝜂𝑀−𝐼𝑛𝑣 = 0.95.  

To predict the battery state of charge (SoC) and voltage, a zero-order equivalent 

circuit model, show in Figure 6 is used [19].  
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Figure 6: Zero Order Battery Model 

The Power transferred to the cells of the battery can be found from the power transmitted 

to the battery 

 
𝑃𝑐𝑒𝑙𝑙 =

𝑃𝑏𝑎𝑡𝑡

𝑁𝑝𝑁𝑠 
 

(13) 

where Np is the number of battery packs, and Ns is the number of battery cells. From this, 

the current to each cell can be found 

 
𝐼𝑐𝑒𝑙𝑙(𝑡) =

𝑉𝑂𝐶  − √𝑉𝑂𝐶
2 − 4𝑃𝑐𝑒𝑙𝑙𝑅0

2𝑅0
 

(14) 

where 𝑅0 is the internal resistance is defined in Equation 16, and 𝑉𝑂𝐶 is the open circuit 

voltage of the battery. 

The batttery voltage is calculated using Kirchoff’s Voltage law 
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 𝑉𝐷𝐶(𝑡) = 𝑉𝑂𝐶(𝑆𝑜𝐶) − 𝑅0𝐼𝑏𝑎𝑡𝑡(𝑡) (15) 

where 𝐼 is the battery current. For this application, the open circuit voltage is assumed to 

be function of the SoC while the temperature is assumed constant. Conversely, the 

internal resistance is assumed constant during either charging or discharging events: 

 
𝑅0 = {

𝑅𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 , 𝐼 > 0 𝑜𝑟 𝑃𝑏𝑎𝑡𝑡 > 0

𝑅𝑐ℎ𝑎𝑟𝑔𝑒 , 𝐼 < 0 𝑜𝑟 𝑃𝑏𝑎𝑡𝑡 < 0
 

(16) 

 

The battery current is determined by considering both the motor current 𝐼𝑀−𝐼𝑛𝑣 and the 

auxiliary current 𝐼𝑎𝑢𝑥−𝐼𝑛𝑣, both at the inverter: 

 𝐼𝑏𝑎𝑡𝑡 = 𝐼𝑀−𝐼𝑛𝑣 + 𝐼𝑎𝑢𝑥−𝐼𝑛𝑣 (17) 

 

To predict the SoC of the battery, the model relies on Coulomb counting: 

 𝑑

𝑑𝑡
𝑆𝑜𝐶 = −

𝐼

𝐶𝑛𝑜𝑚
 

(18) 

where 𝐶𝑛𝑜𝑚 is the nominal battery capacity. The parameters of the bus and bus 

components are summarized in Table 2. 

Table 2: Bus Parameters [21] 

PARAMETER VALUE SOURCE/REASON 

Mass (Curb 

Weight), 𝑀 

13086 𝑘𝑔 Specification 

Effective Mass, 

𝑀𝑒𝑓𝑓 

1.1×M Approximation. Ignores - 𝜆 , 𝐽𝐸𝑀 , 𝐽𝑤, 𝜂𝑡 

Fully Loaded, 

𝑀𝐿𝑜𝑎𝑑 

18813 𝑘𝑔 Maximum Passenger capacity – 84; 150lbs per 

adult  

Air Density 
1.225

𝑘𝑔

𝑚3
  

Air density at sea level, Temperature variation: [-

15°C,35°C] 
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Drag Coefficient 0.65 Literature -  Airflow studies –Base model & 2010 

Autonomie report 

Frontal Area 7.72 𝑚2 90 % 𝐴𝑓 

Rolling Resistance 0.008 Approximate maximum values from Continental 

Tire Radius 0.4929 𝑚 Specification - 305/70R22.5 

Nominal Battery 

Capacity, Cnom 

841.13 Ah Calculated from Dyno Data 

Internal Battery 

Resistance R0 
1.5 𝑚Ω Calculated from Dyno Data 

 

   

Data Collection 

 A Newflyer electric bus was tested on the heavy-duty chassis dyno at CAR with 

the objective of collecting calibration and validation data for the physics-based model 

described in this Chapter. During the single day of testing, several coast-down tests from 

various initial vehicle velocities were performed, for a total of 1100 seconds of data. The 

summary of the data collected is provided in Table 3. It is worth noting that the dyno data 

provides the highest fidelity data, due to the repeatability of the tests and high precision 

measurements that are typically not available when the bus is deployed. For this reason, 

dyno data will be used in this thesis for the training and verification of the PIML. 

Table 3: Data collected from Dyno Testing 
Data acquisition device Measured variable Resolution/Sample Rate 

 

 

Auxiliary inverter Current 0.01s 

Motor Inverter Current 0.01s 



20 

 

Oscilloscope DC-DC Voltage 0.01s 

Battery Current 0.01s 

 

Fluke (connected to Battery 

Pack) 

Absolute Current 1s 

Voltage 1s 

Dynamometer Speed 0.1s 

 

A second dataset, referred to as the DRIVE dataset, was collected from a bus in 

service, via DAQ instruments on board. The same measured quantities as the one in 

Table 3 were collected, but at inconsistent sample rates due to both connectivity issues 

and on-board instrumentation. While the on-road dataset is larger than the one generated 

using the dyno testing, the quality of the signals is affected by noise, gaps, and 

inconsistent sampling rate. Hence, the Dyno dataset will be used for validation, and the 

DRIVE data will be used for verification of the model.  

 

Accuracy of Analytical Model 

 A sample simulation result obtained on the Dyno data is shown in Figure 7, where 

the predicted battery current, state of charge and battery voltage are compared against the 

experimental data. The model predicts the final state of charge within 0.16%. While the 

model shows good overall agreement, the battery current from the model underpredicts 

the current from experiments, particularly during negative current events. This is verified 

by plotting the negative current and the corresponding error distribution, Figure 8. 
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Figure 8 

Figure 7: Analytical Model Simulation Results 
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Figure 8: Analytical Model Negative Current Errors 

Figure 8 clearly shows that the model fails to capture the regenerative behavior of the bus 

during coast down phases and, as a result, there is a significant error in predicting the 

battery charging. Moreover, the error distribution of the negative current prediction is far 

from the ideal normal distribution with a mean of zero, as shown in Figure 8. This 

systematic error compounds and gets worse in longer datasets, eventually significantly 

underrepresenting the change in SoC due to regenerative braking. Being able to improve 

the modeled regenerative braking through physics informed machine learning will 

improve the ability of the model to estimate the remaining range of a bus while on route.  
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Chapter 3: Combined Physics-based and Data Driven Modeling  

Regenerative Braking as a Case Study 

 The current bus model has a significant limitation in its ability to accurately 

predict SoC due to challenges in modeling regenerative braking. Regenerative braking is 

a complex process that involves several factors that are difficult to analyze analytically. 

These factors include the system's efficiencies, which are not well defined, the battery 

management system's limitations on power transfer to and from the battery to ensure safe 

operation, and external inputs such as temperature and vehicle mass that are uncertain 

and can affect the vehicle power demand. For these reasons, a data-driven approach for 

estimating the regenerative braking is proposed in this thesis.  

Due to the modularity of the energy-based model, the integration of a data-driven 

component is straightforward. Specifically, the regen efficiency coefficient 

approximating the power loss between the differential and battery can be replaced with a 

neural network which is trained on relevant data.   

Structure and implementation 

As shown in Figure 1, there are many possible integrations for physics informed 

machine learning models. The strengths of each should be considered in a case-by-case 

basis when being applied to modeling problems. In the case of regenerative braking, there 

is a clear and distinct set of inputs to the subsection, as well as a clear division from the 

rest of the model, which allows for isolated training and validation of a neural network. 

This leads to the implementation of structure B2, as shown in Figure 9, which can be 

interpreted as combination of structures A1 and A2 of Figure 1. 



24 

 

 

 

 

Figure 9: Selected Model Structure [11] 
 

 

Figure 10: Model Structure (detailed) 

In Figure 10, 𝑋(𝑡) represents the inputs to the combined model, in this case velocity and 

route data. Then, 𝜃𝑛 represents internal model variables solved for by the PBM, which is 

then inputted to the machine learning model that provides an output 𝑌𝑚. This internal 

output is then used by the PBM to calculate the model output 𝑌𝑝𝑟𝑒𝑑 which in the case of 

the electric bus is the battery state of charge at any instance of time. 

The MLM implementation replaces the regen coefficient described in Equation 

11, and it is integrated in the model as shown in Figure 11. Here, the data driven 

regenerative braking model is applied directly to the Electric Machine block in the 
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analytical model, this allows access to 𝜃 = [𝑇𝑑𝑖𝑓𝑓 𝜔𝑑𝑖𝑓𝑓 𝜂𝐸𝑀]𝑇. These inputs were 

selected to inform a MLM model of regenerative braking as a result of their availability 

within the model, and their clear and direct relationship to regenerative braking power 

generated by the motor. Similarly, the desired network output was determined to be 

motor power (PEM) due to its required availability in the model. 

 

Figure 11: Location of NN Implementation to PBM 
 

Neural network Data Processing 

To perform the training, a dataset of training variables must be generated which 

informs the neural network (NN) of the power regeneration behavior. This step of the 

process is particularly challenging because none of the NN inputs 𝜃 are directly 

measured. However, the single component models in the PBM can be exercised so that 

the inputs to the NN are determined from the experiments. Specifically, the Electric 

Machine Efficiency, Differential Torque, and Differential angular velocity can be related 

to the network output, Electric Machine Power.  The calculation is performed using 

Equation 1 to derive the Differential torque, Equation 9 to derive the Differential angular 

velocity, and the Willans line model is used to calculate the approximate electric machine 
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efficiency 𝜂𝐸𝑀. To calculate a training output for the network, Equation 17 is used to 

derive the Electric Machine Power. 

 𝑃𝐸𝑀 = 𝐼𝑏𝑎𝑡𝑡 ∗ 𝑉𝑏𝑎𝑡𝑡 ∗ 𝜂𝑖𝑛𝑣 (19) 

Once these values are calculated and the inputs to the NN are made available, the 

next step consists of parsing the data so that only segments relevant to regenerative 

braking operations are used. Because a data driven model is based in pattern recognition, 

the training data must be as relevant to the desired pattern as possible. In this case, the 

desired pattern is regenerative braking, and therefore the data driven model should be 

trained with the measurement associated with a negative bus acceleration. To impose this 

requirement, the bus acceleration is approximated by computing a discretized derivative 

of its velocity. Then, the indexes 𝑘 associated with 

 𝑎𝑣𝑒ℎ(𝑘) ≤ −0.2𝑚/𝑠2   (20) 

are stored. The boundary was selected to avoid noise in the data close to zero 

acceleration. To guarantee that the data was the result of a sustained deceleration, only 

negative accelerations that met the condition in Eq. 18 for 4 consecutive timesteps are 

selected as part of the training dataset.  

Once the intermediate variables 𝜃 are calculated using the component models and 

experimental data and then parsed to only consider negative accelerations, a comparison 

between 𝜃 and the complete model prediction is performed. The results of this 

comparison are shown in Figure 10. Overall, the two approaches show very similar 

trends, but are not an exact match. This is expected due to the compounding of modeling 
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errors when the complete PBM is used, together with some desynchronization due to the 

parsing.  

 

Figure 12: Component Calculated vs PBM Calculated Variables 

 

Normalization approach 

 Good practice for training neural networks is to normalize the input and output 

data between 0 and 1: 
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𝜃𝑛 =

𝜃

�̅�
 

 
(21) 

 
𝑌𝑚,𝑛 =

𝑌𝑚

𝑌𝑚
̅̅̅̅

 
 

(22) 

where �̅� is the normalization factor for the inputs and 𝑌𝑚
̅̅̅̅  is the factor for the outputs.  

Initially, the data was normalized based on the calculated training inputs for the Neural 

Network. This yielded good results in the network verification, but it becomes 

impractical for the integration with the model due to the difference in input ranges, as 

seen in Figure 10. For this reason, an alternate normalization of the inputs and output is 

used, which is based on the averages of the variables predicted by analytical model.  

 

Network Training 

 The structure chosen for the neural network is a feed forward neural network 

(FNN) since the prediction is a regression problem [22]. For training, then testing against 

the validation set, the data was randomly split into 10 sections using a MATLAB 

function for random permutation. These 10 sections were then randomly divided into 

validation and verification pools, with 8 sections going to validation and 2 going to 

verification. The network tunable parameters and corresponding values are summarized 

in Table 4. 

Table 4: NN tunable Parameters 
Network Parameters Value 

Number of hidden layers 6 (1 Batch normalization, 1 dropout layer) 
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Size of fully connected 

layers 1-4 

[100, 250, 200, 100] 

Dropout rate  0.1 

Minibatch size 4 

Activation type Leaky Relu 

Max Epochs 60 

 

 The network parameters were selected by trial and error, retraining the network 

with various combinations of different parameters. The metric used to evaluate the 

success of a training was the RMSE of the validation and verification predictions as 

compared to the real values.  

Results of Training 

 Figures 13 and 14 show the predictions of the final trained FNN. 
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Figure 13: Network Results Compared to Data 

 

Figure 14: Trained network error histograms 
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Figure 14 shows that the network likely has some small systematic error, overestimating 

the regeneration of power from braking, but overall, the preliminary results for the 

trained network are promising. Next, this network will need to be integrated into the 

analytical model to assess its ability to improve the prediction of the regenerative braking 

in the electric bus. Assessing the training of the network by itself only shows that it can 

correctly predict the experimentally calculated values earlier and does not necessarily 

correlate to an improvement in the analytical model’s accuracy.  
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Chapter 4: Verification in Simulation 

Network Implementation in Simulink 

Sample Model 

 To implement the network in the model, first the network must have an equivalent 

Simulink implementation, to match the PBM. To test the Simulink NN implementation, a 

sample model was created in Simulink that takes the network inputs and predicts the 

output variable just as the “Predict” function does. This also allows for testing of the 

normalization of the inputs and denormalization of the output.  

 

Figure 15: Sample Model Verification 
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The results of this sample model testing are shown in figure 15, where the Simulink 

implementation of the network matches the original MATLAB code.  

 

Experimental Runs and Testing Metrics 

 The integration of the trained NN in the PBM requires the removal and 

replacement of the simple regen coefficient, as shown in Figure 11. The validation of the 

enhanced model is performed on the first set of dyno data. First the comparison is 

performed on the training set, then the model is used to predict the SoC in a driving cycle 

that was not part of the training. To determine the improvements to the model, three main 

metrics are considered:  

- The error distribution of the battery current during regenerative braking. 

o This metric highlights the improvements achieved through the integration 

of the data driven method. 

- The terminal SoC error 

o This metric quantifies the improvement of the model in the ability of 

predicting the bus driving range. 

- The error distribution of the battery current during traction.  

o This metric ensures that the data driven model only impacts the 

regenerative braking portion of the vehicle operation. 

Results 

 First, the model is assessed by its ability to predict validation data, the same 

dataset which was used during the training  of the NN. A simulation run performed on 
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this data is shown in figure 16, comparing the analytical and combined model.   The final 

SoC error in the original model is 0.16%, and the final SoC error in the Combined model 

is 0.55%. 

 

Figure 16: Model Verification Data Results 

From this output, it is clear that both models provide a strong prediction of the bus 

behavior during the test on the dyno.  Moreover, the error on the positive current 

prediction is shown in Figures XYZ, where the two models show the same behavior. This 

is expected as the objective of the NN is only to correct the negative current. 
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Figure 17: Physics Based Model Positive Current Error 

 

Figure 18: Combined Model Positive Current Errors 
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To assess the combined models’ improvement to the regenerative braking prediction, the 

plots the negative portion of the battery are shown in Figures XYZ. As observed for the 

validation of the Neural Network alone, the error distribution of the battery current 

obtained from the NN-enhanced model follows approximately a normal distribution 

centered about zero. Some gaussian noise will always be expected in even the best 

predictions, therefore this visualization more clearly shows the performance of the model 

as opposed to the mean of the error.   

 

 

Figure 19: Combined Model Negative Current Errors 
 

Moreover, these results show a clear improvement in the negative current prediction from 

the entirely physics-based model to the combined model. Though the magnitudes of 
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errors are slightly larger in the combined model, the mean of the distribution is closer to 

zero compared to the original implementation. Although the negative current predictions 

are better in the combined model, the SoC prediction is slightly worse. This is probably 

because, by correcting the errors in the negative part of the current predictions, there are 

no longer any errors to offset some of the errors in the positive predictions. In fact, when 

analyzing the results from the original model, both positive and negative error 

distributions showed a consistent shift indicating a tendency of the model to overestimate 

both negative and positive power. When the model was coupled, this effect was balanced. 

This feature is then lost in the combined mode, where the negative current portion is 

corrected while the traction is unmodified.  

 The model validation is done using the DRIVE data, these missions were not part 

of the training and therefore this provides an evaluation of the accuracy beyond the 

dataset. A simulation performed with the DRIVE data yielded the results shown in figure 

16. The terminal SoC error for the analytical model was 1.57%, and the terminal SoC 

error for the combined model was 0.65%.  
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Figure 20: Model Validation Data Results 

This shows a clear improvement in the modelling of the bus’s range with the combined 

model. To verify that this improvement is due to the NN modeling the regenerative 

braking, the negative battery current predictions are analyzed. 
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Figure 21: Analytical Model Negative Current Errors (Validation) 

 

Figure 22: NN Model Negative Current Errors 
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 Though the negative current errors are not as clearly improved as the verification 

set, there is still an improvement in the error distribution. It is clear from the battery 

current plots in figures 17 and 18 that the NN is better capturing the negative portion of 

the battery current. There is also a significant positive current prediction in the sections of 

the route data where a negative current is measured. This is possibly due to the much 

lower fidelity data quality in the drive data samples, as well as some possible 

desynchronization.  

 

Figure 23: Analytical Model Negative Current Errors (Validation) Filtered for 

negative measured current and negative predicted current 
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Figure 24: NN Model Negative Current Errors Filtered for negative measured 

current and negative predicted current 

 The combined model predicts better when the battery current would be negative 

in the bus, as it has over twice as many data points. Second, it shows that the error 

distribution is much better in its predictions and results in a much better prediction of the 

negative current in the bus for this validation set. The results data is summarized in 

Tables 5 and 6, with an energy based approach shown in tables 7-10. 
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Table 5: Terminal SoC Values of Simulation Outputs  
EXP SoC PBM SoC PBM Error PIML SoC PIML 

Error 

Validation 0.8174 0.8188 0.16% 0.8219 0.55% 

Verification 0.808 0.7928 1.57% 0.8107 0.65% 

 

Table 6: Negative Current Errors of Simulation Outputs  
Model Type Average Error [A]  Error STD [A] Cumulative Abs 

Error  

 

Validation 

PBM -40.04 22.933 6,487 

PIML 5.228 61.47 8,623 

 

Verification 

PBM -52.579 51.033 4,829 

PIML 15.54 50.336 7,351 

 
Table 7: Validation Energy Metrics 

Metrics Tot. Energy 

[kWh/mi] 

Consumed 

[kWh/mi] 

 Regenerated 

[kWh/mi] 

Terminal SoC 

 Test Data 2.1671 2.6936 0.5265 0.8174 

PBM 2.0367 2.3442 0.3075 0.8188 (0.16% error) 

PIML 1.7002 2.3994 0.6993 0.8219 (0.55% error) 

 
Table 8: Validation Regen and Consumption Power Errors 

Metrics Consumed 

[kWh/mi] 

Consumed 

Error 

 Regenerated 

[kWh/mi] 

Regen Error 

 Test Data 2.6936 
 

0.5265 
 

PBM 2.3442 -14.57% 0.3075 -41.61% 

PIML 2.3994 -12.7% 0.6993 32.79% 
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Table 9: Verification Energy Metrics 
Metrics Tot. Energy 

[kWh/mi] 

Consumed 

[kWh/mi] 

 Regenerated 

[kWh/mi] 

Terminal SoC 

 Test Data 2.1154 2.3963 0.2810 0.8080 

PBM 2.3434 2.4382 0.0948 0.7928 (1.57% error) 

PIML 2.0154 2.4250 0.4097 0.8107 (0.65% error) 

 
Table 10: Verification Regen and Consumption Power Errors 

Metrics Consumed 

[kWh/mi] 

Consumed 

Error 

 Regenerated 

[kWh/mi] 

Regen Error 

 Test Data 2.3963 
 

0.2810 
 

PBM 2.4382 1.17% 0.0948 -66.26% 

PIML 2.4250 1.18% 0.4097 45.8% 
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Chapter 5: Conclusions and future work 

Accuracy Improvements 

 By implementing a physics informed machine learning approach to modeling the 

range of a COTA electric bus, a clear improvement in modeling the regenerative braking 

in the system was found, as compared to a traditional analytical approach. In the 

validation set, there was a significant improvement in the terminal SoC error, which 

directly correlates to an improvement in range prediction of the electric bus. This was 

also shown to come from the better current predictions in the regenerative braking part of 

the predictions.  

Success Despite Low Fidelity Data 

 This approach to PIML was done under a scarce data conditions. The training set 

had only 183 elements for the neural network to learn from. Despite this, the trained 

network was able to be integrated into the analytical model and provide a clear 

improvement to regenerative braking modeling in the bus. Due to the nature of data 

driven modeling, having more data to train and test with would only further improve the 

modeling capabilities of such a combined model. 

 By combining a data driven model with an analytical framework, the sparse 

dataset did not have a prohibitive effect on the model. Despite some point errors, and 

inconsistent behavior of the neural network, the analytical framework which it was 

informing resulted in these errors being insignificant to the overall range prediction.  
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Future Work 

Incremental improvements to current model 

  Though the results yielded by the combined model are very good, there are 

several clear opportunities for incremental improvement to the model: 

 The current model was trained with parsed data which was at a lower acceleration 

than -0.2m/s^2 to avoid noise close to 0 measured acceleration. With the current dataset, 

more extensive filtering could be done to avoid some of the noise close to 0 acceleration, 

rather than avoiding the problem. This would allow the network to train on more data 

close to 0 acceleration and result in a more accurate regen estimate at low changes in 

acceleration.  

 Another possible improvement, specifically in the data driven part of the 

combined model, would be to build some analytical constraints into the network itself, 

essentially adjusting the loss function based on physical parameters. One such example 

would be placing a high emphasis on outputting a negative PEM in cases with negative 

torque (a physically logical result).  

Future model development 

 If additional data were collected for the purpose of tuning a combined model, 

there are some distinct properties which should be a focus for data collection: 

• Wide variation in data conditions collected 

o Allows better training of MLM, and results in less extrapolation for PIML 

implementation 
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• Consistent properties of collected data, including sample time, data 

synchronization, and post collection processing 

• Identification of desired MLM inputs and outputs prior to data collection 

o Allows testing to be designed in such a way to maximize the correlation 

between inputs and outputs for the desired pattern to be recognized by the 

MLM. 

Should these properties be applied to a regenerative braking case study, additional 

dyno testing would include a focus on various braking patterns applied during coast down 

tests. It would also include a measurement of the pedal position synchronized with other 

data collection. The specific design of these tests could be better determined by a study of 

the current combined model weaknesses when faced with subsections of current 

verification data. This would allow a data collector to determine what range of inputs 

would be best suited to improving MLM training.  
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