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ABSTRACT 
In the past two decades, the awareness of the physical and emotional effects and 

sequalae of traumatic brain injuries (TBI) has grown considerably, especially in 

the case of soldiers returning from their deployment in Iraq and Afghanistan, after 

sustaining blast-induced TBI (bTBI). While the understanding of bTBI and how it 

compares to civilian non-blast TBI is essential for proper prevention, diagnosis and 

treatment, it is currently limited, especially in human in-vivo studies.  

Developing neuroimaging biomarkers of bTBI is key in understanding primary blast 

injury mechanism. I therefore investigated the patterns of white matter and grey 

matter injuries that are specific to bTBI and aren’t commonly seen in civilians who 

suffered from head trauma using advanced neuroimaging techniques. However, 

because of significant methodological issues and limitations, I developed and 

tested a new pipeline capable of running the analysis of white matter abnormalities 

in soldiers, called subject-specific diffusion segmentation (SSDS). I also used 

standard methodologies to investigate changes at the level of the grey matter  

structures, and more particularly the limbic system. Finally, I trained a machine 

learning algorithm that builds decision trees with the aim of classifying between 

patients with TBI and controls, and between different TBI mechanisms as an 

example of what could potentially be applied in the context of bTBI.  

I found three main neuroimaging biomarkers specific to bTBI. The first one is a 

microstructural white matter abnormality at the level of the middle cerebellar 

peduncle, characterized by a decrease of diffusivity measures. The second is also 

a decrease in diffusivity properties, at the level of the white matter boundary, and 

the third one is a loss of hippocampal volume, with no association to post-traumatic 

stress disorder. Finally, I demonstrated that SSDS can be used in tandem with a 

machine learning algorithm for potential diagnosis of TBI with high accuracy.   

These findings provide mechanistic insights into bTBI and the effect of primary blast 

injuries on the human brain. This work also identifies important neuroimaging 

biomarkers that might facilitate prevention and diagnosis in soldiers who suffered from 

bTBI.  
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CHAPTER 1  
Introduction 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this chapter, I present the background concepts relevant to this thesis. I provide a 

summary of results from literature reviews, and the current limitations and questions 

still at the heart of the field.  
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1.1.  AIMS AND OBJECTIVES 
The aim of this thesis was to investigate neuroimaging biomarkers of blast-induced 

traumatic brain injury (TBI) in military personnel post-deployment, with a focus on the 

structural and microstructural changes in the brain associated with blast TBI but not 

civilian TBI, as well as their association to clinical findings and neuropsychiatric 

measures. I used a combination of structural and diffusion magnetic resonance 

imaging, the development and validation of a new diffusion analysis technique, 

statistical predictions and machine learning algorithms. 

The objectives of this thesis were as follows: 

1- To develop, test and validate a new technique that would enable identification of 

patterns of white matter damage using an automated and standardized pipeline in 

the subject-level native diffusion space. 

2- To implement the new pipeline with the aim of identifying patterns of white matter 

injury associated with blast-related TBI. 

3- To investigate changes in cortical/subcortical structure in blast TBI and the 

difference in comparison to non-blast TBI using standard group-level analysis 

techniques. 

4- To use the results of the new pipeline to train a decision tree classification algorithm 

to classify between A) TBI and healthy controls, B) road traffic accidents vs other 

injury mechanisms as a first step towards machine-learning based identification of 

blast TBI. 
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1.2. HYPOTHESES 

The hypotheses put forward in this thesis were: 

1. Group-level investigations of white matter microstructural damage cannot detect a 

pattern of injury specific to blast-related TBI due to the subtlety of group differences. 

 

2. There will be specific patterns of white matter damage following blast-related TBI 

at the boundary of the white matter and the grey matter, and the white matter and 

fluid-filled cavities, as well as at the level of the middle cerebellar. 

 

3. Blast-related TBI will be differentiated by a decrease of hippocampal volume in 

subject-level investigations, and hippocampal atrophy can be predicted by clinical 

variables. 

 

4. It is possible to discern with high accuracy between TBI/controls and road traffic 

accidents/ other mechanisms of TBI using decision trees, in a way that might be 

reproduced on military TBI data in future work. 
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1.3. SUMMARY OF CHAPTERS 
Chapter 2 | I present and describe in details the methods and materials used 

throughout my experimental studies and chapters. 

Chapter 3 | I develop an individual, standardized, and automated pipeline, subject-

specific diffusion segmentation (SSDS) to accurately measure changes in 

white matter microstructure in the subject’s native diffusion space on an 

untransformed parametric map. I validate the pipeline against manual 

segmentation of white matter tracts and the widespread group-level 

analysis technique tract-based spatial statistics. I test the pipeline in a 

cohort of civilians with a diagnosis of TBI.  

Chapter 4 | I investigate injury at the subject-level in different white matter tracts and 

the boundary of the white matter using SSDS to detect a white matter-

derived neuroimaging biomarker of blast TBI. I used two control groups: a 

non-blast TBI group and a group of healthy civilians. 

Chapter 5 | I investigate neuroimaging biomarkers of blast-induced TBI using common 

neuroimaging analysis techniques including volumetric measures of 

cortical and subcortical structures. I explain the changes observed using 

clinical, neuroradiological and neuropsychological measures.  

Chapter 6 | I derive mean FA measures from 47 white matter tracts by implementing 

SSDS in a large cohort of civilians with TBI and controls. I train a decision 

tree to classify between TBI and controls, and between different injury 

mechanisms within the TBI group. I test the decision tree and derive 

measures of the performance of the classification. 

Chapter 7 | I summarise the results of my thesis and discuss the findings and 

conclusions that would contribute to our understanding of blast-induced 

TBI and specifically how this mechanism and neurological underpinning 

differ from civilian TBI. I conclude by describing probable limitations and 

future directions in the field based on my work. 

  



 

Introduction | A. A. 

21 

 

1.4. TRAUMATIC BRAIN INJURY (TBI) 

1.4.1. Definition of TBI 
Traumatic brain injury (TBI) is defined as a disruption in typical brain function caused 

by external force(s) such as a bump, blow, jolt or penetrating head injury (Prevention, 

2020). In the U.K., TBI is the commonest cause of disability and death in people aged 

between 0 and 40 years, with a third to half of these being children under the age of 

15. The leading causes of TBI are falls, assaults and road traffic accidents with alcohol 

being involved in 65% of adult cases (Mistry J., 2017). 

1.4.2. Classification System of TBI Severity 
There are different ways of assessing and classifying TBI. Because TBI presents with 

such heterogenous causes, mechanisms, severity, prognosis, and pathoanatomic 

changes, categorisation is essential. One of the main classification system, and the 

one I used to describe the patients in this thesis is the Mayo classification (Malec et 

al., 2007). It comprises three main categories: moderate-severe (definite), mild 

(probable), and symptomatic (probable). The classification of TBI is made based on 

imaging and clinical presentation (Table 1). 

Table 1: Criteria for the Mayo classification system of TBI severity. 

 Moderate / Severe Mild Symptomatic 

GCS < 13 in the initial 24 hrs > 12 - 

PTA > 24 hrs < 24 hrs - 

LOC > 30min < 30min - 

Imaging 

Intracerebral haemorrhage 

Subdural haemorrhage 

Epidural haemorrhage 

Subarachnoid haemorrhage 

Contusion 

Penetrating injury through the dura 

Brainstem injury 

Depressed, 

basilar or linear 

skull fracture 

- 

Other Death  

Other clinical symptoms including 

blurred vision, confusion, 

headache, nausea, dizziness or 

focal neurological changes 
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Other measures I also use in this thesis are the Abbreviated Injury Score (AIS) and 

Injury Severity Score (ISS). In both civilian and military trauma, head injuries frequently 

occur in the context of polytrauma (where there is an injury to more than one body 

system), especially in the context of exposure to blast, which I will detail in the next 

section. The ISS is an anatomical scoring that provides an overall score for patients 

with multiple injuries. Each injury is assigned an Abbreviated Injury Scale (AIS) score 

and assigned to one of the nine regions (face, neck, head, chest, spine, pelvis, 

abdomen, extremities (upper/lower) and external (skin)). The ISS score is the sum of 

square of the 3 highest AIS scores (from 0 to 6). ISS scores range from 0 to 75 and 

correlates with severity, mortality, morbidity, etc.. (Injury Severity Score, Trauma.org 

2015).  

 

Focal vs diffuse injuries 

I talk about focal and diffuse injuries throughout the thesis, and this is a common way 

of describing TBI based on clinical and radiological examination (Silver, 2005). The 

mechanisms are not mutually exclusive but aren’t always found together.  

 

Focal injuries usually result from inertial forces, including blunt force trauma or 

rotational/translational movements of the brain, which can cause it to hit the skull, and 

lead to microbleeds and contusions that can be seen on diagnostic neuroradiology 

(Ommaya and Gennarelli, 1974).  

 

Diffuse injury, and more specifically diffuse axonal injury (DAI) in the context of TBI, 

refers to a range of microstructural WM abnormalities, with the most severe being 

tearing of axons and axonal death. DAI is a common pathological finding of TBI 

(Gentry et al., 1988), and can occur even in the absence of impact to the head. It is 

hypothesized to be caused by the rapid acceleration- deceleration of the head(Adams 

et al., 1989). If the forces causing DAI are sufficiently strong, damage to the blood 

vessels within the WM can lead to petechial haemorrhages (or microbleeds), used as 

a diagnostic symptom of TBI in routine neuroradiology (Bigler, 2001). 
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1.5. BLAST-INDUCED TBI 

1.5.1. Definition of Blast TBI 

Blast injuries, including blast-induced traumatic brain injuries (bTBI) are triggered by 

blast waves generated by an explosion. Even though histories of explosions and bTBI 

incidence coincide, our knowledge of bTBI and its pathology is still very shallow even 

after a thousand years of using explosive devices. Over the decades, explosive 

devices have been designed to maximize efficiency and propel metal fragments to 

induce more damage. However, more recently, a shift from blunt and penetrating 

injuries to blast injury is being observed and this might be due to new types of 

explosives used in combat fields (Dearden, 2001), known as improvised explosive 

devices (IED). IEDs are designed to destroy vehicles and often contain ballistic 

fragments, causing injuries at greater distance than the blast alone would. They can 

be either triggered by the victim (trip wires, pressure sensitive plates or magnetic 

triggers) or by an attacker (command wire, remote control, and infrared).  

 
Figure 1: Example of an IED. Source: http://www.inertproducts.com 

An explosion will generate a pulse of increased air pressure, the blast overpressure 

(BOP), which lasts a few milliseconds and rapidly expands from the point of 

detonation. The BOP is quickly followed by an area of negative pressure, and together 

they are known as the shock wave, the magnitude of which dissipates rapidly while 

expending away from the point of detonation (Kirkman et al., 2011). The gases 

released by the explosion displace an equal volume of air with an outward expansion 

at very high velocity, a phenomenon referred to as the blast wind (Cernak et al., 1996). 

The blast wind is a high-velocity and destructive movement of air with the ability of 

causing extreme damage (DePalma et al., 2005).   
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Figure 2: Friedlander wave. Shows the peak pressure, positive and negative pressure . 

Adapted from (Bauman et al., 2009). 

 
Figure 3: Variation of positive and negative pressure associated with blast. 1) Typical scene, 
2) compression phase (positive pressure), 3) after positive pressure, 4) negative pressure, 5) 

after negative pressure. Source: www.mega.nu 

1.5.2. Mechanism of Blast TBI 
The effects of blast on the body can be categorized in 5 folds (Table 2). Primary blast 

injuries are typically a result of the BOP peak. The blast wind that follows can propel 

objects and other debris into the body, causing secondary effects. Rapid acceleration 

and deceleration of the head can lead to tertiary injuries as the victim is thrown and 

impacts surrounding objects. Other effects including heat, toxins, chemicals and 

radiations are classified as quaternary injuries (DeWitt and Prough, 2009).  

Table 2: Categorization of blast-induced injuries 

Category Cause Consequences 

Primary Blast wave (overpressure followed by under 

pressure) and blast winds. 

Primary blast injuries 

Secondary Propelled fragments and debris. Blunt and/or penetrating injuries 
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Tertiary Acceleration/deceleration of the head when 

body is projected against hard surface.  

Translational, rotational and 

impact injuries. 

Quaternary Usually heat and/or chemicals Most commonly burns 

Quinary Other factors released during an explosion 

such as gases, radiation, biological material, 

etc.  

Poisoning, asphyxiation of 

hypoxia, radiation, burns, 

infections 

 

Primary blast injuries are rarely, if not ever present in isolation during TBI sustained in 

the battlefield. In a report from the Department of Defense, of 200,000 soldiers with a 

head injury, 150,000 were diagnosed with mild TBI and Post-Traumatic Stress 

Disorder (PTSD) (Vanderploeg et al., 2012). Among deployed soldiers, mild blast TBI 

is the most prevalent form of trauma and has therefore been labelled as the invisible 

signature wound of modern conflict (Okie, 2005).  

 

 
Figure 4: Different mechanisms of bTBI. Source:(Cernak and Noble-Haeusslein, 2010) 

As mentioned previously, classification of TBI is challenging due to the heterogeneity 

of the condition. In the military setting, this classification is even more hindered given 

the countless variables that are difficult to control for: mechanism of injury, strength of 

blast, meaningful clinical acute, subacute, and chronic assessments (Bryden et al., 

2019). The 3 most common mechanisms sustained by military personnel (primary, 

secondary, and tertiary) have largely overlapping mechanisms, and often happen 

simultaneously. 
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Primary blast-related head trauma 

Head trauma due to the blast overpressure is still misunderstood, and there is still 

insufficient data to support a single mechanism that might be causing neurological 

sequalae. However, based on pre-clinical and post-mortem research, as well as 

injuries to other organs and cavities, many mechanisms have been proposed and 

hypothesized (Rosenfeld et al., 2013).  

 
Figure 5: Some of the hypothesized mechanisms of primary blast-induced TBI. 1) Direct stress 
wave reaching the brain through cavities, 2) coup/contre -coup resulting from translational and 
rotational movements of the brain, 3) shearing of WM tissue resulting in diffuse axonal injury, 
4) skull flexure and direct trauma to the underlying tissue, 5) amplification of the wave by the 

skull, 6) vascular surge. Source: adapted from (Rosenfeld et al., 2013) 

Spallation is the transmission of a shock wave from higher to lower density (Wolf et 

al., 2009). Cavitation occurs when the dissolved gases form bubbles in fluids during 

the negative pressure phase (Wolf et al., 2009). The negative pressure then causes 

the bubbles to implode and expand explosively (Nakagawa et al., 2011). Inertial 
forces are mainly concentrated around the boundaries of tissues with different 

material properties, and create shearing forces, which have mainly been suggested 

by computerized studies and physical models of blast (Goeller et al., 2012). Other 

possible mechanisms also include abrupt acceleration of the brain, causing impact 

with the skull and leading to contusions, hematoma, micro-haemorrhaging or axonal 

injury (Lissner et al., 1960), similar to the mechanism seen in road traffic accidents 

(RTA). Finally, vascular surge is a more controversial mechanism that hypothesizes 

transmission of the pressure through the thoracic cavities, causing increased blood 

pressure within the cerebral vasculature (Bauman et al., 2009, Cernak et al., 2001, 

Simard et al., 2014).  



 

Introduction | A. A. 

27 

 

Ballistic head trauma 

Also referred to as secondary blast injuries, ballistic head traumas are injuries 

sustained from ballistic materials projected through the air and impacting the head 

resulting in a penetrating injury. Military helmets are primarily designed to reduce 

injuries resulting from projectiles. 

Blunt head trauma 

These are injuries resulting from the impact of the head with a blunt object, also 

categorized as tertiary blast injuries. They often cause skull deformations and focal 

damage to the underlying brain tissue at the site of impact, which leads to contusions 

and hematoma, as well as in contrecoup lesions. Blunt trauma triggers rotation and 

acceleration of the brain which can induce strain and shearing to tissues throughout 

the brain.  

1.5.3. Clinical Presentation of bTBI 
It is often easier to diagnose PTSD in returning soldiers than it is to diagnose a history 

of TBI in retrospect. However, even with overlapping synmptomatology for the two 

conditions, each one also presents with specific symptoms (Lash, 2013).  

 

Fatigue, sleep disturbance, memory and attention deficits, depression, anxiety, and 

irritability can be experienced in both cases of PTSD and/or TBI.  

 

TBI can be characterized, among other symptoms, by headaches, dizziness, nausea, 

vision changes and impulsivity. 

 

PTSD can be diagnosed through the presence of alertness and fearfulness, 

flashbacks, paranoia and nightmares, and self-destructive behaviours.  

 

In bTBI specifically, the literature and my work have focused on the middle cerebellar 

peduncle as a structure that might be susceptible to the effect of blast (Bigler et al., 

2007). If the middle cerebellar peduncle is differentially affected in soldiers, then the 

clinical manifestations can include difficulty with motor movements, speech ataxia, 

vertigo, facial weaknesses and deafness among other symptoms.  
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1.6. PATHOPHYSIOLOGY OF TBI 

1.6.1. Dynamic Neurobiological Changes Following bTBI 
Both animal and human studies show that TBI is not a static insult to the brain, but 

rather an initial insult that leads to a cascade of processes (Werner and Engelhard, 

2007). Neurobiological events following TBI might help explain the heterogeneity of 

clinical and cognitive symptomatology seen in patients (Gorgoraptis et al., 2019). In 

the context of dynamic changes, focal damage refers to contusions, haematomas, 

skull deformation or fractures, which arise from the initial impact. Diffuse injuries such 

as axonal injuries or damage to the vasculature are usually due to the 

acceleration/deceleration movement of the head.  

Following the initial insult, dynamic neurobiological changes can be immediate, such 

as ischaemia or increased intracranial pressure (Pinto et al., 2021, Vespa et al., 2016). 

On the long-term, neuroinflammation and neurodegeneration can also arise because 

of TBI, with a clear association with cognitive decline (Schimmel et al., 2017, Graham 

et al., 1995, Graham, 2019). To understand the neurobiological changes in the brain 

following TBI, it is crucial to recognise the mechanisms of injuries and time since injury 

following TBI in any studied population. 

1.6.2. How the Grey Matter is Impacted 
The cortical GM structures of the brain can exhibit focal contusions following impact 

TBI, especially in regions closest to bony protrusions of the skull, namely the temporal, 

orbito-frontal and occipital lobes (Bigler, 2007, Gurdjian, 1975). When focal lesions are 

severe, mortality rate can be as high as 40%, and survivors develop cognitive and 

emotional problems, such as working memory impairment, apathy, and decreased 

awareness (Cicerone et al., 2006, Spikman and van der Naalt, 2010, Andersson et al., 

1999). Months to years after a TBI, patients can exhibit GM atrophy, with research 

suggesting a strong association between TBI and the development of dementia 

symptoms, which further illustrate the long-term sequalae of the injury, with 

accelerated tissue atrophy compared to normal aging (Graham, 2019, Krueger et al., 

2011, Fleminger et al., 2003, Ross, 2011, Sidaros et al., 2009, Cole et al., 2015). 

Although mild TBI does not show a specific pattern of atrophy, moderate-severe TBI 

have more robust generalized and focal patterns of atrophy, with the most commonly 
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affected areas being subcortical GM including the thalamus, hippocampus, and 

cerebellum (Harris et al., 2019).  

1.6.3. How the White Matter is impacted 
Tissue atrophy following TBI is not limited to the GM, with the WM exhibiting greater 

rates of volume reduction with strong association to overall cerebral volume loss, and 

a higher impact on cognition compared to focal GM contusions (Cole et al., 2015, Ding 

et al., 2008). The most common WM regions exhibiting patterns of atrophy are the 

corpus callosum, corona radiata, and brainstem (Harris et al., 2019, Aoki et al., 2012). 

Both anatomical and diffusivity changes in the WM have been extensively investigated 

in patients with TBI. Techniques for diffusion imaging analyses mainly include the 

tensor model, but also diffusion kurtosis imaging (DKI) which assess the non-

Gaussian behaviour of water molecules (Steven et al., 2014), as well as high angular 

resolution diffusion imaging (HARDI) to resolve issues and limitations related to 

crossing fibres (Tefera et al., 2013). Most tensor-based studies report diffusion 

abnormalities following TBI as a decrease in FA, and an increase in mean diffusivity 

(MD) (Shenton et al., 2012). While this pattern of injury is interpreted as a sign of 

cytotoxic oedema 1 , this hypothesis has been challenged (Lipton et al., 2012). 

Microhaemorrhages in the WM are usually a sign of diffuse axonal injury (DAI)(Bigler 

and Maxwell, 2012) , and WM lesions observed as hyperintensities on FLAIR 

sequences can be seen in patients with mild TBI (Bigler et al., 2016), but are much 

more common in cases of moderate-severe TBI. In mild cases of bTBI, lesions were 

shown to influence verbal memory, independently of a diagnosis of PTSD (Clark et al., 

2016).  

Inter-subject variations in FA are considerable in clinical studies of TBI, which directly 

reflects differences in vulnerability, genetics, anatomy, and mechanism (Petrie et al., 

2014, Kim et al., 2013, Lipton et al., 2012, Shenton et al., 2012).  

 
1 Accumulation of intracellular fluid leading to cell swelling. 
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1.7. RESEARCH AND FINDINGS IN BLAST TBI – A 
LITERATURE REVIEW 

 

Routine imaging and clinical assessments are typically unrevealing in mild TBI. 

Advanced neuroimaging and analysis techniques, however, enable quantification of 

structural and functional changes in the brain, at a certain time point or over time, 

following injury. It is believed that the mechanism of bTBI may be different from blunt 

or impact TBI, but still incorporates the rotational and translational aspects known to 

cause damage to the brain in civilian TBI. Does the blast wave itself cause damage 
to brain tissues? It has already been shown to cause damage to the respiratory and 

auditory systems, where cavities are filled with air (DePalma et al., 2005). However, 

very little is known about the effects of the blast’s overpressure/under pressure on the 

central nervous system. This is a question that neuroscientists have been trying to 

answer.  

1.7.1. In-Vitro Investigations  
The first three categories of blast injuries (primary, secondary and tertiary) are 

biomechanically distinct. Therefore, they can be studied independently. In a reduced 

and simplified form, primary injury involves pressure wave transmission. However, the 

portion that converts into injury is unknown. Secondary injuries can translate to a direct 

shearing or section of the tissue and tertiary injuries are modelled by inducing stretch 

actions on the cells. In vitro models enable the study of each mechanism 

independently or together in a controlled environment. Tertiary models of bTBI 

suggest that exposure of brain cells to acceleration/deceleration-like mechanisms 

leads to enhanced or abnormal Ca2+ signalling following astrocytic deformation, 

(key process in the pathogenesis of neurodegenerative diseases) (Lamb et al., 1997, 

Charles et al., 1991, Floyd et al., 2004), (Rzigalinski et al., 1998, Rzigalinski et al., 

1997), free radical generation (Hoffman et al., 2000, Floyd et al., 2001), changes in 
polarization and ions movement (Floyd et al., 2005, Di et al., 2000), increased cell 
death(Glass et al., 2002), and others. Secondary injury models are increasingly 

studied, due to the high mortality rate of penetrating injuries. In vitro, these types of 

injuries are mimicked by direct lacerations of cells, leading to damage of the 

cytoskeleton and microtubules (Lucas and Wolf, 1991, Lucas et al., 1985, Emery et 
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al., 1987) and chemical imbalance (Rosenberg and Lucas, 1996, Rosenberg et al., 

2001) amongst others. As mentioned earlier, the initial phase of the blast consists of 

a wave pressure transmission, followed by the wind force. The transmission of a wave 

through the different tissues of the head is complex to model. The limited research 

available reveals membrane damage and cytokines production (Hariri et al., 1994, 

Howard and Sturtevant, 1997, Murphy and Horrocks, 1993). Just as there is no 

consensus on a single in-vitro model to investigate civilian TBI, it is as, if not more 

challenging to isolate the effects of bTBI for cellular and molecular studies, especially 

for primary blast injuries. The limited literature seems to point at significant intracranial 

pressures transmitting through tissues without shedding light on how this affects 

biological functions.   

1.7.2. Animal Models and Modelling 
Animal models are an essential part of TBI research given the controlled nature of the 

studies. Mechanisms can be isolated and examined, and variables can be investigated 

in a way that can’t be done for soldiers returning from the battlefield. Animal models 

of bTBI usually include mice, rats, pigs, and non-human primate. However, the main 

issue with animal models is interspecies scaling and anatomical differences when 

translating to possible findings on humans (Goldstein et al., 2014). For non-human 

primates and pigs, translation is easier given that they have large, gyrencephalic 

brains. However, these models are less cost-effective and require more ethical 

guidelines. The location, nature, and severity of the primary injury as well as all the 

other factors such as age, health, gender, medical conditions, genetics and substance 

abuse explain the heterogeneity of pathophysiology of TBI. To overcome this and 

confidently study the effect of each variable, animal models of TBI are designed to 

reflect a homogeneous injury. The problem however remains the limited possibility to 

fully exhibit all aspects of the injuries as observed in humans. This may also explain 

why drugs and protective equipment that might seem promising in pre-clinical studies 

fail translation (Marklund et al., 2006). Unquestionably, however, preclinical studies 

are essential to understand the biomechanical, cellular, and molecular properties of 

bTBI in human, which are challenging to address in deployment or even clinical 

setting. Animal models of the injuries can also assist in the development of protection 

or treatment strategies. In the context of bTBI, models of rodents (Long et al., 2009, 

Cheng et al., 2010, Wang et al., 2011) and swine (de Lanerolle et al., 2011, Bauman 
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et al., 2009) are commonly used, even when investigating changes in cognition and 

addiction behaviours (Muelbl et al., 2018). Non-impact models develop diffuse 
oedema, vasospasm and hypermia (Cernak et al., 1996). Diffuse axonal injury 

and cognitive deficits were the most noticeable aspects of longitudinal follow-up 

findings (Saljo et al., 2009, Kuehn et al., 2011). The main concern with animal models 

of bTBI however is the focus on tissue destruction, while clinically the most prominent 

effect is not structural but functional (DeWitt and Prough, 2009). To replicate blasts in 

controlled lab environments, shock tubes are most used. However, these also present 

heterogeneity, especially across studies, rendering aggregation and evaluation of 

bTBI research difficult (Agoston and Kamnaksh, 2015). Shock tube experiments cause 

TBI-like symptoms with hypotension and possible internal haemorrhage and lung 

injuries (DeWitt and Prough, 2009), as well as post-trauma seizures and increased 

neuronal excitability (Bugay et al., 2020). Although it is challenging to validate bTBI 

animal models without more precise human data, these studies reproduce many of 

the known neuropathological and behavioural outcomes clinically described in 

humans after sustaining bTBI, such as vasospasm, contusion, axonal injuries, 
oedema, and haemorrhage (Armonda et al., 2006, Schwartz et al., 2008). 

Computational modelling and mathematical techniques also allow us to overcome the 

complexity of studies involving humans and animals. Computational models of the 

blast wave as well as that of the human head/brain can predict how different blast 

parameters will affect neurological changes. These models usually rely on a deep 

understanding of the human brain anatomy, long term potential outcome, as well as 

the physics of blast waves. This field is still relatively new, and the intricacy of 

associated and interdependent variables can hinder such investigations (Przekwas et 

al., 2016, Gupta and Przekwas, 2013). Finite element modelling 2 (FEM) is one of the 

popular computational methods used to replicate bTBI in controlled experiments.  

 

 
2 FEM subdivides an element into its smaller constituents or finite elements by reconstructing the mesh 

of the element.   
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Figure 6: Example of a basic finite element model of the human head. Source: (Im et al., 2008) 

High strain-rates generated by blast waves affect the anisotropy of WM tracts (Chen 

WW, 2010), in similar patterns to that seen in contact sports-related TBI (Zhang et al., 

2004, Casson et al., 2008). A high-fidelity FEM model (skull, skin, grey and white 

matter) and an MRI based semi-automatic image segmentation (Lagravere et al., 

2008, Moore et al., 2009) show a direct propagation of the wave into the brain in all 

blast cases, with stresses developing around areas known to be vulnerable in other 

non-blast TBI at an exposure to 0.324 kg TNT and 0.6 m from the source (Moore et 

al., 2009). Shear stresses, strains and tissue displacements, but also the duration 

of the blast load play a major role in brain tissue injuries, with the first peak causing 

maximum damage, and subsequent fluctuations being able to cause severe injuries, 

and trauma being lower in closed and confined spaces (Chaloner, 2005, Rezaei et al., 

2014, Ommaya, 1995). More recently, it was shown that CSF cavitation leads to 

strain rate increase which is caused by the rapid head motion and rarefaction waves 

(Yu et al., 2020). 

1.7.3. Post-Mortem Investigations and Serum Measures 
Getting closer to what happens to the human brain during and after exposure to blast, 

a post-mortem case study published in Lancet (Shively et al., 2016) claimed to 

characterize a unique biomarker of bTBI. Analysing brain specimens from five 

deceased veterans with histories of chronic exposure to blasts and PTSD diagnosis, 

they revealed a pattern of astroglial scarring at the boundary between brain tissues 

and fluids. This has yet to be validated, but research from our group on a porcine 

model of bTBI reveals similar findings. Before this study, very few cases of bTBI 

described a chronic traumatic encephalopathy (CTE)-like pathology (Omalu et al., 

2011, Goldstein et al., 2012). Contradictory findings reveal axonal pathology but no 

evidence of CTE (Ryu et al., 2014). Disruptions caused by blast-TBI can cause short- 

and long-term changes at the cellular and molecular level (Gupta and Przekwas, 2013, 

Przekwas et al., 2016) which can in turn lead to changes in the concentration of 
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circulating biomolecules available for detection. Longitudinal blood analysis of soldiers 

pre- and post-deployment investigating the association between inflammatory 

cytokines and mild/moderate-severe TBI reveal a decrease in pro-inflammatory 
interleukins and glycoprotein during the chronic phase of bTBI (Rusiecki et al., 

2020). Developing a fluid biomarker of blast TBI can help with the rapid diagnosis or 

to track the progression of the underlying neurophysiological changes, especially in 

the context of battlefields where acute interventions are limited. 

1.7.4. Clinical and Cognitive Observations Following Blast-
Induced TBI 

Understanding how bTBI translates into clinical, neurobehavioral, and cognitive 

symptoms is an essential part of the development of protective equipment, treatment, 

prognosis, management, and establishing a framework for rehabilitation for returning 

soldiers. However, specific long-term outcomes and their biological underpinnings in 

the military populations are not fully understood. Although research effort is being 

devoted to this area, it is still far behind compared to TBI in civilian populations 

(Lamberty et al., 2013). Therefore, most of our knowledge related to the effects of bTBI 

come from studies of civilian non-blast TBI. 

Neuroradiological and sensory impairments 

Exposure to blast can lead to injuries ranging from mild to fatal. Neuroradiological 

abnormalities include contusions, oedema, hematomas, swelling, and 
haemorrhage (Schwartz et al., 2008, Levi et al., 1990, Ling et al., 2009). During 

deployment, CT scans might be available, but MRI scans cannot be transported to the 

battlefield. Although CT scans can reliably detect gross structural brain damage,  it 

cannot detect abnormalities related to mild TBI (Borg et al., 2004), while MRI is much 

more sensitive to abnormalities such as diffuse axonal injury and cerebral contusions. 

This limits acute diagnostic or imaging data from soldiers. There have also been 

clinical observational studies on visual deficits, many of which reported abnormalities 

in soldiers having sustained bTBI (Pogoda et al., 2012, Magone et al., 2014, Lew et 

al., 2011, Goodrich et al., 2013). Several studies also reported dual sensory 
impairment, which describes both visual and auditory deficits in soldiers with a history 

of bTBI (Lew et al., 2009, Saunders and Echt, 2012, Lew et al., 2011). 
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Cognitive impairments 

The issue with neuropsychological assessment is the lack of homogenous longitudinal 

approach. Early evidence suggests a pattern of cognitive impairment similar to 
civilian TBI (Belanger et al., 2009). As mentioned previously, primary blast injury 

mostly occurs concurrently to other types of TBI, commonly seen in civilians, rendering 

causal factors for differential neurological impairments challenging to assign to a 

specific mechanism of injury. Some studies have examined cognition at the acute 

stage of bTBI (Kennedy et al., 2012, Coldren et al., 2010), but there were no follow-

up investigations that systematically followed performance trajectories chronically to 

uncover long-term recovery patterns. Other studies have looked at pre-deployment 

neuropsychological performance as a control for post-deployment measures 

(Vasterling et al., 2012, Roebuck-Spencer et al., 2012), and reported no lasting 
cognitive impairments in soldiers having sustained a bTBI. Reported cognitive 

performance (or subject performance) was much more affected in soldiers than in 

civilians with TBI. However, objective measures obtained from cognitive test scores 

were almost similar between the two groups (Nelson NW, 2015). When comparing 

soldiers with bTBI but no ongoing psychological or emotional disturbances to soldiers 

with no TBI, there is no evidence of lasting cognitive impairments (Shandera-Ochsner 

et al., 2013). However, there is evidence that PTSD or other psychopathology impact 

cognitive measures (Vasterling et al., 2012, Nelson et al., 2015, Shandera-Ochsner et 

al., 2013). Most impairments were seen in complex attention, executive function 

and memory and learning, (Vanderploeg et al., 2005, Ruff and Jurica, 1999, 

Bogdanova and Verfaellie, 2012).  

Stress and other comorbidities 

Stress-related symptoms, particularly PTSD are amongst the most common problems 

in soldiers post-deployment (Hoge et al., 2008), with anywhere between 4% and 33% 

of returning soldiers being affected (Gates et al., 2012). Because PTSD is easier to 

diagnose than bTBI, especially in the chronic phase, there are much more studies 

focused on PTSD in soldiers than those focused on bTBI. PTSD is mostly expressed 

by re-experiencing, avoidance, and hyperarousal, as well as cognitive deficiencies 

also seen in soldiers with bTBI including attention, memory and executive function. 

PTSD is also associated with cognitive inefficiencies in the domains of attention, 
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executive function, and memory (JJ Vasterling, 2005, Vasterling et al., 2012). A 

hypothesis suggests that bTBI increases the susceptibility of brain regions that lead to 

a greater expression of PTSD (Averill et al., 2018), and that deployment-related stress 

has lasting effects on the brain, creating heightened vulnerability. Even in the absence 

of a diagnosis for PTSD, neuropsychological functioning can be impacted due to 

prolonged stress exposure (Vasterling et al., 2006, Vasterling and Proctor, 2011). 

Activation of the autonomic and endocrine systems are usually involved in detection 

and reaction to threats, and the production and release of corticosteroids (eg, 

cortisone, hydrocortisone, & prednisone) following the normal hypothalamic–pituitary–

adrenal (HPA) axis response (van Bodegom et al., 2017). Corticosteroids can bind to 

receptors primarily located in the limbic region, particularly the hippocampus. Stress 
hormones can impact different neurobiological processes such as cognition, emotion, 

and behaviour (Yaribeygi et al., 2017), as well as widespread inflammation and 

chronic pain (Kinlein et al., 2015).  

Other common issues are related to sleep disturbances such as nightmares or 

insomnia, which overlap with PTSD symptoms, and these disturbances increase in 

the presence of PTSD (McLay et al., 2010, Seelig et al., 2010). As many as 70% of 

returning soldiers can experience insomnia (Germain et al., 2014). It is important to 

note that clinically significant relationships have been established between cognitive 

impairment and chronic insomnia, especially related to attention and episodic memory 

(Fortier-Brochu and Morin, 2014). Soldiers with bTBI also report higher incidence of 

headaches and chronic pain (Finkel et al., 2017, Phipps et al., 2020, Seelig et al., 

2010).  

Set-up of literature review 

Since this thesis will be focusing mainly on neuroimaging analysis of human brain 

scans, I carried out a systematic review of the literature to underline the weaknesses 

and challenges to set up an impactful research on overlooked aspects and fill in the 

missing gaps in human bTBI investigations. The literature review spanned the most 

common neuroimaging techniques: structural and functional magnetic resonance 

imaging (fMRI), diffusion-weighted imaging (DWI), positron emission tomography 

(PET), electroencephalography (EEG), magnetoencephalography (MEG), magnetic 

resonance spectroscopy (MRS) and single-photon emission computed tomography 

(SPECT).  Below is a description of the studies found, as well as an assessment of 
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the conclusion, what is missing and the best practices to move the field of bTBI 

imaging forward. The search was carried out for published articles on PubMed, 

between 2009 and 2020 (Table 3). Exclusion criteria included: non-human imaging 

and non-clinical studies, languages other than English, studies without a stand-alone 

military group, military studies without a focus on traumatic brain injuries, reviews, 

case reports and abstracts. A total of 77 articles (Table 4) met the search criteria. 

Table 3: PubMed search for literature review 

OR  OR  OR 

Blast 

Explosion 

Explosive 

IED 

Improvised explosive 

device 

Veteran 

Military 

Combat 

  

AND Traumatic brain injury 

TBI 

Concussion 

Brain Injury 

mTBI 

mild traumatic brain injury 

AND Imaging 

Neuroimaging 

MRI 

DTI 

fMRI 

PET 

SPECT 

MEG 

EEG 

CT 

 

Using google trends for analysis (https://www.google.com/trends), trends for 

publication dates show an increase in research focusing on bTBI imaging between 

2013 and 2016. This corresponds to a worldwide interest in the terms “bombs” and 

“explosion”, peaking in April 2013 and reflected by the google searches of these terms 

(Figure 7). The highest percentage of searches is in the United States, which also 

sees the highest numbers of publications relating to bTBI. The United Kingdom’s 

search is 4th worldwide. The sudden increased interest similarly maps to the total 

number of terrorism-related episodes that peaks in 2009 and serves as the cut-off year 

for my literature review (Figure 7). This clearly illustrates the need for medical and 

scientific research in the field of blast injuries.  
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Figure 7: Trends of interest. A) Trends of neuroimaging publications with a focus on blast 
traumatic brain injury, B) Google trends data: worldwide civilian search for terms “Bomb” and 

“Explosion” since 2004, C) Number of terrorism incidents per year. Terrorism defined as 
threat or use of illegal violence, fear or intimidation for political, social, religious or economic 

gain. Source: Terrorism incidents – Global Terrorism Database 
(https://ourworldindata.org/terrorism) 

I have grouped the findings of the literature review based on the different imaging 

techniques, the analysis methods and the main findings (Table 4).  

 
Table 4: Results of the literature review, reporting methods and main findings for the different 

neuroimaging modalities used (number of publications (n) & reference) 

 MRI DWI fMRI PET EEG MEG 
SPECT 
and/or 
MRS 

Number of studies 13 33 20 5 2 3 3 

Techniques 

Subcortical 
segmentations 

3 
(Lopez-Larson et al., 

2013, Tate et al., 
2016, Davenport et 

al., 2018) 

1 
(Waltzman et al., 

2017) 
- - - - 

2 
(Kontos et al., 

2017, 
Hetherington 
et al., 2014) 

Cortical 
thickness 

3 
(Lindemer et al., 

2013, Michael et al., 
2015, Clark et al., 

2018) 

 - - - - - 

Multimodality 

4 
(Lopez-Larson et al., 

2013, Yurgelun-
Todd et al., 2011, 
Bazarian et al., 

2013, Tate et al., 
2017) 

7 
(Mac Donald et al., 
2011, Costanzo et 
al., 2014, Matthews 
et al., 2011b, Petrie 
et al., 2014, Huang 

et al., 2009, 
Sponheim et al., 

2011, Waltzman et 
al., 2017) 

- 
1 

(Petrie et al., 
2014) 

1 
(Sponheim et 

al., 2011) 
- - 
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Cognitive and/or 
behaviour tests 

2 
(Clark et al., 2016, 
Depue et al., 2014) 

2 
(Miller et al., 2017, 
Sorg et al., 2014) 

3 
(Matthews et 
al., 2011a, 

Scheibel et al., 
2012, 

Matthews et 
al., 2011b) 

3 
(Stocker et 
al., 2014, 

Peskind et 
al., 2011, 

Mendez et 
al., 2013) 

1 
(Shu et al., 

2014) 

1 
(Huang et al., 

2014) 
- 

Voxel-based 1 
(Depue et al., 2014) 

1 
(Trotter et al., 2015) 

- - - 
1 

(Huang et al., 
2017) 

- 

Freesurfer 
2 

(Michael et al., 2015, 
Tate et al., 2016) 

- - - - - - 

Neuroradiological 
evaluation 

1 
(Tate et al., 2017, 
Clark et al., 2016, 

Savjani et al., 2017, 
Davenport et al., 

2018) 

- - - - - - 

Tensor-based 
2 

(Lopez-Larson et al., 
2013, Yurgelun-

Todd et al., 2011) 

14 
(Kamnaksh et al., 

2014, Hayes et al., 
2015, Davenport et 
al., 2015b, Levin et 

al., 2010, Mac 
Donald et al., 2013, 

Matthews et al., 
2012b, Sorg et al., 
2016, Taber et al., 

2015, Delano-Wood 
et al., 2015, Ware et 
al., 2016, Davenport 
et al., 2015a, Petrie 

et al., 2014, 
Venkatasubramanian 
et al., 2020, Adam et 

al., 2015) 

- 
1 

(Petrie et al., 
2014) 

- - - 

Tractography - 
2 

(Clark et al., 2017, 
Yeh et al., 2017, 
Main et al., 2017) 

- - - - - 

HARDI - 1 
(Morey et al., 2013) 

- - - - - 

Resting-state - 
2 

(Costanzo et al., 
2014, Matthews et 

al., 2011a) 

5 
(Han et al., 

2014, Gilmore 
et al., 2016, 
Newsome et 

al., 2016, 
Spielberg et 

al., 2015, 
Robinson et 

al., 2017) 

- - - 
1 

(Raji et al., 
2015) 

Task-based - - 

7 
(Matthews et 
al., 2012a, 

Fischer et al., 
2014, 

Scheibel et al., 
2012, Roy et 

al., 2010, 
Newsome et 

al., 2015, 
McGlade et 

al., 2015, van 
Rooij et al., 

2015) 

- - - - 

FDG-PET - 1 
(Petrie et al., 2014) 

- 

3 
(Stocker et 
al., 2014, 

Buchsbaum 
et al., 2015, 
Peskind et 
al., 2011) 

- - - 

Other 
2  

(Cheng et al., 2010, 
Tate et al., 2017) 

3 
(Miller et al., 2017, 
Jorge et al., 2012, 
Main et al., 2017) 

2 
(McGlade et 

al., 2015, 
Robinson et 

al., 2017) 

1 
(Mendez et 
al., 2013) 

- 
1 

(Huang et al., 
2012) 

- 

Results 

Volume change 

5 
(Lopez-Larson et al., 
2013, Depue et al., 
2014, Michael et al., 

2015, Tate et al., 
2016, Savjani et al., 

2017) 

- - - - - - 

No Volume 
change 

2 
(Davenport et al., 

2018, Kamnaksh et 
al., 2014) 

1 
(Waltzman et al., 

2017) 
- - - - - 

Reduced FA 1 14 - 1 1 - - 
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(Yurgelun-Todd et 
al., 2011) 

(Hayes et al., 2015, 
Sorg et al., 2016, 
Taber et al., 2015, 
Yeh et al., 2014, 

Petrie et al., 2014, 
Delano-Wood et al., 
2015, Ware et al., 
2016, Yeh et al., 

2017, Isaac et al., 
2015, Matthews et 

al., 2012a, Mac 
Donald et al., 2013, 

Costanzo et al., 
2014, Waltzman et 

al., 2017, Main et al., 
2017, Adam et al., 

2015) 

(Petrie et al., 
2014) 

(Sponheim et 
al., 2011) 

Lesions 
3 

(Clark et al., 2016, 
Riedy et al., 2016, 
Tate et al., 2017) 

1 
(Levin et al., 2010) 

- - - - - 

No FA change - 
3 

(Kamnaksh et al., 
2014, Levin et al., 

2010, Davenport et 
al., 2015b) 

- - - - - 

Altered 
connectivity 

and/or activation 
- 

4 
(Clark et al., 2017, 

Costanzo et al., 
2014, Huang et al., 
2009, Sponheim et 

al., 2011) 

11 
(Han et al., 

2014, 
Matthews et 
al., 2012a, 

Matthews et 
al., 2011a, 

Scheibel et al., 
2012, Gilmore 
et al., 2016, 
Newsome et 

al., 2015, 
Spielberg et 

al., 2015, van 
Rooij et al., 
2014, van 

Rooij et al., 
2015, 

Brashers-Krug 
and Jorge, 

2015, Fischer 
et al., 2014) 

- 
2 

(Shu et al., 
2014, 

Sponheim et 
al., 2011) 

3 
(Goldstein et 

al., 2012, 

Lopez-Larson 

et al., 2013, 

Scheibel et 

al., 2012) 

1 

(Kamnaksh et 

al., 2014) 

Normal activation - - 
2 

(Newsome et 
al., 2015, van 
Rooij et al., 

2015) 

- - - - 

Abnormal 
metabolites 

and/or 
metabolism 

- 1 
(Petrie et al., 2014) - 

4 
(Petrie et al., 

2014, 
Buchsbaum 
et al., 2015, 
Peskind et 
al., 2011, 

Mendez et 
al., 2013) 

- - 
2 

(Kontos et al., 
2017, 

Hetherington 
et al., 2014) 

Other 
1 

(Bazarian et al., 
2013) 

5 
(Miller et al., 2017, 
Jorge et al., 2012, 
Huang et al., 2009, 
Trotter et al., 2015, 
Mac Donald et al., 

2019) 

3 
(Michael et al., 

2015, 
Newsome et 

al., 2015, 
Robinson et 

al., 2017) 

- - - - 

 

Structural findings 

Most of the reported cases of civilian and military TBI are mild, as compared to 

moderate or severe. In the case of mild TBI, acute scans are usually unremarkable, 

and visual inspection by neuroradiologists do not reveal much about structural or 

functional damage. Across 12 structural MRI reports, regions with volume change 

include mainly the frontal and temporal lobes (Tate et al., 2014, Lindemer et al., 

2013, Clark et al., 2018), as well as subcortical areas mainly amygdala and thalamus 

(Lopez-Larson et al., 2013, Depue et al., 2014). Other studies did not find any 
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volumetric changes (Davenport et al., 2018). The widespread nature of volumetric 

changes is consistent with the diffuse aspect of blast wave. Changes to cortical and 

sub-cortical structures can either be a lasting effect of direct trauma to the head, or a 

latent effect due to microstructural damage to the WM. This can be studied by 

understanding the interaction between structure change and connectivity 

simultaneously. 

Diffusion findings 

Most DTI studies report measures of fractional anisotropy (FA), which describes the 

movement of water molecules within tracts. FA typically decreases when tracts are 

damaged. This quantification of microstructural changes in the WM is well-established 

and commonly used in clinical studies (Hulkower et al., 2013). Other metrics can be 

calculated from the tensor model, including axial, radial and mean diffusivity (AD, RD, 

MD). However, very few of the 31 DWI papers report them. Is it because of negative 

results or because of lack of investigations?  It is therefore difficult to draw definitive 

conclusions about diffusivity patterns before further investigations. In the cases where 

metrics other than FA are used, there is an overlap. Studies looked at either whole-

brain spatial statistics, or tracts-specific statistics, or both approaches 

(Venkatasubramanian et al., 2020, Levin et al., 2010, Yeh et al., 2014, Huang et al., 

2009). Tracts commonly affected in bTBI are the superior longitudinal fasciculus 

(SLF) (Yeh et al., 2017, Matthews et al., 2011b, Petrie et al., 2014, Matthews et al., 

2012b), the different regions of the corpus callosum (CC) (Venkatasubramanian et 

al., 2020, Mac Donald et al., 2011, Yeh et al., 2017, Morey et al., 2013), thalamic 
radiations and internal capsule (Yeh et al., 2017, Sponheim et al., 2011, Mac 

Donald et al., 2013, Sorg et al., 2014). Most of the studies performed comparisons at 

group level, which is common in DTI investigations. A few studies performed subject-

level assessments, an approach that needs to be even more incorporated in future 

studies to understand how the biomechanics of the injury are associated with the 

neurological outcomes (Mac Donald et al., 2011, Mac Donald et al., 2013).  As 

mentioned earlier, a clearer image of why certain areas are more vulnerable can be 

understood by using multi-modality comparisons, or even computational simulation of 

injury predictions. Longitudinal follow-up studies are also essential to uncover the 

long-term impact of bTBI (Mac Donald et al., 2019).   
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Among the studies that directly compared soldiers with bTBI to deployed soldiers 

without bTBI, (Bazarian et al., 2013, Davenport et al., 2012, Jorge et al., 2012, Levin 

et al., 2010, Mac Donald et al., 2011, Morey et al., 2013, Sorg et al., 2016), only two 

reported group differences, with no overlap in the reported regions with WM 

abnormalities. A possible explanation for the low findings that detect group differences 

in FA measures using standard neuroimaging techniques such as voxel-wise 

comparisons is that the effects of bTBI are spatially heterogeneous in subjects. Some 

studies already seem to support this hypothesis, showing that soldiers with bTBI have 

more ROIs or voxels with a decrease in anisotropy (Mac Donald et al., 2011, Mac 

Donald et al., 2013, Davenport et al., 2012, Jorge et al., 2012)  which points to bTBI 

being associated with WM abnormalities, varying in location and intensity, even if a 

definite pattern does not emerge consistently. 

Functional findings 

20 of the reported studies used functional neuroimaging for their investigations. fMRI 

measures blood flow to specific areas of the brain, which represents the metabolic 

demand driven by neuronal activity. In other words, it reflects the activation or 

deactivation of certain areas of the brain in response to stimuli or in rest conditions. 

As with other techniques, the studies varied on different levels. 25% used resting-state 

fMRI, 35% used task-based fMRI, with heterogeneous tasks and dissimilar analysis 

methods (Costanzo et al., 2014, Han et al., 2014, Scheibel et al., 2012). Most of the 

studies however show abnormal activations of different brain regions. Difficulty with 

working memory is often reported following both blast and non-blast TBI (Rosenfeld 

and Ford, 2010, Vanderploeg et al., 2009). Studies suggest that the neural network 

associated with working memory include the pre-frontal cortex, temporal cortex, 

parietal cortex, and cerebellum (Drobyshevsky et al., 2006, Ranganath and 

D'Esposito, 2005, Owen, 2000). 

Brief conclusion 

The findings are not surprising since they are in line with the known biomechanical 

susceptibility of the brain when exposed to translational and rotational forces. What is 

still obscure is how the injuries caused by blast differ from other widely researched 

forms of TBI. This can only be accomplished by having a non-blast TBI group as a 

controlling factor to weaken the effect of secondary/tertiary insults. The importance of 



 

Introduction | A. A. 

44 

 

distinguishing between the different forms of damage lies mainly in the understanding 

of mechanical properties of different insults for the development of protective 

equipment and treatment strategies. The nature of exposure to blasts is hard to assess 

given the lack of validated method for quantifying injury severity. Another challenge of 

bTBI research in humans is the circumstances in which injuries occur, 50% of which 

happen during active combat. Injuries are often under-reported, and it is highly 

exceptional to have acute neuroimaging data or neurological diagnosis. Adding to the 

complexity stated above, the comparison of existing studies is rendered tricky due to 

the small number of findings, the negligible overlap of results, the operational 

heterogeneity at the level of methodology, and the difficulty to control for the variations 

between cases. Drawing conclusions this early is still impossible. Therefore, 

methodological consistency as well as targeted controlling factors are essential in 

future studies aiming directly at understanding bTBI. 
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1.8. CURRENT LIMITATIONS IN THE NEUROIMAGING 
DETECTION OF BLAST-INDUCED TBI 

1.8.1. Issues with Controlling Factors 
There is an important variability regarding inclusion criteria among different studies, 

as well as a heterogeneity of the composition of the control groups (Phipps et al., 

2020). However, it is crucial to note a main trend: the participants tend to be recently 

deployed and active or retired and with a diagnosis of PTSD and/or bTBI (Davenport 

et al., 2015a, Norris et al., 2014, Barlow-Ogden and Poynter, 2012).  

Because of the nature and conditions in which bTBI tend to occur, different injury 

mechanisms (section 1.5.2) as well as comorbid conditions are common in soldiers 

with bTBI. However, more data and research is needed to understand the 

contributions of primary injuries exclusively, or pure blast wave in bTBI. It is therefore 

essential to evaluate and compare the effects of bTBI to other mechanisms of brain 

injuries, especially on military vs civilian population which is still scarce in the current 

literature 

Going forward, it is important to control for  

1) The difference between blast and civilian TBI to better understand neurological 

biomarkers exclusive to bTBI and introduce new hypotheses in relation to the 

contribution of primary injuries exclusively. 

2) Understand how the absence of PTSD diagnosis can impact some of the results 

currently seen in the literature, mainly regarding neuropsychological and 

cognitive measures, as well as specific neuroimaging patterns that seem to be 

related to PTSD, such as a decrease in hippocampal volume (Logue et al., 

2018). This is significant to better discriminate between bTBI and PTSD 

considering the similarity in clinical symptomatology. 

1.8.2. Issues with Homogeneity of Studies and Neuroimaging 
Analyses 

Blast-related TBI studies are plagued by inconsistent diagnostics and different 

assessment approach (Greer et al., 2018, Phipps et al., 2020), with many studies 

using self-report measures. In the context of neuroimaging analyses techniques, 

different approaches can lead to different results, therefore biasing interpretation of 
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the outcome. Although it is outside the scope of this thesis to standardize diagnostics 

and reporting of bTBI (Phipps et al., 2020), it is possible to improve the standardization 

of neuroimaging research protocols to encourage reproducibility in different cohorts 

and different demographics of patients with bTBI, and diagnostics technologies to 

detect injuries specific to blast exposure given the great need to understand outcome 

resulting from different types of blast exposures. DTI is of particular interest in this 

context because of the lack of detectable abnormalities with conventional CT or MRI 

imaging that used routinely for diagnosis. This is an aspect of the field I strongly focus 

on in this thesis. 

1.8.3. Civilian Considerations 
In first world countries, what was formerly injuries confined to military personnel 

became a reality for their population when IEDs were deployed among civilian 

populations for terrorist attacks. Unfortunately, in other countries serving as the 

battlefield of both civil and proxy wars, this has always been a horrible reality. The 

absence of emergency care, as well as protective equipment such as helmets and 

body armour worsen the outcome and mortality of blast injuries in civilians, making 

extrapolation from military investigations flawed. However, the literature is almost non-

existent to describe or understand bTBI in civilians. Resilience and community 

experience plays a big role in the recovery process and understanding the 

psychological and sociological implications of such events can also help military 

research. 
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CHAPTER 2  
Materials & Methods 

 
 
 
 
 

 

 

 

 

 

 

 

In this chapter, I present the materials and methods used for my studies. I only 

describe relevant concepts that will be mentioned in subsequent chapters, without 

details of possible alternative protocols and methodologies. I begin by introducing the 

notions of structural and diffusion imaging, some of the main analyses used with these 

modalities, relevant neuropsychology and endocrinology measures, as well as some 

of the statistical methods used and the pitfalls of current methods.  
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2.1. STRUCTURAL IMAGING OF THE BRAIN 

2.1.1. Historical Background 
For more than two centuries, scientists have been trying to map the brain’s structure 

and understand its typical and pathological functions. In the early 19th century, 

phrenologists were the first to propose popular methods according to which the 

amount of brain tissue of a specific cognitive function influences the behaviour. 

Although, at the time, it was impossible to measure cortical volumes, the assumption 

was that increased brain size can be measured through bumps on the skull.  

Fast forward to 1968, when the first nuclear magnetic resonance (NMR) signal was 

acquired from a rat. As by-products of wartime development of the radar, the injection 

of radiofrequency expertise as well as the availability of stable new frequency sources, 

made the demonstration of NMR possible. A few years later in 1971, Damadian reports 

on the capability of the NMR signal to differentiate tumours from normal tissues. 

Magnetic Resonance Imaging (MRI) was invented by physicist Paul C. Lauterbur who 

used magnetic field gradients to encode spatial information into the NMR signal and 

published his invention in March of 1973. Images acquired through MRI of the head 

provided excellent anatomical details with stronger grey/white matter contrast 

compared to images from other modalities. Other techniques soon followed, such as 

the flow-sensitive techniques, developed in the 1980s. These measures of the blood 

flow velocity were considered the first one not to be purely structural in nature. A major 

leap in neuroimaging happened with the development of functional MR imaging 

(fMRI), in 1990.  

Although crucial work to develop the field has been occurring for over a century, it is 

fair to say that most of the research around the brain and its function and 

cognitive/behavioural neuroscience in general has transpired over the past few 

decades because of its prominence in the scientific literature for researchers in the 

field, as well as in the media for the general public, due mostly to the human fascination 

with the brain-mind questions. The field continues to grow, with practical applications 

of functional brain imaging becoming feasible in the 2000s with the development of 

brain-computer interfaces.  

 

2.1.2. MRI Definition, Physics and Principles 
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The fundamental principle of MRI is that an atomic nucleus can act like a magnet, 

interacting with magnetic fields, thus allowing us to measure and even manipulate their 

magnetic state without damaging them and without interfering with any biological 

process that involves nuclei and molecules. Different elements can exhibit the 

necessary properties of magnetic resonance. However, MRI applications rely on the 

hydrogen atoms of the water molecules because of their abundance in the human 

body. 

 

Figure 8 Hydrogen atoms in a water molecule. 

A very strong magnetic field is required to interact with the hydrogen atoms. Just like 

a magnet, a hydrogen atom has an orientation with a north and south pole. In the 

absence of a magnetic field, the hydrogen atoms point in different and random 

directions, so the overall orientation of the magnetization from summing individual 

charge contribution is null, in which case, a signal can’t be detected. In the presence 

of a strong magnetic field, the nuclei will start pointing in the same direction and along 

the main field. This strong magnetic field (the B0 field) arise from a large 

superconducting coil that defines the strength of the MRI scanner, which is usually 

reported in tesla (or T). For example, the scanners used in the studies detailed below 

are 3T scanner: a scanner in which the B0 field is 3 tesla.  

 
Figure 9 Hardware and composition of an MRI scanner (Michael Chappell, 2018) 

Although alignment with the field is favoured in the presence of a strong magnetic field, 

at normal room temperature hydrogen atoms pointing in the opposite direction to the 

B0 field is very low (in the order of one in one million).  
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Figure 10 Macroscopic magnetization of hydrogen nuclei aligning with the B0 field. Source: 
unil.ch  

When magnetization is achieved, the nuclei can be shifted out of alignment with the 

B0 field, leading to a precession, or rotation of the nucleus around the axis of the main 

field in a circular path. The frequency of this rotation is proportional to the strength of 

the main magnetic field (the B0 field), and the Larmor Equation governs the 

relationship between the frequency of the rotation of the nucleus and the field (Figure 

11). 

 

Figure 11 Example of hydrogen nucleus aligning to an external field and its precession 
properties. The Larmor equation is described on the left. The grey sphere represents the 

hydrogen nucleus, the dashed line represents the precession around the B0 field axis. 

The net magnetization of hydrogen nuclei described above varies with time and 

generates a change in the magnetic field that can be measured by the head coil in the 

tens of MHz. As the magnetization loses its alignment with the B0 field through 

excitation, and varies with time at the Larmor frequency, the resulting magnetic field 

oscillates at the same frequency called the B1 (or RF) field, that, given the coil 

orientation, is perpendicular to the B0 field. The resulting effect is to change the 

orientation of magnetization away from B0 and into the transverse plane through 

excitation. For spatial localization of the signal, extra fields (gradient fields) are 

created by three different gradient coils (for the three orientations in space).  
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Excitation of atoms is thus used to disturb the magnetization and measure the signal 

created from the tissues that have been excited. The signal received by the coil can 

be separated through the Fourier Transform, to separate out the different parts of 

the signal and relate them to spatial positions. This is the Gradient Recalled Echo 

(GRE). In more simplistic terms: RF signal (excitation) + spatial gradient Æ readout 

signal (echo). To produce a readable image, we exploit the relaxation properties of the 

hydrogen nuclei. Relaxation is the return of the net magnetization to the B0 alignment 

following excitation by the B1 field.  T1 (longitudinal) and T2 (transverse) relaxations 

are two processes that happen simultaneously. T2 is the time required for the 

transverse magnetization (perpendicular to the B0 field) to fall to approximately 37% 

of its initial value. The decay of this signal can generate a contrast since different brain 

tissues have different inherent T2 values. Echo time (or TE), is the time between 

excitation and measure of the signal. TE should be optimized for best contrast. 

T1 relaxation is the recovery of the component parallel to the main field. T1 decay is 

much slower than T2 decay and happens over a few seconds. The repetition time 

(TR) is the time between successive excitation, which impact largely on timing and 

contrast. TR needs to be optimized for greatest contrast between the different tissue 

types (GM, WM and CSF) possessing different relaxation times. 

 
 

Figure 12 Different relaxation properties of tissues, and resulting images. 

2.1.3. Anatomy in Neuroimaging 
Major anatomical axes within the brain are named following a standard convention: 

superior– inferior, anterior–posterior, and left–right (or S-I, A-P, and L-R for short).  
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Figure 13: Illustration of GM and WM tissues. As seen post mortem (up-left) and in a T1-
weighted MRI image(up-right), with a microscopic transverse slice (down-left) of a myelinated 

WM axon and a schematic of a neuron (down-right). Source: fmrib.ox 

Different planes resulting from the 3D imaging also have standard names: coronal 

(superior/inferior and left/right), sagittal (superior/inferior and anterior/posterior), and 

axial (anterior/posterior and left/right). Navigation around the brain images also rely on 

the different lobes: frontal, occipital, parietal, and temporal. Other than the major lobes, 

finer and more detailed structures are also distinguished on neuroimaging data: They 

include the lateral ventricles, the brainstem, the cortex, the corpus callosum, the 

cerebellum, the different types of tissues from WM, to CSF and cortical as well as 

subcortical GM structures - namely the thalamus, amygdala, hippocampus, globus 

pallidus, putamen, caudate, and nucleus accumbens.  

 

Figure 14 Main features and subcortical structures of the brain anatomy as seen in T1-
weighted MRI. Adapted from fmrib.ox 

2.1.4. Overview of Structural MRI Analysis 
Applications of structural neuroimaging focuses mainly on determining the shape and 

size of brain structures. The basic principles of MRI analysis include brain extraction, 
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segmentation, spatial normalization (described in section 2.4) and methods of 

measurement (volumetry, voxel-based). 

Brain Extraction and Segmentations 

x The brain extraction tool (BET – FSL) (Smith, 2002) is used to strip away the 

skull, skin and facial features from an image based on the dark signal from the CSF 

between the skull and the brain, and CSF from the ventricles. This avoids wasting time 

on the analysis of unnecessary structures outside of the brain, as well as indication of 

which voxels are located inside the brain. 

 

Figure 15 Example of brain extraction. Before (left) and after (right) 

x Segmentations consist of labelling voxels based on their intensities and 

location, through machine-learning. In tissue-type segmentations, three labels are 

assigned to different locations: GM, WM and CSF, based on the intensity of the T1-

weighted image. For most accurate segmentations, noise and bias field should be 

taken into consideration. However, some voxels contain a mixture of tissues, known 

as the partial volume effect. To overcome inaccuracies introduced by partial 

volumes, the automated tissue-type segmentation estimates the proportion of the 

different tissues in each voxel and gives the results in the form of partial volume 

estimates (PVE). An important application of tissue-type segmentation is the analysis 

of brain volume and tissue volume.  
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Figure 16: Example of tissue-type segmentation yielding the CSF (left), GM (middle) and WM 
(right) maps. 

x The automatic segmentation of other structures, mainly subcortical GM 

structures, requires more information than intensity and location. These methods use 

information from prior labelled images (information about the shape and size) to 

determine which parts of the new image being segmented correspond to the label.  

The output of such segmentations can be a boundary mesh (coordinates of the outline 

of the structure), a labelled image or both.  

Methods of Measurements 

x Volumetry of subcortical GM structures: following segmentation, volumes of 

specific tissues or structures can be computed by multiplying the number of voxels 

within the region and the voxel dimensions. This type of analysis requires a pre-

defined region-of-interest (ROI). 

x Voxel-based morphometry (VBM) tries to find differences in the local amount of 

a specific tissue between groups or in relation to a given covariate. This analysis 

follows a voxel-wise approach, and the resulting output is a 3D image of the local 

differences or associations. 
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2.2. DIFFUSION IMAGING OF THE BRAIN 

2.2.1. Principles of dMRI 
Images acquired through the diffusion MRI (dMRI) sequence are usually used to 

investigate the WM connectivity of the brain and its underlying microstructure. Water 

molecules provide most of the signal and are in constant random motion known as the 

Brownian motion. In the presence of bundles of axons, the movement of water 

molecules is restricted by the cell membranes, which means that the molecules move 

along the direction of the axons’ orientation. The higher the density of the axons, the 

greater the diffusion along their axial plane rather than their radial plane. 

 

Figure 17 Examples of water molecule movement. Movement of the water molecules (blue 
lines) along the axial plane of the axons (black representation) is restricted by the cell 

membrane of the axons when its microstructure is intact. Image by author. 

The physical properties of the movement of water molecules within a given period are 

quantified through dMRI. dMRI uses a T2-weighted pulse sequence (long TR and long 

TE as opposed to the T1-weighted pulse described above), with two extra gradient 

pulses, equal in magnitude and opposite in direction, applied between excitation and 

data acquisition. These additional pulses render the imaging more sensitive to motion 

of water molecules by forcing protons out of phase and into phase again. When the 

protons diffuse, rephase is not complete, causing an attenuation in the signal’s 

intensity, resulting in darker regions on diffusion-weighted images. In other words, 

higher diffusion of water molecules along the axis of the applied pulse yields lower 

signal intensity. Sensitivity to water diffusion is proportional to the gradient factor b 

(sec/mm2). One way to derive the physical properties of the diffusion process from the 

dMRI data is through a model called diffusion tensor imaging (DTI). DTI assumes 

that there is a single direction of motion within each voxel and models the diffusion 

within an axon as a 3-D ellipsoid called a tensor (Figure 18).  
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Figure 18: Tensor estimation model. Top left: fibre tracts with orientation (x, y, z). Top right: 
3D diffusivity modelled as an ellipsoid with specific 3x3 orientation matrix defined by the 

eigenvectors (V1, V2, V3) resulting from the transformation T, and shape (λ1, λ2, λ3), the three 
non-zero eigenvalues resulting from the matrix factorization. Bottom: transformation to scale 

up the vector from the initial frame of reference. Adapted from (Jellison et al., 2004) 

This diffusion tensor is a 3x3 matrix (from 6 directions) characterizing diffusion in 3D 

space, and assuming that the diffusion distribution is Gaussian. The mathematical 

properties of the tensor enable extraction of several scalar measures. The 3D 

orientation of tensor model is represented by three eigenvectors (V1, V2, V3) 

representing major, medium and minor axes, and the 3D shape is characterized by 

three eigenvalues (λ1, λ2, λ3) describing diffusivity in each direction. After 

transformation, the major eigenvector reflects the main direction of diffusivity within 

the voxel. This mathematical model describes the diffusion process in terms of 

quantities such as fractional anisotropy (FA), mean diffusivity (MD), as well as 

other measures. FA values can then be derived from eigenvalues and are an index of 

diffusion asymmetry within a voxel. FA values can vary between 0 and 1, with 0 being 

a perfect isotropy of equal eigenvalues (a sphere). As FA values tend to 1, progressive 

anisotropy describes an elongation of the ellipsoid and a more targeted diffusivity. The 

FA map is a representation of FA values (in greyscale) across the brain. 

2.2.2. Acquisition of dMRI 
The most common imaging sequence is known as echo planar imaging (EPI), which 

is used in both diffusion and functional MRI. EPI is based on the principal of capturing 

all necessary information following a single RF excitation pulse. This is achieved by 

applying in both directions a series of different gradients in rapid succession, which 

results in a faster sequence (limitations are discussed in 2.8). To obtain an image of 

how diffusion varies in different directions, images with different diffusion-encoding 

directions need to be acquired. Typically, the number of 3D volumes and directions 
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vary between 60 and 200 to distinguish the fine details of the axons. The acquisition 

of the images is affected by both the orientation in space (usually distributed over the 

surface of a sphere), and the strength and timing of the diffusion-encoding gradient 

(the b-value), which typically range between 1000-1500 s/mm2. In a normal dMRI 

sequence, several images are acquired without using an encoding gradient, referred 

to as the b0 image, which defines the baseline for model estimation.  

2.2.3. Analysis of dMRI 
Before fitting any model to the dMRI image, several pre-processing steps are required. 

The main target of the pre-processing stages is to remove any motion or distortion-

related artifacts, handled mostly through the following techniques: 

x motion correction: correcting for head movement in the scanner  

x eddy-current corrections: correcting for eddy currents resulting from the 

diffusion-encoding gradient causing spatial distortions in the image  

x B0-induced distortion corrections: correcting the inhomogeneities induced by 

the B0 field 

Following pre-processing, the result is a set of images in which changes in intensity 

between the images reflect changes of the diffusivity properties. After pre-processing 

and depending on the scope of the study and the chosen model, the model (which in 

this case is the diffusion tensor model) is fitted at every voxel.  

The diffusion tensor model (described in 2.2.1), assumes that the diffusion in different 

directions follows a spatial Gaussian probability. At each voxel, the diffusion tensor is 

fitted to the intensity data as an estimation of the orientation along a sphere. 

Information derived from the tensor (such as FA or MD) can then be analysed 

depending on the hypothesis of the study, to extract indirect information reflecting the 

microstructural integrity of the WM. These can be done voxel wise (in group-level 

analyses) or region-based (for group and individual investigations). DTI can also 

enable tractography analysis, a 3D modelling of fibre orientation, directional 

information at each voxel, and delineation of WM tracts.   
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2.3. NEUROPSYCHOLOGY AND ENDOCRINOLOGY  

2.3.1. Neuropsychology Testing 
The patients and controls in the studies that follow performed a battery of standard 

pen and paper tests to measure cognitive function associated with memory, executive 

function, intellectual function and reasoning. The tests were previously used in TBI 

studies (Kinnunen et al., 2011, Jilka et al., 2014). The tests include: 

 
1. The Wechsler Test of Adult Reading (WTAR) (Wechsler, 1945) 

2. Matrix reasoning subtest from the Weschler Adult Intelligence Scale (WAIS-III) 

(Wechsler, 1945) 

3. The peoples test (PT) from the Peoples and Door Test (Wechsler, 1945) 

4. The logical memory subtest of the Weschler memory scale (Wechsler, 1945) 

5. The colour-word interference (Stroop) test from the Delis-Kaplan executive 

function system (Delis et al., 2004) 

6. The Trail-Making Test 

WTAR 

The WTAR measures levels of intellectual ability in individuals between the ages of 

16 and 89 years. The test has a list of 50 words with atypical pronunciations to control 

for strategies. The score is based on the number of correctly pronounced words. 

Reading recognition is relatively intact following TBI and can be used as a premorbid 

marker in patients.  

Matrix Reasoning 

The matrix reasoning subtest (part of WAIS-III) measures abstract reasoning and 

problem solving. The test has 26 trials with a 2x2 grid with ¾ of the squares containing 

shapes, and the difficulty increasing over time. One of five shapes presented needs to 

be selected in a logic inferred in order to complete the grid (Figure 19). The scores 

reflect abstract reasoning/fluid intelligence. 
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Figure 19: Example from the matrix reasoning test. 

Peoples Test 

The Peoples Test measures long-term memory associated with verbal recall. Four 

people with their profession and name are presented, and after delay, individuals are 

asked to recall the name prompted by their profession, three times for learning and 

after an extended delay (~20 minutes), individuals are to recall the names of the four 

people to measure forgetting. 

Logical Memory Test 

The logical memory test measures verbal-recall memory encoding. The test consists 

in reading a short story repeating it immediately and after a 20 minute delay. The 

scores reflect the immediate and delayed memory.  

Colour-Word Interference Test 

This test reflects executive function and is based on the classic Stroop effect (Stroop, 

1935). It comprises of four increasingly difficult trials (Figure 20). Trial 1: name the 

colour of the squares displayed. Trial 2: Read words (in black ink) that describe 

colours. Trial 3: naming the colour in which the word is written, with the colour of the 

word with being incongruent to the colour it is describing. Trial 4: switching naming the 

ink colour of a word and reading the word (when it is framed in a box).  
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Figure 20: Example of the colour-word interference test. 

Score is attributed based on time and error rate. The resulting measures are as 

follows: 

Equation 1: Measures of the Stroop test. 

 

Trail-Making test 

The Trail Making Test measures executive function and information processing. The 

first trail uses numbers from 1-25 – in which a line must be drawn between consecutive 

numbers starting from 1 - and the second uses both letters and numbers – in which 

numbers and letters must be alternatively connected in ascending (e.g. 1-A-2-B-3-C). 

Scores are based on completion time and reflect information processing performance 

(Trial 1) and executive function (Trial 2). Times from the first trial can be subtracted 

from times from the second trial to control for individual differences in information 

processing when examining executive function. 

2.3.2. Endocrinology Testing 
Baseline measures of serum anterior pituitary hormones included: Cortisol, follicle 

stimulating hormone (FSH), luteinizing hormone (LH), testosterone, thyroid stimulating 

hormone (TSH), free thyroxine (T4), free triiodothyronine (T3), prolactin, 
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adrenocorticotropic hormone (ACTH), growth hormone (GH), insulin-like growth factor 

1 (IGF-I), sex hormone binding globulin (SHBG) and free androgen index 

(100xtestosterone/SHGB). 

Endocrine dysfunction was reported on the basis on the following measures (Table 5): 

x Hyperprolactinemia 

x Gonadotrophin deficiency 

x GH deficiency 

Table 5: Diagnostic methods for pituitary dysfunction 

 
The cortisol day curve is measured as follows: blood samples are taken five times 

every three hours between 0900h and 2100 h (Immulite ® 2000 assay (Siemens) or 

Architect i2000 (Abbott, UK)), and plasma ACTH at 0900h. ACTH deficiency was 

based on cortisol levels <100 nmol/L or 3.62 μg/dL at 0900 or 1200h. 
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2.4. REGISTRATION IN NEUROIMAGING STUDIES 

The following section describes spatial transformations used in neuroimaging 

studies. The aim of registration is to align the anatomy between different images by 

transforming images in space. Such changes can range from simple rotations and 

translations of the entire image, to changing the shape and size of specific structures 

within the image.  Registrations can be intermodal (across different modalities), 

intramodal (within the same modality), Intra-subject (within the subject), Inter-subject 

(between different subjects), or a combination of these types. The important 

parameters of transformation, which will be mentioned in later chapters are 1) the type 

of transformation, 2) the cost function used, 3) The reference space and 4) the 

interpolation method. These four concepts are described in more details below.   

2.4.1. Linear Transformations 

Rigid-body registrations 

This registration technique consists of translations and rotations and is called rigid-
body transformation. In mathematics, a rigid transformation (or Euclidean 

transformation) is a transformation that preserves distance between two points (O. 

Bottema, 2018). Images keep the same shape and size following rigid transformations. 

In 3D imaging, rotations and translations happen along each of three axes – three 

independent translations / three independent rotations - so the combination results in 

six degrees of freedom (6-DOF), a [3x3] matrix where each DOF will correspond to a 

numerical parameter of the transformation. This transformation is mostly used when 

the anatomy remains the same (such as within-subject registrations), or as a first step 

alignment before more exhaustive transformations. 

Affine registration 

Affine transformations have 12-DOF, the same 6 DOFs as described above in rigid-

body registrations, plus three DOF for scaling and shearing. These are mostly used to 

correct for acquisition errors such as eddy-current distortions (described in 2.2.2), or 

as a first step alignment before more exhaustive transformations. Affine registrations 

preserve collinearity (points on the same line remain on the same line) and parallelism. 

As in rigid-body registration, the change is applied to the entire image, and not to 
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specific voxels, so the output of such registration is the corresponding transformation 

matrix. 

2.4.2. Non-linear Transformations 
When the images have different anatomies, or anatomical abnormalities, linear 

transformation is not enough for accurate anatomical correspondence between the 

images. Non-linear transformations usually have more than 12 DOF, with the resulting 

output being a warp of voxel wise transformation rather than a matrix of the image 

transformation. Non-linear transformations result in a local change of geometry while 

preserving topology - a transformation known as diffeomorphic registration. Non-

linear transformations also include smoothing (or regularization) to limit the change in 

geometry, as trade-off between anatomical correspondence and signal-to-noise ratio 

(SNR). This smoothing, however, might blur some anatomical details, with lower 

quality of images requiring higher amounts of regularization.  

2.4.3. Cost Functions 
Cost functions are a type of parameters that help achieve the best alignment of the 

images. The cost function searches for the lowest cost value associated with the 

different degrees of transformations, in order to choose the optimal transformation. 

There are different cost functions to choose from, depending on the situation. In this 

section, I only describe the boundary-based registration (BBR3) in more details, 

since I will be using this cost function in subsequent pipeline development as an 

essential element of image registration after trial and error of different mainstream cost 

functions. 

Table 6: List of some of the most common cost functions used in image registration. 

Cost Function Use 

Sum of Squared (SSD) Intra-modality 

Normalized correlation Intra-modality (with intensity offset) 

Correlation ratio Inter-modality 

Mutual Information Any 

 
3 The BBR cost function can be applied with or without a field map. However, it performs better after 

distortion correction. 
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Boundary-based registration (BBR) 
Images with contrast across the 

tissue boundaries 

 

Boundary-based registrations are most commonly applied to EPI images being 

registered to structural images(Greve and Fischl, 2009). BBR uses a reconstructed 

mesh of the white-grey matter (WM/GM) boundary to drive the alignment based on 

the difference in intensity along this mesh (Figure 21). Given that the anatomical 

boundary drives the alignment, the target data doesn’t need to be of high quality if 

there can be a clear differentiation of tissue intensity across tissue boundaries. BBR 

is robust with respect to spatial intensity inhomogeneities and can allow alignment of 

EPI volumes to anatomical data. BBR calculates a cost function that integrates local 

calculations around vertices. A gradient value is calculated at each vertex by 

subtracting sampled intensity values on opposite perpendicular sides of the vertex, 

with the gradient at vertex v being: gradv = gv – wv. 

 
Figure 21: Representation of BBR cost function estimation at a vertex V.  

2.4.4. Interpolation and Resampling 
Resampling is the process of using a transformation to move an image into another 

image’s “space”. The space of an image is the set of coordinates that determine the 

spatial location and orientation of the given image. Images in the same space will 

therefore share the same coordinate frame and are said to be aligned. Analyses can 

be performed in native space when the raw image is not resampled, or in a group 

space when images are resampled to a common average image or template. 

Resampling uses an interpolation method: intensities of voxels are calculated based 

on the combination of the intensities of the original voxels specified through the 
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interpolation function. The simplest and most common interpolation used in 

neuroimaging is the nearest neighbour interpolation, which copies the intensity 

value of the closest voxel to the one being interpolated while linear interpolation 

calculates the weighted average of neighbouring voxels.  
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2.5. PRINCIPLES OF GROUP-LEVEL ANALYSIS 

Group-level studies are used to generalize the results to a wider population, unlike 

clinical practice where the interest lies in the results of a single subject’s data. The 

pillars of group-level analyses are registration - to get accurate inter-subject alignment- 

and the use of appropriate statistical methods. The latter usually uses general linear 

models (GLM). 

2.5.1. Templates and Atlases 
In group-level analyses, all subjects are usually registered to a common template 
space. The template can be: 

x Study-specific and created by averaging the images of the control population4. 

The accurately represent a specific population, with the assumption that there are 

enough subjects.  

x A standard template, publicly available, such as the MNI152 template derived 

from 152  averaged structural images of healthy young adults (Mazziotta et al., 1995).  

Atlases are usually in a template’s space (standard space), but the intensity usually 

encodes for information different than the standard data seen in structural imaging. 

For example, indexes can correspond to different structures, such as subcortical GM 

structures, or WM tracts. They are often used for the automatic labelling of ROIs in 

group-level or subject-level analyses. Atlases can be discrete (a label value 

corresponds to a structure) or probabilistic (a value of 0-1 at each voxel for the 

probability of the voxel being part of the structure).  

The MNI152 template is the one I use for all my studies because all the atlases I 

required and utilized (WM, GM, subcortical structures) were derived from this 

template.   

2.5.2. Voxel-Based Morphometry 
VBM is a group-level computational method of neuroimaging analysis that measures 

voxel-wise differences in brain tissue concentration between multiple images 

(Ashburner and Friston, 2000).  VBM requires many steps, most of which have been 

 
4 Some studies suggest the use of all images -controls or not- to create the template image in order not 

to bias the anatomy to a specific group. 
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described above. Fundamentally, it combines tissue-type segmentation and spatial 

normalization of the images from all the subjects in two or more different groups into 

the same space, usually a group-defined template. Registration to the template allows 

a calculation of the change in local volume of a given voxel – known as the Jacobian 

determinant. Another important aspect of the VBM pipeline is smoothing, which 

compensates for misalignments of the different images, renders noise distribution 

more Gaussian5, and improves sensitivity for subsequent statistical analysis.  

 

Figure 22: Steps for the VBM pipeline specific the GM. Source:(Mark Jenkinson, 2018) 

The analysis usually relies on the GLM and standard parametric statistical procedures 

such as f-tests and t-tests with the assumptions of independent and normally 

distributed residuals. Following the application of the GLM, statistical significance of 

the difference between two groups is represented on a voxel-wise statistical 

parametric map (SPM). 

VBM and ROI -based studies are most used when investigating volume differences 

between groups. However, the advantages of VBM can be explained by its automation 

and ease to use, time efficiency and whole-brain aspect, which has made it a popular 

tool in the neuroimaging community.  

2.5.3. Vertex Analysis 
Vertex analysis (or shape analysis) is like VBM in that it relies on segmentation, 

registration, and assessing group-differences on a per-vertex basis (instead of voxel-

 
5 The Gaussian smoothing is a mathematical function that uses blurring to overcome noise and artifacts 

in a signal. The Gaussian kernel follows the normal distribution curve.  
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wise). Vertex analysis looks at how the shape of a particular structure differs between 

two groups based on the meshes of the structure. Using the mesh allows visualization 

of the area and the type of the morphometric difference.  

2.5.4. Tract-Based Spatial Statistics (TBSS) 
TBSS is a suite of tool that enables group-level analyses of diffusion data (Smith et 

al., 2006). As mentioned previously, a common measure derived from the diffusion 

tensor is FA, which quantifies the strength of directionality of a given tract. Voxel 

wise statistical analyses of FA differences between groups can help localise brain 

changes related to development, aging and pathology. After standard pre-processing 

of the diffusion data and tensor estimation (described in 2.2.3), the FA maps are 

transformed to a high-resolution template space and are skeletonised before running 

the standard parametric statistical procedures such as f-tests and t-tests. Through the 

skeletonization process, each subject's transformed FA image is projected onto a 

mean skeleton to overcome transformation-induced misalignments. At each point in 

the skeleton, the maximum FA value perpendicular to the skeleton is assigned as the 

FA value of this point of the skeleton, creating an unbiased anatomical 

correspondence between subjects (Figure 23). The output is a binary skeleton mask 

that defines the voxels used for statistical analysis. The resulting image is a 4D of all 

the FA with the 4th dimension being that of the subjects. Similarly, to the VBM method, 

statistics will rely on the GLM and standard parametric statistical procedures such as 

f-tests and t-tests with the assumptions of independent and normally distributed 

residuals.  

 

Figure 23: Example of FA projection in the skeleton. Source:(S.M.Smith, 2015) 
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2.6. MACHINE LEARNING AND PREDICTIONS IN 
NEUROIMAGING STUDIES 

2.6.1. Multiple Linear Regression 
Multiple regression is a statistical equation that predicts the outcome of a dependent 

variable based on several explanatory variables with the goal of modelling the linear 

relationship between the independent and dependent variables. The equation of 

multiple regression is the following: 

 
R-squared (R2) is the coefficient of determination. It measures how much of the 

variation the outcome of the dependent variable can be explained by the variation in 

the independent variables. The p-value determines the significance of the model, 

and the coefficients of each independent variable predict the size and direction of the 

effect that the given variable is having on the dependent variable. 

 

When too many independent variables are present, or when the choice of predictive 

variables is not obvious, we can use a stepwise regression, which is a method that 

automatically identifies the predictive variables that can explain the regression 

equation (Efroymson, 1960).  

2.6.2. Classification, Decision Trees, and Non-Linear Regression 
Models 

Classification 

In machine learning, classification is a type of supervised learning resulting in the 

categorization of a given set of data into classes. The main goal of a classification 

algorithm is to identify into which class or category a new data point will fall, with the 

output being categorical (or discrete).  Several algorithms can be used in order to 

predict the most specific and accurate classifier. An example of common algorithm is 
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the support vector machine (SVM). SVM constructs a hyperplane that will maximize 

the separation between the group of data points with the greatest margin possible 

(Figure 24).  

 

Figure 24: Example of hyperplane generation between two datasets. Each colour of circle 
represents a separate group. The dashed line is the hyperplane. 

From a mathematical modelling perspective, the classifier requires a training set of 

data with many examples of inputs and outputs from which it learns which features 

best predict which category. Therefore, the training dataset should be exhaustive and 

sufficiently representative of the problem. The classification predictive model is then 

evaluated based on its results.  

Decision Trees Classification 

Decision trees are a type of classification that uses a non-parametric supervised 

learning, in which the model is built in the form of a tree structure and an “if-then” rule. 

Decision trees are constructed using a recursive partitioning, where each node is 

split into child nodes by following the largest Information Gain6 (IG). The rules are 

learned sequentially by the algorithm using the training data until meeting a termination 

condition (or leaf nodes). It breaks down the data into increasingly smaller subsets. 

The attributes are all categorical, and the attributes that come highest in the top of the 

tree for earliest decisions have more impact towards the information. The deeper the 

tree, the higher the complexity of the decision rules. To reach a leaf node (or final 

result), each node has two or more branches (or decision nodes). The highest node is 

referred to as the root node and is usually the best predictor of the model (Figure 25). 

 
6 Function defined to optimize the tree learning algorithm at each split. 
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The tree selection is the process of finding the smallest tree fitting the data which 

usually yields the lowest cross-validation error.  

 

Figure 25: An example of decision tree classifier. 

2.6.3. Validations and Evaluation of Performance  
Before implementing and interpreting machine learning models, it is essential to 

properly validate them by estimating their error, bias and variance. After training of the 

model, the difference between the predicted outcome and the actual outcome is 

defined as “residuals” and reflects the error margin. However, residuals alone are not 

enough to examine the performance of the model and the training set. 

Cross-Validation 

Cross-validation is a technique commonly used to assess the accuracy of a model and 

how well it would generalise given a new dataset, by partitioning the current data into 

a training set and a test (or validation) set. For example, 80% of the data for training 

and 20% of the data for testing. However, given that the data used in the studies 

described later can be limited, splitting the data into two sets can lead to a small 

training set and therefore a higher error (or underfitting). To overcome this issue, one 

cross-validation method is known as the K-fold cross-validation. This method deals 

with this potential underfitting problem by ensuring a large proportion of data is 

partitioned into a training set with a large enough sample retained for validation.  

The data is divided into k subsets, with one being used as the validation set and the 

remaining subsets (k-1) being used as training sets. This process is repeated k times. 
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This means every data point is included in both the training and the validation process 

(Figure 26).  

 
Figure 26: Example of k-fold cross-validation with k=5. In each iteration, the training sets 

(grey) and validation set (blue) change so that all data points are included in testing of the 
model once. The process is repeated 5 times.   

The k-fold cross-validation method reduces the bias given that a maximum possible 

of the data is used to train the model. It also reduced the variance sine a maximum 

possible of the data is used for validation. The overall model performance is an 

average of all folds. 

Evaluation of Classification Models 

Models can be evaluated on the basis of different metrics. A good performance means 

a greater likelihood of accurate prediction in new datasets. The most used metric in 

classification models is accuracy, which measures how well the model managed to 

classify the data in percentage.  

Accuracy (%) =100* ( 𝑪𝒐𝒓𝒓𝒆𝒄𝒕 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒑𝒓𝒆𝒅𝒊𝒄𝒊𝒕𝒐𝒏𝒔
𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏𝒔 𝒎𝒂𝒅𝒆

 ) 
This measure of accuracy should be used when the samples to classify have the 

similar size. If sizes vary greatly, a balanced accuracy should be calculated to account 

for the sample size variation. This is achieved by averaging the proportion of correct 

classifications for each class individually. 

The Confusion Matrix is a matrix describing the complete performance of the model 

by modelling the number of true positives, true negatives, false positives and false 

negatives. This can help us understand which data points were most confusing to our 

classifier. 

Another widely used matrix for binary classification problems is the area under the 

curve (AUC). The AUC of a classifier is defined as the probability of ranking a random 

positive higher than a random negative (or how well it can distinguish between the 
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different classes). A true positive rate is known as sensitivity, while a true negative 

rate is known as specificity. When plotting False Positive Rate vs True Positive Rate, 

the higher the AUC the better the performance of the model. 

For decision trees, we use entropy as a measure of impurity, or uncertainty, which 

depends on the frequency of a certain element in the data and varies between 0 and 

1. When all samples at the node belong to the same class, the entropy is equal to 0, 

and becomes maximal when there is a uniform class distribution. 

Evaluation of Regression Model 

The two main metrics for evaluation of regression-based predictive models are the 

mean squared error (MSE) and the R2 previously described (section 2.6.1). R2 

measures how much of the variability in the dependent variable is explained by the 

model.  

Permutation 

To understand the significance of a model, or whether the classification or prediction 

is due to chance, we perform non-parametric permutation test to calculate confidence 

intervals and p values for the given model. Permutation testing consists in the random 

shuffling the data to cover as many ways as possible of rearranging the data and the 

distribution resulting from the random permutation is compared to the distribution of 

interest to determine whether there are significant differences. When the p-value <0.5, 

the performance is determined to be significantly better than the null. In my thesis, I 

used 1000 permutations when non-parametric permutation is required to assess the 

significance of the model. 
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2.7. STATISTICAL ANALYSES 
I conducted all statistical analysis using R v3.3.3 (www.R-project.org). When a p-value 

was required, I assessed significance at p-value<0.05 unless stated otherwise. I used 

Bonferroni when correcting for multiple comparisons.  

Below are the statistical tests used across the chapters: 

- Dice similarity coefficients (DSCs): compares the overlap of different ROIs 

as 2 X ((overlapping voxels in X and Y) / (elements in X + elements in Y)). 

- Measures of test-retest included the coefficient of variation (COV) (the 

dispersion of data points around the mean) as ( × 100)  with high COV 

being of 5% or higher, intraclass correlation, and Pearson’s correlation of 

measures across visits. 

- Two-way ANOVA tested for interactions between the different variables when 

comparing three or more groups. When the interaction was not signification, I 

used one-way ANOVA with one independent variable that was of interest.  

- I used one-way ANOVA followed by a Tukey HSD post-hoc analysis in most 

cases. Tukey HSD is one of the more conservative post-hoc tests and it is 

therefore more difficult to find a difference than it is with other post-hoc 

analyses. If and when Tukey HSD failed, I used Fisher LSD as a post-hoc 

analysis. However, Fisher LSD does not have full control over Type I errors. 

- I used a t-tests if comparing the mean of two groups. T-tests were paired if 

comparing the means of the same group under two different conditions. T-tests 

were unpaired if comparing the means of two independent groups.  

- I use Pearson's correlation coefficients to understand the effect of an 

independent variable on the dependent variable being investigated.  

- I calculated Z-scores when comparing an individual to the group’s distribution.  

- Multiple linear regression predicted the dependent variable based on a set of 

independent variables, based on the following assumptions: a linear 

relationship between dependent and independent variables, no high 

correlations between independent variable, the random selection of 

observations and the residuals distributed with a mean of 0 and variance σ. I 

also performed a stepwise selection in both directions to find the best predictors 

of the model. 
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- To calculate the confidence interval of the accuracy of the decision tree 

classifier, I used a bootstrap resampling technique (with n=500). 
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2.8. PITFALLS IN CURRENT DIFFUSION NEUROIMAGING 
STUDIES 

Most of the pitfalls mentioned in this section will be focused on DWI and its analyses 

techniques, which will be tackled later in this thesis. To obtain reliable result and draw 

significant and robust conclusions, we need to understand the limitations of the 

methods and how best to improve them. 

2.8.1. Acquisition artifacts for EPI images 
The first acquisition artifacts are eddy current distortions, which are electric currents 

generated by the magnets. Eddy current distortions vary with the diffusion encoding 

applied, causing mis-registration mostly at the edge of the brain. While eddy currents 

are not extremely problematic in most acquisition, it is still important to correct for them 

as a first step of the pre-processing of the image (section 2.2.3), using a global affine 

transformation, and correct the gradient encoding vector accordingly. Another issue 

during data acquisition is head motion in the scanner. Correcting for this motion and 

rotating the B matrix accordingly is crucial. Following pre-processing a tensor is usually 

fitted at every voxel. The use of different algorithms can lead to different results (Jones 

and Cercignani, 2010). For my studies, I use a standard tensor fitting model (weighted 

least squares).  

2.8.2. Issues with ROI analyses 
The gold standard of DTI metric extraction remains manual ROIs delineation. 

However, this approach has some limitations: it’s time consuming, it requires specialist 

knowledge of the anatomy, and it can be subjective. Moreover, ROI positioning can 

be biased by values if performed directly of the parametric map. If the diffusion-free 

image and the DWI image are not properly registered, this can also cause subtle 

misregistration between the masks and the parametric image.  

2.8.3. Partial Volume 
With the low-resolution of the diffusion data, partial volume, particularly with CSF, 

remains a main concern. When a voxel is not 100% WM, it is affected by partial volume 

error. The key is to exclude voxels with the highest partial volume in a non-bias and 

homogenous way across the subjects. Patients with severe atrophy are more prone 
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to this type of diffusion bias given the possible damage to the microstructure of the 

WM.  

 

Figure 27: Example of partial volume voxels on diffusion image. 

2.8.4. Inter-Subject Analyses and Normalization 
Group-level analyses are most popular in clinical neuroimaging studies. They are used 

to assess the association between diffusion and clinical variables. Some of the 

methods have been described previously (section 2.5.2) such as voxel-based 

analyses. A big component of successful voxel-based studies is the correct alignment 

of the images from different subjects to a common group or high-resolution template 

(section 2.5.1). Accurate normalisation of images is crucial, and registration errors can 

have a significant impact on the results. Unfortunately, thorough quality check or 

manual adjustments are not often performed. Moreover, structural abnormalities can 

seriously impact the transformations, and manual masking of such abnormalities is 

critical to allow for a better registration (Bookstein, 2001). Other factors that may 

impact the results are the choice of normalizations, the excessive warping of the 

image, as well as the smoothing used. Smoothing is a spatial filtering method that 

increases SNR, corrects for possible misalignments, and normalizes the data 

distribution using a 3D Gaussian kernel. The choice of the smoothing kernel also 

varies between studies, impacting the results.  

2.8.5. Issues with TBSS 
TBSS is a method that tries to overcome these problems and homogenise diffusion 

studies (section 2.5.4). The projection of peak FA values from the tracts overcomes 
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the need to smooth data and decreases the effect of partial volume on the 

measurements. However, lesions, contusions and other structural brain abnormalities 

can lead to inaccurate estimations of the skeleton. Although TBSS achieves 

accurate correspondence between FA values, the anatomical alignment is less 

accurate.  (Zalesky, 2011).  

 

Figure 28: Example of linear displacement and skeleton inaccuracy. Source: (Zalesky, 2011) 

There is a trade-off between alleviating post-registration misalignments and specificity 

of measurements. If the difference between clinical groups is not homogenously 

distributed across the skeleton, and if the focal differences are located at the periphery 

of the WM, they do not form part of the estimated skeleton, and can therefore miss 

detection. And while the use of voxel-based analysis might increase the sensitivity of 

the measurement to the peripheral voxels, these analyses still use a smoothing 

correction, thus biasing the metric of interest.  
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CHAPTER 3  
Development & Validation of the 
Subject-Specific Diffusion 
Segmentation (SSDS) pipeline 

 

 

 

 

 

In this chapter I present a  new pipeline for the standardized automated 

subject-level segmentation for cl inical investigations of diffusion 

imaging. I val idate the method by showing good correspondence with 

manual segmentation of white matter tracts, demonstrate good test -

retest rel iabi l i ty, show difference in performance to TBSS and 

demonstrate that the pipel ine is robust to the effect of lesion s and other 

structural abnormali ties. I also provide recommendations for the use of 

this pipel ine 
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3.1. ABSTRACT 
Diffusion weighted imaging (DWI) is key in clinical neuroimaging studies. In recent 

years, DWI has undergone rapid evolution and increasing applications. Diffusion 

magnetic resonance imaging (dMRI) is widely used to analyse group-level differences 

in white matter (WM) but suffers from limitations such as conservative measures or 

inaccurate transformation to group templates. These issues can be particularly 

impactful in clinical groups where 1) structural abnormalities may increase erroneous 

tensor fitting and registration and 2) subtle differences in WM microstructure within 

individuals can be missed. Region of Interest (ROI) segmentation of the WM in 

individual native space can help overcome these challenges, with manual 

segmentation still used as the gold standard. However, robust automated approaches 

for the analysis of ROI-extracted native diffusion characteristics are limited. Subject-

Specific Diffusion Segmentation (SSDS) is an automated pipeline that uses pre-

existing imaging analysis methods to carry out WM investigations in native diffusion 

space. SSDS overcomes the need to interpolate diffusion images and uses an 

intermediate T1 image to limit registration errors and guide segmentation using 

structural information. SSDS is validated in a cohort of healthy subjects scanned three 

times to derive test-retest reliability measures and compared to other methods, namely 

manual segmentation and tract-based spatial statistics as an example of group-level 

method. The performance of the pipeline is further tested in a clinical population of 

patients with traumatic brain injury and structural abnormalities. Mean FA values 

obtained from SSDS showed high test-retest reliability in 34 of the 47 tracts, with high 

correlation to the tract size, and were similar to FA values estimated from the manual 

segmentation of the same ROIs (p-value > 0.1). Case studies of TBI patients showed 

robustness to the presence of significant structural abnormalities, overcoming the 

need for manual lesion masking indicating its potential clinical application in the 

identification and diagnosis of WM abnormalities. Further recommendation is given 

regarding the tracts used with SSDS. 
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3.2. INTRODUCTION 
In recent years, diffusion magnetic resonance imaging (dMRI) has become widely 

used to investigate the white matter’s (WM) microstructure (Huisman, 2010, Soares et 

al., 2013) in clinical studies. dMRI involves different analysis techniques (Table 7) 

which have proved extremely useful for determining the brain’s structural connectivity 

as well as for the quantification of WM abnormalities based on diffusivity measures 

such as fractional anisotropy (FA) in a wide range of disorders (Le Bihan and 

Johansen-Berg, 2012, Assaf and Pasternak, 2008, Baliyan et al., 2016). Analyses 

based on region of interest (ROI) delineation are the most popular, but they are often 

combined with voxel-based analyses (VBA), a voxel-to-voxel correspondence method, 

usually carried out on images registered into standard space, and relying on t-test or 

ANOVA statistics to determine a spatial difference between two or more groups 

(Snook et al., 2007). In studies relying on individual subjects’ native diffusion space, a 

rater usually draws ROIs manually on the parametric images such as FA maps. 

However, this approach can present several limitations; it is time-consuming 

depending on the number of subjects included in the analysis, it requires specialist 

anatomical knowledge, and it can lead to biased estimation of diffusion metrics if the 

rater chooses areas of high FA values for example, or if they rely on voxel intensity 

rather than location (Astrakas and Argyropoulou, 2010). In contrast, group-level 

analysis relies on the combined, standardized and automated analysis of diffusion 

images registered into group space (Astrakas and Argyropoulou, 2010). These 

techniques are specific and reproducible. However, inaccuracies introduced by the 

registration technique, such as misalignments or partial volume effects can lead to 

inaccuracies becoming particularly problematic where differences in microstructure is 

very subtle (e.g. different injury biomechanism) (Jones and Cercignani, 2010, 

Davatzikos, 2004), or when structural abnormalities are severe. In studies on 

populations with traumatic brain injuries (TBI), for example, DTI techniques are 

sensitive to WM damage at the group level. At the individual level, there is still 

insufficient evidence of WM structural abnormalities (Douglas et al., 2015), which 

hinders the association with injury biomechanics, severity, prognosis and outcome.  

When we define clear hypotheses about group differences in WM and in specific brain 

regions, or when the analysis should be carried out at the individual level if the groups 

are limited in power in clinically-relevant investigations, the study will include manual 
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segmentation of ROIs. This technique will also be utilized by researchers when 

structural abnormalities such as lesions, tumours, and others are present, and where 

group-level tract-based analyses which includes registration of the diffusion to a high 

resolution image become either very challenging or impossible (Martijn Froeling, 

2016). The neuroimaging community has previously established that although 

interpolating DWI images by up-sampling it to a structural image with a higher 

resolution can improve the anatomical details of the manipulated diffusion data, the 

conventional methods we use for the registrations and interpolations can impact the 

results, more so in brain with atypical anatomy or structural abnormalities (Dyrby et 

al., 2014). This specific problem further highlights the need for a standardized and 

automated pipeline for diffusion studies in individual native space, to overcome the 

issue of user-dependent ROI measures, questions around reliability and quality of the 

results (Martijn Froeling, 2016).     

The aim is therefore to develop a pipeline that can replicate the accuracy of manual 

ROI segmentation in diffusion space while maintaining the specificity of group-level 

analysis such as TBSS to enable investigation in a larger part of the tracts (such as 

boundaries). I have therefore worked on building an automated pipeline for the 

segmentation of diffusion images in native diffusion space and have named the 

pipeline Subject-Specific Diffusion Segmentation (SSDS).  SSDS uses existing DTI 

analysis tools as well as ROIs from predefined atlas commonly used. The pipeline 

relies in the registration of a high-resolution template into a lower-resolution native T1 

image, and the use of the anatomical T1 image to guide the registration of the high-

resolution atlas-based ROIs to the diffusion image and the segmentation of the T1 

image in native diffusion space. Through these steps, SSDS limits errors to the 

parametric map arising from any registration misalignment, partial volume errors, and 

anatomical inaccuracies when trying to fit lower resolution diffusion images into a 

higher resolution standard template (Aribisala et al., 2011). The pipeline also involves 

limited manipulation of raw diffusion data, which are now restricted to mainly 

movement correction and tensor fittings, excluding any need for interpolating diffusion 

images.  

Through a combination of registration, segmentations, erosions and masking, my 

pipeline, enables fully automated structurally-driven ROI segmentation in native 

parametric maps, requires minimal intervention, and generates diffusion metrics with 

high reproducibility and the accuracy of manual segmentation. It can be used to 
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segment whole-brain WM maps, specific WM tracts, or any ROI based on a pre-

existing atlas segmentation. SSDS overcomes the challenges presented by structural 

abnormalities such as lesions or tumours. Moreover, by eliminating the need for 

parameter changes, and with pre-calculated reliability and reproducibility, the pipeline 

can now be used as a homogenous and standard methodology in clinical studies 

involving diffusion imaging, which is still an important limitation of individual ROI-based 

DTI studies to date. SSDS will generate mean diffusion metrics values for a given ROI, 

or the distribution of values across the entire segmented tract when a single mean 

value is not enough to reflect information about the region being investigated. The 

novelty of the pipeline is in 1) using the T1 image as a mid-point reference for the 

registration and as a guide for the segmentation of the ROIs in the diffusion image, 2) 

overcoming the need to manually delineate and mask out anatomical abnormalities as 

to not bias the results, 3) combining a boundary-based registration with a non-linear 

warp to register ROIs into native diffusion space without interpolation of the parametric 

map and while obtaining the accuracy of manually segmented ROIs. Through back-

projection of a template into native T1 space, and the use of the anatomical image as 

a guide for registration of a high-resolution atlas to the diffusion image and its 

segmentation, SSDS limits errors due to interpolating lower resolution diffusion 

images (Aribisala et al., 2011), and limits the manipulation of raw diffusion data (mainly 

movement correction and tensor fittings). 

 

I validated SSDS using a control group scanned three times, and chose 47 tracts that 

are part of the JHU WM atlas (https://identifiers.org/neurovault.collection:264). In the 

following chapter, I present the performance of my registration pipeline, provide 

examples and show that FA can be estimated from segmented tracts in individual 

space with high reproducibility and with the accuracy of manual segmentation. I also 

apply the pipeline to a small clinical group of patients with moderate/severe traumatic 

brain injury (TBI) who present varying levels of focal and/or diffuse axonal injury. This 

type of brain injury can present challenges to traditional approaches of tract 

segmentation due to structural abnormalities, and we show that SSDS performs well 

in the estimation of tract FA in this situation. We also present further considerations 

and possible applications for use of this pipeline. 
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Hypotheses of Chapter 3 

- Automated segmentation of WM tracts on the parametric map at the individual 

level can result in high test-retest reliability and a high correspondence with 

fractional anisotropy results obtained from manual segmentation 

- Some smaller tracts will have to be excluded from the SSDS analysis due to 

higher variation in intra-subject measurements across different visits  
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Tips on when to use SSDS 

� The clinical group shows neuroanatomical abnormalities which might be 

challenging for the between-subject transformation/registration required in 

group-level analyses 

� The WM injury difference between groups is more subtle and/or not 

homogenously distributed across the skeleton  

� The work included individual clinical investigations and/or case studies 

compared to typical group distributions 
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Current analysis methods, their use and their pitfalls 

Table 7: Overview of the different post-processing approaches for statistical analysis of DTI 
measures. 

Method Principles Strengths Limitations 
Region of Interest 
(ROI) (Astrakas and 
Argyropoulou, 
2010, Jones and 
Cercignani, 2010, 
Snook et al., 2007) 

Manual delineation of 
specific regions of the 
brain (most commonly 
on parametric map) 

Good anatomical 
placement (spatially 
specific) and less partial 
volume effect 

- Time-consuming 
- Requires anatomical 

knowledge 
- Biased by parametric 

map 
- Difficulty of inter-

modality registration for 
anatomical ROI 

- Reproducibility in 
longitudinal studies 

- If defined in standard 
space may include 
smoothed and partial 
volume voxels. 
 

Histogram (Zhou 
et al., 2011, Della 
Nave et al., 2007, 
Soares et al., 2013) 

Frequency 
distribution within 
voxels of specific 
parameters of interest 

Unbiased analysis of 
the whole brain without 
determining an ROI 

- Requires removal of 
non-WM tissues. 

- No anatomical 
information 

- Sensitive to partial 
volume in structurally 
atypical brain 
 

Voxel-Based 
analysis 
(Mukherjee et al., 
2008, Abe et al., 
2010, Astrakas and 
Argyropoulou, 
2010, Van Hecke et 
al., 2010) 
 

Voxel-by-voxel 
analysis and group-
level comparison via 
normalization to a 
standard template 

Automated, 
reproducible and 
requires minimal 
intervention. 
Anatomically specific 
and unbiased 

- Accuracy of registration 
- Accuracy of anatomy 

following normalization 
- Partial volume if using 

pre-defined ROIs 

Tract-Based 
Spatial Statistics 
(TBSS) (Smith et 
al., 2006, Zalesky, 
2011, Jones and 
Cercignani, 2010) 

Detect group voxel-
wise differences 
based on 
skeletonization of the 
parametric map 
registered to a 
template 

Removes the need for 
spatial smoothing & 
reduces the number of 
voxels included in the 
analysis, thus 
increasing statistical 
power 

- Accuracy of registration 
- Danger of inaccuracy of 

skeletonization 
- Cannot recognize 

structural abnormalities 
following 
skeletonization 

- Cannot back-project to 
native space 
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3.3. METHODS: SUBJECT-SPECIFIC DIFFUSION 
SEGMENTATION  

3.3.1. Participants 
 

All participants gave informed consent according to the declaration of Helsinki (Table 

8). Healthy controls were scanned three times, at three separate visits at the same 

scanner. The fully automated pipeline was independently tested on all three scans for 

17 subjects. The clinical population was scanned once. The same scanner was used 

for both cohorts. 

 

Table 8: Demographics of patients and healthy controls used in the validation and testing of 
the SDSS pipeline. 

 
n 

(count) 

Male: Female 

(ratio) 

Mean Age ± SD 

(years) 

Presence of 

Lesions 

Healthy Controls 

 17 11:6 32.1± 4.2 NA 

Clinical Population 

Controls 10 5:5 32.8±6.3 NA 

TBI patients 19 15:4 43±9.16 52% 

 

3.3.2. Imaging Acquisition 

Scanning used a 3T Siemens Magnetom Verio Syngo with a 32-channel head coil. 

Scanning session for each participant generated a structural high resolution image T1-

weighted MPRAGE image (106 1-mm thick transverse slices, TR=2300ms, 

TE=2.98ms, FA=9°, inplane resolution= 1x1mm, matrix size=256x256, field of 

view=25.6cmx25.6cm), a diffusion-weighted image (64 directions, b=1000s/mm2, 

4xb=0s/mm, TE/TR=103/9500ms, 64 contiguous slices, FoV=256mm, voxel 

size=2mm3) and a fluid-attenuated inversion recovery (FLAIR) image for lesion 

identification. The b0 volume used consequently is an average.  
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3.3.3. Imaging Analysis 
I carry out development and validation of the SSDS pipeline on two separate cohorts: 

a healthy control group (3 scans for 17 individuals) and a clinical group comprising 3 

subgroups: TBI with lesions, TBI without lesions, healthy controls (Figure 29).  
 

 

Figure 29: Overview of the validation steps and the results presented in the current study. 
Analyses on the two cohorts were done separately. The first validations were carried out on 
the healthy controls (scanned three times for test-retest validation). We present results from 

the different registration steps, estimation of FA values and test-retest measures, as well as a 
comparison to other methods. The clinical population (scanned once on the same scanner as 
the control population) was analysed first in a group-level study by comparing individually-
obtained ROI measures, then the results of SSDS were compared to other methods. Finally, 

three subjects were chosen for case study comparative analyses.   
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Overview of SSDS 

The requirements for running the Subject-Specific Diffusion Segmentation (SDSS) 

pipeline are for each subject: a pre-processed DTI image, a T1 image, a gradient field 

map image, a standard template and a set of atlas-based tracts or ROIs (Code is 

available in A.3.1. Code of SSDS).  

To summarize the different steps included in the pipeline (Figure 30): 

x Step 1: Pre-process the raw diffusion data and fit the tensor 

x Step 2: Pre-process the structural data and run brain extraction. The structural 

image is used as a mid-point reference to limit registration errors and preserve 

anatomical details in lower-resolution diffusion space.  

x Step 3: Make sure your diffusion data and the no diffusion slice are perfectly 

aligned 

x Step 4: Register the T1 image to the diffusion image using a linear boundary-

based registration as a cost function. This requires a prior segmentation of the 

T1 image and an estimation of the WM boundary mask. For all registrations, 

warps and matrices are estimated initially by moving images from low to high 

resolution then inverting the transformation.  

x Step 5: Once registered to native diffusion space, segment the T1 image into 

different tissue types to drive anatomically correct ROI segmentation by 

restricting it to the underlying WM anatomy.  

x Step 6: Use non-linear registration of the template of choice (in this case the 

MNI152 template) to the corresponding T1 image and combine the non-linear 

warp and the BBR matrix to obtain a transformation warp from standard 

template to native diffusion space.   

x Step 7: Use the estimated warp to move the tracts from the standard template 

space to the native diffusion space. 

x Step 8: Cross-mask whole WM map or from specific ROIs are cross masked 

with the T1 segmentation for further restriction to WM tissue. 
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Figure 30: Overview of the SSDS pipeline. DWI images are pre-processed individually. 3D T1-
weighted images are segmented, the mask of the WM boundary is estimated an d used for a 

BBR of the diffusion image to the T1 image. Non-linear registration is estimated to move the 
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T1 image to a pre-defined template space. The BBR matrix and the non-linear warp are then 
combined and reversed to estimate a transformation from the standard template to the 

individual diffusion image. The reverse BBR matrix is applied to the original T1-image, 
resulting in an inter-modality registration of the T1 to the DWI image. In the last steps, once 
all three images are in DWI space, the T1-imaged is segmented, the WM map is then used for 
cross-masking pre-defined ROIs which have been moved to the DWI image. ** image adapted 

from (16) 

Pre-processing  

DWI images 

The two main artefacts when dealing with diffusion data are head motion and eddy 

currents from the gradient coil (more details in section Pitfalls in Current Diffusion 

Neuroimaging Studies. I align the images via registration to the non-diffusion-weighted 

(b0) image to correct for these distortions. I extract the B0 image to subsequently use 

as a reference image for registration, skull stripping and generation of a brain mask in 

diffusion space. I process the DWI images using FSL’s FDT standard pre-processing 

technique (Behrens et al., 2003) and the brain extraction tool (BET) for skull-stripping 

(Smith, 2002). I apply motion parameters to the DTI B-vectors to compensate for the 

registration performed to correct for eddy current and motion effects. Finally, I estimate 

the diffusion tensor using the skull stripped DWI image to generate FA maps using the 

FSL DTIFIT algorithm (weighted least squares approach). The tensor is estimated at 

each voxel, using a simple least-square fit of the tensor model to the diffusion data. 

We could potentially calculate diffusion metrics other than the tensor such as fibre 

density and cross-section. For demonstration purposes in this chapter, I use Fractional 

Anisotropy (FA) as the metric of interest.  

T1 images 

I performed brain extraction using the brain extraction tool FSL-BET, then segmented 

into different tissue types and corrected for spatial intensity variations using FSL FAST 

(Zhang et al., 2001). The WM map is used to generate a map of the WM boundary, 

using a surface model used subsequently for BBR (figure 2). 

 

Registrations 
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T1 to native DWI 

To achieve optimized alignment we need to first up-sample the b0 image through 

registration to corresponding T1 image and calculating the inverse of the 

transformation to move the structural image to the subject’s native diffusion space. 

This is done to preserve as much anatomical details from the T1 image as possible 

once we apply the transformation matrix to downsize it. The inter-modality, intra-

subject registration of the T1 image to the B0 image requires four steps:  

1) Initially, the EPI volume is aligned to the T1 skull-stripped brain image using 6 DOF 

(rigid) and a nearest-neighbour interpolation.   

2) The field map (when available) is then registered to the T1 skull-stripped brain 

image. Using a field map is not required but does yield a better alignment. Because 

EPI causes geometric distortions, adding information from field maps results in a more 

accurate and efficient registration (Wang et al., 2017), thus leading to improvements 

in the geometry of the image. This was revealed to be an important but not essential 

aspect of accurate registration to the T1 image.  

3) The BBR of the b0 image to the T1 image is guided by the pre-alignment matrix and 

the registered field map. BBR uses a reconstructed mesh along the WM boundary of 

the T1 image, which can be estimated by hand or automatically in the epi_reg script 

from the FSL toolbox. BBR drives the registration to the B0 image by spatially aligning 

the vertices of the mesh with the intensity gradient across the WM boundary(Greve 

and Fischl, 2009) (see section 2.4). Through this registration, the target image 

(diffusion) does not require high quality as long as grey and white matter are 

differentiated. The choice of BBR over alternative mainstream cost-functions of 

registrations is described in detailed in the next section (section 3.4.1)  

4) We calculate the inverse of the output of this transformation. This is done to 

preserve the diffusion image in its native space and avoid any interpolation of the data 

for best estimation of diffusion metrics following segmentation of ROIs.  

5) The final transformation matrix can be applied to the T1 image using the b0 image 

as a reference. The two main outputs of these registrations are a) the subject’s T1 
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image down-sampled and registered to the subject’s b0 image (i.e., the T1 image 

aligned to the DTI image), b) a subject-specific matrix for this transformation which will 

be subsequently required to drive the registration of the high-resolution ROIs. 

Standard template to native DWI 

The next step is a non-linear registration of the standard template of interest was to 

the b0 image using the T1 image as a midpoint and the pre-calculated BBR matrix. In 

this case, my regions of interest (ROIs) are derived from the JHU WM atlas (see 

supplementary section A.3.2. Tracts from the JHU atlas). I use the MNI152 standard-

space T1-weighted average structural template and estimate a subject-specific warp 

field to register the 54 tracts to the diffusion image. The tracts are all eroded by one 

voxel (single voxel, 3x3x3 box centred on target voxel) before any registration to ensure 

exclusion of partial volume effect once transformed to the native diffusion image. I 

achieve optimized alignment in three main steps. 1) Registration of the T1 structural 

image to MNI152 template through a non-linear warp. 2) Combining the non-linear 

warp and the BBR matrix to obtain a non-linear transformation of diffusion image to 

the high-resolution template. 3) Calculating the inverse of the transformation to move 

the template to the subject’s native space in a one-step transformation.  

Non-linear registration from native diffusion space to standard space is a two-step 

process that requires the T1 image as a mid-point reference. The final warp field of 

the transformation from the standard template to the native diffusion space will be the 

equivalent of the inverse of the following transformations: diffusion to T1 linear BBR + 

T1 to standard template non-linear transformation. The main output is a subject-

specific transformation field to accurately move ROIs defined through the standard 

template to the b0 image (i.e., the MNI152 T1-weighted standard template aligned to 

the DTI image). 

Segmentations 

Boundary segmentation 

To segment the boundaries of the WM, the T1 image is segmented into 3 tissue-types 

after registration to the B0 image. Once segmented, the WM map is thresholded and 

binarized, and can then be eroded from all inner voxels to give a binary mask of the 
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entire WM (Figure 31). Even with a lower resolution, the segmentation of the T1 image yields 

more accurate results than the transformation of segmented maps. 

 

Figure 31: Boundary of the WM. The blue line is the binary mask. The T1 image is in native 
diffusion space. 

The map of the CSF is then dilated and cross-masked with the whole-brain WM 

boundary map to create the map of the WM/CSF boundary, and this mask if subtracted 

from the whole-brain WM boundary map to create the map of the WM/GM boundary. 

 

Figure 32: Boundary of the WM/CSF and WM/GM. The red line is the mask of the WM/CSF 
boundary, and the green line is the mask of the WM/GM boundary. The T1 image is in native 

diffusion space. 

Tract segmentation 

Restriction of registered and down sampled tracts to the underlying WM anatomy 

helps avoid partial volume effects and improves the segmentation of the tracts in DWI 

space (Horbruegger et al., 2019).  

Segmentation is achieved in six steps. 1) After registration to the b0 volume, the T1 

image is segmented. Even with a lower resolution, the segmentation of the T1 image 

yields more accurate results than the transformation of segmented maps. 2) To 

optimize exclusion of partial volume voxels the WM map is thresholded to exclude all 
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boundary voxels with values below 0.8 (range 0-1) and binarized. 3) 47 tracts were 

selected from the ICBM-DTI-81 white-matter labels atlas (Oishi et al., 2008). 4) The 

tracts are initially eroded (single voxel, 3x3x3 box centred on target voxel) to limit 

overlap with partial volume voxels. 5) Using the previously estimated warp field (see 

section 3.4.2), the 47 WM tracts are then warped to subject-specific diffusion space to 

guide the segmentation of ROIs. 6) After registration to the b0 volume, each tract is 

cross masked with the estimated WM map and further thresholded and binarized to 

ensure exclusion of boundary voxels with partial volume errors (threshold 0.8, range 

0-1). 6.b) However, I did not think this improved FA estimation, resulted in more 

variability and excluded relevant spatial details. I only use one erosion in all 

subsequent analyses.  

Validations 

For validation of the results obtained from the SSDS pipeline, I chose the body, 

splenium and genu of the corpus callosum, the right and left cingulum and the fornix 

as ROIs. I selected these tracts to test the performance of the pipeline on different 

anatomy and size for tracts with different reliability in the validation process. For the 

validation, I included a comparison against manual segmentation of the ROIs, ROIs 

obtained following skeletonization through the ENIGMA protocol (Jahanshad et al., 

2013), and ROIs obtained from a one-step non-linear registration of a diffusion image 

to the high-resolution JHU template.  

Dice similarity coefficients (DSCs) were calculated to compare the overlap of the 

automated ROI segmentation through SSDS and the manual segmentation using the 

following formula.  

𝟐 ×  
|𝑿 ∩ 𝒀 |

( | 𝑿 |+| 𝒀 | ) 

The DSC measures the overlap (or similarity) between two sets of data, X and Y, with 

|X| and |Y| being the number of elements in sets X and Y, and (X n Y) being the number 

of elements common to both sets X and Y. In neuroimaging terms, this translates to: 

2 X ((overlapping voxels in X and Y) / (elements in X + elements in Y)). 
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Manual segmentation of ROIs for validation 

Six tracts were manually traced on each parametric map, using the scans from the 

first visit of 15 healthy subjects selected at random. Each manually delineated ROI 

consisted of multiple slices fully covering the three-dimensional structure. The 

anatomical of the tracts were defined according to the definitions provided in a 

standard DTI atlas (Mori et al., 2008). I chose the ROIs to cover a) large and reliable 

tracts: the body, splenium and genu of the corpus callosum, b) thinner and longer 

tracts: the right and left cingulum c) small tracts prone to tensor estimation errors: the 

fornix (Plaisier et al., 2014). Manual segmentation is still considered the gold standard 

for ROI analysis. If SSDS can perform with similar accuracy to the manual 

segmentation on different tracts, the method can gain credibility for clinical 

investigations involving diffusion imaging. 

Mean FA from ROIs following non-linear registration to a template 

Following the method for the non-linear transformation of diffusion data to a standard 

template, I register the individual FA maps to the MNI152 standard template using the 

1mm FRMIB FA atlas in TBSS (Smith et al., 2006). Following registration to the high-

resolution template, I cross-mask the FA map with the tracts of interest and estimate 

the mean FA value for each ROI. I use this validation method to emphasize how 

normalizing tracts can increase their size and the contribution of partial volume. 

However, this method is not recommended for diffusion studies.   

Mean FA from ROIs following TBSS skeletonization – or the ENIGMA DTI 

method 

Following the standard TBSS protocol, I merge and skeletonize all the normalized FA 

maps using a 0.2 threshold to ensure exclusion of partial volume effect. I subsequently 

split the 4D image of concatenated FA maps to obtain the skeletonised FA for each 

participant separately. I mask the individual skeletonised FA maps with ROI masks to 

get individual mean FA for each ROI (Smith et al., 2006). This method is described as 

the ENIGMA DTI method (Jahanshad et al., 2013). 

3.3.4. Exemplar applications 
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Group-level comparison: TBI vs healthy controls  

As an example of clinical application of the SSDS pipeline, I included three age and 

gender-matched groups: 10 healthy controls, 10 subjects with moderate/severe TBI 

and presence of structural abnormalities, and 9 subjects with mild TBI (Malec et al., 

2007). Of the 47 tracts available in the JHU WM atlas, I included 34 tracts in this 

analysis as part of the validation process. The tracts were chosen because of their 

reliability (see section 3.4.3. Test-retest reliability). I extracted the mean FA as well as 

the histogram distributions of FA values for each of the 34 tracts. To further validate 

the pipeline in a clinical population, I selected 4 of the 34 tracts for comparison with 

manual segmentation and skeletonized FA estimation following TBSS (as described 

in section 3.3.3. Imaging Analysis- Validations). I chose the tracts used in the 

validation process to include different sizes, anatomy and reliability measures. The 

tracts were the three parts of the corpus callosum and the fornix. 

Case studies of patients with severe TBI and performance of SSDS pipeline 

I analysed three cases of patients with severe TBI separately (Table 10). All three 

patients presented with neuroanatomical abnormalities. For each case, I included the 

segmentation of a single tract and compared it to the three other methods: manual 

segmentation, ENIGMA-DTI protocol (Jahanshad et al., 2013) and masking from a 

high-resolution template. The segmented tract was chosen to reflect the atypicality of 

the structures.  

Statistical Analysis 

I performed all statistical analyses using Rstudio v. 3.5.1. I assessed test-retest 

reliability using the following three measures: intraclass correlation (Koo and Li, 2016), 

coefficient of variation and correlation of measures across visits. I used the results 

from the coefficient of variation to reject unreliable for use in the SSDS pipeline based 

on high intra-subject variation (>5%).  

I first used a Tukey non-additivity test on the FA results I obtained from the first visit, 

with a two-factor factorial design tracts*subject=47*16, with n=1 replicate for each 

tract*subject combination. Following this test, I ran a two-way mixed single measure 

consistency Intra-class correlation (ICC), with a design of tracts*subject*3visits (47 

tracts and 48 raters per tract). This was followed by a 2-level bootstrap with 
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replacement, with 10,000 for our 47*48 design. Following each replication, ICC is 

estimated to generate a bootstrapped confidence interval of 95%. The coefficient of 

variation (COV) was calculated using the following formula ( × 100) to assess the 

variability of FA and tract size measures within each subject across all three visits (i.e. 

how similar are the values for each person for three different visits). Initially, I extracted 

a mean FA value and a tract size (voxel count) for each tract, for all 16 subjects and 

three visits. For each subject, I estimated a COV for every tract across the three visits 

(i.e. one measure per subject per tract). For each tract, I calculated an average of all 

16 COV measures was then calculated for every tract. Lastly, I calculate a Pearson’s 

correlation coefficients, including all tracts and all subjects for pairwise comparison 

across visits. Dice similarity coefficients (DSCs) was calculated to determine the 

similarity and spatial overlap of the manual segmentation and the ROIs resulting from 

SSDS. 
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3.4. RESULTS 

3.4.1. Registration 
I assessed different registrations and trial and errors before choosing the methods 

described above as most effective. The cross-modality intra-subject registration was 

more sensitive to inaccuracies than the non-linear template to subject alignment. 

Individual T1 images were registered to the lower resolution diffusion image using 

linear BBR (EPI to T1 image). For inter-modality registration, the results obtained using 

BBR were more accurate alternative methods. The use of a gradient map field 

increases slightly the registration accuracy but was not deemed necessary.  

I tested the following alternative methods: linear FLIRT and non-linear FNIRT) with 

different cost function including the within-modality functions: least Squares and 

Normalised Correlation, as well as the between-modality functions: Correlation Ratio 

(which is the default with FLIRT), Mutual Information and Normalised Mutual 

Information. For each run with a different cost function, I performed a thorough quality 

check on a structurally typical brain and a brain with severe structural abnormalities 

after registration of the T1 to the DWI image. Although most cost functions provided 

accurate registration for the typical brain structures, BBR resulted in the most 

satisfying and accurate registration in the case of severe TBI. All other cost functions 

had misalignments. 

 

Figure 33: Visual quality check for cost function on brain of patient with severe TBI. 
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For visual quality check of the performance of the different registrations, I defined a 

WM boundary mask in the T1 image registered to the B0 image (as described in 3.3.3-

Boundary segmentation). I overlaid the boundary mask was overlaid on the 3 images 

following registration in DWI space (diffusion, T1 JHU template). This visual 

assessment of the registration shows accurate alignment of the three images in 3 

healthy subjects (C1,C2,C3) and 3 subjects with moderate/severe TBI (P1,P2,P3) 

(Figure 34). The overlay of the WM boundary mask shows a voxel-wise 

correspondence for the voxels of the boundary among all three images for all cases 

after being moved to the individual subject diffusion space. 
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Figure 34: Examples of individual registration performance. All images have been registered 
to the native diffusion space in 3 controls (C1, C2, C3) and 3 TBI patients (P1, P2, P3). The 

mask of the WM boundary (red) resulting from the segmentation of the T1 image in DWI space 
is used to indicate voxel-wise correspondence among all three images and the accurate 

structural overlay. 

3.4.2. Tract segmentation and estimation of fractional anisotropy  
An example of the segmented tracts can be seen in Figure 35.  
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Figure 35: Example of tract segmentation. The FA map is in native diffusion space. Colours 
are selected at random. Subject is selected at random. SCC= splenium of the corpus callosum, 

BCC= body of the corpus callosum, GCC= genu of the corpus callosum, CS= corticospinal, 
SLF= superior longitudinal fasciculus, CG= cingulum bundle, SCR= superior corona radiata, 

SS= sagittal stratum, SCP= superior cerebellar peduncle, PCR= posterior corona radiata, RIC= 
retrolenticular part of the internal capsule, MCP= middle cerebellar peduncle, EC= external 

capsule, PLIC= posterior limb of the internal capsule, PTR= posterior thalamic radiation, ACR= 
anterior corona radiata, ALIC= anterior limb of internal capsule. 

I used SSDS to segment 47 tracts and assess the performance of the pipeline. I 

carried out visual quality assessment by overlaying the segmented tracts on the 

parametric FA map and assessing voxel-wise correspondence (Supplementary Figure 

1). The segmentation did not need manual intervention for correction. I extracted a 

histogram of FA values across the tract for each of the 47 ROIs. I plotted the 

distribution of FA values and the single mean value for a subset representation of 26 

tracts for individual subjects (Figure 36).  
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Figure 36: The histogram distribution. Representation the frequency distribution of FA values 
for every voxel in a given tract following segmentation of the whole tract in native diffusion 

space. Only left hemisphere tracts are included, and tracts were selected at random. The 
native mean FA is plotted on the distribution (red), the mean skeletonised FA is used for 

comparison purposes (blue). 

3.4.3. Test-retest reliability 
Tract diffusion measures generated using SSDS showed high test-retest reliability. 

Across the three visits the mean FA for each tract was generally very similar (Table 

9):  

- 1-erosion parameter: average COV was 2.7% ± 1.5%  

- 2-erosion parameter: average COV was 5.1% ± 8.6% 

 

Table 9: Reported results for variability statistics. Mean intraclass correlation test (ICC), 
average coefficient of variation (COV) for within tracts and within-subject measurements, and 
pairwise FA correlation. ICC, COV and correlation analyses were carried on all 47 tracts, the 
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average is reported. Boot ICC are results of the confidence interval following a bootstrap test 
on our data. 

 ICC Average COV Correlation pairwise (FA) 

Category Lower Upper Result F 
Intra-

subject 

Intra-

tract 

Visits 

1&2 

Visits 

1&3 

Visits 

2&3 

Values 0.742 0.870 0.808 203 2.61% 0.92% 0.95 0.94 0.94 

P-value <0.001 NA <0.001 <0.001 <0.001 

Boot ICC 0.714 – 0.838 NA NA NA NA 

 

 

13 tracts had a COV greater than 5% with either erosion parameters (Figure 37):  

- The fornix 

- The superior fronto-occipital fasciculus bilaterally 

- The hippocampal cingulum bundle bilaterally 

- The inferior cerebellar peduncle bilaterally 

- The uncinate fasciculus bilaterally 

- The fornix crescent bilaterally 

- The tapetum bilaterally.  

 

Figure 37: Examples of 1 and 2 erosions on segmentation and COV of tracts. (Left) Direct 
comparison of segmentation and voxel exclusion using an n-pass filter of 1 (A) or an n-pass 
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filter of 2 (B) in the fornix and the three parts of the corpus callosum. (Right) Mean intra-
subject COV per tract values following segmentation of 47 tracts using an n-pass filter of 1 

(blue) or 2 (red). Cut-off (red dotted line) is at 5% variation for any of the two erosions (if 
variation of either 1 or 2 erosions is higher than 5%). Tracts highlighted in red are rejected. 
BCC= body of corpus callosum, GCC= genu of corpus callosum, SCC= splenium of corpus 

callosum. 

The 13 tracts with a higher COV tended to be smaller, with a strong correlation seen 

between the size of the tract, based on volume, and the COV (correlation coefficient 

r= -0.64, p < 0.001) (Table 9).  

I have therefore decided to omit these tracts from subsequent analyses, in this chapter 

and the other chapters implementing the SSDS pipeline. However, I still used the 

fornix in this chapter for visualisation and comparison purposes, but I advise caution 

when segmenting any of the tracts mentioned above. For more conservative 

measures, I also suggest the use of a 2-erosion parameters. However, this increases 

variability and excludes important anatomical details. I therefore use 1 erosion 

whenever I use the SSDS pipeline (Figure 37).  

 

I repeated SSDS analysis of each tract and each subject for each of the three visits 

(intra-subject, inter-visit). The three segmentations produced a similar number of 

voxels (correlation coefficient r = 1.0, p < 0.001) and very similar estimations of mean 

tract FA (correlation coefficient r = 0.94, p < 0.001) in all 17 subjects, for each of the 

three visits (Figure 38). Using a two-way mixed single measure consistency ICC, I 

calculated a mean value across all tracts and all visits of 0.87 (Table 9), considered 

excellent on the Cicchetti scale (Cicchetti, 1994).  

 



 

Development & Validation of the Subject-Specific Diffusion Segmentation (SSDS) pipeline | A. A. 

106 

 

 

Figure 38: Correlation of intra-subject, inter-visit SSDS results. (A) Pairwise correlation matrix 
of mean FA values and voxel count per tract per subject. Upper right values represent 

correlation coefficients r, histogram represent mean FA and voxel count distributions and 
scatterplot represent pairwise correlation of data points. P-values: ***<0.01. (B) 3D correlation 

plot of mean FA value and number of voxels for all three visits per tract, per subject. Each 
colour represents a different tract, for all 47 tracts of the JHU atlas. 

3.4.4. SSDS vs other common methods 
The pipeline needed validation above and beyond its ability to hold test-retest. I 

therefore compared to other commonly used methods in diffusion neuroimaging: 

Manual segmentation, registration to a template, and TBSS. For this validation step, I 

chose 6 tracts while trying to include different sizes and morphologies: the genu, body 

and splenium of the corpus callosum, the cingulum bundle left and right, and the fornix.  

Although I have previously suggested not using the Fornix as a tract in SSDS analysis 

(Section 3.4.2), I chose it as a validation tract to check if its segmentation fails with 

SSDS, or whether it is an unreliable tract while resorting to different methods as well.   

The mean FA resulting from SSDS were compared to:  
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a) ROI analysis following manual segmentation on the parametric diffusion map 

b) ROI masking following registration to the high resolution MNI152 template 

c) skeletonized mean FA measures of ROI tracts after TBSS  

Running a one-way ANOVA for the effect of the method used on the FA value, 

revealed statistically significant difference on all 6 tracts (Figure 39): the body of the 

corpus callosum (F=36.34, p<0.001), the genu of the corpus callosum (F=78.86, 

p<0.001), the splenium of the corpus callosum (F=38.3, p<0.001), the right and left 

cingulum bundles (F=22.88, p<0.001 and F=27.5, p<0.001 respectively) and the fornix 

(F=29.33, p<0.001).  

I performed a pairwise comparison of each method with the results from manual 

segmentation: the paired t-test showed similar mean FA values for SSDS and manual 

segmentation for 5 tracts, while the mean FA value of the splenium of the corpus 

callosum is slightly higher using SSDS (t=1.75, p=0.046) (Figure 39-A).  

This result further reflects the high levels of similarity between SSDS and the gold-

standard of segmentation which is manual delineation of ROIs.  

The average DSC value for all tracts comparing ROIs from manual segmentation and 

SSDS was 0.8 ± 0.1, ranging from 0.5 to 0.97, with the highest DSC average being for 

the segmentation of the splenium of the corpus callosum (0.81 ± 0.06), and the lowest 

being for the segmentation of the fornix (0.76 ± 0.13). 

 

When I compared FA obtained from SSDS to the FA obtained from both registrations 

to a standard template (masked with a JHU tract in MNI152 space) and skeletonized 

tract following TBSS, there was a significant difference between mean FA of all tracts. 

As expected, the mean FA obtained using the SSDS pipeline were on average lower 

than mean FA extracted following skeletonization and using the ENIGMA DTI pipeline 

(Figure 39-A). This result is expected given that, as mentioned previously, the 

skeletonization process projects expected peak FA values onto the skeleton while 

ignoring neighbouring voxels. This further demonstrates the need for an automated 

pipeline with higher anatomical specificity and coverage. 

 

One more method for extracting mean FA from ROIs that we commonly see in studies 

is the segmentation of the tract following non-linear registration of the parametric map 

to the standard template, and before skeletonization. This method has fundamental 
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flaws (see section 3.5. Discussion), but I used it as a comparative method to explain 

the problems that might arise from warping diffusion data.  

The volume of each tract segmented, in cm3, is on average 1.5 folds higher than the 

mean values for the corresponding tracts in native diffusion space for each individual 

(Figure 39-B). Moreover, while the volume of a given tract varies from an individual to 

another, it’s a constant volume once warped to a standard template. This 

transformation to a higher resolution template will therefore inevitably include 

smoothed voxels and partial volume effect. This effect is further exacerbated when we 

look at the resulting mean FA values, which are consistently lower than value obtained 

from both SSDS and manual segmentation when all voxels are included to derive the 

mean value. 

 

After skeletonization and exclusion of the partial volume to limit measurements to peak 

voxels and the centre of the tracts, the volume of the skeletonised ROI is on average 

3 times smaller than that of the ROI segmented in native space (Figure 39-A). By 

sampling FA values from neighbouring voxels with peak signals by projecting values 

onto the skeleton, we end up with a higher mean FA value for each ROI. Even when 

outermost voxels are eroded, the diffusivity measures obtained from SSDS sample a 

larger volume without being skewed to peak values which are obtained from the 

skeletonization process. This reflects the limitation of only looking at peak FA values 

in samples where microstructural differences might not be homogenously distributed 

across the skeleton.  
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Figure 39: Comparing SSDS to other methods. Boxplot comparing mean FA values (A) and 
volume in mm3 (B) in n=15 healthy controls for 4 segmentation methods of the body, genu and 

splenium of the corpus callosum (BCC, GCC, SCC respectively), fornix and cingulum 
bilaterally. The four segmentation methods include SSDS, a manual segmentation on the 

parametric map, crossing ROI with normalized FA in MNI152 template space, and extracting 
the mean skeletonised FA value of each ROI mask. Although the fornix was omitted from 

analysis (because of a poor test -retest reliability), we included segmentation of the fornix to 
illustrate comparisons of the methods on a small tract. Ns= not significant, *p <0.05, **p <0.01, 

***p <0.001. 
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A new method should have the same, or a better reliability measure to be adopted for 

future analyses. I compared reliability for FA values obtained from the different 

methods. The intra-tract (same tract, different subject) COV for the manual 

segmentation and TBSS stands at 6.60 % and 7.23% respectively, compared to 7.26% 

for SSDS. This indicates similar variation for SSDS to the methods commonly used. 

3.4.5. Example – TBI patients vs healthy controls 
As an example of a clinical application of the SSDS pipeline, I looked at TBI 

patients with and without lesions, and compared the two groups to a third one of 

healthy controls. The mean FA derived from the whole brain WM map was 

significantly lower in both TBI groups (with and without lesions) compared to the 

healthy control group (t=6.59, p<0.001 and t=5.25, p<0.001 respectively), with the 

lowest WM mean FA recorded in TBI patients with lesions, but not significantly 

lower than mean FA of TBI patients with no lesions (respective mean X1=0.5 ± 0.1 

and X2=0.51 ± 0.08, t=-1.62 p=0.053).  

I then looked at the different tracts and derived tract-specific mean FA values. The 

results showed a decrease in mean FA in the group with lesion compared to both 

the TBI group without lesions and the control group in the right anterior corona 

radiata, and the genu of the corpus callosum (Figure 39).  
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Figure 40: Tract-specific mean FA value comparison in 3 groups. Healthy controls (green), TBI 
with lesions (orange), and TBI without lesions (purple). A subset of tracts is considered in 
this analysis, mainly when at least one of the bilateral tracts showed a difference. Ns=non-

significant, *p<0.05, **p<0.01, ***p<0.001. 

I then applied SSDS to three case studies to further demonstrate that SSDS provides 

robust FA estimations in cases of severe focal injuries and structural abnormalities 

following TBI (Table 10). I test it once again against the other common group-level 

methods.  

 

Table 10: Description of the case studies. PTA= post-traumatic amnesia. 

 Gender Age 
Time since 

injury 
(months) 

Length of 
PTA 

(days) 
Focal 

Abnormality Mechanism 

Case 1 Male 52 17 21 Contusions & 
Microbleeds Fall 

Case 2 Male 49 249 120 Contusions & 
Microbleeds Sports 

Case 3 Male 48 366 60 Contusions Road traffic 
accident 

 
Case 1:  
The MRI of this patient shows a pronounced loss of volume within the corpus callosum, 

with enlargement of the ventricles. We can also see severe damage in the genu of the 

corpus callosum (Figure 41-case 1).  
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When manually segmented in native space, the affected WM region is not picked up 

by the rater given the lack of signal on the parametric FA map.  

Similarly, the automated segmentation of SSDS returns an empty mask given the lack 

of signal from both the T1 and the diffusion image.  

In contrast, the process of normalization to a standard space produces an estimated 

WM map in the damage region, and a subsequent skeleton within this location if TBSS 

is performed.  

The results obtained with each method are as follow: 

- Following TBSS and projection of peak voxels on the skeleton, the mean FA 

value is calculated as 0.514.  
- Following SSDS the mean FA value for the intact region of the corpus callosum 

is 0.364. 

- Following manual segmentation of the same ROI, mean FA is 0.382.  

 

Case 2: 
This case illustrates a similar case as the one mentioned above, with the MRI scan 

showing a thinning of the WM at the junction of the splenium and the body of the 

corpus callosum (Figure 41-case 2). 

When performing a manual segmentation directly on the parametric map, this WM 

region is not segmented by the rater, nor the automated segmentation of SSDS. 

In contrast, the process of normalization to a standard space (Case 2- C), and 

enlargement of the tract, produces an estimated WM map and subsequent 

skeleton within this location.  

- Manual segmentation of the corpus callosum yields a mean FA value of 

0.450.  

- SSDS segmentation of the corpus callosum yields a mean FA value of 

0.425. 

- Following TBSS estimation of a skeleton at this region, the mean FA value 

is calculated as 0.532.  

 

Case 3  

This case illustrates a brain with significant atrophy (Figure 41-case 3). This results 

in a loss of signal on the MRI, especially from small tracts around the ventricles 

such as the fornix. For this individual, the rater was unable to segment the fornix 
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directly on the FA map. SSDS also returned an empty mask when trying to 

segment the fornix. However, registration to a high-resolution template normalizes 

the parametric map to a standard average, resulting in an estimate for the WM 

signal at the fornix, and a mean FA value of 0.15, and the skeletonized tract 

returned a mean FA value of 0.16. 
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Figure 41: Visual representation of case studies of patients with severe TBI. Cases 1 and 2 
show the segmentation of the corpus callosum, and case 3 illustrates the robustness of the 

pipeline when a signal is not detected on the DWI image. A) native T1 image to illustrate 
structural abnormality before registration to the diffusion image, B) FA map in native diffusion 
space, C) FA map following registration to a higher resolution standard template through non-

linear alignment, D) SSDS segmentation of corpus callosum and heatmap of FA values. 
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3.5. DISCUSSION 
I developed the Subject-Specific Diffusion Segmentation (SSDS) pipeline in the 

context of group studies where many subjects’ MRI had to undergo segmentation 

in areas that might not be accessible with other methodologies, or in studies where 

group differences are relatively more subtle – both of which apply to my cohort of 

soldiers. The point of SSDS was to obtain a reliable method that combines both 

the spatial specificity of manual tract segmentation on native parametric maps, 

with the accuracy, standardization, automation, and reproducibility of group-level 

approaches. SSDS therefore overcomes the need for time-consuming manual 

segmentations in studies investigating individual changes in ROIs diffusion data, 

or in clinical groups with severe anatomical abnormalities in which registration of 

the diffusion image can yield inaccurate results.  

 

One of the novelties of SSDS is that it relies on the underlying anatomy when 

deriving diffusion information. This is achieved by using the corresponding T1 

structural image to guide both registration and segmentation.  

The second strength of SSDS is that the diffusion image is never warped to the 

high-resolution template. If we look closely at what happens during warping to a 

higher resolution template, we can see that normalization results in artificial and 

smoothed voxels that both increase the volume of the ROI investigated and 

decrease the overall mean signal (Jones and Cercignani, 2010) (Section 3.4.4). 

Instead of relying on normalization, SSDS was optimized by using the T1 image 

to iteratively drive the intra-subject registration of the high-resolution template into 

the native diffusion space and preserve the anatomical details of the standard 

templates and the T1 image and the integrity of the diffusion information.  

A third edge of SSDS is the use of boundary-based registration (BBR), which is 

based on the definition of a WM boundary and the difference of intensity across 

the boundary in both structural and diffusion images (Greve and Fischl, 2009). For 

the accurate intra-subject, inter-modality registration, integrating BBR and the ‘up 

sampling-combine-inverse’ technique (see section 3.3.3) resulted in an accurate 

registration of both the template and the T1 image in the lower-resolution DWI 

space in structurally typical as well as atypical brains suffering from anatomical 

abnormalities.  
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We could argue that SSDS is not the “first automated method for measuring ROI-

specific in diffusion information (Ressel et al., 2018)”, citing methods such as 

TBSS and the ENIGMA-DTI pipeline. And although this is true, most standardized 

and commonly used pipelines still perform analyses in group space, still normalize 

diffusion data, and still register images across subjects (Soares et al., 2013), and 

are therefore not suitable to the problem I’m tackling – which, to reiterate, is the 

automated investigation at the individual level or regions that are not accessible 

once diffusion data is normalized and warped. In fact, standardized and publicly 

available simple protocols with pre-defined test-retest reliability and parameter 

normalization for more homogenous diffusion investigations at the individual level 

are still lacking. SSDS uses common registration techniques and predefined 

atlases to make automated segmentation stable in native diffusion space, 

maintaining high correspondence with FA values obtained from manual 

segmentation of ROI, and providing a reproducible pipeline capable of rep lacing 

manual segmentation of ROIs on parametric maps in clinical subject-level 

investigations.  

 

SSDS shows high test-retest reliability across subjects and visits, for both the FA 

value calculated and the size of the tracts. Out of the 47 tracts segmented and 

tested, I eliminated all the tracts with a COV value higher than 5% -  which resulted 

in the exclusion of 27% of the tracts. The excluded tracts were the fornix, superior 

fronto-occipital fasciculus bilaterally, hippocampal cingulum bundle bilaterally, the 

inferior cerebellar peduncle bilaterally, the uncinate fasciculus bilaterally, the 

fornix crescent bilaterally, and the tapetum bilaterally. There was a strong negative 

correlation between size and variability, with smaller tracts being the ones with a 

COV higher than 5%. I have also used 1-erosion of tracts for all subsequent 

analysis. Although adding a second erosion allows for more conservative 

segmentation, it increases the variation in measured FA and excludes important 

spatial information from the tracts.  

 

SSDS also seems to reflect manual segmentation more accurately than the other 

methods and shows a high dice similarity coefficients (DSC) score on tracts 

studied. Like manual segmentation, SSDS retains the size and the morphology of 

the ROI, while in group-level analysis, spatial normalization of the parametric map 
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to a higher resolution template means warping and smoothing, and normalizing 

anatomy to achieve voxel-to-voxel correspondence for the subjects studied 

(Soares et al., 2013). Warping and non-linear registration can result in errors when 

moving images of low resolution and poorer contrast (such as DWI) to high 

template resolution (Jones and Cercignani, 2010). Smoothing is also often used 

to increase signal-to-noise ratio and compensate for possible misalignment, 

creates a normal distribution of the data (Worsley et al., 1996). Although spatial 

normalization is reliable and has been shown to preserve micro and macro-

structural properties of large WM tracts, we can’t say the same about smaller 

structures and/or structurally atypical brains (Adluru et al., 2013, Jones and 

Cercignani, 2010). To overcome the effect of normalization, TBSS successfully 

measures FA values at the centre of the tract via projection of the peak FA values 

onto a skeleton (Smith et al., 2006), which was revealed to be a valuable tool for 

DTI investigation. To achieve this projection, the algorithm searches for the 

maximum value, assumed to represent the centre, perpendicular to the midline 

skeleton structure (Zalesky, 2011). However, it is important to note that not all 

differences in signal are homogenously distributed to the centre of the tracts, and 

differences between groups can be too subtle to detect with more conservative 

techniques where only peak voxels are reflected, and can be affected by 

anatomical shifts, WM structural abnormalities and registration errors (Zalesky, 

2011). But on the other hand, if ROIs are investigated following spatial 

normalization by masking with atlas-derived pre-defined tracts, the estimated 

tracts are much larger tracts (~1.5 fold increase), compared to native WM tracts 

through normalization and up sampling, which leads to inclusion of smoothed 

voxels and partial volume effects, and can bias the results. Other approaches to 

investigating ROIs include fibre tractography, with its main advantage, from a 

clinical perspective, being the possibility to derive measures from the entire fibre 

bundle, instead of one of its segments, and as a discovery technique for WM 

connectivity (Hulkower et al., 2013). However, such measurements can be 

challenged by the presence of structural abnormalities leading to false positive 

bundles (Schilling et al., 2019), and different approaches should be used when 

specific and predefined ROIs are investigated.  

 



 

Development & Validation of the Subject-Specific Diffusion Segmentation (SSDS) pipeline | A. A. 

119 

 

This brings us back to the novelty of SSDS. We can now carry out longitudinal 

studies of volume changes in WM ROIs over time in both group and individual 

investigations. SSDS also eliminates the need to manually delineate and mask 

structural abnormalities (lesions, tumours, etc…), which, up to this point, was still 

a routine step in our lab for diffusion studies of TBI. This is possible given that the 

technique relies on a WM map to guide the segmentation; and WM map estimation 

excludes low-intensity signals from the T1 image (Horbruegger et al., 2019). 

Several steps in the pipeline also curb the issues arising from partial volume, 

reducing their effect on the results. These steps include using a T1 WM binary 

map as an anatomical guide, eroding the WM map, and adding optional erosions 

of the tracts before and after registering them to native space. It is important to 

note that the kernel used for erosion only excludes the outermost voxels (Figure 

42). The partial volume is therefore limited to the resolution of the diffusion image. 

 

Figure 42: Original vs eroded image. In grey: simplistic representation of outermost voxels 
excluded during the erosion process. 

This pipeline can be applied to any measure derived from diffusion images, 

although we have demonstrated its utility in the analysis of FA data. However, the 

resolution and performance of the algorithm will ultimately be determined by the 

resolution and performance of the underlying DWI acquisition: the higher the 

quality of the diffusion data, the more accurate the segmentation process. My 

approach can either be used independently or can complement group-level 

analysis such as VBA or TBSS.  SSDS also has significant advantages if specific 

parts of WM tracts need to be sampled, for example WM boundaries or tract -

specific boundaries. I mention this because investigation of the boundaries of the 

WM is the reason I developed SSDS. Such investigations would be of interest for 

a variety of conditions, including TBI and autism (Andrews et al., 2017, Narayana, 

2017).  
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As with any imaging technique, SSDS has its pitfalls which I’m hoping to improve 

in future implementations. The main limitations of SSDS relate to its application to 

smaller tracts, which tend to have higher variation (e.g. the superior Fronto-

Occipital Fasciculus and the hippocampal projection of the Cingulum). To reduce 

this variation, we could either improve on the quality of the acquisition, the 

registration, or the structural image. The effect of noise on FA measures has well 

been documented (Pierpaoli and Basser, 1996) and impacts on the variance in 

anisotropy. This, however, is not exclusive to SSDS, and implies high error rates 

when using alternative methods.  Another limitation would be the performance of 

registration if and when gradient field maps have not been acquired, or the quality 

of the structural image segmentation in case abnormalities are present. 

Future investigations using SSDS will have to determine the minimal angular 

resolution, spatial resolution, and signal to noise ratio for SSDS to still be able to 

perform, as well as the applicability in small white matter tracts when using higher 

spatial resolution diffusion imaging. 

 

In summary, I describe a novel pipeline for diffusion MRI investigations of WM 

abnormality at the individual level, and provide the code for use by other studies, 

as well as test-retest measures of reliability and information on best practice when 

implementing SSDS. I showed that it is robust to the presence of structural 

abnormalities, reliable, and most importantly shows high correspondence to 

manual segmentation of WM tracts which remains the gold standard for ROI-driven 

diffusion analyses. Validating the pipeline was a crucial step for its implementation 

in bTBI investigation in the next chapter.  

 

In the next chapter 

In chapter 4, I will investigate diffusion abnormalities in bTBI, and the difference at the 

level of the WM microstructure between blast and nbTBI. I will do this by first using a 

standard group-level analysis, TBSS, and then by implementing SSDS in the same 

cohort at the individual level, and in regions where diffusion-related metrics can’t be 

measures with TBSS.   
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CHAPTER 4  
Detecting White Matter 
Abnormality in Blast-Related 
Traumatic Brain Injury 

 

 

 

 

 

 

In this chapter I use two different techniques to investigate white matter 

abnormali ty in blast-related traumatic brain injury. I fi rst perform a TBSS 

approach on a subset of white matter  tracts on the three groups: a 

healthy control group, a group of civi lians with non -blast traumatic brain 

injury, and a group of soldiers with blast-induced traumatic brain injury. 

I then apply the SSDS approach to examine whether increasing 

specifici ty at the individual level can help uncover a pattern of 

microstructural white matter abnormali ty specific to blast injury. 
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4.1. ABSTRACT 
Investigating the effect of primary blast injury on the brain, and how it compares to 

civilian traumatic brain injuries (TBI) and other injury mechanisms can help understand 

the symptoms and sequalae of blast-related TBI (bTBI), as well as improve prevention 

and diagnosis. Based on previous neuroimaging studies showing damage at level of 

the middle cerebellar peduncle (MCP), and on post-mortem investigations, pre-clinical 

studies and computational simulation suggesting susceptibility to blast at the interface 

of different tissue types, a direct comparison to civilians with non-blast TBI and 

analysis of tissue boundaries in vivo are still lacking. It has already been determined 

that primary blast-related TBI leads to diffusion tensor MRI abnormalities consistent 

with diffuse axonal injury and microstructural damage of the white matter (WM). To 

further examine the difference in WM injuries between blast and non-blast TBI in 

specific tracts and the boundary of the WM, we compared 19 U.K. military personnel 

with a history of blast-related TBI, to age and gender-matched healthy controls (n=30) 

and civilians with non-blast TBI (n=20) matched for the time since injury and injury 

severity. I used diffusion tensor imaging (DTI) data to perform three distinct analyses: 

group-level tract-based spatial statistics (TBSS), followed by an automated and 

individual segmentation of whole WM tracts using subject-specific diffusion 

segmentation (SSDS) to increase the specificity of the measurements, and a 

segmentation of the boundary of the WM in the whole brain, and in specific tracts. 

While group-level TBSS showed a similar pattern of widespread WM abnormalities in 

both injured groups relative to controls when comparing skeletonised mean FA across 

tracts (p>0.05), subject-level SSDS measures revealed differential injury at the level 

of the MCP tract in the soldiers compared to civilians with TBI (p=0.02) and healthy 

controls (p=0.02). The pattern of damage specific to the blast group was also 

concentrated around the boundary of the WM and the cerebrospinal fluid in the whole 

brain (F=2.98, p=0.05 one-way ANOVA) and the MCP more specifically (F=4.79, 

p=0.01 one-way ANOVA). DTI findings in U.K. military personnel support the 

hypothesis that primary blast TBI can involve a differential pattern of WM injury in 

soldiers. 
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4.2. INTRODUCTION 
The number of U.K. and US military personnel affected by blast-related TBI (bTBI) is 

estimated to stand at around 15.2% - 22.8% (McKee and Robinson, 2014, Masel et 

al., 2012, Hoge et al., 2008). As I mentioned in earlier chapters, previous studies 

across different disciplines suggest that there may be differences in the 

pathophysiology of blast-related and non-blast related TBI (Robinson et al., 2019, 

Shively and Perl, 2017, Hoffer et al., 2010, Moore et al., 2009), and this is the main 

hypothesis that my thesis has been tackling. However, blast-related injuries are rarely 

present in isolation (Kirkman et al., 2011) given that the different types of injuries 

mostly coexist in soldiers, which renders assessing primary blast injuries a challenge 

because of the spectra of clinical manifestations following blast waves (Thompson et 

al., 2008), direct blows to the head (Ryan and Warden, 2003), or both, when they 

happen simultaneously (Hoffer et al., 2009). 

 

Head trauma resulting from blast overpressure is still incompletely understood. In vitro 

investigations, pre-clinical animal studies, computational simulations and modeling, as 

well as clinical research are still trying to elucidate the pathophysiology of primary blast 

injuries, and although many mechanisms have been hypothesized, evidence 

supporting one or the other is still insufficient. In this chapter I focus on the damage to 

the white matter (WM) microstructure, and how it can be a signature of primary blast 

injury.  

 

A finite element model of the effects of blast on the brain suggests that the primary 

blast wave may produce direct WM injury, in locations that are unusual for non-blast 

TBI (Taylor and Ford, 2009a), while another model shows that the rapid head motion 

caused by blast could result in strain on tissues surrounding CSF cavities (Yu et al., 

2020). In the latter study, to which I contributed during my PhD, a finite element head 

model was exposed to a frontal blast wave and predicted the strain and strain rate 

distribution in the cortex 7 . The conclusion was that strain and strain rate were 

significantly increased in the cortex, and that this change was mainly caused by head 

 
7 Strain is the deformation of a tissue and strain rate is the rate of this deformation caused by the strain 

over a period of time. 
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motion, while the strain rate increase was caused by both rapid head motion and 

rarefaction waves. The study also shows that rapid motion of the head as a result of 

the blast wave is the key mechanism for CSF tensile failure and subsequent cavitation, 

which seems to be the cause of strain and strain rate increase.  

 

In line with this hypothesis, a post-mortem histopathological investigation of bTBI 

showed evidence of interface astroglia scarring at boundaries between brain and 

fluids, but the findings were also seen at the boundaries of the WM and grey matter 

(GM) (Shively et al., 2016). The biomechanical prevailing hypothesis is that when the 

waves are transmitted from a type of tissue to another, the refraction waves amplify 

the effect, possibly causing the damage at the boundaries (Courtney and Courtney, 

2015). 

 

As already mentioned, moderate and severe bTBI are often associated with obvious 

injuries such as severe cerebral oedema, intracranial haemorrhage, and vascular 

injury in neuroradiological assessments (Mutch et al., 2016). However, the variations 

in the samples and their sizes, the study designs and the measurements across 

neuroimaging studies and reports, as well as the heterogeneity of TBI and causes of 

TBI in general, present a major challenge to generalizable results and conclusions. 

Even in the absence of abnormalities on brain CT and MRI, investigations have 

revealed other neuroimaging findings such as morphological and volumetric 

abnormalities or changes in diffusivity properties reflecting diffuse axonal injuries 

(DAI), which are not typically seen in standard CT and MRI imaging (Benzinger et al., 

2009, Mu et al., 2017), shedding light on the importance of advanced neuroimaging 

techniques and standardized analyses. Diffusion tensor imaging (DTI) has been 

widely and successfully used in the assessment of DAI in civilian with mild TBI. DTI 

measures the fractional anisotropy (FA) of diffusion, as a dynamic indicator of the 

underlying WM microstructure (O'Donnell and Westin, 2011).  In the context of military 

brain injuries, previous DTI studies have reported abnormalities in soldiers, consistent 

with traumatic axonal injury (Mac Donald et al., 2011), and a correlation between those 

abnormalities and worsening performance on executive tasks (Jorge et al., 2012) 

following bTBI (see Table 4).  
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However, the main question is yet unanswered: to what extent neuroimaging 
abnormalities produced by blast exposure are specific to the primary injury? 

Since it is rare for soldiers to suffer from isolated blast injuries, the neuroimaging 

abnormalities are likely to be the combination of several different mechanisms, 

including what is more commonly seen in civilians suffering from non-blast TBI. 

  

This chapter was inspired by a previous prestigious in-vivo neuroimaging investigation 

showing the presence of axonal injury through microstructural damage at the level of 

the cingulum bundle, uncinate fasciculus, and anterior limb of the internal capsule, and 

most prominent abnormalities were found in the middle cerebellar peduncle (Mac 

Donald et al., 2011). They predicted this region to be most vulnerable to primary blast 

injury (Taylor and Ford, 2009b). However, the contribution of primary blast injury 

specifically could not be determined given that the soldiers included in the study 

sustained different mechanism of injuries, and that no control group for different injury 

mechanisms was included. 

 

If parts of the WM are specifically vulnerable to blast injuries, and in line with the 

hypothesis of stress changes at the boundaries of different tissues and cavitation 

effects at the edges of CSF-filled cavities, then damage of the microstructure at the 

WM boundary of these tracts might be driving the changes observed.  

 

In this study, I use two control groups, a civilian nbTBI as well as a healthy control 

group to understand how WM injuries differ between bTBI and nbTBI. I implement both 

a group-level and a subject-level analysis to identify widespread WM damage and to 

investigate whether a pattern of WM injury specific to bTBI emerges. I apply the 

subject-specific diffusion segmentation (SSDS) pipeline to detect more subtle changes 

in the WM that might not be homogenously distributed across the skeleton of tract and 

across individuals in group-level analysis. I also extend the method to look more 

specifically at boundaries of the WM tracts.  

 

Hypotheses of Chapter 4 
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- Using group-level tract-based spatial statistics (TBSS) (Smith et al., 2006) on a 

reliable subset of WM tracts, the pattern of injury reflected by DTI abnormalities 

will be present in both bTBI and nbTBI groups.  

- When increasing the specificity of measurements with subject-level 

investigations, bTBI will be associated with abnormalities in the posterior fossa, 

specifically the middle cerebellar peduncle, with greater damage seen at the 

boundary of the WM. 
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4.3. METHODS 

4.3.1. Participants 
Data from 19 soldiers (mean age ±SD: 29.8 ± 5.9 years) with moderate to severe blast 

traumatic brain injury (bTBI) in the post-acute phase were included in this study. The 

two control groups consisted of 20 civilians with non-blast TBI (mean age ±SD: 30.3 ± 

7.6 years), as well as 31 healthy controls (mean age ±SD: 30.6 ± 6.7 years). The bTBI 

and nbTBI groups were matched time since injury (mean ± SD 14.6 ± 5.9 and 12 ± 

12.7 months respectively). All participants gave written informed consent according to 

the Declaration of Helsinki.  

 

All cases of military and civilian injury were categorised as moderate or severe based 

on the Mayo Classification System for Traumatic Brain Injury Severity, relating to the 

duration of loss of consciousness, the length of PTA, the lowest recorded GCS in the 

first 24 hrs and/or CT or MRI result (Malec et al., 2007). Exclusion criteria were as 

follows: penetrating brain injury, neurosurgery, except for intracranial pressure 

monitoring; a history of psychiatric or neurological illness prior to head injury; a history 

of previous TBI; anti-epileptic medication; current or previous drug or alcohol abuse; 

or contraindications to MRI. 

4.3.2. Neuropsychological Assessment 
All participants completed a standardised neuropsychological test battery sensitive to 

cognitive impairment associated with TBI (Kinnunen et al., 2011). The cognitive 

functions assessed were: Verbal and non-verbal reasoning ability via the Wechsler 

Abbreviated Scale of Intelligence (WASI) Similarities and Matrix Reasoning subtests, 

associative learning and memory via the immediate recall score on the People Test, 

executive functions, inhibitory control, cognitive flexibility and word generation fluency 

via the Trail Making Test, alternating-switch cost index, and two indices from the Delis–

Kaplan Executive Function System (Delis 2001), and the total score on Letter Fluency; 

and information processing speed via a simple computerised choice reaction task. 

4.3.3. Imaging Acquisition 
Each patient had standard high-resolution T1 and gradient-echo (T2*) imaging. MRI 

was performed on Philips 3T Achieva scanner (Philips Medical Systems, The 
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Netherlands) using a body coil. For DWI, diffusion-weighted volumes with gradients 

were applied in 16 non-collinear directions in each of the four DTI runs, resulting in a 

total of 64 directions. The following parameters were used: 73 contiguous slices, slice 

thickness = 2mm, field of view 224 mm, matrix 128 X 128 (voxel size = 1.75 X 1.75 X 

2 mm3), b value = 1000 and four images with no diffusion weighting (b=0s/mm2).  

4.3.4. Imaging Analysis 

Pre-processing 

The workflow of this study is outlined in Figure 43. I pre-processed DWI images using 

FSL’s FDT standard pre-processing technique (Behrens et al., 2003) and the brain 

extraction tool (BET) for skull-stripping (Smith, 2002). I applied motion parameters to 

the DTI b-vectors to compensate for the eddy current and motion corrections. I 

estimated the diffusion tensor using the skull stripped DWI image to generate fractional 

anisotropy (FA) maps using the FSL DTIFIT algorithm (weighted least squares 

approach). I subsequently used FA maps in the analysis as an indicator of the 

microstructural integrity of the underlying WM structure. 

  

For the T1 image, I performed brain extraction using FSL-BET, then segmented the 

brains into different tissue types and corrected for spatial intensity variations using 

FSL FAST (Zhang et al., 2001). I used the WM segmented tissue to generate a map 

of the WM boundary, subsequently used in SSDS analysis. 
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Figure 43: Workflow for this study. A) TBSS and skeletonized mean FA of ROI B) SSDS 
overview of methodology and tracts used for mean FA estimation in native diffusion space C) 
SSDS boundary segmentation overview of methodology and tracts used to estimate mean FA 

at the boundary of the WM/GM and WM/CSF. For whole brain boundary, red is the WM/GM 



 

Detecting White Matter Abnormality in Blast-Related Traumatic Brain Injury | A. A. 

130 

 

boundary, green is WM/CSF boundary. IED= improvised explosive device, RTA= road traffic 
accident, bil= bilaterally. 

TBSS 

I performed voxel wise analysis of the FA maps using TBSS (Smith et al., 2006) in the 

FMRIB Software Library. Following estimation of the mean FA skeleton, I used non-

parametric permutation-based statistics with randomize and threshold-free cluster 

enhancement and 5000 permutations while correcting for multiple comparison. I 

included age as a covariate, and I assessed significance at P-value<0.05. Using a 

region of interest (ROI) approach to investigate FA within a specified WM region, I 

created ROI masks in the MNI152 1mm space and then applied them to the TBSS 

skeletonised images to extract mean skeletonised FA from each ROI (Figure 43-A).  

SSDS 

I implemented and extended the method described in the subject-specific diffusion 

segmentation (SSDS) pipeline (CHAPTER 3) (Figure 43-B). As a brief overview, tracts 

segmented through SSDS allow an estimation of FA from the entire tract in native 

diffusion, reflecting manual segmentation of the tracts on the parametric FA map, and 

more tracts with high reliability can therefore be including in the analysis. SSDS 

overcomes the need to interpolate diffusion data and enables measurements from the 

whole tract instead of the skeleton. I registered the T1 image to the native DWI through 

alignment of the EPI volume to the T1 brain image using a boundary-based registration 

(BBR) (Goebel, 2020), then segmented the T1 image into three tissue type following 

registration to the B0 image. I thresholded the WM map to 0.99 and binarized to 

exclude partial volume voxels. To register the ROIs to the diffusion image, I calculated 

an inverse of the non-linear warp of the T1 to the MNI152 template. I then 

concatenated the non-linear registration and the linear BBR transforms and used the 

resulting transformation to register the ROIs to the native diffusion image. The tracts 

are then cross masked with the WM map to ensure restriction to the underlying 

anatomy. 

Segmentation of the tract boundaries 

I calculated mean FA at the boundary of the whole-brain WM as well as the WM/GM 

and WM/CSF boundaries of the following tracts (Figure 43-C). 
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The boundary mask consists of the outermost voxels of an ROI. To generate a 

boundary mask, I eroded the mask of the ROI by 1 voxel when non-zero are found in 

the kernel and subtracted the eroded mask from the initial mask to generate a 1-voxel 

thick boundary that excludes partial volume by being limited to the underlying anatomy 

(Figure 44). I then dilated the map of both the cerebrospinal fluid (CSF) and the grey 

matter (GM) to create an overlay with the eroded WM map. I transformed the overlay 

into binary masks: WM/GM boundary and WM/CSF boundary. 

 

 

 

Figure 44:How boundary masks are created. Blue area represents the CSF, pink area 
represents the GM, and pixelated area represents the WM. A) the initial image is eroded, 
resulting in the inner voxels being preserved. Inner voxels are then used to mask out the 

corresponding voxels on the initial image to end up with the outermost voxels. B) Voxels from 

both the CSF and GM are dilated, resulting in an overlap with the adjacent WM boundary 
voxels. Dilated maps of the CSF and GM are then used to mask out the boundaries specifically 

associated with either GM, or CSF.  

To validate measures obtained from these masks, I manually segmented the WM/CSF 

boundary of the whole corpus callosum and compared to the results obtained following 

SSDS and boundary segmentation of the whole corpus callosum. Each manually 

delineated ROI consisted of multiple slices fully covering the 3D structure. The 
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anatomical structures were defined according to the definitions provided in a standard 

DTI atlas (Oishi et al., 2008). I chose at random five subjects from each of the three 

groups (bTBI, nbTBI, controls) for a total of n=15 individuals. 

  

Regions of interest 

For both the TBSS and SSDS analyses, I chose the ROIs based on the following 

criteria: 1) the most reliable tracts to use in the individual diagnostic pipeline, as well 

as their importance in TBI diagnosis (Jolly et al., 2020): the genu, body and splenium 

of the corpus callosum, the corticospinal tract bilaterally, the corona radiata bilaterally, 

the inferior longitudinal fasciculus bilaterally and the middle cerebellar peduncle, and 

2) the tracts of interest for bTBI based on previous in-vivo findings (Mac Donald et al., 

2011) including the cerebellar peduncle bilaterally, the cingulum bilaterally, the 

anterior limb of the internal capsule bilaterally, and the uncinate fasciculus bilaterally.  

 

For the analysis of the boundary of the WM, tracts fitting the following characteristics 

were chosen: 1) Large/wide tracts for accurate segmentation of the boundary, 2) 

sharing a boundary with both the GM and the CSF, and 3) tracts of interest for bTBI. 

Therefore, four different regions were investigated, including the body, splenium and 

genu of the corpus callosum, and the middle cerebellar peduncle.   

4.3.5. Statistical analysis 
I conducted all statistical analysis using R v3.3.3 (www.R-project.org) to assess 

normality relationships between variables and compare experimental groups. I used 

one-way ANOVA followed by a Tukey HSD post-hoc analysis as well as two-sample 

t-tests if comparing the mean of two groups. To study the effect of a cognitive variable 

on FA measures within the bTBI group, I report Pearson's correlation coefficients. I 

assessed significance at p-value<0.05. To compare an individual’s FA value to the 

distribution of the control group, I calculated a Z-score for each ROI. Negative Z-scores 

indicate a lower FA value compared to the control’s mean. I calculated P-values of the 

Z-scores [two-tailed, with 95% confidence interval (CI)] and corrected for multiple 

comparisons (false discovery rate). Bonferroni correction was used to correct for 

multiple comparison.  
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4.4. RESULTS 

4.4.1. Patients’ Characteristics 

Clinical demographics 

Soldiers with bTBI were all injured by improvised explosive devices (IEDs) during 

deployment, were wearing full personal protective equipment and were immediately 

transferred to Camp Bastion to receive emergency care, then repatriated to the United 

Kingdom within 48 hours (Table 11: Demographics of the three groups taking part in 

this study. Results for age, time between injury and scan are in mean ± SD. PTA= post 

traumatic amnesia, ISS = Injury severity score, Mounted: in a vehicle or room corner, 

Unmounted= in open field.).  

 

For the non-blast TBI (nbTBI) group, all civilians were diagnosed with TBI after being 

referred to the local TBI service because of functional impairments following injuries. 

In the nbTBI group, injuries were caused by assaults (34%), road traffic accidents 

(19%), falls (42%) or sports related injuries (5%).  

 

Table 11: Demographics of the three groups taking part in this study. Results for age, time 
between injury and scan are in mean ± SD. PTA= post traumatic amnesia, ISS = Injury severity 

score, Mounted: in a vehicle or room corner, Unmounted= in open field. 

 Controls nbTBI bTBI 

n 31 20 19 

Gender (% males) 100 % 100 % 100 % 

Age at scan (years) 30.6 ± 6.7 28.7 ± 6.3 29.8 ± 5.9 

Time between injury and 
scan (months) 

NA 12 ± 12.7 14.6 ± 5.9 

Presence of contusions 
and/or microbleeds 

NA 95 % 63 % 

PTA (>24 hours) NA 35 % 68 % 

ISS [1-75] NA  33.0 

Biomechanics (% mounted) NA NA 64 % 

 

Focal injuries following TBI 
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In the bTBI group, focal damage was concentrated on the frontal and temporal lobes. 

In the nbTBI group, focal damage had a similar fronto-temporal distribution, although 

there was no overlap in location of contusions at the voxel level between the two 

groups. The mean volume of contusions in the bTBI group was 2.7cm3 compared to 

5.3 cm3 in the nbTBI group, but although the nbTBI group seemed to have more focal 

damage, the difference between groups was not significant (p=0.07).  

Standard T1 MRI was normal in 70% of soldiers with bTBI, and in 40% of civilians with 

nbTBI. Gradient echo imaging showed intraparenchymal microbleeds, indicative of 

DAI in 45% of those suffering bTBI and 50% of the nbTBI group. Only 20% (4 soldiers) 

of the bTBI group had evidence of focal damage on T1/Flair imaging. This was located 

mainly in the left frontal and temporal lobes. In contrast, 60% of the nbTBI group, had 

evidence of focal damage which was in a similar fronto-temporal distribution. There 

was no overlap in location of contusions between the two groups.  

Impaired cognitive function in TBI groups 

Both TBI groups showed a pattern of cognitive impairment characteristic of traumatic 

brain injury (Ponsford and Kinsella, 1992). Compared to the healthy control group, 

soldiers showed cognitive impairments across:  

(i) processing speed: through the Trail Making Test A (bTBI: 24.8±6.0 

controls: 20.5±6.8, p=0.03) 

(ii) impaired executive functioning: assessed using inhibition switching minus 

a baseline of colour naming and word reading (bTBI: 46.6±198 controls: 

25.2±4.1, p=0.0001), and the word generation fluency task (bTBI: 

37.8±11.4 controls: 45.3±12.9, p=0.036) (Table 12).  

(iii) intellectual ability: with lower score on WASI similarities test (bTBI: 

31.2±6.2 controls: 35.1±6.0, p=0.037).  

The nbTBI group showed evidence of impairments, compared to healthy controls in:  

(i) memory: people test immediate recall (bTBI: 31.2±6.2 controls: 35.1±6.0, 

p=0.037), and naming/reading as measured by the STROOP colour 

naming task 
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(ii) impaired executive functioning assessed using the Trail Making Test B 

minus A, inhibition switching minus a baseline of colour naming and word 

reading and word generation fluency (Table 12).  

Despite the focal damage being more pronounced in the nbTBI group, the bTBI group 

showed more impaired cognitive function relative to the nbTBI group. A comparison of 

the blast and non-blast groups revealed lower current intellectual ability in the blast 

group using the Wechsler Abbreviated Scale of Intelligence (WASI) Similarities test 

(nbTBI: 37.72±4.01, bTBI: 31.21±6.24, p= 0.0003). Additionally, the blast group 

showed lower performance on: (i) processing speed: naming/reading demonstrated 

using the STROOP word reading task; (ii) executive functioning assessed with the 

Trail Making Test B minus A; and (iii) impaired information processing speed tested 

on the choice reaction task (Table 12).  

Table 12: Results of neuropsychological tests across three groups, for different cognitive 
domains and their associated cognitive variables. T-test were performed pairwise to assess 

difference between groups. ns= no significance, *p<0.05, **p<0.01, ***p<0.001. 

Cognitive Domain Cognitive Variable bTBI nbTBI Control
s 

bTBI vs 
nbTBI 

bTBI vs 
Control 

nbTBI 
vs 

Control
s 

  Mean 
SD 

Mean 
SD 

Mean 
SD P-value P-value P-value 

Intellectual ability: 
verbal/non-verbal 

WASI similarities 31.211 
6.241 

37.722 
4.012 

35.133 
6.034 *** * ns 

WASI matrix 
reasoning 

24.842 
6.752 

26.471 
5.780 

27.867 
4.533 ns ns ns 

Memory: associative 
memory 

People Test 
immediate recall 

24.158 
7.042 

24.444 
6.061 

29.067 
5.325 ns * * 

Processing speed: 
visual search/complex 

Trail Making Test Trail 
A (s) 

24.842 
6.039 

23.961 
7.976 

20.533 
6.850 ns * ns 

 Trail Making Test Trail 
B (s) 

49.789 
13.742 

60.356 
30.656 

50.122 
46.037 ns ns ns 

Processing speed: 
naming/reading 

Colour naming (s) 38.316 
19.451 

33.889 
10.643 

29.600 
40.050 ns ns ns 

Word reading (s) 28.368 
10.915 

21.389 
4.046 

27.730 
5.990 ** ns *** 

Executive function: 
alternating-switch cost 

Trail Making Test 
Trails B minus A (s) 

24.947 
11.956 

36.394 
27.763 

19.420 
7.540 * ns ** 

Executive function: 
cognitive flexibility 

Inhibition/switching (s) 75.526 
26.692 

63.611 
17.429 

51.630 
20.400 ns ** * 

Inhibition switching 
minus a baseline of 
colour naming and 
word reading (s) 

46.630 
19.770 

28.300 
6.390 

25.200 
4.110 * *** ns 

Executive function: 
word generation fluency 

Letter Fluency F+A+S 
total 

37.789 
11.360 

40.611 
11.325 

45.330 
12.860 ns * ns 

Processing: choice 
reaction time 

Choice reaction task 
median reaction time 

(ms) 

482.000 
136.000 

416.000 
62.000 

380.000 
53.000 * ns * 
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4.4.2. WM Abnormalities in Skeletonised Tracts Following Group-
Level Analysis 

Soldiers exposed to blast showed evidence of widespread WM abnormalities 

compared to healthy controls (Figure 45-A). When I examined ROIs, the comparison 

of bTBI and healthy control groups showed reductions in FA in several WM tracts 

including the genu of the corpus callosum, the left corticospinal tract and corona 

radiata, and the inferior longitudinal fasciculus bilaterally (Figure 45-B). 

 

Similarly, comparing whole brain voxel wise measures of FA between nbTBI and 

healthy controls following TBSS demonstrated evidence of widespread WM disruption 

as indicated by a lower FA (Figure 45-A).  Reductions in FA were seen within the genu 

of the corpus callosum, the left corticospinal tract and corona radiata, and the inferior 

longitudinal fasciculus bilaterally (Figure 45-B). The patterns of WM abnormalities 

were the same in both injury groups compared to healthy controls, and there was no 

significant difference in the whole-brain skeletonised FA between the two injury 

groups. 
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Figure 45: Results of TBSS analysis and skeletonized ROI comparisons. A) Results of TBSS in 
different slices of the average group template. Red indicates area of the skeleton with 

significantly lower FA values at p<0.05, and green indicate skeleton with similar mean FA 
values. B) Jitter plot with mean and standard deviation (black circle and solid line) of mean 

skeletonized FA in 18 tracts and the whole brain skeleton for each of the three groups: nbTBI 
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(red), bTBI (green), controls (blue). The dotted line indicates 2SD below the mean of the 
control group. Pairwise comparisons p-values are based on post hoc Tukey HSD analysis: ns 

no significant difference, *p<0.05, **p<0.01, ***p<0.001. BCC= body of the corpus callosum, 
GCC= genu of the corpus callosum, SCC= splenium of the corpus callosum, MCP= middle 

cerebellar peduncle, ILF= inferior longitudinal fasciculus. 

Following TBSS and skeletonization of the WM, an ROI analysis was performed on 

the tracts. There was no significant group x ROI interaction on Mean FA (p=0.99). To 

understand which tracts are most affected, a one-way ANOVA was performed on each 

ROI, followed by a post-hoc Tukey HSD analysis. One-way ANOVA showed a 

significant difference for mean FA for the following ROIs: the genu of the corpus 
callosum (F=4.37, p=0.02), the left corticospinal tract (F=4.27, p=0.02), the inferior 
longitudinal fasciculus left (F=5.00, p=0.01) and right (F=5.66, p=0.006), the 

corona radiata left (F=5.25, p=0.008) and right (F=3.30, p=0.04) and the whole 
brain skeleton (F=3.50, p=0.04) (Supplementary Table 2).  

 

Following pairwise comparisons between groups, both bTBI and nbTBI showed 

significant decrease in mean FA compared to healthy controls in the affected tracts 

(Supplementary Table 2). Comparing both TBI groups, there was no difference in 

skeletonized mean FA in any of the tracts studied. 

4.4.3. WM Abnormalities Following Subject-Specific Diffusion 
Segmentation  

I next investigated whether bTBI produced specific patterns of WM tract damage when 

measuring FA directly from the parametric map and across the whole tract (i.e., not 

skeletonized, and not normalized) using subject-specific diffusion segmentation 

(SSDS). This estimation of FA increases sensitivity and anatomical coverage of the 

ROI (Figure 46). 

 

In whole tract investigations, there was no significant group x ROI interaction on Mean 

FA (p=0.88). To understand which tracts are most affected, I performed a one-way 

ANOVA on each ROI, followed by a post-hoc Tukey HSD analysis. One-way ANOVA 

showed a significant difference for mean FA for most ROIs except the cerebral 

peduncles (F (2,115) = 1.96, p = 0.14) and the uncinate fasciculi (F (2,115) = 2.91, p 

= 0.06) (Supplementary Table 2).  
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However, compared to results obtained in SSDS, some tracts were only significantly 

affected in the bTBI group, but not the nbTBI compared to controls following the post-

hoc pairwise analysis. These tracts included the body of the corpus callosum 

(p=0.02 and p=0.23) splenium of the corpus callosum (p=0.03 and p=0.09), the 
anterior limb of the internal capsule left (p=0.03 and p=0.46) and right (p=0.01 and 

p=0.20), the corticospinal left (p=0.01 and p=0.49) and right (p=0.04 and p=91), 

the left inferior longitudinal fasciculus (p=0.007 and p=0.3), and the corona 
radiata left (p<0.001 and p=0.12) and right (p<0.001 and p=0.16) (supplementary 

table 1). 

The middle cerebellar peduncle was the only tract that showed an abnormal FA 

measure in the blast group compared to both the nbTBI group (p=0.02) and the control 

group (p=0.02). The middle cerebellar peduncle was not affected in nbTBI relative to 

controls (p=0.99) (Figure 46).  

 

Figure 46: Results of whole tract SSDS analysis. Jitter plot with mean and standard deviation 
(black circle and solid line) of mean native FA in 12 tracts for each of the three groups: nbTBI 

(red), bTBI (green), controls (blue). The dotted line indicates 2SD below the mean of the 
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control group. Pairwise comparisons p-values are based on post hoc Tukey HSD analysis: ns 
no significant difference, *p<0.05, **p<0.01, ***p<0.001. BCC= body of the corpus callosum, 

GCC= genu of the corpus callosum, SCC= splenium of the corpus callosum, MCP= middle 
cerebellar peduncle, ILF= inferior longitudinal fasciculus.  

When I compared patients with and without structural abnormalities (contusions, 

microbleeds or both) within the bTBI group I found no significant difference in the mean 

FA for any of the tracts investigated.  

4.4.4. WM Abnormalities at the Boundaries of ROIs 
In my next analysis, I wanted to understand what was driving the difference I was 

observing using SSDS in the whole ROI. If my hypotheses were correct, I could see 

damage at the boundary of the WM, which might be explaining the differences I saw 

between the bTBI and nbTBI group.  

 

I investigated FA values at the boundary of the WM using the SSDS pipeline. For this 

analysis, I split ROIs as follows (check Regions of interest -page 126- for more 

information): whole-brain boundary of WM/GM, whole brain boundary of WM/CSF 

(Figure 47), the WM/GM boundary of the middle cerebellar peduncle, genu, body and 

splenium of the corpus callosum (Figure 47-A) as well as the WM/CSF boundary of 

the middle cerebellar peduncle, genu, body and splenium of the corpus callosum 

(Figure 47-B). The volume of the chosen ROIs were all larger than the volume of the 

ROIs previously shown to be too small for accurate and reliable measures (see section 

3.4.3.).  

 

There was no significant group x ROI interaction on Mean FA (p=0.84). Using a one-

way ANOVA, the bTBI group, but not the nbTBI group shows a decrease in global 

WM/GM and WM/CSF boundaries relative to controls (Supplementary Table 2). In the 

bTBI group, all three parts of the corpus callosum have a significantly lower FA 

compared to controls at the WM/GM boundary (Figure 47-A). Measures at the 

boundary of the WM/CSF shows no decrease in mean FA in any part of the corpus 

callosum for either injury groups relative to controls. However, the WM/CSF boundary 

of the middle cerebellar peduncle is affected in the bTBI group compared to both the 

nbTBI group and the controls (p=0.04, p=0.02 respectively), but not between the nbTBI 

group and the controls (p=0.86) (Figure 47-B). 
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Figure 47: Results of tract boundary SSDS analysis. Jitter plot with mean and standard 
deviation (black circle and solid line) of mean native FA at the boundary of the (A) WM/GM and 
(B) WM/CSF in 4 tracts for each of the three groups: nbTBI (red), bTBI (green), controls (blue). 
The dotted line indicates 2SD below the mean of the control group. Pairwise comparisons p -

values are based on post hoc Tukey HSD analysis:  ns no significant difference, *p<0.05, 
**p<0.01, ***p<0.001. 

To further validate the results, I obtained from the boundaries of the WM tracts, I 

manually segmented the boundary of the whole corpus callosum (all three parts), and 

compared the results obtained from the SSDS boundary segmentation to those from 

the manual segmentation. There was no difference in the mean FA values of the 

boundaries of the whole corpus callosum (genu, body, and splenium) between the 

manual and SSDS methods (t= -1.612, p=0.061). 

4.4.5. Individual Comparison of Soldiers to the Normal 
Distribution 

To understand the individual abnormalities on the DTI findings of soldiers, I compared 

the mean FA of ROIs in the bTBI group to the control’s normal range following each 

of the three analyses and based on their Z-score and its significance at p<0.05.  

Each bTBI patient’s FA is plotted against the distribution of the control group for each 

ROI, and abnormal tracts are highlighted in red (Figure 48). 
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Figure 48: Example of individual patient diagnostic results across all tracts. The dots 
represent the individual patient FA. Boxplots represent the distribution and median value of 
mean FA across the control group. Red dotes indicate a significantly abnormal individual FA 
value (p<0.05, 95% confidence interval, FDR corrected). Black dots represent patients mean 

FA value within normal ranges compared to healthy controls. CSF= cerebral spinal fluid, GM= 
grey matter, BCC= body of the corpus callosum, GCC= genu of the corpus callosum, SCC= 

splenium of the corpus callosum, MCP=middle cerebellar peduncle, ILF= inferior longitudinal 
fasciculus, sig= significant. 

Of the 19 military personnel that make up the bTBI group and that have been 

individually compared to the healthy control population, a total of 10 (or 52%) have at 

least one tract abnormality.  

Of the 10 patients classified as abnormal, six (or 31.5%) had abnormalities in two or 

more tracts (Figure 49).  

When I performed TBSS, the highest rates of abnormalities were seen in the genu of 

the corpus callosum (6/19 soldiers), while the highest rate of abnormalities in native 

FA following SSDS was in the body and genu of the corpus callosum, as well as in the 

left and right cingulum bundles, and the middle cerebellar peduncle (4/19 soldiers). 

The highest rate of abnormalities for FA measures at the boundaries was seen at the 

WM/CSF boundary of the middle cerebellar peduncle, and the whole brain WM/GM 

boundary (5/19 soldiers). 
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Figure 49: Results of the individual comparisons of bTBI patients to the control groups. 
Percentage of tracts affected in each patient for all three analysis methods (blue): TBSS: 19 

tracts, SSDS 18 tracts, FA at the boundary 10 tracts. Each subject is labelled as having 
neuroradiological abnormalities (microbleeds and/or contusions) (red) or no radiological 

abnormalities (green). 

Of the six soldiers with two or more affected tracts, the ratio of those with 

neuroradiological abnormalities to those without was 2:1, but there was no difference 

in mean FA measures when comparing groups with and without microbleeds and/or 

contusions.  

There were no significant differences in mean FA measures when comparing groups 

of mounted (in a vehicle) vs unmounted (in open field) soldiers. 
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4.5. DISCUSSION 
Soldiers who have suffered blast-induced traumatic brain injury (bTBI) often have 

persistent cognitive problems despite relatively normal standard magnetic resonance 

imaging (MRI). This was the case in our cohort of soldiers with bTBI, who showed 

cognitive impairments across processing speed, executive function, memory, and 

intellectual ability when compared to healthy controls. Despite the lesser extent of 

abnormalities seen on the routine neuroradiological assessment of soldiers, they 

seem to have higher abnormalities than civilians with bTBI, more specifically for 

cognitive domains such as intellectual ability, processing speed, executive function, 

and information processing.  

 

In the absence of abnormalities on standard structural imaging it is difficult to 

determine neurological underpinnings of the symptoms, and the difference blast and 

non-blast TBI might have on the brain. However, the discrepancy seen at the 

clinical/behavioural level leads us to believe there might be a difference at the 

neurological level.  The presence of diffuse axonal injury (DAI) might be an important 

contributing factor to the long-term cognitive problems that the soldiers face (McKee 

and Robinson, 2014). Therefore, understanding how these types of injuries differ or 

are similar is crucial to the question of bTBI given the wide research progression and 

understanding of non-blast TBI in the civilian population (Blennow et al., 2016).  

 

My work in this chapter (Chapter 4) focuses specifically on the white matter (WM) 

microstructure, since my next chapter (Chapter 5) will examine grey matter (GM) 

changes more closely. The investigation I performed in this chapter provides evidence 

that microstructural WM injury examined through diffusion neuroimaging is common 

after moderate/severe bTBI. The bTBI patient group showed lower fractional 

anisotropy (FA) in large parts of the WM, indicating a widespread pattern of DAI similar 

to what is commonly seen in civilian TBI (Humble et al., 2018). The extent of WM 

damage also seems to be heterogeneous. However, this trend wasn’t a significant 

enough to draw conclusions regarding the association between WM damage and 

neuroradiological focal abnormalities. This might be due to the limited number of 

soldiers in our group, and more work needs to be carried out.  
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Although the bTBI group demonstrates WM abnormalities compared to the healthy 

control group at the standard group-level analysis, in this case using tract-based 

spatial statistics (TBSS) (Jolly et al., 2020, Smith et al., 2006), there is no difference 

in skeletonised FA values between the two injury groups following group-level 

analyses, and the patterns of abnormalities in comparison to the control group were 

similar.  

 

I previously developed the subject-specific diffusion segmentation (SSDS) pipeline to 

increase the specificity of diffusion analysis without compromising the accuracy of 

group-level analyses (CHAPTER 3). SSDS enabled me to look at the whole WM tract 

(not just the skeletonised tract), as well as the boundary of specific tracts to better 

compare injury groups.  

The SSDS analysis revealed a more pronounced pattern of WM injury compared to 

healthy controls than what is seen in nbTBI. SSDS also uncovered a significant 

difference between the two injury groups at the level of the middle cerebellar peduncle 

(MCP). This was an area that had previously been shown to be impacted in bTBI 

relative to healthy controls, while a hypothesis of being specific to bTBI had been 

raised (Mac Donald et al., 2011). 

My study also managed to locate differential damage in the blast group but not in the 

civilians with TBI, mainly concentrated at the boundary between the WM and the 

corticospinal fluid (CSF) in the whole brain and at the level of the MCP, as well as 

damage common to both injury groups (civilian and military) at the boundary between 

the WM and the grey matter (GM). The hypothesis according to which bTBI causes 

damage at the boundary of the WM had previously been demonstrated in a post-

mortem investigation of military case studies (Shively et al., 2016), as well as in a 

porcine model of bTBI, which was part of an experiment conducted at C3NL and has 

yet to be published.  

The porcine model of bTBI showed that all animals exposed to blast had ependymal 

stripping, with sub-ependymal microglial activation, which was not observed in the 

sham or control groups (Figure 49), and which was unrelated to other experimental 

factors.  
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Figure 50: Ependymal stripping in porcine model of bTBI. Staining on controls (A&D). B) and 
E) show abnormal staining of the ventricular ependyma in the bTBI group. C) and F) evidence 

of sub-ependymal activation of microglia using Iba-1 staining in the bTBI group. Taken from 

(https:/ /discovery.ucl.ac.uk/id/eprint/1546198/1/Baxter_David_e -thesisPhD.pdf)  

Other high fidelity models of the human brain explain the biomechanical susceptibility 

of the tissue surrounding the CSF as a possible location for blast-related TBI through 

cavitation-induced strain (Yu et al., 2020). This study, which exposed a finite element 

head model to a frontal blast wave demonstrates that CSF tensile failure can 

significantly elevate strain and strain especially in the tissue adjacent to the CSF. 

Although these effects were mostly observed at the cortical level, it might be a possible 

mechanistic hypothesis for the damage we see at the interface of the WM and the 

CSF.  

 

One limitation of human studies is the inability to isolate the possibility or extent of 

primary blast injuries, especially in cases of self-reported blast exposure and outcome 

during deployment. By including soldiers who have suffered moderate to severe injury 

because of a single exposure to an explosion, my study limits the impact of this 

problem. Information such as estimates obtained on the size of improvised explosive 

device used, the victims’ proximity to the blast source, as well as medical reports 

demonstrate a significant blast exposure in each case. However, the soldiers still 

sustained heterogenous injuries caused by several different mechanisms (Mathews 
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and Koyfman, 2015), which means TBI was not exclusively related to blast waves, 

making it difficult to attribute a specific neurological outcome to primary blast injuries. 

However, by including a similarly injured civilian control group as well as uninjured 

controls, I curb this limitation and my investigation narrows down the patterns of 

neurological changes arising from bTBI specifically, although more controlled 

investigations are still needed. Leveraging two age and gender-matched control 

groups (with and without injury), I have shown that whilst there are many WM regions 

commonly injured in both blast and non-blast injury there are differences between the 

two groups which seem to relate to cognitive changes commonly seen in soldiers post-

deployment. I also use a pipeline that can be useful for future studies to standardize 

the analyses for test-retest purposes. 

 

To conclude, I found widespread WM damage in soldiers exposed to blast when 

compared to uninjured controls. Compared to civilians with TBI, soldiers who sustain 

bTBI have similar patterns of injury and overlapping areas of cognitive deficits except 

for the damage seen at the WM/CSF boundary, that seems to be exclusive bTBI when 

relying on a new pipeline that increases the specificity of the measurements in whole 

tracts and at the boundary of the tracts of interest. In the context of similar findings by 

computational models and human studies this may indicate that these areas are more 

vulnerable to blast injury. In future studies, it would be important to know whether 

changes in intellectual ability, processing speed and executive functions found in 

soldiers but not in injured civilians relate to WM damage, or if WM damage can be 

predicted based on clinical findings. 

In the next chapter 

In chapter 5, I investigate the limbic system, with emphasis on the hippocampus and 

amygdala, as well as two WM tracts: the cingulum bundle – results from the SSDS 

pipeline previously shown - and the fornix. For volume analysis, I use voxel-based 

morphometry as well as ROI-specific volumetry. I also investigate the relationship 

between neuroimaging findings and clinical/behavioural manifestations of bTBI. 
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CHAPTER 5  
Morphometry, Volumetry, 
Diffusivity, and the Limbic System 
in bTBI 

 

 

 

 

 

 

 

In this chapter I  investigate both grey and white matter abnormali ties in 

the l imbic system, mainly cortical, hippocampal and amygdala volumetry, 

as well  as diffusivi ty in the fornix and the cingulum and the relationship 

between the different s tructures in blast-related TBI.  I  apply my analysis 

in three different groups: a healthy control group, a group of civi l ians 

with non-blast traumatic brain injury, and a group of soldiers with blast -

induced traumatic brain injury. The purpose of this chap ter is to show if 

an abnormali ty specific to blast -induced traumatic brain injury at the 

level of the hippocampus, the amygdala, the cingulum bundle and the 

fornix (i .e., the l imbic system) can emerge , and i f there is an association 

between neuroimaging findings and cl inical/behavioural characteristics.    
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5.1. ABSTRACT 
As mentioned previously, blast-induced traumatic brain injury (bTBI), its proper 

diagnosis, its prevention, treatment, and long-term consequences are a major health 

concern among veterans. Despite all the work enhancing the knowledge about bTBI, 

we still know very little about the contribution of primary blast injuries alone to the 

observed sequelae. The literature also tends to focus mostly on post-traumatic stress 

disorder (PTSD), and associates the loss of hippocampal volumes, a hypothesized 

biomarker of bTBI, to PTSD outcomes, with no definite conclusion regarding the 

causality of the association. In this chapter, I focus on soldiers with a history of bTBI 

and no diagnosis of PTSD to understand if hippocampal atrophy is present following 

bTBI and in the absence of PTSD symptoms. I also compare the findings to healthy 

controls and to age and gender-matched civilians with non-blast TBI (nbTBI) to better 

control for the effect of primary blast injuries specifically. I also examine other parts of 

the limbic system, such as the fornix, amygdala, and cingulum.  

Although the white matter of the fornix and cingulum shows a similar abnormality in 

both injury groups, hippocampal atrophy is only seen in soldiers with bTBI. However, 

there is a correlation between abnormalities of the fornix and the hippocampus, and 

hippocampal atrophy can be explained by TBI-derived variables such as the time since 

injury, the presence of focal abnormalities such as contusions and microbleeds, as 

well as abnormalities in the fornix. This study is the first to show the loss of 

hippocampal volume in the absence of PTSD as well as hippocampal atrophy being 

specific to bTBI. I also present potential hypotheses surrounding the 

cause/consequence of this biomarker of bTBI.  
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5.2. INTRODUCTION 
Hundreds of thousands of soldiers are estimated to have suffered a brain injury from 

explosions ((DoD), 2020), and signs of TBI neuropathology were found in post-mortem 

brains of veterans who had been exposed to blast (Goldstein et al., 2012). Many 

returning veterans show no detectable neuropathology or physical injury, but suffer 

from persistent clinical sequalae such as headaches, insomnia and sleep disturbance, 

depression, blurred vision, and memory problems (see 1.7.4) (Tompkins et al., 2013), 

leading to a potential post-traumatic stress disorder (PTSD) diagnosis, which is found 

in 23% of veterans (Fulton et al., 2015).  

 

Based on these clinical presentations, MRI studies of soldiers with 

cognitive/behavioural abnormalities have mostly focused on PTSD. These often report 

changes in the macrostructure of the limbic systems (Meng et al., 2014, Bremner, 

2007, O'Doherty et al., 2015, Chao et al., 2013), which are brain regions thought to 

contribute to PTSD given their relevance in affective and cognitive processes. A 

relationship between the extent of PTSD severity and the magnitude of brain 

alterations at the level of the limbic system have also been reported (O'Doherty et al., 

2017, Meng et al., 2016, Lindemer et al., 2013, Bing et al., 2013). For example, greater 

symptom severity correlated with reduction in hippocampal volumes (Nelson and 

Tumpap, 2017).  

 

However, given the intense focus on the presence of a PTSD diagnosis, the question 

remains, how does the clinical/neuroimaging findings mentioned above relate to bTBI? 

It has been established that exposure to TBI in the context of deployment may impact 

PTSD severity. It is often a comorbidity and risk factor for PTSD (Yurgil et al., 2014, 

Lippa et al., 2015), and can aggravate its symptomatology (Spielberg et al., 2015, 

Lindemer et al., 2013, Vanderploeg et al., 2009). If we consider that around 12–35% 

of service members deployed to Iraq and Afghanistan have sustained a bTBI 

(Lindquist et al., 2017, Spielberg et al., 2015), and that head and neck trauma are now 

one of the most prevalent causes for disability in returning veterans (Schoenfeld et al., 

2013), it is critical to consider the exposure and history of bTBI when trying to assess 

the neurological changes that might be contributing and exacerbating PTSD-like 

symptomatology, even in the absence of such a diagnosis to better understand the 
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long-term risk and outcomes of bTBI. Previous research has well established that 

individuals with TBI have widespread structural, microstructural, and functional brain 

alterations (Van Boven et al., 2009, Shenton et al., 2012, Ross, 2011, McDonald et 

al., 2012). Subcortical regions including bilateral hippocampus, amygdala, pallidum 

and thalamus show changes volume in individuals with TBI (Maller et al., 2014, Bigler 

et al., 2010, Anderson et al., 1996). The hippocampus plays a crucial role in learning, 

memory, fear conditioning and spatial navigation. In bTBI specifically, studies of 

animal models showed neuroinflammation in cerebral cortex, striatum and 

hippocampus following mild blast forces (Hernandez et al., 2018), as well as 

electrophysiological changes in the CA1 region of the hippocampus, and 

hippocampus-dependent behaviours (Beamer et al., 2016, Ratliff et al., 2020). Clinical 

research involving post-deployed veterans also showed that alterations in the CA1 

region and subiculum subregions of the hippocampus may have a role in depression 

and PTSD (Bae et al., 2020, Kitayama et al., 2005). In investigations of hippocampal 

volume in relation to the absence of PTSD diagnosis, deployed veterans with PTSD 

as well as deployed veterans without PTSD, and non-deployed reservists all had 

significantly smaller whole hippocampal volumes when compared to a control group 

of healthy civilians (Vythilingam et al., 2005).  

 

I want to understand if a diagnosis of bTBI leads to macrostructural abnormalities at 

the level of the limbic structure, like those seen in patients with PTSD diagnosis, but 

in the absence of PTSD. Although the epidemiology of bTBI is becoming clearer 

(Bryden et al., 2019), there is still significant debate over the difference between blast 

and non-blast TBI, with reviews of the existing literature showing conflicting reports. 

The unique nature of deployment presents obstacles to accurately reporting, 

assessing, and documenting injuries (Schwab et al., 2007), and the recruitment criteria 

when assessing macrostructural changes at the level of the limbic system include a 

diagnosis of PTSD but not necessarily a history of bTBI. It is therefore undetermined 

whether decreased volume at the level of the hippocampus, and abnormalities in other 

structures of the limbic system such as the fornix and the cingulum are a consequence 

of exposure to primary blast injury, given that studies do not control for the presence 

of other TBI mechanisms (Childress et al., 2013). Detecting differential injuries 

between blast and non-blast TBI may contribute to the development of protective 

equipment as well as objective methods to enhance the predictive accuracy of long-
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term diagnoses and treatments, reducing costs, suffering and dependency on 

inaccurate self-reports. Moreover, it can pave the way to determining the neurological 

underpinnings of PTSD and the risk factors during deployment. 

 

My study in this chapter investigates whether PTSD-free soldiers with a history of 

blast-induced TBI show differential patterns of volume loss compared to civilians with 

non-blast TBI in whole brain average, in cortical and WM volume, as well as variations 

of volume of the hippocampus in the absence of a diagnosis of PTSD. The study also 

explores how changes at the level of the hippocampus correlate with WM 

microstructural abnormalities in the fornix and the cingulum. Finally, I try to understand 

if the clinical and cognitive variables predict the patterns of volume change, to improve 

the understanding of the effect of blast and bTBI on neurological abnormalities specific 

to soldiers.   

Hypotheses of chapter 5 

- The blast TBI group, but not the civilian TBI group, shows a decrease in 

hippocampal volume that correlates with abnormalities in the fornix. 

- Loss of hippocampal volume does not correlate with measures of stress, or 

cognitive performance, but can be predicted based on the clinical 

characteristics of the soldiers. 
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5.3. METHODS 

5.3.1. Participants 
This study consisted of three groups:  

! 19 military bTBI patients were recruited using the Academic Department of 

Military Emergency Medicine (Birmingham, UK) trauma database to identify 

soldiers injured between December 2009 and March 2012. 

! The first control group consisted of 20 age- and gender-matched control group 

of civilians with non-blast TBI. This represented all the patients seen in our 

multidisciplinary Traumatic Brain Injury clinic at Charing Cross Hospital, 

London, United Kingdom between August 2009 and March 2012. 

! The second control group consisted of an age- and gender-matched group with 

31 healthy controls civilians.  

 

bTBI and nbTBI groups were matched for injury severity and time since injury (for 

soldiers mean ± SD 14.6 ± 5.9 months, for civilians 12 ± 12.7).  

 

All cases of TBI in both injury groups were categorized as moderate or severe based 

on the Mayo Classification System for Traumatic Brain Injury Severity (Malec et al., 

2007). The classification relates to the length of post-traumatic amnesia, the duration 

of loss of consciousness, and lowest recorded GCS in the first day, and/or CT or MRI 

result. Exclusion criteria for both our TBI groups were the following: history of 

psychiatric or neurological illness (including PTSD), penetrating brain injury, anti-

epileptic medication, neurosurgery (except intracranial pressure monitoring); current 

or previous substance abuse; any contraindications to MRI. All participants gave 

written informed consent according to the Declaration of Helsinki. The study was 

approved by the Hammersmith, Queen Charlotte’s and Chelsea Research Ethics 

Committee.  

 

Inclusion criteria for both bTBI and nbTBI were: 1) gender male, 2) between 2 and 48 

months from a single TBI, 3) moderate/severe brain injury on Mayo classification 

criteria, 4) ongoing clinical or cognitive and/or psychological symptoms, and 5) 

completion of endocrine testing. Exclusion criteria for both bTBI and nbTBI participants 
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were: 1) diagnosis of diabetes mellitus, 2) history of psychiatric disorder (including 

PTSD), 3) previous or actual substance abuse, 4) craniotomy, neurosurgery or 

penetrating injury, 5) anti-epileptic medication, 6) any contraindications to MRI. 

Participants in both injury groups underwent clinical assessment for Abbreviated Injury 

Score (AIS) and total Injury Severity Score (ISS). 

5.3.2. Imaging Acquisition 
Each patient had standard high-resolution T1 and gradient-echo (T2*) imaging. MRI 

was performed on Philips 3T Achieva scanner (Philips Medical Systems, The 

Netherlands) using a body coil. For DWI, diffusion-weighted volumes with gradients 

were applied in 16 non-collinear directions in each of the four DTI runs, resulting in a 

total of 64 directions. The following parameters were used: 73 contiguous slices, slice 

thickness = 2mm, field of view 224 mm, matrix 128 X 128 (voxel size = 1.75 X 1.75 X 

2 mm3), b value = 1000 and four images with no diffusion weighting (b=0s/mm2). 

5.3.3. Imaging Analysis 

Volumetry: segmentation of the hippocampus and amygdala 

I skull-stripped the T1 images using FSL-BET (Smith, 2002), and used FSL-FIRST 

(Patenaude, 2011) to segment the hippocampus and amygdala bilaterally for each 

subject. I then carried out thorough visual inspection of the initial registration step and 

the final segmentation to ensure all the structures of the hippocampus have been 

successfully segmented (Duvernoy, 1998) (Figure 51). 

 

Figure 51: Example of the segmentation of the hippocampus (yellow) and amygdala (blue) 

bilaterally. 

I also skull-stripped the T1 images and segmented them into the three different tissue 

types using FSL-FAST(Zhang, 2001) and visually inspected the segmentation. To 

obtain total grey matter (GM) volume, I multiplied the partial volume estimate of the 
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whole GM map and the total volume of the image (in mm3). I used the same method 

to obtain total white matter (WM) volume. By adding the total GM and total WM 

volumes, I estimated the total brain volume. The hippocampal volumes obtained 

through FSL-FIRST were normalized to the brain volume (Free et al., 1995) and the 

age, to obtain the total corrected volume (TCV).  

Diffusivity: Manual segmentation of the fornix, automated segmentation of 

the cingulum and FA estimation 

For manual segmentation of the fornix and the fornix crura, each ROI consisted of 

multiple brain slices fully covering three-dimensional anatomical structures of the 

whole fornix and the fornix crura bilaterally as defined in accordance with anatomical 

definitions provided in the fornix FMRIB 1mm template (Brown et al., 2017).  

Fractional anisotropy (FA) was extracted from ROIs following pre-processing of 

diffusion data and estimation of the diffusion tensor using FSL’s FDT software. 

 

For the cingulum left and right, I used the results obtained in chapter 4, where I had 

already estimated the mean FA at the level of the cingulum (see section 3.3.3 for 

methods, and section 4.4.3 for results) 

Voxel-based morphometry (VBM) and vertex-based analysis (VBA) 

I performed the VBM analysis according to SPM12 guidelines 

(https://www.fil.ion.ucl.ac.uk/~john/misc/VBMclass10.pdf) - (see section 2.5.2 for 

more details regarding methodology of VBM).  

I performed vertex-wise statistics to analyse localized 3D meshes and observe 

significant shape differences that occurred in the hippocampus of the military group 

compared to the healthy controls. For the vertex analysis I used first_utils from the 

FSL-FIRST package (Patenaude, 2011), with age and group as regressors in the 

randomization of the t-test statistics. I overlaid the results of the vertex analysis on 

their respective group mean to further pinpoint the area where shape abnormality 

occurred.  

5.3.4. Statistics  
I analyse all data using R studio v3.3.3 (www.R-project.org). I used one-way ANOVA 

to assess the difference in group means among the three groups, followed by Tukey’s 
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HSD post hoc test to assess the significance of differences between pairs of group 

means. Because the Tukey HSD post-hoc test was too conservative, I repeated and 

reported results using the Fisher LSD post-hoc analysis. However, unlike the Tukey 

HSD, the Fisher LSD does not have full control over type I error. I estimate significance 

at p-value<0.05. I used Pearson’s correlation to measure the dependence between 

hippocampal TCV and mean FA measures extracted from ROIs. I performed 

independent sample t-test pairwise comparison of the mean. 

I utilized multiple linear regression to predict the hippocampal TCV based on clinical 

variables including: Age at injury, time between injury and scan, abbreviated injury 

scale (AIS) score, cortisol levels (nmol/L), presence/absence of microbleeds 

contusions, mean FA values from the fornix and the cingulum and pituitary 

dysfunction. I based the multiple linear regression on the following assumptions: a 

linear relationship between dependent and independent variables, no high correlations 

between independent variable, the random selection of observations and the residuals 

distributed with a mean of 0 and variance σ. To find the best predictors of our model, 

I performed a stepwise selection in both directions. The stepwise selection determines 

the contribution of each predictor previously entered in the regression equation to 

estimate the contribution of the one preceding it, to retain or ignore variables based 

on their statistical contribution. Based on the results of the stepwise selection, I 

estimate a new multiple regression model with the clinical variables that best explain 

the hippocampal TCV. I used Bonferroni correction for multiple comparison errors. 
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5.4. RESULTS 

5.4.1. Demographics 
The soldiers previously described (Baxter et al., 2013) (Table 13), were injured by 

IEDs while wearing full personal protective equipment. All required immediate transfer 

to Camp Bastion for emergency medical treatment, and repatriation to the United 

Kingdom within 48 hours. Although exposed to blast, TBI could have been the result 

of other mechanisms of injuries.  

Civilians with a diagnosis of TBI were recruited for the non-blast TBI (nbTBI) group. In 

this group, injury was caused by assaults (34%), road traffic accidents (19%), falls 

(42%) and sports related injuries (5%). Civilians were referred to their local traumatic 

brain injury service because of the presence of functional impairments following their 

TBI.  

Table 13: Demographics of the three cohorts included in this study. Results for age, time 
between injury and scan are in mean ± SD. PTA= post traumatic amnesia.  

 Controls nbTBI bTBI 

n 31 20 19 

Gender (% males) 100% 100% 100% 

Age at scan (years) 30.6 ± 6.7 28.7 ± 6.3 29.8 ± 5.9 

Time between injury and scan 
(months) 

NA 12 ± 12.7 14.6 ± 5.9 

PTA (>24 hours) NA 35 % 68 % 

Amputation NA 0 % 42 % 

 

Within the bTBI group (Table 14), clinical neuroradiological reports showed that of the 

19 soldiers, 11 had evidence of contusions and 8 had evidence of microbleeds on their 

gradient echo imaging. Details on the diagnosis of pituitary dysfunction, 

hypogonadism, limb amputation, PTS over 24 hours, and major organ damage, as 

well as medications such as antidepressants and opiates have been previously 

reported (Baxter et al., 2013) 8. I used all measures with a prevalence of >20%, and 

with relevance to the hypothesis being investigated (i.e. trauma severity, pituitary 

 
8 Details of the medications can be found in A.5. Appendix of Chapter 5. 
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abnormality, stress levels) to test if clinical characteristics related to soldiers would 

have an impact on the neuroimaging analysis.  

Table 14: Clinical details of the bTBI group. PTA= post traumatic amnesia. Basal cortisol level 
was the serum concentration level. 

 
Characteristic Presence (n) Absence (n) 

Microbleed 11 8 
Contusion 8 11 

Pituitary dysfunction 6 13 
Hypogonadism 4 15 
Antidepressants 9 10 

Opiate 9 10 
Limb amputation 8 11 
PTA > 24hours 13 6 

Major organ damage 11 8 
   

Measure Mean SD 
Basal cortisol (nmol/L) 310.26 123.23 

 

5.4.2. Neuroimaging Findings 

Results of ROI analysis 

For each participant, I estimated adjusted whole brain volume, white matter (WM) 

volume, grey matter (GM) volume and hippocampal volume, along with mean FA 

values of manually segmented whole fornix and the fornix crescent, and SSDS 

segmentation of the cingulum left and right9 (Table 15). There was no significant 

difference in group means for the measures of the brain volume (p=0.77), WM 

(p=0.41) and GM (p=0.52).  

Table 15: Measures of different ROIs investigated. Volumes are in cm3 and FA is the mean 

across the whole manually segmented tract. Results are presented as mean ± SD. 
Hippocampal volume was corrected for total brain volume. Significance levels for one way 

ANOVA followed by post-hoc Fisher LSD are presented. Ns= not significant, .p<0.1, *p<0.05, 
**p<0.001. 

    
One-way 
ANOVA 

Post-hoc Fisher’s LSD 

 Controls nbTBI bTBI 
F value 
p value 

nbTBI vs 
Controls 

bTBI vs 
Controls 

bTBI vs 
nbTBI 

 
9 Results of cingulum mean FA in this chapter were taken from chapter 4. See section 4.4.3 for mean 

FA ROI results following implementation of SSDS. 
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ROI volume (cm3) 

Brain Volume 1353.1 ± 106.5 1328.8 ± 121.9 1336.3 ± 104.4 
0.26 

0.77 
ns ns ns 

White Matter Volume 658.1 ± 61.9 641.2 ± 52.9 663.8 ± 47.0 
0.94 

0.39 
ns ns ns 

Grey Matter Volume 695 ±49.3 687.5 ± 77.7 672.6 ± 67.1 
0.60 

0.55 
ns ns ns 

Total Corrected 
Hippocampal Volume 

8.19 ± 0.76 8.16 ± 0.59 7.69 ± 0.64 
2.54 

0.04 * 
ns * * 

White matter tracts (mean FA) 

Fornix Mean FA 0.49 ± 0.03 0.44 ± 0.04 0.42 ± 0.09 
5.29 

0.007 ** 
* ** ns 

Fornix Crura Mean FA 0.57 ± 0.04 0.54 ± 0.06 0.51 ± 0.11 
2.30 

0.052 . 
* * ns 

Cingulum L 0.49 ± 0.07 0.39 ± 0.07 0.38 ± 0.10 
10.85 

<0.001 *** 
*** *** ns 

Cingulum R 0.45 ± 0.06 0.39 ± 0.07 0.46 ± 0.11 
5.82 

0.005 ** 
* ** ns 

 

When I compared group means using one-way ANOVA, I found a significant effect of 

group on hippocampal TCV at the [F(2, 58) = 3.38, p = 0.04], with post-hoc Fisher’s 

LSD test indicating significant difference between the means of bTBI vs nbTBI 

(p=0.03), and bTBI vs controls (p=0.02).   

When I compared group means using one-way ANOVA, I found a significant effect of 

group on the mean FA of the fornix at the [F(2, 58) = 5.29, p = 0.008], with post-hoc 

Fisher’s LSD test indicating significant difference between the means of bTBI vs 

controls (p=0.002), and nbTBI vs controls (p=0.03).   

When I compared group means using one-way ANOVA, I found a significant effect of 

group on the mean FA of the left cingulum [F(2, 56) = 10.85, p<0.001] and the right 

cingulum [F(2, 56) = 5.82, p = 0.005], with post-hoc Fisher’s LSD test indicating 

significant difference between the means of bTBI vs controls (p<0.001 and p=0.004), 

and nbTBI vs controls (p<0.001 and p=0.04) on both the left and right side 

respectively.   

I found a similar pattern when I compared measures of FA in the manual segmentation 

of the Fornix (body + crura bilaterally), and the crura bilaterally (Figure 52), there was 

a significant difference in the mean FA of the whole fornix in both bTBI and non-blast 

TBI groups compared to controls (p=0.004 and p= 0.001 respectively), with a trend 

towards atrophy in a subdivision of the fornix (crura bilaterally). I observed the same 
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results at the level of crura of the fornix bilaterally with both bTBI and nbTBI showing 

lower FA compared to controls (p=0.02 and p= 0.02 respectively). 

 

Figure 52: Distribution of mean FA values for fornix investigated in the three groups. nbTBI 
(red), bTBI (green) and controls (blue). Black distribution line represents the standard 
deviation, mean of each group is represented by the black circle. Significance levels 

represent results of unpaired t-test. Ns= non-significant, *p<0.05, **p<0.01. 

Results of voxel-based morphometry and vertex-based morphometry (VBA) 

VBM analysis applied to the standardized T1 images to quantify differences in GM 

across groups did not reveal any difference across all structures in pairwise 

comparisons: bTBI vs controls, nbTBI vs controls, and bTBI vs nbTBI (tfce corrected, 

p>0.05 in all three analyses). No regions of increased or decreased volumes were 

observed in the injury groups relative to controls. 

Vertex analysis shows probabilistically significant (p-value<0.05) surface deformations 

of the hippocampus while using age and total brain volume as covariates. The analysis 

revealed reductions in volume of the following hippocampal structures in the military 

bTBI group compared to the healthy control population: anterior and posterior regions 

of the CA1 (Figure 53).  
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Figure 53: Results of vertex-based analysis on the hippocampus comparing bTBI and 
controls. Areas in red on the left, and yellow on the right represent a decrease in volume in 

bTBI relative to the controls group. 

5.4.3. Relationship Between GM and WM abnormalities 
To understand the relationship between hippocampal volume and measures of WM 

tracts of interests (fornix and bilateral cingulum), I applied Pearson’s correlation. This 

analysis revealed a significant positive correlation in the bTBI group (R2=0.40, 

p=0.005) between hippocampal size and mean FA measures of the whole fornix, but 

not in the nbTBI and the control groups (p>0.05) (Figure 2). For the bTBI group, the 

positive correlation was also significant, between hippocampal TCV and mean FA of 

the crura bilaterally (R2=0.25, p=0.035). This relationship was not observed in controls 

and nbTBI groups (p>0.05) (Figure 54). 
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Figure 54: Pearson’s correlation hippocampal TCV with mean FA of the whole fornix. The 
three groups are controls (blue), nbTBI (red), bTBI (red), with results of Pearson’s correlation 

and 95% confidence interval for each group.  

The correlation was not significant between hippocampal TCV and cingulum mean FA 

bilaterally (R2=0.037, p=0.43). I also found this lack of significance when running a 

correlation between hippocampal TCV and cingulum mean FA bilaterally in both the 

nbTBI and control groups (p>0.05).  

5.4.4. Relationship Between Neuroimaging Findings and Clinical 
Characteristics 

Comparisons within the bTBI group revealed no significant difference in hippocampal 

TCV, cingulum mean FA, and fornix mean FA between soldiers with and without 

different clinical characteristics including: microbleeds, contusions, pituitary 

dysfunction, hypogonadism, limb amputation, as well as between soldiers using 

antidepressant or not, and opiate or not (Supplementary Table 3).  

There was also no significant correlation between levels of cortisol (nmol/L) and 

hippocampal TCV (R2=0.08, p=0.76). 

There was no significant correlation between hippocampal TCV and injury severity 

based on AIS-head measures (R2=0.10, p=0.19). 
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I used measures of associative memory measured by the People Test for immediate 

recall. Soldiers show a decrease in performance compared to healthy controls (24.2 ± 

7.0, 29.1 ± 5.3 respectively, p=0.032). I found no correlation between measures of 

hippocampal TCV and performance on the associative memory test.  

Mean FA for the whole fornix shows a significant correlation with immediate recall 

(R2=0.30, p=0.02). Mean FA of the cingulum bilaterally also shows a significant 

association with immediate recall (R2=0.37, p=0.01). 

5.4.5. Prediction Model of Hippocampal TCV 
Finally, I calculated a multiple linear regression to predict the hippocampal TCV based 

on the following measures: Age at injury, time between injury and scan, abbreviated 

injury scale (AIS) score, presence/absence of microbleeds and contusions, mean FA 

of the fornix and fornix crura bilaterally, the cingulum bilaterally, as well as the 

presence/absence of pituitary dysfunction. To optimize the model, we proceeded to 

run a stepwise selection in both directions to select a subset of best predictor variables 

and simplify the model. A significant regression equation was found (R2 = 0.79, 

F(5,12)=9.29, p<0.001), with five predictors explaining 71% of the variation in 

hippocampal TCV. There was a significant relationship between presence of 

microbleeds and hippocampal TCV (p = 0.006), presence of contusions and 

hippocampal TCV (p = 0.003), AIS score and hippocampal TCV (p=0.02), and mean 

FA of the whole fornix and hippocampal TCV (p=0.007) 

 

Hippocampal TCV = 6.84 - 0.02 (Time since TBI) -0.53 (Presence of Microbleeds) 

+ 0.62 (Presence of Contusions) – 0.10 (AIS- score) + 2.64 (Fornix Mean FA). 
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5.5. DISCUSSION 
Soldiers with a diagnosis of post-traumatic stress disorder (PTSD) often have 

macrostructural abnormalities at the level of the limbic/paralimbic system  (Sydnor et 

al., 2020). This includes reduced hippocampal volume (Nelson and Tumpap, 2017, 

O'Doherty et al., 2017, Wrocklage et al., 2017, Bing et al., 2013), reduced thickness 

of the cingulate cortex, and association between the neurological abnormalities and 

neurocognitive deficits related to PTSD (Twamley et al., 2009, Cohen et al., 2013). It 

is unclear if and how exposure to blast-related traumatic brain injury (bTBI), relate to 

these findings. If primary bTBI (i.e. the blast wave/wind) causes neurological 

abnormalities to the brain’s limbic system, even in the absence of a PTSD diagnosis, 

then there could be a rapport of causality between bTBI and PTSD-like 

symptomatology. Understanding this relationship can help with easier diagnosis, 

efficient treatment, and prognosis, but most importantly more effective protection.   

 

In this study I wanted to answer two main questions, which remained to be tackled in 

the literature:  

Does the absence of PTSD diagnosis, but the presence of bTBI lead to the same loss 

of hippocampal volume? 

Do the findings differ from non-blast TBI? 

 

What I was able to show was that the bTBI group shows a significant decrease of 

hippocampal volume compared to both the nbTBI and the healthy control groups, even 

in the absence of a clinical PTSD diagnosis. Vertex-based analysis showed that a 

specific area of the hippocampus, mainly around the CA1 has an atypical 

morphometry relative to controls. Both injury groups showed similar microstructural 

abnormalities of the fornix and cingulum, with a significant decrease of fractional 

anisotropy (FA) compared to controls. The fornix crura followed a similar trend of 

abnormality. Whole brain measures of atrophy, as well as voxel-based morphometry 

analysis did not reveal any loss of volume in the bTBI and nbTBI groups compared to 

controls. Therefore, the neuroimaging finding that seems to be specific to bTBI is the 

hippocampal atrophy, while other structural and diffusion abnormalities are consistent 

with general brain trauma.  
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Previous studies had already established that the hippocampi are particularly 

susceptible to the effects of blast exposure (de Lanerolle et al., 2011, Goldstein et al., 

2012). Moreover, our lab had previously demonstrated in a porcine model of blast 

neurotrauma hippocampal oedema and microglial activation, coupled with a 

significantly lower fractional anisotropy in the hippocampi and fornices in animals 

exposed to blast, leading to the conclusion that of direct damage to limbic structures 

(Figure 55) (for more details on the experiment and results, see Ph.D. thesis of Dr 

Baxter D. here10).  

 

Figure 55: Hippocampal oedema with concurrent microglial activation. (A) and (C) are section 
of the hippocampus in the same animal. (A) showing fibrous structural pathology denoting 

oedema and (C) show activation of microglia. (B) (D) Sections from a sham animal in which 
the oedema and microglial activation are not present. Taken from 

(https:/ /discovery.ucl.ac.uk/id/eprint/1546198/1/Baxter_David_e -thesisPhD.pdf)  

However, this is the first time that the findings of abnormalities in both the 

hippocampus and fornix in blast TBI regardless of neuropsychological diagnosis 

were verified in humans and in-vivo studies.  

Based on the clinical and demographic information I had available, I tried to 

understand the association between clinical characteristics and the loss of 

hippocampal volume in the group of soldiers with bTBI. I found a significant correlation 

between measure of hippocampal total corrected volume (TCV) and mean FA 

measures of the fornix. However, particularly in this case, correlation does not imply 

causation in any direction, especially given that a similar abnormality of the WM 

microstructure in the fornix is found in nbTBI. I also focused on pituitary dysfunction 

 
10 Link to Ph.D. thesis of Dr David Baxter: 

https://discovery.ucl.ac.uk/id/eprint/1546198/1/Baxter_David_e-thesisPhD.pdf 
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and hormonal abnormalities to understand if proximity of the structures, and damage 

of the limbic system shows correlation with pituitary abnormalities. A previous study 

with the same cohort showed greater diffusion abnormalities in the cerebellum and 

corpus callosum in soldiers with pituitary dysfunction compared to soldiers without. 

The cingulum did not show correlation between mean FA and pituitary abnormalities 

(Baxter, 2013). Although I did not focus on most WM tracts in this chapter, including 

the corpus callosum and the cerebellum – which I had shown to exhibit abnormalities 

in soldiers in Chapter 4 - I also did not find any association between measures of WM 

abnormalities in the cingulum and pituitary abnormalities or with hippocampal atrophy.  

 

Future work needs to establish the hippocampus-fornix relation in bTBI, and whether 

chronic stress exposure, acute blast exposure, or another phenomenon specific to 

bTBI might be implicated. The hippocampus may be vulnerable to bTBI for several 

reasons: The structure of the CA1 region makes it more sensitive to trauma (Duvernoy 

1988) and trauma to the fronto-basal parts of the brain, may therefore result in trans 

neuronal hippocampal cell death. In bTBI, damage to the hippocampi might be a direct 

result of the blast wave or could be secondary to hypoxia or impaired perfusion due to 

hypovolaemia.  

Two main hypotheses arise in the case of bTBI and the hippocampal atrophy findings. 

The first hypothesis suggests that trauma to either of the structures arising from the 

blast could lead to a downstream neuropathological effect on the other structure. The 

fornix is one of the two major pathways into and out of the hippocampus. Through the 

fornix, the hippocampus receives input from the mamillary bodies and the 

hypothalamus. Therefore, because of this connection, integrity of the fornix is in-part 

linked to the integrity of the hippocampus. Many clinical studies on other types of 

disorders (eg. Dementia), show that fornix FA is lower in people with hippocampal 

atrophy, and that these changes correlate with memory function (Kantarci, 2014). It 

would also be important to mention biomechanistic consideration of the proximity of 

the fornix to the lateral ventricles, that were shown to be a major contributor based on 

the cavitation theory, with the ventricles representing the largest fluid-filled region in 

which cavitation could occur (Marsh, 2021). 

The second hypothesis suggests that exposure to chronic stress in deployment 

settings could be causing hippocampal atrophy. The ventral part of the hippocampus 

is known to be important for stress regulation (Fanselow and Dong, 2010). Animal 
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studies have shown that stress can alter the synaptic plasticity and firing properties of 

hippocampal neurons (Kim et al., 2015), with the glucocorticoid hypothesis suggesting 

that the hippocampus having a dense concentration of corticosteroid receptors 

becomes susceptible to heightened cortisol secretion in response to stressors 

(McEwen and Sapolsky, 1995). I tried to verify this hypothesis by measuring the 

correlation between serum concentration basal cortisol levels11  and hippocampal 

atrophy, but I found no significant correlation between the measures. However, these 

results do not completely reject this hypothesis, as further measures of cortisol (before/ 

after deployment or during deployment) and other stress hormones will be more 

accurate and reliable. 

 

No other measure seems to affect hippocampal TCV, including FA measures of the 

cingulum, measures of injury severity, basal cortisol levels, presence/absence of focal 

neuroradiological and endocrinological abnormalities as well as use of medications. 

Abnormality in the fornix seems to lead to memory impairment in our cohort, but there 

was no significant correlation between measures of memory and hippocampal TCV, 

even though the soldiers showed lower performance on immediate recall as measured 

by the people test. However, a multiple regression model did show that 71% of the 

variation in hippocampal TCV could be explained by focal neuroradiological 

abnormalities, injury severity, time since injury, and measures of FA in the fornix. This 

means that most of the variables explaining the reduction in hippocampal volume are 

directly related to the TBI event and given that abnormality in the hippocampus is only 

seen in bTBI, the assumption is that the variables are directly related to bTBI. This 

study was in part limited by the number of participants, but also by the availability of 

data. Longitudinal measures of hippocampal volume, cortisol levels, and cognitive or 

behavioural data could come a long way in determining the causal relationship of our 

findings, and their relation to clinical manifestations following bTBI.  

 

In conclusion, soldiers with exposure to blast-related brain trauma show a loss of 

hippocampal volume, even in the absence of a PTSD diagnosis, and more severe than 

nbTBI. We can therefore assume that the hippocampus seems to be vulnerable to 

 
11 These measures of cortisol were obtained to confirm or exclude a diagnosis of adrenocorticotropic 

hormone deficiency, and not in the context of stress research (Baxter et al., 2013).  
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blast exposure, as a direct result of the trauma, or as a downstream consequence, 

and this vulnerability seems to be linked to abnormalities in the fornix, in a relationship 

specific to bTBI.  

 

In the next chapter 

In chapter 6, I use the SSDS pipeline on a large cohort of TBI patients from the C3NL 

lab. I present descriptive statistics obtained, and train and test a decision tree 

classification model. The purpose of this decision tree is to classify between TBI and 

non-TBI patients with high accuracy by choosing the most relevant tracts to such a 

diagnosis.  
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CHAPTER 6  
Traumatic Brain Injury and the 
Use of Classification Decision 
Trees Following SSDS  

 

 

 

 

In this chapter I  use the SSDS pipel ine to train a machine learning  

classification using decision trees. I apply the SSDS pipeline on a cohort 

of patients with TBI and on healthy controls on all  the JHU tracts. By 

applying the decision tree model, I can classify subjects based on the 

presence or absence of TBI, but the novelty is in choosing the tracts that 

are most relevant for this classification.  



 

Traumatic Brain Injury and the Use of Classification Decision Trees Following SSDS | A. A. 

170 

 

6.1. ABSTRACT 
Traumatic brain injury (TBI) can often be difficult to identify using conventional 

imaging. And while diffusion tensor imaging (DTI) has previously been used to detect 

diffuse axonal injury in vivo and the underlying microstructural white matter (WM) 

abnormalities resulting from a trauma to the head, it is mainly used to investigate 

groups of patients and with an a priori knowledge of the hypothesis. To improve 

diagnosis based on imaging data, machine learning techniques are now increasingly 

used. However, in standard classification and regression problems, we still need to 

have a knowledge of the best features that differ from group to group to increase the 

accuracy of the output. In this chapter, I investigated whether decision tree machine 

learning applied to DTI data obtained from subject-specific diffusion segmentation 

(SSDS) can be used to diagnose WM damage following TBI and to predict the tracts 

that are most relevant in the differentiation between TBI and healthy controls, as well 

as TBI resulting from road traffic accidents (RTA) or other mechanisms. I train my 

decision tree classifier to predict the presence/absence of WM damage in 148 TBI 

patients and healthy controls. To test the performance of the algorithm, I applied it to 

a testing set of 37 participants with/without TBI. I repeated the same analysis to 

classify between RTA and non-RTA injuries within the TBI group with a training set of 

69 subjects and a testing set of 16 subjects. The decision tree managed to discriminate 

between TBI and healthy controls with an 86% accuracy, while informing on the most 

important features (i.e. WM tracts) used for the classification. I also obtained similar 

results when classifying between different injury mechanisms within the TBI group, 

with a slightly lower accuracy of 69%. This work provides an initial approach to using 

decision trees in the diagnosis of TBI and should be extended to the diagnosis of blast-

induced TBI in future.  
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6.2. INTRODUCTION 
Traumatic brain injury (TBI) often results in diffuse axonal injury (DAI), regardless of 

the mechanism of the trauma. Patterns of DAI are usually investigated using diffusion 

tensor imaging (DTI) (Mac Donald et al., 2007). In the context of general TBI, when 

conventional neuroimaging diagnostic techniques fail to detect abnormalities, DTI can 

provide useful information regarding the microstructural integrity of the white matter 

(WM), usually through a measure of fractional anisotropy (FA) in specific WM tracts 

(Mac Donald et al., 2007, Kinnunen et al., 2011, Sidaros et al., 2008). DTI quantifies 

the directionality or change of directionality of water diffusion within tracts, therefore 

reflecting structural integrity (Beaulieu, 2002, Basser and Pierpaoli, 2011).  

 

However, the translational aspect of DTI for diagnostic purposes is challenging, 

whether in the context of blast related TBI in soldiers, or non-blast TBI in civilians. The 

first problem is the need for individual investigations. I tackled this challenge of 

diagnostic DTI in CHAPTER 3, where I explain the issues with group-level analysis 

and develop a subject-level analysis to determine the presence of DAI and WM 

abnormalities in individuals. Subject-specific diffusion segmentation (SSDS) enables 

us to sensitively find differential patterns of injury in an individual compared to a 

healthy group of controls. The next step would be to use machine learning alongside 

SSDS to provide diagnostic information about TBI in a patient. Machine learning 

algorithms have been increasingly used to assist and even provide complex decisions 

of an outcome by finding patterns in the information and data available (Sajda, 2006). 

Classifiers are trained on data that are usually diagnostically labelled, so that when a 

new data point is undiagnosed, an individual prediction can be made. 

 

Previous work has managed to successfully and accurately train a pattern support 

vector machine (SVM) classifier to predict the presence of WM microstructural 

damage following TBI (Hellyer et al., 2013). In such methods however, it is central to 

either know the importance of the features prior to training the model or calculate 

discriminant weights for WM tracts following the classification. Therefore, any 

comparison of individuals or groups still require a priori knowledge of hypotheses and 

anatomical regions to study. The challenge now becomes to be able to blindly 

determine the presence and significance of TBI with minimal interference and 
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undefined variables for efficient use in diagnostic pipelines, while learning about the 

weight attributed to every feature. This is where decision tree classifiers come into 

play, and the motivation of the use of decision tree classifications in this chapter. 

Machine learning tools using decision analysis applies evidence-based to inform 

unbiased clinical decisions in complex situations. Decision trees coupled with 

literature-derived probabilities, pre-set knowledge of the conditions and defined 

outcome values, can help determine the best diagnosis or course of action as well as 

an essential exploration of the important features and variables on the outcome. A 

decision-maker can thereafter establish a preferred method of treatment and explore 

variables which influence the final outcome.  

The advantages of decision trees are that pre-processing, and assumptions of 

distributions are not requirements. This is essential in clinical research for two main 

reasons: 1) unifying methodologies becomes simpler and more efficient given the lack 

of arbitrary parameters in pre-processing protocols and 2) statistics to verify 

assumptions before running statistical analyses are no longer required. Decision trees 

are also able to handle collinearity (or correlation between predictors) efficiently, while 

providing understandable explanation over the prediction. This enables its use without 

a full understanding of the relationship between variables, which is often the case in 

clinical studies. Decision trees are usually better than SVM classifiers when dealing 

with categorical data – which is particularly the case in this study. The use of decision 

trees in clinical practice is becoming more common and involves the need to make 

complex decisions with crucial long-term consequences. Although it has been tested, 

developed and implemented in different clinical cases, it’s yet to be tackled in the case 

of TBI given the complexity of the information used. For TBI generally and bTBI more 

specifically, training decision tree classifiers for accurate diagnosis would be an 

essential part of accurate classification and diagnosis in the absence of advanced 

tools and techniques.  

 

In this chapter, I derive diffusion information from 47 WM tracts using SSDS from 

individuals with and without TBI, to train and then test a decision tree classifier. I also 

do the same analysis on TBI patients who suffered a road traffic accident (RTA), or 

other type of injuries to test if the decision tree can accurately discriminate between 

different injury mechanisms. I extract the most important features used for the 

classification for each decision tree and compare them to results obtained from group-
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wise comparisons in each tract following SSDS to check whether decisions trees can 

yield more/different information regarding the most important WM tracts to consider in 

the case of TBI. This work provides a proof of principle that machine learning 

techniques, and more specifically decision trees, can be used with DTI-derived 

measures through SSDS to provide important diagnostic information. 

 

Hypotheses of chapter 6 

- Decision trees can classify between TBI patients and healthy controls using 

diffusion tensor imaging-derived metrics and while informing on important 

features to discriminate between groups. 

- Decision trees can classify between TBI resulting from road-traffic accidents 

and TBI resulting from other mechanisms using DTI-derived metrics and while 

informing on important features to discriminate between groups. 
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6.3. METHODS 

6.3.1. Participants 
Data from 85 patients (mean ± SD: 41.9 ± 12.1 years, 17 females) and 100 healthy 

controls (mean ± SD: 35.6 ± 12.2 years, 30 female) were included in this study (Figure 

56). Both groups had no history of psychiatric illness, substance dependence and were 

not undergoing any litigation. All TBI patients were classified as moderate-severe as 

defined by the Mayo criteria (Malec et al., 2007) and were recruited from Neurology 

outpatient clinics at St Mary’s hospital, London, within the chronic phase of their injury 

(mean time since injury 130 months, range 6-497 months). All patients and controls 

underwent advanced structural and diffusion MRI. Of the 85 TBI patients included and 

based on the diagnostic reports of a consultant neuroradiologist, 14 had no visible 

focal injuries on routine neuroimaging (e.g. contusion or microbleeds), 10 had 

evidence of microbleeds, 33 had evidence of focal contusion and 28 patients had both 

contusions and microbleeds. Written informed consent was obtained from all 

participants in both groups in accordance with the Declaration of Helsinki. The studies 

were approved by the West London and GTAC Research Ethics Committee 

(14/LO/0067, 13/LO/1678, 14/LO/1998).  
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Figure 56 : Groups demographics. A) Pie chart showing the composition of each group, B) 
population pyramid graph showing the number of individuals in each group and each age 

category, C) number of TBI patients with microbleeds, contusions, both or none, D) Gender 
count and ratio in each group, E) Mechanism of TBI (not to scale), RTA= road traffic accident. 

6.3.2. Imaging Acquisition 
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Structural MRI was acquired using a 3T Siemens Magnetom Verio Syngo with a 32-

channel head coil. All participants in both groups were scanned using the same 

scanner and acquisition parameters. Structural MRI included a high-resolution T1-

weighted MPRAGE106 1-mm-thick transverse slices, TR=2300ms, TE=2.98 ms, 

FA=9q, in-plane resolution=1x1mm, matrix size= 256x256, filed of 

view=25.6x25.6cm), diffusion weighted imaging (64 directions, b=1000s/mm2 with four 

interleaved b=0s/mm2, TE/TR 103/9,500ms, 64 contiguous slices, FoV 256mm, voxel 

size 2mm3).  and fluid-attenuated inversion recovery (FLAIR) to identify focal lesions.  

6.3.3. Decision Tree Training and Testing 

Applying SSDS 

For each patient, I made sure we had a raw T1-weighted image, a raw diffusion-

weighted image, and a field map for optimal registration. I applied the SSDS pipeline 

as described in section 3.3.3. Overview of SSDS. All JHU tracts (n=47) were included 

in the analysis (more details in Supplementary Table 1). For each tract and each 

subject, the result of SSDS is a single mean FA value. For each of the 47 tracts, the 

mean FA result is extracted, resulting in a matrix of 185x47. The results of SSDS were 

used to compare groups in descriptive statistics using an unpaired t-test, then train the 

classifier to recognise TBI vs controls. 

 

I repeated the analysis, but this time with 23 tracts. For every tract with a left and right 

mask, I created one bilateral mask, therefore reducing the input features. For each of 

the 23 tracts, the mean FA result is extracted, and used to train a decision tree to 

classify between TBI patients who suffered from road traffic accidents (RTA), and 

those who suffered from other injuries (85x23). 

Training the classifier 

I previously described the working theory of decision tree classifiers (see section 

2.6.2). For the purpose of this chapter, decision tree is a type of supervised learning 

algorithm that will be used in a classification problem with a categorical output variable, 

and continuous input.  
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The initial dataset consisted of 185 subjects x 47 tracts. The root node represents this 

entire population, which will get divided into decision nodes, until it reaches a terminal 

node or a leaf that can no longer be split. 

For training the decision tree, I randomly divided the data into 148 subjects for training 

and 37 subjects for testing (80% - 20%), while making sure both TBI and controls are 

included in both groups. I use the packages RPART (as the main workhorse for 

analysing and building the tree) and CARET (for splitting my data into training and 

testing sets) in Rstudio. The algorithm used to train this classification decision tree is 

Classification and Regression Trees (CART). CART creates a binary tree (two choices 

at each node) finding the best categorical feature to split using Gini impurity12 as the 

impurity criterion.  

(https://cran.r-project.org/web/packages/caret/caret.pdf ) 

(https://cran.r-project.org/web/packages/rpart/rpart.pdf ) 

With RPART package, we can use a formula call to build the tree. The Group variable 

is used as the y variable. The data to use to build the tree is the training set and since 

we are predicting categories (TBI or no TBI) the method is set to class. I use the same 

47 tracts for prediction.  

 

I repeated the training on a dataset of 85 subjects x 23 tracts (the bilateral tracts) to 

train a decision tree to classify within the TBI group between RTA injuries and other 

types of injuries. For training the decision tree, I randomly divided the data into 69 

subjects for training and 16 subjects for testing (80% - 20%), while making sure both 

groups (with RTA and with other injuries) are included in both groups. 

Testing the classifier  

Once the tree is built, I check its predictive power by using it on the test data set I 

created earlier. For this, I calculate a confusion matrix (Figure 57), which gives the 

rate of false positive and false negatives and calculates five different metrics to 

measure the validity of the model. 

 
12 To choose the best split at a node, the Gini Impurity metric calculates the probability of wrong 

datapoint classification. The split is chosen to maximize the Gini Gain. 
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Figure 57: Confusion Matrix 

Validity metrics are calculated as follows: 

Accuracy = (TP+TN) / (TP+TN+FP+FN) 

Misclassification = (FP + FN) / (TP + TN + FP + FN) 

Precision = TP / (TP + FP) 

Sensitivity = TP / (TP+FN)  

Specificity = TN / (TN+FP) 

 

The accuracy determines how often the classifier is correct, and the misclassification 

determines how often the model gets it wrong. 

The precision explains how often the model is correct when predicting positivity. 

The sensitivity (true positive) determines how often the prediction is positive when 

the real outcome is positive. 

The specificity (true negative) explains how often the prediction is negative when the 

real outcome is negative. 

 

With decision trees, we could of course keep splitting until the tree has a maximum 

number of branches, but that of course is not best practice, even if it raises the 

accuracy of the decision tree. The tree in this case will be overfitted, slow and way too 

big to reveal anything relevant. Part of this classification problem is in fact determining 

which factors have most influence when categorising data. It is therefore important to 

set some predefined stopping criterion to halt the construction of the tree. 

 

To overcome this problem of overfitting, it is essential to set the correct value for 

minimum number of instances per node using tree pruning technique. This allows us 

to avoid splitting redundancy. To prune my decision tree, I use a cost complexity prune 

of 0.03. I then calculated accuracy to see if the results are any better. 
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Classifying different TBI mechanisms 

I train the same model on data from the TBI group, that were split as follows: TBI from 

road traffic accident (n=43) and TBI from other mechanisms (n=42). The point of this 

section is to test how well the algorithm would perform in classifying between different 

injury mechanism. Once again, the data is split in a training (n=68 subjects) and testing 

set (n=17 subjects) (80% - 20%). The method used is like the one described above. 

6.3.4. Statistical Analysis 
I conducted all statistical analysis using R v3.3.3 (www.R-project.org) to assess 

normality relationships between variables and compare experimental groups. The 

groups to compare were TBI vs healthy controls first, then within the TBI group, road 

traffic accidents (RTA) vs other mechanism of injuries. I used a two-sample t-tests to 

compare groups. I assessed significance at p-value<0.05. Details of statistical analysis 

related to training and testing of decision tree classifier are detailed above (section 

6.3.3). To calculate the confidence interval of accuracy of the decision tree, I use a 

bootstrap resampling technique (with n=500), which randomly samples from the 

dataset with re-selection to provide a variance of the model’s performance. 
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6.4. RESULTS 

6.4.1. Results from SSDS Pipeline  
For the results, I use all tracts from the JHU, not just the tracts that passed the SSDS 

test-retest reliability measure. Reported results are for all 47 tracts in the first instance, 

and for concatenated bilateral tracts in the second analysis. 

The purpose of this analysis is to draw a comparison between descriptive t-test 

statistics comparing both groups in order to find important features in each group, and 

using a classification decision tree that will run this analysis for us. Are the important 

features (or tracts in this case), similar in both approaches to dissociate between 

groups? 

In the first instance, I compared healthy controls and patients with TBI. I obtained 

mean FA from SSDS for all 47 tracts for both groups and extracted the summary 

statistics (Supplementary Table 6).  Tracts showing a decrease in mean FA in TBI 

patients compared to controls at p<0.05 were the anterior corona radiata bilaterally, 

the body, genu and splenium of the corpus callosum, the cerebral peduncle bilaterally, 

the cingulum and cingulum gyrus bilaterally, the corticospinal bilaterally, the external 

capsule bilaterally, the fornix stria terminalis bilaterally, the inferior longitudinal 

fasciculus bilaterally, the posterior corona radiata bilaterally, the posterior thalamic 

radiation bilaterally, the retro lenticular part of the internal capsule bilaterally, the 

inferior fronto-occipital fasciculus bilaterally, and the sagittal stratum bilaterally (Figure 

58).  
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Figure 58: Boxplot showing the distribution of mean FA across controls (blue) and TBI (pink). 
Results are for significant tracts only (29 of 47 tracts) Mean and standard deviation are 

represented on the boxplots. Tracts are bilateral. *p<0.05, **p<0.01, ***p<0.001. L= left, R= 
right. Only tracts with significant mean FA difference are shown 

I then looked at the differences in mean FA within the TBI group, comparing RTA 

injuries and other injuries (Supplementary Table 7) as well as the presence or absence 

of focal injuries (Figure 59). For this analysis, I used 23 masks, where bilateral tracts 

were concatenated to give a single mask for simplicity purpose. All ROIs are still 

covered, but instead of analysing left and right as two independent regions, I now 

analyse the structure as a whole. At a significance level of p<0.05, none of the tracts 

show a significantly different mean FA value between the two groups.  
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Figure 59: Boxplot showing the distribution of mean FA across TBI from RTA (light orange) 
and TBI from other mechanisms (dark orange). Mean and standard deviation are represented 

on the boxplots. Tracts are bilateral. *p<0.05, **p<0.01, ***p<0.001. RTA= road traffic accident, 
ACR= anterior corona radiata, AIC= anterior limb of internal capsule, BCC= body of the corpus 
callosum, ped=peduncle, CG= cingulum gyrus, CS= corticospinal, EC=external capsule, GCC= 
genu of corpus callosum, IFOF=inferior fronto-occipital fasciculus, ILF= inferior longitudinal 

fasciculus, MCP= middle cerebellar peduncle, ML= medial lemniscus, PCR= posterior corona 
radiata, PCT= pontine crossing tract, PLIC= posterior limb of the internal capsule, PTR= 

posterior thalamic radiation, RIC= retrolenticular part of internal capsule, SCC= splenium of 
corpus callosum, SCP= superior cerebellar peduncle, SCR= superior corona radiata, SLF= 

superior longitudinal fasciculus, SS= sagittal stratum. 

Lastly, I also analysed the difference between TBI patients with focal neuroradiological 

abnormalities (microbleeds, contusions, or both) (n=71), and TBI patients without any 

neuroradiological abnormality (n=14). This analysis was not of particular interest for 

this chapter but was used as a way to compare methodologies and results obtained 

from a previous analysis on a similar cohort (Jolly et al., 2020). Although the number 

of subjects in each group was vastly different, I found the group with focal 
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abnormalities showed a significantly reduced FA in the following tracts: CG (p=0.024), 

EC (p=0.012), Fornix (p=0.016), ILF (p=0.048) and SCP (p=0.024).  

6.4.2. Results from Decision Tree Classification of TBI vs 
Controls 

In this section, I use the raw data obtained from SSDS. These are not the results from 

processed data. They’re the mean FA values as obtained from the SSDS analysis. 

First, I train a decision tree classifier to differentiate between TBI and healthy controls. 

The training set was composed of n= 148 subjects randomly selected. The groups 

were as follows: Controls n=80 (80% of total controls) and TBI n=68 (80% of total TBI 

patients) (Figure 56). When training the decision tree, and before pruning, the root 

node error was 68/148=0.46. This means that 46% of subjects were correctly sorted 

at the first (root) splitting node.  

 

I then looked at the feature importance for the classification. Feature importance is 

calculated as the decrease in node impurity weighted by the probability of reaching 

that node. The variables used in the tree construction were 22/49 tracts, including but 

not limited to the body, genu, and splenium of the corpus callosum, the cingulum gyrus 

bilaterally, the fornix stria terminalis bilaterally, the anterior corona radiata bilaterally, 

the left corticospinal, the left inferior longitudinal fasciculus, the right external capsule 

(Table 20). These results are obtained before any tree pruning, so they are not the 

final results. 
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Figure 60: Results of classification decision tree before pruning. ‘Yes’ splits are on the left of 
every node, ‘No’ splits are on the right of every node. Node number is indicated above each 
node. More details about abbreviations can be found in (Supplementary Table 6). At every 
node, decimals on the left indicate the percentage of controls classified at this node, and 

decimal on the right indicate percentage of TBI patients classified at this node. The value near 
the tract name indicates the mean FA. L= left and R=right. 

After tree pruning, the variables used in the tree construction were16/49 of the tracts 

(Table 16). It is already clearer that the tree has less splits and nodes, and therefore 

less complexity. The root node error was 68/148=0.46. This means that 46% of 

subjects were correctly sorted at the first (root) splitting node. The feature importance 

was split as follows (see section supplementary table 6 for all statistical details of the 

pruned decision tree). 

Table 16: Feature importance from pruned decision tree classifying between TBI and controls. 
BCC= body of corpus callosum, CG = cingulum gyrus, SCC= splenium of corpus callosum, 

GCC= genu of corpus callosum, FST= fornix stria terminalis, CS= corticospinal, ILF= inferior 
longitudinal fasciculus, EC- external capsule, ACR= anterior corona radiata, PCR= posterior 

corona radiata, SCR= superior corona radiata, PTR= posterior thalamic radiation, PCR= 
posterior cerebellar peduncle, L= left and R= right. 

Feature BCC CG-R CG-L SCC GCC FST-L CS-L ILF-L 
Importance 19 13 13 12 8 3 3 3 
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Feature EC-
R 

ACR-
L 

PCR-
R 

PCR-
L 

SCR-
R 

PTR-
L 

Cerebral-
ped-L 

PCR-
R 

Importance 3 2 1 1 1 1 1 1 
 

     The final model after pruning uses the following features to classify between TBI 

and controls based on a series of decisions pertaining to mean FA measures (Figure 

61). 
 
 

 

Figure 61: Results of classification decision tree after pruning. ‘Yes’ splits are on the left of 
every node, ‘No’ splits are on the right of every node. Node number is indicated above each 

node. More details about abbreviations can be found in (Supplementary Table 1). At every 
node, decimals on the left indicate the percentage of controls classified at this node, and 

decimal on the right indicate percentage of TBI patients classified at this node. The value near 
the tract name indicates the mean FA. More details on this tree can be found in section 

(Supplementary Table 7). R= right and L=left. 

I then tested the tree on the testing set, which was not part of the training set. The 

testing set was composed of n=37 subjects, of which 20 healthy controls and 17 

patients with TBI. Based on the confusion matrix resulting from running the classifier 
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on the testing set (Table 17), the accuracy was 86%, with a 95% confidence interval 

of 0.71 - 0.95, at p<0.0001.  The misclassification rate of 14%, a precision of 82%, a 

specificity of 85% and a sensitivity of 87%. The accuracy measure indicates that the 

model predicts 0.86 of the observations correctly. 

 

Table 17: Confusion matrix of decision tree classification.  

 True Controls True TBI 
Predicted Controls 18 3 

Predicted TBI 2 14 

 

6.4.3. Results from Decision Tree Classification of RTA vs Other 
Mechanisms 

 

I tackled a similar decision tree classification problem in this section, but only within 

the TBI group to classify between RTAs and other types of injuries, and only for 23 

tracts, after creating bilateral masks of each tract. The matrix used and resulting from 

SSDS is 85x23. The initial group of 85 patients (43 with RTA, 42 with other injuries) 

(Figure 56) was split into training and testing sets (80%-20%).  

 

The training set was composed of n= 69 subjects randomly selected. The groups were 

as follows: RTA n=35 (81% of RTA patients) and other injury n=34 (81% of patients 

with other injuries).  

When training the decision tree, and before pruning, the root node error was 34/69 = 

0.49. This means that 49% of subjects were correctly sorted at the first (root) splitting 

node, with features used in tree construction (10/23 tracts): AIC, Cerebral ped, CG, 

GCC, PCR, PCT, PTR, SC and SCR. After tree pruning, the root node error was still 

34/69 = 0.49 and the variables used in the tree construction were (4/23 tracts): 

Cerebral ped, PCT, SCP, SCR. The features importance can be seen below (see 

section A.5.4. Decision Tree Statistics for RTA vs Other Types of Injuries for more 

details on statistics): 
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Table 18: Feature importance from pruned decision tree classifying between RTA and other 
injuries. 

Feature SCP Cerebral 
ped SCR AIC CS PCT SCC PCR PLIC Fornix 

Importance 17 10 7 7 6 6 6 5 5 4 
Feature IFOF RIC SS ACR EC GCC ILF ML MCP  

Importance 4 4 4 4 3 3 3 3 2  
    

 

 

Figure 62: Results of classification decision tree RTA vs other types of injuries after pruning. 
‘Yes’ splits are on the left of every node, ‘No’ splits are on the right of every node. Node 

number is indicated above each node. More details about abbreviations can be found in 
(Supplementary Table 1). At every node, decimals on the left indicate the percentage of 

controls classified at this node, and decimal on the right indicate percentage of TBI patients 
classified at this node. The value near the tract name indicates the mean FA. More details on 
this tree can be found in A.5.4. Decision Tree Statistics for RTA vs Other Types of Injuries. 

RTA= road traffic accident, PCT= pontine crossing tract, SCP= superior cerebellar peduncle, 
SCR= superior corona radiata. 

I then tested the tree on the testing set, which was not part of the training set. The 

testing set was composed of n=16 subjects, of which 20 healthy controls and 17 

patients with TBI. Based on the confusion matrix resulting from running the classifier 

on the testing set (Table 17), the accuracy was 69%, with a misclassification rate of 

31%, a precision of 80%, a specificity of 88% and a sensitivity of 50%.  
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Table 19: Confusion matrix of decision tree classification.  

 True Other True RTA 
Predicted Other 7 4 
Predicted RTA 1 4 

6.4.4. Comparing Results 

TBI vs controls: Important tracts in t-test vs decision trees 

The final decision tree with a 73% accuracy used 7 of the 23 tracts as most important 

features to classify between the two groups. Of these tracts, 5 were shown to have a 

significantly lower mean FA when using a t-test on both groups, while the other two 

had similar mean FA distributions when using an unpaired t-test to compare between 

groups (Table 20). 

Table 20: Comparing results between t-test and decision trees in TBI vs controls. ACR= 
anterior corona radiata, AIC= anterior limb of internal capsule, BCC= body of the corpus 

callosum, ped=peduncle, CG= cingulum gyrus, CS= corticospinal, EC=external capsule, GCC= 

genu of corpus callosum, IFOF=inferior fronto-occipital fasciculus, ILF= inferior longitudinal 
fasciculus, MCP= middle cerebellar peduncle, ML= medial lemniscus, PCR= posterior corona 

radiata, PCT= pontine crossing tract, PLIC= posterior limb of the internal capsule, PTR= 
posterior thalamic radiation, RIC= retrolenticular part of internal capsule, SCC= splenium of 
corpus callosum, SCP= superior cerebellar peduncle, SCR= superior corona radiata, SLF= 

superior longitudinal fasciculus, SS= sagittal stratum, RLIC= retro lenticular part of the 
internal capsule.  

T-test significant tracts Decision tree important 
features – after pruning 

ACR ACR 
BCC BCC 

Cerebral ped Cerebral ped 
CG CG 
CS CS 
EC EC 

Fornix Fornix 
GCC GCC 
IFOF IFOF 
ILF ILF 

PCR PCR 
PTR PTR 
RIC - 
SCC SCC 
SCP - 
SS - 

RLIC - 
 + PLIC and SCR 
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RTA vs other injuries: Important tracts in t-test vs decision trees 

No tract came back significantly different in either group compared to the other when 

using a t-test. However, the final decision tree with an accuracy of 69% used 4 of the 

23 tracts as most important features to classify between the three groups. The tracts 

were the following: Cerebral ped, PCT, SCP, SCR. 
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6.5. DISCUSSION 
A faster and more efficient way to diagnose traumatic brain injury (TBI) or understand 

the difference between groups would be to train machine learning algorithms capable 

of detecting patterns associated with TBI. With this chapter, I tried to answer the 

following two questions: 1) Can I achieve high accuracy, specificity and precision with 

a decision tree classifying TBI patients from data obtained through SSDS? 2) What 

information can decision trees yield that aren’t obtained from standard group 

comparison statistics?  

 

Diffuse tensor imaging (DTI), and more specifically fractional anisotropy (FA) 

measures derived from DTI can give us important diagnostic information about TBI by 

providing quantitative measures of white matter (WM) microstructural integrity (Mac 

Donald et al., 2007). As seen throughout this thesis in the literature review and the 

experimental chapters, choosing pre-defined region of interest (ROI) and analysing 

them accordingly has been a technique widely used in clinical TBI investigations 

(Kennedy et al., 2009, Niogi et al., 2008b, Kraus et al., 2007, Niogi et al., 2008a). 

However, these approaches are limited to a priori hypotheses of which regions should 

be assessed, even when methods such as subject-specific diffusion segmentation, 

that try to curb these limitations, are used. The idea of using machine learning to detect 

TBI is not new (Hellyer et al., 2013). However, previous work has used support vector 

machine (SVM) classification algorithms to tackle this problem. The use of tree-based 

methods, on the other hand, is a novelty. Unlike other classification methods that 

typically use a set of features and a single decision step, decision trees are based on 

hierarchical decisions that follow tree-like structures, where each node makes the best 

binary choice to separate between classes.  

 

In this study, I use a dataset composed of civilians with non-blast TBI. Running SSDS 

on the patients and controls returns a mean FA value for each tract and each subject. 

80% of this output matrix is then used to build the decision tree, and 20% is used to 

test it. The recursive testing allows us to calculate a confidence interval for the 

accuracy of the tree. The model shows a high accuracy in its discrimination between 

TBI and no TBI (86%, 95 % CI: 0.71 - 0.95 ). With similar rates of precision, specificity, 

sensitivity and accuracy, the decision tree handles both TBI and control data well. 
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Using bootstrapping to calculate confidence interval of these measures also show that 

the rates aren’t obtained by chance. An existing model using SVM to classify between 

TBI and controls had an accuracy of 86% to 92% (Hellyer, 2013). I have therefore 

managed to reach a similar accuracy, with an improved model of TBI classification. 

Moreover, instead of using a priori knowledge of tracts damage as is common in other 

classification problems, using decision trees enables us to test all tracts to see which 

ones give the most relevant information to discriminate between the two groups 

investigated.     

I then looked at mechanisms of brain injury and trained a similar model to test whether 

classification between road traffic accidents (RTA) and other mechanisms of injuries 

(including falls, assaults, sports injuries, etc…) could be done with a similar accuracy 

rate. For this model however, accuracy was lower, at ~70%, and results show that the 

tree recognizes “other” injuries (88%) better than it recognizes RTAs (50%). Of course, 

the model is still young and should be trained on more data that are labelled by their 

proper mechanism if possible.   

 

Interestingly, most of the tracts that were picked up by the group comparison statistics 

following SSDS as being significantly different between the control group and TBI 

patients were also defined by the decision tree as being important features in the 

decision process. However, not all significant tracts were used in the tree, while tracts 

that did not come up as significantly different between groups were. In the case of 

injury mechanism classification, although none of the tracts come up as significantly 

different using group comparisons, the tree still manages to discriminate between 

groups by using important features extracted from some of the tracts. This shows us 

that though we might think a particular WM area might be of interest in TBI, it isn’t 

always the case when a machine learning algorithm tries to find patterns of 

abnormalities. On the other hand, group comparisons can sometimes omit information 

that seem to be relevant to the diagnostic outcome. 

 

I made sure to tackle all the potential disadvantages of decision tree classifiers: while 

chances of overfitting the model is a concern, I use tree pruning to overcome this 

issue. The same technique also deals with the potential complexity and overgrowth of 

the tree while training complicated datasets. And although it is known that decision 

trees can potentially lose valuable information when handling continuous variables, 
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this chapter only works with categorical data, and more conservatively binary 

variables. Despite these steps, there are still some limitations to my approach. The 

first limitations lie in those of the DTI data pre-processing technique, already covered 

in CHAPTER 3. If SSDS fails in some aspect, the model will eventually be flawed. 

Second, it is important to note that the data used was heterogenous, and even though 

the participants were carefully selected after being scanned on the same scanner, 

there were differences in the age groups, and use of psychoactive drugs or other 

comorbidities were not taken into consideration. Lastly, it is important to remember 

that DTI changes remain dynamic after TBI, which renders the results specific to this 

phase of post-injury. 

6.5.1. Important Next Steps for this Analysis 
This chapter should be relevant to the main hypotheses of this thesis, and therefore 

should lead to many more analyses into identifying biomarkers of bTBI and using them 

for a faster/more accurate diagnosis.  

As a continuation of the analysis presented in this chapter, the first step would be to 

look at all the WM tracts instead of constraining the analysis to predefined atlas tracts. 

This, for example, would include the boundary of the tracts as described in chapter 4, 

that seemed to be relevant in bTBI. Then, a group with military TBI should be included 

to train a decision tree classification between blast and non-blast TBI. From there, we 

would know if the classifier used the boundary, or the MCP as important features in 

the classification, as demonstrated in chapter 4. Another possibility would be to include 

more metrics from the WM and other neuroimaging outputs such as the hippocampus 

for example into the classifier. Although not limited to application in bTBI, a good 

decision tree classifier would have important translational benefits, including but not 

limited to quicker and more accurate diagnosis – as this has repeatedly been 

problematic in bTBI.  

Because of a limited number of soldiers in my cohort, I was not able to run a similar 

decision tree to classify between blast and non-blast TBI.   
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CHAPTER 7  
Discussion 

 

 

 

 

 

 

 

 

 

 

 

In this chapter, I discuss the main findings from my thesis, their interpretation, 

limitations, as well as the potential impact and future directions of my research.  
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7.1. SUMMARY OF CHAPTERS 
In this thesis, I aimed to investigate and develop neuroimaging biomarkers of blast-

induced traumatic brain injury (bTBI). I sought to use multimodal imaging with a 

particular focus on the development of a new pipeline, subjects-specific diffusion 

segmentation (SSDS), which enables us to carry out investigations at the subject-

level. Developing biomarkers of bTBI would be essential for proper and more accurate 

diagnosis, prevention and treatment of long-term sequalae seen in soldiers post-

deployment.   

 

The main objectives of this thesis were: 
1. To develop, test and validate a new technique that would enable identification 

of patterns of white matter damage using an automated and standardized 

pipeline in the subject-level native diffusion space. 

2. To investigate changes in cortical/subcortical structure and white matter (WM) 

microstructure in blast TBI and the difference in comparison to non-blast TBI 

using standard group-level analysis techniques. 

3. To implement the new pipeline with the aim of identifying patterns of injury 

associated with blast-related TBI and the association with clinical and 

neuropsychological findings.  

4. To use the results of the new pipeline to train a decision tree classification 

algorithm to classify between A) TBI and healthy controls, B) road traffic 

accidents vs other injury mechanisms 

 

And the main hypotheses were: 
1. Group-level investigations of white matter microstructural damage cannot detect a 

pattern of injury specific to blast-related TBI. 

2. Blast-related TBI will be differentiated by a decrease of subcortical structures 

volume in subject-level investigations, which can be explained by neuroradiological 

findings. 

3. There will be specific patterns of white matter damage following blast-related TBI 

at the boundary between the WM and the fluid-filled cavities associated with 

neuropsychological measures impaired in soldiers with a diagnosis of blast TBI. 
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4. It is possible to discern with high accuracy between TBI/controls and road traffic 

accidents/ other mechanisms using decision trees, in a way that might be 

reproduced on military TBI data in future work. 

 

For every chapter, I will revisit the specific hypotheses and present the main findings 

as bullet-point lists for clarity and simplicity. 

1.8.5. 7.1.2. Chapter 3 
Main hypotheses: 

- Automated segmentation of WM tracts on the parametric map at the individual level 

can result in high test-retest reliability with a high correspondence with fractional 

anisotropy results obtained from manual segmentation. 

- Some smaller tracts will have to be excluded from the subject-specific diffusion 

segmentation (SSDS) analysis due to higher variance in intra-subject 

measurements across different visits. 
 

Main findings: 

i I successfully developed SSDS using the following scans from healthy controls: 

T1-weighted images, diffusion-weighted images, field maps. 

i Intra-subject and inter-modality registrations were accurate with the registration 

algorithms used. 

i All tracts from the JHU atlas were successfully segmented through the pipeline, 

and the results were binary masks in individual diffusion space. 

i I used 3 scans per subject for test-retest reliability measure, and a coefficient of 

variation of 5% as the cut-off point for tracts to use and not to use in SSDS 

analyses. The tracts with the lowest reliability were also the smallest tracts, with 

a high negative correlation between coefficient of variation and tract size. The 

tracts were: The fornix, the superior fronto-occipital fasciculus bilaterally, the 

hippocampal cingulum bundle bilaterally, the inferior cerebellar peduncle 

bilaterally, the uncinate fasciculus bilaterally, the fornix crescent bilaterally and 

the tapetum bilaterally.  

i I compared SSDS to other standard diffusion imaging analyses. For mean 

fractional anisotropy (FA), SSDS had significantly similar results than manual 
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segmentation, and both methods had different results than SSDS. For tract 

volume, SSDS also outputs very similar tract volume than manual segmentation, 

but erosion of voxels with mixed intensity signals renders slightly smaller tracts. 

Tracts resulting from SSDS are always skeletonised, and therefore much 

smaller than the native ones.  

i SSDS shows similar accuracy and higher specificity for investigations of WM 

abnormalities at the subject-level.  

1.8.6. 7.1.3. Chapter 4 
Main hypotheses: 

- Using group-level tract-based spatial statistics (TBSS) on a reliable subset of WM 

tracts, the pattern of injury reflected by DTI abnormalities will be present in both 

bTBI and nbTBI groups.  

- When increasing the specificity of measurements with subject-level investigations, 

bTBI will be associated with abnormalities in the posterior fossa, specifically the 

middle cerebellar peduncle, with greater damage seen at the boundary of the WM. 

 

Main findings 

i Group-level analysis, and more specifically TBSS derived skeletonised 

measures show a similar pattern of WM abnormalities in subjects with bTBI and 

civilians with non-blast TBI. 

i Damage seen in both groups are consistent with TBI as we know it from previous 

studies and the literature, namely changes at the level of genu of the corpus 

callosum, the corticospinal tract, the inferior longitudinal fasciculus, the corona 

radiata, and the whole brain skeleton. 

i SSDS uncovers abnormalities that seems to be specific to bTBI, at the level of 

the middle cerebellar peduncle, as well as at the boundary of the WM and grey 

matter (GM) in the whole brain, and WM and cerebrospinal fluid (CSF) in the 

whole brain as well as the middle cerebellar peduncle. 

i Findings of WM abnormalities were heterogenous across soldiers, i.e. there 

were no significant differences between soldiers with/without focal injuries 

(microbleeds/contusions), or other abnormalities.  

1.8.7. 7.1.4. Chapter 5 
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Main hypotheses: 
- The blast TBI group, but not the civilian TBI group, shows a decrease in 

hippocampal volume that correlates with abnormalities in the fornix. 

- Loss of hippocampal volume does not correlate with measures of stress, or 

cognitive performance, but can be predicted based on the clinical characteristics of 

the soldiers. 

 

Main findings 

i Hippocampal atrophy is only found in soldiers with bTBI, but not in healthy 

controls or civilians with nbTBI.  

i FA abnormalities in the fornix, subdivision of the fornix, and cingulum are found 

in both injury groups relative to controls.  

i Results of voxel-based morphometry shows no changes in whole brain WM and 

GM volumes in either injury groups compared to controls. 

i Vertex-based morphometry focused on the hippocampi of soldiers compared to 

healthy controls shows changes in the anterior and posterior CA1 regions. 

i  There was a strong positive correlation between hippocampal volume and 

fornix mean FA in the bTBI group but not in the nbTBI group. 

i None of the clinical characteristics investigated seemed to correlate with 

hippocampal volumes, and these include: level of cortisol level, injury severity, 

performance on cognitive tests of associative memory, presence of focal 

abnormalities (microbleeds/ contusions), pituitary dysfunction, hypogonadism, 

limb amputation, as well as between soldiers using antidepressant or not, and 

opiate or not.  

i Measures of fornix and cingulum mean FA shows a correlation with performance 

on cognitive tests of associative memories. 

i A multiple regression linear model reveals that 71% of the variation in 

hippocampal volume can be explained by the following variables: presence/ 

absence of focal abnormalities, injury severity scores, and mean FA of the whole 

fornix. 

1.8.8. 7.1.5. Chapter 6 
Main hypotheses: 
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- Decision trees can classify between TBI patients and healthy controls using 

diffusion tensor imaging-derived metrics and while informing on important 

features to discriminate between groups. 

- Decision trees can classify between TBI resulting from road-traffic accidents 

(RTA) and TBI resulting from other mechanisms using DTI-derived metrics and 

while informing on important features to discriminate between groups. 

 
Main findings: 

i SSDS was used to successfully segment all JHU tracts on 100 healthy 

controls and 85 patients with non-blast TBI. Left and right tracts were joined 

to create bilateral masks. Mean FA was extracted from a total of 47 tracts. 

i Mean FA of the 47 tracts were used to train a decision tree to classify 

between patients with TBI and healthy controls.  

i The most important tracts for the classification TBI vs controls were the 

anterior corona radiata, the body and genu of the corpus callosum, the 

inferior fronto-occipital fasciculus, the posterior limb of the internal capsule, 

the posterior thalamic radiation and the superior corona radiata.  

i For the classification TBI vs controls, an 80%-20% training/testing revealed 

an accuracy of 86%, a specificity of 85% and a sensitivity of 87%.  

i Mean FA of the 24 tracts (bilateral masks combined) were used to train a 

decision tree to classify between patients with who suffered from RTA, and 

those who suffered from other injury mechanisms.  

i The most important tracts for the classification TBI vs controls were the 

cerebral peduncle, the pontine crossing tracts, the superior cerebellar 

peduncle and the superior corona radiata.  

i For the classification RTA vs other mechanisms, an 80%-20% 

training/testing revealed an accuracy of 69%, a specificity of 88% and a 

sensitivity of 50%. 
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7.2. CONCLUSION & INTERPRETATION 

Investigations at the subject-level are essential in specific cases 

When the differences between groups being compared are very subtle, or when 

individual WM regions should be investigated at the level of every participant, group-

level analyses become limiting (Soares et al., 2013, Zalesky, 2011). This is because 

such approaches deal with averages of images, which require normalization of data 

and images (Jones and Cercignani, 2010). This becomes problematic when the areas 

investigated can’t be discerned or segmented at a group-level and need higher 

specificity. The subject-specific diffusion segmentation (SSDS) was developed for the 

particular purpose of investigating WM changes in soldiers in regions that cannot be 

attained by other methods such as tract-based spatial statistics, and that would have 

required manual segmentation (Soares et al., 2013). I managed to show that although 

biomarkers of bTBI cannot be determined using group-level techniques, SSDS 

manages to set the two injury groups (soldiers and civilians) apart.  

However, the applications of SSDS extend beyond comparisons of groups or subjects 

to groups. One example is a project I am currently involved in, but that isn’t part of this 

thesis, in which computational models and reconstructions of head injuries in specific 

cases are being compared to the abnormalities resulting from said injury. In this study, 

we are looking at 4 patients who suffered different mechanisms of falls. The team led 

by Dr Ghajari is reconstructing the falls using computations simulations, while I use 

SSDS to determine abnormalities in the underlying WM structure of the subject 

(Ghajari et al., 2017). We can then determine the relation between the strain/strain 

rate observed in a particular region on the model, and the change in diffusivity in the 

corresponding area using neuroimaging. In the context of bTBI, this interdisciplinary 

technique can help us reconstruct blast loads to the brain and the resulting injuries. 

White matter microstructural abnormalities at the level of the middle 

cerebellar peduncle and the boundary of the white matter are neuroimaging 

biomarkers of blast related TBI  

As mentioned previously, the hypothesis behind this conclusion came from previous 

post-mortem investigations, animal studies and neuroimaging. The idea that WM 

damage of the cerebellar peduncle and the boundary of the WM might be specific to 

blast exposure had been part of the literature for a few years (Shively et al., 2016, Mac 
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Donald et al., 2011, Kirkman et al., 2011). In a study that has yet to be published by 

the C3NL lab, a porcine model of blast neurotrauma showed signs of ependymal 

stripping in all animals following blast with astrocytic proliferation and axonal injury in 

the periventricular region, which had also been previously documented in a similar 

model (de Lanerolle et al., 2011). However, this is the first time that standardized in-

vivo methods are used – which will be an essential part of result replication on a larger 

cohort - and a group of civilians with TBI is used to control for other injury mechanism.  

The hypotheses around why these areas are susceptible to damage following blast 

are still speculations. One of the explanations would be the nature of the blast wave, 

which causes refraction effects when it is transmitted between tissues with different 

properties (such as the WM and the fluid-filled cavities) (Yu et al., 2020). This might 

result in increasing forces between tissues. As for the middle cerebellar peduncle, the 

clinical and biomechanical relevance remains to be determined (Mac Donald et al., 

2013). None of my subjects had clinical signs of cerebellar disturbances such as ataxia 

or gait disturbance, and although or cognitive and behavioural measures were limited, 

we did not see any apparent correlation relevant to abnormalities in this region.   

Hippocampal atrophy is a grey matter neuroimaging biomarker of blast 

related TBI even in the absence of post-traumatic stress disorder 

Just as I did for WM investigations, I based investigation of the GM on previous post-

mortem findings, animal studies and neuroimaging on soldiers (Sydnor et al., 2020, 

Nelson and Tumpap, 2017, Bremner, 2007, Lee et al., 2009). Investigations based on 

the same porcine model of blast neurotrauma as part of C3NL’s research also found 

that animals had evidence of hippocampal oedema which was not seen in Sham 

animals or controls. One animal showed evidence of bilateral oedematous 

appearances in the dentate gyrus (DG) of the ventral hippocampi, another had 

unilateral changes in the DG of the ventral hippocampus. It is clear from the literature 

and previous work at our lab, that the hippocampus is a structure of interest regarding 

the neuropathology of blast injuries, but investigations of the hippocampus were 

always coupled with the presence of a post-traumatic stress disorder (PTSD) 

diagnosis in human analyses. From a neurological point of view, this raises the 

questions of causality; which comes first, PTSD or hippocampal atrophy?  

Showing that 1) hippocampal atrophy is present even in the absence of PTSD and 2) 

hippocampal atrophy is not seen in civilians, makes it another neuroimaging biomarker 
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of primary blast injury. The mechanism of this loss of volume however remains a 

mystery; Is it chronic stress? Is it brain trauma caused by blast? Or is it perhaps a 

decrease of cognitive activity during deployment?  

Uncovering markers of blast neurotrauma is an essential building block in the 

development of more efficient prevention and the understanding of the mechanism of 

primary blast injuries. 

Training a decision tree classifier from diffusion data is a first step towards 

machine-learning driven diagnosis of TBI biomechanics 

Since bTBI seems to have particular biomarkers that are identifiable using in-vivo 

advanced neuroimaging techniques , and that decision trees can be used to recognize 

the presence of TBI, and potentially the mechanism behind TBI, it should be possible 

to leverage markers of bTBI, mainly abnormal diffusivity in the middle cerebellar 

peduncle, abnormal diffusivity at the boundary of the white matter, and grey matter 

hippocampal atrophy to train a diagnostic decision tree to classify between blast-

induced TBI and non-blast induced TBI. This work lays all the required foundations for 

future research to test the clinical utility of such a diagnostic pipeline in a cohort of 

bTBI patients. The next logical progression would therefore be to apply SSDS and 

hippocampal volumetry in a larger cohort of soldiers with bTBI and civilians with non-

blast TBI and use the multimodality decision tree to test whether groups could be 

discriminated with high accuracy when using these features.  
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7.3. LIMITATIONS & RECOMMENDATIONS  
Limitations of each investigation have been covered in their corresponding chapters. 

The most important ones, which are common to all four experimental chapters, and 

which provide potential limitations to the overall conclusions are the following: 

Group size and group selection 

My cohort of bTBI was limited to a small number of soldiers. Collaboration with other 

work carried out in the context of military TBI to include more participants and 

reproduce results using standardized techniques is essential.  

Moreover, bTBI is a complex pathology that involves different injury mechanisms, and 

many of the imaging changes result from non-blast mechanisms such as head impact 

and rotational forces. The complexity is further exacerbated by the difficult 

circumstances during deployment to assess and report the conditions of the injury. 

Although my work supports the conclusion that there is a unique mechanism of injury 

associated with the blast itself, controlling for additional factors would be essential in 

future research. 

The need for more mechanistic, cognitive, behavioural, and clinical data 

Unfortunately, I couldn’t include enough behavioural and cognitive measures in my 

analysis. Although I report biomarkers of bTBI, it is important to understand if and how 

they provide neurological underpinnings of the symptomatology of bTBI. Future work 

should focus on the causality relationship between PTSD and hippocampal volume, 

the pathological downstream effects of trauma on the limbic system, the mechanistic 

importance of blast wave propagation on tissue boundaries, and how this translates 

to possible cognitive and behavioural disturbances, as well as the reason for the 

susceptibility of the middle cerebellar peduncle to the effects of blast. Knowledge of 

the strength, directionality, and nature of the forces that soldiers experience using 

accelerometers for example, that are placed inside the helmet, can provide valuable 

information about the mechanistic aspect of the individual experience. More relevant 

measures of cortisol level would be another example of crucial data. This would allow 

understanding of how stress might be implicated in hippocampal atrophy. 

With this data, and on the clinical side, not only would we be able to build a diagnostic 

decision trees for bTBI, but it would potentially be possible to use machine learning 

regression analyses to predict long-term outcome and for accurate prognosis in 
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soldiers having sustained a bTBI. On the prevention side, uncovering why and how 

certain parts of the brain are more susceptible than others to blast wave forces could 

improve protective equipment and helmet designs. 

Importance of longitudinal studies 

As mentioned earlier, more information on clinical factors and cognition are essential, 

but a more effective approach would be a longitudinal investigation, with neuroimaging 

data, cognitive and behavioural tests, as well as endocrinology measures taken prior 

to deployment, and over different periods of time following bTBI. Measures such as 

cortisol, which would reflect stress levels, should also be collected throughout 

deployment even in the absence of bTBI. Such information can shed light on 

relationships of causality among all the different findings and serve as fluid biomarkers 

of neuropathology. Another important aspect of longitudinal study would be in the 

chronic phase following bTBI to understand the potential development of PTSD and 

its association with hippocampal atrophy.  

Other recommendations 

- Use white matter information other than fractional anisotropy. This would 

include performing pre-processing of diffusion imaging data with other 

packages such as MRtrix and estimate more complex diffusivity measures that 

would consider crossing fibres. 

- Examine hippocampal volume and morphometry in soldiers with bTBI and 

compare differences in soldiers with and without PTSD. 

- Focus on the development of homogenous longitudinal approach for cognitive 

and behavioural assessments. 
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A.3. APPENDIX OF CHAPTER 3 

1.8.9. A.3.1. Code of SSDS 
 
Subject Specific Diffusion Statistics (SSDS) 
adriana.azor16@imperial.ac.uk 

Developed by Adriana Azor  

at C3NL, Imperial College London, London, UK 

Last update: 20/03/2021 

 

Description 
This notebook wraps FSL & MRTRIX3 native commands in a pipeline to generate FA summary measures from whole tracts and boundary in native diffusion space 
 
Dependencies 

x FSL installation 

x MRTRIX3 installation 

x hpcSubmit (PBS submission script for parallelisation) 
Input data Raw DWI & T1w 
Data organization: 

x Working directory (with subjects.txt file list of all subjects in analysis) 

� Subject directory 
o DWI 

o Raw diffusion file & bvec, bval 
o T1 

o T1.nii.gz 
o gre_map_field.nii.gz (if available) 

 
 
Step 1. Pre-processing of diffusion data 
The following cells preprocess raw diffusion data and fit tensor 

 

1. subj=`cat subject.txt` 

2. echo "eddy correcting" 

3. eddy_correct "$subj" "$subj"_ec 0; # change to match b0 from scanner  

4. echo "create nodif"  

5. for i in `cat subjects.txt` 

6. do eddy_correct "$i"/DWI/data.nii.gz "$i"/DWI/data_ec.nii.gz 0; 

7.    fslroi "$i"/DWI/data_ec "$i"/DWI/nodif.nii.gz 0 1; 

# change first value to match b0 from scanner 

8. echo "fdt rotate"  

9.    fdt_rotate_bvecs "$i"/DWI/*.bvec "$i"/DWI/rotated_bvec "$i"/DWI/data_ec.ecclog; 

10. echo "bet"  

11.    bet "$i"/DWI/nodif.nii.gz "$i"/DWI/nodif_brain -f 0.2 -g 0 -m;  

# QA brain extract  

12. echo "dtifit"  

13.    dtifit --data="$i"/DWI/data.nii.gz --out="$i"/DWI/dti --mask="$i"/DWI/nodif_brain_mask bvecs="$i"/DWI/rotated_bvec --bvals="$i"/DWI/"$i".bval -w; 

14. done 

 

Step 2. Setup paths for analysis & setup directories & pre-process data 

The following cells setup the current environment for analysis and the directories required 

| EDIT HERE: Project Directory, Tract Directory, Standard Directory. Export working directory, tract directory, and standard atlas directory. 

 

1. for i in `cat subjects.txt`; 

2. do mkdir ${workdir}/"$i"/boundary_mask; 

3.    mkdir ${workdir}/"$i"/boundary_mask/MASK/; 

4.    mkdir ${workdir}/"$i"/boundary_mask/transform; 

5.    mkdir ${workdir}/"$i"/boundary_mask/tmp_files 

6.    cp ${workdir}/"$i"/T1/T1.nii.gz ${workdir}/"$i"/boundary_mask/MASK 

7.    cp ${workdir}/"$i"/DWI/nodif_brain.nii.gz ${workdir}/"$i"/boundary_mask/ 

8.    cp ${workdir}/"$i"/DWI/nodif.nii.gz ${workdir}/"$i"/boundary_mask/ 

9. done 

10. echo " Directories ready" 

11. echo " **** REALIGNING BO IMAGES ***** " 
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12. for i in `cat subjects.txt`; 

13. do flirt -dof 6 -in ${workdir}/"$i"/boundary_mask/nodif_brain.nii.gz -ref   ${workdir}/"$i"/DWI/data.nii.gz -out ${workdir}/"$i"/boundary_mask/nodif_brain.nii.gz -cost 

mutualinfo; 

14. done 

15. echo " **** Skull stripping of T1 **** 

16.     -----------------------------------" 

17. for i in `cat subjects.txt`; 

18. do bet ${workdir}/"$i"/boundary_mask/MASK/T1.nii.gz ${workdir}/"$i"/boundary_mask/MASK/T1_brain.nii.gz -f 0.2 -B; 

19. done  

 

Step 3-a. Registration of T1 to B0 when field map is available 
The following cells runs the BBR of T1 to B0 when field map is available. If not, jump to Step3-b 

 

1. echo  " **** Calculating matrix to move T1 to B0 using BBR **** 

2.         -------------------------------------------------------" 

3. for i in `cat subjects.txt`; 

4. do epi_reg --fmapmag=${workdir}/"$i"/T1/gre_field_mapping.nii  -- epi=${workdir}/"$i"/boundary_mask/nodif.nii.gz  --t1=${workdir}/"$i"/boundary_mask/MASK/T1.nii.gz  -

-t1brain=${workdir}/"$i"/boundary_mask/MASK/T1_brain.nii.gz  --pedir=-y --out=${workdir}/"$i"/boundary_mask/transform/epi_reg; 

  

5. convert_xfm -omat ${workdir}/"$i"/boundary_mask/transform/T1_to_nodif_bbr.mat -inverse ${workdir}/"$i"/boundary_mask/transform/epi_reg.mat 

  

6. flirt -in ${workdir}/"$i"/boundary_mask/MASK/T1.nii.gz -ref ${workdir}/"$i"/boundary_mask/nodif.nii.gz -out ${workdir}/"$i"/boundary_mask/MASK/T1_B0_bbr.nii.gz -

applyxfm -init ${workdir}/"$i"/boundary_mask/transform/T1_to_nodif_bbr.mat 

7. done 

  

 

Step 3-b. Registration of T1 to B0 when field map is not available 
The following cells runs the registration of T1 to B0 when field map is not available using BBR. This requires an initial segmentation of the T1 and estimation of a boundary 

mask that will then be used with a BBR cost function and a standard affine registration. 

 

1. echo  " **** Segmentation in T1 and preparation of WM maps for BBR **** 

2.     ---------------------------------------------------------------------" 

  

3. for i in `cat subjects.txt`; 

4. do 5ttgen -nocrop fsl ${workdir}/"$i"/SSDS/MASK/T1_brain.nii.gz ${workdir}/"$i"/SSDS/MASK/5ttseg.mif -premasked -force; 

5. mrtransform -interp nearest -template ${workdir}/"$i"/SSDS/MASK/T1_brain.nii.gz ${workdir}/"$i"/SSDS/MASK/5ttseg.mif ${workdir}/"$i"/SSDS/MASK/5ttseg2.mif -force; 

6. mrconvert -coord 3 2 ${workdir}/"$i"/SSDS/MASK/5ttseg2.mif ${workdir}/"$i"/SSDS/MASK/wmseg.mif -force; 

7. mrconvert ${workdir}/"$i"/SSDS/MASK/wmseg.mif ${workdir}/"$i"/SSDS/MASK/wmseg.nii.gz -force 

8. done  

 

9. #Boundary-based registration of T1 to B0 

10. echo  " **** Calculating matrix to move T1 to B0 using BBR **** 

11.         -------------------------------------------------------" 

 

12. for i in `cat subjects.txt`; 

13. do  

14. fslmaths ${workdir}/"$i"/SSDS/MASK/wmseg.nii.gz -bin ${workdir}/"$i"/SSDS/MASK/wmseg.nii.gz #binarize WM mask 

15. flirt -dof 6 -in ${workdir}/"$i"/SSDS/nodif_brain.nii.gz -ref ${workdir}/"$i"/SSDS/MASK/T1_brain.nii.gz -omat ${workdir}/"$i"/SSDS/transform/nodif2T1.mat -interp 

nearestneighbour; #estimate initial transform matrix from nodif to T1 

16. done 

  

17. for i in `cat subjects.txt`; 

18. do flirt -dof 6 -in ${workdir}/"$i"/SSDS/nodif_brain.nii.gz -ref ${workdir}/"$i"/SSDS/MASK/T1_brain.nii.gz -out ${workdir}/"$i"/SSDS/MASK/nodif2T1_brain.nii.gz -wmseg 

${workdir}/"$i"/SSDS/MASK/wmseg.nii.gz -init ${workdir}/"$i"/SSDS/transform/nodif2T1.mat -omat ${workdir}/"$i"/SSDS/transform/nodif2T1_bbr.mat  -cost bbr -schedule 

/usr/local/fsl/etc/flirtsch/bbr.sch;  

# estimate transform matrix using BBR from nodif to T1 

 

19. convert_xfm -omat ${workdir}/"$i"/SSDS/transform/T1_to_nodif_bbr.mat -inverse ${workdir}/"$i"/SSDS/transform/nodif2T1_bbr.mat  

#reverse matrix to obtain transformation of T1 to nodif 

 

20. flirt -in ${workdir}/"$i"/SSDS/MASK/T1_brain.nii.gz -ref ${workdir}/"$i"/SSDS/nodif_brain.nii.gz -out ${workdir}/"$i"/SSDS/MASK/T1_B0_bbr.nii.gz -applyxfm -init 

${workdir}/"$i"/SSDS/transform/T1_to_nodif_bbr.mat  

#apply BBR matrix to T1 image to move ot to nodif space and QC 
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21. done 

 

Step 4. Now working in diffusion space to estimate a 1-erosion whole-brain boundary map 

The following cells runs the segmentation of the T1 brain image in diffusion space before estimating a whole brain boundary mask, a mask of the WM/CSF and WM/GM 

boundaries. Whole brain boundary is SSDS_B0. CSF boundary is SSDS_B0_csf, and GM boundary is SSDS_B0_csf. The last step exports the results in two separate 

CSV files. 

1. for i in `cat subjects.txt`; 

2. do 5ttgen -nocrop fsl ${workdir}/"$i"/SSDS/MASK/T1_B0_bbr.nii.gz ${workdir}/"$i"/SSDS/MASK/5ttseg_B0.mif -premasked -force; 

3. mrtransform -interp nearest -template ${workdir}/"$i"/SSDS/nodif_brain.nii.gz ${workdir}/"$i"/SSDS/MASK/5ttseg_B0.mif ${workdir}/"$i"/SSDS/MASK/5ttseg2_B0.mif -

force; 

4. mrconvert -coord 3 2 ${workdir}/"$i"/SSDS/MASK/5ttseg2_B0.mif ${workdir}/"$i"/SSDS/MASK/wmseg_B0.mif -force; 

5. mrcalc ${workdir}/"$i"/SSDS/MASK/wmseg_B0.mif 0.5 -gt ${workdir}/"$i"/SSDS/MASK/wmseg_binary_B0.mif -force; 

6. maskfilter ${workdir}/"$i"/SSDS/MASK/wmseg_binary_B0.mif connect ${workdir}/"$i"/SSDS/MASK/wmseg_bin_connected_B0.mif -largest -force; 

7. maskfilter ${workdir}/"$i"/SSDS/MASK/wmseg_bin_connected_B0.mif erode ${workdir}/"$i"/SSDS/MASK/wmseg_bin_eroded_B0.mif -force; 

8. mrcalc ${workdir}/"$i"/SSDS/MASK/wmseg_bin_connected_B0.mif ${workdir}/"$i"/SSDS/MASK/wmseg_bin_eroded_B0.mif -sub 

${workdir}/"$i"/SSDS/MASK/wmseg_bin_diff_B0.mif -force; 

9. mrconvert ${workdir}/"$i"/SSDS/MASK/wmseg_bin_diff_B0.mif ${workdir}/"$i"/SSDS/MASK/SSDS_B0.nii.gz -force; 

10. mrconvert ${workdir}/"$i"/SSDS/MASK/wmseg_B0.mif ${workdir}/"$i"/SSDS/MASK/wmseg_B0.nii.gz -force; 

11. fslmaths ${workdir}/"$i"/SSDS/MASK/wmseg_B0.nii.gz -thr 0.99 -bin ${workdir}/"$i"/SSDS/MASK/wmseg_B0.nii.gz ; 

12. done 

13. echo "BOUNDARY MASKS READY" 

 

14. echo "Estimating CSF and GM boundaries in WM map" 

  

15. for i in `cat subjects.txt`; 

16.  do fslmaths ${workdir}/"$i"/SSDS/boundaries_2_B0/csfseg_B0.nii.gz -dilM ${workdir}/"$i"/SSDS/boundaries_2_B0/csfseg_B0_dil.nii.gz 

17.     fslmaths ${workdir}/"$i"/SSDS/boundaries_2_B0/gmseg_B0.nii.gz -sub ${workdir}/"$i"/SSDS/boundaries_2_B0/csfseg_B0_dil.nii.gz 

${workdir}/"$i"/SSDS/boundaries_2_B0/gmseg_B0_nocsf.nii.gz 

18.     fslmaths ${workdir}/"$i"/SSDS/boundaries_2_B0/gmseg_B0_nocsf.nii.gz -thr 0 -uthr 1 -bin ${workdir}/"$i"/SSDS/boundaries_2_B0/gmseg_B0_nocsf.nii.gz 

19.     fslmaths ${workdir}/"$i"/SSDS/boundaries_2_B0/SSDS_B0.nii.gz -mas ${workdir}/"$i"/SSDS/boundaries_2_B0/csfseg_B0_dil.nii.gz 

${workdir}/"$i"/SSDS/boundaries_2_B0/SSDS_B0_csf.nii.gz 

20.     fslmaths ${workdir}/"$i"/SSDS/boundaries_2_B0/SSDS_B0.nii.gz -sub ${workdir}/"$i"/SSDS/boundaries_2_B0/SSDS_B0_csf.nii.gz 

${workdir}/"$i"/SSDS/boundaries_2_B0/SSDS_B0_gm.nii.gz 

21.     fslmaths ${workdir}/"$i"/SSDS/boundaries_2_B0/SSDS_B0_gm.nii.gz -thr 0 -uthr 1 -bin ${workdir}/"$i"/SSDS/boundaries_2_B0/SSDS_B0_gm.nii.gz 

22. Done 

 

23. for i in `cat subjects.txt`;do stats=`fslstats ${i}/DWI/dti_FA.nii.gz -k ${workdir}/"$i"/SSDS/boundaries_2_B0/SSDS_B0_gm.nii.gz -M`;echo 

${workdir}/"$i"/SSDS/boundaries_2_B0/SSDS_B0_gm.nii.gz ${i} ${stats};done>FA_results_GM_boundary.csv; 

24. for i in `cat subjects.txt`;do stats=`fslstats ${i}/DWI/dti_FA.nii.gz -k ${workdir}/"$i"/SSDS/boundaries_2_B0/SSDS_B0_csf.nii.gz -M`;echo 

${workdir}/"$i"/SSDS/boundaries_2_B0/SSDS_B0_csf.nii.gz ${i} ${stats};done>FA_results_CSF_boundary.csv 

 

25. for i in `cat subjects.txt`;do stats=`fslstats ${i}/DWI/dti_FA.nii.gz -k ${workdir}/"$i"/SSDS/boundaries_2_B0/SSDS_B0.nii.gz -M`;echo 

${workdir}/"$i"/SSDS/boundaries_2_B0/SSDS_B0_csf.nii.gz ${i} ${stats};done>FA_results_boundary.csv 

 

Step 5. Non-linear registration of MNI152 template to diffusion space 
This step creates a non-linear warp to estimate the registration of the template to the native diffusion space. This template will later be used to move the tracts to the 

diffusion space. 

 

1. echo "**** Create transformation matrix to move T1 to JHU - nonlinear **** 

2.     -----------------------------------------------------------------------" 

  

3. for i in `cat subjects.txt`; 

4. do flirt -in ${workdir}/"$i"/SSDS/MASK/T1_brain.nii.gz -ref ${standard}/MNI152_T1_1mm_brain.nii.gz  -omat ${workdir}/"$i"/SSDS/transform/T1_2_MNI_aff_brain.mat -

interp nearestneighbour; 

5. fnirt --in=${workdir}/"$i"/SSDS/MASK/T1_brain.nii.gz --ref=${standard}/MNI152_T1_1mm_brain.nii.gz  --iout=${workdir}/"$i"/SSDS/MASK/T1_2_MNI_aff_diff_brain.nii.gz --

aff=${workdir}/"$i"/SSDS/transform/T1_2_MNI_aff_brain.mat --

refmask=/Users/aa6616/Desktop/All_data/My_project/TEDS/Boundaries/MNI152_T1_1mm_brain_mask.nii.gz --

cout=${workdir}/"$i"/SSDS/transform/T1_2_MNI_brain.nii.gz 

6. done 

7.   

8. echo "**** Inverse warp (from T1 --> MNI to MNI --> T1) **** 

9.     -----------------------------------------------------------------------" 
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10. for i in `cat subjects.txt`; 

11. do invwarp --ref=${workdir}/"$i"/SSDS/MASK/T1_brain.nii.gz --warp=${workdir}/"$i"/SSDS/transform/T1_2_MNI_brain.nii.gz --

out=${workdir}/"$i"/SSDS/transform/MNI_2_T1_brain.nii.gz ; 

12. done 

 

 

Step 6. Non-linear registration of tracts to diffusion space 
This step uses the non-linear warp previously estimated to move the tracts from standard space to native diffusion space. The tracts used are initially eroded. Once 

registered, they are further thresholded and cross masked with the WM map to ensure exclusion of partial volume 

 

1. echo "Moving JHU tracts to native diffusion" 

 

# Create tract directory in main subject directories 

2. for i in `cat subjects.txt`; 

3. do  

4. for f in `cat ${tractdir}/tracts.txt`;  

5. do mkdir ${workdir}/"$i"/SSDS/tracts_ero/; 

6. cp ${tractdir}/"$f".nii.gz ${workdir}/"$i"/SSDS/tracts_ero/; 

7. done 

8. done 

 

#Warp tracts from MNI to B0 and clen tracts 

9. for i in `cat subjects.txt`; 

10. do   

11. for f in `cat ${tractdir}/tracts.txt`  

12. do applywarp --ref=${workdir}/"$i"/SSDS/nodif_brain.nii.gz --in=${tractdir}/"$f" --warp=${workdir}/"$i"/SSDS/transform/MNI_2_T1_brain.nii.gz --

postmat=${workdir}/"$i"/SSDS/transform/T1_to_nodif_bbr.mat --out=${workdir}/"$i"/SSDS/boundaries_2_B0/tracts/"$f"_B0 --interp=nn; 

13. fslmaths ${workdir}/"$i"/SSDS/MASK/SSDS_B0.nii.gz -mul ${workdir}/"$i"/SSDS/tracts_ero/"$f"_B0.nii.gz ${workdir}/"$i"/SSDS/tracts_ero/"$f"_edge #cross-mask with 

boundary mask 

14. fslmaths ${workdir}/"$i"/SSDS/MASK/wmseg_B0.nii.gz -mul ${workdir}/"$i"/SSDS/tracts_ero/"$f"_B0 ${workdir}/"$i"/SSDS/tracts_ero/"$f"_B0_WM; 

15. fslmaths ${workdir}/"$i"/SSDS/tracts_ero/"$f"_B0_WM -thr 0.99 ${workdir}/"$i"/SSDS/tracts_ero/"$f"_B0_WM_0.99; 

16. fslmaths ${workdir}/"$i"/SSDS/tracts_ero/"$f"_B0_WM_0.99 -bin ${workdir}/"$i"/SSDS/tracts_ero/"$f"_center; 

17. done 

18. done  

 

Step 7. Cleaning up unwanted files 
 

1. echo "moving temporary files to tmp folder" 

2. for i in `cat subjects.txt`; 

3. do mv ${workdir}/"$i"/SSDS/tracts_ero/*T1_bin.nii.gz ${workdir}/"$i"/SSDS/tmp_files 

4. mv ${workdir}/"$i"/SSDS/tracts_ero/*warp.nii.gz ${workdir}/"$i"/SSDS/tmp_files 

5. mv ${workdir}/"$i"/SSDS/tracts_ero/*dil.nii.gz ${workdir}/"$i"/SSDS/tmp_files 

6. mv ${workdir}/"$i"/SSDS/MASK/*.mif ${workdir}/"$i"/SSDS/tmp_files 

7. mv ${workdir}/"$i"/SSDS/tracts_ero/*thr* ${workdir}/"$i"/SSDS/tmp_files 

8. mv ${workdir}/"$i"/SSDS/tracts_ero/*bin* ${workdir}/"$i"/SSDS/tmp_files 

9. mv ${workdir}/"$i"/SSDS/tracts_ero/*WM* ${workdir}/"$i"/SSDS/tmp_files 

10. mv ${workdir}/"$i"/SSDS/tracts_ero/*sm* ${workdir}/"$i"/SSDS/tmp_files 

11. done 

 

Step 8. Pull data for statistics 
This step pulls the mean FA from each estimated tract.  

 

1. echo " ********************************** 

2.        *     ALL DONE:                  * 

3.        *    NOW EXTRACTING FA VALUES    * 

4.        **********************************" 

 

 

5. for i in `cat subjects.txt`; 

6. do cd ${workdir}/"$i"/SSDS/tracts_ero/ &&  

7. ls *center.nii.gz>> tracts_center.txt 



APPENDIX | A. A. 

221 

 

8. cd ${workdir} 

9. done 

 

10. for i in `cat subjects.txt`;do for roi in `cat ${workdir}/"$i"/SSDS/tracts_ero/tracts_center.txt`;do stats=`fslstats ${i}/DWI/dti_FA.nii.gz -k ${workdir}/"$i"/SSDS/tracts_ero/${roi} 

-M -S`;echo ${workdir}/"$i"/SSDS/tracts_ero/${roi} ${i} ${stats};done;done>FA_results.csv; 

11.   

12. echo "   *     ~~~~~~~~~~~~~~~~~~~~~~~COMPLETED~~~~~~~~~~~~~~~~~~~~~~~        *            " 

13. done 

 

 

1.8.10. A.3.2. Tracts from the JHU atlas 

Supplementary Table 1: Tracts from the JHU atlas and their abbreviation.  

Abbreviation Tract Abbreviation Tract 

AIC-L Anterior limb of internal 
capsule L 

ML-L Medial lemniscus L 

AIC-R Anterior limb of internal 
capsule R 

ML-R Medial lemniscus R 

ACR-L Anterior corona radiata 
L 

MCP Middle cerebellar 
peduncle 

ACR-R Anterior corona radiata 
R 

PCT Pontine Crossing Tract 

BCC Body of corpus callosum PLIC-L Posterior limb of 
internal capsule L 

Cerebral Ped L Cerebral peduncle L PLIC-R Posterior limb of 
internal capsule R 

Cerebral Ped R Cerebral peduncle R PCR-L Posterior corona radiata 
L 

CG-L Cingulum gyrus L PCR-R Posterior corona radiata 
R 

CG-R Cingulum gyrus R PTR-L Posterior thalamic 
radiation L 

CGH-L Cingulum 
parahippocampal L 

PTR-R Posterior thalamic 
radiation R 

CGH-R Cingulum 
parahippocampal R 

RIC-L Retrolenticular part of 
internal capsule L 

CS-L Corticospinal L RIC-R Retrolenticular part of 
internal capsule R 

CS-R Corticospinal R SCC Splenium of corpus 
callosum 

EC-L External capsule L SS-L Sagittal Stratum L 

EC-R External capsule R SS-R Sagittal Stratum R 

FST-L Fornix stria terminalis L SCP-L Superior cerebellar 
peduncle L 

FST-R Fornix stria terminalis R SCP-R Superior cerebellar 
peduncle R 

FC-L Fornix cres L SCR-L Superior corona radiata 
L 

FC-R Fornix cres R SCR-R Superior corona radiata 
R 

Fornix Fornix SFOF-L Superior fronto-occipital 
fasciculus L 
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GCC Genu of Corpus 
Callosum 

SFOF-R Superior fronto-occipital 
fasciculus R 

IFOF-L Inferior fronto-occipital 
fasciculus/ Sagittal 
stratum ILF IFOF L 

SLF-L Superior longitudinal 
fasciculus L 

IFOF-R Inferior fronto-occipital 
fasciculus/ Sagittal 
stratum ILF IFOF R 

SLF-R Superior longitudinal 
fasciculus R 

ILF-L Inferior longitudinal 
fasciculus L 

Tapetum L Tapetum L 

ILF-R Inferior longitudinal 
fasciculus R 

Tapetum R Tapetum R 

ICP-L Inferior cerebellar 
peduncle L 

UF-L Uncinate fasciculus L 

ICP-R Inferior cerebellar 
peduncle R 

UF-R Uncinate fasciculus R 

 

1.8.11. A.3.3. Segmentation example  
 

 

Supplementary Figure 1: Segmentation of 5 different tracts. Red= splenium of corpus 

callosum, Orange= body of corpus callosum, Green= genu of corpus callosum, Light Blue= 
corticospinal tract left and right, Dark Blue= middle cerebellar peduncle. Slices are different 

for each subject. 
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A.4. APPENDIX OF CHAPTER 4 

1.8.12. A.4.1. ROI mean FA results  

Supplementary Table 2: Mean FA results for all ROI following TBSS, SSDS, and boundary 
segmentation. nbTBI= non blast TBI, bTBI= blast TBI, BCC= body of corpus callosum, GCC= 

genu of corpus callosum, SCC= splenium of corpus callosum, MCP= middle cerebellar 
peduncle, ILF=inferior longitudinal fasciculus, L= left, R= right, WM= white matter, GM= grey 

matter. Significance values: *p<0.05, **p<0.01, ***p<0.001. 

 One-way ANOVA Post-hoc Tukey’s HSD 

 F value 
p value 

nbTBI vs 
Controls 

bTBI vs 
Controls 

nbTBI vs 
bTBI 

TBSS 
Anterior limb of internal 

capsule L 
3.16 
0.06 0.37 0.06 0.38 

Anterior limb of internal 
capsule R 

2.51 
0.08 0.27 0.08 0.70 

BCC 1.71 
0.19 0.33 0.21 0.99 

GCC 4.37 
0.02 * 0.03 * 0.05 * 0.98 

SCC 1.83 
0.17 0.17 0.35 0.93 

MCP 0.19 
0.17 0.67 0.13 0.48 

Corticospinal R 1.17 
0.19 0.39 0.18 0.86 

Corticospinal L 4.27 
0.02 * 0.05 * 0.02 * 0.92 

Cerebral peduncle L 2.42 
0.10 0.36 0.08 0.60 

Cerebral peduncle R 2.61 
0.08 0.52 0.07 0.37 

Cingulum L 1.88 
0.16 0.54 0.13 0.57 

Cingulum R 1.52 
0.23 0.73 0.20 0.51 

ILF L 5.00   
0.01 * 0.03 * 0.01 * 0.94 

ILF R 5.66 
0.006 ** 0.007 ** 0.03 * 0.92 

Corona radiata L 5.25 
0.008 ** 0.02 * 0.02 * 1.00 

Corona radiata R 3.30 
0.04 * 0.1 0.06 0.93 

Uncinate fasciculus L 1.13 
0.33 0.61 0.29 0.78 

Uncinate fasciculus R 1.10 
0.34 0.58 0.31 0.83 

Mean FA skeleton 3.50 
0.04 * 0.05 * 0.03 * 0.99 

SSDS 
Anterior limb of internal 

capsule L 
3.43 

0.04 * 0.46 0.03 * 0.31 

Anterior limb of internal 
capsule R 

4.57 
0.01 * 0.20 0.01 * 0.37 

BCC 4.19 
0.02 * 0.23 0.02 * 0.4 
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GCC 3.71 
0.01 * 0.03 * 0.03 * 0.80 

SCC 4.48 
0.02 * 0.09 0.03 * 0.66 

MCP 5.18 
0.009 ** 0.99 0.02 * 0.02 * 

Corticospinal R 3.73 
0.03 * 0.91 0.04 * 0.08 

Corticospinal L 4.25 
0.02 * 0.49 0.01 * 0.17 

Cerebral peduncle L 0.53 
0.59 0.73 

0.590518 0.9684215 
 

0.59 
0.590518 0.9684215 

 

0.97 
0.590518 0.9684215 

 

Cerebral peduncle R 2.00 
0.14 0.84 

0.13751 0.3353772 
 

0.14 
0.13751 0.3353772 

 

0.34 
0.13751 0.3353772 

 

Cingulum L 10.85 
< 0.001 *** <0.001 *** 0.000277 

0.901665 
 

<0.001 *** 
0.000277 0.901665 

 

0.90 
0.000277 0.901665 

 

Cingulum R 5.82 
0.005 ** 0.040 * 

0.0048156 0.6275136 
 

0.005 ** 
0.0048156 0.6275136 

 

0.63 
0.0048156 0.6275136 

 

ILF L 5.02   
0.01 * 0.3 0.007 ** 0.19 

ILF R 10.53 
< 0.001 *** 0.02 * < 0.001 *** 0.14 

Corona radiata L 7.30 
< 0.001 *** 0.12 < 0.001 *** 0.11 

Corona radiata R 8.11 
< 0.001 *** 0.16 < 0.001 *** 0.07 

Uncinate fasciculus L 0.77 
0.47 0.99 0.50 0.57 

Uncinate fasciculus R 2.48 
0.09 0.76 0.08 0.29 

WM Boundary 

Whole brain  
WM / CSF 

2.98 
0.05 * 0.07 0.05 * 0.44 

BCC 
WM / CSF 

1.63 
0.21 0.96 0.22 0.33 

GCC 
WM / CSF 

0.78 
0.46 0.56 0.49 0.99 

SCC 
WM / CSF 

1.81 
0.17 0.29 0.19 0.96 

MCP 
WM / CSF 

4.79 
0.01 ** 0.86 0.02 * 0.04 * 

Whole brain  
WM / GM 

3.43 
0.04 * 0.06 0.05 * 0.99 

BCC 
WM / GM 

4.56 
0.01 ** 0.09 0.01 ** 0.67 

GCC 
WM / GM 

3.62 
0.03 * 0.08 0.04 ** 0.96 

SCC 
WM / GM 

4.36 
0.02 * 0.25 0.01 ** 0.33 

MCP 
WM / GM 

1.00 
0.38 0.86 0.67 0.33 
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A.5. APPENDIX OF CHAPTER 5 

1.8.13. A.5.1. Effect of clinical characteristics on ROI measures  

Supplementary Table 3: Effect of clinical characteristics on ROI measures within the bTBI 
group. Presence refers to soldiers with the characteristic, and absence refers to soldiers 

without the characteristics.   

Hippocampal TCV 
 

 Presence 
n 

(Mean ± SD) 

Absence 
n 

(Mean ± SD) 

Unpaired t-test 

Microbleed 11 
(7.61 ± 0.50) 

8 
(7.49 ± 0.44) 

t= 0.54 
p= 0.59 

Contusion 8 
(7.60 ± 0.47) 

11 
(7.30 ± 0.32) 

t= 1.66 
p= 0.11 

Pituitary dysfunction 6 
(7.72 ± 0.36) 

13 
(7.46 ± 0.48) 

t= 1.18 
p= 0.26 

Hypogonadism 4 
(7.36 ± 0.42) 

15 
(7.59 ± 0.46) 

t= 0.90 
p= 0.38 

Antidepressants 9 
(7.61 ± 0.44) 

10 
(7.48 ± 0.48) 

t= 0.61 
p= 0.55 

Opiate 9 
(7.62 ± 0.49) 

10 
(7.47 ± 0.43) 

t= 0.67 
p= 0.51 

Limb Amputation 8 
(7.40 ± 0.37) 

11 
(7.65 ± 0.50) 

t= 1.19 
p= 0.25 

PTA > 24 hours 13 
(7.61 ± 0.69) 

6 
(7.68 ± 0.18) 

t= 0.24 
p= 0.81  

Major organ damage 11 
(7.60 ± 0.72) 

8 
(7.67 ± 0.32) 

t= 0.25 
p= 0.81 

 

Fornix Mean FA 
 

Microbleed 11 
(0.43 ± 0.08) 

8 
(0.42± 0.09) 

t= 0.26 
p= 0.80 

Contusion 8 
(0.41 ± 0.10) 

11 
(0.44 ± 0.07) 

t= 0.77 
p= 0.45 

Pituitary dysfunction 6 
(0.44 ± 0.07) 

13 
(0.38 ± 0.12) 

t= 1.13 
p= 0.27 

Hypogonadism 4 
(0.43 ± 0.10) 

15 
(0.41 ± 0.05) 

t= 0.57 
p= 0.57 

Antidepressants 9 
(0.42 ± 0.08) 

10 
(0.39 ± 0.10) 

t= 0.72 
p= 0.48 

Opiate 9 
(0.41 ± 0.08) 

10 
(0.43 ± 0.10) 

t= 0.48 
p= 0.64 

Limb Amputation 8 
(0.44 ± 0.09) 

11 
(0.44 ± 0.07) 

t= 0.00 
p= 1.00 

PTA > 24 hours 13 
(0.42 ± 0.09) 

6 
(0.43 ± 0.09) 

t= 0.14 
p= 0.89 

Major organ damage 11 
(0.41 ± 0.09) 

8 
(0.45 ± 0.08) 

t= 1.08 
p= 0.29 

 

Cingulum bilaterally Mean FA 
 

Microbleed 11 
(0.35 ± 0.08) 

8 
(0.38 ± 0.11) 

t= 0.69 
p= 0.50 

Contusion 8 
(0.36 ± 0.06) 

11 
(0.40 ± 0.07) 

t= 1.30 
p= 0.21 

Pituitary dysfunction 6 
(0.39 ± 0.09) 

13 
(0.34 ± 0.13) 

t= 0.84 
p= 0.41 

Hypogonadism 4 15 t= 0.13 
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(0.37 ± 0.11) (0.38 ± 0.14) p= 0.90 
Antidepressants 9 

(0.40 ± 0.06) 
10 

(0.34 ± 0.11) 
t= 1.45 
p= 0.16 

Opiate 9 
(0.41 ± 0.10) 

10 
(0.33 ± 0.10) 

t= 1.74 
p= 0.09 

Limb Amputation 8 
(0.37 ± 0.10) 

11 
(0.37 ± 0.11) 

t= 0.00 
p= 1.00 

PTA > 24 hours 13 
(0.38 ± 0.11) 

6 
(0.36 ± 0.07) 

t= 0.67 
p= 0.43 

Major organ damage 11 
(0.36 ± 0.12) 

8 
(0.39 ± 0.07) 

t= 0.54 
p= 0.59 

 

1.8.14. A.5.2. Medication Details 

Supplementary Table 4: List of medications used by soldiers. MST: morphine sulphate. 
Adapted from (Baxter et al., 2013) 

Subjects  Medications  
M01  Amitriptyline, Diclofenac, MST, Phenytoin  
M02  Diclofenac, Sertraline, Tramadol  
M03  Amitriptyline, Erythromycin, Gabapentin  
M04  C0-codamol  
M05  Diclofenac, Tramadol  
M07  None  
M08  Diclofenac, Lansoprazole, MST, Paracetamol, Pregabalin, Tramadol  
M09  Amitriptyline, MST, Nebido, Pregabalin  
M10  Betnovate ointment, Co-codamol  
M11  None  
M12  Amitriptyline, Diclofenac, Nebido, Pregabalin, Ranitidine, Sildenafil, Tramadol  
M13  Amitriptyline, Baclofen, Pregabalin  
M14 Amitripyline, Diclofenac, Fluoxetine, Mirazepine, MST, Paracetamol, Pregabalin, Salbutamol inhaler, Zopiclone  
M15  Amitriptyline, Nebido, Pregabalin, Tramadol  
M16  Mirtazepine, Paracetamol, Pregabalin, Tramadol, Zopiclone  
M17  None  
M18  Nebido  
M19  Diclofenac, Pregabalin, Ranitidine  
M20  Sertraline, Zopiclone  
 

Details of all supplementary methods can be found in (Baxter et al., 2013).  
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A.5. APPENDIX OF CHAPTER 6 

1.8.15. A.5.1. Demographics of TBI patients 
 

Age Gender Cause PTA 
Neuroradiological 

abnormalities 

38 M violence/assault 2 days Microbleeds 

51 F incident fall 2 days No 

31 M RTA 90 days Both 

20 M incident fall 28 days Microbleeds 

36 M violence/assault 3 days Contusions 

44 M RTA 90 days Both 

51 M RTA 
several 

weeks 
Both 

64 M RTA 

few 

hours to 

a day 

Contusions 

58 M RTA 1 month Contusions 

34 M other 6 weeks Both 

45 M RTA 2 weeks Microbleeds 

20 M RTA 
2 

months 
Both 

52 M RTA 5 days Microbleeds 

45 M other 14 days No 

31 M violence/assault months Both 

49 M other 

yes but 

unknown 

duration 

Both 

24 M RTA 14 days No 

52 M incident fall 21 days Both 

54 M violence/assault 15 days Both 

26 M violence/assault 56 days Contusions 

21 F RTA 35 days Microbleeds 

39 F incident fall 2 days Both 

47 M RTA 3 days Both 

22 M RTA 
450 

days 
Contusions 

34 M incident fall 0 days Contusions 

48 M RTA 60 days Contusions 

38 M violence/assault 
700 

days 
No 

49 F violence/assault 10 days Both 

36 F RTA 
120 

days 
Microbleeds 

43 M RTA 42 days Contusions 

31 M violence/assault 21 days Contusions 

37 M incident fall 
120 

days 
Both 

33 M RTA 30 days Both 

35 M incident fall 7 days Contusions 
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33 M RTA 28 days Contusions 

52 M violence/assault 4 days Both 

38 M violence/assault 14 days Both 

31 M RTA 
120 

days 
Both 

24 F RTA 
120 

days 
Contusions 

42 M RTA unknown No 

37 M RTA 4 days Contusions 

6 M incident fall 
4-6 

hours 
No 

57 F incident fall 1-7 days Both 

54 M incident fall 2 days Contusions 

39 M RTA unknown Microbleeds 

44 M RTA 6 days Both 

48 M violence/assault 
24-48 

hours 
No 

59 M RTA 1-7 days Contusions 

37 M incident fall 1 days Contusions 

26 M RTA 3 days Both 

24 M RTA unknown Contusions 

39 M violence/assault 3 weeks Contusions 

53 M incident fall unknown Both 

29 F RTA 
still in 

PTA 
Both 

51 M unknown unknown Both 

52 M Incident fall 
24-48 

hours 
Contusions 

57 M RTA 4 days Contusions 

34 M unknown 3 days Contusions 

49 F incident fall 
24-48 

hours 
Microbleeds 

39 M unknown 7 days Both 

44 F RTA unknown Both 

49 M RTA unknown Contusions 

61 F RTA 
120 

days 
Contusions 

39 F RTA unknown Contusions 

49 M unknown unknown No 

72 M unknown unknown Both 

40 F RTA unknown Contusions 

65 M incident fall 14 days Contusions 

40 M RTA 42 days Contusions 

54 M RTA 10 days Contusions 

42 F RTA 3 days No 

56 F RTA 
several 

months 
Both 

40 F unknown unknown Microbleeds 

31 M incident fall unknown No 

43 M RTA unknown Contusions 

39 M RTA unknown No 

57 M RTA unknown No 
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31 F unknown unknown No 

38 M unknown unknown No 

51 M incident fall unknown Contusions 

54 M RTA 1 days Both 

46 F incident fall 4 weeks Contusions 

43 M RTA no Microbleeds 

55 M violence/assault 4 days Contusions 

48 M RTA no Contusions 

Supplementary Table 5: TBI demographics. RTA= road traffic accident, M=male, F=female.  

1.8.16. A.5.2. Results from SSDS 

Supplementary Table 6: Results from SSDS in TBI (n=85) vs controls(n=100).  

 Controls TBI 
Tract Mean SD Mean SD 

Anterior corona radiata L 0.44 0.06 0.39 0.05 
Anterior corona radiata R 0.44 0.06 0.39 0.05 

Anterior limb of internal capsule L 0.64 0.07 0.64 0.07 
Anterior limb of internal capsule R 0.63 0.08 0.64 0.06 

BCC 0.74 0.06 0.63 0.13 
Cerebral peduncle L 0.69 0.07 0.65 0.07 
Cerebral peduncle R 0.70 0.06 0.68 0.07 

Cingulum CG L 0.58 0.07 0.46 0.13 
Cingulum CG R 0.56 0.08 0.46 0.12 

Cingulum L 0.52 0.08 0.50 0.08 
Cingulum R 0.56 0.08 0.46 0.12 

Corticospinal L 0.61 0.04 0.60 0.03 
Corticospinal R 0.62 0.04 0.61 0.04 

External capsule L 0.55 0.06 0.50 0.07 
External capsule R 0.52 0.06 0.47 0.07 

Fornix Stria Terminalis L 0.65 0.08 0.57 0.09 
Fornix Stria Terminalis R 0.64 0.07 0.57 0.11 

GCC 0.59 0.10 0.47 0.13 
Inf longitudinal fasc L 0.50 0.05 0.45 0.06 
Inf longitudinal fasc R 0.57 0.06 0.52 0.07 
Medial lemniscus L 0.52 0.08 0.52 0.09 
Medial lemniscus R 0.52 0.08 0.53 0.10 

Middle cerebellar peduncle 0.58 0.05 0.59 0.04 
Pontine Crossing Tract 0.47 0.05 0.49 0.06 

Posterior corona radiata L 0.47 0.03 0.46 0.05 
Posterior corona radiata R 0.48 0.04 0.47 0.06 

Posterior limb of internal capsule L 0.69 0.05 0.69 0.04 
Posterior limb of internal capsule R 0.68 0.05 0.70 0.04 

Posterior thalamic radiation L 0.63 0.07 0.69 0.04 
Posterior thalamic radiation R 0.64 0.06 0.70 0.04 

Retrolenticular internal capsule L 0.64 0.06 0.58 0.08 
Retrolenticular internal capsule R 0.61 0.05 0.60 0.08 

Inferior fronto-occipital fasciculus L 0.62 0.07 0.61 0.06 
Inferior fronto-occipital fasciculus R 0.63 0.07 0.60 0.04 

Sagittal Stratum L 0.62 0.07 0.57 0.09 
Sagittal Stratum R 0.63 0.07 0.59 0.07 

SCC 0.78 0.04 0.57 0.09 
Superior cerebellar peduncle L 0.75 0.08 0.59 0.07 
Superior cerebellar peduncle R 0.73 0.09 0.68 0.14 

Superior corona radiata L 0.51 0.04 0.72 0.08 
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Supplementary Table 7: Results from SSDS within the TBI for RTA (n=43) vs other types of 
injuries (n=42). 

 Other RTA 

Tract Mean SD Mean SD 

ACR 0.39 0.04 0.39 0.05 

AIC 0.64 0.04 0.64 0.06 

BCC 0.63 0.13 0.63 0.13 

Cerebral ped 0.66 0.05 0.68 0.06 

CG 0.47 0.13 0.46 0.12 

CS 0.6 0.03 0.61 0.03 

EC 0.49 0.06 0.49 0.07 

Fornix 0.56 0.09 0.57 0.08 

GCC 0.46 0.12 0.48 0.14 

IFOF 0.58 0.08 0.58 0.07 

ILF 0.48 0.06 0.49 0.05 

MCP 0.58 0.05 0.6 0.04 

ML 0.52 0.09 0.53 0.1 

PCR 0.46 0.04 0.47 0.05 

PCT 0.48 0.06 0.49 0.06 

PLIC 0.69 0.04 0.7 0.04 

PTR 0.59 0.08 0.59 0.07 

RIC 0.61 0.05 0.6 0.04 

SCC 0.67 0.15 0.68 0.13 

SCP 0.71 0.08 0.71 0.08 

SCR 0.48 0.05 0.5 0.05 

SLF 0.54 0.06 0.56 0.05 

SS 0.58 0.08 0.58 0.07 

 

Supplementary Table 8: Results from SSDS within the TBI for presence of focal injuries 
(contusions/microbleeds) (n=14) vs no focal injuries (n=71). 

 
Neuroradiological 

abnormalities 

No Neuroradiological 

abnormalities 

Tract Mean SD Mean SD 

ACR 0.39 0.04 0.40 0.04 

AIC 0.63 0.05 0.66 0.03 

BCC 0.62 0.14 0.68 0.07 

Cerebral ped 0.67 0.06 0.67 0.05 

CG 0.45 0.12 0.53 0.09 

CS 0.60 0.03 0.60 0.03 

EC 0.48 0.06 0.53 0.05 

Fornix 0.56 0.09 0.62 0.08 

GCC 0.47 0.14 0.50 0.10 

IFOF 0.57 0.08 0.60 0.07 

ILF 0.48 0.06 0.51 0.04 

MCP 0.59 0.04 0.58 0.05 
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ML 0.53 0.09 0.51 0.12 

PCR 0.47 0.05 0.46 0.06 

PCT 0.49 0.06 0.49 0.05 

PLIC 0.70 0.04 0.69 0.03 

PTR 0.58 0.08 0.62 0.07 

RIC 0.60 0.04 0.62 0.04 

SCC 0.67 0.14 0.71 0.11 

SCP 0.71 0.08 0.75 0.05 

SCR 0.49 0.05 0.48 0.05 

SLF 0.55 0.06 0.56 0.05 

SS 0.57 0.08 0.60 0.07 

 

1.8.17. A.5.3. Decision Tree Statistics for TBI vs Controls 
          CP nsplit rel error    xerror       xstd 
1 0.52941176      0 1.0000000 1.0000000 0.08915787 
2 0.11764706      1 0.4705882 0.6470588 0.08177174 
3 0.05882353      2 0.3529412 0.4852941 0.07446739 
4 0.04411765      3 0.2941176 0.4852941 0.07446739 
5 0.04000000      5 0.2058824 0.5147059 0.07602098 
 
Variable importance 
 BCCeroalignedcenter.nii.gz                 CingulumCGR                   CingulumR  
                         19                          13                          13  
                        SCC                 CingulumCGL                         GCC  
                         12                          10                           8  
     FornixStriaTerminalisL              CorticospinalL        InflongitudinalfascL  
                          7                           3                           3  
           ExternalcapsuleR      AnteriorcoronaradiataL      AnteriorcoronaradiataR  
                          3                           2                           2  
    PosteriorcoronaradiataL      SuperiorcoronaradiataR PosteriorthalamicradiationL  
                          1                           1                           1  
          CerebralpeduncleL     PosteriorcoronaradiataR  
                          1                           1  
 
Node number 1: 148 observations,    complexity param=0.5294118 
  predicted class=control  expected loss=0.4594595  P(node) =1 
    class counts:    80    68 
   probabilities: 0.541 0.459  
  left son=2 (64 obs) right son=3 (84 obs) 
  Primary splits: 
      BCCeroalignedcenter.nii.gz < 0.735815  to the right, improve=25.22780, (0 missing) 
      CingulumCGL                < 0.4941495 to the right, improve=24.53351, (0 missing) 
      SCC                        < 0.7563715 to the right, improve=21.23459, (0 missing) 
      AnteriorcoronaradiataR     < 0.4129995 to the right, improve=19.29287, (0 missing) 
      FornixStriaTerminalisL     < 0.640568  to the right, improve=19.24412, (0 missing) 
  Surrogate splits: 
      CingulumCGL < 0.5570925 to the right, agree=0.824, adj=0.594, (0 split) 
      CingulumCGR < 0.5608445 to the right, agree=0.777, adj=0.484, (0 split) 
      CingulumR   < 0.5608445 to the right, agree=0.777, adj=0.484, (0 split) 
      GCC         < 0.561039  to the right, agree=0.777, adj=0.484, (0 split) 
      SCC         < 0.786882  to the right, agree=0.777, adj=0.484, (0 split) 
 
Node number 2: 64 observations,    complexity param=0.04411765 
  predicted class=control  expected loss=0.125  P(node) =0.4324324 
    class counts:    56     8 
   probabilities: 0.875 0.125  
  left son=4 (59 obs) right son=5 (5 obs) 
  Primary splits: 
      CorticospinalL          < 0.5755095 to the right, improve=4.942373, (0 missing) 
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      AnteriorcoronaradiataL  < 0.4011345 to the right, improve=3.882828, (0 missing) 
      CorticospinalR          < 0.596043  to the right, improve=3.333333, (0 missing) 
      PosteriorcoronaradiataL < 0.4081555 to the right, improve=3.333333, (0 missing) 
      PosteriorcoronaradiataR < 0.4384035 to the right, improve=3.333333, (0 missing) 
  Surrogate splits: 
      PosteriorcoronaradiataL < 0.4011435 to the right, agree=0.953, adj=0.4, (0 split) 
      SuperiorcoronaradiataR  < 0.4421085 to the right, agree=0.953, adj=0.4, (0 split) 
      CerebralpeduncleL       < 0.6190795 to the right, agree=0.938, adj=0.2, (0 split) 
      PosteriorcoronaradiataR < 0.4152105 to the right, agree=0.938, adj=0.2, (0 split) 
 
Node number 3: 84 observations,    complexity param=0.1176471 
  predicted class=TBI      expected loss=0.2857143  P(node) =0.5675676 
    class counts:    24    60 
   probabilities: 0.286 0.714  
  left son=6 (24 obs) right son=7 (60 obs) 
  Primary splits: 
      FornixStriaTerminalisL  < 0.6377055 to the right, improve=9.752381, (0 missing) 
      SagittalstratumILFIFOFL < 0.5828255 to the right, improve=7.091418, (0 missing) 
      SagittalStratumL        < 0.5828255 to the right, improve=7.091418, (0 missing) 
      CingulumCGL             < 0.5031265 to the right, improve=6.269388, (0 missing) 
      CingulumCGR             < 0.5307165 to the right, improve=6.268159, (0 missing) 
  Surrogate splits: 
      InflongitudinalfascL        < 0.5128065 to the right, agree=0.774, adj=0.208, (0 split) 
      CingulumCGR                 < 0.5534505 to the right, agree=0.762, adj=0.167, (0 split) 
      CingulumR                   < 0.5534505 to the right, agree=0.762, adj=0.167, (0 split) 
      ExternalcapsuleR            < 0.537873  to the right, agree=0.762, adj=0.167, (0 split) 
      PosteriorthalamicradiationL < 0.6703945 to the right, agree=0.762, adj=0.167, (0 split) 
 
Node number 4: 59 observations 
  predicted class=control  expected loss=0.06779661  P(node) =0.3986486 
    class counts:    55     4 
   probabilities: 0.932 0.068  
 
Node number 5: 5 observations 
  predicted class=TBI      expected loss=0.2  P(node) =0.03378378 
    class counts:     1     4 
   probabilities: 0.200 0.800  
 
Node number 6: 24 observations,    complexity param=0.05882353 
  predicted class=control  expected loss=0.3333333  P(node) =0.1621622 
    class counts:    16     8 
   probabilities: 0.667 0.333  
  left son=12 (14 obs) right son=13 (10 obs) 
  Primary splits: 
      CingulumCGR            < 0.5307165 to the right, improve=4.609524, (0 missing) 
      CingulumR              < 0.5307165 to the right, improve=4.609524, (0 missing) 
      SuperiorcoronaradiataL < 0.5517215 to the left,  improve=4.266667, (0 missing) 
      AnteriorcoronaradiataL < 0.3932835 to the right, improve=4.000000, (0 missing) 
      FornixStriaTerminalisR < 0.6502575 to the left,  improve=3.200000, (0 missing) 
  Surrogate splits: 
      CingulumR                  < 0.5307165 to the right, agree=1.000, adj=1.0, (0 split) 
      AnteriorcoronaradiataL     < 0.396246  to the right, agree=0.875, adj=0.7, (0 split) 
      AnteriorcoronaradiataR     < 0.385622  to the right, agree=0.792, adj=0.5, (0 split) 
      BCCeroalignedcenter.nii.gz < 0.6963665 to the right, agree=0.792, adj=0.5, (0 split) 
      ExternalcapsuleR           < 0.474758  to the right, agree=0.792, adj=0.5, (0 split) 
 
Node number 7: 60 observations,    complexity param=0.04411765 
  predicted class=TBI      expected loss=0.1333333  P(node) =0.4054054 
    class counts:     8    52 
   probabilities: 0.133 0.867  
  left son=14 (5 obs) right son=15 (55 obs) 
  Primary splits: 
      SCC                     < 0.7859165 to the right, improve=4.848485, (0 missing) 
      InflongitudinalfascL    < 0.537172  to the right, improve=3.108046, (0 missing) 
      SagittalstratumILFIFOFL < 0.5828255 to the right, improve=2.280460, (0 missing) 
      SagittalStratumL        < 0.5828255 to the right, improve=2.280460, (0 missing) 
      CerebralpeduncleL       < 0.7411485 to the right, improve=1.796491, (0 missing) 
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  Surrogate splits: 
      InflongitudinalfascL < 0.537172  to the right, agree=0.95, adj=0.4, (0 split) 
 
Node number 12: 14 observations 
  predicted class=control  expected loss=0.07142857  P(node) =0.09459459 
    class counts:    13     1 
   probabilities: 0.929 0.071  
 
Node number 13: 10 observations 
  predicted class=TBI      expected loss=0.3  P(node) =0.06756757 
    class counts:     3     7 
   probabilities: 0.300 0.700  
 
Node number 14: 5 observations 
  predicted class=control  expected loss=0.2  P(node) =0.03378378 
    class counts:     4     1 
   probabilities: 0.800 0.200  
 
Node number 15: 55 observations 
  predicted class=TBI      expected loss=0.07272727  P(node) =0.3716216 
    class counts:     4    51 
   probabilities: 0.073 0.927 

1.8.18. A.5.4. Decision Tree Statistics for RTA vs Other Types of 
Injuries 

Node number 1: 69 observations,    complexity param=0.2647059 
  predicted class=RTA    expected loss=0.4927536  P(node) =1 
    class counts:    34    35 
   probabilities: 0.493 0.507  
  left son=2 (53 obs) right son=3 (16 obs) 
  Primary splits: 
      Cerebralped < 0.7131178 to the left,  improve=3.881905, (0 missing) 
      SCP         < 0.8024382 to the left,  improve=3.014976, (0 missing) 
      CS          < 0.6096095 to the left,  improve=2.254658, (0 missing) 
      GCC         < 0.569744  to the left,  improve=1.959420, (0 missing) 
      ML          < 0.4502735 to the left,  improve=1.922578, (0 missing) 
  Surrogate splits: 
      CS     < 0.6410742 to the left,  agree=0.812, adj=0.188, (0 split) 
      Fornix < 0.6818    to the left,  agree=0.812, adj=0.188, (0 split) 
      MCP    < 0.6580685 to the left,  agree=0.812, adj=0.188, (0 split) 
      ACR    < 0.4561082 to the left,  agree=0.797, adj=0.125, (0 split) 
      SCC    < 0.799411  to the left,  agree=0.797, adj=0.125, (0 split) 
 
Node number 2: 53 observations,    complexity param=0.1764706 
  predicted class=other  expected loss=0.4150943  P(node) =0.7681159 
    class counts:    31    22 
   probabilities: 0.585 0.415  
  left son=4 (37 obs) right son=5 (16 obs) 
  Primary splits: 
      SCP  < 0.6738772 to the right, improve=3.401390, (0 missing) 
      EC   < 0.5044165 to the right, improve=2.478883, (0 missing) 
      ILF  < 0.5316678 to the right, improve=2.447477, (0 missing) 
      SCC  < 0.771218  to the right, improve=2.447477, (0 missing) 
      PLIC < 0.6764447 to the right, improve=2.196455, (0 missing) 
  Surrogate splits: 
      RIC  < 0.5734102 to the right, agree=0.830, adj=0.438, (0 split) 
      IFOF < 0.553174  to the right, agree=0.830, adj=0.438, (0 split) 
      SS   < 0.553174  to the right, agree=0.830, adj=0.438, (0 split) 
      AIC  < 0.5879763 to the right, agree=0.811, adj=0.375, (0 split) 
      EC   < 0.408652  to the right, agree=0.811, adj=0.375, (0 split) 
 
Node number 3: 16 observations 
  predicted class=RTA    expected loss=0.1875  P(node) =0.2318841 
    class counts:     3    13 
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   probabilities: 0.188 0.812  
 
Node number 4: 37 observations,    complexity param=0.08823529 
  predicted class=other  expected loss=0.2972973  P(node) =0.5362319 
    class counts:    26    11 
   probabilities: 0.703 0.297  
  left son=8 (34 obs) right son=9 (3 obs) 
  Primary splits: 
      SCP    < 0.8142445 to the left,  improve=3.224165, (0 missing) 
      ILF    < 0.4957638 to the left,  improve=2.297969, (0 missing) 
      GCC    < 0.569744  to the left,  improve=2.192218, (0 missing) 
      Fornix < 0.5110372 to the left,  improve=1.804287, (0 missing) 
      PCR    < 0.432176  to the left,  improve=1.804287, (0 missing) 
 
Node number 5: 16 observations,    complexity param=0.05882353 
  predicted class=RTA    expected loss=0.3125  P(node) =0.2318841 
    class counts:     5    11 
   probabilities: 0.312 0.688  
  left son=10 (9 obs) right son=11 (7 obs) 
  Primary splits: 
      PCT < 0.4983495 to the right, improve=2.430556, (0 missing) 
      AIC < 0.5848405 to the left,  improve=2.408333, (0 missing) 
      CG  < 0.601576  to the right, improve=2.160714, (0 missing) 
      EC  < 0.5049362 to the right, improve=2.160714, (0 missing) 
      ML  < 0.4225765 to the left,  improve=2.160714, (0 missing) 
  Surrogate splits: 
      AIC    < 0.6011248 to the left,  agree=0.812, adj=0.571, (0 split) 
      Fornix < 0.4424505 to the right, agree=0.750, adj=0.429, (0 split) 
      GCC    < 0.3807665 to the right, agree=0.750, adj=0.429, (0 split) 
      ILF    < 0.4914145 to the left,  agree=0.750, adj=0.429, (0 split) 
      ML     < 0.6118755 to the right, agree=0.750, adj=0.429, (0 split) 
 
Node number 8: 34 observations 
  predicted class=other  expected loss=0.2352941  P(node) =0.4927536 
    class counts:    26     8 
   probabilities: 0.765 0.235  
 
Node number 9: 3 observations 
  predicted class=RTA    expected loss=0  P(node) =0.04347826 
    class counts:     0     3 
   probabilities: 0.000 1.000  
 
Node number 10: 9 observations,    complexity param=0.05882353 
  predicted class=other  expected loss=0.4444444  P(node) =0.1304348 
    class counts:     5     4 
   probabilities: 0.556 0.444  
  left son=20 (6 obs) right son=21 (3 obs) 
  Primary splits: 
      SCR < 0.4644008 to the right, improve=2.777778, (0 missing) 
      PTR < 0.5514633 to the right, improve=1.777778, (0 missing) 
      RIC < 0.54381   to the left,  improve=1.777778, (0 missing) 
      CG  < 0.353939  to the right, improve=1.587302, (0 missing) 
      PCT < 0.5962135 to the left,  improve=1.587302, (0 missing) 
  Surrogate splits: 
      CS   < 0.5803725 to the right, agree=0.889, adj=0.667, (0 split) 
      PCR  < 0.4079322 to the right, agree=0.889, adj=0.667, (0 split) 
      PLIC < 0.6691218 to the right, agree=0.889, adj=0.667, (0 split) 
      SCC  < 0.7414    to the left,  agree=0.889, adj=0.667, (0 split) 
      ACR  < 0.392917  to the right, agree=0.778, adj=0.333, (0 split) 
 
Node number 11: 7 observations 
  predicted class=RTA    expected loss=0  P(node) =0.1014493 
    class counts:     0     7 
   probabilities: 0.000 1.000  
 
Node number 20: 6 observations 
  predicted class=other  expected loss=0.1666667  P(node) =0.08695652 
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    class counts:     5     1 
   probabilities: 0.833 0.167  
 
Node number 21: 3 observations 
  predicted class=RTA    expected loss=0  P(node) =0.04347826 
    class counts:     0     3 
   probabilities: 0.000 1.000 
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Note from the Author 

The bombs stopped 4 years before I was born. It had been 15 years of bloodshed, of bad 

news, of losing friends, searching for people, souvenirs and pets under the rubbles of what 

used to be called homes, of walking on the debris of the churches, schools and playgrounds. 

Our parents came out for the shelters after more than 15 years, with the hope of rebuilding 

Lebanon, of giving to their children the childhood and youth that had been taken away from 

them.  

Then came our generation, who fell in love with this country, and grew up with the stories of 

the war. Somehow over the years, the fears of our parents became our drive, and their hopes 

our dreams. But opportunities were always lacking, and Lebanon never managed to shake 

off the scars and wounds of the war. We had to leave to find better opportunities, promising 

to come back home and contribute to the eternal rebuilding of a country still limping. Me? My 

promise was to fight for children with learning differences,  destigmatize neurodiversity, 

become a neuroscientist and bring some of the experience and knowledge back with me.  

 

When the Covid pandemic hit, I was in the UK alone, in the middle of my PhD studies. My 

loved ones were on different continents. And when the whole world was struggling with a 

sanitary problem, the place I call home was hit by its worst economic and financial collapse. 

I was waiting impatiently for the day I would fly home and hug my family after a long time 

apart. But suddenly, on the 4th of August, at 6.08pm, two days before my scheduled flight, 

everything went completely silent. The beautiful city of Beirut was hit by yet another tragedy. 

217 people lost their life, 7,000 people bled on the streets and more than 300,000 people lost 

their homes, when the largest non-nuclear explosion in history hit Beirut’s port.  And then, for 

the next year and counting, things went from bad to worse, and the country has been enduring 

one of the worst crises the world has seen in over 150 years.  

 

Although this thesis is about science, and advancing the field, please keep in mind that , for 

some people like myself, the victims of blasts can be friends, family, and an entire nation. 

They’re people who manage to stay optimistic despite everything, and they’re inspiring. I have 

focused my last 4 years on soldiers, and I believe so much more work is yet to be done, but  

the forgotten victims are often civilians, and they should be a part of the process. The echoes 

of the blasts resonate far beyond the initial explosion, and some wounds and scars can never 

heal. I hope this thesis and my research will be an important part in the overarching aim of 

giving every survivor of war, terror, explosions or bombing, whether civilian or soldier, a 

chance at a beautiful life. 

 


