
 1 

Statistical methods for Clinical 
Genome Interpretation with 

specific application to Inherited 
Cardiac Conditions 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Xiaolei Zhang 

 
This dissertation is submitted for the degree of Doctor of Philosophy in 

Clinical Medicine Research, Imperial College London. 

 
 

 
April 2021 

 
 
 
 



 2 

Abstract 

Background: While next-generation sequencing has enabled us to rapidly identify 

sequence variants, clinical application is limited by our ability to determine which rare 

variants impact disease risk.  

 

Aim: Developing computational methods to identify clinically important variants 

 

Methods and Results:  

(1) I built a disease-specific variant classifier for inherited cardiac conditions (ICCs), which 

outperforms genome-wide tools in a wide range of benchmarking. It discriminates 

pathogenic variants from benign variants with global accuracy improved by 4-24% over 

existing tools. Variants classified with >90% confidence are significantly associated with both 

disease status and clinical outcomes.   

 

(2) To better interpret missense variants, I examined evolutionarily equivalent residues across 

protein domain families, to identify positions intolerant of variations. Homologous residue 

constraint is a strong predictor of variant pathogenicity. It can identify a subset of de novo 

missense variants with comparable impact on developmental disorders as protein-truncating 

variants. Independent from existing approaches, it can also improve the prioritisation of 

disease-relevant gene for both developmental disorders and inherited hypertrophic 

cardiomyopathy.  

 

(3) TTN-truncating variants are known to cause dilated cardiomyopathy, but the effect of 

missense variants is poorly understood. Using the approach in (2), I studied the role of TTN 

missense variants on DCM. Our prioritised residues are enriched with known pathogenic 

variants, including the two known to cause DCM and others involved in skeletal myopathies. I 
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also found a significant association between constrained variants of TTN I-set domains and 

DCM in a case-control burden test of Caucasian samples (OR=3.2, 95%CI=1.3-9.4). Within 

subsets of DCM, the association is replicated in alcoholic cardiomyopathy.  

 

(4) Finally, I also developed a tool to annotate 5’UTR variants creating or disrupting upstream 

open reading frames (uORF). Its utility is demonstrated to detect high-impact uORF-disturbing 

variants from ClinVar, gnomAD and Genomics England.  

 

Conclusion:  

These studies established broadly applicable methods and improved understanding of ICCs.  
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Chapter 1 Introduction 

1.1 Computational approaches to interpret 

genomes of rare diseases 

The genetic basis of human diseases can be typically categorised as: polygenic, monogenic 

diseases, or in-between. Polygenic diseases, also known as complex traits or common 

diseases, are caused by variants from many genes with small effects. On the contrary, 

monogenic diseases, also known as Mendelian diseases or rare diseases, are caused by 

variants in a single gene with a large effect. Throughout my thesis, I focus on studying large-

effect variants causing monogenic diseases including inherited cardiac conditions or other 

rare disorders.  

 

High-throughput sequencing technologies have greatly improved our ability to discover 

genetic variants. Typically, the number of genetic variants identified are thousands in whole-

exome sequencing of an individual and even millions in whole-genome sequencing (WGS)1.  

While not all of them have impacts on diseases, distinguishing the ones that do have a 

clinical impact from background ones is the central challenge in human disease genetics.  

 

To interpret variant pathogenicity, current clinical practice follows the American College of 

Medical Genetics (ACMG) guidelines2, which is a standard semi-quantitative classification 

framework to integrate diverse lines of evidence including computational, population, 

segregation, and functional data. Based on combination of strengths of evidence, the 

classification of variant pathogenicity includes the following five categories ordered by 

severity: Pathogenic, Likely pathogenic, Variant of Uncertain Significance, Likely Benign, 

and Benign. In practice, strong genetic evidence such as segregation and functional data is 

not always available. Thus, robust computational and population evidence is critical to 
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efficiently prioritise variants that have not been seen before in humans. In this section, I am 

going to summarize in silico tools and computational evidence relevant to evaluate variant 

pathogenicity.   

 

To be clear, throughout this thesis, I reserve the standard terms “Pathogenic” or “Likely 

pathogenic” for variants that have been evaluated using the full ACMG/AMP framework. I 

use “disease-causing”, “likely disease-causing” or “deleterious” to indicate pathogenicity 

predictions from in silico tools including the ones I develop and the benchmarked tools.  

 

1.1.1 Variant annotation 

To simplify the identification of variant effect, we can categorise variants by predicting 

consequence on genes or gene products from genomic positions of variants. This is the very 

first step in genome interpretation. For example, a missense variant denotes a sequence 

variant that changes one amino acid in a protein but maintains its length, or a start-lost 

variant means a variant changes the start codon. To standardise the description on the 

variant consequence, the Sequence Ontology3 provides a structured vocabulary commonly 

used in genomics community. This step is automated in popular computational tools such as 

the Ensembl Variant Effect Predictor (VEP)4, snpEff5, and GATK VariantAnnotator6,  which 

can quickly relate genome annotation (i.e. location of genes) to label variants on the 

transcripts they disrupt and their predicted consequence on the transcripts. Variant 

annotation also gives a general order of severity for variant consequences. For example, 

predicted loss-of-function variants such as start-lost variants have a higher probability of 

being more deleterious than missense variants or synonymous variants.  

 

However, simply relying on variant consequence is insufficient to classify variants’ clinical 

impact since a loss-of-function (LoF) variant does not always cause diseases (e.g. a 
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heterozygous LoF variant in disease recessive genes or in redundant genes)7. In dominant 

hypertrophic cardiomyopathy (HCM), a heterozygous LoF variant in MYH7 is benign while 

missense variants could cause disease likely acting through dominant-negative mechanism8. 

A small fraction of synonymous variants could have a severe impact by disrupting splicing9, 

transcriptional and translational efficiency due to codon usage bias10.  

 

Therefore, after variant annotation, we want to assess variant-level evidence since even 

novel variants in established Mendelian genes can also be prevalent in healthy humans, 

indicating that they are not necessarily causal. For example, TTN missense variants can 

cause dilated cardiomyopathy however each healthy human has around ~50% chance of 

carrying a rare TTN missense variant (presented with data in Chapter 4). For variants found 

in genes without an established causal link with disease such as in scenarios of gene 

discovery, we would want to include both gene-level evidence and variant-level evidence in 

the assessment.  

 

There have been diverse computational approaches and methods developed to assess 

variant pathogenicity based on gene-level and variant-level evidence. Some approaches are 

specific for variants of certain consequences depending on the molecular/cellular 

mechanisms while the others are generalisable for different consequences. For example, 

sequence conservation is widely adopted to assess variants from coding to non-coding but 

predicting the effect on protein structure is specific to assess the consequence of missense 

variants. In the scope of my thesis, I am going to introduce the main categories of tools to 

interpret missense variants though most of the principles behind them are also applicable to 

interpret other genetic variants. 

 

Interpreting missense variants remains a critical challenge in genome medicine research.  

On one hand, as they only change single amino acids in proteins, many of them are 

tolerated, with no impact either on protein functions or diseases. On the other hand, some of 
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them are found to cause severe conditions. Most of the missense variants remain 

uninterpreted. Given there are 5,206,202 missense variants observed in gnomAD (v2), there 

are only 332,217 of them reported with clinical significance in ClinVar (up to Nov 2020), 

leaving ~94% missense variants with unknown clinical impact. This is a lower-bound 

estimate considering that many missense variants compatible with human life haven’t been 

catalogued.   

 

1.1.2 Sequence Conservation 

If a variant is deleterious, it is likely to be under negative selection. One way to infer negative 

selection is to compare homologous sequences, which is a widely adopted strategy to 

estimate the deleteriousness of variants. To quantifying conservation, tools like SIFT11 

measured sequence composition (more frequent, more conserved) while other tools such as 

GERP12 and PhyloP13 compared the deviation between the number of substitutions to 

neutral expectation (fewer substitutions, more conserved).  

 

The definition of homologous sequences and “phylogenetic scope” used to measure 

conservation would affect the predictive performance considerably14. Conservation based on 

homologous sequences with longer evolutionary distance or less shared biology would have 

higher specificity but with compromised sensitivity. For example, variant effect prediction 

using sequence conservation by comparing from human to yeast might have higher 

specificity but lower sensitivity than comparing between human and other primate species.  

 

While the above classical tools measure conservation on a single position independently in 

multiple sequence alignments, recent advances explore applying deep learning to learn 

conservation pattern from raw sequence either in a supervised15 (training to learn the pattern 

from variants of known effect) or unsupervised manner16 (training to learn without knowing 
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variant effect), which offers an advantage to consider dependencies among residues. 

Though most of the existing tools measured ortholog conservation, the utility of using 

paralog has also been demonstrated such as para_zscore17.   

 

1.1.3 Genetic constraint within human populations 

Since conservation-based approaches may not be able to detect regions or functional 

variants under selection specific to humans, alternatively we could measure purifying 

selection within human populations, which is referred to as genetic constraint throughout the 

thesis. The genetic constraint has been shown as strong evidence to prioritise disease 

genes and variants. This is only feasible with the growth of large-scale reference population 

databases such as the NHLBI Exome Sequencing Project (ESP)18, the Exome Aggregation 

Consortium (ExAC)19, the Genome Aggregation Database (gnomAD)20 , and The Trans-

Omics for Precision Medicine (known as TOPMed)21. The recent release of gnomAD (v2) 

collects variants seen in 125,748 exomes and 15,708 genomes of unrelated individuals of 

diverse ancestries, largely enabling assessment of low-frequency genetic variants.  

 

To infer the degree of purifying selection, different statistical models have been developed. 

One might start by using allele frequency to infer selection and deleteriousness since a 

deleterious variant is expected to have a lower allele frequency. Indeed, for a penetrant 

variant causing a dominant Mendelian disorder, its frequency seen in the general population 

should not be more than the prevalence of the disease it causes. Thus typically, allele 

frequency less than 0.1% is used to define rare variants considered in variant intepretation22. 

A precise approach to estimate the maximum credible allele frequency given disease 

prevalence, genetic heterogeneity, and penetrance is described by Whiffin et.al23. While we 

could derive an upper bound of allele frequency to define the variants we consider, below 

the upper bound the scale of allele frequency does not necessarily reflect the degree of 
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negative selection since allele frequency could be biased by differential nucleotide mutation 

rates along the genome. For example, CpG-methylated sites are ~10-50 times more mutable 

than unmethylated CpG sites.  

 

To adjust for mutability, we can compare the mutation occurrence with that of neutral 

variants. Assuming that synonymous variants are predominantly neutral, we can measure 

dN/dS, the ratio of the rate of nonsynonymous substitutions to the rate of synonymous 

substitutions, which is a classical approach but might have relatively low statistical power24. 

Common variants could also serve as a neutral control. For example, the Residual Variation 

Intolerance Score (known as RVIS)25 used the ESP dataset (6,500 exomes) and assessed 

the degree of a gene intolerant of variants by evaluating whether the number of common 

variants observed in a gene is less than expected predicted by the total number of variants 

observed (reflecting the mutational burden of a gene). Alternatively, we could also estimate 

a single-base mutability explicitly using a sequence-context model24, which means the 

number of neutral single nucleotide variants in a gene could be predicted. Thus, a gene-level 

constraint could be measured by comparing the number of rare variants observed to the 

number of rare neutral variants expected. This approach is adopted to develop pLI score 

using ExAC dataset (60,706 exomes)19 and later LOEUF score using gnomAD (125,748 

exomes)20.  

 

Apart from measuring gene-level constraint to prioritise disease genes, identifying sub-genic 

regions under depletion of variants could be helpful to predict where disease-causing 

variants would locate within genes, which is demonstrated in Regional Missense Constraint 

(RMC)26, Constrained Coding Region (CCR)27, sub-region RVIS28 and Missense Tolerance 

Ratio (known as MTR)29. With the increase of whole-genome sequencing samples, non-

coding regions intolerant of genetic variation could also be prioritised as shown previously in 

the evaluation of regulatory elements relevant to developmental disorders30 and high-impact 

5’UTR variants31, and through scanning across the entire genome32.  
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These gene-level or sub-genic level constraint scores have shown to be effective to identify 

haploinsufficient genes and improve the interpretation of protein-truncating variants and 

missense variants. As these scores aim to measure the selection force, they might not be 

the most suitable approach to uncover the variants or genes involved in diseases that occur 

after reproductive age though empirically common variants in constrained genes are found 

to be correlated with disease risk20.   

 

1.1.4 Predicting structural effect of variants 

If assessing conservation and genetic constraint is an approach to infer deleteriousness 

from its consequence (reduce reproductive fitness thus experience purifying selection), 

another independent resource is to predict variant effect from the molecular mechanism. For 

missense variants, that means estimating how likely a missense variant would disrupt the 

structure and function of a protein, and interaction with others. For splice-altering variants, 

that means evaluating whether a variant would disrupt sequence patterns recognised by a 

spliceosome.  

 

To gain functional insights of missense variants causing diseases, various studies have 

found disease-associated structural effects including disrupting protein stability (e.g. 

breaking a disulfide bond, introducing a hydrophilic residue into the hydrophobic core), 

perturbing the interaction between protein and protein/DNA/RNA, perturbing protein flexibility 

and modifying the functionally important sites such as binding activities33–35.  

 

There are important limitations of applying structural effect prediction in variant 

interpretation. Firstly, a structurally damaging variant is not necessarily disease-causing. 

“Structurally deleterious” or “functionally deleterious” is not equivalent to “disease-causing”. 



 29 

Prior knowledge on disease mechanisms would need to be incorporated. For example, we 

know that loss-of-function missense variants are most likely found in the protein core than 

the surface and a heterozygous LoF in MYH7 is benign for hypertrophic cardiomyopathy. 

Therefore, we could infer that a missense variant disrupting the core of MYH7 may not be 

predictive of variant pathogenicity. It has also been shown empirically (i.e. the distribution of 

MYH7 missense variants on the core and surface is not different either for HCM cases or 

controls)36. Secondly, the effect prediction relies on accurate protein structures, and only 

~50% of human protein have structural models including experimentally determined 

structures and homology-based predicted structures33,37. Looking on the bright side, the 

performance of using predicted structures to assess variants is shown to be comparable with 

experimental structures33. For the remaining half, it is of great interest to develop accurate 

ab initio structural prediction (only using amino-acid sequence without templates) algorithms 

exemplified by DeepMind AlphaFold38 to scale up the prediction of structural damaging 

variants.  

 

1.1.5 Machine-learning based variant pathogenicity prediction 

As mentioned above, ACMG guidelines provide a decision framework to classify variant 

pathogenicity given multiple lines of evidence, which is a consensus of expert opinions. 

Apart from relying on human experts to curate diagnosis criteria, we could also learn 

decision rules and patterns automatically from data by using machine learning algorithms. In 

a nutshell, machine learning has been applied in variant pathogenicity prediction in two 

different ways.  

 

Firstly, given multiple lines of evidence, machine learning can be used to find their optimal 

weights and combination relevant to pathogenicity prediction. State-of-the-art machine 

learning algorithms are developed to fit different underlying distributions of data. Depending 
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on whether the final prediction output (also known as label) is used, there are two main 

types of machine learning tasks: supervised learning and unsupervised learning.  

 

The goal of supervised learning is to learn the best approximation about the relationship 

between input features (lines of evidence) and output label data (whether a variant is 

pathogenic). For example, ACMG guidelines classify variants as likely pathogenic with one 

line of strong evidence (e.g. well-established functional studies showing a deleterious 

variant) and 1-2 line(s) of moderate evidence (e.g. absent in control population datasets). 

With sufficient data, we could infer the strength of each line of evidence quantitively and the 

best combination of them from known pathogenic and benign variants. In practice, some 

lines of evidence mentioned in ACMG guidelines are not always available (e.g., functional 

and segregation data) thus it’s infeasible to implement with all relevant experimental and 

computational evidence currently equivalent with expert classification (explained in Chapter 

2 discussion). Instead, multiple computational lines of evidence could be collected such as 

what have been introduced above: conservation, genetic constraint, and structural 

information of residues. To find the best combination of these lines of evidence, recent 

variant pathogenicity tools used state-of the-art machine learning algorithms such as 

ensemble learning (e.g. M-CAP39 and REVEL40) and deep neural network (e.g. MVP41), 

which generally show improved classification performance over pre-existing tools due to 

their flexibility to fit non-linear relationship between input and output. Alternatively, 

unsupervised learning is also applied in pathogenicity prediction such as Eigen42 and EVE16. 

Since benign and pathogenic variants shall have different distribution over input features 

(e.g., the distribution of genetic constraint is skewed with opposite directions in pathogenic 

and benign variants), the goal of unsupervised learning could be understood as learning the 

hidden structure (approximates variant pathogenicity) that generates the distributions of 

features seen in data.  
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Secondly, recent advances in deep learning especially representation learning techniques 

could be used to learn evidence directly from raw data input such as sequence. This 

approach helps to automate the process of generating features (line of evidence). It also 

offers flexibility in modelling interactions within input data. For example, conventionally 

sequence conservation is measured either heuristically or through explicit modelling of 

molecular evolution. With large-scale training data, deep learning could directly learn 

computational lines of evidence from raw sequences as shown in PrimateAI15, which learned 

conservation patterns from multiple sequence alignments from variants of known 

pathogenicity. Different from classical approaches that assume independence across amino 

acids, PrimateAI also took account of the surrounding sequence (a sliding window of 51 

amino acids) of a query amino acid to capture interactions among sites. This approach is 

more promised if the underlying allelic mechanism primarily depends on raw sequence 

content. For example, SpliceAI43 used deep neural network to recognise splicing motifs from 

pre-mRNA sequence, which is a highly effective method to predict splice-altering variants.  

 

While machine learning algorithms has greatly improved the accuracy of variant 

pathogenicity predictions, they are not a panacea for all challenges in variant interpretation. 

In addition to the design of a machine-learning model, the utility of the model also largely 

depends on the amount and quality of training data. If the training dataset is small or could 

not represent all possible patterns, the model would have poor performance once applied to 

unseen data. For example, for interpretation of missense variants, there are multiple 

possible allelic mechanisms such as gain-of-function or loss-of-function. It would be 

questionable how well a machine learning model could predict gain-of-function variants if it’s 

predominantly trained on loss-of-function variants.  
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1.2 Genetic Basis of Inherited Cardiac Conditions 

Inherited cardiac conditions (ICCs) are a crucial burden on human health. It is a blanket term 

that encompasses a variety of rare genetic disorders of the heart. Classically most of the 

ICC cases are thought to have a monogenic basis although large-scale genome-wide 

association studies (GWAS) begin to reveal the contribution of common variants. In the 

thesis, I will study two groups of ICCs as models of Mendelian diseases: familial 

cardiomyopathies and inherited arrhythmias. Other groups of ICCs are potentially equally 

important. These genetic conditions are the leading cause of sudden cardiac death in the 

paediatric and young adult population.  

 

Cardiomyopathies are myocardial disorders, which cause abnormalities of heart tissue both 

functionally and structurally. More than half of the patients with sudden cardiac death or 

heart transplantation in the age group < 35-year old have cardiomyopathies44. The main 

types of cardiomyopathies include hypertrophic and dilated cardiomyopathy.  

 

1.2.1  Genetics of Dilated Cardiomyopathy 

Dilated cardiomyopathy is characterised by left ventricular dilation and impaired contractility 

(left ventricular ejection fraction less than 45%45) without ischaemia or abnormal loading 

conditions. Its prevalence is estimated at 1 per 250 people in the general population46, which 

indicates that around 28 million people globally could be affected by DCM. The cause of 

DCM can be either genetic or non-genetic. Non-genetic factors include exposure to toxins 

(drug, alcohol, and chemotherapy), myocarditis, or pregnancy47. Increasing studies show 

that genetic susceptibility can interact with the non-genetic triggers. Typical clinical 

outcomes of DCM include cardiovascular death, heart failure, and arrhythmias.   
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Around 25-30% of total DCM cases are familial (with family members diagnosed with DCM 

or sudden cardiac death)45. Most cases of inherited DCM are considered to have a 

monogenic basis with an autosomal dominant inheritance pattern, although mitochondrial, 

autosomal recessive, and X-linked recessive inheritances have also been identified48. De 

novo mutations can also cause DCM in young patients49. The genetic cause, in terms of 

causal genes and pathogenic variants, is heterogeneous among different families, which 

could be mapped to multiple biological pathways. The application of next-generation 

sequencing in the past decade has led to the rapid identification of candidate genes. In the 

Human Gene Mutation Database (HGMD)50, more than 60 genes have been reported to be 

associated with DCM50. The release of large reference population datasets has enabled the 

re-evaluation of gene-disease relationship50. The NIH ClinGen51 is a central resource to 

curate clinically relevant genes through expert panels. In the assessment of clinical validity 

of 49 genes by ClinGen, there are 10 genes (TTN, TTNT2, TNNC1, SCN5A, RBM20, MYH7, 

LMNA, FLNC, DES, and BAG3) with definitive evidence, 1 gene (DSP) with strong evidence 

and 6 genes (ACTC1, JPH2, NEXN, TNNI3, TPM1, and VCL) with moderate evidence to 

cause DCM. Genetic variants from these definitive genes account for about 26% of the 

familial and early-onset DCM, which is shown in a recent analysis of the largest sequenced 

DCM cohorts so far50. In Chapter 2, I am going to use the above 17 genes with at least 

moderate evidence to define DCM disease genes.  

 

At the variant level, TTN-truncating variants (TTNtv) are the most common genetic cause of 

DCM. Apart from familial DCM, TTNtv is also the predominant genetic cause of alcoholic 

cardiomyopathy, chemotherapy-induced cardiomyopathy and peripartum cardiomyopathy52. 

A detailed introduction on the role of TTN variants in DCM is described in Chapter 4. 
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1.2.2  Genetics of Hypertrophic Cardiomyopathy 

Hypertrophic cardiomyopathy is characterised by left ventricular hypertrophy with thickened 

heart muscle in the absence of secondary causes (e.g., pressure overload and 

hypertension). It is recommended to diagnose adults by the presence of left ventricular end-

diastolic wall thickness >= 15mm53.  It has a prevalence of around 0.2% (1/500) in the 

general population54. Due to age-dependent expression of cardiac hypertrophy, its 

prevalence is reported to be higher in cohorts with mean age at 60 years old, reaching 

0.29%55.  

 

While the genetic cause of DCM is heterogeneous in terms of underlying biological 

pathways, HCM is also a heterogeneous condition, but the majority of cases are caused by 

variants in sarcomere genes (encoding proteins in the sarcomere structure). Sarcomere 

genes are the most validated genes associated with HCM based on family linkage studies 

and functional experiments. While there are more than 50 genes ever suggested to cause 

HCM or used in the genetic testing panel, recent rigours assessment from ClinGen56 defines 

10 genes with definitive evidence including the most established 8 sarcomere genes 

(MYBPC3, MYH7, TNNT2, TNNI3, TPM1, ACTC1, MYL2, and MYL3), PLN and FLNC, one 

(ALPK3) with strong evidence, 4 (ACTN2, CSRP3, JPH2, and TNNC1) with moderate 

evidence. Other 20 genes are defined to have at least moderate evidence causing 

syndromes involving HCM. In my work of Chapter 2, I only consider the above genes with at 

least moderate evidence as HCM disease genes.  

 

HCM is associated with a higher risk of death and other adverse clinical outcomes. The 

Sarcomeric Human Cardiomyopathy (SHaRe) registry is a centralised database collecting 

genetic and clinical outcome data on patients of HCM from cardiac centres across eight 

countries. In a recent study of >24,000 patient-years by SHaRe, the mortality was three 

times higher in patients of HCM than in the general population of similar ages57. Patients 
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carrying pathogenic/likely pathogenic variants on sarcomere genes were at 2-fold greater 

risk for adverse clinical outcomes compared with genotype-negative patients. Patients with 

variants of uncertain significance on sarcomere genes have intermediate risk57. The 

association between pathogenic/likely pathogenic sarcomere variants and adverse clinical 

outcomes is also found in the general population shown in a recent analysis on participants 

of UK Biobank (UKBB)58.  

 

1.2.3  The role of common variants on cardiomyopathies 

After decades of studies on the Mendelian form of cardiomyopathies, only 30%-40% of 

patients are currently diagnosed with genotype-positive status (with ³ 1 causative variant) 

after genetic testing8,50. In carriers of rare causative variants, incomplete penetrance and 

variable expressivity are also observed. Given the above reasons, recent genetic studies 

have started to investigate the contribution of common variants to the pathogenesis of 

cardiomyopathies.  

 

For DCM, in a case-control GWAS meta-analysis (currently largest DCM GWAS meta-

analysis), Tadros et.al59 found 13 genome-wide significant loci and two shared loci with HCM 

but with an opposite direction of effect, indicating the shared genetic pathways affecting the 

risk of cardiomyopathies. Pirruccello et.al60 carried out a GWAS of left ventricular 

quantitative measurements derived from cardiac magnetic resonance imaging (MRI) in 

UKBB, which yields greater power to identify 45 novel genetic loci. These GWAS loci are 

near known Mendelian cardiomyopathy genes. The derived polygenic scores show 

association with incidence of DCM and variability of cardiac structure and function even 

among carriers of TTNtv, suggesting the role of common variants on the complex genetic 

architecture of DCM.  
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Common variants could also modify the risk of HCM. Two back-to-back case-control 

genome-wide association studies found 12 and 16 genome-wide significant loci for HCM 

respectively59,61. In the studies, the polygenic background is found to increase the 

susceptibility of HCM in sarcomere-negative patients (not carrying a rare pathogenic variant 

in sarcomere genes) but also influence the disease severity in patients carrying pathogenic 

sarcomere variants.  

 

1.2.4  Genetics of Inherited Arrhythmias 

The main types of inherited arrhythmias include Long QT syndrome (LQTS) and Brugada 

syndrome (BrS).  Both syndromes have a prevalence of about 1 in 2000 in the general 

population62,63. Most familial cases are mainly affected by an autosomal-dominant pattern, 

but not exclusively. Long QT syndrome is caused by ion channel dysfunction in prolonging 

cellular repolarization. It is typically diagnosed by the presence of a prolonged QT interval on 

the ECG without secondary causes. While currently there are at least 17 genes reported to 

cause LQTS, only eight of them have at least moderate evidence for causality in LQTS 

according to ClinGen64. Three genes (KCNQ1, KCNH2, and SCN5A) were found to have 

definitive evidence causing typical LQTS, which account for > 90% genetically diagnosed 

cases of LQTS. There are another four genes (CALM1, CALM2, CALM3, and TRDN) with 

strong or definitive evidence to cause LQTS with atypical features and one gene 

(CACNA1C) with moderate evidence. The current genetic diagnosis yield for LQTS is 

around 75%65.  

 

Brugada syndrome is diagnosed by abnormal elevation of ST segment in the right precordial 

leads accompanied by other criteria (e.g. family history)63. While there are more than 20 

genes reported to cause Brugada syndrome, a recent assessment of gene validity shows 

that only SCN5A has definitive evidence for causality and all the other genes only have 
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limited or disputed evidence66. At variant level, loss-of-function variants in SCN5A cause 

BrS, which accounts for 20% of the familial cases67. 

 

1.3 Aim of the thesis 

Currently, the genetic diagnosis rate is <50% for most rare genetic disorders. As an effort to 

improve the determination of genetic cause, my thesis focuses on the following three 

perspectives to develop novel computational tools by mainly using inherited cardiac 

conditions as my study models.   

 

Firstly, improve the prediction of disease-causing variants using machine learning. While 

current state-of-the-art in silico tools plays a supporting role though not decisive, they are 

imperfect to apply in genetic diagnosis due to false-positive predictions and false-negative 

predictions, which could cause conflicts of interpretation and variant unclassified. To address 

the drawbacks, I hypothesize that a disease-specific predictor performs better than genome-

wide tools. To test the hypothesis, I develop a variant classifier to predict how likely a 

missense variant causes inherited cardiac conditions (Chapter 2).  

 

Secondly, develop novel evidence to interpret missense variants. While the application of 

machine learning algorithms in variant pathogenicity provides a powerful approach to 

statistically summarize multiple lines of evidence, novel evidence associated with variant 

pathogenicity is also needed to improve prediction. Inspired by existing constraint-based 

methods mining patterns of variants under depletion in human populations on gene or region 

level, I develop a novel constraint-metric at amino-acid level aiming to find variants under 

purifying selection that could be missed out by existing approaches (Chapter 3).   
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As a case study, I particularly apply this novel metric to find TTN missense variants with a 

role in DCM, which is a critical puzzle in cardiovascular genetics (Chapter 4).  

 

Thirdly, improve variant annotation for non-coding variants. Compared with protein-coding 

variants, interpretation of non-coding variants is much harder due to various reasons: (1) 

currently annotation of non-coding functional genomic regions is largely undetermined thus 

affect variant annotation; (2) Different from protein-coding genes, most non-coding elements 

are not conserved; (3) limited size of interpreted variants hinders the development of 

machine learning prediction tools.  

 

For coding variants, variant annotation could help us to label variants by their molecular 

consequence. This could allow us to use the same strategies and evidence to assess 

variants of the same consequence. However, for non-coding variants, the current annotation 

is not as informative as for coding variants. As an example to improve non-coding variant 

annotation, I develop a computational tool to annotate high-impact 5’UTR variants based on 

their effects on sequence alteration in 5’UTR (Chapter 5) 
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Chapter 2 Disease-specific variant 

pathogenicity prediction significantly 

improves clinical variant interpretation 

in inherited cardiac conditions 

2.1 Introduction 

In Chapter 2, I focus on improving variant pathogenicity prediction in inherited cardiac 

conditions by building a machine learning-based model in a disease-specific framework.  

 

As introduced in Chapter 1, there are various computational tools available to predict variant 

pathogenicity. They could focus on one line of evidence such as SIFT11 and GERP12 that 

infer deleteriousness from conservation. They could combine multiple lines of evidence 

including conservation, structural effects, allele frequency info, and pathogenicity scores 

from existing tools such as M-CAP39 and REVEL40, which achieve state-of-the-art 

classification performance. However, while these tools learn common patterns important to 

variant effects across the entire genome, their utilities on specific genes or diseases might 

be compromised. Anderson et.al 68 has conducted a systematic analysis to show that the 

prediction accuracy of the tools differs by disease phenotypes.  

 

I reason there are several disadvantages to applying existing variant pathogenicity tools in 

clinical variant interpretation. First, a variant pathogenic to one Mendelian disease is likely 

benign to other Mendelian diseases. Trained on variants pathogenic to any disease, the 

genome-wide tools show to predict 20%~88% variants benign to inherited cardiac conditions 
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as pathogenic with high predictive probability (P>90%). On the other hand, they do not 

benefit from specific lines of evidence, which are only available for a subset of well-

characterised genes or diseases. It has been previously shown that the addition of such 

gene and disease-specific evidence into a transparent Bayesian logistic regression 

framework improves variant interpretation69. Moreover, the performances of these 

computational tools are routinely evaluated using typical classification performance 

measures which are not necessarily the most relevant in clinical decision making. However, 

the clinical relevance measures are not well defined and thus poorly assessed in these tools.  

 

Here I hypothesis that disease-specific variant pathogenicity prediction would outperform 

genome-wide tools by leveraging expert-curated gene and disease-specific data. To 

examine the hypothesis, inherited cardiac conditions were chosen as examples. I develop a 

disease-specific variant interpretation tool CardiacBoost to predict the probability of 

missense variant pathogenic to two inherited cardiac conditions: inherited arrhythmia 

syndrome (IAS) and familial cardiomyopathies (CM). In this work, I also define high-

confidence classification measures of a probabilistic classifier helpful in clinical settings and 

use these measures to benchmark the classification performances of different tools.  

 

2.2 Methods 

2.2.1 Primary training and test data collection 

I consider rare missense variants whose allele frequency is less than 0.1%, using gnomAD 

(v2.0.1) as our reference population. The value at 0.1% is taken as a conservative maximum 

credible population allele frequency23 across a range of inherited cardiac conditions, above 

which variants are unlikely to cause penetrant disease. The predicted molecular 

consequences of variants were annotated with Ensembl Variant Effect Predictor4 (version 
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91.1 for hg19/GRCh37 human genome assembly) on canonical transcripts relevant to heart 

tissue (Table 2.1 and Table 2.2)  

 

Pathogenic variants in sixteen genes associated with cardiomyopathies (Table 2.3) were 

collected from the targeted sequencing data of 9,007 patients with either HCM or DCM, 

recruited or referred for diagnostic sequencing at the Royal Brompton & Harefield Hospitals 

NHS Trust (RBH, UK), Oxford Medical Genetics Laboratories (OMGL, UK)8, and the 

Partners Laboratory of Molecular Medicine (LMM, US)70,71. The pathogenic variants from 

RBH and OMGL were interpreted according to ACMG/AMP guidelines. The pathogenic 

variants from LMM were interpreted using equivalent previously-described clinical-grade 

variant classification criteria70,71. 

 

For inherited arrhythmia syndromes, pathogenic variants in seven genes (Table 2.2) were 

extracted from the ClinVar database72 (ClinVar Full Release 201912), considering only 

variants with Pathogenic or Likely pathogenic classifications and no conflicting 

interpretations (Benign or Likely benign). 

 

Rare benign variants for both conditions were collected from the targeted sequencing of 

2,090 healthy volunteers. The age range for the healthy volunteer cohort is 5 to 88 years 

(mean age = 39, SD=15). It included samples recruited from three sites: Royal Brompton 

Hospital (n=921, range=18-80 years, mean age=39, SD = 13), Egypt Aswan Heart Centre 

(n=423, range=5-79, mean age = 30, SD=10)73 and Singapore National Heart Centre 

(n=746, range=18-88 years, mean age = 45, SD=17). These volunteers were confirmed to 

have no cardiac history, no family history of, or suggestive of, an inherited cardiac condition, 

and no evidence of cardiomyopathy or channelopathy on ECG or cardiac MRI. This cohort 

provides a lower disease prevalence than a general population (i.e. the prevalence of 

inherited cardiomyopathies and arrhythmias in a general population is estimated at ~0.75% 

by summing the combined prevalence of HCM, DCM, LQTS, and Brugada syndrome23). 
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Thus, the variants found in their disease panel genes could be considered as highly likely 

benign for inherited cardiac conditions, while acknowledging the potential for a low 

background error rate due to incomplete and age-related penetrance. 

 

Three genes are each associated with two related disease phenotypes in the training & test 

data (MYH7 and TNNI3 with hypertrophic and dilated cardiomyopathies; SCN5A with two 

arrhythmia syndromes, LQT & BrS), with distinct variants causing each phenotype. For each 

of these genes, variants were aggregated so that the model was trained to discriminate 

disease-causing for either condition versus benign. The phenotype associated with variation 

in PLN does not fit neatly into the clinical definitions of either HCM or DCM56, so the output 

of the model for PLN variants is interpreted as a probability of variants causing intrinsic 

cardiomyopathy. For all other genes, the model was exposed to variants associated with just 

one phenotype (HCM, DCM, BrS,  or LQT; see Table 2.1 and Table 2.2). 
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Table 2.1 Cardiomyopathy-associated genes included in the study. 

Gene 

symbol 
Phenotype Ensembl gene ID Ensembl transcript ID Ensembl protein ID 

ACTC1 HCM1 ENSG00000159251 ENST00000290378 ENSP00000290378 

DES 
DCM3 

(syndromic) 
ENSG00000175084 ENST00000373960 ENSP00000363071 

GLA 
HCM3 

(syndromic) 
ENSG00000102393 ENST00000218516 ENSP00000218516 

LAMP2 
HCM3 

(syndromic) 
ENSG00000005893 ENST00000200639 ENSP00000200639 

LMNA DCM ENSG00000160789 ENST00000368300 ENSP00000357283 

MYBPC3 HCM ENSG00000134571 ENST00000545968 ENSP00000442795 

MYH7 HCM & DCM1 ENSG00000092054 ENST00000355349 ENSP00000347507 

MYL2 HCM ENSG00000111245 ENST00000228841 ENSP00000228841 

MYL3 HCM ENSG00000160808 ENST00000395869 ENSP00000379210 

PLN Intrinsic CM2 ENSG00000198523 ENST00000357525 ENSP00000350132 

PRKAG2 
HCM3 

(syndromic) 
ENSG00000106617 ENST00000287878 ENSP00000287878 

PTPN11 
HCM3 

(syndromic) 
ENSG00000179295 ENST00000351677 ENSP00000340944 

SCN5A DCM ENSG00000183873 ENST00000333535 ENSP00000328968 

TNNI3 HCM & DCM1 ENSG00000129991 ENST00000344887 ENSP00000341838 

TNNT2 HCM1 ENSG00000118194 ENST00000367318 ENSP00000356287 

TPM1 HCM1 ENSG00000140416 ENST00000403994 ENSP00000385107 

1 While there are several genes in this table that have been associated with more than one 

type of cardiomyopathy, e.g. with different variants causing HCM and DCM, our training and 
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test data included variants associated with just one type of cardiomyopathy for all genes 

except MYH7 and TNNI3.  For MYH7 and TNNI3, the output of CardioBoost should be 

interpreted as “probability of pathogenicity for HCM or DCM”.  For other genes associated 

with more than one subtype, the classifier is trained for a particular disease only, and should 

be interpreted as such. 

2 The cardiomyopathic phenotype associated with variants in PLN does not fit neatly into the 

clinical definitions of HCM and DCM, so it has been classified under the broader umbrella of 

intrinsic cardiomyopathy56. 

3 These conditions typically present with cardiomyopathy in the context of a broader 

syndromic phenotype, but may also present with isolated heart disease56.  
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Table 2.2 Arrhythmia-associated genes included in the study. 

Gene 

symbol 
Phenotype Ensembl gene ID Ensembl transcript ID Ensembl protein ID 

CACNA1C 

Timothy 

Syndrome 

(LQT) 

ENSG00000151067 ENST00000399655 ENSP00000382563 

CALM1 LQT ENSG00000198668 ENST00000356978 ENSP00000349467 

CALM2 LQT ENSG00000143933 ENST00000272298 ENSP00000272298 

CALM3 LQT ENSG00000160014 ENST00000291295 ENSP00000291295 

KCNH2 LQT ENSG00000055118 ENST00000262186 ENSP00000262186 

KCNQ1 LQT ENSG00000053918 ENST00000155840 ENSP00000155840 

SCN5A 
LQT & 

BrS1 
ENSG00000183873 ENST00000333535 ENSP00000328968 

(LQT = Long QT syndrome; BrS = Brugada syndrome) 

1For SCN5A, the output of CardioBoost should be interpreted as “probability of pathogenicity 

for LQT or BrS”.   
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Table 2.3 Data sets used for the development of CardioBoost. The number of missense 

variants in the training and hold-out test datasets is shown for two groups of inherited 

cardiac conditions. 

 

 

 

 

 

 

 

 

 

 

 

  Cardiomyopathies  Arrhythmias 

  Pathogenic Benign Total  Pathogenic Benign Total 

Training 

data set 
 238 202 440  168 158 326 

Test data 

set 
 118 100 218  84 79 163 

Total  356 302 658  252 237 489 
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Table 2.4 The training data and hold-out test data grouped by gene used by 

CardioBoost for cardiomyopathies. The number of missense variants in the training and 

hold-out test datasets is shown for each gene. 

Gene symbol 
 Training  Test 

 Benign Pathogenic  Benign Pathogenic 

ACTC1  0 2  1 0 

DES  13 3  4 0 

GLA  5 5  3 3 

LAMP2  5 2  1 0 

LMNA  6 10  5 7 

MYBPC3  47 19  27 14 

MYH7  25 125  13 64 

MYL2  1 11  1 1 

MYL3  4 3  2 1 

PLN  1 2  1 0 

PRKAG2  14 2  7 2 

PTPN11  8 1  2 1 

SCN5A  55 2  27 0 

TNNI3  6 23  4 8 

TNNT2  8 14  2 8 

TPM1  4 14  0 9 

Total  202 238  100 118 
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Table 2.5 The training data and hold-out test data grouped by gene used by 

CardioBoost for arrhythmias. The number of missense variants in the training and hold-

out test datasets is shown for each gene. 

Gene symbol 

 Training  Test 

 Benign Pathogenic  Benign Pathogenic 

CACNA1C  37 4  19 3 

CALM1  0 5  0 1 

CALM2  0 4  0 6 

CALM3  0 3  0 0 

KCNH2  33 54  19 22 

KCNQ1  12 55  6 31 

SCN5A  58 43  26 21 

Total  140 168  70 84 

 

2.2.2 Additional replication test data collection 

To further validate CardioBoost performance on “unseen” data, I collected additional 

independent data sets which did not overlap with either the training data of CardioBoost, M-

CAP, and REVEL or the hold-out test data of CardioBoost. 

 

For cardiomyopathies, these pathogenic test data sets are composed of 129 

Pathogenic/Likely Pathogenic variants identified in HCM patients from the SHaRe Registry57, 
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15 ClinVar (ClinVar Full Release 201912)74 variants classified as Pathogenic/Likely 

Pathogenic for cardiomyopathies with at least two-star review status, and 145 variants of the 

Disease Mutation (DM) class from HGMD Pro version 201712 after excluding those also 

seen in HGMD version 2015.2, since these variants were used in the training of M-CAP and 

REVEL. For arrhythmias, 77 variants reported to be Pathogenic/Likely Pathogenic by 

OMGL, and 138 variants of the DM class from HGMD Pro version 201712 were collected 

after excluding those seen in HGMD version 2015.2. For the three calmodulin genes 

(CALM1, CALM2 and CALM3), I also collected variant functional scores from a previous 

deep mutational scanning study75. In this study, a complete functional map for each possible 

amino acid change in calmodulin protein was generated by employing a high-throughput 

functional complementation assay in S.cerevisiae. Since the three calmodulin genes encode 

the same protein sequence, the functional map is the same for the three genes. I think this 

functional map study provides an orthogonal test dataset to validate our prediction because 

calmodulin protein is highly conserved in eukaryotes. However, I also recognise that the 

yeast functional assay cannot fully indicate the clinical impact of variants specific to higher 

organisms76.  

 

I expect most variants in disease-associated genes identified in gnomAD to be benign for 

inherited cardiac conditions since the prevalence of inherited cardiomyopathies and 

arrhythmias in gnomAD should not exceed those in a general population. Since ExAC19 

variants (ExAC version release 0.3, which represents a subset of gnomAD) were used to 

train M-CAP and REVEL explicitly, we curated a test set of 2,003 gnomAD variants in which 

the variants seen in ExAC were excluded. Similarly, for arrhythmias, 1,237 gnomAD variants 

were collected. 
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2.2.3 Input variant features collection and pre-processing 

Feature collection. I combined both variant effect features collected from previous 

computational tools, and original newly-derived features. 

 

I used ANNOVAR77 to collect features from published computational tools (Error! R

eference source not found.). Fourteen conservation or constraint scores of amino acid 

change were included from BLOSUM6278, PAM25078, Grantham Score79, LRT80, PhyloP81, 

PhastCons82, SIPHY83, fitCons30, GERP++12, para_zscore17 and missense badness26. To 

utilise the predictions of existing genome-wide tools, twenty pathogenicity scores were 

collected from SIFT11, Polyphen284, MutationTaster85, MutationAssessor86, FATHMM87, 

FATHMM-MKL87, PROVEAN88, VEST389, CADD90, DANN91, MetaSVM92, MetaLR92, Eigen42, 

M-CAP39, REVEL40 and MPC26. 

 

To incorporate interspecies conservation maximally, I also derived new features measuring 

evolutionary conservation levels from orthologous sequence alignments of disease genes. 

Using the multiple alignments of amino acid (AA) sequences of a set of species, for a given 

missense variant (with the known site, reference AA and alternative AA) four types of 

features were extracted: 

 

!"#$%	%'	!('()(*+(	,,	 =
#orthologs	in	the	set	that	have	the	reference	AA	at	that	site

#orthologs	in	the	set	that	have	no	gap	at	that	site
	 

 

!"#$%	%'	,?#()*"#$@(	,,	 =
#orthologs	in	the	set	that	have	the	alternative	AA	at	that	site

#orthologs	in	the	set	that	have	no	gap	at	that	site
	 

 

!"#$%	%'	A% − C"D	 =
#orthologs	in	the	set	that	have	no	gap	at	that	site

#orthologs	in	the	set
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!"#$%	%'	E)#ℎ%?%GH =
#orthologs	in	the	set

#species	in	the	set
 

 

I downloaded multiple sequence alignments of orthologous genes from the UCSC hg19 100-

way Multiz alignment93. The above four scores were calculated for nine different sets of 

species: (1) all species included in the 100-way alignment; sets of species clade: (2) Primate 

(3) Euarchontoglires; (4) Laurasiatheria; (5) Afrotheria; (6) Mammal; (7) Aves; (8) 

Sarcopterygii and (9) Fish (For species in each clade subset see 

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/multiz100way/). 

 

I also derived region-level features from the AA alignment. 

I("*	!"#$%	%'	!('()(*+(	,,	measures the average ratio of !"#$%	%'	!('()(*+(	,, among 

the allele’s 10 nearest neighbouring sites. Similarly, I("*	!"#$%	%'	A% − C"D measures the 

average !"#$%	%'	A% − C"D among the allele’s 10 nearest neighbouring sites. 

 

Using the alignment of multiple nucleotide sequences, !"#$%	%'	!('()(*+(	AJ+?(%#$K( and 

!"#$%	%'	,?#()*"#$@(	AJ+?(%#$K( calculate the frequency of reference nucleotide and 

alternative nucleotide observed in all orthologs given there is no gap at this site respectively. 

Similarly, !"#$%	%'	!('()(*+(	L%K%* and !"#$%	%'	,?#()*"#$@(	L%K%* are derived as a 

measure of conservation at the codon level. 

 

Missing features imputation. Variant pathogenicity scores derived from existing genome-

wide classifiers and included as features in our model were not available for all variants 

considered. I estimated these missing values by using condition mean imputation. For test 

data, missing values were imputed by using the mean derived in the training data94. 

 

Features normalisation. In total, I collected 76 features per missense variant. After collecting 

all the features, we conducted a z-score normalisation on the features of the training data. 
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The features in test data were also standardised using the means and standard variations of 

the training data. 

 

Table 2.6 Input variant features collected from existing computational tools. 

Features Data type Description 

Grantham score Integer 

Substitution matrix scoring the distance from one amino acid to the other BLOSUM62 Integer 

PAM250 Integer 

SIFT Float Estimate intolerance to variation from closely-related species sequence 
alignment 

Polyphen2 Float x 2 Machine learning method to predict functional effects using structural and 
sequence features 

LRT_score Float The original LRT two-sided P-value 

MutationTaster Float Bayes classifier used to predict pathogenicity of variants 

MutationAssessor Float Predicts functional impact of amino acid substitutions 

FATHMM Float HMM model to predict functional effects of variants 

PROVEAN Float Predicts whether an amino acid substitution or indel has an impact on the 
biological function of a protein 

VEST3 Float Machine learning method to predict variant functional effects 

CADD Float SVM models to predict pathogenicity for coding and non-coding variants 

DANN Float Scores whole-genome variants by training a deep neural network 

FATHMM-MKL Float Machine learning method to predict variant functional effects 

MetaSVM Float Machine learning method to predict SNVs functional effects 

MetaLR Float Very similar to MetaSVM, but better interpretable 

Eigen Float x 2 Unsupervised machine learning methods to predict function effects of 
coding and non-coding variants 

M-CAP Float Gradient boosting tree to predict functional effects of missense variants 

REVEL Float Random Forest to predict functional effects of missense variants 

GERP++ Float Identify constrained elements in multiple alignments 

PhyloP Float x 2 Base pair level multi species conservation 

Integrated_fitcons Float Estimate of fitness consequences 

PhastCons Float x 2 Regional multi species conservation metric 

SiPhy Float Detect bases under selection based on multiple alignments 

paraZscore Float Estimate conservation across related proteins within-species from gene 
paralog 

paraZscore_exist Integer Indicate whether the paraZscore of a missense variant is available 

Missense badness Float Measures the increased deleteriousness of amino acid substitutions 
when they occur in missense-constrained regions 

missense 
badness_exist Integer Indicate whether the misbadness score of a variant is available 

MPC Float Integrated score of misbadness, polyphen-2 and constraint 
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2.2.4 Defining high-confidence classification performance measures 

Existing machine learning variant classification tools adopted a single threshold to 

discriminate pathogenic and benign variants. However, the choice of this classification 

threshold is arbitrary and not consistent among different tools, for example M-CAP39 made a 

binary classification using a threshold with a 95% true positive rate (see the relevant 

discussion in: Limitations in applying a high-sensitivity threshold for variant interpretation) 

and PolyPhen-284 made a ternary classification using two thresholds based on false positive 

rates. 

 

This arbitrary choice of classification threshold might not be optimal in order to control Type I 

and Type II errors for different applications. Moreover, the use of a high-sensitivity threshold 

for variant classification is unlikely optimal for clinical interpretation of individual variants. 

Instead of using classification thresholds derived from a specific classification method/data 

set, here we adopt high-confidence classification definitions aligned with ACMG/AMP 

guideline recommendations for clinical practice2: the classification of variants into Likely 

Pathogenic/Pathogenic or Likely Benign/Benign is proposed to be with at least 90% 

classification certainty. In other words, variants with a pathogenicity score equal to or larger 

than 0.9 would be classified as “disease-causing” and those with pathogenicity score equal 

to or smaller than 0.1 are classified as “benign”. Variants with a pathogenicity scores 

between 0.1 and 0.9 receive an indeterminate classification (variants of unknown 

significance) (Figure 2.1). 

 

With the defined high-certainty classification thresholds, I derive the corresponding 

confusion matrix (Figure 2.1) from which a series of measures of direct clinical relevance 

can be computed. I use TPR, the proportion of actual pathogenic variants predicted to be 

disease-causing, and PPV, the proportion of predicted disease-causing variants that are 

correctly classified, to evaluate the classifier’s ability to classify pathogenic variants. TNR, 
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the proportion of actual benign variants predicted to be benign and NPV, the proportion of 

predicted benign variants that are correctly classified are used to assess benign 

classifications correspondingly. Taking both cases together, the accuracy of high-confidence 

classifications measures the probability that classification in the actionable range is correct. 

The proportion of clinically indeterminate classifications measures the probability of a variant 

not classified with clinical confidence. Formulae for each measure of clinical relevance I 

used are described in the below session. 

 

2.2.5 Limitations in applying a high-sensitivity threshold for variant interpretation  

In M-CAP, the authors defined a single low pathogenicity threshold as clinically relevant to 

predict disease-causing variants such that M-CAP could have a 95% expected true positive 

rate (sensitivity). Given a data set, while using a low single classification threshold to 

increase TPR will decrease the number of false negative predictions, the binary classifier 

would tend to increase the number of false positive predictions (i.e., truly benign variants 

predicted to be disease-causing) as well. An ideal classification threshold would be the one 

that minimizes the total sum of the cost of both errors. While one might prioritise sensitivity 

for variant prioritisation in some contexts, in the context of clinical variant interpretation, we 

suggest that the cost of a false positive prediction is at least equivalent to, and in most 

situations higher than, the cost of a false negative prediction. In neglecting to control the 

Type II error to have a high true positive rate, there would be two negative consequences: (i) 

Low positive predictive value: this could be demonstrated as the negative correlation 

between the true positive rate and positive predictive value using the Precision-Recall Curve 

(Figure 2.2a and Figure 2.2c); (ii) High false positive rate: this is demonstrated as the 

positive correlation between the true positive rate and false positive rate (i.e., 1-TNR) 

(Figure 2.2b and Figure 2.2d). Even though the ACMG guidelines recommend not to use 

one computational tool as a sole line of evidence, but to consider the concordance of 
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multiple computational tools for variant interpretation, the application of a computational tool 

of high TPR but low TNR or high FPR along with other computational tools would still make 

the clinical interpretation process rather difficult. For example, the disease-causing 

prediction of a computation tool for a truly benign variant is very likely to conflict with the 

correct prediction from the other computational tools or the other lines of evidence of 

pathogenicity. The contradictory evidence would increase the likelihood that the variant is 

classified as a variant of uncertain significance (VUS). 

 

2.2.6 Calculation of high-confidence classification measures 

 

 

Based on the confusion matrix shown above, I calculated the following ratios of clinical 

relevance in variant interpretation given n test variants 

 

TPR =
TP

T
 

 

TNR =
TN

F
 

 

FPR =
FP

F
 

 

Predicted
disease-
causing

Predicted
benign Indeterminate

Actual
pathogenic TP FN T

Actual
benign FP TN F

P N



 56 

PPV =
TP

P
 

 

NPV =
TN

N
 

 

FNR =
FN

T
 

 

Number	of	high − confidence	classifications = P + N 

 

Number	of	indeterminate	classifications = * − (P + N) 

 

Proportion	of	high − confidence	classifications =
P + N

*
 

 

Accuracy	of	high − confidence	classifications =
TP + TN

P + N
 

 

Overall	accuracy =
TP + TN

*
 

 

Proportion	of	indeterminate	classifications =
* − (P + N)

*
	, 

 

where T: Actual pathogenic, F: Actual benign, P: Predicted disease-causing (Pathogenicity 

Pr ≥ 0.9), N: Predicted benign (Pr ≤ 0.1), Indeterminate: 0.1 < Pr < 0.9, TP: True Positive, 

TN: True Negative, FP: False Positive, FN: False Negative, T = TP + FN, F = FP + TN, P = 

TP + FP and N = FN + TN. 
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2.2.7 Machine learning model training and selection 

The analyses were conducted using the R environment23 and the package mlr24. I trained 

and tested representatives of each of the major classes of statistical and machine learning 

methods in order to obtain the best classification performances over our training data.  

Neural network methods were not included due to the limited scope for interrogation and 

interpretation of feature weightings. Classification algorithms included in the analysis are: 

Classification and Regression Tree (CART)97, K nearest neighbours (KNN)98, Elastic Net 

Logistic Regression (GLMNET)99, Support Vector Machine with Radial Basis Kernel 

Function (SVM-RBF)100, Random Forest (RF)101, Bayesian Additive Regression Trees 

(BART)102, Adaptive Boosting (AdaBoost)100, Gradient Boosting Tree (GBM)100 and Extreme 

Gradient Boosting (XGBoost)103. 

 

To fine-tune hyperparameters for each model and identify the model with the best 

generalisation performance (i.e. best prediction performance on “unseen” data), I applied a 

nested cross-validation104. In this nested cross-validation, the inner-test set (also called 

“validation set” or “development set”) is used to choose the optimal set of hyperparameters 

for a given classification algorithm. After the classification algorithm is fitted on the inner loop 

data set, the outer test set is used to select the best-tuned classification algorithm with 

respect to its performance on “unseen” test data. I used 5-fold cross-validation in the inner 

cross-validation loop and 10-fold in the outer cross-validation loop. 

 

The selection of the best classification algorithm is not trivial. To this end, I pre-specified the 

following optimisation goals: 

 

Goal 1: The optimal classifier outperforms genome-wide machine learning variant 

classification tools on overall classification measured using PR-AUC. 
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I consider the PR-AUC as a conventional threshold-independent performance measure. In 

the training process, PR-AUC is chosen as the objective measure in the inner loop for 

hyperparameter tuning, i.e. for each candidate classification algorithm considered, the 

hyperparameters that yield the highest PR-AUC are selected. Then the classification 

performance of each optimised algorithm is assessed using the outer CV loop. 

 

Goal 2: The optimal classifier has the best Matthews Correlation Coefficient105 (MCC) using 

the defined 90% high-confidence classification threshold. 

 

Our aim is to find the optimal classifier that balances both Type I and Type II errors at the 

90% high-confidence classification thresholds. When I apply the defined high-confidence 

classification above, variants are classified into one of three categories: disease-causing, 

benign, and indeterminate. Since the most common application of a genetic diagnosis in 

cardiogenetic practice is familial evaluation and predictive testing, where management of 

negative and inconclusive genetic test results are equivalent106, I group these variants 

together for the purposes of model selection, and focus on performance at the higher 

actionable threshold, comparing disease-causing versus non-actionable 

indeterminate/benign/likely benign. 

 

I use the MCC, a measure of the correlation between observed and predicted binary 

classifications,  which is relatively robust in an imbalanced data set107, defined as: 

 

ILL =	
TP × TN − FP × FN

^(TP + FP)(TP + FN)(TN + FP)(TN + FN)
	. 

 

A higher MCC reflects a stronger correlation between observed and predicted binary 

classification, indicative of performance at the ≥ 0.9 thresholds most relevant in this context. 

Ideally, I would like to select a classifier that performs best on both goals. If there is more 



 59 

than one classifier satisfying both Goal 1 and Goal 2, I pre-specify the selection of the 

models using Goal 2, given the most immediate relevance to this task. 

 

The performance of each candidate machine learning algorithm and the representative 

benchmarking genome-wide variant classification tools (M-CAP and REVEL) in the nested 

cross-validation are shown in Table 2.7 and Table 2.8. For cardiomyopathy variants, as 

shown in Table 2.7 the candidate algorithms that outperform M-CAP and REVEL on all 

standard classification measures to meet Goal 1 were GLMNET, CART, RF, BART, 

XGBoost, GBM, AdaBoost, KNN and SVM. Since AdaBoost had the highest MCC score to 

meet Goal 2, it was selected as the best model. Next the best hyperparameter set for 

AdaBoost (“loss=exponential” and “nu=0.207”) was selected using 5-fold cross validation on 

the whole cardiomyopathy variant training set. The selected model was trained on the whole 

training set to generate predictions on unseen data. 

 

Similarly, for inherited arrhythmia syndrome variants, AdaBoost was selected as the best-

performing candidate (hyperparameters “loss=exponential” and “nu=0.435”). The prediction 

model was then trained using the whole arrhythmia training set. 
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Table 2.7  Cross-validated out-of-sample performance for cardiomyopathy variant 

pathogenicity prediction. I compared nine classification algorithms including best-in-class 

representatives of all of the major families of machine learning algorithms. AdaBoost was 

selected with the best cross-validated out-of-sample performance. PR-AUC: Area under the 

Precision Recall Curve; ROC-AUC: Area under the Receiver Operating Curve; MCC: 

Matthew Correlation Coefficient. 

Method category Algorithm 
PR- 

AUC (%) 

ROC- 

AUC (%) 
Brier score MCC 

Regression GLMNET 90 88 0.15 0.10 

Tree-based 

CART 83 81 0.18 0.43 

RF 90 89 0.14 0.36 

BART 91 89 0.14 0.38 

Boosting-based 

XGBoost 90 87 0.15 0.51 

GBM 87 87 0.15 0.43 

Adaboost 90 88 0.14 0.58 

Other classification 

algorithms 

KNN 89 88 0.15 0.43 

SVM-RBF 89 87 0.14 0.36 

Existing genome-

wide classification 

tools 

M-CAP 80 79 0.19 0.35 

REVEL 79 81 0.19 0.25 
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Table 2.8  Cross-validated out-of-sample performances for arrhythmia variant 

pathogenicity prediction. I compared nine classification algorithms including best-in-class 

representatives of the major families of machine learning algorithms. AdaBoost was selected 

with the best cross-validated out-of-sample performance.  

Method category Algorithm 
PR- 

AUC (%) 

ROC- 

AUC (%) 
Brier score MCC 

Regression GLMNET 91 91 0.12 0.22 

Tree-based 

CART 82 86 0.14 0.56 

RF 93 92 0.10 0.45 

BART 93 92 0.11 0.43 

Boosting-based 

XGBoost 88 90 0.12 0.56 

GBM 87 89 0.12 0.60 

Adaboost 90 90 0.13 0.65 

Other classification 

algorithm 

KNN 92 91 0.12 0.45 

SVM-RBF 92 92 0.10 0.47 

Existing genome-

wide classification 

tools 

M-CAP 81 85 0.16 0.38 

REVEL 89 90 0.17 0.59 
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2.2.8 Permutation test to evaluate the significance of a classification measure 

Given a performance measure, I used one-sided permutation test108 to test whether an 

observed performance measure of one classifier was significantly better than that of the 

other classifier. The null hypothesis is that the two classifiers perform the same on this 

measure. The null distribution is estimated by randomly exchanging observations between 

the classifiers 10,000 times. Here, an observation represents a variant pathogenic 

probability predicted by a classifier. P-value is estimated as the number of times the 

permuted difference is larger than the observed difference. 

 

2.2.9 Replication without reliance on gold-standard 

To ensure robustness to misclassification in the “gold-standard” out-of-sample test data, I 

employed two orthogonal approaches to assess CardioBoost’s discrimination of pathogenic 

variants and benign variants. First, I compared the proportion of rare variants in individuals 

with and without disease, and stratified these variants using CardioBoost. I derived the odds 

ratio (OR), which provides an estimate of gene-disease association.  

 

Second, I compared the survival outcomes of individuals with HCM, stratified by genotypes 

classified by CardioBoost. I applied CardioBoost to variants found in a cohort of 803 patients 

with HCM and a rare missense variant in one of eight HCM-associated genes and compared 

survival with 1,927 genotype-negative HCM patients. I did not consider individuals carrying 

variants seen in our training data set. The “event-free survival” time (i.e. time until the first 

major adverse clinical event) was analysed using Kaplan-Meier survival analysis and the 

Cox hazard-regression model. 
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2.2.10 Survival analysis 

I collected genotype and clinical outcome data for patients with cardiomyopathy from the 

SHaRe HCM registry (data release 2019Q3). 

  

I included patients with a diagnosis of HCM, at least 1 clinic visit and at least 1 assessment 

of left ventricular wall thickness, and only one missense variant in any of eight genes 

encoding sarcomere proteins (MYBPC3, MYH7, TNNT2, TNNI3, TPM1, MYL2, MYL3, and 

ACTC1). Variants identified in SHaRe were classified by SHaRe experts according to 

ACMG/AMP guidelines. Patients with potentially pathogenic variants in genes encoding non-

sarcomere proteins were excluded. 

 

The primary outcome measure was a composite comprising: the first occurrence of sudden 

cardiac death, resuscitated cardiac arrest, appropriate implantable cardioverter-defibrillator 

therapy, cardiac transplantation, left ventricular assist device implantation, New York Heart 

Association class III-IV symptoms, all-cause mortality, atrial fibrillation, stroke, or death, as 

previously described57. 

 

Patients were censored either at the date of the first event, or at the last follow-up clinical 

visit if event-free. 

 

2.2.11 The superior performance of CardioBoost is not due to data leakage 

Since CardioBoost training and test data may contain variants used as training data for 

published genome-wide classification tools whose pathogenicity scores were used as input 

features by CardioBoost, I also assessed whether using indirectly “seen" data would make 

CardioBoost overfit and outcompete existing genome-wide classifiers. In particular, I 

considered previously “seen” variants used in training M-CAP and REVEL. M-CAP was 
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trained on variants of Disease Mutation (DM) Class from HGMD version 2015.2 and ExAC. 

REVEL was trained on variants of DMs from HGMD version 2015.2 and the Exome 

Sequencing Project (ESP), the Atherosclerosis Risk in Communities (ARIC) study and the 

1000 Genomes Project (KGP) (ESP and KGP are contributing projects in ExAC). I extracted 

a set of “seen” variants from CardioBoost training data if they are ever seen in the DM Class 

of HGMD version 2015.2 and ExAC. The remaining variants in the training data constitute 

the set of purely “unseen” data.  

 

I investigated the impact of using “seen” data from two different viewpoints. One is whether 

“seen” variants have the same classification as those in our training data. In 

Cardiomyopathies 323 out of 440 training variants were seen before in HGMD or ExAC. For 

the DM variants reported in HGMD before, 53 out of 206 cases have an opposite 

classification as in our training data. In Arrhythmias, there are 253 out of 308 variants ever 

seen in HGMD or ExAC. Among the 170 DM variants reported in HGMD previously, 38 of 

them have an opposite classification in our training data. This suggests that even if some 

variants were used in building previously genome-wide classifiers, their classifications are 

not necessarily correct and thus it makes the prediction tools less accurate.  

 

The second aspect is to assess whether our machine learning tool could still outcompete M-

CAP and REVEL on completely “unseen” data. I compared the prediction performance of 

stratified hold-out test sets: purely “unseen” data and “seen” data (see Table 2.10 and Table 

2.11) with the unstratified hold-out test set. The accuracy was used as an overall measure to 

compare the performance of each dataset. For cardiomyopathies and arrhythmias, the 

performances of the three datasets were comparable and not significantly different.  

 

Overall, I found out the variants used in previous genome-wide tools were not necessarily 

accurately classified. The machine learning tool CardioBoost did improve on 
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cardiomyopathy- and arrhythmia-specific prediction both on “seen” and “unseen data” by 

leveraging over multiple diverse computational pieces of evidence. 

 

2.2.12 Calibration of PPV and NPV 

Given a new dataset or testing context, we could estimate the PPV and NPV of a classifier 

given the proportion of pathogenic variants amongst variants undergoing classification 

(Variant Proportion): 

 

Variant	Proportion =
Number	of	pathogenic	variants

Number	of	pathogenic	variants + Number	of	benign	variants
 

 

PPV =
TPR × Variant	Proportion

TPR × Variant	Proportion + FPR × (1 − Variant	Proportion)
 

 

NPV =
TNR × (1 − Variant	Proportion)

TNR × (1 − Variant	Proportion) + FNR × Variant	Proportion
 

 

where TPR: True Positive Rate and TNR: True Negative Rate as defined in (1) and (2), 

respectively. 

 

2.2.13 Estimating the proportion of pathogenic missense variants in a diagnostic 

series and a general population 

In order to estimate the PPV and NPV when applying CardioBoost in a diagnostic series and 

a general population, we can first estimate the proportion of pathogenic missense variants of 

these two populations. 
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Since in variant interpretation, the limitation of false positive prediction is prioritised. Here I 

want to derive a reasonably conservative estimate of PPVs by assuming that pathogenic 

missense variants are penetrant and that the burden of rare missense variants in controls 

provides an estimate of the burden of rare benign missense variants in any population either 

cases or control. These assumptions would provide the lower bound of the proportion of 

pathogenic variants, which is the lower bound of PPV based on.  

 

Based on the above assumptions, the proportion of rare pathogenic missense variants, for a 

given gene or a gene set, amongst variants identified in a group of patients with disorders 

could be approximated as:  

 

Variant	proportion	in	a	case	series =
Burden	of	pathogenic	variants	in	cases		

Burden	of	rare	variants	in	cases
 

 

Burden	of	pathogenic	variants	in	cases

= 	Burden	of	rare	variants	in	cases − Burden	of	rare	variants	in	control 

 

Similarly, the proportion of rare pathogenic missense variants in a general population could 

be approximated as:  

 

Variant	proportion	in	a	general	population

=
Burden	of	pathogenic	variants	in	a	general	population

Burden	of	rare	variants	in	a	general	population
 

 

Burden	of	rare	variants	in	a	general	population	

= Burden	of	pathogenic	variants	in	a	general	population

+ Burden	of	benign	variants	in	a	general	population 
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Burden	of	pathogenic	variants	in	a	general	population =	 

Prevalence	of	disease	 × Burden	of	pathogenic	variants	in	cases =	 

Prevalence	of	disease	 × (Burden	of	rare	variants	in	cases − Burden	of	rare	variants	in	control) 

 

Burden	of	benign	variants	in	a	general	population = Burden	of	rare	variants	in	control 

 

For cardiomyopathies, here I consider both dilated cardiomyopathy (DCM) and hypertrophic 

cardiomyopathy (HCM). The disease prevalence for DCM is estimated as 1/250 and 1/500 

for HCM46. Thus, adding the prevalence of two conditions, the disease prevalence for 

cardiomyopathies is 

 

1

250
+

1

500
≈ 0.006 

 

Using cohort studies from OMGL and LMM8, the burden of rare missense variants in cases 

is estimated at 27%. PTPN11 (it was not sequenced in these cohorts and its contribution to 

cases is assumed to be marginal) was excluded in the analysis here. Using gnomAD19 

reference population as control, the burden of rare missense variants in control was 

estimated to be 11% by adding the allele frequencies of rare missense variants seen in 

gnomAD for all cardiomyopathies-related genes (excluding PTPN11).  

 

Thus, the proportion of rare missense variants pathogenic to cardiomyopathies in a 

diagnostic series is estimated at ~ 60%. The proportion of rare missense variants pathogenic 

to cardiomyopathies in a general population is estimated as ~1%.  

 

Likewise, the proportions of rare missense variants pathogenic to arrhythmias in a diagnostic 

series and in a general population are estimated as ~71% and ~0.4% respectively. The 

disease prevalence of arrhythmias in a general population is ~0.2% by adding the disease 
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prevalence of Long QT syndrome (1/2000) and Brugada syndrome (1/1000). Since the 

arrhythmias-related genes are not widely assessed in large LQTS and Brugada cohort 

studies109,110, here I could only consider four arrhythmias-associated genes KCNE1, KCNH2, 

KCNQ1 and SCN5A here from the LQTS and Brugada cohort studies109,110, which provides 

us a lower bound of exact variant proportion. The burden of rare missense variants in 

arrhythmias is estimated at 18%. From the gnomAD database, I estimate the burden of rare 

missense variants in control (only including KCNE1, KCNH2, KCNQ1 and SCN5A) as 5%. 

 

2.3 Results 

2.3.1 Building CardioBoost  

The data flow diagram from data collection, machine learning model training and testing is 

illustrated in Figure 2.1. 

 

In brief, I constructed two classifiers, one for inherited cardiomyopathies, and one for 

inherited arrhythmia syndromes, to output the estimated probability of pathogenicity for rare 

missense variants in genes robustly associated with these conditions.  

  

The CM classifier is applicable for 16 genes associated with hypertrophic and dilated 

cardiomyopathies. To obtain training and test sets, 356 unique rare (gnomAD minor allele 

frequency < 0.1%) missense variants were collected in established cardiomyopathy-

associated genes (Table 2.1) identified in 9,007 individuals with a clinical diagnosis of CM 

and interpreted as Pathogenic or Likely Pathogenic. For the inherited arrhythmia classifier, I 

consider genes associated with long QT syndrome and Brugada syndrome. To maximise the 

size and diversity of the training data, I used ClinVar and only included variants with no 

conflicting interpretation (Conflicting: P/LP vs B/LB; P/LP vs VUS; B/LB vs VUS). 252 unique 

rare missense variants reported to be Pathogenic or Likely Pathogenic with no conflicting 
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interpretations (Benign or Likely benign) in established arrhythmia-associated genes (Table 

2.2) were collected from ClinVar Database74. As a benign variant set, 302 unique rare 

missense variants in cardiomyopathy genes, and 237 unique rare missense variants in 

arrhythmia genes were collected from the targeted sequencing of 2,090 healthy volunteers. 

Since these volunteers have no family history of ICCs and are confirmed without ICCs on 

ECG or cardiac MRI, this cohort provides a lower disease prevalence than a general 

population thus the rare missense variants carried by them shall be considered as highly 

likely benign to inherited cardiac conditions. To avoid over-fitting, for each condition the data 

set was randomly split, with two-thirds used for training and one-third reserved as a hold-out 

test set (Table 2.3, Table 2.4 and Table 2.5). For cardiomyopathies, 440 and 326 variants 

are used for training and testing respectively. For arrhythmias, 218 and 166 variants are 

used for training and testing respectively.   

  

For each variant, I collected 76 functional annotations (Table 2.6) as features in our disease-

specific variant classification tool. I selected nine classification algorithms including best-in-

class representatives of all of the major families of machine learning algorithms, and applied 

a nested cross-validation104 to select the optimal algorithm for our tool. In the inner 5-fold 

cross-validation loop, a candidate classification algorithm was trained in order to optimise its 

hyper-parameters. In the outer 10-fold cross-validation loop, the optimised candidate 

algorithms were compared and the best-performing one was selected. 

  

For both conditions, AdaBoost100  was selected with the best cross-validated out-of-sample 

performance (see Table 2.7 and Table 2.8). AdaBoost is a boosting tree classification 

algorithm combining many decision trees. Each decision tree is learned sequentially to 

assign more weight to samples misclassified by the previous decision tree, and weighted by 

its accuracy. Having selected AdaBoost as the basis for our classifier, a predictive model 

was constructed by training AdaBoost on the whole set of training variants for each disease, 

named CardioBoost. 
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Figure 2.1 Overview of methods building CardioBoost: training, and testing of 

CardioBoost, and definition of high-confidence variant classification thresholds for 

performance assessment. (a) Construction of CardioBoost: (1) After defining gold-standard 

data, (2) the dataset was split with a 2:1 proportion into training and test tests. The training 

set was used for two rounds of cross-validation: first to optimise individually a number of 

possible machine learning algorithms, and second to select the best performing tool. (3) 

AdaBoost was the best performing algorithm, and forms the basis of CardioBoost. (4) 

CardioBoost was benchmarked against existing best-in-class tools using the hold-out test 

data, (5) a number of additional independent test sets, and (6) approaches based on 

association with clinical characteristics of variant carriers that do not rely on a gold-standard 

classification. (b) Illustrative distributions of predicted pathogenicity scores for a set of 

pathogenic and benign variants obtained by a hypothetical binary classifier. In a clinical 

context (based on ACMG/AMP guidelines), variants are classified into the following 

categories according to the probability of pathogenicity: disease-causing (Probability of 

pathogenicity (Pr) >=0.9), benign/likely benign (Pr <=0.1) and a clinically indeterminate 

group of Variants of Uncertain Significance with low interpretative confidence (0.1 < Pr < 

0.9). (c)The corresponding confusion matrix with the defined double classification thresholds 

Pr >=0.9 and Pr <=0.1. 
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2.3.2 CardioBoost outperforms state-of-the-art genome-wide prediction tools based 

on overall classification performance measures 

To estimate the classifiers’ performance on variants of uncertain significance, I evaluated their 

classification performances on the hold-out test sets. CardioBoost was compared against 

state-of-the-art genome-wide variant pathogenicity predictors including M-CAP39, REVEL40, 

CADD90, Eigen42 and PrimateAI15, reported to have leading performance in pathogenicity 

prediction of rare missense variants. Classification performance was first summarised using 

the area under the Precision-Recall Curve111 (PR-AUC) and the area under the Receiver 

Operating Characteristic Curve (ROC-AUC), without relying on a single pre-defined 

classification threshold to discriminate disease-causing and benign variants.  

 

In both inherited cardiac conditions, CardioBoost achieved the best values in both PR-AUC 

and ROC-AUC (Figure 2.2). The difference in performance was statistically significant for 

cardiomyopathies, with significantly increased PR-AUC (maximum P-value = 0.005 between 

the pairwise statistical comparisons using permutation test) and ROC-AUC (maximum P-value 

= 5×10-6 between the statistical comparisons using Delong test112). Among probabilistic 

predictors (CardioBoost, M-CAP, REVEL and PrimateAI), CardioBoost has significantly 

increased Brier score for both cardiomyopathies (maximum P-value = 0.005 between the 

pairwise comparisons via permutation test) and arrhythmia syndromes (maximum P-value = 

0.02 between the pairwise comparisons via permutation test) (Table 2.9).  

 

In the subsequent benchmarking studies, I specifically demonstrate CardioBoost 

performances compared with M-CAP and REVEL since they are explicitly trained to 

distinguish rare disease-causing variants from rare benign ones using ensemble learning 

approaches comparable to CardioBoost, and their overall classification performances are 

representative of these state-of-the-art tools shown in the above analysis. As the pathogenicity 

scores of M-CAP and REVEL were used as input features for CardioBoost, CardioBoost might 
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indirectly expose to variants used in their previous training. This might worsen classification 

performance if the variants were erroneously classified during upstream training, or lead to 

inflated performance estimates through overfitting, so I also investigated the extent to which 

these potential limitations influenced CardioBoost performance. CardioBoost was shown to 

consistently improve on cardiomyopathy- and arrhythmia-specific prediction over existing 

genome-wide tools both on indirectly “seen” (variants used to train upstream genome-wide 

learners) and “unseen” (completely novel) data. The overall accuracy of CardioBoost between 

the unseen and seen datasets is not significantly different for either CM or IAS. (Results shown 

in Table 2.10 and Table 2.11; Methods described in 2.2.11 ). 
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Figure 2.2 CardioBoost outperforms state-of-the art genome-wide prediction tools on 

hold-out test data. (a-c) Precision-Recall Curves, ROC Curves and Brier Scores for 

cardiomyopathy variant pathogenicity prediction. (d-f) Precision-Recall Curves, ROC Curves 

and Brier Score for inherited arrhythmia variant pathogenicity prediction. The dashed lines 

demonstrate the performance of a random classifier. 
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Table 2.9 Brier Scores to compare performances of probabilistic variant pathogenicity 

predictions in the hold-out test data set.  

 Cardiomyopathies Arrhythmias 

CardioBoost 0.12 0.09 

M-CAP 0.20 0.17 

REVEL 0.19 0.17 

PrimateAI 0.21 0.18 
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Table 2.10 Performance comparison on variants “unseen” and indirectly “seen” in the 

hold-out test data set for cardiomyopathy variant pathogenicity prediction. To assess 

whether bias is introduced in evaluating variants previously used in the training of M-CAP 

and REVEL, the performance of CardioBoost on wholly “unseen” data (not used in the 

training of M-CAP and REVEL), and indirectly “seen” data” (used in the training of M-CAP 

and REVEL) were compared with M-CAP and REVEL. For each predictive performance 

measure, the best algorithm is highlighted in bold. 

 
“Unseen” data 
Npathogenic = 41 

Nbenign = 24 

“Seen” data 
Npathogenic = 77 

Nbenign = 76 

 CardioBoost 
(%) 

M-CAP 
(%) 

REVEL 
(%) 

CardioBoost 
(%) 

M-CAP 
(%) 

REVEL 
(%) 

PR-AUC 90.2 80.2 73.8 91.8 78.6 76.7 

ROC-AUC 86.3 71.1 70.2 92.1 79.8 81.9 

Brier Score 13.4 21.5 19.5 11.8 19.0 19.2 

Overall 
Accuracy 60.0 30.8 12.3 64.7 27.5 19.6 

Proportion of 
variants 

classified with 
high confidence  

69.2 40.0 20.0 70.6 31.4 22.9 

Accuracy of 
high-confidence 
classifications 

86.7 76.9 61.5 91.7 87.5 85.7 

Proportion of 
variants with 
indeterminate 
classifications 

30.8 60.0 80.0 29.4 68.6 77.1 

TPR 70.7 43.9 19.5 68.8 40.3 32.5 

PPV 82.9 75.0 61.5 88.3 86.1 83.3 

TNR 41.7 8.3 0.0 60.5 14.5 6.6 

NPV 100.0 100.0 NA1 95.8 91.7 100.0 
1 No variants are classified as benign by REVEL. 
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Table 2.11 Performance comparison on variants “unseen” and indirectly “seen” in the 

hold-out test data set for arrhythmia variant pathogenicity prediction. To assess 

whether bias is introduced in evaluating variants previously used in the training of M-CAP 

and REVEL, the performance of CardioBoost on entirely “unseen” data (not used in the 

training of M-CAP and REVEL), and indirectly “seen” data” (used in the training of M-CAP 

and REVEL) were compared with M-CAP and REVEL. For each predictive performance 

measure, the best algorithm is highlighted in bold. 

 
“Unseen” data 
Npathogenic = 17 

Nbenign = 18 

“Seen” data 
Npathogenic = 67 

Nbenign = 52 

 CardioBoost 
(%) 

M-CAP 
(%) 

REVEL 
(%) 

CardioBoost 
(%) 

M-CAP 
(%) 

REVEL 
(%) 

PR-AUC 94.4 82.2 87.1 96.8 88.6 93.1 

ROC-AUC 94.1 85.6 86.3 95.0 84.6 92.6 

Brier Score 12.2 15.9 20.6 9.3 17.4 16.2 

Overall 
Accuracy 80.0 34.3 28.6 81.5 29.4 39.5 

Proportion of 
variants 

classified with 
high confidence  

88.6 40.0 34.3 88.2 31.9 42.0 

Accuracy of 
high-confidence 
classifications 

90.3 85.7 83.3 92.4 92.1 94.0 

Proportion 
indeterminate 
classifications 

11.4 60.0* 65.7 11.8 68.1 58.0 

TPR 88.2 70.6 58.8 82.1 43.3 67.2 

PPV 88.2 85.7 83.3 91.7 93.5 93.8 

TNR 72.2 0.0 0.0 80.8 11.5 3.8 

NPV 92.9 NA NA 93.3 85.7 100.0 
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2.3.3 CardioBoost outperforms existing genome-wide prediction tools on high-

confidence classification measures 

In addition to estimating conventional classification performance, I evaluated performance at 

thresholds corresponding to accepted levels of certainty required for clinical decision making2 

(90%; see definitions on Figure 2.1b). Using these thresholds (disease-causing: probability of 

pathogenicity (Pr) ≥ 0.9; benign/likely benign: Pr ≤ 0.1; indeterminate: 0.1 < Pr < 0.9), 

CardioBoost again outperforms existing genome-wide machine learning variant classification 

tools when assessed using hold-out test data (Table 2.12). 

 

CardioBoost maximises the identification of both disease-causing and benign variants. In both 

conditions, CardioBoost had the highest true positive rate (TPR) (CM 69.5%; IAS 83.3%) and 

true negative rate (TNR) (CM 56%; IAS 78.6%) (Table 2.12, P-value < 0.001). In total, 

CardioBoost correctly classified 63.3% of cardiomyopathy test variants and 81.2% of 

arrhythmia test variants with 90% or greater confidence-level. The proportions of correctly 

classified variants are significantly higher (P-value < 0.001) than those obtained with M-CAP 

(CM 28.4%; IAS 30.5%) and REVEL (CM 17.4%; IAS 37%). In addition, CardioBoost 

minimises the number of indeterminate variants. Only 29.8% of cardiomyopathy test variants 

and 11.7% of arrhythmia test variants achieved indeterminate scores between 0.1 and 0.9, 

which were significantly fewer (P-value < 0.001) than those obtained with M-CAP (CM 66.1%; 

IAS 66.2%) or REVEL (CM 78%; IAS 59.7%) (Table 2.12). 

 

Overall, using these thresholds CardioBoost assigned high-confidence classifications to 70.2% 

of cardiomyopathy test variants, among which 90.2% were correct. For arrhythmias, 

CardioBoost reported 88.3% of test variants with high confidence, with 91.9% prediction 

accuracy. The reported results are robust to the choice of classification thresholds. While 

guidelines propose 90% confidence as appropriate thresholds for likely pathogenic or likely 

benign classifications, some may advocate a higher confidence threshold. When assessed at 
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a 95%-certainty classification threshold, CardioBoost continues to consistently outperform 

genome-wide tools with significantly (P-value < 0.001) higher accuracies (Table 2.13). 

 

Table 2.12 CardioBoost outperforms existing genome-wide tools for the classification 

of hold-out test variants. CardioBoost outperforms existing genome-wide machine learning 

tools for the classification of hold-out test variants. The performance of each tool is reported 

using the high-confidence variant classification thresholds: high-confidence disease-causing 

(Pr ≥ 0.9), high-confidence benign (Pr ≤ 0.1), and indeterminate. For each predictive 

performance measure, the best algorithm is highlighted in bold. Permutation tests were 

performed to evaluate whether the performance of CardioBoost was significantly different 

from the best value obtained by M-CAP or REVEL (significance levels: ***P-value ≤ 0.001, 

**P-value ≤ 0.01, *P-value ≤ 0.05). 

(%) Cardiomyopathies Arrhythmias 

 CardioBoost M-CAP REVEL CardioBoost M-CAP REVEL 

Overall 
accuracy 63.3*** 28.4 17.4 81.2*** 30.5 37 

Proportion of 
variants 

classified with 
high confidence  

70.2*** 33.9 22 88.3*** 33.8 40.3 

Accuracy of 
high-confidence 
classifications 

90.2*** 83.8 79.2 91.9 90.4 91.9 

Proportion of 
variants with 
indeterminate 
classification 

29.8*** 66.1 78 11.7*** 66.2 59.7 

TPR 69.5*** 41.5* 28 83.3****** 48.8 65.5 

PPV 86.3*** 81.7 76.7 90.9*** 91.1 91.7 

TNR 56*** 13 5 78.6*** 8.6 2.9 

NPV 96.6*** 92.9 100 93.2*** 85.7 100 
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Table 2.13 CardioBoost outperforms existing genome-wide classification tools for the 

classification of hold-out test variants using 95%-certainty thresholds. While 90% is 

defined as a high-confidence threshold for clinical action in the ACMG/AMP guidelines, some 

may advocate a more stringent approach. I therefore assessed the performance of each tool 

using more stringent values for clinically relevant variant classification thresholds: high-

confidence disease-causing (Pr ≥ 0.95), high-confidence benign (Pr ≤ 0.05), and 

indeterminate. For each predictive performance measure,  the best algorithm is highlighted in 

bold. Permutation tests were performed to evaluate whether the performance of CardioBoost 

was significantly different from the best value obtained by M-CAP or REVEL (significance 

levels: ***P-value ≤ 0.001, **P-value ≤ 0.01, *P-value ≤ 0.05). 

(%) Cardiomyopathies Arrhythmias 

 CardioBoost M-CAP REVEL CardioBoost M-CAP REVEL 

Overall 
accuracy 54.6*** 16.5 7.3 78.6*** 7.8 22.1 

Proportion of 
variants 

classified with 
high confidence  

60.1*** 18.8 10.1 85.1*** 8.4 23.4 

Accuracy of 
high confidence 
classifications 

90.8. 87.8 72.7 92.4** 92.3 94.4 

Proportion of 
variants with 
indeterminate 
classification 

39.9*** 81.2 89.9 14.9*** 91.6 76.6 

TPR 62.7*** 24.6 11.9 79.8*** 11.9 39.3 

PPV 87.1*** 85.3 70.0 91.8 90.9 93.9 

TNR 45.0*** 7.0 2.0 77.1*** 2.9 1.4 

NPV 97.8*** 100.0 100.0 93.1*** 100.0 100.0 
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CardioBoost is not intended to replace a full expert variant assessment in clinical practice, but 

for comparative purposes it is informative to consider how classification performance changes 

under different application contexts. PPV and NPV are both dependent on the proportion of 

pathogenic variants in the variant set being tested, and so it is important to consider how our 

benchmarking translates to real-world application. Here I used the TPR, and TNR calculated 

on the hold-out test set to derive estimates of PPV and NPV for CardioBoost applied in 

different contexts where the true proportion of pathogenic variants might differ. My estimation 

provides a lower bound of PPV and NPV under the assumption that pathogenic variants are 

fully penetrant. In predictive genetic testing, the limitation of false positive prediction is 

prioritised, necessitating conservative estimates of PPV. Here I estimate reasonably 

conservative PPVs and corresponding NPVs of CardioBoost applied in two scenarios: in a 

diagnostic referral series and in samples from a general population. In a diagnostic laboratory 

cardiomyopathy referral series, where I estimate approximately 60% rare missense variants 

found in cardiomyopathy-associated genes to be pathogenic, the PPV and NPV of 

CardioBoost were estimated at 89% and 96% respectively. By contrast, in a general 

population, where I estimate the proportion of rare pathogenic variants of these ICC genes 

are ~ 1%, the PPV and NPV reach 5% and 99.9%. Similarly, I estimated the performance of 

CardioBoost in an arrhythmia cohort (PPV: 95%; NPV: 87%) and a general population 

(PPV:3%; NPV: 99.9%). This suggests that the predictions of disease-causing variants by 

CardioBoost are calibrated for high confidence only when applied in a diagnostic context, as 

would be expected. Classifications are appropriate for variants found in patients, with a 

reasonable prior probability of pathogenicity (details are described in Estimating the proportion 

of pathogenic missense variants in a diagnostic series and a general population). 

 

Finally, as novel pathogenic variants are more likely to be ultra-rare (Minor allele frequency < 

0.01%), I also tested CardioBoost performance on a hold-out set of only ultra-rare variants 

and confirmed that it consistently outperforms existing genome-wide tools (Table 2.14). Its 

performance on ultra-rare variants is comparable with that on rare variants.  
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Table 2.14 Comparison of classification performance on the hold-out test data set 
with minor allele frequency < 0.01%. As novel pathogenic variants are more likely to be 

ultra-rare, CardioBoost was tested on the hold-out set of only ultra-rare variants and was 

confirmed to have comparable performance with that on rare variants. The performance of 

each tool is reported using the 90% high-confidence variant classification thresholds: high 

confidence disease-causing (Pr ≥ 0.90), high confidence benign (Pr ≤ 0.10), and 

indeterminate. For each predictive performance measure, the best algorithm is highlighted in 

bold. Permutation tests were performed to evaluate whether the performance of CardioBoost 

was significantly different from the best value obtained by M-CAP or REVEL (significance 

levels: ***P-value ≤ 0.001, **P-value ≤ 0.01, *P-value ≤ 0.05). 

 

 Cardiomyopathies  Arrhythmias 

 CardioBoost 
(%) 

M-CAP 
(%) 

REVEL 
(%) 

CardioBoost 
(%) 

M-CAP 
(%) 

REVEL 
(%) 

Classification performance measures 

PR-AUC 93*** 85 81 97 90 95 

ROC-AUC 91**** 79 79 95 86 93 

Brier Score     0.11*0*** 0.18 0.17 0.09 0.15 0.14 

90% high-confidence classification performance measures 

Overall accuracy 64.9*** 30.9 19.7 83.6*** 33.6 42.5 

Proportion of 
variants classified 

with high 
confidence  

71.3*** 35.6 22.9 93.3*** 93.8 95 

Accuracy of high 
confidence 

classifications 
91.0* * 86.6 86 93.3 93.8 95 

Proportion of 
variants with 
indeterminate 
classification 

28.7*** 64.4 77.1 6.7*** 65.2 53.3 

TPR 70.1*** 41.9 28.2 85.4*** 50 67.1 

PPV 89.1 * 86 84.6 94.6 95.3 94.8 

TNR 56.3*** 12.7 5.6 80.8*** 7.7 3.8 

NPV 95.2* * 90 100 91.3* *      80 100 
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2.3.4 Replication on additional independent test data confirms that CardioBoost 

improves prediction of disease-causing and benign variants 

I collected four additional sets of independent test data to further assess the CardioBoost 

performance, using variants reported as pathogenic in ClinVar and HGMD113 (both 

databases of aggregated classified variants), a diagnostic laboratory referral series from the 

Oxford Molecular Genetics Laboratory (OMGL), and a large registry of HCM patients, 

SHaRe57. When using ClinVar variants to test CM, only variants with two-star review status 

(i.e. criteria provided, multiple submitters, no conflicts) are included. CardioBoost 

consistently achieved the highest TPRs: predicting the most disease-causing variants with 

over 90% certainty (Table 2.15). On a set of rare variants found in the gnomAD reference 

dataset, which is not enriched for inherited cardiac conditions and hence where the 

prevalence of disease should be equivalent to the general population, CardioBoost 

consistently predicts the most variants as benign (Table 2.15). I also assessed the accuracy 

of CardioBoost using cell-based functional mapping of amino acid substitutions in calmodulin 

genes (CALM1, CALM2 and CALM3) from a previous deep mutational scanning (DMS) 

study75.  Averaged over three calmodulin genes, CardioBoost has the significantly highest 

accuracy to predict the DMS classification (Table 2.15). CardioBoost also performed the 

best when assessed at a higher 95%-certainty classification threshold (Table 2.16) and on 

sets of ultra-rare variants (Table 2.17).  
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Table 2.15 Evaluation of performance on additional test sets. CardioBoost performance 

was evaluated against additional variant sets. Four resources provided known pathogenic 

variants (SHaRe cardiomyopathy registry, ClinVar (two-star submissions), a UK regional 

genetic laboratory (Oxford Medical Genetics Laboratory – OMGL) and the Human Gene 

Mutation Database – HGMD). Variants found in gnomAD population controls were expected 

to be predominantly benign. Since gnomAD includes variants seen in the previous ExAC 

dataset that was partially used to train M-CAP and REVEL, I tested against the subset of 

variants in gnomAD that were not in ExAC. The number of single nucleotide variants in each 

set is shown in brackets. I also evaluated the classification accuracies on functional mapping 

of amino acid substitutions in calmodulin genes obtained through a previous deep functional 

scanning study.  

  Cardiomyopathies 

  
Pathogenic test variants 

(TPR)  
Benign/population test variants 

(TNR) 

  SHaRe 
(N = 129) 

ClinVar 
(N = 15) 

HGMD 
(N = 145)  

gnomAD 

 (N = 2,003) 

CardioBoost  62.0*** 66.7 41.4***  51.5*** 

M-CAP      37.2** 40.0 22.1***  20.3*** 

REVEL      24.0** 53.3 22.8***  5.6*** 

  Arrhythmias 

  
Pathogenic test 

variants 

(TPR) 

 

Benign/Population 
test variants 

(TNR) 

 Deep Mutational 
Scanning 

(Accuracy) 

  
OMGL 

(N = 77) 
HGMD 

(N = 138)  
gnomAD 

 (N = 1,237) 

 Calmodulin 

(N = 576) 

CardioBoost  88.3*** 72.5***  64.3***  29.0*** 

M-CAP  59.7*** 39.9***  9.8***  0.3 

REVEL  68.8*** 52.9***  2.8***  4.2 
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Table 2.16 Evaluation of performances on additional test sets using 95%-certainty 

threshold.  

(%)  Cardiomyopathies 

  Pathogenic test variants 
(TPR)  Benign test variants 

(TNR) 

  SHaRe 
(N = 129) 

ClinVar 
(N = 15) 

HGMD 
(N = 145)  

gnomAD 

(N = 2,003) 

CardioBoost  51.2*** 60.0* 33.8***  44.2*** 

M-CAP  19.4** 13.3 9.0***  9.9*** 

REVEL  6.2* 6.7 6.9***       2.6.6.6.6 

  Arrhythmias 

  Pathogenic test variants 
(TPR)  Benign test variants 

(TNR)  
Deep Mutational 

Scanning 

(Accuracy) 

  OMGL 
(N = 77) 

HGMD 
(N = 138)  

gnomAD 

(N = 1,237) 
 

Calmodulin 

(N = 576) 

CardioBoost  87.0*** 71.0***  61.3***  25.7*** 

M-CAP  23.4*** 18.8***  4.3***  0 

REVEL  28.6***    23.9                1.2  0.3 
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Table 2.17 Evaluation of performances on additional test sets with minor allele 

frequency < 0.01%. 

 (significance levels: ***P-value ≤ 0.001, **P-value ≤ 0.01, *P-value ≤ 0.05). 

(%)  Cardiomyopathies 

  Pathogenic test variants 
(TPR)  Benign test variants 

(TNR) 

  SHaRe 
(N = 129) 

ClinVar 
(N = 14) 

HGMD 
(N = 143)  

gnomAD 

(N = 1,999) 

CardioBoost  62.0*** 71.4* 42.0***  51.5*** 

M-CAP       37.2     42.9 22.4***  20.3*** 

REVEL       24.0      57.1 23.1***  *** 5.7.6.6.6 

  Arrhythmias 

  Pathogenic test variants 
(TPR)  Benign test variants 

(TNR) 

 Deep Mutational 
Scanning 

(Accuracy) 

  OMGL 
(N = 77) 

HGMD 
(N = 138)  

gnomAD 

(N = 1,232) 

 Calmodulin 

(N = 576) 

CardioBoost  88.3*** 72.5***  64.4***  29.0*** 

M-CAP  59.7 39.9  9.8**  0.3 

REVEL  68.8 52.9                 2.8  4.2 
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2.3.5 CardioBoost discriminates variants that are highly disease associated 

Since benchmarking against a gold-standard variant set may be susceptible to classification 

errors in the data, I employed two additional approaches to evaluate CardioBoost predictions 

directly against patient characteristics, to confirm biological and clinical relevance. 

 

First, I directly assessed the strength of the association between the specified disease and 

rare variants stratified by the different tools. I compared the proportions of rare missense 

variants in a cohort of 6,327 genetically-characterised patients with HCM, from the SHaRe 

registry57, with 138,632 reference samples from gnomAD v2.0 (Figure 2.3a). I calculated the 

Odds Ratio (OR) for all rare variants observed in each sarcomere gene, and for variants 

stratified by CardioBoost, M-CAP, and REVEL after excluding variants seen in our training 

data.  

 

For seven out of the eight CM-associated genes (MYH7,TNNI3,TPM1,ACTC1,TNNT2, 

MYBPC3 and MYL3), the OR for variants prioritised by CardioBoost (i.e. predicted disease-

causing with Pr ≥ 0.9) was greater than the baseline OR (including all observed variants 

without discriminating disease-causing and benign variants), indicating that the tool is 

discriminating a set of variants more strongly associated with the disease. For three genes 

(TPM1, TNNT2, MYBPC3), the difference was statistically significant (P-value < 0.05). 

Concordantly, variants in seven out of the eight sarcomere genes predicted as benign have 

significantly decreased association with the disease compared with the baseline OR (P-value 

< 0.05). By contrast, M-CAP or REVEL did not show any demonstrable difference in disease 

ORs between predicted disease-causing and predicted benign variants (Table 2.18). 
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Figure 2.3 CardioBoost improves prioritisation of variants associated with disease 

and clinical outcomes in patients with HCM. (a) The ORs (on log scale) for three groups 

of variants were compared: (i) all rare variants, (ii) rare variants predicted disease-causing 

by CardioBoost (Pr ≥ 0.9, and excluding those seen in our training data), and (iii) rare 

variants predicted as benign by CardioBoost (Pr £ 0.1 and excluding those seen in our 

training data). For most of the sarcomere-encoding genes, variants classified as disease-

causing by CardioBoost are enriched for disease-association, and those classified as benign 

are depleted, compared with unstratified rare missense variants. (b-d) CardioBoost variant 
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classification stratifies key clinical outcomes in patients with HCM. Clinical outcomes provide 

an opportunity to assess classifier performance independent of the labels used in the gold-

standard training data. (b) Kaplan-Meier event-free survival curves are shown for patients in 

the SHaRe cardiomyopathy registry, stratified by genotype as interpreted by CardioBoost. 

The patients carrying variants seen in the CardioBoost training set were excluded from this 

analysis. Patients with predicted disease-causing variants in sarcomere-encoding genes 

have more adverse clinical events compared with patients without sarcomere-encoding 

variants (“genotype-negative”), and compared with patients with sarcomere-encoding 

variants classified as benign. Survival curves stratified by variants as adjudicated by experts 

(marked in figure with prefix “SHaRe”) are shown for comparison. The composite endpoint 

comprised the first incidence of any component of the ventricular arrhythmic or heart failure 

composite endpoint, atrial fibrillation, stroke, or death. (c) P-values of the log-rank test in the 

pairwise comparisons of Kaplan-Meier survival curves. (d) Forest plot displays the hazard 

ratio (with confidence interval) and P-value of tests comparing patients' survival stratified by 

CardioBoost classification and SHaRe experts’ classification based on Cox proportional 

hazards models.  
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Table 2.18 CardioBoost variant classification stratifies variants with increased disease Odds Ratio for sarcomere-encoding genes. 
Odd Ratios (ORs) and their confidence intervals were calculated for rare variants observed in sarcomere-encoding genes using SHaRe HCM 
cohorts and gnomAD. The ORs for three groups of variants were compared: (i) all rare variants, (ii) rare variants predicted disease-causing by 
CardioBoost (Pr ≥ 0.9, and excluding those seen in our training data), and (iii) rare variants predicted as benign by CardioBoost (Pr £ 0.1 and 
excluding those seen in our training data). The ORs of variants classified by M-CAP and REVEL were also calculated.  

Gene 
symbol 

all observed rare 
variants 
(95% CI) 

CardioBoost 
disease-causing 

variants 
(95% CI) 

CardioBoost 
benign variants 

(95% CI) 

M-CAP 
disease-causing 

variants 
(95% CI) 

M-CAP 
benign 
variants 
(95% CI) 

REVEL 
disease-
causing 
variants 
(95% CI) 

REVEL 
benign 
variants 
(95% CI) 

MYH7 14.5 
(13.4-15.7) 

14.7 
(12.9-16.7) 

1.2 
(0.7-1.9) 

14.8  
(12.9-16.9) -1 15.9 

(13.1-19.2) -1 

TNNI3 12.6 
(10.1-15.9) 

14.0 
(6.1-32.3) 

3.3 
(1.7-6.4) 

1.0 
(1 -1.1) 

4.7 
(1.6 – 14) 

12.1 
(4-35.9) 

1.0 
(1-1.1) 

TPM1 11.2 
(8.2-15.3) 

33.7 
(18.3 – 62.2)  

1.4 
(0.5-3.8) 

1.0 
(1 -1.1) 

0.5 
(0.1 – 3.6) 

38.9 
(5.9-256.6) -1 

ACTC1 11.2 
(6.9-18.2) 

15.2 
(8.2-28.3) 

1.0 
(1-1.1) 

1.0 
(1 -1.1) 

1.0 
(1 - 1.1)  

19.8 
(9.4-42) -1 

TNNT2 6.0 
(4.8-7.5) 

17.7 
(10.1-31.1) 

2.8 
(1.5-5.1) 

1.0 
(1 -1.1) 

1.0 
(0.1 – 7.1) 

25.8 
(3.3-199.1) 

28.9 
(5.2-161.6) 

MYBPC3 5.6 
(5.1-6.0) 

55.1 
(41-74.1) 

1.2 
(0.9-1.4) 

1.0 
(1 -1.1) 

0.7 
(0.4-1.1) 

12.8 
(7.6-21.8) 

1.2 
(0.8-1.8) 

MYL2 5.2 
(4.0-6.9) 

3.8 
(2.0-7.5) 

1.0 
(0.9-1.1) 

1.0 
(1 -1.1) 

0.2 
(0-1.6) 

1.7 
(0.4-7) 

1.0 
(1-1.1) 

MYL3 2.7 
(1.9-3.8) 

7.9 
(3.5-17.8) 

0.8 
(0.4-1.9) 

1.0 
(1 -1.1) 

0.3 
(0-2.2) 

19.4 
(8.3-45.4) -1 

1 OR not calculated since the number of missense variants predicted as benign is zero in the gnomAD population. 
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2.3.6 CardioBoost variant classification is associated with adverse clinical outcome 

As a further assessment independent of gold-standard classification, I tested the association 

of variants stratified by CardioBoost with clinical outcomes in the same cohort of patients. 

Patients with HCM who carry known pathogenic variants in genes encoding sarcomeric 

proteins have been shown to follow an adverse clinical course compared with “genotype-

negative” individuals (no rare pathogenic variant or VUS in a sarcomere-encoding gene, and 

no other pathogenic variant identified)57,114,115, with a higher burden of adverse events. Patients 

carrying benign variants in HCM-associated genes would be expected to follow a similar 

trajectory to those genotype-negative patients. 

 

I evaluated clinical outcomes in a subset of the SHaRe cohort comprising of 803 HCM patients 

each with a rare missense variant in a sarcomere-encoding gene, and 1,927 genotype-

negative HCM patients, after excluding all patients carrying variants that were seen in the 

CardioBoost training set. I compared event-free survival (i.e. age until the first occurrence of 

a composite adverse clinical outcome including heart failure events, arrhythmic events, stroke, 

and death) of these patients, stratified by CardioBoost-predicted pathogenicity (the full 

definition of a composite adverse clinical outcome is described in Survival analysis). 

 

CardioBoost classification stratifies novel variants with significantly different patient-survival 

curves (Figure 2.3b-Figure 2.3d). Patients carrying variants predicted as disease-causing 

(CardioBoost disease-causing) were likely to have earlier onset and a higher adverse event 

rate than those without identified rare variants (CardioBoost disease-causing vs genotype 

negative: P-value < 2×10-16; Hazard Ratio (HR) = 1.9), or those with variants predicted to be 

benign (CardioBoost disease-causing vs CardioBoost benign: P-value = 0.03; HR = 1.7). The 

probability of developing the overall composite outcome by age 60 is 54% (95% CI: 46%-59%) 

for CardioBoost disease-causing patients, versus 33% (95% CI: 30%-35%) for genotype-

negative patients. By contrast, groups stratified by M-CAP or REVEL variant classification did 
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not show significantly different event-free survival time (M-CAP disease-causing vs M-CAP 

benign: P-value = 0.31; REVEL disease-causing vs REVEL benign: P-value = 0.30) (Figure 

2.4). 

 

Figure 2.4 Variants classification by state-of-the-art genome-wide tools M-CAP and 

REVEL did not show to stratify the survival outcomes of patients. (a) Kaplan-Meier 

event-free survival curves for patients in the SHaRe cardiomyopathy registry, stratified by 

genotype as interpreted by M-CAP. The patients with variants predicted disease-causing by 

M-CAP did not have significantly different survival time compared to those with predicted 

benign variants (log-rank test P-value = 0.31). (b) Kaplan-Meier event-free survival curves 

for patients in the SHaRe cardiomyopathy registry, stratified by genotype as interpreted by 

REVEL. Patients with predicted disease-causing variants by REVEL did not have 

significantly different survival time compared to those with predicted benign variants (log-

rank test P-value = 0.30). 

 

 

 

 

a

M-CAP Disease-causing
M-CAP Benign
M-CAP Indeterminate

Genotype Negative

b

REVEL Disease-causing

REVEL Benign

REVEL Indeterminate

Genotype Negative
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2.4 Discussion 

The above results show that in silico prediction of variant pathogenicity for inherited cardiac 

conditions is improved within a disease-specific framework trained using expert-curated 

interpreted variants. This is demonstrated through improved classification performance, 

stronger disease association, and significantly improved stratification of patient outcomes 

over published genome-wide tools. 

 

2.4.1 Strengths of the study 

There are several factors that may contribute to improved performance for a gene- and 

disease-specific classifier like CardioBoost over genome-wide tools. First, the use of 

disease-specific labels could decrease the false prediction of benign variants as disease-

causing. A variant causative of one Mendelian dominant disorder may be benign with 

respect to a different disorder (associated with the same gene), if the conditions result from 

distinct molecular pathways. Since genome-wide tools are trained on universal labels (i.e. 

whether a variant ever causes any diseases), they would be expected to yield false positive 

predictions in the context of specific diseases. Second, while the representative genome-

wide tools M-CAP and REVEL are trained on variants from HGMD curated from literature, 

CardioBoost is trained on high-quality expert-curated variants, thus reducing label bias and 

increasing the prediction performances. Thirdly, as the genome-wide tools are trained 

across the genome, the learning function that maps the input features into the pathogenicity 

score is fitted using the training samples from all genes in the genome. However, different 

genes may have different mapping functions, for example related to different molecular 

mechanisms. Restricting to a set of well-defined disease-related genes may exclude 

influences from other unrelated genes. 
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Taking the hypothesis further, one might expect a gene-disease-specific model would be the 

most accurate since it represents the exact genotype-phenotype relationship. However, 

there is a trade-off between the size of available training data and the specialization of 

classification tasks. Here, CardioBoost groups together genes for two sets of closely related 

disorders, including three genes in which variants with different functional consequences 

lead to distinct phenotypes in our training set (i.e. SCN5A, TNNI3, MYH7).  This is a 

potential limitation since distinct functional consequences might optimally be modelled 

separately or distinctly. I explored alternative models for cardiomyopathy classifiers, for 

which our training data set is larger than that for arrhythmias. Two disease-specific models 

(HCM-specific and DCM-specific) and three gene-syndrome-specific models (MYH7-HCM-

specific, MYH7-DCM-specific, and MYBPC3-HCM-specific) with the largest training data 

size were built and compared (Table 2.19). None of the alternative models had comparable 

performance to the combined-cardiomyopathy model. Therefore, I conclude that given the 

current availability of training data, a cardiomyopathy-specific classifier provides the best 

empirical balance between grouping variants with similar phenotypic effects and making use 

of a relatively large training data set. It improves prediction both over genome-wide models 

that entirely ignore variants’ phenotypic effects, and over gene-disease-specific models for 

which there is insufficient training data. Therefore, I adopted the broadly disease-specific 

models as our final classifier, but anticipate that complete separation of distinct phenotypes 

may be advantageous when more training data becomes available in the future. 
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Table 2.19 Comparison of out-of-sample classification performances for alternative 

disease-specific classification tasks. I explored alternative variant classification models 

as exemplified for cardiomyopathies with relatively larger size of training data: two 

syndrome-specific models (HCM-specific and DCM-specific) and three gene-syndrome-

specific models (MYH7-HCM-specific, MYH7-DCM-specific, and MYBPC3-HCM-specific). 

Here the broadly cardiomyopathies-specific model was chosen since none of the alternative 

models had comparable performances. 

Predictive task Number of training variants Precision-Recall AUC (%) 

CM-specific 440 91 

HCM-specific 348 79 

DCM-specific 309 48 

MYH7-HCM-specific 152 87 

MYH7-DCM-specific 152 35 

MYBPC3-HCM-specific 106 76 

 

 

As another advantage of CardioBoost, it natively outputs a continuous probability of 

pathogenicity that is directly interpretable. Users may therefore define their own confidence 

thresholds according to the intended application. For example, users might want to use a lower 

probability threshold if they would like to prioritise sensitivity when the cost of false positive is 

neglectable. A posterior probability of variant pathogenicity could also be derived by 

incorporating our prediction score with further evidence, such as linkage scores calculated 

from the evaluation of segregation in a family.   

 

While I have extensively benchmarked CardioBoost with genome-wide tools, the idea of 

gene-specific or syndrome-specific models for inherited cardiac conditions has been 

developed previously including a MYH7-specific predictor116, a Bayesian syndrome-specific 
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classification predictor APPRAISE69,  a HCM-specific classification model PolyPhen-HCM117 

and a cardiomyopathy-specific model PathoPredictor118. Compared to these existing 

important works, CardioBoost has improved the disease-specific classifiers in terms of the 

size and diversity of the predictive features and training datasets. I collected substantially 

relevant features (n=76) for variant classifications including conservation, existing 

pathogenicity scores and genetic constraint scores.  It was also trained with larger size of 

high-quality expert-curated variants including as many disease genes as possible (CM: 

genes = 16, variants = 440; IAS: genes = 7, variants = 326). 

 

2.4.2 Limitations of the study 

There are several potential limitations and avenues for future refinement. First, I have only 

considered the prediction of pathogenicity for missense variants thus far. The inclusion of 

different classes of variants in disease-specific models is challenging since there is limited 

high-confidence training data for non-missense variants.  

 

A second key limitation of CardioBoost is that it does not consider all relevant lines of evidence, 

and therefore it is not intended to serve as a tool for a comprehensive assessment of variant 

pathogenicity comparable to clinicians’ interpretation based on ACMG guidelines. Some 

evidence types are limited by availability such as population allele frequency data and 

segregation data. Others could not be systematically included in a machine learning 

framework either because they are not well structured as in the case of functional data, de 

novo data, and allelic data, or they are too sparse. For example, many variants lack 

experimental data, and the precise population allele frequency of many variants is unknown, 

though this implies significant rarity. In our training data, 45% of variants in cardiomyopathies 

and 44% of variants in arrhythmias were not seen in the gnomAD control population. Here, I 

do not include allele frequencies in gnomAD as a predictive feature since the relation between 
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variant pathogenicity and allele frequency scale beyond current observation is clearly 

unknown. 

 

For these reasons, while the advantages of the proposed model are shown for variant 

classification in known disease genes over existing genome-wide tools, it’s necessary to 

emphasize to users that CardioBoost is not intended for use as a standalone clinical decision 

tool, or as a replacement for the existing ACMG/AMP guidelines for variant interpretation. 

Rather, in its current form it could provide a numerical value for evidence PP3 (“Multiple lines 

of computational evidence support a deleterious effect on the gene/gene product”) and BP4 

(“Multiple lines of computational evidence suggest no impact on gene /gene product”) that is 

more reliable and accurate than existing genome-wide variant classifiers in the context of 

inherited cardiac conditions. High-confidence classifications by CardioBoost might 

appropriately activate PP3 (Pr>0.9) and BP4 (Pr<0.1). It is interpreted as the supporting 

evidence being activated with at least 90% confidence. 

 

The widely-adopted ACMG/AMP framework is semi-quantitative, but one limitation is that the 

weightings applied to different rules are not all evidence-based or proven to be mathematically 

well-calibrated. It is anticipated that, with more training data and robust validation, quantitative 

tools like CardioBoost could be updated with more relevant lines of evidence adopting the 

principle of ACMG guidelines and will carry more weight in a quantitative decision framework 

than the current ACMG/AMP PP3 and BP4 rule affords.  

 

While CardioBoost improves on existing tools, there remain a substantial number of variants 

receiving indeterminate classification by CardioBoost at high-confidence classification 

thresholds (Table 2.12: CM 29.8% IAS 11.7%). I anticipate that additional relevant functional 

annotations, accumulation of further gold-standard interpreted data and development of 

novel task-specific prediction approaches will continue to improve in silico prediction over 

time.  
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Figure 2.5 Variant classification performance per gene. The accuracy of high-confidence 

classification and its 90% bootstrap CI (n=1,000 times) are calculated per gene for (a) 

cardiomyopathies and (b) arrhythmias. The red dashed lines indicate the overall accuracies 

of variant classification at disease-level (extracted from Table 1). To be noticed, here the 

bootstrap CI is subjected to the size of test variants for each gene. Only genes with more 

than one test variants are considered in the analysis.  Particular care should be taken for 

genes with wider confidence intervals in using CardioBoost for variant classification.  

 

a

b
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While CardioBoost performs well overall, the prediction performance and confidence differ 

by different genes according to the size of the training/test set for that gene. Five genes 

account for the majority of genetically explained cardiomyopathy and long QT (MYH7, 

MYBPC3, KCNQ1, KCNH2, SCN5A), resulting in narrower prediction confidence intervals. 

For other genes, the gold-standard data remain relatively sparse (Figure 2.5), resulting in 

wider prediction confidence intervals. Classifications of variants in these genes should be 

considered with appropriate care. 

 

2.4.3 Conclusion 

In conclusion, as exemplified in inherited cardiac conditions, I have substantiated that a 

disease-specific variant classifier improves the in silico prediction of variant pathogenicity over 

the best-performing genome-wide tools. This study also emphasizes the pitfalls of relying on 

genome-wide variant classifiers and the necessity to develop disease-specific variant 

classifiers to accurately interpret variant pathogenicity on specific phenotypes and diseases. I 

also highlight the need to evaluate variant pathogenicity prediction in clinical settings including 

accuracies on high confidence classification thresholds equivalent to accepted certainty 

required for clinical decision making, variants’ association with disease and patients’ clinical 

outcomes. To support accurate variant interpretation in inherited cardiac conditions, I provide 

pre-computed pathogenicity scores for all possible rare missense variants in genes associated 

with inherited cardiomyopathies and arrhythmias (https://www.cardiodb.org/cardioboost/). The 

demonstrated development and evaluation framework could be applicable to develop accurate 

disease-specific variant classifiers and improve variant interpretation in a wide range of 

Mendelian disorders. 
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Chapter 3 Homologous residues 

constraint provides strong evidence to 

prioritise deleterious missense 

variants 

3.1 Introduction 

In Chapter 3, I develop a novel line of computational evidence to interpret missense variants 

and evaluate its utility.  

  

Determining the causal relationship between genetic variants and diseases is a critical 

challenge in realising the promise of genome medicine. For the majority (>94%) of germline 

missense variants present in humans, their clinical impact remains unknown.  

While recent state-of-the-art computational approaches focus on leveraging ensemble 

learning or deep learning methods to best summarize multiple lines of molecular 

evidence60,69, strategic breakthrough also relies on developing novel and strong evidence to 

fully characterize variant pathogenicity.  

 

As one of the solutions, a catalogue of natural variation found in general human populations 

offers a powerful resource to assess the clinical impact of variants. Since variants causing 

severe early-onset disorders are under strong selective pressure, they are likely to be 

observed less often in the general population compared with neutral variations. The degree 

of deviation from the number of observed variants to the number of variants expected by 

chance under neutral selection is quantified as a measure of genetic constraint. Measuring 
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genetic constraint has been demonstrated to provide strong evidence to discover disease-

associated genes19,20,119, identify critical regions within genes susceptible to have deleterious 

variants26,27, and investigate the effect of non-coding variants in regulatory elements31,32,120.  

 

While these existing metrics are useful to prioritise critical regions along with the linear 

space of the genome, their efficacy remains insufficient for situations in which pathogenic 

missense mutations could distribute sparsely within the genes or sub-genic regions. To 

address this issue, we sought to develop an amino-acid level constraint. Given that we 

expect to observe one missense variant for every six bases in exome from the current 

sample size in gnomAD (5,206,202 missense variants observed out of 30 Mb as the size of 

exome), we are still limited to evaluate depletion of variants at single residues. But instead, 

we could evaluate a group of residues. While existing approaches assessed linear regions 

along the genome, we aggregate the genetic constraint signals over homologous positions 

in protein domain families as they are likely of similar functional relevance. Analyses based 

on homologous residues across domains have been applied successfully to predict 

functional residues121,122.  Furthermore, genetic intolerance of Pfam domains is also found to 

have low deviation across individual homologous domains123.  

 

Here I develop Homologous Residue Constraint (HRC), which is a novel constraint metric to 

evaluate the depletion of missense variants over homologous residues in proteins. In 

validation, I demonstrate that the variant prioritised by HRC are highly associated with 

known disease-causing variants. In comparison to existing gene- or region-level constraint 

metrics, HRC is complementary. It has especially high precision in prioritising missense 

variants in protein domains. We found de novo variants (DNVs) disrupting constrained 

residues are significantly enriched in both probands with neurodevelopmental disorders 

(n=5,264) and autism spectrum disorders (n=6,430) compared with control individuals 

(n=2,179). Using DNVs from 31,058 patients with developmental disorders, missense 

variants affecting constrained residues show excess fold-enrichment over background 
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variation, with a similar effect size as protein-truncating variants. Finally, I demonstrate that 

HRC can be applied to improve gene discovery in both developmental disorders and 

inherited conditions. Overall, it provides an orthogonal and strong quantitative measure to 

prioritise deleterious missense variants.  

 

3.2 Methods 

3.2.1 Identification of homologous residues from domain family alignments 

The family alignments of all 6,196 human protein domains generated using NCBI sequence 

database were downloaded from Pfam database124 (the data file Pfam-A.full.ncbi.gz of 

release version 32.0). Given a multiple sequence alignment of a domain family, amino acids 

in the same column of the alignment are considered as homologous.  

3.2.2 Annotation of molecular consequences of variants 

RefSeq Select transcripts are used throughout the whole analysis such that each protein-

coding gene has a single high-quality representative transcript. The consequences of 

variants are annotated by VEP (release 101)4. Only single-nucleotide variants with VEP 

annotated as “missense_variant” were included in the analysis.  

3.2.3 Developing a selection-neutral, sequence-context mutational model 

To estimate the number of neutral substitutions expected on a single nucleotide, I 

constructed a neutral mutational model using gnomAD reference population. Previous 

studies have shown that the mutation rate of single nucleotide substitution under neutral 

selection could be predicted based on sequence context and methylation level19. Given the 

baseline substitution rate using a tri-nucleotide sequence text model estimated from variants 

in intergenic or intronic regions by gnomAD20, I calibrated the baseline mutation rate to 



 104 

probabilities of neutral substitutions within the 125,478 exomes in gnomAD following the 

procedures described in the gnomAD flagship paper20.   

 

I firstly used linear regression to predict proportions of neutral substitutions given the 

baseline mutation rates. For each possible tri-nucleotide sequence context, the proportion of 

neutral substitutions is calculated as the ratio of observed synonymous substitutions over all 

possible synonymous substitutions. For example, to calculate the proportion of neutral 

substitutions from AAT to AGT, we firstly find the number of all possible synonymous 

variants introduced by mutating AAT to AGT along exome and then count the ones observed 

in gnomAD v2 exome data. This ratio of observed to all possible numbers is used as the 

dependent variable in linear regression. Since the observation of substitutions would be 

biased by sequencing coverage, at this step only sites with high coverage (median depth 40) 

are included in the regression. Two linear regression models were fitted, one for 

substitutions at CpG sites and the other one for non-CpG sites (Figure 3.1). The methylation 

data for CpG sites was downloaded from gnomAD public datasets and was categorised into 

three bins: low, medium and high methylation levels as previously described20. There are 8 

possible CpG sites considering trinucleotide context: ACG, TCG, GCG, CCG and their 

complementary sequences. As each CpG site is further split into three methylation levels, 

there are 24 possible substitutions specified by trinucleotide context and methylation level. 

For non-CpG sites, there are 184 possible substitutions given trinucleotide context. In total, 

we can evaluate 208 context and methylation-dependent substitutions. With these predicted 

probabilities of substitutions, we can estimate the expected number of single-nucleotide 

variants under neutral selection (Expected) in the 125,478 exomes in gnomAD.  

 

Secondly, I adjusted the probabilities of neutral substitutions for low-coverage sites (median 

depth<40). To this end, the Observed/Expected ratios for synonymous variants were 

aggregated for each sequencing coverage. Given a sequencing coverage, it is calculated 

as : the expected number of variants is the sum of predicted proportions of neutral 
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substitutions for each site derived from the first step, indicating the number we expect with 

high-coverage sequencing; the observed number of variants is the sum of observed 

synonymous variants for each site. A linear model is fitted to predict the Observed/Expected 

ratios given a sequencing coverage on a log10 scale (R2=0.96, P-value=2.2×10-16; Figure 

3.2). The predicted Observed/Expected ratios by the model are used as correction factors to 

adjust the expected number of variants at low-coverage sites.  

 

 

Figure 3.1 Calibration of baseline mutation rates to probabilities of neutral 

substitutions. Two linear regression models were fitted to predict the proportions of neutral 

substitutions within the 125,478 exomes from gnomAD: one for CpG sites and the other one 

for non-CpG sites. This shows that the model is well calibrated for the effect of CpG 

methylation. In the plot, each dot represents a type of substitution specified by trinucleotide 

sequence context and methylation level (for CpG sites).  
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Figure 3.2 Calibration of probabilities of neutral substitutions on low-coverage sites 

(coverage<40). Here a linear model is fitted to predict the Observed/Expected ratios given a 

sequencing coverage on log10 scale. The predicted Observed/Expected ratios are used as 

correction factors to adjust the expected number of variants at low-coverage sites.  

 

3.2.4 Estimating Homologous Residue Constraint  

An overview of measuring Homologous Residue Constraint is illustrated in Figure 3.3.   
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Figure 3.3 Overview of developing Homologous Residue Constraint scores.  

 

 

For an aligned position in a Pfam domain family, we assessed all possible missense 

substitutions in residues on the position. Among all the possible missense substitutions, the 

number of overserved substitutions in gnomAD is counted (Observed). The expected 

number of missense substitutions is calculated as the sum of predicted probabilities of 

neutral substitutions given by the neutral mutational model (Expected). The genetic 

intolerance of this aligned position is calculated as the ratio of Observed/Expected.   
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In order to control the quality of assessing genetic constraint in homologous residues, I 

excluded any domain position with less than three expected variants in this analysis since it 

indicates that the number of possible missense variants in this position is too small to 

evaluate genetic constraint robustly. If the number of observed substitutions follows Poisson 

distribution under the null hypothesis (no selection), even with the zero observed 

substitution, the expected number needs to be at least three to reach significance threshold 

(the probability of observing zero occurrences with mean occurrence as three is 0.049. In R, 

it is calculated as “ppois(0,3)=0.049”). It might also indicate the corresponding column is 

constructed with low confidence filled with a large proportion of gaps (>95% in our 

observation). Filtering these columns would also limit the effect of alignment bias on defining 

homologous residues. 

 

Homologous Residue Constraint is defined as the upper limit of 95% confidence interval for 

the Observed/Expected ratio. The confidence interval for the Observed/Expected ratio is 

estimated using a Bayesian approach20. The unknown true Observed/Expected ratio 

(constraint) is considered as a random variable with a uniform prior between 0 and 2. The 

likelihood function for a given constraint value is given as the Poisson density: 

 

Pr($ = &'()*+),|./0(1*2301 = 4) = (4 ∗ 789).1),)!"#$%&$')()∗+,-$./$'
&'()*+),!  

 

Thus, the posterior probability of a given constraint value could be derived by:  

 

Pr(./0(1*2301 = 4|&'()*+),, 789).1),) = 01(.34#/%564/7)) ∗01(97!"#$%&$'|.34#/%564/7))
∑ 01(.34#/%564/7)) ∗01(97!"#$%&$'|.34#/%564/7))!"#$%&'(#%

. 

 

We could further obtain the 95% confidence interval of constraint by taking the 2.5% and 

97.5% quantile from its posterior probability distribution. Therefore, the upper bound of 95% 

CI is taken as the constraint score of homologous residues (HRC). If a residue is scored as 
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HRC <1, it indicates that missense variants disrupting the given domain position are 

significantly (P-value < 0.05) depleted of variants thus under selection pressure.    

 

3.2.5 Evaluating the pathogenicity of ClinVar variants 

I tested the association of HRC with known disease-causing variants by using ClinVar 

variants. ClinVar VCF file was downloaded from ClinVar public FTP site (version 20201114 

https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/archive_2.0/2020/clinvar_20201114.vcf.

gz). I extracted 22,886 Pathogenic/Likely pathogenic missense variants in Pfam domains, 

whose clinical significance was recorded as “Pathogenic”, “Likely_pathogenic” or 

“Pathogenic/Likely_pathogenic”.  7,137 Benign/Likely benign variants in Pfam domains were 

extracted with clinical significance recorded as “Benign”, “Likely_benign” or 

“Benign/Likely_benign”. After keeping the HRC assessable domain positions, 13,009 

Pathogenic/Likely pathogenic and 3,914 Benign/Likely benign variants were used as test 

data. Only variants with no conflicting interpretation were included in the test set.  

3.2.6 Evaluating the pathogenicity of de novo variants  

To test the enrichment of DNVs prioritised by HRC in affected individuals versus unaffected 

individuals, I analysed the published DNVs in 5,264 patients ascertained with 

neurodevelopmental disorders, 6,430 patients ascertained with autism spectrum disorder, 

and 2,179 unaffected controls curated by Satterstrom et.al125. Of the missense DNVs in 

cases of NDD, in cases of ASD and in unaffected controls, the following number of variants 

is assessed by each tool (M DNVs in NDD; N DNVs in ASD; P DNVs in controls):  HRC 

(891; 702; 219), CCR (2,597; 2,379;735), RMC (1,172; 894; 243) and para_zscore (1,492; 

1,314;414).  
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I applied an independent approach to measure the accuracy of predicting damaging de novo 

missense variants by testing the enrichment of DNVs prioritised by HRC in affected 

individuals versus neutral variants estimated by a null sequence-context based de novo 

mutational model24. This measurement can also be used to assess whether HRC could 

distinguish pathogenic and benign variants within disease genes as the enrichment of DNVs 

in cases vs control individuals can be driven by gene-level disease association. I analysed 

the published DNVs in 31,058 patients with developmental disorders. Of the 28,193 

missense DNVs in the cohort, the following number variants is assessed by each tool:  HRC 

(6,787), CCR (16,401), RMC(8,456) and para_zscore(11,270).  The burden of DNVs is 

calculated as the ratio of the number of observed DNVs to the number of expected DNVs. 

The number of observed DNVs is directly counted from the variants seen in the cohort. The 

number of expected DNVs under neutral selection for the cohort is calculated by summing 

the product of the trinucleotide de novo mutation rate (could be obtained downloaded at 

https://github.com/jamesware/denovolyzeR-ProbabilityTables/blob/master/data-

raw/fordist_1KG_mutation_rate_table.txt or from Wellcome Sanger FTP at 

ftp://ftp.sanger.ac.uk/pub/project/ddd/rates) and the number of exome samples (2´31,058) 

for each nucleotide. The effective sample size for X-chromosome is adjusted considering 

sex-chromosome transmission as previously described126. Assuming the number of 

observed DNVs follows a Poisson distribution, the 95% confidence interval for the mean 

number of observed DNVs could be estimated by using an exact method. In R, it is 

calculated as “poisson.test(n_obs, conf.level=0.95)”.  

 

3.2.7 Testing improving power of gene discovery 

To demonstrate the utility of applying HRC to discover more disease genes reliably, I 

upgraded the gene-specific de novo weighted enrichment simulation test (DeNovoWEST)126 

by adding HRC to score missense variants. In the original framework of DeNovoWEST, the 
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weight of a missense variant used in the simulation test depends on the regional missense 

constraint. Here I incorporated HRC into this framework through the following procedures: 

(1) combining HRC with regional missense constraint to label constrained missense 

variants, thus a missense variant is considered as constrained if either RMC or HRC score it 

as constrained; (2) updating the weights of missense variants used in DeNovoWEST: I 

calculated the burden of de novo missense variants against a null de novo mutational 

model24 and inferred the corresponding positive predictive values (PPV) for all possible 

categories using constraint (based on step 1) and CADD scores. The newly derived PPV is 

used as weights in the downstream gene-specific test. The upgraded test was applied in the 

full cohort of 31,058 parent-proband trios of developmental disorders126.  

  

3.3 Results 

3.3.1 Measuring homologous residues depletion of missense variants across human 

domains 

A graphic illustration of the method is shown in Figure 3.3. 70 million all possible rare 

(defined as gnomAD MAF<0.1 or unobserved) missense variants in 19,212 human genes 

(annotated with RefSeq select transcripts) were mapped to protein domain families based on 

Pfam database124. There are 28,032,394 all possible rare missense variants in 15,305 genes 

(out of 19,212 genes) composed of 5,807 Pfam domains. After excluding domain positions 

with poor statistical power (see 3.2.4 ), there are 15,236,101 possible rare missense variants 

from 699 Pfam families with 78,070 domain positions assessable in 9.918 genes. To be 

noticed, though we only assess 12% Pfam domains after quality control, disproportionately 

more than 50% possible missense variants occur in these 699 domains.  

 

To quantify the genetic intolerance/constraint of missense variants of a homologous domain 

position, I calculated the Observed/Expected ratio for all the residues in the position, which 
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is the ratio of the number of rare missense variants (Observed) observed in the gnomAD 

reference population (v2.1.1 exome datasets 125,748 individuals) to the number of neutral 

substitutions expected (Expected) to occur in a reference population with a sample size of 

gnomAD. The number of neutral substitutions is the sum of predicted mutability given by a 

neutral mutational model taking account of tri-nucleotide sequence context, CpG methylation 

levels, and sequencing coverage (see 3.2.3 ). The upper bound of 95% CI of the 

Observed/Expected ratio is derived and defined as the Homologous Residue Constraint 

(HRC) (see 3.2.4 ). A protein residue with HRC score smaller than 1 indicates that missense 

variants affecting homologous residues are significantly under negative selection and likely 

to be deleterious.  

 

There are 3,304,332 possible missense variants in 9,085 constrained positions from 596 

Pfam domains (HRC<1; 21.7% of assessable variants) and 1,322,835 possible missense 

variants in 3,381 highly constrained positions in 458 Pfam domains (HRC<0.8, a threshold 

we find clinically relevant in various applications demonstrated below).   

 

3.3.2 Homologous residues constraint improves precision to detect pathogenic 

variants 

Under the assumption that genetic intolerance is predictive of clinical importance, I would 

expect an enrichment of pathogenic variants at constrained domain positions. Therefore, I 

tested whether constrained domain positions are enriched with known disease-causing 

variants compared to benign variants. Of all missense variants from domain families in 

ClinVar (22,886 Pathogenic/Likely pathogenic and 7,137 Benign/Likely benign variants), we 

were able to analyse a total of 13,009 Pathogenic/Likely pathogenic variants and 3,914 

Benign/Likely benign variants. I found that ClinVar pathogenic variants are significantly 

enriched at constrained domain positions (HRC<1: OR=6.1, 95%CI=5.5-6.8) and 
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significantly depleted at unconstrained domain positions (HRC>=1: OR=0.16, 95%CI=0.14-

0.18) (Figure 3.4a). The association increases as domain positions are under stronger 

genetic constraint indicating that variants disrupting these positions are more likely to cause 

diseases.  

 

To characterise HRC performance to prioritise variants, I compared its ability to rank 

pathogenic variants with the existing sub-genic constraint models: Regional Missense 

Constraint26 (RMC) and Constraint Coding Region27 (CCR), and a sequence conservation 

metric of human paralogous residues measured by para_zscore17. As each approach 

focuses on generating predictions on different areas of the exome given different 

hypotheses, I analysed a consensus set of ClinVar variants that can be prioritised by all four 

methods (3,661 pathogenic variants and 537 benign variants). Among all the benchmarked 

scores, CCR has the highest area under the Precision-Recall Curve and HRC comes as the 

second best (CCR: 98.0%; HRC: 96.7%; RMC=94.2%; para_zscore: 94.2%) (Figure 3.4b).  

 

Importantly, I examine the capability of each method to precisely identify pathogenic variants 

measured by diagnostic odds ratio and precision (Positive Predictive Value) especially in 

top-ranked variants. As in a false-positive intolerant setting such as clinical genetic 

diagnosis, top-ranked variants (highly prioritised) are more likely to receive greater attention 

for downstream validation or help to inform clinical decision making. Compared with existing 

constraint or homologous residue-based metrics, HRC has a higher odds ratio to 

discriminate pathogenic variants from benign variants in the highly prioritised variants up to 

the top 40% (approximately HRC <0.8) shown in Figure 3.4c. Correspondingly, it indicates 

that HRC model has a particularly higher precision of predicting pathogenic variants given 

the same true positive rate among the highly prioritised variants (Figure 3.4b). To be 

noticed, HRC outperforms para_zscore, which suggests that genetic constraint derived from 

natural variation in human populations is highly relevant of disease impact compared to 

sequence conservation.  
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Figure 3.4 Pathogenic variants are significantly enriched in constrained homologous 

residues in domain families compared with benign variants. (a) Odds Ratio (OR) 

measures the association between homologous residue constraint and pathogenicity. (b-c) 

HRC improves the precision of discriminating pathogenic from benign variants in protein 

domains. In highly prioritised variants, HRC shows a higher odds ratio and precision 

compared with benchmarked constraint (CCR and RMC) or homologous residue-based 

metrics (para_zscore) among about the top 40% ranked variants. (b) The Precision-Recall 

curve demonstrates that HRC has higher precision over the other methods in top-ranked 

variants. (c) Odds Ratio measuring the enrichments of pathogenic variants versus benign 

variants in each decile. 

 

 

a b

c
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3.3.3 HRC identifies highly deleterious de novo missense variants 

Across the full spectrum of pathogenicity of germline variants, a subset of de novo variants 

(DNV) could reduce reproductive fitness the most (pathogenic) and most often (penetrant) 

since they haven’t been transmitted to one generation. As every exome carries one DNV on 

average (a genome-wide rate at 1.2´10-8 mutations per nucleotide per generation127), we 

would expect DNVs from cases are enriched with highly constrained variants compared with 

controls. Therefore, we want to ask whether highly constrained residues identified by HRC 

could provide a novel line of evidence to interpret de novo variants causing severe 

developmental disorders.   

 

I first examine the association between de novo variants disrupting constrained domain 

positions and diseases. By analysing published de novo variants identified in 5,264 

probands ascertained with severe neurodevelopmental delay (NDD) and 2,179 unaffected 

individuals125, I find de novo missense variants in highly constrained domain positions 

(HRC<0.8 or about the top 20% percentile) are significantly enriched in cases (OR=5.2, 95% 

CI=3.0-9.1), which is comparable with applying the existing constraint or homologous-

residue based metrics (Figure 3.5a-c). Similarly, I also find highly constrained de novo 

missense variants are significant enriched in cases ascertained with autism spectrum 

disorders (ASD) though with weakened effect size (OR=2.4, 95% CI=1.3-4.3; Figure 3.5d), 

which is likely due to the differences in genetic architecture. Variants observed in gnomAD 

are excluded here as they are unlikely to cause developmental diseases with high 

penetrance128.   
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Figure 3.5 De novo missense variants affecting highly constrained domain positions 

are enriched in cases in neurodevelopmental developmental disorders versus 

unaffected controls. (a-c) Enrichment of constrained missense DNVs in 5,264 NDD-

ascertained cohort versus 2,179 unaffected controls. (d) Enrichment of constrained 

missense DNVs in 6,430 ASD-ascertained cohort versus 2,179 unaffected controls.  

 

 

Since the above enrichment of damaging de novo variants in cases could be largely driven 

by gene-level disease association, I sought to dissect whether pathogenic de novo variants 

could be discriminated from benign de novo variants in disease genes. I compared the 

burden of de novo variants in a larger cohort with 31,058 patients of developmental 

disorders126 (DD) against background expectation from a null de novo mutational model129. 

Applying HRC to prioritise damaging missense variants could increase the burden of de 

novo missense variants from baseline 1.23-fold (95%CI=1.22-1.25) to 3.34-fold (HRC<0.8, 

a

c

b

d
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95%CI = 3.16-3.53 ; for the burdens across ranges of constraint values see Figure 3.6a), 

even significantly higher than that of protein-truncating variants (PTV; 2.32-fold, 

95%CI=2.24-2.39) (Figure 3.6a). Compared with other approaches, the top 5% de novo 

missense variants prioritised by HRC show the highest burden of 3.9-fold (95%CI=3.7-4.2), 

indicating a set of de novo missense variants occurring in cases nearly four times more than 

expectation (Figure 3.6b). When we specifically restrict our analysis on 285 previously 

identified DD-associated genes126, HRC clearly outperforms other approaches to distinguish 

pathogenic variants and background benign variants even in the same set of disease genes 

consistently across the spectrum of percentiles (Figure 3.6c-d). The burden of damaging de 

novo missense variants in cases is 32-fold (95%CI: 29-35) higher than background variants 

in the top 5% of most constrained residues with a comparable effect size of protein-

truncating variants (32-fold, 95%CI: 30-34), highlighting that HRC is highly precise to 

prioritise pathogenic de novo missense variants in disease genes. I also found that 

para_zscore also outperformed the regional constraint scores, indicating that homologous 

residues-based approaches could be more predictive of pathogenicity within disease genes.  
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Figure 3.6 HRC prioritises damaging de novo variants with significantly higher burden 

compared with background variants in 31,058 parent-proband trios of developmental 

disorders. (a-b) Burden of damaging de novo missense variants in all genes. (c-d) Burden 

of damaging de novo missense variants in DD genes.  

 

 

3.3.4 HRC can also improve gene discovery 

Given the precision of HRC in prioritising pathogenic missense variants, I further investigate 

whether it could be applied to improve gene discovery. I updated a gene-specific de novo 

weighted enrichment simulation test (DeNovoWEST)126 to incorporate HRC score to weight 

missense variants (see 3.2.7 ).  With the upgraded test, there are 286 genes identified in the 

full cohort of 31K DD trios and 97 identified in the undiagnosed cohort of 24K DD trios 
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(probands who do not carry pathogenic variants in consensus diagnostic genes, as 

previously defined126) reaching the genome-wide significance threshold (multiple testing P-

value<0.05/(2*18,762) using Bonferroni correction, taking account of testing in 18,762 genes 

and 2 tests per gene).  There are seven candidate novel genes identified across the two 

tests, which were not considered as DD genes (not reach genome-wide significance 

threshold) in the original study126.  These novel candidate DD genes are likely to act through 

an altered-function mechanism as opposed to a loss-of-function mechanism since they have 

more constrained de novo missense variants by HRC than de novo PTVs observed in the 

patient cohort (Figure 3.7). This highlights that HRC could be useful in discovering genes 

with altered-function mechanisms, overcoming the limits of current approaches.  

 

 

Figure 3.7 De novo variants identified in 31,058 parent-proband trios reveal seven 

genes associated with developmental disorders at genome-wide significance for the 

first time in the full DD cohort (a) and the previously-undiagnosed subset (b). Four of 

these genes have been previously curated as DD genes on the basis of other lines of 

evidence, and are already included in the G2P database as established Developmental 

Disorder genes (blue), while three genes represent new candidate DD genes (red). Numbers 

of constrained missense DNMs classified by HRC and protein-truncating DNMs were 

compared. The newly-significant associated genes likely act through altered function 

mechanisms as there are more constrained missense variants than PTVs.  
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I also performed a case-control gene burden test in 6,327 patients of hypertrophic 

cardiomyopathy (HCM) from SHaRe registry57 and gnomAD general population of 125,748 

individuals, which are curated in the study of Chapter 2. We focus on eight sarcomere genes 

here, which are fully genotyped in the patient cohort. Four sarcomere genes have at least 

one missense variant in protein domains carried by the patients (MYBPC3, MYH7, ACTC1, 

MYL2). Collapsing highly constrained (HRC<0.8) or nominally constrained (HRC<1) 

missense variants can increase the gene-disease ORs compared with unconstrained or 

unclassified missense variants, which demonstrates the utility of HRC in adult-onset 

disorders (Figure 3.8). Burden test in MYBPC3 shows significantly elevated associations in 

both highly constrained versus constrained variants, and (highly) constrained versus 

unconstrained/unclassified variants. We expect collapsing analysis using HRC would have 

better statistical power in genes with multiple domains, which is exemplified by MYBPC3 

here (with 12 domains while the other seven sarcomere genes have 0-3 domains).  

 

 

Figure 3.8 Applying HRC in gene-burden tests of rare missense variants in HCM cases and 

controls. Four sarcomere genes with missense variants in Pfam domains from affected 
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individuals were assessed. Highly constrained (HRC<0.8) or nominally constrained 

missense variants (HRC<1) have increased association with HCM compared with controls.  

3.3.5 HRC is orthogonal to existing constraint metrics to prioritise missense variants  

One characteristic about HRC is that it can estimate genetic constraint at the amino-acid 

level. To demonstrate this, I compared the relationship between HRC scores and the 

existing constraint metrics including genic constraint scores (LOEUF and MOEUF, 

measuring genic intolerance of loss-of-function variants and missense variants respectively), 

regional constraint scores (CCR and RMC, measuring the genetic constraint of sub-genic 

regions). As each method has its own strengths and weaknesses, I focus on whether HRC 

could complement existing metrics in variant prioritisation.  

 

I found constrained homologous residues are distributed across full ranges of these existing 

metrics in either constrained genes/regions or unconstrained genes/regions. Concordantly, if 

a gene/region is more constrained as a whole, on average it also has more constrained 

homologous residues compared to a less constrained gene/region (Figure 3.9). What’s 

more important, for genes/regions considered as unconstrained, there are substantial 

numbers of highly constrained missense variants that could be prioritised by HRC 

(HRC<0.8): 254,226 in genes nominally unconstrained of loss-of-function variants 

(LOEUF>=1), 342,065 in genes nominally unconstrained of missense variants (MOEUF>=1), 

2,772,371 in CCR unprioritized regions (<95th percentile) and 988,686 in RMC unprioritized 

regions (>0.8 or unscored).  
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Figure 3.9 Comparing the distributions of HRC score and other gene-level and 

regional level constraint scores. Bar plots in the first column display the proportion of 

constrained missense variants by HRC across genes or regions. 2D-bin plots in the second 

column display the counts of constrained missense variants given HRC score and 

gene/region score. (a-b) The relationship between HRC and a gene’s LOEUF score (genetic 

constraint of loss-of-function variants; a lower value indicates higher constraint). A gene with 
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LOEUF<1 (grey dashed line) is under nominally constrained (c-d) The relationship between 

HRC and a gene’s MOEUF score (genetic constraint of missense variants; a lower value 

indicates higher constraint). A gene with MOEUF<1 (grey dashed line) is nominally 

constrained.  (e-f) The relationship between HRC and CCR (a higher percentile indicates 

higher constraint). A region with CCR percentile >95% (grey dashed line) is considered as 

constrained recommended by authors27. (g-h) The relationship between HRC and RMC (a 

lower value indicates higher constraint). A region with RMC>0.8 (grey dashed line) is 

considered unconstrained. 

 

3.4 Discussion 

Mining the pattern of natural variations depleted in the human population uncovers variants 

of strong clinical impact. Here I describe a novel form of genetic constraint signal, 

Homologous Residue Constraint to interpret missense variants. Compared with existing 

metrics measuring genetic constraint over linear space of the genome, HRC considers the 

“vertical” space of the genome, which enables us to assess genetic constraint at the amino-

acid level. Compared with existing constraint or homologous residue-based score, I found 

HRC is highly precise to predict pathogenic variants in ClinVar.  

 

An important application of HRC would be to predict the deleteriousness of novel missense 

variants. Applying HRC to identify de novo variants affecting constrained positions, I found 

patients with severe developmental delay including neurodevelopmental disorders and 

autism spectrum disorders carry highly constrained missense de novo variants significantly 

more often than unaffected controls and background de novo variants. HRC also has high 

precision to discriminates pathogenic de novo variants from benign de novo variants in 

known DD genes, with effect size comparable to protein-truncating variants.  
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As the statistical power for existing genetic constraint metrics depends on coding sequence 

length either implicitly (LOEUF, MOEUF, and RMC) or explicitly (CCR uses length as a 

covariate to measure genetic constraint) (Figure 3.10), HRC provides an approach to 

prioritise variants independent of gene/region length but depends on repeated domains in 

human proteins. Thus, it could also help to identify novel disease genes, which is 

demonstrated by incorporating HRC into the gene-discovery framework DeNovoWEST to 

identify nine additional novel candidate DD genes likely acting through an altered-function 

mechanism. The utility of HRC for this purpose is also highlighted by an intensive study to 

predict deleterious TTN missense variants in Chapter 4.  

 

 

 

Figure 3.10 Comparing the distributions of gene or sub-genic region length across 

gene-level and regional level constraint scores. In specific, for all genes or sub-genic 

regions with a benchmarked score in a certain range, the distribution of their coding 

sequence length and the median (indicated as the vertical line) is shown. 
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There are several ways to improve the development of HRC scores. Since there is no gold-

standard definition for homologous amino acids, our choice is largely limited by the 

availability of data. In this study, I used protein domain alignment to define homologous 

residues because it has better coverage in exome compared with paralogous alignment and 

structural alignment. As the performance of HRC could be affected by the bias of sequence 

alignment, I also explored whether taking account of the genetic constraint of surrounding 

amino acids could improve the performance since the true homologous residues are likely in 

neighbouring columns if not aligned with each other. This experiment shows that adding 

more surrounding amino acids could improve sensitivity but also compromise precision 

(positive predictive value) since there could be more non-relevant residues added to dilute 

the signal (Figure 3.11). To favour precision over sensitivity, I did not consider adding 

surrounding amino acids in our final metric and used the vanilla version.  

 

 

Figure 3.11 Exploring different genetic constraint measured in Pfam domains. The 

following metrics are calculated: HRC (vanilla), 3AA_HRC (Constraint of homologous 

residues within a sliding window of 3 amino acids, illustrated in a), 7AA_HRC, 11AA_HRC, 

21AA_HRC and genetic constraint of domain-level. Comparison of their performance using 

Precision-Recall curves are shown in b.  

a

b

HRC 3AA_HRC
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Additional features of residues could be added to improve the positive predictive value of 

HRC, such as interspecies conservation and biochemical properties of aligned amino acids. 

As homologous residues based on sequence might not be always functionally homologous 

to each other, the performance of HRC could be also affected by exceptions when certain 

individual residues might have different functional consequences/specifications than 

homologous residues in their family. Though I chose to keep HRC orthogonal here without 

adding existing molecular evidence, there is potential for improvement by combining HRC 

with additional features of residues.   

 

Like existing metrics, our ability to measure genetic constraint using gnomAD could also be 

affected by its inclusion of damaging de novo variants or recently evolved deleterious 

variants but not yet removed in the human population. However, as the validation in DD 

cases shows, the noise is neglectable compared to the true signal.  

 

As we aggregate domains over proteins, this could increase power for some genes while 

decreases power for other genes. For late-onset disease genes, they might have improved 

predictive power by having the same domains with early-onset disease genes.  

 

Overall, HRC provides strong evidence to prioritise missense variants. With the development 

of computational structural genomics in recent years, approaches like HRC could achieve 

even better precision using structurally aligned residues once we could obtain accurate 

structural models for most of the human proteins. Furthermore, the exome coverage and 

statistical power of HRC would be also scaled up along with the ongoing growth of large-

scale population genomics data and efforts of protein family classification. Thus, HRC is a 

promising approach to expand our ability to interpret missense variants.  
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3.5 Outline of further work 

• In the study, I only compared HRC with existing tools developed with similar 

approaches based on either genetic constraint or homologous residues. To fully 

characterise its performance, I am going to compare HRC with the state-of-the-art 

variant pathogenicity tools based on machine learning. I am also going to explore 

how to combine HRC with the existing computational line of evidence to best support 

variant interpretation.  

• We will report the filtered candidate novel genes to the Developmental Disorder 

Genotype – Phenotype Database (also known as DDG2P)130 to be included in the 

panel of DD genes.  

• Compare HRC with variant effect measured through high-throughput assays. 

Published datasets from multiplexed assays of variant effect could be retrieved 

through MaveDB131.  
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Chapter 4 The role of TTN missense 

variants in DCM 

4.1 Introduction 

After showing homologous residue constraint could improve variant prioritisation in Chapter 

3, I applied this framework to prioritise TTN missense variants and study their role on DCM.  

 

The role of TTN-truncating variants on DCM 

The largest human protein titin (34,350 amino acids for its longest isoform) is a crucial 

component of all striated muscle. TTN variants are associated with both cardiomyopathy and 

skeletal muscle myopathies. TTN-truncating variants (TTNtv) are the most common (~15%) 

genetic cause of dilated cardiomyopathy (DCM)47. It is suggested that TTNtvs cause DCM 

dominantly through a loss-of-function mechanism132. Alternatively, it is also hypothesized 

that TTN transcripts with protein-truncating variants might be translated as toxic peptides 

(dominant-negative) to cause DCM47.  

 

TTNtv is interpretable in disease cohorts. Given a TTNtv found in patients with DCM, we can 

primarily distinguish the benign and likely disease-causing ones based on whether the 

variant is in an exon constitutively expressed in cardiac tissues. For a TTNtv in a constitutive 

exon of cardiac tissues, it is estimated with a probability of 0.97 to cause DCM and 

considered as clinically actionable47.  

 

In a general population, TTNtv has a frequency of ~1%, higher than the prevalence of DCM 

(0.4%).  High-resolution cardiac imaging studies suggest that TTNtv could cause abnormal 
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cardiac remodelling in healthy individuals though the phenotype may not reach the diagnosis 

criteria of DCM132.   

 

TTN missense variants 

However, the interpretation of TTN missense variants is a profound challenge. There are 

about 235K possible TTN rare (gnomAD minor allele frequency < 0.1% or never observed in 

gnomAD) missense variants. Here I summarise the existing research attempting to evaluate 

the significance of TTN missense variants.  

 

The first DCM-causing TTN missense variants were found in a family linkage study. In the 

first report confirming that titin variants cause DCM, it includes two families133. One carries a 

TTNtv and the other carries a TTN missense variant. This missense variant, Trp976Arg is 

predicted to disrupt a characteristic hydrophobic core structure of an immunoglobulin I-set 

domain by replacing the most conserved residue134, tryptophan with a polar residue, 

Arginine. The disrupted immunoglobulin domain is located in the Z-disc–I-band transition 

zone of sarcomeres. Linkage analyses strongly support that this variant co-segregates with 

the disease status in the family.  A later functional study further demonstrates that mutant 

titin protein with Trp976Arg reduces sarcomere contractile function to cause DCM in human-

induced pluripotent stem cell-derived cardiomyocytes135. Evidently, some TTN missense 

variants are able to cause DCM.   

 

If a variant is disease-causing, it shall be more likely to be present in patients than in healthy 

controls. However, rare TTN missense variants are collectively common in the general 

population136. As an independent analysis, I compare the prevalence of TTN missense 

variants in two cohorts including 972 patients of DCM and 676 healthy volunteer controls 

recruited at Royal Brompton Hospital. Both cohorts are sampled from Caucasian 

populations. In each cohort, about 45% of individuals carry a rare TTN missense variant, 

which is not distinguishable between cases and controls (Figure 4.1).  
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Previous studies assessing the relevance of deleterious TTN missense variants based on in 

silico tools (i.e. SIFT, PolyPhen2, and MutationTaster) have been inconclusive when 

comparing either patients with DCM versus healthy control population136 or carriers versus 

non-carriers in DCM patients137.  Recently, Herrero-Galan et.al suggested that missense 

variants that alter conserved cysteines in immunoglobin domains could have a role in DCM 

through modulating the mechanical properties of titin with in vitro evidence138. One missense 

variant that affects conserved residue Cys3892 was reported to be associated with DCM 

supported by family segregation data. However, the degree of contribution of TTN missense 

variants to DCM remains unknown due to a lack of population-based case-control evidence. 

The majority of TTN missense variants still largely remain uninterpreted.  

 

 

Figure 4.1 Prevalence of rare TTN missense variants in patients of DCM and healthy 

controls from Caucasians.   
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Here instead of assessing sequence conservation, I seek to identify genetically constrained 

amino acids in TTN and evaluate their association with DCM in population-based case-

control studies. Chapter 3 describes one approach to identify constrained missense variants 

by aggregating the genetic constraint signal over homologous residues in protein domains. 

This is an approach particularly suitable to identify constrained residues in TTN. Even 

though TTN is a giant protein, ~70% of the titin sequence is composed of ~300 Fibronectin 

type-III (FN3) and Immunoglobin I-set (I-set) domains. Since there are multiple copies for the 

same domain, homologous residues in the same domain are likely to have similar functional 

relevance. I hypothesise that whether a missense variant in these domains is disease-

causing, depends on the position within the domain family instead of the absolute location in 

the protein sequence.  

 

In this Chapter, I am going to assess whether TTN constrained residues in I-set and FN3 

domains are associated with DCM. Apart from using residues prioritised by HRC that are 

constrained across all human proteins (described in Chapter 3), I also identified TTN-specific 

significantly constrained residues by only considering homologous residues in TTN instead 

of all human proteins. To study the implication of candidate variants in human diseases, I 

tested the enrichment of reported disease-causing variants from ClinVar compared with 

background variations. To study the association between candidate variants with DCM, I 

also compared the enrichment of constrained missense variants in 2,023 cases of DCM 

compared with 2,313 healthy controls using burden tests.  
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4.2 Methods 

4.2.1 Identification of homologous residues from domain family alignments 

The family alignments of I-set and FN3 domain generated using NCBI sequence database 

were downloaded from Pfam database124 ( the data file Pfam-A.full.ncbi.gz of release 

version 32.0) A python script (https://github.com/XiaoleiZ/parse_pfam_stockholm) is written 

to extract alignment sequences from a query Pfam domain from the downloaded file.      

4.2.2 Annotation of molecular consequences of variants 

Consistently, TTN meta-transcript ENST00000589042.5 (NM_001267550.2) is used 

throughout the whole analysis to annotate the consequence of variants. Only rare variants 

(gnomAD MAF< 0.1% or unobserved in gnomAD) are considered in the evaluation. As some 

variants could have multiple consequences on the transcript, only the worst molecular 

consequence is considered. Variants were predicted to be truncating if their worst 

consequence included nonsense or they disrupted a canonical splice donor/acceptor 

sequence. The corresponding VEP annotated consequences for truncating variants include: 

“stop_gained”, “splice_donor_variant”, “splice_acceptor_variant” and 

“frameshift_variant”.   In the validation of neutral mutational models on TTNtv, only SNVs are 

considered.  

 

Since some missense variants could act through cryptic splicing to disrupt protein function, I 

also used SpliceAI to predict likely cryptic-splicing TTN variants. Of all possible TTN rare 

missense variants in I-set and FN3 domains, there are 528 predicted splicing variants (with 

recommended threshold > 0.5). They were excluded in the calculation of missense 

constraints.  
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4.2.3 Statistical testing for mutational burden 

The p-value for the number of observed mutations (Observed) compared to the number of 

expected (Expected) (i.e. probability of number of observed mutations no more than number 

of expected mutations) is calculated using R as: ppois(Observed, lambda = Expected, 

lower.tail = TRUE).  
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4.3 Results 

A graphic illustration of measuring TTN-specific homologous constrained residues is shown 

in Figure 4.2.  

 

 

Figure 4.2 The workflow of generating homologous residue constraint in domains of 

TTN. (a) Identification of homologous residues in FN3 domains and Ig-set domains of TTN. 

(b) Calculation of observed/expected ratio for homologous residues. The number of 

observed substitutions is calculated from gnomAD v2.1. sequencing data of 125,478 

exomes. The number of expected substitutions is estimated by a neutral mutational model 

taking account of 3mer-sequence context, CpG methylation level and sequencing coverage 

of gnomAD dataset.  
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4.3.1 Constructed mutational model predicts the nucleotide substitution patterns 

under neutrality in TTN  

Chapter 3 describes building a neutral mutational model to predict the probability of 

substitutions in a population (see 3.2.3 ). To validate the mutational model in TTN, I first 

applied it on the following sets of variants to evaluate their genetic constraint: TTN 

synonymous variants, and single nucleotide TTN-truncating variants. TTN synonymous 

variants are collectively and predominantly assumed to be under minimal selection, while 

heterozygous TTN-truncating variants are known to cause DCM. For TTN synonymous 

variants, the expected number of variants is highly correlated with the observed one from the 

gnomAD reference population (TTN synonymous variants: observed/expected=1.01, 

correlation coefficient r=0.99;  Figure 4.3a,c).  As expected, single nucleotide TTNtv occurs 

less often than what mutability would expect within human populations 

(observed/expected=0.36). Having confirmed the accuracy of the neutral mutational model, 

we could use it to predict the number of neutral substitutions for any coding bases in TTN. 

For TTN missense variants as a whole, they are not under constraint (TTN missense 

variants: observed/expected=1.02, correlation coefficient r=0.97; Figure 4.3b).   
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 Figure 4.3 Validation of the constructed mutational model in TTN synonymous, TTN 

missense variants and TTN-truncating variants. For TTN synonymous and missense 

variants, the observed mutational burdens could be predicted from the mutational model. For 

TTN-truncating single nucleotide variants, the observed number is only about 1/3 of the 

expected number, verifying that they are under depletion. In the plot, each dot represents a 

type of substitution specified by trinucleotide sequence context and methylation level. There 

are 184 for non-CpG sites and 24 for CpG sites.   
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4.3.2 Identifying homologous residues intolerant of missense variants in I-set and FN3 

domains of TTN 

Narrowing down our search on I-set and FN3 domains, I evaluated the genetic constraint of 

missense variants in these two domains. Initially, I tested the idea of homologous residue 

constraint by only assessing domains in TTN before I extended the framework across all 

human proteins in Chapter 3. I would describe the original results of identifying TTN-specific 

constrained homologous residues here. Using the domain family alignments curated by the 

Pfam database, there are 164 and 132 copies for I-set and FN3 domains in TTN 

respectively. In terms of numbers of possible rare TTN missense variants (gnomAD 

AF<0.1% or unobserved), there are 91,036 in I-set domains and 72,012 in FN3 domains. 

Since rare missense variants could also act through cryptic splicing, I excluded 528 likely 

cryptic-splicing missense variants in TTN I-set and FN3 domains predicted by SpliceAI (delta 

score>0.5) in the calculation of missense constraint. As a whole, missense variants in I-set 

or FN3 domains of TTN are not under constraint (I-set: observed/expected=1.06, 95% 

CI=1.03-1.09; FN3: observed/expected=1.03, 95%CI=1.00-1.07). 

 

To measure the genetic intolerance/constraint of TTN missense variants of residues in a 

homologous domain position, I calculated the depletion of variants. It is measured as the 

ratio of the total observed number of TTN missense variants over all residues (Observed) in 

the gnomAD reference population (v2.1.1 exome datasets 125,748 individuals) to the sum of 

TTN missense substitutions over all residues (Expected) expected in the gnomAD 

population predicted by the neutral mutational model described above. After filtering 

unqualified positions (number of expected variants <3, explained in 3.2.4 ), both families 

have 94 homologous positions assessable out of 138 for I-set domains and 111 for FN3 

domains.  

 



 138 

The genetic constraint measured by the Observed/Expected ratio for each filtered 

homologous position was calculated and tested on significance. After correcting P-value in 

multiple testing to stringently limit the false discovery rate (Bonferroni adjusted P-

value<0.05), there are three positions under significant constraint: I-set domain position 42, 

I-set domain position 117, and FN3 domain position 22 (Table 4.1).  

 

 

 

Figure 4.4 The P-value for homologous positions in TTN I-set and FN3 domains 

identified using a TTN-specific approach. The dot plots show the unadjusted P-value of 

constrained significance (Y-axis) along with the family homologous positions (X-axis). The 

red dashed line indicates the significance threshold for Bonferroni correction (P-

value<0.05/94). Sequence logos are displayed at the bottom of P-value plots, which are 

generated from all domain’s copies in TTN using https://weblogo.berkeley.edu. (a) The P-

value of homologous residue constraint in I-set domain (b) The P-value of homologous 

residue constraint in FN3 domain.  
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Table 4.1 Significant constrained domain positions identified using TTN-specific 

approach  

Domain 

Position  

#Observed 

variants 

#Expected 

variants 

Observed/Expecte

d ratio (95% CI) 

Bonferroni 

adjusted P-

value 

I-set 42 44 76.5 0.57 

(0.40-0.81) 

3.6E-03 

 

I-set 117 48 77.8 0.62 

(0.44-0.86) 

1.8E-02 

 

FN3 22 33 58.1 0.57 

(0.38-0.84) 

2.4E-02 

 

 

 

Missense variants at these three significantly constrained positions have been reported to be 

in association with TTN-related disorders. To be noticed, the only confirmed DCM-causing 

missense variant (p. Trp976Arg) is at the most constrained position (I-set domain position 

42).  On the second significantly constrained position (I-set domain position 117), it includes 

a de novo missense variant (p. Tyr3038His) reported at ClinVar associated with DCM.  

The third most constrained position (fn3 domain position 22) also includes a known disease-

associated residue, residue tryptophan at amino acid position 31729. Two missense variants 

at this position (p.Trp31729Cys and p.Trp31729Arg) have been reported previously in 

association with autosomal dominant hereditary myopathy with early respiratory failure 

(HMERF), which were suggested to impair the 119th-FN3 domain solubility and cause 

protein misfolding in functional studies139.  Cardiac involvement was also observed in 

patients with HMERF carrying the mutation p.Trp31729Cys though without clear association 

with cardiomyopathies140.  
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4.3.3 The significant constrained positions in I-set and FN3 domains in TTN are also 

constrained across human proteins 

I compared the results generated by HRC considering all human proteins with the TTN-

specific constraint analysis. There are 785 I-set domains in 186 human proteins (translated 

from RefSeq select transcripts) and 597 FN3 domains in 127 human proteins. 139 domain 

positions out of 220 are assessable in I-set domains and 115 out of 171 assessable in FN3 

domains. For I-set domains across human proteins, there are 10 significant constrained 

positions (HRC<1, P-value<0.05) including the two positions (I-set 42 and I-set 117) 

identified in a TTN-specific approach described above (Table 4.2).  Five significant 

constrained positions are identified in FN3 domains across human proteins including the one 

(FN3 22) identified in a TTN-specific approach (Table 4.3).  

 

Compared with a TTN-specific approach, the proteome-wide approach implemented in HRC 

not only confirmed the same significant positions with narrower confidence intervals (Figure 

4.5) but also was able to prioritise 12 more significant positions with greater statistical power. 

In total, there are 14,964 all possible rare missense variants in these positions. To be 

noticed, the recently reported novel DCM-associated missense variant Cys3892Ser138 is 

found at the I-set 119 position, which is one of the significant constrained positions identified 

by the proteome-wide approach. So far, the two DCM-causing TTN missense variants 

(reported with strong linkage evidence) could be both mapped to our prioritised domain 

positions.  
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Table 4.2 Significant constrained homologous positions of I-set domains identified 

across human proteins. 

Domain 
Position  

#Observed missense 
variants 

#Expected missense 
variants 

Observed/Expected 
ratio (95% CI) 

I-set 42 183 340.1 0.53  
(0.46-0.60) 

I-set 117 242 338.5 0.71 
(0.62-0.80) 

I-set 119 307 395.0 0.78 
(0.68-0.85) 

I-set 26 330 414.0 0.80 
(0.70-0.88) 

I-set 127 330 407.4 0.81 
(0.71-0.90) 

I-set 115 415 507.6 0.82 
(0.72-0.89) 

I-set 101 227 268.8 0.85 
(0.72-0.98) 

I-set 23 254 296.4 0.85 
(0.74-0.99) 

I-set 103 333 388.6 0.86 
(0.75-0.97) 

I-set 32 387 450.2 0.85 
(0.77-0.97) 
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Table 4.3 Significant constrained homologous positions of FN3 domains identified 

across human proteins. 

Domain 
Position  

#Observed missense 
variants 

#Expected missense 
variants 

Observed/Expected 
ratio (95% CI) 

FN3 22 117 247.0 0.47 
(0.39-0.54) 

FN3 108 173 238.2 0.73 
(0.61-0.83) 

FN3 94 204 264.9 0.77 
(0.65-0.87) 

FN3 87 164 203.9 0.80 
(0.67-0.96) 

FN3 36 202 247.0 0.82 
(0.69-0.96) 

 

 

 

 

Figure 4.5 Compare the significant constrained homologous positions of I-set and 

FN3 in TTN and across domains.  The genetic constraint measured by Obs/Exp ratio and 

its 95% CIs are shown for (a) I-set and (b) FN3 domains for both exclusively within TTN and 

across human proteins.  
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4.3.4 Significant constrained positions are enriched with known disease-associated 

variants both in TTN and other genes 

I ask whether the missense variants affecting constrained positions are enriched with known 

disease-associated variants. From ClinVar, there were 209 ClinVar Pathogenic/Likely 

pathogenic and 644 Benign/Likely benign missense variants in I-set and FN3 domains of 85 

human proteins. Among them, TTN has 20 Pathogenic/Likely pathogenic variants and 375 

Benign/Likely benign variants.  

 

Now we have two lists of constrained positions: one identified by the TTN-specific approach 

and the other by the proteome-wide approach. The TTN-specific list is a subset of the 

proteome-wide list. I am going to conduct three tests to answer the question: (1) whether 

constrained domain positions by TTN-specific approach are associated with the 20 TTN 

pathogenic ClinVar variants; (2) whether constrained domain positions by proteome-wide 

approach are associated with the 20 TTN pathogenic ClinVar variants; (3) whether 

constrained domain positions by proteome-wide approach are associated with the 209 

pathogenic ClinVar variants in all 85 human genes. For each test, the proportion of 

pathogenic variants  (Proppathogenic) is compared with the proportion of benign variants 

(Propbenign) in constrained positions. A one-sided binominal test is applied to compare the 

difference of two proportions. Alternatively, the odds ratio is also reported, which measures 

whether variants affecting constrained positions are more likely to be pathogenic versus 

benign.  

 

Compared with benign variants, pathogenic TTN ClinVar variants are enriched in the 

constrained domain positions identified using either the TTN-specific approach (Table 4.4: 

Test1, P-value<0.05) or the proteome-wide approach (Table 4.4: Test2, P-value<0.05). The 

association was confirmed in both I-set and FN3 domain. The constrained positions are also 
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significantly associated with (likely) pathogenic ClinVar variants across all 85 human genes 

in either I-set domains or FN3 domains (Table 4.4: Test3, P-value<0.05).  

 

Table 4.4 Significant tests to assess whether constrained domain positions are 

associated with pathogenic ClinVar variants.  

 

 

 

 Test 1: whether constrained domain positions (TTN-specific approach) are 

associated with the 20 TTN pathogenic ClinVar variants  

 

% pathogenic 
variants at 
constrained 

positions 
(Proppathogenic) 

% benign variants 
at constrained 

positions 
(Propbenign) 

 
Binomial test 

P-value of 
Proppathogenic vs 

Propbenign 

Odds Ratio (ratio of 
odds of pathogenic 

variants in constrained 
versus unconstrained 
positions) and 95%CI 

I-set 2/11 4/213 0.02 11.6 [1.9-71.9] 

FN3 2/9 1/162 0.001 46.0 [3.7-570.0] 

I-set and 

FN3 
4/20 5/375 1E-04 18.5 [4.5-75.5] 

   
 

 
 Test 2: whether constrained domain positions (proteome-wide approach) are 

associated with the 20 TTN pathogenic ClinVar variants  

I-set 4/11 19/213 0.01 5.8 [1.6-21.7] 

FN3 2/9 6/162 0.04 7.4 [1.3-43.6] 

I-set and 

FN3 
6/20 25/375 2E-03 6.0 [2.1-17.0] 

   
 

 
 Test 3: whether constrained domain positions (proteome-wide approach) are 

associated with the 209 pathogenic ClinVar variants in all 85 human genes  

I-set 37/125 29/376 5E-13 5.0 [2.9-8.6] 

FN3 13/84 6/268 5E-08 8.0 [2.9-21.8] 

I-set and 

FN3 
50/209 35/644 4E-12 5.5 [3.4-8.7] 
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4.3.5 Case-control burden test suggests constrained TTN missense variants in I-set 

domains are associated with subsets of DCM cases 

To evaluate the association between constrained TTN missense variants and DCM, I 

attempted to conduct a case-control analysis to compare the enrichment of constrained TTN 

missense in patients of DCM versus healthy controls. I collected 2,023 patients of DCM and 

2,313 healthy volunteer controls without cardiac conditions confirmed by cardiac MRI.  As 

individuals in these cohorts were collected from three different sites (UK Royal Brompton 

Hospital, Egypt Aswan Heart Centre, and Singapore National Heart Centre) with different 

ethnicities, joint variant calling was performed with the same quality control criteria. As 

samples of different ethnicities/sites show a different prevalence of missense variants (Table 

4.5), I conduct the burden tests in separate ethnicities and use the site- and ethnicity-

matched controls including Caucasian samples (CAU), African samples (AFR), and East 

Asian samples (EAS). The ORs for DCM for carriers of TTN missense variants, synonymous 

variants, and TTNtv are shown as reference in Figure 4.6. South Asian samples are 

excluded in the following analysis due to low sample size. 13 missense variants in the 

samples predicted as cryptic splicing (SpliceAI delta score>0.5) are excluded in the 

downstream analysis.  

 

Constrained variants identified by proteome-wide methods were tested on their association 

with DCM as there are more constrained variants identified providing higher statistical 

power. While there is no enrichment detected by testing all constrained TTN missense 

variants together for both I-set and FN3 domains in any of the ethnicity groups (Figure 

4.7a), the constrained variants in I-set domains shows significant association with DCM 

cases (OR=3.18, 95% CI= 1.30-9.34, P-value=0.006) in the Caucasian case-control burden 

test. For the burden tests in African and East Asian cohorts, there is no significant 

association between constrained variants in I-set domains and DCM cases (ORAFR=0.15, 

95% CI=0.004-1.00; OREAS=1.18, 95% CI = 0.22-4.16). The burden tests in constrained 
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variants in FN3 domains did not show any significant signal in any of the ethnicity groups 

(Figure 4.7a).  

 

Next, I tested the enrichments of constrained variants in I-set domains in separate DCM 

cohorts in Caucasian samples using the same Caucasian control cohort. There are three 

subgroups in the DCM cohorts: familial DCM (n=898), alcoholic cardiomyopathy (ACM; 

n=141) and chemotherapy-induced DCM (Chemo; n=108). Significant association is 

identified in ACM-control burden test (OR=5.69, 95% CI=1.77-18.77). For familial DCM and 

Chemo cohorts, a trend of increased association was observed compared with 

unconstrained variants. For FN3 domains, no association was found in any of the DCM 

subgroups.   
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Table 4.5 Prevalence (rate per individual) of rare (MAF<0.1% or unobserved in 

gnomAD) missense and synonymous variants in cohorts of patients with DCM and 

healthy controls 

Ethnicity 

(Self-

reported) 

Site Cohort Cohort 

size 

Prevalence of 

Missense 

Variants 

Prevalence of 

synonymous 

variants 

Caucasian UK Royal 

Brompton 

Hospital  

Case 1,147 0.40 0.20 

Caucasian UK Royal 

Brompton 

Hospital 

Control 671 0.42 0.21 

African Egypt Aswan 

Heart Centre 

Case 124 0.65 0.39 

African Egypt Aswan 

Heart Centre 

Control 515 0.61 0.40 

East Asian Singapore 

National Heart 

Centre 

Case 101 0.68 0.31 

East Asian Singapore 

National Heart 

Centre 

Control 713 0.64 0.37 

South Asian Singapore 

National Heart 

Centre 

Case 96 0.63 0.41 

South Asian Singapore 

National Heart 

Centre 

Control 25 0.60 0.36 
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Figure 4.6 Burden test of TTN variants in patients with DCM versus healthy controls.  

TTN missense (a), TTN synonymous variants (b), and TTN-truncating variants (c) are 

tested. TTN missense and TTN synonymous variants collectively don’t show significant 

association with DCM while TTNtv is significantly associated with DCM. Four site- and 

ethnicity-matched burden tests were included: Caucasian samples (CAU) from UK Royal 

Brompton Hospital (NDCM=1,147, Ncontrol=671),  African samples (AFR) from Egypt Aswan 

Heart Centre (NDCM=124, Ncontrol=515), East Asian samples (EAS) from Singapore National 

Heart Centre (NDCM=101, Ncontrol=713) and South Asian samples (SAS from Singapore 

National Heart Centre (NDCM=96, Ncontrol=25).  The pooled effect size was derived using 

meta-analysis under a fixed-effect model.  

 

a TTN missense variants b TTN synonymous variants

c TTNtv
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Figure 4.7 Burden tests of TTN unconstrained (grey) and constrained (red) missense 

variants in DCM cases versus controls. Variants in Ig domains and FN3 domains are 

tested both as a whole and separately. a. Site- and ethnicity-matched burden tests on DCM 

cases versus controls. The error bars represent 95% CIs of odds ratio on log10 scale.  b. 

Burden tests on subsets of DCM cases versus controls in Caucasian samples.  

 

 

 

 

 

 

 

a

b
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4.4 Discussion  

4.4.1 Strengths and limitations of the study 

In this Chapter, I have evaluated an approach to identify constrained TTN missense variants 

in I-set and FN3 domains. Across human proteins, 15 domain positions are significantly 

intolerant of missense variants in I-set and FN3 domains. Three of them also reached a 

significance level when only examining homologous residues in TTN. In TTN I-set and FN3 

domains, these 15 positions have 14,964 possible rare missense variants. In the validations, 

the constrained positions are significantly associated with ClinVar pathogenic variants in 

either I-set or FN3 domains. The two reported DCM-causing missense variants with strong 

linkage evidence so far occurred in these top constrained positions. In site- and ethnicity-

matched case-control burden tests, missense variants disrupting these constrained positions 

are significantly enriched in cases of DCM compared with healthy controls in Caucasian 

samples (OR=3.18, 95% CI= 1.30-9.34). When I analysed the same Caucasian DCM 

cohorts separately, this significant association is also found in the ACM cohort (OR=5.69, 

95% CI=1.77-18.77). This finding presents first-time evidence based on population data to 

suggest the link between TTN missense variants and DCM. It also highlights using 

homologous residue constraint to prioritise underrecognized missense variants as an 

effective approach.  

 

While we assessed homologous residues in I-set and FN3 domains, there are subsets of 

missense variants not considered in the study including the ones from positions 

underpowered in I-set and FN3 domains and other regions of TTN. Meanwhile, the effect of 

specific residues or positions in TTN might deviate from the average of all human proteins. 

As our approach measured intolerance of heterozygous missense variants, it might not be 

sensitive to prioritise mutation targets in the homozygous or compound heterozygous state. 



 151 

As DCM usually occurs in adults, mutation targets might not be well-captured by purifying 

selection signals.   

 

4.4.2 Discussion on future work 

Though the findings so far are promising, there are more questions unanswered to 

understand the link between TTN missense variants and DCM.  

 

How to replicate the findings? 

To avoid false positives, we need to conduct independent validations. It can also help to 

understand the heterogeneous association levels observed in the study. Apart from 

comparing cases versus healthy controls, we could also compare cases with DCM versus 

cases without heart muscle diseases. To increase statistical power and understand the 

phenotypic effects, the association between sub-clinical phenotypes and outcomes could 

also be evaluated. Further evaluation could make use of UK Biobank with the collection of 

exome sequencing, cardiac imaging, and clinical outcome data. Among 200,628 participants 

with whole-exome sequencing data of recent UKBB release (Oct 2020), there are 21,322 of 

them with Cardiac MRI data, 341 of them with DCM, and 3475 of them with the outcome of 

heart failure.  

 

We should also validate the findings in populations of different ancestries. In our current 

case-control burden test, no association was detected in non-Caucasian populations, which 

might be limited by sample size or different genetic architectures. Up to date, there haven’t 

been studies on DCM in non-Caucasian populations with a sample size comparable to 

studies in Caucasians. Another reason is due to the fact that our signal mainly comes from 

mutation pattern in Caucasian populations, which has lower effective population size 

compared with African populations. Thus, the constrained signals we discovered might have 
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low sensitivity when applying in other populations. Taking these factors together, their 

interaction likely explains the results we saw in non-Caucasian populations.   

 

What’s the molecular mechanism of DCM-causing TTN missense variants?  

From the two reported DCM-causing TTN missense variants with linkage evidence, they 

both likely act through a loss-of-function mechanism by destabilising immunoglobin domains. 

To find clues about the new TTN missense variants, before carrying functional studies we 

could also gain insight to predict the function of residues and the structural effects of 

missense variants through structural modelling. Existing resources could support the 

structural modelling such as domain structural models curated by Pfam124, structural models 

for TTN domains (TITINdb)141, and tools predicting structural effects of missense variants 

(e.g. missense3D33).  Compared with gain-of-function variants,  loss-of-function variants are 

more likely to be in the hydrophobic core of the protein to disrupt protein stability142. A 

preliminary analysis indicates that the top constrained positions in I-set and FN3 domain 

have a conserved tryptophan residue, which is buried in the hydrophobic core. Further 

analysis on other residues is needed to understand the underlying disease mechanism.  

 

Is TTN missense in FN3 domains not associated with DCM? 

In our study of case-control burden tests, we did not find any significant association between 

constrained missense variants in FN3 domains and DCM. For all ClinVar (likely) pathogenic 

variants in TTN FN3 domains, they are all reported to be associated with myopathy 

disorders. As already mentioned above, a study assessing the cardiac phenotypes of 22 

HMERF patients with p. Trp31729Cys, a missense variant disrupting the most constrained 

position in FN3 domain (FN3 22), did not find a clear association between the variant and 

cardiac conditions. While the above observation cannot exclude an association, we hope to 

have higher confidence in answering this question by assessing the carriers’ sub-clinical 

cardiac phenotypes and outcomes in cohorts with a larger sample size. 
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4.4.3 Conclusion 

Overall, our study prioritises a list of promising candidate disease-associated TTN missense 

variants for follow-up studies. It also emphasizes that TTN missense variants should not be 

ignored in clinical genetic diagnosis.  

 

4.5 Outline of further work 

• Replicate the burden tests using a list of constrained variants identified with more 

stringent level significance (e.g., P-value < 0.01).  

• Study the association of constrained variants with cardiac phenotype and clinical 

outcomes using UKBB data.  

• Predict the structural effect of constrained variants on domains 

• Explore whether integrating genetic constraint with exon expression in cardiac 

tissues, conservation, and structural effect prediction could further improve the 

separation of DCM-associated variants from benign ones. 
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Chapter 5 Annotating high-impact 

5’UTR variants with UTRannotator 

5.1 Introduction 

On a strand of mRNA, a proportion, either from its 5’ end to the start codon of a coding 

sequence or from the 3’ end to the stop codon is untranslated, known as untranslated 

regions (UTRs). Untranslated regions play an important role in regulating gene expression at 

the post-transcriptional level. This regulation by UTR is mediated through UTR elements of 

mRNA including upstream open reading frames (uORF), sequence motifs and secondary 

structures143. Upstream ORF is defined by a start codon in the 5’ untranslated region. About 

49% of human transcripts with 5’UTRs have at least one uORF144. In translation initiation, 

since the ribosomes would begin scanning the messenger RNA from 5’unstranlated regions, 

the presence of an upstream start codon preceding the main coding sequence (CDS; 

protein-coding ORF) could also initiate translation.  

 

Not every ORF is translated. The propensity of a start codon initiating translation depends 

on the similarity of its local sequence context to the “Kozak consensus”. “Kozak consensus” 

sequence describes the most conserved sequence pattern of protein translation initiation 

sites in eukaryotic mRNA transcripts145. When a uORF is flanked with unfavourable 

sequence (weak Kozak context), leaky scanning could occur such that scanning ribosomes 

would skip the uORF143.   

 

Upon translation initiation, upstream ORFs can affect phenotypes via different mechanisms: 

(1) uORF translation could inhibit the translation efficiency of protein-coding ORF. For some 

genes, after terminating uORF translation, ribosome subunits dissociate from mRNA thus 



 156 

reduce or delay the protein expression of CDS. For other genes, the interruption could also 

be mediated through uORF-encoded peptides, which can directly interact with and stall the 

scanning ribosomes. As a consequence, uORF translation imposes a physical barrier to 

ribosomes getting access to main ORFs. Overall, it has been shown that naturally occurring 

uORF can reduce downstream protein translation by 30-80%144; (2) the translated 

micropeptides from uORFs could also have distinct biological functions from the CDS-

encoded protein. In a recent systematic study146, uORF-encoded microproteins are 

suggested to have critical roles in cellular growth. They could also have distinct cellular 

localization and even form stable complexes with the CDS-encoded protein at the same 

messenger RNA.   

 

Depending on the presence of stop codons, a uORF can be categorised into different 

subtypes:  (a) a stringent upstream ORF which also has a stop codon in the 5’UTR (Figure 

5.1a);   an overlapping ORF (oORF) which has the stop codon in the main coding sequence 

thus the uORF is overlapping with the CDS; (b) If the oORF is not in the same frame of the 

main coding sequence (i.e. the distance between uAUG and downstream AUG of CDS is a 

multiple of three nucleotides), it’s called out-of-frame oORF (Figure 5.1b); (c) otherwise, it’s 

in-frame oORF (Figure 5.1c);   
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Figure 5.1 The subtypes of upstream ORFs.  (a) stringently defined uORF with the entire 

ORF located in 5’UTR. (b) Out-of-frame Overlapping ORF (c) In-frame Overlapping ORF. 

Reproduced from Nicola Whiffin with permission.  

 

 

Genetic variants creating or disrupting uORFs (uORF-perturbing variants) were under-

recognised in previous human genetic studies. Up till May 2020, there were only 97 5’UTR 

variants interpreted as Pathogenic/Likely pathogenic in ClinVar. While these isolated cases 

were reported in previous studies,  Whiffin et.al31 conducted a systematic study to show that 

uORF-perturbing variants can cause human diseases by leveraging 15,708 gnomAD whole-

genome sequences. It has been shown that genetic variants introducing or disrupting uORF 

are under strong negative selection. Several categories of factors found in uORF-perturbing 

variants are under stronger selection thus more likely to cause diseases including variants 

with strong Kozak context of upstream start codons, perturbing a uORF overlapping with the 

main coding sequence, disrupting a uORF with translation evidence, or occurring in loss-of-

function intolerant genes.  

 

However, there wasn’t a bioinformatic tool available to annotate this specific class of 

variants. To help rapidly identify this important class of disease-causing variants, I have 

Overlapping ORF (oORF)

AUG STOP
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Transcript elongation
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developed a plugin called UTRannotator to use with the mainstream variant annotation tool, 

Ensembl VEP4.  

 

UTRannotator can identify whether any small variation (1-5bp) is uORF-perturbing including: 

variants creating a new upstream start codon, removing start codons or stop codons of an 

existing uORF, creating an earlier stop codon for an existing uORF, or shifting the frame of 

an existing uORF. The tool would also output detailed annotations relevant to evaluate the 

impact of the uORF. When a variant disrupts multiple uORFs, all possible consequences 

and annotations would be reported.  

 

To evaluate the clinical utility of UTRannotator, I applied the tool in the ClinVar dataset72, 

gnomAD20, and Genomics England 100K genomes project147. I demonstrate that 

UTRannotator can detect high-impact disease-associated variants for further experimental 

validation.  

 

5.2 Method 

5.2.1 Implementation and Code availability 

The plugin is developed in Perl. By making use of Ensembl Perl modules, it can quickly get 

access to necessary info for 5’UTR variant annotation including genomic descriptions of 

variants, gene and transcript annotation with exon/intron boundaries, and UTR sequence 

from Ensembl database. It is available on Github 

(https://github.com/ImperialCardioGenetics/UTRannotator).  

 

Instructions about install and run UTRannotator is in the Github repository 

(https://github.com/ImperialCardioGenetics/UTRannotator/blob/master/Supplementary_Infor

mation.pdf). It could take an input list of variants with the following formats including default 
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VEP input format, VCF, HGVS, and variant identifiers recognised by Ensembl database. For 

the output format, it supports default VEP output format, tab-delimited output and VCF 

output.  

 

5.2.2 Consequence annotated 

For any SNV, 1-5bp small insertion/deletion (indel) or multi-nucleotide variant in a 5’ UTR, 

the UTRannotator would first summarize the number of uORFs in the 5’UTR in the reference 

sequence. Then, for each variant within the 5’UTR, the tool evaluates whether it would have 

any of the following consequences, on any annotated transcript: (1) creating a new start 

codon AUG to introduce a new uORF; (2) removing an existing start codon AUG; (3) 

removing the STOP codon of an existing uORF; (4) creating a new stop codon to shorten an 

existing uORF; (5) disrupting an existing uORF with a frameshift deletion or insertion, whose 

number of nucleotides inserted or deleted is not a multiple of three. Where a variant has 

multiple annotation consequences, it is evaluated for each separately.  

 

5.2.3 Detailed annotation for each consequence 

To enable evaluation of the effect of each variant, the UTRannotator outputs detailed 

annotations for each type of uORF-perturbing variant (Table 5.1). This includes describing 

the subtype of uORF created and/or disrupted (i.e. whether this is a distinct uORF with a 

stop codon in the 5’UTR, or an ORF that overlaps the coding sequence either in- or out-of-

frame), and the strength of the created and/or disrupted uORF start site match to the Kozak 

consensus sequence145. For a variant disrupting an uORF, the tool also evaluates whether 

the uORF has any experimental evidence of translation, by assessing translated uORFs 

previously identified in ribosome profiling experiments. We downloaded a list of translated 

uORFs curated by the public online repository for sORFs (sorfs.org)148 aggregating from 
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existing experimental data. Users can also use their own customised list of translated 

uORFs.  Given that ribosome profiling datasets are currently limited in the cell types/tissues 

and conditions analysed, the tool outputs results for all possible uORF-disrupting variants 

and includes experimental evidence as an annotation. 

 

Since a 5’UTR can have multiple existing uORFs, for each 5’UTR variant the UTRannotator 

outputs the annotations for all disrupted uORFs.  

 

 

Table 5.1 Details of the annotations provided for different categories of uORF-

perturbing variants 

 

 

Consequence uAUG-gained uAUG-lost uSTOP-lost uSTOP-gained uFrameshift 

Number of existing 
uORFs √ √ √ √ √ 

KozakContext: 
sequence and 
strength 

√ √ √ √ √ 

Start distance to 
CDS √ √  √ √ 

Start distance to 
STOP √ √    

With translated 
evidence  √ √ √ √ 

uORF subtype √ √  √ √ (ref and alt) 

Other 
Annotations 

Start distance 
from cap  

Whether there is 
an alternative 
STOP, 
alternative stop 
distance to 
CDS, frame of 
disrupted uORF 
with CDS 

New stop 
distance to 
CDS 
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5.2.4 Time complexity to run UTRannotator 

The time complexity of this implementation is linear to the number of input variants. The ratio 

of running time without the plugin to that with the plugin, tested on 1000 random variants 

(60% annotated as 5’UTR variants) is 1.02-1.07 (5 replications).   

 

 

5.3 Results 

5.3.1 Application on ClinVar 

To show the utility of our UTRannotator tool, I annotated all 5’UTR variants interpreted as 

pathogenic/likely pathogenic and uncertain significance from ClinVar (version 202005) 

(Landrum et al., 2018). These variants do not have a coding annotation on any transcript. 

However, I note that 5’UTR variants are under-represented in ClinVar as they are rarely 

sequenced and/or reported. 

 

There are 97 Pathogenic/Likely pathogenic 5’UTR variants in ClinVar (97/113,969=0.085% 

of all ClinVar Pathogenic/Likely pathogenic). 91 are 1-5bp small variations, 29 of which 

(31.9%) are annotated as creating or disrupting uORFs by our plugin (Figure 5.2). I 

examined the evidence behind the reported clinical significance for each variant, and found 

15 (51.7%) have previously been attributed to a uORF-perturbing mechanism.  

 

There are 5,128 5’UTR variants of uncertain significance (VUS) reported in ClinVar 

(5,128/255,691=2% of all VUS), 4,966 of which are 1-5 bp small variations. The plugin 

annotated 377 of these (7.6%) as creating or disrupting uORFs, on at least one annotated 

transcript.  
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The detailed annotations from the UTRannotator can be used to illustrate how to prioritise 

high-impact 5’ UTR VUS that are most promising for further follow-up. Variants were first 

restricted to the ones that form new overlapping ORFs (oORFs) with start sites that are 

Strong or Moderate matches to the Kozak consensus sequence, or that are uORFs with 

documented evidence of translation, as it has been previously shown that variants with 

these consequences are under strongest negative selection31. Finally, we selected variants 

in 3,191 genes previously categorised with a ‘High’ likelihood to operate through uORF-

perturbation mechanism31. Through this approach, 31 potential ‘high-impact’ ClinVar 5’UTR 

VUS could be identified.  
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Figure 5.2 5’UTR variants in ClinVar annotated by the UTRannotator. (a) A schematic 

showing the five distinct consequences of 5’UTR variants annotated by the tool: those that 

create an upstream AUG (uAUG_gained), those that disrupt the start site of an existing 

upstream open reading frame (uORF; uAUG_lost), those that cause a frameshift in the 

sequence of the uORF (uFrameShift), those that introduce a new stop codon into an existing 

uORF (uSTOP_gained) and those that disrupt the stop site of an existing uORF 

(uSTOP_lost). (b) The counts of each variant category that are classified as 

Pathogenic/Likely Pathogenic (teal) or Uncertain Significance (VUS; grey) in ClinVar. 
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5.3.2 Application on gnomAD and Genomics England 

To study the potential contribution of uORF-perturbing variants to undiagnosed cases, I 

compared its burden in undiagnosed cohorts from Genomics England 100K Genomes 

Project (GEL)147 with that in general populations from gnomAD. I included de novo variants 

(version 2020 Sept) of rare disease probands from GEL. GEL applies a Rare Disease 

Tiering process to annotate plausibly pathogenic variants. In order to remove probands with 

any potential protein-coding diagnostic variants, I excluded any trios in the downstream 

analysis if the proband has either Tier 1 variants (protein-truncating variants) or Tier 2 

variants (protein-altering variants) on known disease gene panels applied in the participants. 

In total, there were 859,350 de novo variants from 12,456 trios annotated in the downstream 

analysis. As a control dataset, 5’UTR variants from gnomAD v3 71,702 genomes were also 

included in the analysis.  

 

UTRannotator was applied in these two datasets to analyse the burden of uORF-perturbing 

variants in predicted loss-of-function (LoF) intolerant genes (defined by gnomAD gene 

constraint metric LOEUF<0.3520). LOEUF is a conserved estimate indicating how much a 

gene is under depletion of heterozygous loss-of-function variants. A lower value suggests a 

higher intolerance. 0.35 is a recommended threshold by authors. There are comparable 

proportions of 5’UTR variants in the two datasets (proportions of people with at least one 

variant: GEL: 0.36%; gnomAD: 0.39%). As shown in Figure 5.3, 9.7% (66/683) of the 5’UTR 

variants are uORF-perturbing in the GEL de novo variant dataset, while there are only 7.1% 

(35,075/494,364) 5’UTR variants annotated as uORF-perturbing in gnomAD dataset (one-

tailed binomial test P-value=0.005). For high-impact uORF-perturbing variants (variants 

creating/disrupting an oORF with strong Kozak context or disrupting a uORF with translation 

evidence), there are 1.5% (10/683) GEL de novo 5’UTR variants annotated as high-impact 

uORF-perturbing, as it’s compared to only 0.2% (1,111/494,363) of gnomAD 5’UTR variants 

in the same category (one-tailed binomial test P-value=1.7´10-6). This analysis shows that 
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de novo 5’UTR variants from undiagnosed probands are enriched with high-impact uORF-

perturbing variants in LoF-intolerant genes compared with general populations. 

 

 

 

Figure 5.3 uORF-perturbing variants in loss of function intolerant genes found in GEL 

de novo variants and gnomAD variants. (a) the percentage of (high-impact) uORF-

perturbing variants in 5’UTR; (b) the distribution of consequences in uORF-perturbing 

variants.   
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5.4 Discussion 

5.4.1 Strengths of the study 

I have developed a freely available tool, as a plugin to the Ensembl VEP, which annotates 

variants that create or disrupt uORFs. The output from the tool can be used to evaluate the 

possible impact of 5’UTR variants identified in patients for a role in disease. It is also directly 

applicable to annotate 5’UTR variants from other eukaryotes. To test its utility, we found that 

31 ClinVar 5’UTR VUS are uORF-perturbing of high-impact, which could be reinterpreted in 

the future. We also found a significant enrichment of high-impact uORF-perturbing variants 

in undiagnosed cohorts from GEL 100K compared with the gnomAD population.  

 

In both applications, as we see, the majority of the uORF-perturbing variants are the ones 

creating new upstream ORFs. This could be explained by the larger number of possible 

nucleotide positions to create new uAUGs compared to other uORF-perturbing variants. 

What’s more, given that naturally occurring uORFs are selected to be short and far upstream 

of CDS, it hints to us that a subset of de novo variants creating a new uORF could be under 

strong selection. This could help to explain the higher burden of uAUG-creating variants we 

saw in GEL 100K undiagnosed patients compared with gnomAD (Figure 5.3b).  

 

5.4.2 Limitations of the study and discussion for future directions 

There are several limitations to the UTRannotator. I will also discuss and suggest future 

research directions.   

 

Firstly, the UTRannotator only considers variants up to 5bps in length. The length is 

restricted due to two reasons: (1) the annotation of longer indels is difficult, as the chance of 

variants having multiple possible annotations is increased, and (2) the impact of larger indels 

that add or remove large stretches of UTR is currently unclear.  
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It also currently only considers uORFs with canonical AUG start sites. It is known that many 

translated uORFs use non-canonical start sites149. More research is needed into the impact 

of variants that create or disrupt these non-canonical uORFs in human disease.  

 

While we focus on small variants of loss-of-function effects, the remaining UTR variants are 

largely uninterpreted. For SNVs within naturally occurring uORFs that do not change the 

length of uORFs, they are not under selective constraint collectively150. However, additional 

types of deleterious UTR variants could be added to the UTRannotator when they are 

discovered in new studies.   

 

In the study, I show that by using UTRannotator, undiagnosed probands of rare diseases 

carry more high-impact de novo uORF-perturbing variants in LoF-intolerant genes compared 

to that with control populations. However, here it’s still unclear whether uORF-perturbing 

variants are solely associated with de novo variants or associated with disease status. To 

disentangle the two explanations, as future work we could collect de novo non-coding 

variants from control trios (e.g. whole-genome sequencing data of unaffected siblings from 

the Simons Simplex Collection151) and compare them with that from trios of rare diseases. 

We could also compare the burden of de novo uORF-perturbing variants in cases with 

background rates predicted by a de novo mutational model. However, the challenge would 

be to take account of high methylation seen in 5’UTR, which is different from the sequence-

context de novo mutational model for coding bases we have used in Chapter 3. With the 

growth of whole-genome sequencing data from UKBB and gnomAD, case-control burden 

testing might also be feasible to identify candidate genes with uORF-perturbing variants 

causing rare diseases.    
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Chapter 6 Concluding Remarks 

Overall, the thesis aimed to develop novel computational methods and tools to interpret 

genetic variants of rare diseases. To this end, I built a disease-specific variant classifier by 

incorporating genotype-phenotype relationship for inherited cardiac conditions; measured 

homologous residues intolerant of genetic variations; evaluated constrained TTN missense 

variants; and developed a variant annotator for 5’UTR variants.  

6.1 What this work adds to the field 

The development of variant pathogenicity prediction tools should be tailored to the 

needs of accurate genetic diagnosis 

With a sufficient number of variants of known pathogenicity, we can use machine learning to 

generalise disease-causing patterns from computational lines of evidence such as using 

conservation, genetic constraint, and structural effect of residues for missense variants. The 

learned pattern could be applied to predict the pathogenicity of a novel variant. Though this 

general idea has been implemented in existing tools, In Chapter 2, I showed that the state-

of-the-art genome-wide tools are imprecise to apply in variant interpretation: no 

consideration of gene-disease relationships and no standardized benchmarking relevant to 

clinical decision making.  

 

Using inherited cardiac conditions as an example, a disease-specific model like CardioBoost 

could improve global classification accuracy by 4-24% over existing tools. Incorporating 

classification criteria with confidence level aligned with recommendations used for clinical 

practice, it could effectively prioritise variants of clinical relevance. CardioBoost provides a 

quantitative measure for supporting evidence PP3 and BP4 in ACMG guidelines, which 
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could be applied in research and clinical laboratories to genetically diagnose inherited 

cardiac conditions.  

 

This study also emphasizes that the model design in variant pathogenicity tools should be 

able to reflect real relationships in data and needs in genetic diagnosis. As intensively 

discussed, the model specificity might not be practical with limited training data. Given the 

size of interpreted variants for inherited cardiac conditions, we found a disease-specific 

model offered the optimal balance between model specificity and data availability compared 

with a gene-disease specific model or a genome-wide model. For other diseases, similar 

strategies could be experimented though it would require substantial efforts and knowledge 

on machine learning.  

 

To democratise the usage of machine learning in variant pathogenicity prediction, future 

algorithmic developments could aim for an automated framework such that it can find an 

optimal model for a given training variant set of diseases. From an engineering perspective, 

this automated framework shall also be composable to satisfy the needs for different 

disease-specific models. It could also deploy transfer learning methods such that a 

prediction model developed previously for related tasks could also be reused in a new task. 

For example, in the context of variant pathogenicity prediction, deep learning models such 

as PrimateAI trained to learn conservation patterns across the genome could be deployed in 

a novel disease-specific prediction task as it has learned how to recognise conservation 

from sequences from large-scale training data. Then the deep neural network could be fine-

tuned to recognise the specific pattern from a disease-specific training set even with a small 

size.    
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Homologous Residue Constraint is a novel computational line of evidence for 

missense variant interpretation.  

To interpret variants of uncertain significance, I also seek to develop novel evidence to 

capture characteristics of variant pathogenicity that could be neglected by existing 

approaches. Motivated by the challenge of interpreting TTN missense variants, I developed 

HRC, a novel measure of genetic constraint at the level of single amino acids, to predict 

missense variants under purifying selection but sparsely distributed in genes. In 

benchmarking with existing genetic constraint scores, HRC has higher precision in predicting 

disease-causing variants. Applied in patients with developmental disorders, it can also 

discriminate pathogenic de novo missense variants from benign ones in disease genes with 

an effect size comparable to protein-truncating variants. With a novel line of evidence to 

prioritise more missense variants, the power of gene discovery could also be improved as 

shown in the examples of developmental disorders and hypertrophy cardiomyopathy. 

Compared with existing approaches, its statistical power does not depend on gene length or 

mutation clusters within a gene or sub-genic region but depends on the occurrence of a 

domain in the entire component of human proteins. Therefore, it provides an orthogonal 

measure of variant pathogenicity. 

 

HRC can be immediately applied as a computational line of evidence to prioritise missense 

variants in clinics or research. In the assessment of novel variants, the constraint score 

could be combined with other computational tools. It would be our interest as future work to 

explore the best usage of HRC combining with other existing tools. It could also be 

integrated as a novel feature in the development of machine learning-based pathogenicity 

prediction tools. Since it is a domain-centric score, currently it is only applicable in proteins 

with Pfam domains.  

 

This study also pinpoints measuring intraspecific purifying selection as a powerful resource 

to evaluate variant pathogenicity. Future curation of naturally occurred human genetic 
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variation especially with increasing sample size and diversity of ancestries would be crucial 

to driving the accuracy and resolution of measurements. 

 

A subset of TTN missense variants can be associated with DCM.  

In previous studies, there wasn’t any detectable association between TTN missense variants 

and DCM with population-level evidence. Rare TTN missense variants are collectively 

prevalent in the general population. Nearly every human being carries one. Though two 

variants have been identified through family linkage studies, there wasn’t a way to identify a 

subset of disease-causing TTN missense variants. In Chapter 4, I applied the HRC method 

to prioritise DCM-associated TTN missense variants. The candidate positions are enriched 

with ClinVar pathogenic variants. The two DCM-causing variants known so far are located in 

the top constrained positions. TTN missense variants in I-set domains are also found to be 

significantly associated with DCM in Caucasian samples, mostly driven by cases of ACM. 

While we would need to replicate the association in independent datasets, the study 

represents a promising step forward and creates future research agenda. 

 

This work also emphasizes that there can be a subset of TTN missense variants associated 

with DCM. For novel TTN missense variants found in patients of DCM, they should be 

recorded as well as patients’ phenotype and familial data. As our analysis suggests that the 

candidate variants might explain 2% of DCM patients, data sharing across multiple cardiac 

centres would be strategic to aggregate samples to confirm the association robustly.  

 

The interpretation of non-coding variant would benefit from improving the resolution 

of variant annotation  

In Chapter 5, I presented UTRannotator, which could identify high-impact 5’UTR variants 

creating or disrupting uORFs. Out of all 5’UTR variants in ClinVar, we found that 32% of 

(likely) pathogenic variants and 8% of VUS can act through a uORF-disturbing mechanism. 
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We also found de novo uORF-disturbing variants in undiagnosed patients from GEL have a 

higher burden in LoF-intolerant genes compared with variants in gnomAD.  

 

For genetic diagnosis, this plugin can be immediately included in the bioinformatic pipeline 

for variant annotation. Although whole-genome sequencing would be ideal, variants called 

from exome sequencing can also be analysed since exons in 5’UTR proximal to CDS are 

often detected in exome sequencing152. It has already been applied to identify uORF-

perturbing variants on the exome sequencing data of 9,858 parent-offspring trios from the 

Deciphering Developmental Disorders study152. It is also extendable once we know how to 

predict the effects of other classes of UTR variants.  

 

What are the lessons we learn from this work to scale up to other non-coding variant 

annotations?  

 

One of the key factors to consider is the quality of functional non-coding region mapping. 

The annotation of UTR is a part of gene annotation, which is based on gene evidence (e.g. 

RNA-seq/Expressed sequence tags data) and protein evidence (e.g. ortholog in other 

species; experimental evidence of proteins). Initiatives such as MANE select (curating high-

quality annotation by matching Ensembl and RefSeq transcripts) would largely harmonise 

the annotation of UTR. However, the annotation for the majority of non-coding regions still 

entails uncertainty, which is also complicated by tissue/cellular specificity.  

 

The second factor is being able to predict the effects of non-coding genetic variations on 

disease. Our ability to directly predict the disease impact of non-coding variants vastly is 

limited by the fact that we only know the pathogenicity for a small fraction of non-coding 

variants (e.g. only 97 pathogenic/likely pathogenic 5’UTR variants in ClinVar), though it has 

been explored previously on certain non-coding regions32,42,90,153. Alternatively, we could 

focus on predicting the molecular effects of non-coding variants on regulatory elements. For 
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5’UTR variants, we show that a subset of them with putative loss-of-function effects on 

uORFs could be prioritised based on sequence changes. However, it is not straightforward 

to annotate variants disrupting sequence motifs in other cis-regulatory elements such as 

enhancers and promoters. The latter has been approached by pattern recognition from 

large-scale chromatin profiling data such as shown in DeepSEA154. High-throughput 

functional assays are also particularly important to elucidate the molecular effects especially 

for non-coding single nucleotide variations.  

 

Finally, the study of high-impact 5’UTR variants wouldn’t be possible without the ongoing 

curation of large-scale WGS datasets such as on undiagnosed patients by GEL and general 

populations by gnomAD. In the near future, we would also get better at establishing the link 

between large-effect non-coding variants and disease phenotypes by applying “genome-

first” approaches with the increasing samples of WGS and clinical data in biobanks.  

 

6.2 Conclusions 

The work in the thesis has refined the accuracy of interpreting genetic variants causing 

inherited cardiac conditions, established an amino-acid level constraint to prioritise missense 

variants of medical relevance, identified promising TTN missense variants with a role in 

DCM, and enhanced the identification of molecular consequence of 5’UTR variants. In 

summary, these studies have generated widely applicable methods and tools to study 

genetic diseases and improved understanding of inherited cardiac conditions.  
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