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Abstract

The combined rapid progress of hardware capability and the development of cutting-

edge numerical methods have recently provided an opportunity for Computational Fluid

Dynamics to be inserted in the design loop, with the role of a virtual wind tunnel. This

thesis tackles the development of a validated incompressible Direct Numerical Simulation

capability to model complex configurations of interest for the turbomachinery Industry,

adopting for the first time the spectral/hp element methods implemented in the Nektar++

software framework.

First, an extensive analysis of the numerical convergence properties is carried out on an

open geometry with clean inflow boundary conditions, to establish a set of best practices

and relate accuracy and computational cost.

Subsequently, the effect of stochastic and deterministic unsteadiness is analysed in

detail, with particular focus on various methodologies to provide physical disturbances,

their computational cost and accuracy with respect to reference experimental data. The

findings are extended to a range of Reynolds numbers representative of realistic operating

conditions, with focus on traditional performance indicators but also unsteady statistics to

provide rich insight into the suction surface transition mechanism, which plays a crucial

role in the generation of profile losses. As a result, a detailed characterisation of the

flow physics is provided in a range of inflow conditions and Reynolds numbers. Excellent

agreement with high fidelity experimental data is achieved especially at moderate and high

Reynolds numbers, supporting the use of these methodologies in Industry as a preliminary

standalone investigation tool.
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Chapter 1

Introduction

1.1 Motivation

The civil aviation industry is powered by high bypass turbofan engines, where about 80%

of the total thrust is generated by the fan. The fan itself is powered by the low pressure

turbine (LPT), which accounts for roughly 20-30% of the engine weight, since several

stages are needed to achieve the required work output.

The design of these components is an extremely challenging task that needs to reconcile

many requirements, and it is the result of decades of research and attempts. Nowadays the

process heavily relies on computational methods, which commonly drive the main design

decisions of new technological advances. Significant progress has been so far achieved in

improving the efficiency of LPTs: a 1% improvement corresponds to a 0.5-1 % reduction

of specific fuel consumption [56]. Current design trends are moving towards the reduc-

tion of machine dimension and the increase of revolution speed, which in turn results in

lower weight and higher power density. However, as recently highlighted by Sandberg &

Michelassi [144], the spectral gap existing between deterministic unsteadiness (associated

vortex shedding of blade rows and their rotor-stator interaction) and stochastic unsteadi-

ness (associated with the energy-containing eddies of turbulence) is progressively reduced.

This trend implies an interaction between the two sources of unsteadiness, which poses a

challenge for conventional approaches to turbulence modelling.

To set the context, Figure 1.1 shows the range of frequencies captured by different

modelling strategies. Reynolds Averaged Navier-Stokes (RANS) and Unsteady RANS

(URANS) approaches capture deterministic phenomena but do not resolve the scales of

turbulence beyond the inertial subrange. This modelling approximation holds valid in cases

where the deterministic and stochastic unsteadiness are characterised by non-overlapping

frequencies, thus in absence of a spectral overlap [170]. This problem is of considerable

importance, given that the interaction of these two mechanisms is believed to be linked to

the majority of irreversibility generation [144].

While RANS and URANS will continue to be the backbone of computer-driven design,

the technological advances of the last decades have created an opportunity for high-fidelity

1
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Figure 1.1: Sketch of the turbulent spectrum showing different blade passing frequency
ranges. Adapted from [144].

Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) to be inserted in

the design loop as a virtual wind tunnel. The benefit is that of resolving the physics

with greater level of accuracy, therefore providing an increased understanding which is

necessary to further advance the technological state of the art. A well-known NASA re-

port [157] provides a series of recommendations in a roadmap to enable Computational

Fluid Dynamics (CFD) to introduce a radical improvement in the prediction of critical

flow phenomena. One of many important remarks is related to the fast-paced advances in

hardware capabilities, which will involve heterogeneity in the hardware (hybrid of multiple

processors and accelerators), as well as the memory architecture and the network intercon-

nect. Laskowski et al. [87] further detailed how the developing and future interaction of

High Performance Computing (HPC), high-fidelity CFD and high-order unstructured grid

algorithms has the potential to allow for simulation-based research, analysis and design

capability in the context of turbomachinery. In particular, the requirement for effective

and trusted validation is highlighted over a broad design space. Another recent review

[173] discusses a number of novel numerical approaches suitable for turbomachinery sim-

ulations, together with the challenges the community is facing.

The recent advances in hardware technology and the development of novel numerical

methods have made LES and DNS affordable, and now widely used to reproduce simple

turbomachinery configurations with high degree of accuracy. Since in real gas turbine com-

ponents the rotor and stator count are usually prime numbers, simulations of a realistic

configuration are currently still unfeasible. For this reason, most of the studies employing

high fidelity CFD focus on simplified configurations, e.g. linear cascades. Though not fully
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representative of realistic geometries, more than 80% of the losses occur in the vicinity of

the boundary layer (BL). Therefore, the use of simplified configurations does not hinder

the possibility of gaining improved understanding of the flow physics in a more realistic

environment.

1.2 Literature review

This review focuses mainly on a description of the fundamental physical challenges to be

tackled in the analysis of gas turbine components, more specifically low pressure turbines.

Subsequently, after mentioning the main efforts towards the development of high-order

solvers, the focus is placed on the most important contributions deriving from the pion-

eering adoption of novel numerical approaches.

Low pressure turbines have high aspect ratios, which means that the majority of losses

are generated in the midspan (profile losses) and they depend particularly on the state of

the suction surface boundary layer [38], given the typically thin trailing edges. Especially

at low Reynolds numbers, the boundary layer transition mechanism affects the presence

of a separation bubble, and whether the separation is open or closed. An open separa-

tion bubble results in less flow turning, and therefore less power output. The ability to

correctly predict the flow physics associated with the suction surface boundary layer in

a realistic flow environment is therefore of great importance and constitutes a challenge

for computational methods. RANS methods typically struggle to provide accurate es-

timation of pressure losses, especially in off-design conditions. This factor, together with

the relatively low Reynolds and Mach numbers characteristic of LPTs (compared to high

pressure turbines or high pressure compressors), provides an opportunity to leverage the

advantages of high fidelity simulations.

1.2.1 Suction surface boundary layer transition mechanisms

The wake passing interactions are the primary form of unsteadiness in turbomachinery,

combined with the resulting background turbulence generated by upstream rows of rotat-

ing components. A detailed review by Hodson & Howell [60] summarises the wake-induced

boundary layer trasition mechanisms in LPTs, briefly reported here. A schematic repres-

entation of rotor-stator interaction is shown in Figure 1.2: the wake deficit caused by the

stator results in an effect analogous to a negative jet. The convection of the wake segment

through the passage is characterised by bowing, reorientation, elongation and stretching

[159]. These characteristics of the wake kinematics are visible from the Laser Doppler

Anemometry (LDA, also called Laser Doppler Velocimetry) measurements by Stieger &

Hodson [163], shown in Figure 1.3.

The wake passing has an important effect on the suction surface, where it modifies

the transition mechanism and, if present, the separation bubble dynamics. The ability to
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Figure 1.2: Sketch of the wake dynamics due to rotor-stator interaction. From Coull
& Hodson [29].

predict boundary layer transition locations accurately on turbomachinery airfoils is critical

to accurately evaluate aerodynamic performance. This motivated extensive research efforts

aimed at the development of transition models for RANS solvers [137, 138].

According to Hodson & Howell [60], wake-induced transition may occur in three dif-

ferent ways, depending on the Reynolds number and on the blade geometry.

Wake-induced BL transition in attached flow

At high Reynolds number, transition may take place before the occurrence of laminar sep-

aration, induced by the high turbulence carried by the wakes; between subsequent wake

cycles, the flow remains attached. In this context, the first stages of natural transition

are bypassed and turbulent spots are formed within the boundary layer. Having contrib-

uted to the analysis of the topology of turbulent spots, Schubauer & Klebanoff [151] also

highlighted the existence of a calmed region trailing each spot (shown in the sketch of

Figure 1.4). This is a laminar-like region with a full velocity profile [31, 56, 153] and, as

such, it can resist transition and separation. Since the trailing edge of the calmed region

travels at 20-30% of the free-stream velocity (depending on the local pressure gradient),

the calmed region lasts longer than the turbulent region. Schulte & Hodson [153] argued

that maximum performance is obtained if the blade design is such that as the new wake
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Figure 1.3: LDA measurements of phase-averaged 2D turbulence kinetic energy k2D =
1
2〈u′2 + v′2〉 nondimensionalised by isoentropic exit velocity. Adapted from Stieger &
Hodson [163].

arrives, the calmed region is advected past the trailing edge. Significant research efforts

were further dedicated in recent years to in-depth analysis of the wake-induced transition

mechanism, discussed in further detail in a later paragraph.

Wake-induced BL transition in attached flow on a separation bubble

At intermediate Reynolds numbers, laminar flow separation is more likely. The effect of

periodic disturbances is beneficial in that it reduces the impact of the separation bubble on

profile losses. As shown by Schulte & Hodson [152], after the turbulent flow carried by the

wakes increases the losses, the calmed region that follows introduces a significant reduction

of the momentum thickness at the trailing edge, proportional to profile losses [38]. Before

the subsequent wake cycle impinges on the aft portion of the suction surface, the separation

bubble tends to re-establish its steady-state behaviour. Furthermore, Stieger & Hodson

[162] showed that although the wake-induced turbulent strip is characterised by large levels

of dissipation, the calmed flow following the impinging wake and subsequent initial stages
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Figure 1.4: Characterisation of a turbulent spot, showing (a) the wall-normal eleva-
tion, (b) the shape in the wall-parallel direction, (c) the wall-shear stress along the
centreline and (d) a space-diagram. Adapted from Hodson & Howell [60].

of formation of a new separation bubble are characterised by low levels of dissipation.

Therefore, overall effect is a reduction in time-averaged losses.

Wake-induced BL transition in separated flow

When the Reynolds number is low, flow transition may not occur prior to separation, and

the effect of wake passing leads to transition through a different mechanism compared to

the higher flow regimes discussed in the previous paragraphs. This is due to the highly

unstable inflexional profiles of the separated flow region. The mechanism of transition in

the laminar separation bubble of a T106A low pressure turbine cascade was first described

by Stieger & Hodson [163], and schematically represented in Figure 1.5. The negative

jet previously shown in Figure 1.2 impinges on the bubble by accelerating the flow down-

stream of the wake, and slowing down the flow trailing the wake (top of Figure 1.5). The

accelerating flow in the outer part of the boundary layer intensifies the shear existing

across the separated region. Concurrently, the wall-normal component of the negative

jet introduces perturbations in the shear layer (Figure 1.5b), promoting the development

of an inviscid Kelvin–Helmholtz roll-up (Figure 1.5c). Since the wake travels faster than

the roll-up vortices, it convects over the remaining portion of the separation bubble and

triggers the emergence of further roll-up vortices (Figure 1.5d). The trailing region of the

wake leaves behind a calmed region which decreases profile losses. Finally, the separation

bubble is then progressively formed again (Figure 1.5e) and the cycle repeats itself.



CHAPTER 1. INTRODUCTION 7

Figure 1.5: Sketch of the wake-induced boundary layer roll-up mechanism. Figure
from Stieger & Hodson [163], further adapted from Hodson & Howell [60].

1.2.2 The development of high-order codes and applications to turbines

The tendency in moving toward high-order methods (HOM) for high fidelity simulations

owes to their superior dispersion-diffusion properties, offering potential to achieve better

accuracy then traditional second order schemes at comparably reduced computational cost.

Importantly, comparisons between low-order schemes and high-order methods should be

carried out looking at the cost required to achieve a given degree of accuracy, thus not

evaluating method efficiency on the same computational mesh [185].

The change in computational technologies and level of fidelity poses new challenges:

the new algorithms require specific activities to develop guidance on their best use with

verification and validation for consolidated flow problems of industrial relevance, espe-

cially for the turbomachinery field; the International High-Order Workshop [185, 26] is an

example of these activities.

High-order software frameworks

A number of high-order software frameworks have been developed in the past 20 years,

proposing different types of numerical schemes and capabilities to tackle various types of

industrial problems, each with specific advantages and limitations. A recent review by

Tyacke et al. [173] mentions a number of important examples.
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Some of the main high-order finite difference (FD) codes are: HiPSTAR [145] (extens-

ively applied to turbomachinery), OpenSBLI [67] and 3DNS [187]. Within the spectral

element family, some of the most well-known frameworks are Nektar++ [118] and Nek5000

[6]. Nektar++ (adopted through this work, and further discussed in detail in Chapter 2)

supports both continuous (CG) and discontinuous Galerkin (DG) formulations, as well

as a variety of solvers. DG solvers are being actively developed at MIT [45], Cenaero

(ARGO) [22], and NASA AMES [48].

Within the class of finite element methods, the type of lifting operator that propagates

information across elements determines the specific family of methods. The Flux Recon-

struction (FR) approach was recently introduced by Huynh [64]. Within this formulation,

a multi-parameter family of provably stable schemes was identified [177, 178]. FR unifies

different numerical schemes: by appropriate choice of correction terms, it was shown to

recover DG, spectral difference and spectral volume methods [65], offering the advantage

of simplicity over alternative formulations. The connections between FR and DG were

also recently extensively explored [37, 105].

Among the FR software frameworks, PyFR [194] has been successfully applied to a

range of fluid dynamics problems, both of fundamental nature [66] and of aeronautical

interest [179, 127]. Among other frameworks currently under active development, GFR

[160], Mu2s2T [15], hpMusic [183] and a space-time extension of FR (STEFR) [96] should

be mentioned.

High fidelity studies of linear cascades

The adoption of high-fidelity CFD methods in turbomachinery has allowed for significant

advances in the understanding of the flow physics, owing to the unprecedented level of

detail that can be simulated. However, several seminal contributions were made in the

early 2000s through the use of low order codes, and they are mentioned in this section for

completeness.

Clean inflow studies Most studies analysing cascades with clean inflow boundary con-

ditions are part of a validation and verification activity linked to software development.

In fact, this case bridges industrial geometrical complexity with relative semplicity in set-

ting up the numerical simulations, and the absence of uncertainty on the imposition of

unsteady boundary conditions. One of the examples is a study by Raverdy et al. [142],

where a T106 LPT linear cascade was analysed with a compressible formulation. Partic-

ular attention was placed on the suction surface separation bubble, and Fourier analysis

applied to the separation and reattachment point highlighted the existence of coupling

between the bubble and the trailing edge vortex shedding. More recently, Marty et al.

[102] investigated a high-order MUSCL interpolation implemented in the elsA software

framework [20], a multi-purpose CFD solver developed by Onera. Among the test cases

analysed, a T106C cascade was simulated at third and fifth order of accuracy, highlighting

the robustness of the method and demonstrating the capability of the solver to simulate
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complex flow geometries. Vincent et al. [179] performed simulations of a linear LPT cas-

cade using PyFR, resolving the full span and five repetitions in the pitchwise domain, thus

setting an unprecedented milestone in the turbomachinery field by solving for 113 billion

Degrees of Freedom (DoF) and showcasing very close agreement in the mean pressure

distribution against experimental data. Medic et al. [104] analysed a compressor cascade

reporting very good agreement with predicted losses at design conditions. At off-design

conditions, laminar separation and transition occur downstream compared to the experi-

ments, thus impacting the accuracy of loss prediction. Bhaskaran et al. [13] compared the

accuracy of two different high-order LES methods on a T106A LPT cascade, obtaining

very close agreement with experimental measurements of pressure distribution and wake

losses. Fernandez et al. [45] discussed the implementation and validation of a high-order

ILES methodology in a compressor cascade. The solver was demonstrated to accurately

and efficiently capture the transition process up to Re = 460000, highlighting one of the

advantages of high-order methods over low-order schemes owing to their low numerical

dissipation. In particular, this allows to accurately predict transition not because of the

small length and time scales, but rather for the ability to capture small instabilities that

would otherwise be damped. Cassinelli et al. [23] discussed the resolution requirements of

a T106A linear cascade analysed with the spectral/hp element methods implemented in

the Nektar++ framework; the main results of this study are presented in detail in Chapter

3. Recently, Bolinches-Gisbert et al. [15] focused on the Reynolds sensitivity of a research

LPT cascade as part of validation efforts of the Mu2s2T FR solver. Comparison against

a comprehensive set of experimental data was presented, showcasing very good agreement

in blade wall distributions and wake statistics.

Inflow turbulence In the past 20 years, significant research efforts were dedicated to

the development of numerical techniques to introduce stochastic unsteadiness; the main

and most successful approaches are reviewed in more detail in Chapter 2, while this section

is concerned with the main applications of such techniques to turbomachinery components.

Among the early DNS studies of flow past a turbine blade, Kalitzin et al. [73] com-

pared results obtained with clean inflow, wake passing data from Wu & Durbin [196]

and inflow turbulence. In particular, the latter was generated via precursor simulation of

homogeneous, decaying turbulence. The natural transition mechanism on the suction sur-

face in the free inlet case is modified by the convecting disturbances, which trigger bypass

transition. Zaki et al. [206] performed DNS simulations of flow past a compressor blade,

introducing disturbances from a precursor data set of decaying homogeneous isotropic tur-

bulence (HIT), analysing the effect of increasing free-stream turbulence intensity on the

transition mechanism. Streamwise-elongated disturbances were amplified upstram of the

transition point. On the pressure side, with increasing inflow turbulence level, inner streak

instability was replaced with bypass transition via secondary streak instability. On the

suction surface, at low turbulence intensity the separation persisted and was modulated

by boundary layer streaks. As the intensity was increased, turbulent spots were observed,
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and progressively separation was completely suppressed. Medic & Sharma [103] conduc-

ted LES simulations of three LPT airfoils in a range of Reynolds numbers, comparing

low free-stream and high-free-stream turbulence. Particularly at low Reynolds numbers,

significant deviations from measurements were reported.

More recently, the first compressible DNS of a linear LPT cascade was performed by

Sandberg et al. [145] with the high-order finite difference code HiPSTAR, showcasing

excellent agreement with experimentally measured pressure coefficient and wake loss pro-

file. A simple inflow turbulence generation method based on generating harmonic waves

at a few discrete wave numbers was described. Within 20%Cax from the inlet, the char-

acteristic broadband spectrum was obtained thus supporting the validity of the proposed

methodolody. The same turbulence generation mechanism was employed by Wheeler et al.

[186] to perform the first DNS of a HPT vane at transonic conditions. The introduction

of disturbances promoted the formation of near-wall streaks thus augmenting the surface

heat transfer. Suction surface transition was found to occur via intermittent development

of Kelvin–Helmholtz, roll-ups triggered by upstream-propagating pressure waves gener-

ated at the trailing edge.

Garai et al. [49] analysed the T106A and T106C linear cascades using a high-order entropy-

stable DG spectral element method solver with a space-time formulation. The inflow tur-

bulence was generated by adapting a linear forcing technique for the DG framework. This

approach was further applied to a high-pressure turbine cascade [50] with high levels of

inflow turbulence. The presence of disturbances modified the suction surface dynamics by

promoting transition via bypass mechanism. The numerical results matched experimental

measurements at lower levels of inflow turbulence. Comparison with RANS simulations

demonstrate the superiority of the proposed DG approach in predicting the separation loc-

ation and boundary layer thickness in the context of high-Reynolds number flows. As part

of their validation efforts, Bhaskaran et al. [13] carried out the first high-order solution

of a HPT vane to include stationary turbulence-generating bars in the computational do-

main. As a result, the blade heat transfer distribution obtained with two different solvers

were in excellent agreement. More recently, Cassinelli et al. [24] compared two different

approaches to introduce inflow turbulence in a research LPT cascade at various intensity

levels; the findings of this study are presented in Chapter 4.

Very often, the turbulence length scale measured experimentally is significantly larger

than the computational domain, and therefore reduced in the numerical experiments. The

first attempt at estimating the effect of turbulence intensity and length scale on the blade

boundary layers and heat flux was carried out by Pichler et al. [134]. A HPT vane at

realistic engine conditions (Reis = 540000, Mis = 0.92) was simulated with HiPSTAR

introducing inflow turbulence via a digital filter method [84, 199, 169]. Increased levels

of turbulence intensity and length scale were found to promote greater heat flux levels

and earlier boundary layer transition as well as its intermittent behaviour. Recently, Zhao

et al. [207] performed a highly resolved LES of a HPT vane at realistic Reynolds and

Mach numbers, analogously adopting a digital filter approach and observing the effect of
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different turbulence length scale and intensity on the transition mechanism. At relatively

low inflow turbulence levels, transition occurred via streak instability. Evidence of both

varicose instability (in the adverse pressure gradient region) and sinuous instability (in

the weak favourable pressure gradient region) was presented. At the highest levels of

free-stream turbulence, no clear streak instability path was observed.

Finally, among the studies focusing on compressor flows with stochastic inflow dis-

turbances, Przytarski & Wheeler [141] discussed the accuracy of the estimation of entropy

generation rate, and the effect of resolution on the various loss generation mechanisms;

the latter was found to depend strongly on the mechanism and location of transition.

Wake passing effect Rotor-stator interactions are the key feature of turbomachinery

flows, and commonly investigated experimentally by means of a set of moving bars situated

upstream of the leading edge. The very first computational studies investigating the effect

of wake passing were carried out by Wu & Durbin [198, 196], who presented evidence

that incoming wakes are responsible for the formation of longitudinal structures on the

pressure side. Subsequently, a number of DNS studies were performed on LPTs, providing

further contributions to the understanding of the effect of incoming wakes on the pressure

and suction side boundary layers [110, 111, 189, 191]. For example, Michelassi et al. [110]

performed an LES of T106 airfoil at Re = 148K, observing noticeable differences between

DNS and LES in the prediction of transition. This analysis confirmed that LES can have

difficulties in predicting unsteady transition, also later highlighted by Durbin & Wu [43].

The wake dynamics in the mean passage has been less investigated than the effect

of wakes on the suction surface boundary layer. Michelassi & Wissink [112] conducted a

study using incompressible LES to identify the turbulence kinetic energy (TKE) generation

mechanism outside of the blade boundary layer. The largest TKE production was found

to occur at the wake location where the maximum strain tensor eigenvalue approximately

coincides with the location where the wake and the direction of compression are aligned.

At the higher Re = 148K, the turbulent kinetic energy peak is closer to the suction side

boundary layer and speculated to improve its stability. These findings provide important

information for the design of suction-side-separation-free LPT blades.

From an engineering point of view, improvements in the efficiency of the machine

can be largely obtained by optimising profile losses, but a highly resolved and validated

DNS is required for this purpose. Michelassi et al. [109] built on top of previous work

[145] to analyse the effect of various types of inflow disturbances on losses in a series of

compressible DNS simulations. In particular, they observed the effect of three reduced

frequencies and two Reynolds numbers (Re2 = 60K, 100K) on various types of loss indic-

ators. The behaviour of high reduced frequencies (Fred = 1.22, corresponding to 4 bars

per pitch) was found to be most effective in suppressing the suction surface separation

bubble by manifesting a very similar behaviour to high levels of inflow turbulence, due

to the constant-area mixing prior to the leading edge. The largest difference between

mixed-out total pressure losses and profile losses calculated via Denton’s approach [38]
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was found at low levels of reduced frequency (Fred = 0.31, corresponding to 1 bar per

pitch): in this case, the wakes remain distinct within the blade passage and experience

significant wake distortion losses. Further LES simulations [108] (previously compared to

DNS at the same regime, to ensure that the numerical approximations introduced would

not significantly affect the accuracy of the flow physics) demonstrated the importance of

the reduced frequency and flow coefficient on losses. These important design parameters

affect the frequency with which incoming wakes impact on the cascade as well as the wake

inclination. The normal distance between incoming wakes was found to correlate very

well with mixed-out losses, suggesting that wake merging (which produces a free-stream

turbulence-like behaviour) is in general beneficial for the reduction of unsteady losses.

This approach can importantly be adopted to inform design optimisation, as the various

combinations of reduced frequency and flow coefficient are effectively a consequence of

design parameters like revolution speed and flow-through velocity.

Hammer et al. [57] more recently performed LES of a T106A cascade where the effect of

bar rotation was analysed in conjunction with their usual translational motion. Clockwise

rotation of the bars was found most effective in suppressing the suction surface separation

bubble but it presented the highest mixed-out losses, likely due to wake distortion.

When analysing rotor-stator interation experimentally, it is difficult to differentiate

between the mean effect of the wake acting as a negative jet and the effect introduced by

small-scale fluctuations. This challenge is relatively unexplored in the literature and to

the author’s knowledge only two studies are available on the subject. Wissink [192] first

tackled this research question, focusing on comparing the impact from the wake data of Wu

& Durbin [196] and the same wake without velocity fluctuations. As a result, in both sim-

ulations a Kelvin–Helmholtz instability of the separated shear layer was triggered by the

impinging wakes. The small-scale fluctuations carried by the convective wake influenced

the transition to turbulence of the separated shear layer: without external disturbances,

the suction side boundary layer retained two-dimensionality and remained laminar almost

up to the trailing edge. Thus, the unsteady flow on the suction surface was shown to

be dependent on the turbulence intensity and the length scale of passing wakes. Sarkar

[146] later analysed a T106A profile under the influence of migrating wakes, analysing

the difference of a 2D and 3D precursor simulation of flow past a cylinder to provide

the wake deficit mechanism and focused particularly on the kinematics of the migrating

wakes as well as the unsteady boundary layer dynamics. Analogously to Wissink [192], the

Kevin-Helmholtz instability of the separated shear layer was shown to be triggered by the

low-frequency effect of the wake. The small eddies characteristic of fully three-dimensional

wakes have significant effects on the levels of turbulent production and dissipation in the

aft portion of the suction surface.

The wake passing effect has been analysed mostly in the context of LPT, but some

studies also focused on compressor cascades. Among the experimental work carried out in

this context, a study by Heigenfeld & Pfitzner [59] is often adopted as a reference. Zaki

et al. [202] introduced wakes generated from a separate simulation of flow past a circular
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cylinder. The periodic disturbances periodically triggered transition on the suction sur-

face via Kevin-Helmholtz instabilty; on the suction surface, the boundary layer remained

attached through the wake passing cycle. Wissink et al. [193] focused on analysing the

effect of wake strength on BL transition and separation. Stronger wakes were found to

intermittently suppress separation, while weaker wakes marginally affected the size of the

separation bubble. More recently, Leggett et al. [90] compared very refined LES and

RANS results in a range of off-design configurations, revealing a similar loss estimation

between RANS and LES but with different contributions, according to Denton’s analysis.

The unsteady test case with incoming wakes showed limited sensitivity of the loading and

skin friction distribution to the incoming disturbances, but nonetheless was subject to

intermittent separation.

Gap-size effect The effect of incoming wakes is commonly studied both numerically

and experimentally by introducing upstream moving bars. This approach can produce

realistic wakes and thus be adopted to analyse the impact of disturbances on the trans-

ition mechanism. However, it cannot reproduce the potential effect that occurs in the

axial gap between consecutive stator and rotor rows. Pichler et al. [133] carried out the

first simulation of stator-rotor interaction in a realistic LPT vane, analysing the effect

of different axial gaps. The turbulence kinetic energy level entering the rotor row was

reduced by a factor of three when doubling the gap size. The stronger disturbances of

the small axial case entirely suppressed the small time-averaged suction surface separation

bubble present in the large axial gap case. However, the overall loss in the former case

was higher, due to the TKE amplification in the blade passage. The rise in loss due to

smaller axial gap was also reported by Przytarski & Wheeler [140]. The study focused

on a multi-stage compressor environment, and the rotor-stator interaction was modelled

via the introduction of a wake recycling method, as opposed to explicitly simulating two

stages.

The importance of grid resolution

Turbomachinery flows are extremely complex, featuring a range of flow phenomena in

a highly turbulent flow environment. As pointed out by Sandberg & Michelassi [144],

the claim of DNS should be based on more stringent criteria than simply mean pressure

distributions. The Authors subdivided grid requirements in three regions, dominated by

different turbulence scales: development region upstream of the blade, boundary layers

and blade wake. In-depth details are provided for each of these areas [144]. Supporting the

claim that mean blade wall distributions are often not sufficient as convergence indicators,

Pichler et al. [135] focused on assessing the impact of various extremely well-resolved

numerical setups on turbulence quantities, namely turbulence kinetic energy, turbulence

production and dissipation. All setups adopted provided accurate estimation of the mean

pressure distribution and wake loss profile, which are conventionally adopted as conver-

gence indicators. For accurate estimation of TKE and turbulence production profiles the
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most coarse grid is deemed sufficient, while dissipation (which requires capturing the smal-

lest scales of turbulence) required a grid count increase of a factor of 6. This resulted in

an order-of-magnitude increase in computational cost, derived from the combined effect

of problem size and timestep limitation due to the use of an explicit solver.

1.3 Objectives, research questions and thesis outline

This thesis presents the fist extensive numerical investigation of the spectral/hp element

framework Nektar++ [21, 118] applied to low pressure turbine cascades using unstructured

grids. The principal focus is twofold: on one side, to develop a full understanding of the

computational requirements to use this class of numerical methods as a virtual cascade

for industrial test cases, mapping the computational cost and accuracy together with the

necessary technology development to simulate realistic flow physics. On the other side,

the project focuses on building on the significant advances of high-fidelity CFD in the

last 20 years to contribute to an improved understanding of the physics and the mod-

elling linked to the effect of different inflow conditions that represent deterministic and

stochastic sources of unsteadiness.

More specifically, the main research questions addressed through this work are the follow-

ing:

1. Development of incompressible DNS capability for LPTs using spec-

tral/hp element methods. What is the best numerical configuration that com-

bines computational efficiency and high accuracy? How can the numerical properties

of the method be leveraged in the context of flow past low pressure turbines?

2. Resolution requirements. What is the effect of mesh resolution and expansion

order, domain size, and time-averaging extent on the accuracy of the results?

3. Inflow disturbances methodology. How can inflow disturbances (stochastic dis-

turbances) be modelled physically and with minimal algorithmic overhead?

4. Wake passing methodology. How can the wake passing effect (deterministic

disturbances) be modelled physically and yield accurate predictions compared to

experimental measurements?

5. Reynolds sensitivity. What is the Reynolds sensitivity of a LPT cascade with

clean inflow and inflow disturbances? How accurate is the numerical prediction of

losses across various operating regimes?

6. Reynolds sensitivity with wake passing. What is the Reynolds sensitivity of a

LPT cascade subject to wake passing? How accurate is the numerical prediction of

losses across various operating regimes?
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The various research questions are discussed through the methodology and results

chapters. The connections between the various topics are highlighted in the roadmap of

Figure 1.6, color coded for clarity.

The present chapter has provided a summary of the main recent development efforts

towards high-fidelity CFD capability for industrial-scale cases, as well as the most relevant

studies of the flow physics in turbomachinery components using high-fidelity CFD. The

rest of the thesis is structured as follows: Chapter 2 provides a description of the spec-

tral/hp element methods, the numerical techniques adopted to simulate high-Reynolds

number flows and the technologies integrated into the Nektar++ framework to model in-

flow turbulence and the wake passing effect. Chapter 3 constitutes the core of the first

principal focus of this work and the first two research questions, i.e. to provide an under-

standing of the resolution requirements to accurately and efficiently model low-pressure

turbine cascades at moderate Reynolds numbers. The findings of this Chapter provide

the indications to inform the choice of numerical configurations adopted in the rest of the

thesis. Chapters 4 focuses on the effect of two different methodologies to introduce inflow

disturbances (stochastic unsteadiness). Chapter 5 and 6 analyse the Reynolds number

sensitivity in a realistic operating range: Chapter 5 focuses on clean inflow boundary

conditions and the introduction of stochastic inflow disturbances; Chapter 6 builds on

the previous one, combining the analysis of Reynolds sensitivity with the wake passing

effect (deterministic unsteadiness). Finally, Chapter 7 draws the main conclusions and

suggestions for future research directions.
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Figure 1.6: Thesis roadmap. In blue: discussion chapters; in grey: methodology and
validation chapters; in green: results chapters.



Chapter 2

Numerical methods and

computational approach

This chapter discusses the main computational technologies underpinning the rest of the

thesis, and it is divided in four main parts. First, a description of the numerical meth-

odology adopted for the discretisation of PDEs using the spectral/hp element method is

provided, focusing specifically on algorithms for incompressible flows. The convergence

properties discussed are further investigated in the context of turbomachinery flows in

Chapter 3, which provides the grounding capability to simulate a virtual rig. Special at-

tention is further dedicated to the numerical techniques adopted to tackle high-Reynolds

flows and guarantee numerical stabilisation, discussed in Section 2.2. Subsequently, the

third part of the Chapter focuses on methodologies to introduce stochastic disturbances

(i.e. inflow turbulence), justifying and validating the approaches selected, which are ap-

plied and compared in Chapter 4. Finally, the focus is set on the computational approach

selected to model deterministic inflow disturbances (i.e. wake passing effect), which is

validated in detail and further explored in Chapter 6.

2.1 Spectral/hp element methods

In the numerical approximation of a system of PDEs, the mathematical formulation

defined in a continuous space is approximated by a discrete representation. The con-

ditions under which the finite representation is defined are determined by the specific

choice of numerical method adopted. The modern spectral methods were first presented

by Gottlieb and Orszag [55], while the spectral element method was later introduced by

Patera [129] and further developed into the spectral/hp element method by Karniadakis

& Sherwin [77]. In the context of the spectral/hp element method, the so-called method

of weighted residuals is adopted, leading to the well-known Galerkin formulation which is

briefly outlined in the next section.

17
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2.1.1 The method of weighted residuals

The method of weighted residuals shows how by choosing different test functions (also

called weight functions), some of the various methods for solving a system of PDEs can

be derived. Complete details can be found in the book by Karniadakis & Sherwin [77],

which is taken as a reference throughout this section and the following.

The numerical solution of a PDE of the form L(u) = 0 over a domain Ω is considered,

subject to appropriate initial and boundary conditions. The solution is assumed to be

accurately represented by the approximation:

uδ(x, t) = u0(x, t) +

Ndof∑
i=1

ûi(t)φi(x) , (2.1)

where φi(x) are called trial (or expansion) functions, ûi are Ndof unknown coefficients

and u0(x, t) satisfies boundary and initial conditions. Substituting this expression into

the differential problem produces non-zero residual, L(uδ) = R(uδ). In order to uniquely

determine the coefficients ûi it is necessary to introduce a restriction on the residual, which

reduces the problem to a system of ordinary differential equations, to be solved via some

time integration scheme. Introducing the Legendre inner product as

(f, g) =

∫
Ω
f(x), g(x))dx , (2.2)

the inner product of the residual with respect to a weight (or test) function is required to

be zero:

(vj(x), R) = 0 j = 1, · · · , Ndof . (2.3)

The residual tends to zero as Ndof → ∞, since the discrete approximation tends to the

exact solution. The choice of the trial and test functions determines the nature of the

numerical scheme and its properties. Most finite element and spectral/hp element formu-

lations adopt a Galerkin projection, where the test functions are chosen to be identical to

the trial functions: vj = φj .

The convergence of Galerkin methods (as well as pseudo-spectral methods) is expo-

nential. However, the rate of convergence is not fixed and it depends on the regularity of

the solution. For applications that lead to sufficiently smooth solutions, this approach has

a significant algorithmic advantage.

Spectral/hp element methods combine the local nature of the expansion functions

typical of finite element methods and the arbitrary expansion type typical of spectral

methods. H-type refinement is used in conjunction with p-type refinement, therefore

combining the geometrical flexibility of finite element methods and the superior spatial

accuracy properties of spectral methods. Beyond the exponential convergence rate allowed

by p-refinement [7], some other advantages (common to other high-order methods) deserve

a mention: small diffusion/dispersion error, easier implementation of the inf-sup condition
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for the incompressible solver as well as better data volume-over-surface ratio for efficient

parallel processing.

In general, the spectral/hp element method involves a decomposition of the domain

into subdomains or elements, each of which is mapped into a reference domain (the stand-

ard element) through a parametric mapping. In each standard element, the solution is

represented by means of a polynomial function with arbitrary degree (also referred to as

expansion basis function) and the required elemental operations (multiplications, integrals

and differentiations) are performed. The global problem is then finalised by introducing

specific connectivity rules at the interfaces between adjacent elements. Connectivity can be

enforced in different ways. The classical CG method imposes C0 continuity across elments

by means of a global assembly strategy. On the other hand, if the solution is allowed to be

discontinuous across element boundaries (but requiring fluxes to be continuous) the DG or

FR approaches are obtained. The different formulations are suitable for different classes

of physical problems. The DG method is naturally well-suited for hyperbolic conservation

laws typical of compressible flows, and while applicable for solving incompressible flows,

the CG method can leverage more advanced maturity in the algorithms for tackling this

class of problems and therefore it is adopted in this study.

The computational efficiency of the numerical method and the suitability to CPU-

GPU architectures depends on the equations being solved, generally interlinked with the

numerical approach. Over the past two decades, significant improvements in arithmetic

capability have outpaced the advances in random access memory [194]. This explains

how the bottleneck in efficiency of the CG incompressible formulation is currently posed

by memory movement, thus limiting the size of the problems that can be tackled in

feasible compute times. Modern hardware architectures rely on high-speed caches and

shared memory to maintain throughput. For an algorithm to leverage these efficiently,

however, the memory access pattern must exhibit a degree of data locality. Compressible

solvers relying on a DG or FR formulation with compact stencils demonstrate good scaling

properties and can leverage GPU architectures.

Research efforts in the Nektar++ group have been directed towards the development

of implicit solvers [200] to alleviate the significant timestep restrictions of the explicit

formulation while emphasizing development patterns to limit the memory footprint, which

tends to be high owing to the coupling between elements.

Despite the challenge in providing an accurate and fair comparison across different

numerical solvers, the compressible and incompressible Nektar++ capability was tested

on two standard benchmark cases, namely the Taylor-Green vortex and the flow past a

circular cylinder at Re = 3900 [182]. For the incompressible formulation, both a full

3D discretisation and a Quasi-3D formulation were considered (and discussed in detail in

the following section). The comparison was established against the explicit and implicit

compressible solvers. In the flow past a circular cylinder, considering the Quasi-3D in-

compressible approach as benchmark, the full 3D incompressible formulation was found

approximately an order of magnitude slower. The same gap separated the 3D incompress-



2.1. SPECTRAL/HP ELEMENT METHODS 20

ible solver and the explicit compressible formulation, while the implicit approach was found

twice as fast as the explicit counterpart. It should be highlighted that these estimates are

highly dependent on a number of factors, and further developments (e.g. the ability to

leverage vector processing units in the explicit compressible solver) may significantly affect

the relative efficiency and speed of the various solvers. These considerations highlight how

the addition of compressibility effects is not trivial, owing to the fact that it is not simply

a small modification of the solver, but it requires an entirely diffent numerical formulation.

The following sections briefly outline the main building blocks of the spatial discret-

isation. Subsequently, the time-integration scheme adopted in this work for solving the

incompressible Navier-Stokes equations is outlined.

2.1.2 Spatial discretisation

The computational domain Ω is subdivided into N non-overlapping elements Ωn. Among

the various shapes that can be used, this work is mainly concerned with quadrilateral

and triangular elements. The standard element is denoted by Ωs. The expansion bases

are defined on the standard element, as well as the main operations like integration and

differentiation. The standard quadrilateral region is defined as:

Ωs = {(ξ1, ξ2)| − 1 ≤ ξ1, ξ2 ≤ 1} , (2.4)

and the standard triangular region is instead:

Ωs = {(ξ1, ξ2)| − 1 ≤ ξ1, ξ2, ξ1 + ξ2 ≤ 0} . (2.5)

A collapsed two-dimensional coordinate system is introduced to describe the standard

triangular element with independent coordinate limits. Introducing:

η1 = 2
1 + ξ1

1− ξ2
− 1 (2.6)

η2 = ξ2 (2.7)

the definition of the standard element with η1, η2 is identical to that of the quadrilateral

region with ξ1, ξ2.

Expansion bases

The key feature of p-type methods is that of constructing a polynomial expansion of

arbitrary order within each elemental region. A suitable expansion is typically an ortho-

gonal or near-orthogonal set of functions. Importantly, the expansion should be amenable

to numerical implementation and computational efficiency. The construction of a multi-

dimensional expansion basis is in general obtained as an extension of one-dimensional

expansion bases, defined on the standard segment Ωs = {ξ)| − 1 ≤ ξ ≤ 1}. For example,

well-known examples of choices for the basis functions are the Lagrange polynomials and
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Figure 2.1: One-dimensional modified modal basis functions for P = 7.

Legendre polynomials. The former are an example of nodal expansion, while the latter

is a modal expansion. Modal bases are also called hierarchical bases, because an expan-

sion of order P + 1 contains the expansion of order P . Several factors are taken into

account when selecting an expansion set: numerical efficiency, conditioning and linear

independence of the basis, as well as its approximation properties [77]. For instance, the

orthogonality property of Legendre polynomials is an attractive feature as in general it

leads to well-conditioned matrices. However, this is not sufficient to make them the best

choice in the context of a CG formulation using spectral/hp element methods. In fact, the

requirement of C0 continuity would couple all elemental degrees of freedom to adjacent

elements. Therefore, this work adopts a modified modal expansion with boundary-interior

decomposition [130, 166, 125], constructed from a family of orthogonal Jacobi polynomi-

als denoted by Pα,βP . Indicating a general expansion basis for a one-dimensional standard

element with φp(ξ), and the modified modal basis as ψap(ξ):

ψap(ξ) =


1−ξ

2 , p = 0(
1−ξ

2

)(
1+ξ

2

)
P1,1
p−1(ξ) , 0 < p < P

1+ξ
2 , p = P

(2.8)

High-order expansions are leveraged significantly through this work, with polynomial

order P = 7 being the most frequent choice; the one-dimensional modified basis at this

polynomial order is shown in Figure 2.1.

The two-dimensional expansion basis for triangular elements is constructed through
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Figure 2.2: Two-dimensional modified modal basis functions for P = 7 in a quadrilat-
eral element, with −1 ≤ ξ1, ξ2 ≤ 1 The boundary modes are the only ones that have
nonzero values at the edge of the standard domain.

the collapsed coordinates in the standard region:

ψbpq(η) =



ψaq , p = 0 , 0 ≤ q ≤ Q(
1−η

2

)p+1
, 1 ≤ p ≤ P , q = 0(

1−η
2

)p+1 (
1+η

2

)
P2p+1,1
q−1 (η) , 1 < p < P , 1 ≤ q ≤ Q

ψaq , p = P , 0 ≤ q ≤ Q

(2.9)

The two-dimensional expansion bases are obtained via tensor product of the one-

dimensional expansion basis. More specifically, for quadrilateral elements:

φpq(ξ1, ξ2) = ψap(ξ1)ψaq (ξ2) . (2.10)

The two-dimensional basis for a quadrilateral element at P = 7 is shown in Figure 2.2,

highlighting how only the boundary modes have non-zero values on the boundaries there-

fore coupling only vertex and edge modes to the neighbouring elements. For triangular

elements the basis is obtained via collapsed coordinates:

φpq(ξ1, ξ2) = ψap(η1)ψbpq(η2) . (2.11)

The type of problems analysed in this work contain a homogeneous direction, associ-
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ated with the third coordinate ξ3. In this case, the three-dimensional expansion can be

obtained as a tensor product of the two-dimensional basis with a complete expansion in

ξ3, denoted as ϕr(ξ3):

φpqr(ξ1, ξ2, ξ3) = φpq(ξ1, ξ2)ϕr(ξ3) . (2.12)

The expansion in the third direction is purely spectral: it can be thought of as a single

element with (in general) very high polynomial order. If the boundary conditions required

for the homogeneous direction are periodic, a Fourier expansion is adopted: ϕr(ξ3) =

eirβξ3 , with β = 2π/Lξ3 . Lξ3 is the periodic length, generally referred to as Lz in this

work as the third direction coincides with the z-direction. This formulation is particularly

attractive for two reasons. First, the use of the Fast Fourier Transform (FFT) allows to

quickly transform between Fourier and physical space; second, a linear three-dimensional

differential problem can be reduced to Nz/2 two-dimensional problems over the Fourier

planes, therefore opening ways for more efficient parallelisation strategies, as discussed by

Bolis [17] and further investigated in practical applications by Serson [155].

Local to standard element mapping

In order to carry out a domain transformation from the local domain Ωn to the standard do-

main Ωs an appropriate mapping must be defined. For an arbitrary-shaped straight-sided

quadrilateral with vertices {(xA1 , xA2 ), (xB1 , x
B
2 ), (xC1 , x

C
2 ), (xD1 , x

D
2 )}, the bilinear mapping

is defined as:

xi = χ1(ξ1, ξ2) =xAi
1− ξ1

2

1− ξ2

2
+ xBi

1 + ξ1

2

1− ξ2

2
(2.13)

+ xDi
1− ξ1

2

1 + ξ2

2
+ xCi

1 + ξ1

2

1 + ξ2

2
, i = 1, 2 . (2.14)

In the case of triangular element, the mapping is (denoting the collapsed vertex with C):

xi = χ1(η1, η2) = xAi
1− η1

2

1− η2

2
+ xBi

1 + η1

2

1− η2

2
+ xCi

1 + η2

2
, i = 1, 2 . (2.15)

The mapping is in practice constructed using the vertex modes of the hierarchical modal

expansion. Therefore, the quadrilateral expansion can also be written as:

xi = χ1(ξ1, ξ2) =

p=P1∑
p=0

q=P2∑
q=0

x̂ipqψ
a
p(ξ1)ψaq (ξ2) . (2.16)

In particular, x̂ipq = 0 except for the vertex modes where x̂i00 = xAi , x̂iP10 = xBi , x̂iP1P2
= xCi

and x̂i0P2
= xDi . This construction allows to account for curvilinear elements through an

iso-parametric representation, where the expansion is of the same form and order as the

unknown variables.
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Local operations

Within the standard element, the various differentiation and integration operations are

defined by means of appropriate quadrature rules. The interested reader can refer to Kar-

niadakis & Sherwin [77] for an in-depth discussion of the topic. Finally, the operations

of forward and backward transformation allow to transform the solution between phys-

ical values and expansion coefficients. In particular, the former computes the expansion

coefficients from physical values, and vice-versa.

Global assembly

In the CG formulation, elemental contributions of neighbours are summed to enforce C0-

continuity through an assembly operator. Indicating the vector containing the coefficients

of the global DoF as ûg, and the concatenation of local coefficients as ûl, the correspondence

is established through the connectivity map A, such that ûl = Aûg. The matrix A is very

sparse, and the non-zero entries are either 1 or -1 depending on the orientation of adjacent

edges in neighbouring elements. The global system matrix is obtained as:

Mg = AMeA , (2.17)

where the matrix Me corresponds to the diagonal concatenation of elemental matrices.

Most operations are carried out within elements, but the global system is required to

obtain the solution.

2.1.3 Time integration

On top of the spectral/hp element spatial discretisation, a strategy for time advancement is

needed. In this work, the stiffly stable time discretisation scheme proposed by Karniadakis

et al. [76] is adopted and briefly summarised in this section. This approach is also called

Velocity-Correction Scheme (VCS).

The reference equations are the incompressible Navier-Stokes equations, describing the

motion of Newtonian fluids with constant properties. Introducing the assumption ρ = 1,

the problem to be solved is:

∂u

∂t
= −(u · ∇)u−∇p+ ν∇2u in Ω , (2.18a)

∇ · u = 0 in Ω , (2.18b)

u = uD on ΓD , (2.18c)

∂u

∂n
= uN on ΓN . (2.18d)

Equations 2.18a and 2.18b are subject to initial conditions u0; u is the velocity vector, p is

the pressure and ν the kinematic viscosity. Following the approach of [76], the convective

terms are treated explicitly, while pressure and the viscous contribution are treated im-
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Table 2.1: Coefficients for stiffly stable time integration

Coeff. Order 1 Order 2 Order 3

γ0 1 3/2 11/6
α0 1 2 3
α1 0 -1/2 -3/2
α2 0 0 1/3
β0 1 2 3
β1 0 -1 -3
β2 0 0 1

plicitly. This circumvents stability problems that would significantly reduce the timestep.

The time derivative is represented through a backwards differentiation formula, and the

convective terms via polynomial extrapolation. Indicating with Ji the integration order

of implicit terms, and with Je the order of explicit terms, the momentum equation is

discretised as:

û−∑Ji−1
q=0 αqu

n−q

∆t
=

Je−1∑
q=0

βq [−(u · ∇)u]n−q −∇pn+1 + ν∇2un+1 . (2.19)

Table 2.1 shows the coefficient for integration up to third order. The solution to the system

is obtained by splitting Equation 2.19 into three contributions:

û−∑Ji−1
q=0 αqu

n−q

∆t
=

Je−1∑
q=0

βq [−(u · ∇)u]n−q , (2.20a)

ˆ̂u− û

∆t
= −∇pn+1 , (2.20b)

γ0u
n+1 − û

∆t
= ν∇2un+1 . (2.20c)

Advection

The space discretisation of Equation 2.20 using a Galerkin projection introduces a mass

matrix in the advection equation. For a modal expansion, this would introduce an addi-

tional computational cost comparable to the solution of the Poisson equation or a single

Helmholtz problem [77]. Therefore, in practice Equation 2.20a is analytically combined

with Equation 2.20b.

Pressure

Taking the divergence of Equation 2.20b and imposing ∇ · ˆ̂u = 0 yields the following

Poisson equation:

∇2pn+1 = ∇ ·
(

û

∆t

)
. (2.21)
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At velocity Dirichlet boundaries, the following Neumann boundary conditions are used for

the pressure:

∂pn+1

∂n
= n ·

Je−1∑
q=0

βq [−(u · ∇)u− ν∇× (∇× u)]n−q

 . (2.22)

Viscous diffusion

The final step of the algorithm consists of solving the Helmholtz equation with the inter-

mediate velocity ˆ̂u acting as a forcing term:

(
∇2 − γ0

ν∆t

)
un+1 =

ˆ̂u

ν∆t
. (2.23)

2.2 Applications to scale-resolving simulations

This work is concerned with large-scale simulations of turbulent flows at moderate and

high Reynolds numbers. The simulations are run on large parallel clusters, and optimally

leveraging parallel efficiency is of crucial importance. Furthermore, at these flow regimes

specific numerical techniques are required to ensure numerical stability. These two topics

are discussed in the following sections.

2.2.1 A note on parallelisation

All simulations presented in this work employ the Fourier-spectral/hp element formulation

introduced by Karniadakis [75]. In this case, very efficient parallelism can be achieved by

distributing each process on different planes: the Fourier modes are not coupled in the

linear part of the momentum equation, and communication is only required when perform-

ing the FFTs to compute explicitly the nonlinear terms in physical space. However, this

approach is feasible for applicative purposes in relatively simple configurations, especially

in situations where the mean flow is aligned with the z-direction. In most practical cases

(i.e. high Reynolds number flows), this approach is unfeasible, because the maximum

number of processes is half the number of Fourier planes. The alternative is to combine

partitioning in the Fourier expansion and the x− y planes, referred to as hybrid parallel-

ism [16]. The latter approach is adopted in this work. The efficiency of a pure Fourier

parallelisation is not trivially retained because the coupling between partitions now oc-

curs in the implicit part of the VCS, which requires efficient parallel solution of linear

systems. In this study, the linear systems were solved by means of direct solve via XXT

matrix decomposition [171], as opposed to the more common conjugate gradient method.

This solution is only applicable to Fourier-spectral/hp element methods. Serson [154] ex-

tensively explored hybrid parallelisation efficiency with this formulation. For the cases of

interest in this work, the most efficient way to split the process topology was found to be

that of maximising the number of partitions in the Fourier direction. This was verified via
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Figure 2.3: Normalised timestep time measured with constant number of total pro-
cesses and different spanwise partitioning.

scaling test on the UK national supercomputer Archer1, conducted varying the balancing

between x − y and Fourier partitioning with constant total core count (2304 cores). The

solution was advanced in time for 200 timesteps, adopting the averaged timestep time as

performance metric. The result is shown in Figure 2.3, normalised by the most efficient

value of t∗ = 0.1389. High parallelism in the Fourier direction is desirable in order to

achieve maximum computational efficiency. In particular, no major performance degrad-

ation is reported when allocating 4 planes per process (∼ 3% increase in timestep time

compared to 2 planes per process), but any partitioning that allocates a higher number of

planes per process incurs significant increases in timestep time; this behaviour was found

to occur consistently across all test cases analysed in this thesis.

2.2.2 Ensuring numerical stability: spectral vanishing viscosity

Under-resolved simulations of turbulent flows at high Reynolds numbers are prone to nu-

merical instabilities, owing to the low numerical diffusion properties of spectral/hp element

methods [77]. Therefore, the use of stabilization techniques is required: if the dissipative

scales at high wavenumbers are not resolved, a buildup of energy in the small scales will

generally cause the solution to diverge. Spectral Vanishing Viscosity (SVV) was first in-

troduced by Tadmor et al. [168], and extended for use with spectral/hp element methods

by Karamanos & Karniadakis [74]. Kirby & Sherwin [83] further extended the formula-

tion using orthogonal expansions for one-, two- and three-dimensional spectral element

discretisations.

1ARCHER uses the Cray XC30 architecture consisting of compute nodes connected together by the
Aries interconnect, where each compute node contains two 2.7 GHz, 12-core E5-2697 v2 (Ivy Bridge) series
processors. Within the node, the two processors are connected by two QuickPath Interconnect (QPI) links.
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The oscillations causing divergence of the solution emerge at sub-elemental level; hence

SVV is a model-free stabilization technique that acts at the subgrid-scale level. The main

idea of SVV consists of introducing an artificial viscosity operator:

∂u

∂t
= −(u · ∇)u−∇p+ ν∇2u + Svv(u) (2.24a)

∇ · u = 0 (2.24b)

In the context of spectral/hp element methods, a high-frequency viscosity operator allows

for exponential convergence properties to be conserved for sufficiently resolved simulations.

The SVV operator is defined as:

Svv = µSV V
∂

∂x

(
Q̂ ?

∂u

∂x

)
, (2.25)

where µSV V is a constant coefficient, ? denotes the convolution operator and Q̂ is a ker-

nel that regulates which modes receive how much damping. A widely used kernel is of

exponential type [99]:

Q̂k =

exp
(
− (k−N)2

(k−M)2

)
, k > M

0 , k ≤M
(2.26)

In this case, artificial viscosity is only applied to modes k above a certain cutoff mode M ,

with N = P + 1 representing the number of modes for a discretisation of polynomials of

order P . When applied to the Fourier expansion, k represents the Fourier mode number

and N the total number of modes. A more detailed description of the SVV formulation

in a single element is found in Kirby & Sherwin [83], and here omitted for brevity.

DG Kernel for SVV

The exponential kernel introduced in the previous paragraph has two main issues, discussed

in detail by Moura et al. [117]. To highlight them, the Péclet number is introduced to

quantify the ratio of advection and diffusion. This parameter can be thought of as a

mesh-spacing based local Reynolds number. Introducing the advection velocity a:

Pe =
ah

µSVV
. (2.27)

Since the eigencurves are uniquely defined by Pe and P , the DoF-based Péclet number

Pe∗ = Pe/P is considered, with ~ = h/P :

Pe∗ =
a~
µSVV

. (2.28)

The conventional approach is to use µSVV = µ0/P , with µSVV representing the base SVV

magnitude and µ0 a fixed parameter. This in turn makes Pe∗ = ah/(µSVVP ) = ah/µ0

still dependent on the product ah, which in general varies significantly in applications of
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practical interest: the two parameters are independent of each other. The dissipation and

diffusion eigencurves depend on the Péclet number, and therefore the effect of SVV on a

certain physical problem at fixed ~ is not unique and it depends on the local Péclet number.

The second main inconvenience is again due to the fact that the eigencurves depend on

Pe∗. For this reason, they provide information that is only relevant for a certain mesh

spacing h, and therefore of little practical use.

Furthermore, in general it is difficult to provide physical robust guidelines on how

artificial viscosity should be added to provide the sufficient level of stabilisation at the right

wavelengths, without impacting the flow physics and regardless of the problem in analysis.

When adopting traditional kernels (e.g. exponential kernel), in most cases the user is left

to decide on what diffusion and cutoff rate parameters to choose, which typically results

in adopting a heuristic approach driven by robustness (the simulation does not “blow up”)

or agreement of certain flow statistics with reference data in well-known benchmark test

cases. However, this approach is arguably not optimal and can be considered a further

motivator to adopting a more rigorous approach for numerical stabilisation.

Moura et al. focused on temporal [117] and spatial eigenanalysis of the linear advection-

diffusion equation, both with a DG [106] and CG method [116]. Temporal eigenanalysis

is traditionally more widely analysed in literature and it assumes periodic boundary con-

ditions. Spatial analysis, on the other hand, concernes inflow/outflow types of problems

and is of greater interest for the applications of this work. The outcome of this series of

studies is the formulation of a DG-Kernel for SVV, now briefly summarised.

The model problem analysed in [116] is the one-dimensional linear advection-diffusion

equation:
∂u

∂t
+ a

∂u

∂x
= µ

∂2u

∂x2
, for x > 0 , t > 0 , (2.29)

where µ is the molecular viscosity. This is the main parameter varied in the spatial

eigenanalysis, which highlights two important problems that SVV must address. First,

a spurious wave mode causing unphysical reflection was found to exist regardless of Pe∗.

In realistic test cases, this may arise in regions of variable mesh spacing and interact

with incoming turbulent structures, affecting the flow physics. The effect is particularly

enhanced in the inviscid limit (i.e. high-Reynolds number flows), where viscous damping

is very small. At the same flow regime, another feature observed is the presence of a

dissipation bubble (for P > 2) at certain temporal frequencies. This affects the streamwise

energy spectrum by introducing a “dissipative valley” [116], and it clearly visible from the

diffusion curves in the inviscid limit shown in Figure 2.4.

In order to tackle the existing issues in the exponential kernel, Moura et al. [117]

proposed to make the base SVV magnitude proportional to both advection speed and mesh

spacing, therefore scaling the magnitude of numerical dissipation with the Péclet number:

µSVV = µ0a~, thus maintaing Pe∗ = µ−1
0 constant regardless of local advection speed

and mesh spacing. The issues highlighted through eigenanalysis of the linear advection-

diffusion problem (dissipative bubbles and vanishing dissipation of spirious modes) were
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Figure 2.4: Numerical dispersion (left) and diffusion (right) curves for CG-based linear
advection-diffusion with Pe∗ = 1000 and P = 5. The blue and red curves indicate
respectively the physical and spurious eigenmodes. Adapted from [116].

instead tackled through the consideration that DG schemes are arguably robust and weakly

dissipative at higher polynomial orders. Therefore, the novel SVV operator was designed

based on DG dissipation curves. Since it is not possible to match same-order curves [116],

the dissipation curves of CG were optimised against the DG curves of order P − 2, using

Pe∗ = µ−1
0 . This addresses the issue of the dissipative bubbles found in the CG formulation

without SVV. Spurious reflections were instead tackled by introducing penalisation in the

optimisation process where the dissipation of the spurious mode was too small. The result

of this optimisation procedure is shown in Figure 2.5.

It is important to note that lower dissipation levels are achieved at higher polynomial

order confirming that, at fixed DoF, better resolution ability is achieved by increasing

the polynomial order (both in terms of diffusion and dispersion properties). Therefore,

especially when tackling under-resolved high Reynolds number flows, the most sensible

approach is to adopt a higher polynomial order in combination with a moderately coarse

grid, as opposed to favouring h-refinement. In fact, combining SVV with the latter ap-

proach would damp spurious oscillations and unphysical reflections, but it would also

suppress physical scales of the problem. In light of these considerations, all significant dis-

cussions on the flow physics presented through this work were based on results calculated

at polynomial order P ≥ 6.

Through the thesis, the DG-Kernel is adopted for ensuring numerical stability in the

spectral/hp planes. To the authors’ knowledge, this is the first study that employs this

SVV formulation for scale-resolving simulations of realistic geometries. The traditional

exponential kernel is adopted for the Fourier expansion in the spanwise direction. Diffu-

sion coefficient and cutoff ratio are tuned based on robustness and previously consolidated

expertise, aiming at a tradeoff between simulation stability and limited damping of high-

frequency modes. The topic is further discussed in Chapter 3, where variations of the

cutoff ratio within the range of values adopted (which must be reduced at times to ensure

numerical stability) are shown to have no first-order effects on the flow physics. All simu-

lations in the thesis also rely on the use of spectral/hp dealiasing for consistent integration
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Figure 2.5: Comparison between optimised CG-SVV dissipation (colour) for PCG =
3, . . . , 9 and their reference DG curves (dashed) for PDG = 1, . . . , 7. Adapted from
[116].

of the nonlinear terms, based on the work by Mengaldo et al. [107].

2.3 Inflow turbulence generation

In LPTs, the suction surface boundary layer dominates the mechanisms of loss production

[33]. Up to 80% of the span may experience boundary layer separation in the adverse pres-

sure gradient region, and in these conditions flow unsteadiness and transition mechanism

are of fundamental importance for design decisions. The generation of physical boundary

conditions is crucial, and specific validation with assessment is needed. Where possible,

this should be informed from the actual conditions encountered in tests, as well as in po-

tential real applications. Inflow turbulence is a key aspects for turbomachinery problems,

especially at the Reynolds number conditions involving transitional boundary layers. This

section focuses on the approaches here adopted for modelling background turbulence and

flow disturbances. First, a brief review of the topic is presented, with enhanced focus

on the methodology effectively adopted, which is subsequently described in greater detail

alongside with its validation.

2.3.1 The main types of turbulence generation methods

From a computational perspective, inflow turbulence generation methods have been the

objectives of significant academic research efforts especially since the 1990s. The reviews

by Tabor & Baba-Ahmadi [167] and by Wu [197] (whose classification is adopted for

the purposes of this summary) highlight the most significant contributions to the field.
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Various methodologies for turbulence generation in spatially developing flows are now

available, and they mainly break down into precursor simulation methods and synthetic

methods. The former can be further subdivided in strong and weak recycling methods; in

general, these approaches are I/O heavy, but intrinsically introduce “true” turbulence in

the computational domain. Synthetic methods are less accurate but they are implemented

on-the-fly injecting “artificial” turbulence, therefore requiring “some” length to develop

the correct spectral characteristics. Finally, although less commonly adopted, a direct

approach can be formulated based on the simulation of an upstream turbulence grid [13].

This work is concerned with synthetic methods, owing to their low memory and storage

requirements, and simplicity by which their parameters can be tuned. Wu [197] further

subdivides synthetic generation methods into various approaches: random Fourier method,

digital filtering method, coherent eddy method, and synthetic volume forcing method.

2.3.2 Synthetic inflow turbulence generation

Random Fourier Method (RFM)

In the context of simulating incompressible flows, it is important to adopt a methodology

that respects the divergence-free constraint. To this end, before the increasing popularity

of DNS studies, Kraichnan [85] developed an approach to represent a velocity field by

summation of Fourier modes, providing the basis for research advances in the decades to

come. In fact, this technique was later employed to develop the first synthetic random

Fourier methods in the early 1990s [78, 89, 12, 9]. In particular, Bechara et al. [12]

introduced the core approach adopted in this work, and described below. The following

approximation is introduced for the HIT field:

u′i(xj) = 2

Nturb∑
n=1

ûn cos(κnj xj + ψn)σni , (2.30)

where for each mode n, ûn is the amplitude, κnj is the wavenumber vector, ψn is the

random phase and σni is the direction of the mode associated with κnj . For the generation

of an incompressible turbulent field respecting ∂ui/∂xi = 0, the unit vector σn (which

determines the direction of the nth wave vector κn) must be constructed orthogonally to

κn:

κn · σn = 0 , n = 1, . . . , N . (2.31)

The spatial orientation of these vectors is shown in Figure 2.6. The angles ϕn and

θn control the orientation of κn, and αn determines the orientation of the unit vector in

the plane orthogonal to κn. To obtain a homogeneous and isotropic random field, for

each Fourier mode the orientation angles and mode phase ψn must be generated following

the probability density functions reported in Table 2.2. In this context, introducing the

turbulence kinetic energy k =
∑Nturb

n=1 û2
n and turbulence dissipation rate ε ≡ ν ∂u

′
i

∂xk

∂u′i
∂xk

, the

three-dimensional energy spectrum that characterises homogeneous isotropic turbulence
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Figure 2.6: Sketch defining the spatial orientation of the wave vector κn and unit
vector σn. Adapted from [197].

Table 2.2: Probability density function for the random variables.

Variable PDF Sample space

ϕn p(ϕn) = 1/(2π) 0 ≤ ϕn ≤ 2π
αn p(αn) = 1/(2π) 0 ≤ αn ≤ 2π
ψn p(ψn) = 1/(2π) 0 ≤ ψn ≤ 2π
θn p(θn) = sin (θn)/2) 0 ≤ θn ≤ π

satisfies the following: ∫ ∞
0

E(κ)dκ = k , (2.32)

2ν

∫ ∞
0

κ2E(κ)dκ = ε . (2.33)

From [12], the mode amplitude ûn is:

ûn =
√
E(|κn|)∆κn , (2.34)

with ∆κn representing the wavenumber step, which is constant in case of a uniform dis-

tribution of modes over the wavenumbers. Bechara et al. [12] suggested employing a

logarithmic distribution of wave numbers, which better discretises the spectrum in the

low wavenumber range. However, the boundary conditions setup of the current work (i.e.

pitchwise and spanwise periodicity on the inflow plane) requires the use of a modified

approach, described in detail in Section 2.3.3.

The modified von Kármán spectrum (shown in Figure 2.7) is discretised:

E(κ) = A
2
3k

κe

(κ/κe)
4

[1 + (κ/κe)2]17/6
e[−2(κ/κη)2] , (2.35)
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Figure 2.7: Modified von Kármán spectrum, adapted from [35].

with A and κe determined from Equations 2.32 and 2.33, and κη = (ε/ν3)
1
4 .

Finally, temporal correlation is enforced by means of a digital filter in the frequency

domain. This step is further discussed in detail in Section 2.3.3.

Building on the work by Bechara et al. [12], Smirnov et al. [158] presented a proced-

ure for scaling the generated fluctuations, obtaining an inhomogeneous, anistropic field

that still satisfies the divergence-free constraint. Other approaches for generating non-

isotropic fluctuations were later introduced [10, 14, 36]. As observed by Davidson [35], a

disadvantage of the latter approach is that modifying the Reynolds stress tensor to ob-

tain non-homogeneous turbulence also modifies the prescribed spectrum and the two-point

correlation.

More recently, Huang et al. [62] and Castro & Paz [25] built on Smirnov’s approach

introducing a technique that can generate a fluctuating field from an arbitrary given

spectrum, appropriately discretised. The main shortcoming of this novel approach is the

necessary introduction of additional coefficients that may increase the parameter space to

be explored when tackling a new test case. Yu & Bai [201], again building on the work

by Smirnov et al. [158] presented a different methodology based on the introduction of

a vector potential field, and generating a strictly divergence-free flow field by taking the

vector curl of the potential field.

Digital Filtering Method (DFM)

Klein et al. [84] reported on a number of disadvantages of methods based on random

Fourier modes, including (but not limited to) programming complexity, and difficulty in

selecting the peak wavenumber in the energy spectrum. Extending the temporal coher-

ence approach introduced by Bechara et al. [12] to spatial coherence, they presented a

different method based on digital filtering of random data, which can reproduce auto-

correlation functions and prescribed second order statistics. The drive for adopting this

approach is practicability, i.e. allowing the user to specify statistical quantities that can
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be produced with simple experimental procedures or heuristic estimates. This method was

further modified to provide practical indications for an efficient implementation [79]. Di

Mare et al. [39] showed how in principle the filter coefficients can be determined for any

known correlation function, but in some specific cases it is possible to write an explicit

approximate solution. When extended to multiple directions, this approach requires signi-

ficantly higher computational cost [84]; it was modified for this purpose by Xie & Castro

[199], and extended to compressible flows by Touber & Sandham [169]. This method was

implemented with success by Pichler et al. [134] and used to study the effect of turbulence

intensity and length scale on the transition mechanisms close to realistic engine operating

conditions in a HPT vane. Among the drawbacks of most digital filtering approaches,

the divergence-free constraint is rarely enforced; Kim et al. [82] proposed an approach to

account for incompressibility in the synthetically generated signal.

Other synthetic methods

A number of alternative approaches to RFM and DFM were developed over the years.

These two methods impose constraints to a random field, thereby constructing a signal

with specified properties. A different approach called Synthetic Coherent Eddy Method

[70] is based on producing the synthetic signal as a superposition of coherent structures.

This method can reproduce prescribed first and second order one-point statistics as well

as characteristic length and time scales.

An alternative and possibly less expensive approach consists of adding a body force

term to the momentum equations in a control zone. The forcing should be designed

to promote rapid transition and concurrently avoid introducing strong distortions in the

flow, which may artificially impact its downstream development. Examples of this Volume

Forcing Method were applied in the wall-normal direction in a Blasius profile, to promote

its development into a zero-pressure-gradient smooth flat-plate boundary layer [148, 149].

Finally, Kempf et al. [80] introduced a methodology that imposes coherence to an

initial random field by solving an unsteady diffusion equation for a certain time length,

depending on the target length scale. The method is easy to implement but requires the

solution of an additional differential equation.

2.3.3 Generation of inflow disturbances in Nektar++

As highlighted in the previous section, nowadays a large number of different approaches

are available for inflow turbulence generation. Every method is presented with ad hoc

test cases, targeting specific aspects of the flow physics and, as such, they are difficult to

compare. It is therefore important to establish comparisons between different metodologies

adopting simple, canonical test cases (i.e. temporal/spatially decaying generated data).

Despite the difficulty of undertaking such study, the work by Dietzel et al. [40] tackled

this challenge by looking at a box of decaying turbulence. In particular, the methods by
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Klein et al. [84], Kempf et al. [80] and Davidson et al. [36] were analysed with focus

on four specific issues: (1) fidelity in representing the characteristic energy spectrum and

(2) the velocity correlations, (3) how do these properties decay and (4) what needs to be

clear for their practical application. Davidson’s approach was found to provide accurate

representation of the characteristic energy spectrum as well as the velocity correlations,

comparing well against experimental data. The approaches by Klein et al. [84] and Kempf

et al. [80] only construct large scale turbulence, and initially the model correlations did not

compare accurately against experiments. However, the discrepancies vanished at a later

decay stage. Despite the difficulty of transposing the findings related to a simple test case

to more complex, spatially evolving flows, this study suggests that the random Fourier

approach proposed by Davidson [35] has the best potential to satisfy the requirements

of the present study, and it was therefore adopted and incorporated in the Nektar++

incompressible Navier-Stokes solver.

Concurrently, a volume forcing method was here developed as an alternative approach

to promote inflow disturbances. This methodology was first developed by Schlatter et al.

[148, 149] and applied to turbulent boundary layer flow. It is here repurposed, simplified

and applied to turbomachinery problems for the first time, to explore a novel approach to

provide highly unsteady incoming flow at reduced computational cost. Since the approach

developed is very problem-specific, it is discussed in detail in Chapter 4 within the context

of its application.

Implementation details

The adapted implementation of Davidson’s method [36, 35] is briefly described in this sec-

tion. For the purposes of clarity, user-defined parameters are highlighted in the equations

that follow.

First, all parameters that remain constant through the simulation are calculated prior

to time advancement:

• In general, care should be taken to ensure that the base mesh is generated with

uniform element spacing on the inflow plane. In the algorithm, the grid spacing

can be specified to control the smallest scales generated, and within the context

of spectral/hp element methods it would generally be defined as ∆ = h/p. The

maximum wavenumber is then:

κmax =
2π

2∆
. (2.36)

However, if one desires ∆ can be differently specified, introducing structures that

resolve only the lower portion of the wavenumber range that could potentially be

supported by the mesh.

• Define the smallest wavenumber, associated to large-scale spatial features. Intro-

ducing the user-defined turbulence length scale Lt , the smallest wavenumber is
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κ1 = κe/ pe , where the peak wavenumber κe (Figure 2.7) is:

κe =
9πA

55Lt
, (2.37)

with A = 1.45276. The factor pe scales κ1 to introduce larger scales than those

corresponding to κe. Davidson [36, 35] suggested adoping pe = 2; care must be

taken to ensure that the size of the computational domain is sufficiently large, so as

to contain the largest structures generated.

• The wavenumber space is divided in Nturb user-defined equally spaced modes,

yielding the following uniform wavenumber spacing:

∆κn = ∆κ =
κmax − κ1

Nturb − 1
. (2.38)

Since the problems in this work involve periodicity in both the pitchwise and spanwise

direction, an additional option was added to enforce periodicity in the method. This

consists of determining the wavenumbers in such a way that the wavelengths selected

fit in the computational domain an exact number of times. This means that grid

resolution and domain size uniquely determine the wavenumber discretisation. In

this case, the specified modes Nturb are therefore overwritten, generally yielding a

significant reduction of the Fourier modes, which as a consequence increases the loss

of energy with respect to the specified target value of inflow turbulence intensity. In

case two directions are periodic, in order to adopt this approach the domain size in

one direction must be a factor of the other.

• The modified von Kármán spectrum (Equation 2.35) is discretised into Nturb modes,

with κη = (ε/ν3)
1
4 . Indicating with U∞ the mean Reynolds-averaged velocity (which

is typically normalised to 1), the turbulence intensity (or turbulence level) is defined

as a function of turbulence kinetic energy as:

TI =

√
2
3k

U∞
, (2.39)

so the spectrum sampled can be rewritten as:

E(κ) = A
U∞ TI2

κe

(κ/κe)
4

[1 + (κ/κe)2]17/6
e[−2(κ/κη)2] . (2.40)

In this work, the turbulence dissipation is estimated with the user-input length scale

Lt and time scale T : ε = U3
t /Lt [49], with Ut = Lt/T .

• The mode amplitude ûn can be obtained using Equation 2.34.

• Time correlation is introduced by means of a digital filter in physical space, which
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requires the introduction of the following coefficients:

a = e(−∆t/T ) , (2.41)

b =
√

(1− a2) . (2.42)

After a summary of the setup phase of the method, the run-time procedure is now

discussed. During the simulation, three main operations are executed at each timestep.

First, four random vectors of Nturb elements each are generated, containing the randomly

generated variables reported in Table 2.2. These are used to compute the components of

the wavenumber vector κn and unit vector σn. Then, for each quadrature point on the

inlet plane the fluctuations of the velocity components are computed using Equation 2.30.

Finally, time correlation is introduced through a digital filter: the fluctuating component of

the inflow velocity at each timestep is a linear combination of the new randomly generated

fluctuations and the velocity fluctuations at the previous timestep:

(u′i,in)t = a(u′i,in)t−∆t + bu′i . (2.43)

The new fluctuating components are added to the mean flow profile U∞ at the inflow

plane.

This algorithm can be easily parallelised. In fact, once the random vectors have been

generated by the process with rank 0 and scattered to all other processes on the inflow,

each rank is responsible for generating the new fluctuating component and updating the

velocity in a small partition on the inflow plane. When periodicity is enforced in the

wavenumber discretisation, the number of modes is typically reduced significantly, lowering

the algorithmic cost. The option of optimising the mesh partitioning by increasing the

number of partitions including the inflow plane was considered. However, the SCOTCH

library is employed for this purpose; the task of optimising the partitioning algorithm

without affecting the load balancing of the solver would have most likely been extremely

complex. Since the performance obtained was deemed satisfactory, this research question

was not pursued further.

2.3.4 Validation of Davidson’s method

The recognised strenghts of the method are:

• Extremely flexible for fine tuning of the turbulent scales introduced in the compu-

tational domain.

• Deemed to be “physical”: it generates turbulence in a manner similar to what would

be obtained with a traditional experimental grid (square-mesh arrays of round rods

or wires), potentially requiring a shorter development region.

• Minor computational cost (especially for massively parallel simulations), provided

that the inflow plane discretisation is distributed over a sufficiently high number
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Figure 2.8: Autocorrelation function in the centre of the cross-flow plane, at the inlet
(left) and at x = π (right). Copyright c© 2019 by Rolls-Royce plc.

of processes. For the simulations presented in this thesis, the inflow turbulence

generation takes less than 10% of the time-stepping time2.

In general, a high number of modes should be preferred: not all wavenumbers can

be exactly supported by the mesh, so as a consequence the energy allocated to certain

modes falls onto a different wavenumber. If little energy is associated to each mode, this

causes minor changes to the spectra of synthetically generated turbulence. This conjecture

was confirmed by analyzing the TI spatial evolution with various Nturb and observing a

clustering of the decay curves for Nturb > 128.

The synthetic turbulence method theoretically satisfies continuity, but its discrete pro-

jection on non-equispaced quadrature points is not strictly divergence free: imposing the

three velocity components was found to lead to pressure fluctuations that require long

averaging times for convergence of the pressure distribution. This issue is ofter overlooked

in the literature, as highlighed by Kim et al. [82]. Mass rescaling on top of the syn-

thetic generation method described above was tested, but without measuring significant

improvements, which were instead observed through the introduction of periodicity in the

choice of the Fourier modes. In general, removing the fluctuations from the streamwise

component and allowing discrete divergence to be naturally enforced by the solver allows

to circumvent the issue. Where mode periodicity is not enforced, the pressure statistics

in this work are obtained with this approach.

The implementation of the method was extensively tested on a spanwise and vertically

periodic development region with domain size Lx = Ly = Lz = π at Re = 5600, analyzing

the effect of all the user-input parameters on auto-correlation, two-point correlation, tur-

bulent intensity decay and velocity spectra. Figure 2.8 shows the imposed auto-correlation

function of the method in two different downstream locations, with Lt = T = 0.25. Indic-

2Based on tests on the CX2 cluster of Imperial College London.
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Figure 2.9: Velocity spectra in the centre of the cross-flow plane, at the inlet (left)
and at x = π (right), with P = 8 and Nz = 128. Copyright c© 2019 by Rolls-Royce
plc.

ating with τ the time separation, the normalized auto-correlation is calculated as:

Bnorm
ii (τ) =

1

u2
i,rms

u′i(t)u
′
i(t+ τ) . (2.44)

The Figure shows that the synthetic signal follows the expected correlation profile at the

inlet, and coherence is maintained as the turbulent structures evolve spatially. Integration

of the autocorrelation function over τ recovers the integral time scale, yielding Tu = 0.244,

Tv = 0.238 and Tw = 0.254.

Figure 2.9 shows the velocity spectrum for the three velocity components at the inlet

and at x = π. At the inflow, the broadband spectrum typical of fully developed turbulence

is measured, and it agrees well with the −5/3 decay law. As the flow evolves spatially, the

streamwise velocity spectrum manifests a different behavior from the spanwise and ver-

tical components, which undergo stronger decay at high frequencies. Fourier-spectral/hp

element simulations and the corresponding full 3D setup showed a similar behavior, indic-

ating that the use of a hybrid SVV formulation in the Quasi-3D model is not responsible

for the discrepancy in the decay of the spectra. Since the same exact decay is observed for

the spanwise and vertical velocity spectra, this suggests that the presence of a driving force

in the streamwise direction maintains higher energy content at high frequencies. Compar-

ison of results at P = 8 with Nz = 128 (shown in figures 2.8 and 2.9) with a simulation at

P = 5 and Nz = 80 using structured and unstructured meshes (with both quadrilateral

and triangular elements, maintaining the same characteristic dimension) produces exactly

the same evolution of the spectra along the streamwise direction. This evidence is used as

confirmation that the resolution is sufficient to capture the spectra and that the behavior

of spatially evolving turbulence is not appreciably affected by the use of an unstructured

mesh.
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2.4 Modelling the wake passing effect

In turbomachinery flows, much of the unsteady nature of the suction surface transition

process can be attributed to the wakes shed by upstream blade rows, as discussed in

Chapter 1. There are virtually no cases of industrial relevance where the inlet flow is

not dominated by incoming wakes or pressure waves or, more in general, deterministic

unsteadiness. However, it should be highlighted that the flow environment in the back

stages of compressors and turbines is characterised by the presence of strong background

turbulence, on top of the wakes and potential effects driven by the rows immediately

upstream and downstream. In this context, the challenge of generating inlet turbulence

(which is traditionally a very academic problem, discussed in detail in the previous section)

becomes relevant and should be accounted for. Regardless of the presence of stochastic

unsteadiness, the ability to accurately model the wake passing phenomenon is of crucial

importance in the context of building the capability for a virtual cascade. A number

of studies were dedicated to the development of accurate methodologies to simulate the

relative motion typical of rotor-stator interactions. This section first provides a brief

summary of the main approaches previously adopted in the context of LPTs, and it further

describes the methodology adopted within the Nektar++ framework.

The first numerical study focusing on the wake passing effect [196] introduced the

wake dynamics by means of precursor simulation of a temporally decaying plane wake

[198] that was swept across the inflow as a Dirichlet boundary condition. The wake data

was subsequently adopted in a number of LPT studies [189, 110, 191, 112].

A viable alternative to the use of precursor data is the adoption of a sliding interface to

represent the passing bars in the upstream part of the domain within the same simulation

as the linear cascade. Ferrer et al. [46] presented the first implementation of a high-

order DG solver with sliding meshes for the incompressible Navier-Stokes equations; more

recently, Johnson et al. [72] introduced a sliding grid method in the context of a high-order

FD formulation to solve the compressible Navier-Stokes equations, which was later applied

to a rotor-stator LPT stage looking at the gap-size effect [133]. More recently, a compressor

repeating-stage simulation was employed to study the effect of rotor-stator axial gap [140].

The inflow disturbances were obtained by sampling the velocity profile from a downstream

traverse and recycling it by superimposing the approximated fluctuating field onto the

inflow boundary conditions.

Lastly, there exists a vast body of literature focusing on immersed boundary methods

(IBM), that have been also applied to LPTs. The idea behind an IBM is to model the

effect of certain boundary conditions by imposing an external force field as opposed to

specifying boundary conditions on the body. Therefore, the computational grid does not

need to represent the object in analysis: a conventional Eulerian mesh is adopted to solve

for the solvent, and the immersed bodies are represented with Lagrangian markers. A

recent example is found in the work by Michelassi et al. [109], where the IB approach first

introduced by Goldstein et al. [54] was adopted.
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The present thesis adopts an IBM to model the bar passing effect, namely the Smoothed

Profile Method (SPM, used intercheangeably with IBM hereinafter) which was first intro-

duced by Nakayama et al. [122]. The method was further developed to adopt a time

discretisation based on a high-order semi-implicit splitting scheme [97, 184] and incorpor-

ated in the Nektar++ framework3. From a high level perspective, the novelty introduced

by the SPM is the idea of representing particle boundaries with a smooth interface layer.

The velocity inside each particle is updated through the introduction of a penalty body

force term that ensures particle rigidity and imposes the no-slip boundary condition.

Below, a brief summary of the method is presented for the sake of completeness, based

on the work by Luo et al. [97]. This section highlights the added computational cost

required by the method, which becomes particularly cumbersome in the context of high-

Reynolds scale-resolving simulations. The feature is subsequently validated and further

analysed in its ability to accurately model the flow past a circylar cylinder at Re = 3900,

a canonical benchmark flow problem.

2.4.1 The Smoothed Profile Method

Each particle is represented with a smoothed profile that varies between 0 in the fluid do-

main to 1 inside the rigid particles, as shown in Figure 2.10. Among the several possibilities

available, the following is adopted:

φi(x, t) =
1

2

[
tanh

(−di(x, t)
ξi

)
+ 1

]
. (2.45)

The function di(x, t) represents the signed distance from the boundary, which is positive

inside the rigid body and negative in the fluid domain. The overall concentration field is

obtained by summation of non-overlapping particles:

φ(x, t) =

Npar∑
i=1

φi(x, t) . (2.46)

The concentration field is used to express the particle velocity field up(x, t):

φ(x, t)up(x, t) =

Npar∑
i=1

{Vi(t) + Ωi(t)× [x−Ri(t)]}φi(x, t) , (2.47)

with Ri, Vi and Ωi representing particle position, translational velocity and angular

velocity. This velocity can be used to define the total velocity field as follows:

u(x, t) = φ(x, t)up(x, t) + (1− φ(x, t))uf (x, t) . (2.48)

The method mathematically enforces both non-slip and non-penetration constraints [97].

3The Author acknowledges Mr. Andres Mateo for the implementation of the SPM method.
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Fluid Body

Figure 2.10: Concentration function, smoothly varying between 0 in the fluid to 1 in
the rigid particles.

An added force term in the incompressible Navier-Stokes equations is used to solve for

the total velocity of Equation 2.48:

∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u + f + fs (2.49a)

∇ · u = 0 (2.49b)

Temporal integration

The method adopts an extension of the VCS scheme introduced in Section 2.1.3. The

approach is here included to clarify the modified formulation as well as the sources of

increased computational cost.

At each timestep, a first preliminary step consists of calculating the position and orient-

ation of the particles at the new timestep, via an explicit integration scheme. These are

then used to recalculate the concentration field φn+1. The time discretisation of Equations

2.49 can be broken down into four macro steps.

Advection and external forces An intermediate velocity us is calculated from explicit

integration of the nonlinear terms and body forces:

û−∑Ji−1
q=0 αqu

n−q

∆t
=

Je−1∑
q=0

βq [−(u · ∇)u + f ]n−q . (2.50)

Compared to Equation 2.20a, in this case body forces are also included.

Pressure An intermediate pressure field is obtained with an approach analogous to the

classical VCS formulation:

∇2p∗ = ∇ ·
(

û

∆t

)
. (2.51)
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At velocity Dirichlet boundaries, the following Neumann boundary conditions are used:

∂p∗

∂n
=

J−1∑
q=0

βq [−(u · ∇)u + f − ν∇× (∇× u)]n−q · n . (2.52)

Solving for p∗ allows to update the intermediate velocity:

ˆ̂u− û

∆t
= −∇p∗ . (2.53)

Viscous effects The viscous contribution is treated implicitly, to obtain the intermedi-

ate velocity u∗: (
∇2 − γ0

ν∆t

)
u∗ =

ˆ̂u

ν∆t
. (2.54)

The VCS terminates here, but the SPM formulation requires accounting for the presence

of rigid particles.

SPM contribution Lastly, the added contribution from the rigid body motion is ac-

counted for. After having updated the concentration φn+1, it is necessary to solve for an

extra pressure field pp:

∇2pp = γ0∇ ·
(
φn+1(un+1

p − u∗)

∆t

)
, (2.55)

employing the following Neumann BC for pressure:

∂pp
∂n

=
γ0φ

n+1(un+1
p − u∗)

∆t
· n . (2.56)

The final step consists of updating the total velocity field using the particle velocity field:

γ0u
n+1 − γ0u

∗

∆t
=
γ0φ

n+1(un+1
p − u∗)

∆t
−∇pp . (2.57)

The total pressure field is simply obtained as pn+1 = p∗ + pp. However, ∇pp may induce

a non-zero velocity inside the particle, which can be suppressed by modifying Equation

2.57 to ensure that the non-penetration constraint is satisfied strictly inside the particle,

but introducing some compressibility inside and on the particle boundary:

γ0u
n+1 − γ0u

∗

∆t
=
γ0φ

n+1(un+1
p − u∗)

∆t
− (1− φ)∇pp . (2.58)

In summary, the SPM formulation solves a similar series of discrete problems as the

classical VCS, but with the added contribution of a second Poisson problem for the SPM

pressure pp, in turn producing a significant increase in computational cost.
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2.4.2 Flow past a circular cylinder at Re = 3900

This work aims at building the underlying knowledge to implement the wake passing

effect in a LPT cascade. Extensive validation is first required to assess the validity of

the SPM approach. Preliminary validation is based on the analysis of the flow past

a stationary cylinder, which is representative of the target geometry. However, a high

resolution reference solution is required to discuss the accuracy of the SPM approach.

The flow past a cylinder features a wide variety of flow phenomena, and as such it

has traditionally been a reference test case to validate the accuracy and performance of

numerical solvers. The wake dynamics changes dramatically depending on the Reynolds

number [188]. In the present study the focus is on the popular benchmark value of Re =

3900, based on inflow velocity and cylinder diameter; this flow regime is also representative

of the relative Reynolds numbers of interest for the wake passing study of Chapter 6.

At Re = 3900, the flow transitions in the separated shear layers into a fully turbulent

wake. A number of experimental studies were carried out [95, 123, 126, 42, 128] and

reviewed by Norberg [124]. Several numerical studies focused on this problem adopting

LES [11, 19, 86, 47] and, more recently, DNS [98, 42, 190, 91, 195].

Cylinder computational setup

The computational base mesh selected is shown in Figure 2.11, and it is comprised of 1500

quadrilateral elements and 3950 triangular elements. The spanwise domain is extended for

Lz/d = 2π and a spanwise resolution ofNz = 64 is adopted in all the simulations presented.

While it is recognised that the spanwise resolution has an important role in capturing the

breakdown of structures in the turbulent wake, a full resolution study is out of the scope

of the present work, which is aimed at analysing the large parameter space that combines

resolution requirements and SPM. Uniform inflow boundary conditions are combined with

high-order outflow boundary conditions [41]. The choice of boundary conditions for the

top and bottom parts of the domain as well as the domain size is important because of

their effect on the wake dynamics. Some of the most common approaches include slip-

wall [190, 91], farfield [47], periodic [42, 128], Neumann [98] and Riemann invariant for the

farfield in a compressible formulation [195]. The end goal of this study is the representation

of a moving array of cylinders. Therefore, periodic boundary conditions are adopted for

the top and bottom parts of the domain, analogously to the work by Wang et al. [184]

which is adopted as reference to compare the SPM results.

Convergence with p-refinement

In the context of spectral/hp element methods, p-refinement is a powerful tool to achieve

convergence, therefore employed to ensure DNS-like resolution levels in the near wake.

Four polynomial orders are considered: P = 3, 5, 7, 9, summarised in Table 2.3 with some

of the main quantitative measurements.
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Figure 2.11: Computational base mesh and boundary conditions employed for all
cases of flow past a circular cylinder.

Table 2.3: Effect of polynomial refinement on the main flow statistics.

Case DoF [·106] Cd −Cpb St Lrec/D Umin/U∞ θS [◦]

P = 3 4.05 0.1446 0.8521 0.23 2.0285 -0.312 97.029
P = 5 8.72 0.1531 0.8508 0.2075 2.2486 -0.3305 86.007
P = 7 15.16 0.1579 0.8822 0.2075 2.1289 -0.3033 86.316
P = 9 23.37 0.1556 0.874 0.21 2.1573 -0.314 86.216

In all cases presented, transient simulations were run for at least T = 100d/U∞. Time

independence of the mean wake statistics was verified by running the P = 7 case up

to T = 700d/U∞, which corresponds roughly to 146 vortex shedding cycles. However,

some statistics are more sensitive than others to the time integration window. Franke

& Frank [47] were the first to discuss the importance of the time averaging window,

presenting results collected over T = 200d/U∞ but highlighting that average statistics

in the wake would require a longer integration window; Parnaudeau et al. [128] showed

that the recirculation length Lr requires over 250 shedding cycles to converge and found

strong correlation between recirculation length computed within a certain time window

and agreement with experimental results from PIV (Particle Image Velocimetry). Further,

they estimated that time averaging over 52 vortex shedding cycles leads to an uncertainty

of roughly 10% in the prediction of the peak of fluctuating velocity components. Therefore,

caution must be exercised when analysing results sampled with a shorter time window. For

further in-depth discussion on the averaging window, the reader may refer to Lehmkuhl

et al. [91] where time averages collected over 858 shedding cycles were discussed. In

this work, unless otherwise stated, statistics were averaged over T = 400d/U∞, which

corresponds to roughly 83 vortex shedding cycles. The experimental data of Parnaudeau

et al. [128] are included in this section; however, it is reminded that, on top of the sources

of uncertainties specified above, the experiments analysed the effect of an isolated cylinder

as opposed to an array of cylinders. Since the problem is of a slightly different nature,

the presence of discrepancies is to be expected, even though the degree of uncertainty is
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Table 2.4: Percentage relative error of main flow statistics with respect to case P = 9.

Case Cd −Cpb St Lrec/D Umin/U∞ θS [◦]

P = 3 7.063 2.507 9.524 5.973 0.611 12.542
P = 5 1.577 2.659 1.19 4.229 5.284 0.242
P = 7 1.492 0.934 1.19 1.319 3.403 0.116

difficult to quantify more precisely.

The main quantitative flow statistics are reported in Table 2.3, and the relative error

with respect to the most refined case P = 9 is shown in Table 2.4. Under-resolution fails

to accurately capture a number of parameters, particularly the drag coefficient, Strouhal

number, recirculation length and separation angle. θS is defined as the point where the

axial wall shear stress component becomes negative, with a reference system starting from

the stagnation point where θ = 0. At low order the recirculation length is underpredicted,

but the minimum velocity is estimated correctly. An increase in resolution improves all

statistics (except for the minimum streamwise velocity, but as highlighted previously the

accurate prediction of the recirculation bubble length might require a longer integration

time), with most relevant flow parameters at P = 7 within 2% of the results at P = 9.

Considering the mean wake profiles shown in Figure 2.12, it can be appreciated that

the under-resolved case P = 3 has a rather different behaviour compared to the more

highly refined cases. In terms of streamwise velocity (Figure 2.12a), case P = 3 presents

a V-shaped profile in the very near wake, while increased resolution produces U-shaped

profiles in very close agreement with experiments from Parnaudeau et al [128]. The curves

P = 7 and P = 9 are completely overlapped. In the near wake behind the cylinder,

nonlinear effects are evident in the behaviour of vertical velocity (Figure 2.12b): P = 3

smears the peaks near the centerline, while P = 5 overestimates them. Convergence is

achieved at P = 7. Analogous behaviours are observed for the evolution of Reynolds

shear stress, shown in Figure 2.12e. Concerning the horizontal fluctuating components,

the case P = 9 clearly shows a double peak feature that is linked to the transitional state

of the boundary layer. The emergence of a second peak near the centreline for x/d > 1.06

is physically motivated by shear layer flapping that takes place through its inflection

by primary vortex formation [128]. Figure 2.12c shows that both P = 3 and P = 5

underestimate the peak, especially at x/d = 1.54, thus failing to accurately capture the

transitional state of the shear layer. The agreement with experimental data is very close

at x/d = 1.06 and x/d = 2.02, while the peak value is slightly different at the intermediate

location x/d = 1.54. In the vertical fluctuating component (Figure 2.12d) case P = 7 is

fully converged, but the peak is underestimated compared to the experiments. Lastly,

the wake profiles of turbulent production are shown in Figure 2.12f, which clearly suggest

under-resolution in the near wake for P = 3, given its oscillatory behaviour. Analogously

to the other wake profiles, case P = 7 is overlapped to P = 9.

Figure 2.13a shows the horizontal component of velocity along the centreline, and it
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Figure 2.12: Time-averaged wake profiles at three streamwise locations with P =
3, 5, 7, 9. Mean velocity profiles: (a) streamwise velocity, and (b) vertical velocity.
Reynolds stresses (c) streamwise, (d) vertical, and (e) shear stresses. (f) turbulence
production. Experimental data from Parnaudeau et al. [128]. Profiles (a,b) are not
scaled, while (c-f) are scaled by a factor of 2.

helps to clarify the reason for the overshooting behaviour of P = 5. In fact, this case

shows a longer separation bubble. Convergence is again achieved at P = 7. The pressure

coefficient is finally shown in Figure 2.13b. P = 3 is clearly under-resolved along the
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Figure 2.13: Effect of p-refinement on (a) time-averaged streamwise velocity along the
centreline, and (b) pressure coefficient distribution on the cylinder surface.

cylinder walls, as denoted by a strong oscillatory behaviour. Analogously to most of the

other statistics, the curves P = 7 and P = 9 are completely overlapped.

The DNS data at P = 9 are taken as reference for validation of the SPM feature, which

is discussed in the following section.

Convergence of SPM with stationary circular cylinder at Re = 3900

Validation of the SPM feature requires separate convergence phenomena:

1. The SPM method converges to a certain solution with increasing resolution, and at

fixed interface thickness ξ. However, this solution may not be correct.

2. As the resolution and interface thickness are refined, the method converges to the

same solution as the reference DNS simulation.

Having previously ensured convergence of DNS results, the attention is now focused

on SPM results and their comparison with DNS at P = 9. The most significant findings

of an exhaustive sensitivity study are included in this section. As part of this preliminary

testing phase, both formulations shown in Equations 2.57 and 2.58 were analysed. No

significant discrepancy in the main statistics was observed, thus the classical formulation

was adopted. The use of regular elements versus Taylor-Hood elements (where pressure

is solved at one order lower than velocity) was also investigated, yielding overlapping

results in all the main time-averaged statistics, particularly the velocity wakes. To ensure

consistent numerical approach with the rest of the thesis, the Taylor-Hood formulation

was adopted.

In order to verify points (1) and (2) (i.e. convergence at fixed and variable interface

thickness ξ, respectively), four increasingly refined meshes (labelled M1, M2, M3 and M4

in Figure 2.14) were considered. The choice of mesh M1 is justified in greater detail in

Chapter 6. The characteristic element size of M2 in the region where φ is non-zero was

halved compared to M1, significantly increasing the total element count. The process was
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(a) M1 (b) M2

(c) M3 (d) M4

Figure 2.14: Computational base mesh employed to show results convergence at fixed
ξ (a, b, c) and variable ξ (c, d).

repeated to generate mesh M3. Mesh M4 was instead obtained by retaining the resolution

of M2 in the central region of the cylinder, and considerably increasing the resolution

across the interface region. As shown in Table 2.5, M1, M2 and M3 were employed to

investigate point (1), while M3 and M4 were employed for point (2). The Table also

reports grid specifications, computational cost and details of the SPM setup for the two

sets of experiments, labelled “Test 1” and “Test 2”.

Wang et al. [184] introduced the following criteria to ensure resolution requirements

Table 2.5: Summary of mesh specifications adopted for validation of SPM.

Mesh # Elements P Nz DoF [·106] ∆t T Test 1 Test 2

M1 1550 7 64 3.57 1e-3 400 ξ = 0.01
M2 4906 7 64 11.30 1e-3 400 ξ = 0.01
M3 7612 7 64 17.54 2.5e-4 200 ξ = 0.01 ξ = 0.01

M4 10036
7 64 23.12 1.25e-4

200
ξ = 0.0048

8 64 28.90 1e-4 ξ = 0.0015
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Figure 2.15: (a) Sketch of the smoothed profile φ in the case of a stationary cylinder
with ξ = 0.01. The grey areas are bounded with a tolerance of 10−3. (b-d) Quadrature
points of M1, M2 and M3 within the grey regions with P = 7.

are met:

h

P
≤ ξ , (2.59)

Lz
Nz
≤ 6ξ . (2.60)

where h here refers to the length of the element edge across the boundary of the SPM.

In order to test the behaviour of the method in the context of a relatively large interface

thickness, ξ = 0.01 is selected for Test 1. With this choice of the interface thickness, case

M1 at P = 7 does not satisfy 2.59, while M2 and M3 do. To provide a visual representation

of the resolution level in this case, Figure 2.15a shows the particle function φ, highlighting

in grey the transition area defined as the region where φ is within 10−3 of its value outside

the interface region. Below, the effective high-order resolution of meshes M1-M3 within

the grey region is shown. It should be noted that the equispaced output of the quadrature

points is shown for visual clarity, and therefore they do not exactly correspond to the

physical solution points. Nonetheless, this provides an indication of the level of resolution

available in the three cases.

The time-averaged wakes of streamwise velocity are shown in Figure 2.16, where the
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Figure 2.16: Wake profiles of streamwise velocity with increasing resolution in the
x− y plane and constant interface thickness ξ = 0.01. Figure edited from [184].
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Figure 2.17: Streamwise velocity along the centreline with increasing resolution in the
x− y plane and constant interface thickness ξ = 0.01. Figure edited from [184].

Nektar++ results are superimposed with previous SPM results [184] and experimental

measurements from Parnaudeau et al. [128] and Lourenco & Shih [95]. The DNS data

agree very closely with experiments [128] both in terms of wake width and depth. The

SPM results obtained in the coarse mesh (M1) retain the same shape as the DNS results,

while overestimating both wake width and depth. The results saturate in M2 and M3,

where an increase in resolution does not show any further changes in the wake profiles.

This suggests that the resolution of M1 is insufficient to accurately represent an interface

thickness of ξ = 0.01, but resolution levels superior to M2 introduce no further improve-

ment in the agreement with DNS results. The same considerations apply to the streamwise

velocity along the centreline, shown in Figure 2.17. In this case, the M1 profile is actually

closer to the DNS values compared to M2 and M3. More specifically, the coarse case
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Figure 2.18: (a) Analytical SPM profiles across the cylinder boundary with decreasing
thickness ξ, and (b) resulting wake profiles of streamwise velocity with increasing
resolution in the x − y plane and reduced interface thickness ξ. Figure edited from
[184].

provides a closer agreement in terms of recirculation length, although it overestimates the

maximum recirculation speed compared to DNS results. The offset between DNS data

and the experimental measurements may be linked to the presence of background noise

in the experiments, causing early transition [190]. Higher resolution in the SPM cases

underestimates the bubble length as well as the far-wake centreline velocity. This figure

highlights that the use of SPM with large ξ converges to a solution as the resolution is

increased, but different from the reference, and therefore supports the verification of point

(1).

In order to verify point (2), it is necessary to introduce further mesh refinement the

spectral/hp planes while retaining the same number of DoF in the spanwise direction, and

concurrently reducing the interface thickness. It should be highlighted again that SPM

simulation results are very sensitive to both ξ and mesh resolution. Since SPM was first

proposed [122], a number of studies made attempts to find an optimal way to tune ξ (Luo

et al. [97], Mohaghegh & Udaykumar [113] to name a few), but most of the estimates

depend on the simulation timestep ∆t, which is not a desirable property.

Wang et al. [184] proposed an approach based on an estimate of the momentum thickness

in the context of the flow past a bluff body at moderate Reynolds number (80 ≤ Re ≤ 104),

which is within the range of interest of this work. Schlichting & Gersten [150] provided

an estimate of the smallest value of the momentum thickness at x = πd
4 :

θ =
0.664√

0.25Re · π
. (2.61)

The interface thickness is then calculated as ξ = ε θ, by introducing a tuning parameter

with value ε = 0.2 for two-dimensional simulations, and ε = 0.4 for three-dimensional
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Figure 2.19: Streamwise velocity along the centreline with increasing resolution in the
x− y plane and reduced interface thickness ξ. Figure edited from [184].

simulations. According to this estimate, at Re = 3900 interface thickness should be

ξ = 0.0048 for accurate results. Therefore, this setup is implemented in M4 with P = 7,

where the x− y resolution is largely sufficient to capture the interface. This case provides

insight into the capability of a physics-based approach to select ξ, upon the condition

that the resolution is sufficient. Lastly, the condition previously shown in Equation 2.59 is

employed to find the smallest ξ that can be theoretically be represented with the resolution

of M4 at P = 8, to assess the result of adopting a resolution-based approach to the selection

of ξ. Equation 2.59 at the resolution level of M4 with P = 8 yields ξ = 0.0015. The three

cases compared are summarised in Table 2.5, and their analytical φ function is shown in

Figure 2.18a. For M3 and M4, given the high computational cost of this simulation, time

averages were collected over a reduced time interval of T = 200d/U∞, which was deemed

sufficient to estimate a number of mean flow features including velocity wakes at the level

of accuracy required in this section.

Time-averaged streamwise velocity wakes at three streamwise stations are shown in

Figure 2.18b. At x/d = 1.06, the SPM wake is V-shaped with large ξ = 0.01, and U-

shaped with small ξ = 0.0015. With ξ = 0.0048 the wake profile at all streamwise stations

reproduces the results obtained by Wang et al. [184] where a similar value of ξ = 0.005 is

adopted. Case ξ = 0.0015 is overlapped with DNS wakes at x/d = 1.06 and x/d = 1.54,

with a small discrepancy in the centreline of the wake at x/d = 2.02. Therefore, progressive

convergence towards DNS results is demonstrated in the near-wake streamwise velocity at

all locations analysed. The streamwise evolution along the centreline is shown in Figure

2.19. Case M3 with ξ = 0.01 underestimates the recirculation length and the maximum

recirculation velocity, as well as the far wake velocity at x/d = 5. In case M4 with

ξ = 0.0048, the centreline velocity is not as close to the results by Wang et al. [184]

as apparent from the near wake profiles. However, the decrease in interface thickness

produces a notable improvement compared to ξ = 0.01. The most refined case (M4
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with ξ = 0.0015) is extremely close to DNS results until the negative peak in centreline

recirculation velocity at x/d ≈ 1.7, and further downstream for x/d > 3.5.

This section has provided a validation of the SPM feature aimed at supporting the

adoption of this method to model the wake passing effect. An important limitation can be

highlighted: in the flow past a circular cylinder, the physics-based approach to the tuning

of ξ provides less accurate time-averaged velocity results compared to the resolution-based

approach. In other words, to obtain comparable accuracy to a wall-resolved DNS solution

where conventional boundary conditions are imposed, a combination of extremely high

resolution for the interface region and small interface thickness ξ are required. This in

turn yields a steep increase in computational cost, which becomes practically unfeasible

for all realistic applications where the SPM body is not stationary. This topic is explored

in further detail in Chapter 6, where a novel practical approach is developed to accurately

model the wake passing effect despite under-resolution in the SPM region.
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Chapter 3

A resolution study

A relatively small number of previous studies have devoted attention to extensively ex-

ploring the convergence properties of HOM. The effect of a larger spanwise computational

domain and various polynomial order setups were investigated by Uranga et al. [174] on a

wing profile at low Reynolds number using a DG method. Different mesh configurations

were also tested by Raverdy et al. [142]. A more recent paper by Pichler et al. [135]

confirms that the grid resolution used in several previous studies is qualitatively suffi-

cient for accurately capturing the main flow features dominated by large scale structures

(e.g. pressure distribution and mean wake profiles). Second order statistics in the wake

are recommended for assessing grid convergence: TKE and TKE production are large

scale turbulence quantities, while turbulent dissipation is the most stringent measure to

determine grid convergence to DNS level.

The T106A LPT test case [165] is recognized and adopted as an ideal benchmarking

case. The potential of the numerical method is leveraged through the built-in refinement

capability of element refinement (h) and polynomial order (P ). The aim is to assess a

framework of best practices for scale-resolving simulations of turbomachinery components

using HOM and verifying recommendations that provide accuracy with optimized com-

putational cost and convergence. The number of computational parameters that can be

explored is substantial, and independently analysing all relevant combinations is unfeas-

ible. Therefore, several key computational setups are selected for a parametric study, and

the results are compared and discussed to verify statistical convergence. The broad range

of length and time scales that dominate turbomachinery flows is such that each flow prop-

erty has different requirements in terms of grid resolution and time averaging window,

which complicates most attempts of generalization.

The next section discusses the computational approach in detail, as well as the main

physical features of the linear cascade at a moderate Reynolds number. The techniques for

data reduction and calculation of performance parameters employed across all following

Chapters are introduced together with quantitative results, subdivided into various parts:

(1) x − y plane p-refinement, also discussing the effect of different choices for the SVV

parameters in the spanwise direction, and the importance of an appropriate averaging

57
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window; (2) effect of different choices of the spanwise domain Lz, and (3) impact of

the number of Fourier planes Nz in the spanwise direction. Then, a comparison with an

experimental campaign from Cambridge University [27] is established, and a brief overview

of the main findings is presented.

3.1 Problem setup and numerical approach

The test case considered in this Chapter is a T106A LPT, a well known openly available

geometry. Previous works focusing on the wake passing effects adopted a modified inflow

angle, following the experiments by Stadtmüller et al. [161].

In this Chapter, clean inflow boundary conditions are employed: they allow for high

sensitivity of the flow statistics to the effect of the various setups, without any influence

introduced by background fluctuations or wake passing effects. However, this setup ar-

guably is not closely representative of a realistic industrial flow. The design inflow angle

of α = 37.7◦ was employed in combination with a moderate inflow Reynolds number of

Re∞ = 50000 (based on inflow velocity U∞ = 1 and chord C = 1), which corresponds

approximately to Re2 = 88450, based on mixed-out velocity magnitude at the exit meas-

urement plane. Further details on various averaging techniques are discussed in Section

3.1.1. The design exit angle is 63.2◦. The inflow plane is situated 1Cax upstream of the

leading edge (Cax = 0.859C). High-order outflow conditions [41] were applied to the

outflow plane, located 1.5Cax downstream of the trailing edge, while periodic conditions

were enforced in the pitchwise direction, with pitch-to-chord ratio Py/C = 0.799. The

upstream and downstream measurement planes are respectively 0.5Cax upstream of the

leading edge (LE) and downstream of trailing edge (TE).

One of the bottlenecks in the development of high-order solvers and their incorporation

in an industrial setting is efficient and robust high-order mesh curving capability [13];

the NekMesh platform [172] allows to tackle this challenge. The computational mesh of

the T106A blade is shown in Figure 3.1. It was generated following a series of criteria,

resulting from extensive trial and error testing. First, the geometrical points distribution

was slightly smoothed near the trailing edge and leading edge, since a few of the original

data points [165] presented an unusual distribution. The resulting 2D loading of the

original geometry and the modified one showed no differences. To generate curved high-

order elements, four splines joined in low curvature regions were fitted through the blade

surface points. The O-mesh around the blade was generated with 8 base mesh layers

with a geometric progression of 1.5 and total thickness corresponding approximately to

the boundary layer thickness at the separation point (ne,sep/C ≈ 0.012). The wake mesh

is highly resolved in the whole pitchwise domain up to a streamwise extent of 0.75Cax

downstream of the trailing edge. The resulting base mesh has 2632 quadrilateral elements

in the O-mesh and 6031 triangular elements in the unstructured mesh. The coarsening

outflow region also promotes the dissipation of strong vortical features, enhancing the

stability of the simulations especially during transient flow evolution.
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Figure 3.1: Computational base mesh and (zoomed) high-order LE and TE mesh
with P = 7. The boundary layer O-mesh has 8 layers with geometric progression 1.5.
Copyright c© 2018 by Rolls-Royce plc.

In the framework of high-order spectral/hp element methods, the local mesh spacing h

needs to be selected at a scale comparable to that of the flow features, on top of which p-

refinement at fixed h allows for exponential convergence with a sufficiently smooth solution.

To ensure that the base mesh spacing selected is sufficiently refined in the near-wall region,

another mesh with approximately half cell size along the blade and twice as many layers

in the O-mesh was tested with the same setup, yielding identical results in the mean 2D

surface distributions.

The near wall resolution of the high-order mesh is shown in Figure 3.2. For the calcu-

lation of the resolution in wall units, the wall-shear stress in the blade-normal direction n̂

is computed:

τw = µ
∂u

∂n

∣∣∣∣
wall

, (3.1)

and used to estimate the friction velocity uτ :

uτ =

√
τw
ρ
. (3.2)

The mesh spacing in wall units can be written along the curvilinear coordinate s as:

∆x+
i (s) =

(∆xi(s)/P )uτ
ν

. (3.3)
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Figure 3.2: Near wall mesh resolution for the case P7L02N96. Copyright c© 2018 by
Rolls-Royce plc.

The ratio h/P is obtained by dividing the base mesh spacing ∆xi(s) by the polynomial

order P . The resolution obtained is within typical limits recommended for DNS [51],

suggesting that the current setup achieves high resolution standards on the blade surface.

Nonetheless, the viscous wall coordinates are derived under the assumption of fully tur-

bulent boundary layer; it is not yet clear how generally accepted resolution requirements

for turbulent BL would translate to the case of transitional and separated boundary lay-

ers, so this result is mainly indicative. However, it suggests that the resolution employed

is sufficient to capture the turbulent structures evolving in the separated portion of the

suction surface.

When simulating a new test case or geometry, the simulations are impulsively started

in 2D from uniform initial conditions at very low Reynolds number, progressively increas-

ing P and Re concurrently, until the flow is fully established at the resolution level and

Reynolds numbers of interest. Subsequently, the computational domain is extended in

the third dimension, perturbing the flow in the spanwise direction with white noise to

trigger turbulent mixing and breaking down coherent two-dimensional structures. Due to

the high sensitivity of the flow statistics to inflow conditions and parameters variation,

it is important to ensure that transient phases are extinguished and the flow is statist-

ically converged when sampling time averages. Unless otherwise specified, in every case

presented in this work the time evolution of three quantities was monitored to determine

when time-averaged statistics could be sampled. The quantities considered are: (1) the

volume integral of the kinetic energy, (2) the evolution of aerodynamic forces and (3)

the modal energy distribution across the Fourier modes. In general, the highly unsteady

nature of these measures limits possibility to identify the end of the transient phase rig-
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Table 3.1: List of cases analysed, grouping the setups compared in the Chapter,
excluding cases for experimental comparison. The column DoF indicates the de-
grees of freedom per variable. The computational time is calculated based on aver-
age timestepping only, and it indicates the approximate computing time required for
T = 1C/U∞ on 100 Intel R© Xeon R© E5-2680 v4 processors, assuming linear scaling.
Case P7L04N192 was ran on a different system and therefore omitted for consistency.

Case P Lz/C Nz M/Nz DoF [·106] Comp. time [h] CFL

P3L02N96 3 0.2 96 0.75 9.83 2 h 18’ 0.17393
P5L02N96 5 0.2 96 0.75 21.2 5 h 33’ 0.48492
P7L02N96 7 0.2 96 0.75 37.0 20 h 48’ 0.47516
P9L02N96 9 0.2 96 0.5 57.1 56 h 16’ 0.62859
P7L02N32 7 0.2 32 0.5 12.3 13 h 2’ 0.47543
P7L02N48 7 0.2 48 0.5 18.5 17 h 48’ 0.47514
P7L02N72 7 0.2 72 0.5 27.8 19 h 47’ 0.47505
P7L02N128 7 0.2 128 0.75 49.3 31 h 51’ 0.47508
P7L0025N12 7 0.025 12 0.5 4.63 2 h 36’ 0.47437
P7L005N24 7 0.05 24 0.5 9.25 4 h 51’ 0.47531
P7L01N48 7 0.1 48 0.75 18.5 8 h 42’ 0.47499
P7L015N72 7 0.15 72 0.75 27.8 16 h 18’ 0.47576
P7L04N192 7 0.4 192 0.75 74.0 - 0.47540
P7SVV 7 0.2 96 0.5 37.0 23 h 13’ 0.47527
VARP Variable 0.2 96 0.5 - 7 h 42’ 0.33626

orously, but such an approach was found to be robust and suggested that T = 20C/U∞
chord-based flow through times were sufficient in most cases analysed. Time-averages were

subsequently sampled for further 24 chord-based flow through times in all cases, having

ensured convergence of all properties within such averaging frame. Further details on time

convergence are provided in Section 3.3.6.

As mentioned in the introduction of the Chapter, the analysis focuses on the effect of

resolution on the main blade statistics. Table 3.1 presents a summary of the test cases

analysed, together with their respective performance measurements. As a side note, the

CFL number indicated in the column on the right is relative to the timestep employed

for each specific case. In particular, in cases P3L02N96 and P5L02N96 it was possible to

double the timestep ∆t (while retaining the same sampling frequency for all statistics).

3.1.1 A note on various averaging techniques

Traditionally, the type of averaging scheme for various flow quantities has predominantly

relied on matters of opinion or convenience. This is particularly true for the inherent lim-

itations present in experimental work, often limited to a crude area average. However, the

increasing role of CFD provides an opportunity to select the correct averaging technique,

given the non-intrusive availability of large datasets. A paper by Cumpsty & Horlock [32]

focuses on this topic in detail. Each of the various averaging techniques available is ap-

propriate depending on the physical problem being analysed. The topic is of considerable
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importance: internal flows are typically strongly nonuniform, and component performance

is assessed based on some type of data reduction to a single value. Therefore, the way

averaging is carried out has important repercussions in the estimation of performance.

This work is mainly concerned with mixed-out averaging and, in some cases, mass av-

eraging. However, very often in practical applications the quantitative difference between

the various averaging approaches is very limited [32]. This was checked in all problems

analysed in this thesis. Despite the fact that values of total pressure and velocity were

observed to differ no more than 0.2% by comparing the various averaging methods, the

uncertainty associated to these variables is enhanced when derived variables are calcu-

lated. For example, a relative difference of ≈ 5% was found in the calculation of total

pressure losses. It is therefore important to clarify the distinction and purpose of various

averaging methodologies.

Area average The appropriate average for the static pressure is derived from the net

force exterted on the control domain [32]:

F = pPy =

∫ Py

0
〈p(y)〉z,tdy . (3.4)

Mass average Cumpsty & Horlock [32] argued that for compressor and turbine flow,

where the focus is on the work input or output, pressure ratio and efficiency, the correct

total pressure averaging approach is called work-average. However, this averaging tech-

nique involves the use of thermodynamic quantities that assume flow compressibility. In

practice, mass-averaging is very commonly adopted to estimate stagnation pressure: in the

limit as the pressure variation tends to zero, the work-average tends to the mass-average:

pAt =

∫ Py
0 〈pt(y)〉z,t〈u(y)〉z,tdy∫ Py

0 〈u(y)〉z,tdy
. (3.5)

Mixed-out average Several averaging methods produce mean values that are not con-

sistent with all conservation laws [132]. The mixed-out state is instead determined from

the initial nonuniform state by enforcing conservation of mass, momentum and energy

between the two measurement stations, yielding consistent results for the loss of an airfoil

row. The mixed-out approach accounts for all sources of loss downstream of the blade,

and it is invariant to the axial location [139]. Since this work focuses on incompressible

flows, a number of simplifications can be introduced. The assumption ρ = 1 is made.

Applying mass conservation between any station and a point further downstream where

the flow is assumed to be completely mixed out yields:

Pyu =

∫ Py

0
〈u〉z,tdy . (3.6)
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This is effectively an area average applied to the streamwise component of velocity. Apply-

ing momentum conservation and isolating the x- and y- components provides two further

equations for the vertical component of velocity and for pressure:

Py(p+ u2) =

∫ Py

0
(〈p〉z,t + 〈u〉2z,t)dy , (3.7)

Pyu v =

∫ Py

0
(〈u〉z,t〈v〉z,t)dy . (3.8)

From these three equations one finds the mixed-out velocity UM =
√
u2 + v2, static and

total pressure:

pMt = p+
1

2
ρ(u2 + v2) , (3.9)

as well as the mixed-out exit angle:

αM = arctan

(
v

u

)
. (3.10)

From a practical point of view, at times it is difficult to conduct experiments without

including a fluctuating component. In that instance, Equations 3.7 and 3.8 become:

Py(p+ u2) =

∫ Py

0
(〈p〉z,t + 〈u〉2z,t + 〈u′2〉z,t)dy , (3.11)

Pyu v =

∫ Py

0
(〈u〉z,t〈v〉z,t + 〈u′v′〉z,t)dy . (3.12)

In this work, the mixed-out values are predominantly used. However, the type of normal-

isation is pointed out where a different approach is adopted.

3.2 Cascade flow features

Given the inflow and Reynolds conditions considered, the suction side boundary layer

remains attached and laminar up to a rear separation point in the aft portion of the suction

surface, as visible in the instantaneous contours of Figure 3.3. The Figure represents the

mean mode (i.e. spanwise average) and thus shows higher coherence in the turbulent

structures compared to a single x−y slice; however, the large-scale vortex shedding remains

coherent as the vortical structures propagate downstream, which raises the question of

whether the numerical dissipation introduced is sufficient. In general, spectral methods

have no numerical dissipation. In under-resolved simulations, energy accumulates in the

high wavenumber region, therefore requiring the introduction of a subgrid-scale (SGS)

model. In Nektar++, the use of SVV (a model-free stabilisation technique) introduces

numerical dissipation, which needs to be sufficiently representative of physical dissipation.

The combination of insufficient numerical dissipation and coarse resolution would result

in an energy peak in the high wavenumber region of the spectrum. Velocity spectra are



3.2. CASCADE FLOW FEATURES 64

(a) (b)

Figure 3.3: Contours of the mean mode (mode zero in Fourier space) of instantaneous
velocity magnitude (a) and spanwise vorticity in case P7L02N96.

discussed later in the Chapter, and such behaviour is not observed. However, in order

to conclusively determine the potential benefit of a SGS model it would be necessary to

estimate the numerical dissipation and compare it with physical dissipation. One such

recent study by Dairay et al. [34] compared numerical dissipation via SVV and SGS

modelling for LES. The authors argued that the relevant scale selectivity for the artificial

dissipation introduced via SVV is even more crucial than the ability to represent inertial

SGS contribution. In fact, these terms are comparable to aliasing and differentiation errors

when the mesh size and filter size are comparable.

The underlying reason for large-scale structures in the LPT wake is deemed to be

of physical nature, owing to the large open separation merging into the wake. The

elongated separation bubble in the aft portion of the suction side is revealed in the time-

averaged statistics, shown in Figure 3.4. This highlights how at the moderate reference

Reynolds number of Re2 = 88450, the separation indeed remains open merging into the

trailing edge wake, therefore resulting in a highly oscillatory wake of alternating spanwise

vortices. Conversely, at the same Reynolds the flow is attached on the whole pressure side

and remains laminar until the trailing edge.

The skin friction coefficient is defined as:

Cf =
τw

1
2ρU

2∞
, (3.13)

where τw indicates wall-shear stress, introduced in Equation 3.1. The time-averaged 3D

Cf map of Figure 3.5 shows the location of flow separation. In the proximity of the trailing

edge, there also exists a small region of mean positive shear, denoting the presence of a

minor bubble circulating in the direction opposite to the main separation bubble, in a

time-averaged sense. In the region very close to the trailing edge, the turbulence kinetic
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(a) (b)

Figure 3.4: Contours of the mean mode of instantaneous velocity magnitude superim-
posed with the base mesh (in dark blue) and flow streamlines (dark green), showing
the extent and shape of the separation bubble in case P7L02N96 (a); the zoomed
region near the TE region is shown in (b). The velocity magnitude colourmap is
reversed with respect to Figure 3.3 for graphical clarity.

Figure 3.5: Time-averaged skin friction coefficient map on top of turbulent kinetic
energy contours (T = 24C/U∞, case P7L02N128). The black lines indicate isolines of
zero wall shear stress.

energy increases abruptly and the flow undergoes turbulent transition, consistently with

the darker blue contours in the skin friction map showing the beginning of a reattachment

process. Increasing the Reynolds number moves the separation forward affecting its length,
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Figure 3.6: Instantaneous skin friction coefficient map on the aft portion of the suction
surface in consecutive instants spaced by T = 0.08C/U∞, from top to bottom. The
black lines are isolines of zero wall shear stress. Copyright c© 2018 by Rolls-Royce
plc.

the losses and the flow dynamics of the boundary layer approaching the trailing edge.

The laminar inflow promotes large unsteadiness of the flow structures, which appear

to be very sensitive to the numerical setup in the range of Reynolds numbers considered.

The instantaneous spanwise-independent separation line shown in Figure 3.6 has strong

streamwise oscillatory behavior, and it is subject to movements in the range of over 4.5%

of its average location. The saturated colour map allows to better isolate the reversed flow

region and understand its inherent unsteadiness. Downstream of the separation point,

emerging spanwise waviness accompanies highly unsteady streamwise-alternating regions

of attached and separated flow convecting towards the trailing edge. The high sensitivity

of such flow environment requires long and careful averaging procedures. This is unlikely

to be an issue in a more realistic turbomachinery environment, where the presence of

background turbulence modifies the transition mechanism, fixing the flow properties of

interest.

The Q criterion [71] visualisation of Figure 3.7 provides further qualitative confirmation

of the instantaneous coherent structures developed in the flow. Transition takes place only

in the final part of the suction surface, where the separated shear layer rolls up due to

Kevin-Helmoltz instability.

In this work, all profile results presented refer to the curvilinear system s/S0, which is
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Figure 3.7: Instantaneous iso-surfaces of second invariant of the velocity-gradient
tensor (Q = 500) coloured by velocity magnitude, case P7L02N96. The computational
domain is replicated in the spanwise and pitchwise directions for graphical purposes.

preferred to the streamwise coordinate x/Cax often used in the literature. The choice aims

to better show variations on the aft portion of the suction surface. The leading edge and

trailing edge are defined as the first point of contact with the blade of a line perpendicular

to the design inflow and outflow angles, respectively.

3.3 P -refinement

This section provides a reference for the rest of the thesis, helping ensure mesh independ-

ence to obtain the most accurate flow statistics at reduced computational cost. The effect

of polynomial order refinement is assessed for a given spanwise number of Fourier planes,

progressively increasing the resolution in the blade-to-blade plane. This operation yields

a significant increase in computational cost (as demonstrated in Table 3.1), which needs

to be accounted for in analysing its tradeoff against the increasing accuracy gained owing

to higher order expansions.

3.3.1 Blade wall distributions

A first quantitative estimation of the improvement of the performance prediction is vis-

ible by the analysis of the average pressure coefficient and skin friction coefficients. The
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Figure 3.8: pressure coefficient with increasing polynomial order P . Copyright c©
2018 by Rolls-Royce plc.

pressure distribution is calculated as [109]:

Cp =
ps − pAs,2
pAt,1 − pAs,2

. (3.14)

This definition is adopted through this work, unless specified otherwise. The line integra-

tion employed to extract reference quantities at the inflow and exit measurement planes

guarantees accuracy by using a very high number of equispaced interpolation points in the

pitchwise direction. Figure 3.8 suggests that convergence is achieved at a relatively low

order, and the distributions predicted with P = 5, P = 7 and P = 9 match closely along

the whole blade. As expected, the most unstable region is the rear suction surface close

to the TE, where discrepancies between cases P = 5 and P = 9 prove to be negligible as

highlighted by the inset plot.

Similar observations apply to the skin-friction coefficient, shown in Figure 3.9. Ana-

logously to the pressure distribution, the case P = 3 oscillates due to the under-resolution

in the near-wall region and this is particularly noticeable in the separated region as well

as in the aft portion of the pressure side. An order-of-magnitude improvement in numer-

ical accuracy (attained by refining to P = 5) is sufficient to remove the under-resolution

instabilities and a much better agreement is achieved with the highest order case.

The Cf distribution is flat in the region between (s/S0) = 065 and (s/S0) = 0.9, so

the separation point ((s/S0)sep = 0.6777 with P = 9) is expected to be affected by a

large uncertainty in the prediction. A robust location of the separation point (s/S0)sep is

computed through a spline passing through 4 points on each side of abscissa where the

shear stress reaches zero and after having interpolated the distributions to P = 15.

The errors in Table 3.2 demonstrate the p-refinement rate of convergence to the asymp-
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Figure 3.9: Skin friction coefficient distribution with increasing polynomial order P .
Copyright c© 2018 by Rolls-Royce plc.

totic solution. The error is calculated by interpolating all cases to a high-order distribution

(P = 15), so that a point-wise correspondence is achieved allowing the correct calculation

of the RMS relative error. The comparison of p-refinement results confirms the theoretical

expectation that the separation location is captured with an order-of-magnitude accuracy

improvement as P is increased by 2.

In this case, the solution with P = 9 is taken as reference as no exact solution is known.

It is very likely that the error of solution P = 9 with respect to P = 11 would be smaller

than the error of P = 7 with respect to P = 9 . Therefore, the error of case P = 7 can be

interpreted as a conservative uncertainty bound for the coarser cases.

Table 3.2: RMS of the relative error for various statistics compared to the reference
case P = 9 (P9L02N96). The separation point error is the relative error.

Property P = 3 P = 5 P = 7

Cp 0.03668 0.002618 0.000939
Cf 0.1956 0.00797 0.00221

(s/S0)sep 0.0221 0.00400 0.000512
θ 0.2158 0.01314 0.003608
H 0.1527 0.01185 0.003049

3.3.2 Boundary layer parameters

The evolution of the boundary layer parameters on the suction side of the turbine blade

is an important parameter linked to profile loss estimation [38]. However, a robust and

generally accurate estimation of the BL thickness [180] is not an obvious task especially

for high fidelity time-varying velocity profiles in thin laminar, transitional or separated
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flow regions, where no reference farfield velocity can be identified.

In this work, the method proposed by Uranga et al. [174] is adopted to provide an

estimation of BL thickness. This approach is based on a pseudo-velocity which always

asymptotes to a constant outside the boundary layer, hence reducing the arbitrariness in

the definition of the boundary layer edge. Even though the tuning parameters proposed

in the original paper were found to be slightly conservative when applied to a flat-plate

configuration, they were adopted in this work. More specifically, the pseudo-velocity is

defined as:

u∗(s, n) ≡
∫ n

0
ω × n̂ dn , (3.15)

where n̂ is the local vector perpendicular to the surface, and ω is the flow vorticity. The

boundary layer edge ne is defined as the first location where the magnitude of vorticity

and vorticity variation in the direction normal to the surface simultaneously satisfy the

conditions:

|ω|n < ε1 |u∗| ,
∣∣∣∣∂ω∂n

∣∣∣∣n2 < ε2 |u∗| , (3.16)

with ε1 = 0.01 and ε2 = 0.1. The edge velocity magnitude ue at a distance of ne from

the blade is used for the calculation of boundary layer parameters. Defining u‖(n) as the

velocity in the direction parallel to the blade at a certain BL location, the boundary layer

displacement thickness and momentum thickness are calculated as:

δ =

∫ ne

0

(
1−

u‖(n)

ue

)
dn , (3.17)

θ =

∫ ne

0

(
1−

u‖(n)

ue

)
u‖(n)

ue
dn . (3.18)

The shape factor is finally obtained as:

H =
δ

θ
. (3.19)

The BL analysis was carried out by isolating the suction surface and distributing a large

number of sampling stations (O(103)) with increasing clustering in the aft portion of the

blade, near the trailing edge. At each station, the boundary layer profile was interpolated

to 500 points distributed along the normal to the surface following Robert’s distribution

[3] (specifying a coefficient δ = 0.02), and up to a wall-normal extent of n = 0.05C.

The staggered wall-normal interpolated grid allows to capture the viscous sublayer with

greater accuracy than a uniform distribution. The number of points employed for the

profile extraction and the stagger coefficient were decided by exploring a range of different

combinations. The most refined case (P9L02N96) was taken as reference for estimating

the boundary layer thickness in each station, which is then employed for calculating the

integral parameters in all other cases. To further verify independence of the integration

height from the parametric setup, the BL thickness was estimated independently in the

case P = 7 and cross checked against P = 9. The negligible difference confirmed the
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Figure 3.10: Momentum thickness θ and shape factor H along the suction surface
with increasing P . The vertical dashed line indicates the separation point. Copyright
c© 2018 by Rolls-Royce plc.

robustness of the method.

Figure 3.10 shows the evolution of the momentum thickness and shape factor along

the suction surface. In agreement with the blade wall distributions, the case P = 3 is

strongly under-resolved and introduces large errors in the integral parameters. Solutions

associated with higher order are almost entirely overlapped, with both momentum thick-

ness and shape factor showing, again, the target order-of-magnitude improvement in the

RMS relative error as P is increased by 2 (Table 3.2).

Further understanding of the accuracy in representing the boundary layer evolution

along the suction surface can be gained by analysis of the relative error distribution of each

case against the reference case P9L02N96. The momentum thickness is shown in Figure

3.11, and the shape factor is shown in Figure 3.12. The visualization in log scale helps

to single out the increasing accuracy attained by increasing P . An order-of-magnitude

decrease in error is found in the laminar portion of the suction surface, and in the trailing

edge region the error tends to increase relatively to the front portion of the suction side.

The maximum relative error in the TE region drops from around 60% with P = 3 to 1%

with P = 7, which can also be intepreted as a conservative delta of uncertainty in the whole

error estimation for cases P = 3 and P = 5. The presence of highly oscillatory behaviour

of the error distribution is likely due to the boundary layer interpolation procedure. This

is especially necessary due to the unstructured nature of the mesh outside the boundary

layer mesh, and it introduces a component of numerical error.
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Figure 3.11: Relative error of the momentum thickness θ against P = 9 with increasing
polynomial order. The circled areas represent the regions of maximum error in each
case.

Figure 3.12: Relative error of the shape factor H against P = 9 with increasing
polynomial order. The circled areas represent the regions of maximum error in each
case.

3.3.3 Velocity spectra

Power spectra of streamwise, vertical velocity and velocity magnitude are analysed by

sampling the flow variables in 11 points scattered in the trailing edge and wake region

(Figure 3.13a), with a sampling rate of fC/U∞ = 10000. For simplicity, one spectrum
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(a) (b)

Figure 3.13: (a): Probe points spatial distribution in the trailing edge and wake
regions. (b): Streamwise velocity spectra in the turbulent wake with increasing P , in
point 9. Copyright c© 2018 by Rolls-Royce plc.

representing the dominant trends is presented in each case. To obtain a smoother spec-

trum, the PSD of the velocity signals are processed by partitioning the complete time

history in 5 sections, on top of which Hann windows are applied with 50% overlap. At

each (x, y) location, multiple samples are recorded in the z-direction, and the resulting

spectra are arithmetically averaged.

Figure 3.13b shows progressive matching with the most refined case as P is increased,

particularly at high frequency. The main peaks at low frequency are captured accurately

with P = 5, but the spectrum differs significantly for fC/U∞, where instead P = 7 is

closer to the most refined case, up to roughly fC/U∞ ≈ 300− 400.

When the x− y plane resolution is very high compared to the spanwise resolution, the

solution may diverge due to instability of the high frequency modes. This issue is further

addressed in Section 3.3.5, showing that changes in the SVV cutoff can overcome this issue,

and only affect the spectra in the high frequency end of the spectrum. Case P = 9 requires

such further stabilization. It should be noted that, due to the finite sampling period, the

phenomenon known as “leakage” in the spectra cannot be avoided because the signal is

not exactly periodic in the time frame considered for sampling. The effect of leakage is

that of smearing energy across the frequency spectrum. For instance, in this case it occurs

at fC/U∞ > 3000 in the case P = 9 and fC/U∞ > 2000 for P = 7. Two measures

can be undertaken to reduce this phenomenon: (1) extending the sampling period, or (2)

selecting a good window function, whose Fourier transform is closest to a delta function.

Since the first measure is impractical, several functions were tested; the Hann window,

commonly adopted owing to its good spectral properties, was found to produce the best

attenuation of the phenomenon.
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3.3.4 Spatially adaptive polynomial order

In spectral/hp element methods, h-type refinement is used in conjunction with p-type

refinement, thereby leveraging the geometrical flexibility of finite element methods and

the superior spatial accuracy properties of spectral methods. P -refinement is a powerful

tool to increase accuracy in representing turbulent phenomena with lower total degrees

of freedom (DoF) compared to low-order FD and FV methods (thus reducing diffusion

and dispersion error). For applications that lead to sufficiently smooth solutions (i.e.

in the absence of shocks), the rate of convergence of Galerkin methods is exponential,

highlighting the algorithmic advantage of p-refinement [93].

A typical approach to hp-adaptive techniques is based on iterating a local refinement

procedure based on a posteriori error estimation. The main refinement indicators are

generally grouped in three categories: feature based indicators, Discretisation-Error based

indicators and goal oriented indicators. More details on the differences, advantages and

drawbacks can be found in the recent paper by Naddei et al. [121].

Spatially variable (and adaptive) polynomial order was implemented in the Nektar++

framework [155, 119]. The compressible solver features a goal-based error estimator based

on the adjoint solution [44], while in the incompressible Navier-Stokes solver a DE-based

local sensor as error estimator [131] is available:

Se =
||upe − up−1

e ||L2

||upe||L2

, (3.20)

where the sensor variable can be specified; the error estimator is evaluated separately

within each element. Based on specified upper and lower error tolerances, the local poly-

nomial order is increased or decreased by one order at each adaptation step. The refine-

ment operation is expensive (typically 200 times a single time step) and therefore the ratio

between number of computing iterations and steps of polynomial adaptation must be bal-

anced. Very stringent tolerances on the error may also introduce severe CFL limitations

for local stability. If optimally tuned, the adaptation procedure allows for a significant

reduction in computational cost for a given accuracy (See Table 3.1 for evidence of the

reduced cost against the rest of the computations performed). In the current work, upper

and lower tolerances of 10−8 and 10−10 were adopted, respectively. The expansion order

was allowed to range between P = 3 and P = 11, and it was restarted every T = 0.2C/U∞
for at least 50 times. Both streamwise velocity and the pressure field were separately tested

as sensor variables, and the resulting elemental distribution of P from the former is shown

in Figure 3.14.

As a result of the refinement algorithm, the polynomial order at the inflow is the lowest

allowed; this introduces significant computational savings in a relatively uniform region

of the flow domain. High-order refinement is triggered in the region adjacent to the TE,

and progressively diminishes with the downstream distance. In the outflow region, past

0.75Cax downstream of the TE, the base mesh becomes coarse, and the algorithm attempts
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Figure 3.14: P distribution with error estimation based on streamwise velocity. Copy-
right c© 2018 by Rolls-Royce plc.

to retain high resolution of the turbulent structures by increasing the order again, which

justifies the high P distribution near the outflow plane. As a result, the simulation time

in this case (indicated with VARP in Table 3.1) is roughly a third of case P7L02N96. At

constant tolerance bounds, the use of pressure as sensor variable is more constraining:

the outflow regions where the pressure is close to zero require very low errors, therefore

suggesting a less stringent tolerance would be more appropriate in this case.

It should be mentioned that this approach has limitations concerning its adoption in

cases with incoming disturbances. In fact, with clean inflow the relatively frequent error

estimation and consequent change of order settles quickly on the spatial distribution of P

shown in Figure 3.14. In a case with incoming wakes, instead, this type of adaptation pro-

cedure would attempt to place more DoF at the passing bar’s location at the time of mesh

refinement, without accounting for its vertical motion. For this purpose, a more advanced

approach would be required, to account of the inherent deterministic flow unsteadiness.

Therefore, the results presented in the rest of the thesis do not rely on adaptive polynomial

order, which is left to future research efforts.

3.3.5 SVV cutoff for the exponential kernel

Tuning of the SVV parameters is required for the exponential kernel adopted in the span-

wise direction. The DG-kernel in the x − y plane does not entail manual parameters

setting, as discussed in Section 2.2.2. From the time evolution of the modal energy, it was

observed that when the in-plane resolution is high relatively to the spanwise resolution,

energy tends to build up in the high-frequency modes and cause the solution to diverge.

This issue can be overcome in two ways. One approach is to rebalance the resolution

accuracy by increasing the number of Fourier planes. The alternative solution (adopted

here for the sake of comparison and understanding) is that of applying numerical diffusion
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Figure 3.15: Streamwise velocity spectra in the turbulent wake with different SVV
cutoff coefficients in the spanwise direction, in point 9 (Figure 3.13a). Copyright c©
2018 by Rolls-Royce plc.

on a wider range of high frequency modes, by lowering the SVV cutoff in the homogeneous

direction. This expedient was implemented in a series of cases in this study. To under-

stand to what extent the statistics of interest are affected by this necessary change, two

cases are compared: M/Nz = 0.75 (P7L02N96) and M/Nz = 0.5 (P7SVV). Pressure and

skin friction coefficient distributions are identical, and therefore omitted.

The velocity spectra (Figure 3.15 for an example) manifest a very similar behavior

up to about fC/U∞ ≈ 1000 in all the 11 probe points. Due to mixed contributions

of leakage and SVV effects at high frequency, it is difficult to identify a trend caused

by changes in the cutoff coefficient alone; clearly, it contributes to a variation of the

energy contained in the small scales. However, the statistics depending mainly on low

frequency mechanisms (pressure distribution, skin friction coefficient) are not affected by

slightly decreasing the SVV cutoff parameter for the homogeneous direction. Therefore,

when analysing statistics dominated by large scale structures, it was found acceptable to

establish comparisons between computational setups where M/Nz was slightly modified to

ensure robust numerical stabilization. Such comparisons are to be considered with caution

only in the range of frequencies higher than approximately fC/U∞ ≈ 1000 for the current

x − y plane resolution; it is worth reminding that the higher the in-plane resolution, the

higher the frequencies where differences are detected.

3.3.6 Time averaging window

When the simulation has gone through the initial transient period, convergence is achieved

in a subsequent number of axial through-flows that depends on the individual property

of interest. In general, mean flow quantities require shorter time averaging than turbu-
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Figure 3.16: Streamwise velocity spectra in the turbulent wake with various sampling
intervals T , in point 9 (Figure 3.13a). Copyright c© 2018 by Rolls-Royce plc.

lence quantities, with the most stringent requirements associated to turbulence dissipation

[135]. In the present study, blade distributions were found to converge quickly (as consist-

ently observed across the literature), so the velocity spectra were analysed to identify the

minimum averaging frame to be employed to ensure convergence of all types of statistics

within the averaging window. Figure 3.16 shows that the mean peaks at low frequen-

cies are captured accurately with relatively short time averaging (8 chord-based lengths),

while even the high frequency end of the spectrum becomes almost independent of the

averaging time for T > 16C/U∞. In the current study, T = 24C/U∞ was employed to

guarantee a conservative averaging for comparisons. It should be noted that this choice is

not necessarily the most cost-effective.

Time convergence measured by velocity spectra provides some level of guidance, but

is not directly linked to flow quantities of practical interest for designers. In performance

assessment, the estimation of losses plays a dominant role. The mixed-out loss coefficient

is defined as [109]:

ωM =
pMt,1 − pMt,2
pMt,1 − pM2

. (3.21)

The time convergence of ωM with increasing polynomial order is reported in Figure 3.17a.

Achieving convergence requires a much longer time frame than blade wall distributions.

Comparing the mixed-out loss values measured for T ≥ 16C/U∞ and the values measured

at T = 24C/U∞, the maximum relative errors for cases P = 3, 5, 7, 9 are respectively:

|ωM − ωM (T = 24C/U∞)|
ωM (T = 24C/U∞)

· 100 = 1.594, 1.057, 2.093, 1.196 . (3.22)
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Figure 3.17: Mixed-out total pressure loss coefficient (a) and exit angle(b) calculated
over accumulating time averages, comparing the effect of p-refinement.

Table 3.3: Mixed-out total pressure loss and exit angle with increasing order P , and
relative error with respect to P = 9. Results averaged over T = 24C/U∞.

Property P = 3 P = 5 P = 7 P = 9

ωM 0.04632 0.05019 0.04948 0.04927
ωMerr [%] 5.976 1.873 0.4386 -
αM2 [◦] -63.2736 -63.4255 -63.4331 -63.4324
αM2,err [%] 0.2503 0.01068 0.001209 -

This result provides an approximate uncertainty bound for the estimation of total pres-

sure losses and highlights their sensitivity. The large variability still measured after a large

number of convective time scales is attributed to the specific flow configuration analysed,

where the open separation merging into the wake gives rise to large-scale coherent struc-

tures which are convected towards the outflow. Therefore, in terms of time convergence

(in the absence of discrete periodic disturbances, i.e. wake passing) the case analysed

provides the most challenging flow conditions. Analogous results for the mixed-out exit

angle are shown in Figure 3.17b. Differently from total pressure, the exit angle converges

more quickly, visibly settling for T ≥ 12C/U∞. in both cases, a sharp improvement in the

agreement with P = 9 is achieved with orders higher than P = 3.

Considering the time-converged results at T = 24C/U∞, Table 3.3 shows the values

and relative errors of the loss coefficient and exit angle. The relative error of ωM with

respect to P = 9 is reduced by ∼ 3 − 4 times every time the order is increased by 2,

while the exit angle achieves an order-of-magnitude improvement. The results obtained

at P = 7 and P = 9 are well within experimental tolerances, suggesting that case P = 7

is fully converged in space when its sensitivity is analysed based on mixed-out quantities.



CHAPTER 3. A RESOLUTION STUDY 79

Figure 3.18: Pressure coefficient distribution with various spanwise domains Lz/C.
Copyright c© 2018 by Rolls-Royce plc.

Table 3.4: RMS of the relative error for various statistics compared to the case Lz =
0.4C.

Property Lz = 0.025C Lz = 0.05C Lz = 0.1C Lz = 0.15C Lz = 0.2C

Cp 0.008151 0.005651 0.004925 0.003360 0.001578
Cf 0.01711 0.01406 0.02772 0.01618 0.008564

(s/S0)sep 0.01073 0.007986 0.01073 0.01106 0.003378

3.4 Spanwise domain effect

This section analyses the effect of statistical changes due to variations of the spanwise

domain Lz, by maintaining the polynomial order at P = 7 and the ratio Nz/(Lz/C) = 480

constant. The pressure coefficient (Figure 3.18) shows marginal changes between the cases

considered, as visible in the inset box. In the TE region, two cases are not on top of

the reference case: Lz = 0.1C and Lz = 0.15C, against expectations on convergence

properties. Analogously, the skin friction coefficient distribution (Figure 3.19) is well

captured in all the cases considered.

Table 3 shows that the RMS relative error with respect to the case Lz = 0.4C converges

slowly in the pressure distribution as the spanwise domain is extended, while no clear

trend can be inferred from the skin-friction coefficient estimates. Raverdy et al. [142]

argued that the BL thickness at the TE may indicate the characteristic length of turbulent

structures, therefore suggesting if spanwise filtering of the structures is taking place due

to the constraining size of the spanwise domain. In case P9L02N96, ne,TE ≈ 0.04; the

mean flow properties are accurately captured even with a smaller spanwise domain extent,

suggesting a way to preliminarily assess such properties at low computational cost.
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Figure 3.19: Skin friction coefficient distribution with various spanwise domains Lz/C.
Copyright c© 2018 by Rolls-Royce plc.

The velocity spectra are reported in Figure 3.20. The main trend is consistent across

the cases analysed, again suggesting that a very constraining domain is sufficient for

an initial estimation of the flow physics, and good agreement with the −5/3 power law

is verified. However, the main peaks at low frequency of cases Lz = 0.1C and Lz =

0.15C are slightly shifted by a mutually consistent value towards the low frequency end

of the spectrum. This behavior is aligned with the discrepancies observed in the pressure

distribution, and it is currently not fully understood.

At this Re, the separation bubble is open, therefore giving way to complex and highly

unsteady dynamics in the TE region. Comparison of the two spanwise extents Lz = 0.1C

and Lz = 0.2C at higher Re2 = 160000 (presented in a later section) does not manifest

this behavior. At such higher Re, however, the separation bubble is reattached near the

TE, where the boundary layer is fully turbulent, and these TE features might be more

robust to changes in the computational setup. Therefore, a possibility is that the complex

dynamics of the open separation bubble is very sensitive to a constraining domain size,

producing more involved behaviors in the series of setups analysed. It is also reminded that

these conclusions are only valid for laminar inflow: the presence of background turbulence

would introduce additional transition modes at various lengthscales, potentially requiring

an even larger domain extent to contain the very large turbulent scales.

3.4.1 Two-point correlation

The analysis of two-dimensional, time-averaged performance indicators like the blade wall

distributions are not sufficient in this case to provide conclusive evidence of whether the

flow structures are fully contained in the computational domain, i.e. that a constraining
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Figure 3.20: Streamwise velocity spectra in the turbulent wake with increasing Lz/C,
in point 9 (Figure 3.13a). Copyright c© 2018 by Rolls-Royce plc.

domain size is not producing artificial flow structures thus modifying the flow dynamics

along the suction surface. The analysis of two-point correlations in the spanwise direction

can provide further insight into this question by quantifying the level of correlation of

turbulent structures in a certain spatial direction. Since the flow is homogeneous in the

z-direction, the two-point correlation function only depends on the distance between two

points ∆z. Therefore, it is calculated by averaging the standard two-point correlation

function obtained by rolling over all points in the spanwise direction:

Rnorm
ij (∆z) =

1

Nz

Nz∑
k=1

〈u′i(zj)u′i(zj + ∆z)〉t
〈u′2i 〉z,t

, (3.23)

and further mirroring the resulting distribution in the spanwise direction, exploiting its

periodicity.

The test case representative of the most widely adopted setup through the thesis

is P7L02N96. An additional case was considered (P7L04N192), with doubled spanwise

domain Lz = 0.4C, and retaining a constant number of DoF per spanwise length, therefore

resulting in Nz = 192 and DoF = 74M . This is the largest case analysed in this work,

in terms of total number of degrees of freedom. Samples are collected at three x − y

locations at every Fourier plane, at the same frequency as the probes employed to analyse

energy spectra (every t = 10−4C/U∞). In case P7L02N96, line samples are collected

for T = 20C/U∞, while for P7L04N192 they are sampled for T = 16C/U∞ due to the

higher computational cost. Time independence in this range of windows was verified in

Section 3.3.6. The three probes analysed correspond to probes 2, 4, 9 of Figure 3.13a.

In particular, the first point is in the transition region of the separation bubble; the
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Figure 3.21: Left: Two-point correlation function for cases Lz = 0.2C (dashed lines)
and Lz = 0.4C (solid lines). Right: contour plot of velocity magnitude showing the
location of probe lines.

second probe location is very close to the trailing edge, while the third probe is further

downstream in the turbulent wake, and it corresponds to the location where all velocity

spectra are shown. In all three correlations, shown in Figure 3.21, the w component of

velocity reaches zero within ∆z = 0.025C, while the in-plane components u, v do not

decay to zero even with a larger spanwise domain, for both domain sizes. This suggest the

presence of coherent structures extending for the whole spanwise domain. Its motivation is

mainly justified by the clean inflow boundary conditions: the lack of a physical meachanism

providing noise to excite three-dimensional breakdown of the coherent structures results

in Keving-Helmholtz roll-ups characterised by weak waviness in the spanwise direction, as

previouly highlighted in Figure 3.6.

Probe line 2. The decay rate of the correlation curves with Lz = 0.4C and Lz = 0.2C

is similar up to ∆z ≈ 0.03C, after which the smaller domain shows a higher value of Rnorm
22

and Rnorm
33 . This probe is a region of the flow where strong recirculation occurs, and the

separation bubble is in the process of reattaching. The flow direction is predominantly

aligned with the vertical and spanwise direction, which may motivate this correlation

trend. The curves for Lz = 0.4C show a peak at ∆z ≈ 0.13C, which may suggest the
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presence of coherent structures more strongly correlated at this larger length scale. Since

this spanwise distance is larger than half of the smaller domain size, this suggests that

Lz = 0.2C is not sufficient to fully contain all coherent structures in the TE region of

the separation bubble. In order to fully verify this, it would be necessary to simulate a

larger domain (i.e. Lz = 0.8C, with Nz = 384), but the high computational cost of this

numerical experiment proved unfeasible for this study.

Probe lines 4 and 9. The decay rate is very accurately matched, especially at Pt 4. At

this location, the curves for Lz = 0.2C and Lz = 0.4C are completely overlapped, while

at Pt 9 there are small discrepancies for the u- and v- components. This suggests that the

smaller domain Lz = 0.2C is here sufficient to fully represent the dynamics of the wake.

In summary, it seems that the dynamics of the separation bubble contains low wavenum-

ber structures with a spanwise extent that is larger than Lz = 0.2C. However, the intro-

duction of background disturbances is likely to be sufficient to break down this dynamics;

however, this statement remains a speculation and further analysis would be required to

verify it in a disturbed environment. In order to confirm that Lz = 0.4C is itself large

enough, a wider domain should also be investigated. However, this would require signific-

ant computational resources that were not available for this purpose. In the wake, both

in the TE region and further downstream, the two-point correlation curves are very well

overlapped, suggesting that the smaller domain size is not limiting the three-dimensional

development of turbulent structures.

3.5 Number of spanwise modes

Taking as reference parameters P = 7 and Lz = 0.2C, the effect of changes in the number of

spanwise planes on spanwise- and time-averaged statistics is addressed. The pressure and

skin friction coefficients appear relatively insensitive to changes in this parameter (Figures

3.22 and 3.23). The resolution per unit span employed is higher than that of several

studies at this Reynolds number. From visual inspection of the blade distributions and

the RMS error norms in Table 3.5 slow convergence is observed, with very low tolerances

being already achieved on 2D statistics at low resolution.

The velocity spectra shown in Figure 3.24 present very similar trends in all the cases

analysed. The low resolution cases accurately capture the main peaks at low frequen-

cies. This reinforces what already outlined in the previous section: constraining spanwise

domain and spanwise resolution do not have a major impact on the 2D flow statistics

driven by low frequency dynamics. This means that a low resolution computational setup

can be employed for testing purposes, considerably reducing the cost of performing the

preliminary simulations.



3.5. NUMBER OF SPANWISE MODES 84

Figure 3.22: Pressure coefficient distribution with various spanwise Fourier planes Nz.
Copyright c© 2018 by Rolls-Royce plc.

Figure 3.23: Skin friction coefficient distribution with various spanwise Fourier planes
Nz. Copyright c© 2018 by Rolls-Royce plc.

Table 3.5: RMS of the relative error for various statistics compared to the case
P7L02N128 (Nz = 128).

Property Nz = 32 Nz = 48 Nz = 72 Nz = 96

Cp 0.00629 0.00236 0.000990 0.00210
Cf 0.0173 0.00974 0.00694 0.00553

(s/S0)sep 0.00592 0.00219 0.00117 0.000952



CHAPTER 3. A RESOLUTION STUDY 85

Figure 3.24: Vertical velocity spectra in the turbulent wake with various spanwise
Fourier planes Nz, in point 9 (Figure 3.13a). Copyright c© 2018 by Rolls-Royce plc.

3.6 Comparison with experiments

This section presents a comparison against an experimental campaign performed at Cam-

bridge University [27]. The experiments were carried out at incompressible conditions.

The pressure distribution was computed following the definition adopted in the report,

and the downstream plane at 0.25Cax was used to compute the mixed-out velocity refer-

ence to estimate the exit Reynolds number. Tests confirmed that very close results are

obtained employing the area- and mass-averaged velocity. It is worth pointing out that,

despite the care placed in these comparisons, some uncertainties still exist on how ex-

actly the numerical data reduction is reproducing the experimental data regression and

its uncertainties.

The set of boundary conditions declared in the experimental data was found to deliver

an inaccurate matching of the blade loading distribution. A range of calculations were

systematically used to identify a set of modified numerical conditions to better match

the experimental loading, by varying the inflow angle and Reynolds number. It should

be highlighted that the purpose of this section is that of verifying agreement with the

experiments rather than an extensive and detailed investigation of the inflow angle and

the Reynolds number (discussed in Chapter 5).

Table 3.6 summarizes the three computational setups that are compared with experi-

ments. It is assumed that the in-plane resolution requirements discussed in the previous

section can be extended to a moderately higher Reynolds number; the spanwise resolution

was increased to maintain numerical stability. As seen from the summary, the matching

of the incidence and front portion of the suction surface was obtained with an inflow angle

approximately three degrees higher than the nominal value. Despite that, when COMP1
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Figure 3.25: Comparison between experimental and numerical pressure distributions,
with reference to Re2 = 160000. Copyright c© 2018 by Rolls-Royce plc.

Table 3.6: Summary of computational and experimental test cases compared.

Case Re1 Re2 α∞ P Lz/C Nz M/Nz

COMP1 93000 158889 41 7 0.1 64 0.5
COMP2 93000 158882 41 7 0.2 128 0.5
COMP3 135000 228896 40.7 7 0.1 64 0.5
EXP1 - 159813 37.7 - - - -
EXP2 - 213943 37.7 - - - -
EXP3 - 258795 37.7 - - - -

achieves the nominal exit Reynolds number of case EXP1, the rear separation is delayed

and remains open until the TE (Figure 3.25). The remaining part of the profile compares

with remarkable accuracy. The comparison between cases COMP1 and COMP2 is repor-

ted to uphold that (in view of the observations made above on spanwise accuracy) there

are no appreciable effects due to the 3D confinement. Another qualitative arguments sup-

ports this hypothesis: the Q isosurfaces represented for the three flow regimes analysed

(Figure 3.26) show that as Re is increased the spanwise waviness of the KH roll-ups disap-

pears, and transition is anticipated yielding smaller scale turbulent structures, confirming

that at the regime considered for comparison with experiments Lz = 0.1C is most likely

adequate to capture the blade flow properties.

Comparison of numerical and experimental pressure coefficient profiles is shown in

Figure 3.25. Increasing Re2 moves the separation onset predicted in the numerical sim-

ulations, following the same trend as in the experiments. At higher Re2 the separation

bubble reattaches and the simulation COMP3 reproduces the experimental distribution of

EXP1. As for the inflow angle, the simulations seem to match experiments at a different



CHAPTER 3. A RESOLUTION STUDY 87

Figure 3.26: Instantaneous iso-surfaces of Q (Q=500) coloured by velocity magnitude.
Increasing Re2 is shown from left to right. Original computational domain (replicated
for graphical purposes): (right) Re2 = 88k: Lz = 0.2C; (middle) Re2 = 160k:
Lz = 0.2C; (left) Re2 = 230k: Lz = 0.1C.

Re2 compared to the experimentally declared one. Extensive testing allowed to rule out h-

and p-convergence issues, as well as the stabilisation technique employed. The clean inflow

setup behaves like an extremely silent wind tunnel, and the absence of noise allows for nat-

ural transition to occur. Likely, even a low level of background turbulence (TI = 0.5%, for

instance) would be sufficient to trigger anticipated transition and reattachment at lower

Reynolds number, yielding more accurate matching of the pressure distribution at the

correct Reynolds number. Another important factor introducing discrepancies is related

to the uncertainties observed in the definition of the reference values used for numerical

data reduction, in respect to position and type of averaging for the reference pressure

and velocity values. For this reason, uncertainties were estimated and included to the

comparison in figure by adding an envelope to the Cp range of the COMP3 curve (dashed

black lines in Figure 3.25) around the mean value derived from area-mean integrals at

section 0.25Cax. The ranges are not based on formal uncertainty quantification methods,

but they are derived from evaluation of maximum and minimum local static pressure val-

ues in the extraction plane 0.25Cax downstream of TE. On the pressure surface, the Cp

profile is not sensitive to these effects as for the suction side, and good agreement is found

with the experimental data. The small “kink” in the LE region existing in data set EXP1

around s/S0 = 0.05 disappears in both cases EXP2 and EXP3. None of the preliminary

simulations performed reproduced such feature within the Re spanned, even considering

further local mesh refinements targeting that area. Another element of uncertainty is the

streamtube contraction of the experimental rig, which is not accounted for in the numerical

simulations. Chapters 5 and 6 discuss this topic in further detail.

The time- and spanwise-averaged boundary layer profiles from case COMP3 and data

set EXP1 are compared in Figure 3.27. Good agreement is found in the evolution of
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Figure 3.27: Boundary layer profiles on the suction surface. Dashed lines show ex-
perimental and computational BL edge. Copyright c© 2018 by Rolls-Royce plc.

the profiles along the suction surface, and the BL thickness predicted in close agreement

with the experiments. The remarkable matching of these profiles confirms the accuracy

quality achieved in the numerical simulation COMP3 and justifies its comparison to EXP1,

regardless of the offset required to the Re2 and incidence nominal values.

3.7 Discussion

This chapter presented a systematic investigation of the T106A blade at fixed Reynolds

number. The effect of the numerical setup and scheme features was discussed, looking at

mean flow statistics and turbulent spectral properties. A total of 18 cases were presen-

ted, with averages sampled over 24 chord based flow through time units in all the cases

concerning the mesh independence study (15 cases).

The concept of convergence of the results depends on the type of statistics of interest

and the required level of accuracy. In line with theoretical expectations, the impact of p-

refinement on various statistics is demonstrated to be a powerful tool enabling exponential

error reduction, as shown by the RMS of blade wall distributions and BL parameters which

gain an order-of-magnitude increase in accuracy every time P is increased by 2. The high

efficiency of the numerical implementation allows to run cases at very high order in feasible

computation times.

Variations of the computational setup in the spanwise direction (spanwise domain Lz

and number of Fourier planes Nz) yield minor discrepancies in the mean flow properties

and suggest that even extremely constraining setups may provide a cost-effective way of

assessing the main blade performance indicators, without substantial losses in accuracy.

The analysis of two-point correlations highlighted that in absence of inflow disturbances,

large-scale coherent structures arise in the aft portion of the suction surface, requiring

a large spanwise domain to avoid introducing constraints on the maximum wavelenth

allowed to develop.

A comparison against an experimental data set is presented, building on the knowledge
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developed in the preceding sections of the Chapter. Modified boundary conditions were

employed due to uncertainties in the experimental definition of reference parameters for

numerical data reduction. The computational results demonstrate good agreement against

experiments at Re2 = 160000, which were found within an uncertainty range appropriately

defined.

All results discussed in this chapter were obtained with clean inflow boundary condi-

tions to analyse convergence properties independently from time-varying boundary condi-

tions, which would introduce additional complications into the problem. However, clean

inflow does not accurately reflect realistic flow physics. The following Chapter is therefore

dedicated to a discussion of the introduction of inflow turbulence in a linear LPT cascade.
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Chapter 4

Generation of inflow disturbances

This Chapter focuses on the topic of inflow turbulence generation, with application to a

representative industrial LPT cascade, building on the assessment reported in Chapter

3. The cascade design and regime selected are intentionally challenging both for the

accuracy and flow stability. High fidelity experimental data are available for the case, that

also offers the possibility for exploring the Reynolds number sensitivity and wake passing

interactions; these last two aspects are discussed in Chapters 5 and 6. Two methodologies

to introduce inflow disturbances are explored. The first approach belongs to the synthetic

volume forcing category, based on the idea of adding momentum forcing terms to the

Navier-Stokes equation system in a control zone. This should promote the development of

turbulent structures and ideally have a limited impact on the downstream turbulent region.

In this work, the approach by Schlatter et al. [148, 149] was repurposed and simplified to be

explored for the first time in turbomachinery flows. Leveraging its reduced computational

cost, it can be used as a fast way to simulate the cleaning of turbulence from the LE to peak

suction, and therefore determine the best suction side design to prevent the emergence of

an open separation bubble in the adverse pressure gradient region. Subsequently, as part of

the effort to develop a robust and systematic inflow turbulence generation methodology via

a random Fourier method, Davidson’s approach [35] (previously introduced and validated

in Section 2.3) is explored in the context of turbomachinery applications.

The Chapter is organized in the following sections: first, the computational approach

and the numerical setup of the inflow disturbances is discussed. Results are then presen-

ted and subdivided in three parts, analyzing the effect of inflow turbulence on (1) blade

distributions, (2) wake profiles and (3) boundary layer parameters. Comparisons against

experimental data are also established. The final section concludes the Chapter with an

overview of the main findings.

4.1 Problem setup and numerical approach

The test case considered is a representative industrial (LPT) cascade [88]. A moderate

inflow Reynolds number of Re∞ = 58581 is employed, based on inflow velocity U∞ = 1

91
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Figure 4.1: Momentum forcing location in the LE region. Figure not to scale.

and chord C = 1. This corresponds approximately to Re2 = 111200, based on mixed-out

velocity magnitude at the exit measurement plane. The setup of the simulation model,

inflow-outflow average conditions and extraction planes were informed using RANS sim-

ulation matched to test-data for the actual 3D test rig configuration (Hydra R-R solver

and recommended quality procedures).

The inflow plane is situated 1Cax upstream of the leading edge. The numerical setup

is analogous to that of Chapter 3: high-order outflow conditions [41] are applied to the

outflow plane, located 1.5Cax downstream of the trailing edge, while periodic conditions

are enforced in the pitchwise and spanwise directions, with pitch to chord ratio of Py/C =

0.84412. The inflow angle is α∞ = 31.5◦. The upstream and downstream measurement

planes are located respectively 0.5Cax upstream of the LE and downstream of the TE.

The x− y plane is discretised with an expansion of order P = 7, the spanwise domain is

extended for Lz = 0.2C and discretised with Nz = 96 Fourier planes. For the exponential

kernel of SVV in the spanwise direction, diffusion coefficient µSVV = 1 and cutoff ratio of

M/Nz = 0.5 are employed.

NekMesh [172] was employed to generate the high-order mesh, following the same

criteria previously highlighted in Chapter 3, resulting in a mesh with 2704 quadrilateral

elements in the O-mesh and 7188 triangular elements in the unstructured mesh.

4.1.1 Momentum forcing setup

A localized synthetic forcing with spanwise-varying u and v velocity components is added

to the right-hand side of the Navier-Stokes equations, with the aim of disturbing the flow



CHAPTER 4. GENERATION OF INFLOW DISTURBANCES 93

Figure 4.2: Momentum forcing in the LE region. On the left, the blue dot indicates
the location of the forcing. on the right, the various intensities of the forcing function
are shown along the spanwise direction. Copyright c© 2019 by Rolls-Royce plc.

and triggering symmetry breakdown along the blade:

fu(x, y, z, t) =


I(t) · g(z)∫ Lz

0

√
g(z)2

· α · e
−[(x−xc)2+(y−yc)2]

δ2

I(t) · g(z)∫ Lz
0

√
g(z)2

· β · e
−[(x−xc)2+(y−yc)2]

δ2

0

(4.1)

In this formulation, g(z) =
∑Nbody

i=1 Ai sin
(

2π
Lz
iz + φi

)
and (xc, yc) represents the location

of the forcing. Nbody = 10, Ai = 1 and random phase φi were employed.

This approach is similar to the one adopted in [149]. The tripping effect is addressed

in both steady (mimicking an experimental-like trip-wire configuration) and unsteady

configurations. Overall, the implementation consists of spanwise-varying modes (the red

component of Equation 4.1) with a Gaussian bell in the x−y plane, restricting the action of

the forcing to a region near the leading edge (the blue component of Equation 4.1), which

proved to be very effective in perturbing the symmetry of the clean laminar incoming flow.

By appropriate choice of the coefficients α, β, the disturbance was made perpendicular to

the flow direction. After preliminary sensitivity testing for the location and size of the

forcing, Figure 4.1 shows it was situated 0.1C from the leading edge (measured in the

direction of the incoming flow), with a characteristic dimension of δ = 0.01C: the pressure

distribution in the front portion of the blade showed no appreciable effect with this choice.

Figure 4.2 shows the location of the forcing and its qualitative structure in the x − y
plane on the left, while the function g(z) employed for the spanwise direction is shown on

the right.

The effect of increasing forcing amplitude is analysed in four steady cases (I = 3, 4, 5, 7)

and qualitatively shown in Figure 4.3. The baseline case (I = 0, on the left) sheds coherent
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Figure 4.3: Instantaneous isosurfaces of Q contoured by velocity magnitude. left
to right: clean inflow case, and increasing forcing intensity. Copyright c© 2019 by
Rolls-Royce plc.

(a) (b)

Figure 4.4: (a) velocity spectra in the turbulent wake of the LPT with clean inflow.
The frequencies fC/U∞ = 5, 10, 100 are highlighted by the vertical dashed lines.
(b) Isosurfaces of Q (Q = 200) contoured by velocity magnitude in case I∗ = 4.
The computational domain is replicated in the spanwise and pitchwise directions for
graphical purposes.

large-scale vortical structures from the TE, while higher forcing intensity modifies the

transition mechanism and increases the content of small coherent structures in the wake

of the blade, by closing the separation bubble that is otherwise open in the unforced case.

The amplitude I = 4 yields the best overall agreement with experimental data. Further

experiments were carried out by introducing unsteadiness in the forcing function: I(t) = I ·
sin (2πfC/U∞t), with t representing nondimensional time. The dimensionless frequencies

fC/U∞ = 5, 10, 100 were selected; the first two values correspond to low-frequency peaks
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Figure 4.5: Base mesh for the inflow turbulence cases and (zoomed) high order TE
and LE mesh with P = 7. Figure not to scale. Copyright c© 2019 by Rolls-Royce plc.

in the velocity spectra, measured in various locations of the separated portion of the

suction surface (shown in Figure 4.4a). The effect of fC/U∞ = 10 with I = 4 provided

the best improvement in the agreement with experimental data, and is referenced through

the Chapter as I∗ = 4.

Figure 4.4b provides a qualitative representation of the time-varying body forcing

effect. This method provides a fast way to test the response of a profile (and in particular

the suction side) to inflow disturbances: the forcing is confined to the near-wall region and

therefore enhanced mesh resolution in the free-stream is not required, but it can nontheless

provide indications of the suction side response to incoming turbulence.

4.1.2 Synthetic inflow turbulence setup

The algorithm and implementation of Davidson’s method [35] was described in Section

2.3.3. To accurately resolve the development of turbulent structures in the inflow region of

the computational domain, a modified mesh was adopted, as shown in Figure 4.5. The base

mesh has 3024 quadrilaterals elements and 15663 triangular elements, yielding a total of

72.7 million DoF per variable at P = 7. Table 4.1 reports the choice of parameters adopted

for synthetic turbulence generation. In general, length scales found in experiments or real

engines are difficult to reproduce in scale-resolving simulations because of the demanding

computational cost that they require in a suitable large domain. Sensitivity of the statistics

to the domain size is therefore left to further analysis. The chosen numerical setup was

retained throughout the study to provide a consistent comparison of the simulated flow

fields.

The evolution of the turbulent fluctuations was monitored from the inflow plane along

the streamline leading to the LE. It is reminded that the turbulence intensity is commonly
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Figure 4.6: TI decay in the leading edge path, averaged in the spanwise direction.
Top figure not to scale. Copyright c© 2019 by Rolls-Royce plc.

Table 4.1: Parameters of inflow turbulence test cases analysed.

Nturb Lt T TI[%]

1024 0.1C 0.1C 1
1024 0.1C 0.1C 2

defined as TI = (
√

2/3k)/U∞, where k = 1/2(u′2 + ′v2 +w′2) is the TKE. The TI is subject

to very little decay in the development region with both turbulent intensities analysed, as

shown in Figure 4.6. The injected turbulence intensity levels are close to the user specified

values, with a discrepancy of 4.18% and 9.07% for the cases TI = 1% and TI = 2%,

respectively. The TI recovers in the region immediately preceding the leading edge due

to the presence of the blade and reaches a level that slightly exceeds the prescribed value

at the inflow. In under-resolved simulations during sensitivity tests, the evolution of the

decaying TI curve was found to present irregular peaks. Therefore, a smooth decay curve

is regarded as a necessary (although not sufficient) indication of an adequately refined

mesh.

The streamwise velocity spectra are shown in Figure 4.7 at various locations along

the development region, along the red line of Figure 4.6. The spectrum quickly adjusts

itself and the profile at x/Cax = −0.75 is qualitatively the same as the profile at x/Cax =

−0.1. The streamwise velocity spectra show minor decay at high frequency; this effect is
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Figure 4.7: Streamwise velocity spectra in the centre of the development region, in
different streamwise location. The orange line is the imposed velocity spectrum at
the inlet. Copyright c© 2019 by Rolls-Royce plc.

Figure 4.8: Instantaneous isosurfaces of Q contoured by velocity magnitude. T106A
cascade with inflow TI = 10% for visual representation of the synthetically generated
turbulent structures at high inflow turbulence levels. The computational domain is
replicated in the spanwise and pitchwise directions for graphical purposes.

more enhanced in the pitchwise and spanwise velocity spectra, as previously shown in the

periodic channel test case described in the validation of Section 2.3.4.

Figure 4.8 shows the qualitative effect of the introduction of the synthetic turbulence

boundary conditions on the T106A cascade of Chapter 3: Q isocontours highlight the



4.2. TIME-AVERAGED RESULTS 98

presence of turbulent structures of different scales being advected through the passage

and over the blade.

Given the additional cost of generating synthetic turbulence and resolving the flow

scales in the devleopment region, there is particular interest in minimising the transient

times. In addition to the quantities enumerated in Section 3.1, the indication for statistical

convergence was also based on the time evolution of enstrophy:

ε(ω) =
1

2µ(Ω)

∫
Ω
||ω2||dx , (4.2)

where µ(Ω) is the volume of the computational domain Ω. This approach suggested

that T = 8C/U∞ is a sufficient transient time for the inflow turbulence simulations.

Time averages were subsequently sampled for further 9 chord-based flow through times,

while the simulations using the momentum forcing model were advanced for 18 chord-

based flow through times. Progressively averaged statistics were compared to confirm

time convergence.

The rest of the chapter focuses on the variation of the main performance indicators

subject to the two inflow methodologies, progressively increasing the disturbance intensity.

The numerical data processing is performed analogously to Chapter 3.

4.2 Time-averaged results

4.2.1 Blade wall distributions

The pressure distribution subject to increasing forcing intensity is shown in Figure 4.9.

The flow distortion near the leading edge does not impact the distribution in the front

portion of the blade. However, Cp is modified in the aft portion of the suction surface,

especially in the separated region. A shift to a noisier environment causes a change in the

transition mechanism, which is associated to an extended transition length, as suggested

by the decrease in Cp diffusion gradient downstream of the turning point (see inset of

Figure 4.9).

The experimental data points are shown in Figure 4.10 and compared to a low-

magnitude forcing intensity (I = 4, both stationary and time-varying) and low level of

inflow turbulence (TI = 1%). The latter case introduces minor changes in the Cp distri-

bution, visible only in the reattachment region of the suction surface. Instead, in case

I = 4 and I∗ = 4 the separation bubble (plateau near the TE) shrinks owing to earlier

reattachment, providing an improved agreement with experimental data in the TE region.

Having previously assessed the convergence properties of the numerical setup employed

in this range of Re, the remarkable agreement of the disturbed setup with the experimental

data set suggests that low levels of physical disturbances are necessary to capture the

physics correctly in the separated region, even when the experiments are conducted in

absence of turbulence grids.
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Figure 4.9: Pressure coefficient with increasing body forcing amplitude. Y-axis tick
labels are omitted due to data sensitivity. Copyright c© 2019 by Rolls-Royce plc.
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Figure 4.10: Pressure coeffcient: comparison between the baseline clean case, I = 4
and I∗ = 4, TI = 1% and experimental results. Y-axis tick labels are omitted due to
data sensitivity. Copyright c© 2019 by Rolls-Royce plc.

Unlike the pressure distribution, the skin-friction coefficient Cf is distorted along the

whole blade by the steady forcing (Figure 4.11a) on both the suction and pressure surface.

The small secondary recirculation bubble found at s/S0 ≈ 0.95 in the clean inflow case

is suppressed (in a time-averaged sense) as I is increased. The synthetic disturbances

energize the flow, resulting in delayed transition and anticipated reattachment of the

separated boundary layer before the TE. The effect of the disturbance at I = 3 is that of

enhancing the negative Cf near the TE (yellow curve), but the negative peak is reduced

as I is further increased. The curves I = 5 and I = 7 are overlapped, suggesting that the

effects from this type of forcing may saturate. The introduction of an unsteady component
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(a) (b)

Figure 4.11: Skin friction coefficient with increasing body forcing amplitude (a), and
inflow turbulence intensity (b). Y-axis tick labels are omitted due to data sensitivity.
Copyright c© 2019 by Rolls-Royce plc.

Table 4.2: Time-averaged separation point with increasing inflow disturbance intens-
ity. All values are normalised by the baseline case I = 0.

Case
I TI [%]

3 4 *4 5 7 1 2

(s/S0)sep 1.00645 1.03624 1.03409 1.04208 1.05068 1.01815 1.02983

in the forcing (I∗ = 4) shows a delayed but shorter reattachment region compared to the

steady forcing at the same intensity level, and it does not modify the Cf distribution

along the front portion of the blade with respect to the clean inflow case. No significant

changes are observed along the whole blade in the synthetic turbulence cases (Figure

4.11b), except for the aft portion of the suction surface. Analogously to the body forcing

case, the secondary recirculation bubble quickly disappears. An increase in TI causes a

self-similar shift of Cf in the TE region towards anticipated reattachment, sufficient to

close the separation bubble before the TE. The time- and spanwise-averaged separation

point is reported in Table 4.2 for all the cases considered, and it shows that stronger

disturbances promote increasingly delayed separation.

4.2.2 Wake profiles

The normalized distance from the trailing edge is defined as x̂ = (x−xTE)/Cax. The wake

profiles are extracted by interpolating the time-averaged velocity fields from the unstruc-

tured mesh to traverses of equispaced points in the pitchwise direction; four extraction

stations with streamwise locations x̂ = 0.1, 0.3, 0.5, 0.7 are analysed. Subsequently, the

clean case (taken as reference) is vertically shifted so that the profile peak is shown at

y/Py = 0.5; the other curves are rearranged based on the reference. This ensures that the

plot is independent of the location of the wake relative to the domain.
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(a)

(b)

Figure 4.12: Velocity profiles in four streamwise locations downstream of the trailing
edge. (a): body forcing. (b): inflow turbulence. X-axis tick labels are omitted due to
data sensitivity. Copyright c© 2019 by Rolls-Royce plc.

The velocity profiles are shown in Figure 4.12. In the body forcing simulations, as the

forcing amplitude increases the peak is initially damped and shifted (I = 3, visible for

x̂ > 0.3), and then significantly enhanced; the flanks of the profile concurrently become

thinner. The intensities I = 5 and I = 7 are almost completely overlapped. I∗ = 4 has the

same wake width as I = 4, but reduced peak. In the synthetic turbulence simulations, the

difference in velocity wake between the clean case and the ones with inflow disturbances

is minor, with the peak becoming less pronounced and the width slightly reduced. The

trend followed by the peak is different from the one observed in the body forcing case.

The TKE wakes are shown in Figure 4.13. Differently from the velocity profiles, both

the body forcing cases and the synthetic turbulence cases show the same trend. As the

disturbance intensity is increased, the bypass transition mechanism progressively moves

the reattachment point upstream, closing the separation bubble. Therefore, the width of

the TKE wake is reduced and the peak is progressively less pronounced as the intensity

of the disturbances increases.

The profiles of cases I = 4, I∗ = 4 and TI = 1% at x̂ = 0.5 are compared to LDA
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(a)

(b)

Figure 4.13: Turbulence kinetic energy profiles in four streamwise locations down-
stream of the trailing edge. (a): body forcing. (b): inflow turbulence. X-axis tick
labels are omitted due to data sensitivity. Copyright c© 2019 by Rolls-Royce plc.

experimental data in Figure 4.14. Three instrumented blades are reported to provide a

qualitative indication of the measurement uncertainty, and labelled S1, S2 and S3. The

numerical data reduction followed in this Figure is modified to match the experiments,

with U2 indicating mixed-out exit velocity. The wake profiles are shown in the Figure on

the left: while I = 4 overestimates the wake peak and TI = 1% slightly underestimates it,

I∗ = 4 follows the experimental profile extremely closely. The clean inflow case also accur-

ately captures the wake peak, but predicts wider wake flanks. As previously highlighted

from Figure 4.11a, the introduction of momentum forcing closes the separation bubble

by moving the reattachment point upstream. In particular, the introduction of unsteady

forcing promotes earlier reattachment compared to steady forcing, and thus the dynamics

of the wake is more strongly affected. The middle Figure compares the TKE profiles. In

this case, the pointwise normalisation with the exit velocity was required to match the

experiments. The clean inflow case accurately captures the wake peak but it is shifted

towards the suction surface, and the wake width is overpredicted. The introduction of

disturbances promotes earlier reattachment, improving the agreement with experiments:
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Figure 4.14: Comparison of selected cases with experimental data at x̂ = 0.5. Left:
velocity magnitude; middle: turbulence kinetic energy, and right: total pressure loss
coefficient. Y-axis tick labels are omitted due to data sensitivity. Copyright c© 2019
by Rolls-Royce plc.

the peak is captured well by the inflow turbulence simulations, while the momentum for-

cing allows for higher accuracy in the representation of the profile width. Differently from

the velocity wakes, the introduction of an unsteady disturbance I∗ = 4 does not cause

significant changes in the TKE wake.

Finally, on the right is the total pressure loss coefficient, sometimes referred to as KSI:

KSI =
∆P0
1
2ρU

2
2

=
pM01 − (p2(y) + 1

2ρ||u2(y)||2)
1
2ρU

2
2

. (4.3)

Consistently with velocity and TKE wakes, cases I = 4 and I∗ = 4 accurately follow the

width of the profile, with the latter providing a very close match with the experimental

loss profiles. As in the other statistics, the synthetic turbulence approach well represents

the peak but fails to accurately captures the wake width. The results of three adjacent

blade rows are reported to provide approximate indication of the uncertainty associated

to the experimental measurements.

Extensive mesh independence studies confirmed that the resolution in the wake is

sufficient to capture first and second order statistics. The physical effect underlying the

mismatch between experimental data and synthetic turbulence simulations in predicting

the wake would require futher investigation: the length scale prescribed might not be large

enough, which would require a wider spanwise domain to accurately model the physical

effects of turbulence. It should also be noted that any uncertainties in the exact streamwise

location of the extraction plane would cause a discrepancy between the virtual cascade

and experimental data.
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(a) (b)

Figure 4.15: Momentum thickness θ and shape factor H along the suction surface with
increasing p. The vertical dashed line indicates the separation point in the baseline
case. Copyright c© 2019 by Rolls-Royce plc.

4.2.3 Boundary layer parameters

The BL parameters on the suction side of the turbine blade are linked to profile loss

estimation [38] and flow separation. With an approach analogous to that reported in

Chapter 3, the clean case is employed as reference for the BL integration limit.

Figure 4.15 shows the evolution of the momentum thickness and shape factor along

the suction surface. In the body forcing case (Figure 4.15a), the momentum thickness

is modified in the whole separated region, with I = 3 almost coinciding with the clean

case and I = 5 overlapped with I = 7. This reinforces the idea that nonlinearities are

responsible for the evolution of the boundary layer: in this case, a minimum level of

forcing intensity is necessary to introduce a visible modification, and no further change is

appreciated after reaching a certain value. The same behavior is observed in the evolution

of the shape factor, with the peak being anticipated and reduced respectively by roughly

15.9%, 42.0%, 50.0% and 52.0% in cases I = 3, 4, 5, 7 and 36.5% in case I∗ = 4, with respect

to the reference clean case. Introducing unsteadiness in the forcing function (I∗ = 4)

substantially modifies the evolution of the momentum thickness in the separated region: θ

remains almost unaltered until the very aft portion of the blade, which corresponds to the

location where the secondary recirculation bubble disappears as the forcing is increased

in amplitude (more clearly shown in the Cf distribution of Figure 4.11).

In the synthetic turbulence cases (Figure 4.15b), the momentum thickness behaves very

similarly to I∗ = 4, subject to a modification in the reattachment region only. The trend

of the shape factor is in general analogous to the body forcing case, with peak reductions

of 21.4% and 33.9% for TI = 1% and TI = 2%, respectively.

Table 4.3 reports the averaged BL parameters over four profiles extracted at the trailing

edge. As previously mentioned, the momentum thickness at the trailing edge is linked to
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Table 4.3: Boundary layer parameters at the trailing edge. All values are normalised
by the baseline case I = 0.

Case
I TI [%]

3 4 *4 5 7 1 2

θTE 1.147 1.347 1.159 1.474 1.512 1.113 1.170
HTE 0.810 0.575 0.476 0.505 0.455 0.665 0.504

profile losses, and increasing I and TI corresponds to progressively larger θTE. On the

contrary, the shape factor is subject to a decrease, as high levels of disturbances allow for

earlier reattachment and therefore the boundary layer at the trailing edge is more skewed.

It should be noted that the change in momentum thickness for the body forcing case

is comparable to that of the turbulent simulations only for low disturbance intensities,

suggesting that stronger forcing is unphysical. The introduction of an unsteady forcing

maintains θTE in the same range of values as the synthetic turbulence cases. This supports

the use of the unsteady artificial forcing an alternative strategy to trip the boundary layer

transition and obtain the same BL evolution as in a more expensive setup, that requires

a highly refined mesh in the front part of the domain to support the evolution and decay

of synthetic turbulent structures.

4.3 Discussion

This chapter presented an investigation of a representative industrial LPT cascade at

moderate Reynolds number, exploring the effect of two different methodologies for the

introduction of physical disturbances. The first consists of a localized momentum forcing

located near the leading edge and perpendicular to the incoming flow, that breaks the flow

symmetry along the blade and promotes earlier reattachment of the boundary layer on

the suction surface. The unsteady formulation of the forcing provided excellent agreement

with experimental results, supporting the use of this methodology as an alternative to

more expensive methods, owing to its ease of implementation and less stringent resolution

requirements. The second approach explored is a random Fourier method for the genera-

tion of synthetic inflow turbulence. This specific formulation is applied for the first time

to the industrial LPT test case at low levels of turbulence intensity.

Not surprisingly, in this case of low inflow turbulence (typical of low speed cascades) the

two methodologies produce similar trends in the modification of pressure and skin friction

coefficient, turbulence kinetic energy wakes and boundary layer parameters. However, the

evolution is different when looking in more detail at the flow structures and in particular

the velocity wakes. The physical mechanism driving the two approaches is fundamentally

different: the momentum forcing cases introduce spanwise distortions of the flow, that

cannot be fully appreciated in the conventional spanwise-averaged statistics. However,

it provides the necessary physical disturbance to initiate the breakdown of the turbulent
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structures as expected, and therefore improves the agreement with experimental data, with

little cost increase with respect to a clean inflow case. On the other hand, the synthetic

inflow turbulence provides a more physical inflow condition: it requires higher resolution

and computing cost to support turbulence development in the region upstream of the

blade. This is necessary to allow the vortical structures to evolve and organize according

to the Navier-Stokes equations from the assumed inflow synthetic generation model. The

cost of generating turbulent structures on-the-fly proved to be low owing to the current

parallel implementation.



Chapter 5

Reynolds sensitivity

This chapter focuses on the analysis of the Reynolds sensitivity of a LPT vane, with

the aim of validating the accuracy of the setup developed in Chapter 3 over a range of

flow regimes. Particular focus is placed on wake profiles and loss estimation, given the

availability of experimental data. The representative LPT introduced in Chapter 4 is

considered at three flow regimes, which correspond respectively to subcritical, critical and

supercritical state of the suction surface separation bubble. The different behaviour of the

boundary layer near the trailing edge translates into important changes of profile losses

and wake characteristics, which motivates the importance of assessing the capability of the

numerical solver to accurately capture the flow physics across the entire operating range.

5.1 Problem setup and numerical approach

5.1.1 Low-speed experimental testing of LPTs

The present generation of LPTs typically operates at subsonic conditions, characterised

by exit Mach numbers of Ma2 ∼ 0.6. However, the cost of experimental programs can be

significantly reduced by performing tests in low-speed wind tunnels, at essentially incom-

pressible conditions. However, the pressure distribution is in general strongly dependent

on the Mach number [175]: the peak suction Mach number ultimately controls the adverse

pressure gradient flow region, where most losses are generated. Therefore, experimental

testing cannot be carried out on the same blade shape and cascade setup. A number of

scaling techniques as well as more advanced redesign strategies were developed to derive

a modified profile shape and flow conditions, which allow to compensate for the effects of

compressibility.

Among the most relevant redesign approaches, Vera & Hodson [176] matched the

isentropic Mach ratio distribution in a linear cascade with design exit Mach number Ma2 =

0.64, also modifying the inflow angle and pitch-to-chord ratio. More recently, Marconcini

et al. [101] presented an artificial neural network approach to obtain a low-speed airfoil

which matches the blade loading and the loss coefficient versus Reynolds number, and is

characterised by similar boundary layer behaviour. This was demonstrated by developing

107
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modified profiles matching specific target properties, i.e. pressure distribution, isentropic

velocity ratio and isentropic Mach number ratio. The open separation bubble characteristic

of low Reynolds was shown to pose additional challenges. These techniques are targeted at

linear cascades. Giovannini et al. [53] introduced a methodology to scale a 3D high-speed

rotor to low-speed conditions, also aiming to achieve comparable boundary layer behaviour

(and therefore profile losses) by matching the pressure distribution. A response-surface

approach based on artificial neural-networks was used to exploit the three-dimensional

shaping of the blade, affecting the radial equilibrium of the flow field and adopting a

shape refinement near the endwalls. Very good agreement was reported over the span at

fixed Reynolds Re2 = 80K.

The cascades in analysis in this thesis were redesigned to match the design high Mach

number distribution when tested at incompressible conditions, modifying profile shape

and increasing the inlet flow angle. This has critical implications for the applicability of

the capability developed in this thesis. Since one of the main research purposes is the

validation of a virtual wind tunnel capability, the use of an incompressible flow solver

is not a road blocker: leveraging the scaling techniques mentioned above, realistic LPT

geometries with a peak suction Mach number up to 0.6− 0.7 can be accurately simulated

in their low-speed testing conditions.

5.1.2 Description of the experimental setup

The test facility at UPM (Polytechnic University of Madrid) is an open return, impulse

wind tunnel that operates at very low Mach numbers (in a range between Ma = 0.02−0.08,

depending on the Reynolds number). The approaching flow has a 495x240 mm rectangular

cross-section. Prior to the test section, conditioning elements ensure a measured inlet

turbulence intensity of TI = 0.1% and length scale Lt = 0.5C.

The rig was operated in a closed test-cell that can be isotropically seeded with oil

steam, enabling the use of laser velocimetry techniques through the perspex test section.

In order to study the effect of incoming wakes, a mechanism was included to introduce

upstream generated wakes shed from uniformly spaced cylindrical bars, controlled by an

electric motor. The design of the facility is analogous to other existing experimental rigs

[152]. Flow diagnostics available in the experimental facility include measurements of wall

pressure, inlet to outlet total pressure losses, and temporally resolved anemometry through

hot-wire and laser-Doppler velocimetry; the latter was used to obtain the wake traverses

presented in this work. For optimal flow stability, even when the cascade is nominally not

subject to incoming disurbances, an isolated cylinder is swept through the inlet, resulting

in a low reduced frequency of Fred = UbC/(PbU2) = 0.04, where Ub and Pb indicate the

bar speed and distance. In this case, the bar is estimated to impact on the blade every

approximately T = 16C/U∞, therefore introducing minimal impact on the time-averaged

statistics. This effect is conventionally not accounted for in computational studies focusing

on clean inflow problems: it would require simulating an unfeasibly large number of blades
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Table 5.1: Summary of setups analysed in this Chapter. The first column indicates
the nominal values adopted for reference.

Re2 (nominal) Experimental Re2 - Clean inflow (CI) Re2 - body forcing (BF)

83K 833386.8 83126.45 83647.92
155K 155715.8 155691.33 156680.58
290K 289996.5 290005.61 284550.54

in the pitchwise direction. The wake passing phenomenon, its effect and its dynamics are

explored in greater detail in the next chapter.

5.1.3 Computational approach

The three flow regimes considered are Re2 = 83K, 155K, 290K. In this chapter as well

as the following, the definition of the Reynolds number is modified for consistency with

respect to the reference experimental data, and it is based on the suction surface perimeter:

Re2 =
U2S0

ν
, (5.1)

as opposed to the true chord adopted in Chapters 3 and 4. In the simulations, the inflow

Reynolds number is specified. In the cases analysed, this corresponds respectively to

Re1 = U∞S0/ν = 46K, 84K, 155K. Six sets of numerical experiments were conducted: for

each reference Re2, the simulations targeted both clean inflow and the effect of incoming

disturbances via momentum forcing. The latter was implemented in analogous manner

to case I∗ = 4 from Chapter 4. Complete details of the reference parameters of the

simulations performed are shown in Table 5.1.

Based on prior experience, an improved mesh with 3066 quadrilateral elements in the

O-mesh and 8276 triangular elements was produced for this test case. The resolution

is particularly enhanced in the TE region and the wake. Based on the considerations

of Chapter 3, the simulations are set up with P = 7, extending the domain for Lz =

0.2C in the spanwise direction and discretising it with Nz = 96 Fourier planes. The

numerical setup results in 47.4M DoF per variable. Each flow condition was run for at

least 16 convective time scales to allow transients out of the computational domain, and

further time-averaged for T = 16C/U∞, previously shown to be sufficient to achieve time

convergence for the range of statistics of interest (see Section 3.3.6 for further details).

Figure 5.1 shows the effect of increasing Reynolds numbers on the near wall resolution.

In the separated flow region, the resolution in wall units is within the limits identified for

DNS [51], suggesting that even at the higher flow regime analysed Re2 = 290K the blade

resolution is sufficient to capture the relevant scales of turbulence.

Figure 5.2 shows instantaneous contours of spanwise vorticity, which provide qualitat-

ive indication of the Reynolds effect on the cascade flow features. The shear layer in the aft

portion of the suction surface becomes thinner and moves closer to the wall. Concurrently,
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Figure 5.1: Near wall mesh resolution with clean inflow and increasing Re2.

the wake dynamics is modified: the vortex shedding quickly breaks down to small-scale

turbulence, while it remains significantly more coherent in the low Reynolds number case.

(a) (b) (c)

Figure 5.2: Contours of spanwise vorticity with increasing Reynolds numbers. (a)
Re2 = 83K, (b) Re2 = 155K, (c) Re2 = 290K. Figures not to scale.
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Figure 5.3: Pressure coefficient with increasing Re2, comparing clean inflow cases
(CI), body forcing near the leading edge (BF) and experimental results. Y-axis tick
labels are omitted due to data sensitivity.

5.2 Blade wall distributions

5.2.1 Pressure coefficient

In this chapter, the pressure coefficient is calculated adopting the following definition, in

line with experimental measurements:

Cp =
pAt,1 − ps
pAt,2 − pAs,2

. (5.2)

The Reynolds sensitivity of the pressure distribution is shown in Figure 5.3. Experimental

data is available for Re2 = 155K, 290K only.

The agreement between experiments and numerical results is very close along the whole

pressure surface. The suction surface peak is located at s/S0 ≈ 0.6 for all flow regimes

analysed. Along the suction surface, good agreement with experiments is observed for

s/S0 ≤ 0.9. Among the different cases shown, discrepancies can be observed in the front

part of the suction surface owing in part to small differences in the inflow angle specified

from the experiments. In the aft part, all cases accurately capture the separation location,

where the distribution reaches a plateau. Further downstream, the clean inflow setup

does not accurately capture the location of reattachment of the recirculation bubble. As

previously demonstrated in Chapter 4, the introduction of inflow disturbances provides a

sufficient level of noise.
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Streamtube effect and definition

The absence of physical disturbances is not the only contributor to the discrepancy in

the reattachment location, due to a phenomenon induced by the experimental setup here

referred to as streamtube effect. Although the cascade has a relatively high aspect ratio, a

boundary layer develops on the sidewalls of the passage, giving rise to secondary flows that

induce blockage on the flow in the mean passage where flow statistics are measured. This is

shown qualitatively in Figure 5.4. The result is a spanwise contraction of the streamtube,

which is not strong enough to affect large-scale flow structures in the mean passage but

should nonetheless be accounted for. In the context of a compressible formulation, this ef-

fect can be analytically incorporated in the governing equations [52]. This formulation was

recently introduced in the software Mu2s2t [15] and applied to a LPT case looking at the

Reynolds sensitivity of performance indicators. In particular, the contracted streamtube

induces an enhanced streamwise pressure gradient, and therefore the onset of the laminar

separation and the associated transition-reattachment points are moved upstream with

respect to the case without streamtube. Despite the different geometries and choice of

coordinate system adopted to visualise the pressure distributions (axial vs. suction sur-

face perimeter), this observation is consistent with the findings of Bolinches-Gisbert et

al. [15]. There is no trivial approach to incorporate the streamtube formulation into the

incompressible Navier-Stokes equations without violating the incompressibility constraint.

Tackling this issue is outside of the scope of this work, but two avenues of further invest-

igation can be proposed. First of all, a coordinate mapping [154] could be employed to

transform a conventional geometry to mimick the streamtube contraction illustrated in

Figure 5.4. However, coordinate transformations of the type z = z(x, y) are currently

not supported in the Nektar++ framework with Quasi-3D simulations. Alternatively, a

full 3D formulation (without mapping) could be adopted in combination with a compu-

tational domain that accounts for the predicted contraction at a given Reynolds number.

A number of numerical experiments would be required to analyse various approaches to

the spanwise contraction (e.g. linearly varying from LE to TE). However, the adoption

of slip-wall boundary conditions that would be required in the z-direction to model the

effect of the streamtube is not currently available in the Nektar++ v 5.0 code release [118].

Both modelling strategies require further development efforts, and the former is identified

as a better choice for two reasons: the computational cost of Quasi-3D setup is lower by

roughly an order of magnitude compared to a 3D setup with the same number of DoF,

and the use of a Fourier expansion allows for flexibility in the imposition of the spanwise

contraction z = z(x, y), while a full 3D approach would require a new computational mesh

for every different choice.

5.2.2 Skin-friction coefficient

Several physical mechanisms can be identified as Re is increased, and the skin friction

coefficient distribution shown in Figure 5.5 provides some insight. Lower Re correspond
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Figure 5.4: Sketch of the streamtube contraction occurring due to the presence of
sidewalls in the experimental rig, with first-order repercussions on the blade wall and
traverse measurements.

to increased shear stress in the front portion of the suction surface as well as the aft por-

tion of the pressure surface. Increasing Re shortens the separation bubble by delaying the

separation onset and anticipating reattachment. As visible in the zoomed inset in Figure

5.5a, the regime Re2 = 83K corresponds to an open bubble configuration regardless of

the presence of momentum forcing (Figure 5.5b), which in this case delays separation by

3.9%. The transition location (identified by the negative peak in skin friction coefficient)

also moves upstream as the Reynolds number is increased, and the secondary separation

bubble visible at Re2 = 83K is suppressed. The case Re2 = 155K represents the crit-

ical regime where the separation bubble closes at the TE, as highlighted quantitatively in

Table 5.2; the presence of the forcing promotes slightly earlier reattachment and short-

ening of the separation bubble from (s/S0)bub ≈ 0.29 to (s/S0)bub ≈ 0.25. In turn, the

turbulent boundary layer at the trailing edge is not fully developed. A further increase in

Reynolds number to Re2 = 290K moves the reattachment location upstream of the TE

at (s/S0)reat ≈ 0.97) (supercritical regime). The introduction of body forcing significantly

shifts the reattachment location to (s/S0)reat ≈ 0.9, shortening the separation bubble by

37.7%. Before reaching the TE, the Cf profile flattens, suggesting that a fully developed

turbulent BL is established. As in the pressure distribution, the effects of body forcing are

significantly evident in the final portion of the suction surface (Figure 5.5b), and higher

sensitivity is captured at high Reynolds number, where the separation bubble is shrunk

and moved further upstream.

Figure 5.6 shows an instantaneous carpet plot of the skin-friction coefficient on the

suction surface, focusing in particular on the aft portion. The introduction of momentum

forcing has an equivalent effect to introducing low levels of inflow turbulence (discussed

in Chapter 4). The boundary layer distortion occurs as a consequence of low-frequency
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Figure 5.5: Skin friction coefficient with increasing Re2 with (a) Clean inflow and (b)
body forcing near the LE. Y-axis tick labels are omitted due to data sensitivity.

Table 5.2: Time-averaged separation bubble statistics: separation point and reattach-
ment point. Due to data sensitivity, all values were intentionally nondimensionalised
by the respective values of case BF at Re2 = 290K.

Re2 83K 155K 290K

Inflow CI BF CI BF CI BF

(s/S0)∗sep 0.93166 0.96801 0.97737 1.0090 0.99412 1.0

(s/S0)∗reat - - 1.09283 1.07885 1.07155 1.0

perturbations, owing to the shear sheltering role of the boundary layer shear [63, 205],

which acts as a filter. The impinging disturbances therefore result in elongated regions

of spanwise-alternating high- and low-speed fluid, called streaks. Through rapid distor-

tion theory it was demonstrated that the low-frequency disturbances that penetrate the

boundary layer are not subject to the restoring action of pressure and thus futher amplify

[43]. As a consequence, linear theory is not sufficient to accurately capture the evolution

of streaks. If the streak amplitude grows beyond a certain treshold, secondary instability

may develop and cause early breakdown, despite theoretical prediction of modal decay

[5]. Accurate simulation of the secondary instability of streaks requires nonlinear analysis

and has been the topic of extensive investigations in the past two decades. Providing an

in-depth analysis of the transition mechanism is outside the scope of this work, which is

instead concerned with motivating the effect of inflow disturbances at various regimes on

the accuracy of the prediction of the main design statistics. For further details on the

physics of bypass transition to turbulence the reader can refer to the review by Zaki [203].

Between s/S0 = 0.4 and s/S0 = 0.6, boundary layer streaks are visible in the cases with

momentum forcing. Although no clear evidence of one physical mechanism in particular

can be identified from a single instantaneous field, the introduction of physical disturb-

ances causes the separation line to become non-uniform in the spanwise direction, and
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Figure 5.6: Carpet plot of instantaneous skin friction coefficient. Left: clean inflow;
right: momentum forcing.

the transition and reattachment process is initiated further upstream: comparing at each

Reynolds number the cases with and without inflow turbulence, the red region denoting

strong negative recirculation near the TE highlights that the boundary layer distortions

are sufficient to trigger anticipated transition and reattachment.

5.3 Boundary layer parameters

The integral parameters of the BL provide further indications on the effect of increasing

Reynolds number and the presence of body forcing. Figure 5.7 reports momentum thick-

ness and shape factor on the suction surface. The front portion is considered first (before

peak suction, i.e. s/S0 < 0.6). The introduction of body forcing does not yield appreciable

differences in the evolution of θ and H in this region. This is expected, as the time-varying

forcing is calibrated to be low enough to avoid introducing large-scale distortions to the

incoming flow. As the Reynolds number is increased, the momentum thickness is reduced.

In this region, the shape factor remains constant in all cases (H ≈ 2.5), denoting self-

similar growth of the BL profiles. At peak suction, θ(0.6) ≈ 0.001 at the highest Reynolds

number is about half the value for Re2 = 86K, the lowest Reynolds case.

Downstream of peak suction, the presence of an adverse pressure gradient is captured

in both statistics. Between peak suction and the separation point (which is between

s/S0 = 0.65 and s/S0 = 0.72 in the flow regimes analysed), the slope of momentum

thickness increases with inverse proportionality to the Reynolds number, and it decreases

again past the separation point.

In all cases, the shape factor highlights how the presence of inflow disturbances pro-
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Figure 5.7: Boundary layer parameters with increasing Re2, comparing clean inflow (CI)
and momentum forcing near the LE (BF). Left: momentum thickness, right: shape factor.
Y-axis tick labels are omitted due to data sensitivity.

motes a delay in the separation point, and anticipates reattachment in those cases where

the separation bubble is closed. Especially at Re2 = 297K this is reflected in the anticip-

ated rapid growth of θ in the region s/S0 ≈ 0.9.

5.4 Wake profiles

This section focuses on a detailed discussion of developed wake profiles, measured at

x̂ = 0.513. The experimental measures were sampled on two consecutive blades and

they are both reported. In order to provide a first-order quantification of the scatter of

experimental data, a new parameter is introduced to estimate the RMS of the difference

between the instrumented experimental traverses in a given quantity ui. Introducing the

difference between the traverses as udiff
i = ||uS1

i − uS2
i ||:

εui =

√√√√ 1

N exp
y

Nexp
y∑
i=0

(
udiff
i − 〈udiff

i 〉y
)2
. (5.3)

The accuracy of the experimental measurement chain is not always trivially available.

Therefore, for each parameter ui presented, a grey shaded region is introduced showing

the area within the curves ui(y) ± εui/2, with the purpose of providing an indication of

the precision of the experimental data. Where available, the accuracy is instead indicated

by a light orange shaded region to distinguish it from the approach discussed above.

5.4.1 Velocity wakes

The velocity wake profiles are shown in Figure 5.8, also distinguishing the axial and pitch-

wise components. The use of pitchwise periodic boundary conditions allows to shift the
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Figure 5.8: Time-averaged velocity profiles at x̂ = 0.513. Y-axis tick labels are omitted
due to data sensitivity.
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computational profiles in the pitchwise direction within the figure to match the experi-

mental result, since the location of the peak depends on the choice of the computational

domain.

Clearly highlighted in Figure 5.8 is a discrepancy between numerical results and ex-

periments at low Reynolds number. The main reason behind the discrepancy is the state

of the boundary layer at the suction surface trailing edge. Blade wall measurements would

provide some indication on this, but no pressure tappings are available at Re2 = 83K.

Therefore, at this regime it is difficult to discuss the accuracy of the numerical solver in

capturing whether the experimental BL reattachment occurs prior to the TE. Both nu-

merical results at Re2 = 83K (clean inflow and momentum forcing) show an open suction

surface separation bubble, which results in a double-peak feature of the velocity profiles

owing to the suction side (above y/Py > 0/5), particularly pronounced in the vertical com-

ponent. This effect is less intense when inflow disturbances promote anticipated transition.

The large-scale mixing that occurs in the wake spreads in the pitchwise direction, therefore

decreasing the axial velocity component on the pressure side as well.

This low accuracy in matching experimental measurements is further discussed in the

following section, and it is only verified at subcritical Reynolds number.

In fact, at the critical regime Re2 = 155K the closest agreement with experimental

data is achieved. At this Reynolds number, both clean inflow and body forcing well capture

the wake flank width and negative peak, both in the axial and pitchwise directions. The

effect of the inflow disturbances at this regime is limited, as previously seen in the skin

friction coefficient behaviour near the TE.

At high Reynolds number, the agreement is very close especially in terms of velocity

magnitude. The axial velocity component is underestimated across the pitch in the clean

inflow case, which suggests that not accounting for the streamtube effect plays a role

in causing this discrepancy. This topic is discussed in greater detail in Chapter 6. As

highlighted in Figure 5.5, the introduction of momentum forcing promotes more significant

changes in the boundary layer behaviour at this regime, compared with the lower case

Re2 = 155K. The increased level of turbulence intensity highlights high sensitivity of

the wake profiles to anticipated reattachment of the separation bubble and consequent

developmet of a turbulent boundary layer before the TE.

5.4.2 TKE wakes

The profiles of TKE are shown in Figure 5.9, rolled in the pitchwise direction in the

same way as the velocity profiles. The region of most intesense turbulence activity at

low Reynolds number is near y/Py ≈ 0.75, which corresponds to the positive peak in

the velocity wakes where the discrepancy with experiments is maximum. As the Reynolds

number increases, the turbulence intensity decreases significantly, but the clean inflow case

consistently overestimates the TKE peak and, for Re2 = 155K, 290K, the width as well.

At these Reynolds numbers, the introduction of the forcing improves the agreement with
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Figure 5.9: Turbulence kinetic energy profile at x̂ = 0.513. The dashed lines rescale the
y-axis of the cases Re2 = 155K and Re2 = 290K. Y-axis tick labels are omitted due to
data sensitivity.

the wake width but underestimates the peak. Instead, at Re2 = 83K the TKE level in the

peak region is close the experimental one. An even lower forcing level would likely yield

more limited effects on the suction surface boundary layer, potentially providing closer

agreement in the TKE traverses at moderate to high Reynolds numbers.

In order to further investigate the large discrepancy reported in the velocity wakes

at low Reynolds number, Figure 5.10 focuses in detail on the qualitative topology of the

wake with and without forcing, as well as the various fluctuating components. The top

two subfigures (5.10a, 5.10b) show the time-averaged velocity magnitude in the near-

wake region. In the absence of forcing, the two dashed lines track the development of

local negative peaks in the velocity profiles, which are formed in the near TE region and

captured downstream at the measurement traverse shown in Figure 5.8. When the forcing

is introduced, this mechanism is strongly reduced and a single peak can be tracked.

Below, Figures 5.10c-5.10e show the three normal components of the Reynolds stress

tensor with clean inflow, while the momentum forcing is reported in Figures 5.10f-5.10h.

The introduction of forcing promotes three-dimensional mixing. This is reflected in the

concurrently lower levels of in-plane fluctuations and higher levels of spanwise fluctuating

activity. High spanwise resolution alone is not sufficient to promote mixing, which is

verified by comparing an additional clean inflow simulation with only 4 planes in the

spanwise direction, yielding very similar distributions of the fluctuating components to

the case with Nz = 96. The white dashed line shown in the velocity magnitude contours is

included in the 〈w′2〉-plots, highlighting a connection between the diffent behaviour with

and without inflow turbulence.

This evidence suggests that the introduction of LE disturbances has two-fold effects on

the wake statistics. On one hand, it promotes three-dimensional breakdown of turbulent

structures, which results in significantly lower levels of TKE in the near- and far-wake re-
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(a) ||u||, CI (b) ||u||, BF

(c) 〈u′2〉, CI (d) 〈v′2〉, CI (e) 〈w′2〉, CI

(f) 〈u′2〉, BF (g) 〈v′2〉, BF (h) 〈w′2〉, BF

Figure 5.10: Time-averaged velocity magnitude and Reynolds stresses comparing clean
inflow (a, c, d, e) and body forcing (b, f, g, h) at Re2 = 83K. Figures not to scale.
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gions, improving the agreement with experimental measurements. However, the colourbar

scale for 〈u′2〉 and 〈v′2〉 is larger than for 〈w′2〉: fluctuations occur mostly in the flow

direction, even in the presence of inflow forcing. On the other hand, the enhanced mixing

due to the forcing helps provide an explanation for the physical mechanism underlying the

emergence of double negative peaks in the velocity traverses with clean inflow. In fact,

in-plane fluctuations exhibit similar spatial patterns (with different intensity) regardless

of the presence of the forcing. However, in the case of spanwise fluctuations, the intro-

duction of the forcing both enhances the peak intensity and promotes a different spatial

behaviour, as seen by comparing Figures 5.10e and 5.10h. In particular, CI shows a double

peak in the spanwise fluctuations that is stretched in the flow direction and well aligned

with the negative velocity peaks. The physical underlying mechanism is therefore driven

by the presence of an open separation bubble and the absence of external disturbances:

the presence of background turbulence and higher Reynolds number are both sufficient to

suppress this flow feature. Another likely contributor to the discrepancy is the presence

of a constraining spanwise domain in combination with low Reynolds number and clean

inflow boundary conditions.

In order to verify that no effect of the SVV stabilisation strategy is responsible for an

erroneous prediction of the physical behaviour in the TE region, an additional simulation

was carried out with modified SVV parameters in the exponential kernel adopted for the

Fourier expansion. The diffusion coefficient was reduced from µSV V = 1 to µSV V = 0.1,

while the cutoff ratio was increased from M = 0.5 to M = 0.75. The pressure distribution

and wake profiles are nearly identical to the results presented in this chapter and therefore

omitted. However, this test demonstrates that the discrepancy here discussed is of physical

nature rather than numerical.

5.4.3 Loss profiles and exit angle

The loss profiles are shown in Figure 5.11. Analogously to the velocity wakes, at Re2 =

83K the loss profile capture a double peak, with lower magnitude than the experimental

measurements. The introduction of body forcing eliminates the double peak but still does

not achieve the correct level of loss in the mid-wake region. At higher Reynolds numbers,

the wake is captured well, but with an overestimation of the width. The introduction

of momentum forcing allows to improve the agreement showing remarkable accuracy at

Re2 = 155K and Re2 = 290K both in terms of peak and flank width.

The dependence of the level of accuracy is demonstrated to depend strongly on the

Reynolds number. This behaviour remains consistent in the exit angle (Figure 5.12). At

low Reynolds, both CI and BF fail to capture the correct trend and magnitude of the

exit angle profile. At the higher regimes Re2 = 155K, 290K the agreement is improved,

particularly with the introduction of momentum forcing at Re2 = 290K. The scatter of

experimental data in the measurements of α2 is relatively high, and for Re2 = 155K, 290K

BF falls within the shaded region suggesting that they are within measurement uncertainty.
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Figure 5.11: Total pressure loss profile at x̂ = 0.513. Y-axis tick labels are omitted due to
data sensitivity.
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Figure 5.12: Exit angle profiles at x̂ = 0.513, Y-axis tick labels are omitted due to data
sensitivity.
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Figure 5.13: (a) Mixed-out total pressure loss coefficient. The orange area indicates an
uncertainty of 2.5% associated with the measurement chain. (b) Mixed-out exit angle, and
highlighted uncertainty of ±0.2◦. Y-axis tick labels are omitted due to data sensitivity.

5.4.4 Mixed-out measurements

Finally, the mixed-out values are reported in Figure 5.13, which shows mixed-out total

pressure loss coefficient and exit angle. These parameters are of fundamental import-

ance in the design process to ensure aerodynamic performance. At the critical regime

Re2 ≈ 150000, a sharp change occurs in the loss trend as well as the exit angle. The

state of the suction surface separation bubble is linked to different physical loss generation

mechanisms. In the subcritical regime, the open separation bubble dominates the loss

production mechanism by yielding a thick trailing edge boundary layer. Accurate loss

estimation at this regime is challenging because it depends on the prediction of the sep-

aration onset and the thickness of the separation bubble. In this regime, the loss scaling

with the Reynolds number is ω ∝ Re−1
2 [15]. The CI case at Re2 = 83K misleadingly

provides close agreement in the estimation of ω compared to experimental measurements.

The wake traverses previously discussed show how the agreement of the loss profile is not

close, but its mixed-out average yields the same value. At higher Reynolds, the cases with

inflow disturbances agree very closely with experimental measurements both in terms of

loss coefficient and exit angle, and well within experimental uncertainty. In this regime,

the most relevant loss generation mechanism is laminar viscous friction and the losses are

proportional to ω ∝ Re−1/2
2 [15].

5.5 Discussion

The three flow regimes analysed (Re2 = 83K, 155K, 290K) are strategically placed to test

the capability and accuracy of the numerical techniques discussed in Chapter 3 over a

range of Reynolds numbers, within which the numerical setup is deemed to be sufficiently

resolved. The three cases analysed correspond to subcritical, critical and supercritical

states of the suction surface boundary layer, with each case being analysed with clean
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inflow and with momentum forcing near the LE. The flow regimes Re2 = 155K, 290K

with inflow disturbances are found to provide very close agreement with experiments in

terms of blade loading as well as a range of traverse measurements. Importantly, high

accuracy is achieved in the prediction of mixed-out loss coefficient, within measurement

uncertainty.

Momentum forcing is thus confirmed to be a useful technique to introduce controlled

disturbances and trigger anticipated boundary layer transition, that has an important role

in achieving the close agreement with experimental results at supercritical regime.

At subcritical regime, the presence of an open separation bubble poses a challenge.

The measured wake profiles are not in close agreement with experiments and a number of

factors are identified as contributors to this uncertainty. Among these, the experimental

streamtube contraction is not modelled within the numerical solver. Accounting for this

first-order effect is expected to modify the separation bubble length, promoting flow trans-

ition and reattachment prior to the trailing edge [15], with significant repercussions on the

pressure distribution, and even more dramatic effect on wake profiles and therefore the

accuracy in the prediction of total pressure losses.

The discussion on the Reynolds effect introduced in this chapter provides the grounding

for Chapter 6, where the effect of wake passing is explored at the same flow regimes

analysed in this Chapter.



Chapter 6

The wake passing effect

6.1 Introduction

In a real engine, the pressure expansion through the high- and low- pressure turbines is

achieved in a number of subsequent stages. The interaction of multiple stages of rotors

and stators is a crucial source of unsteadiness which has important repercussions on the

loss production mechanisms, and it is thus of great importance to designers. Leveraging

the increase in available compute resources, recent studies focused for the first time on

developing an approach to support the LPT design process via high-fidelity simulations

[109, 108] focusing in particular on the profile loss sensitivity to characteristic types of

inflow disturbances. In the present work, building on consolidated expertise within the

Nektar++ framework and existing work in the literature, the wake passing effect is ana-

lysed in the context of the representative LPT profile discussed in Chapters 4 and 5, with

particular focus on the Reynolds sensitivity of the transition mechanism on the suction

surface and, mainly, the loss prediction. The optimal and most realistic combination of

load and vane/blade count (i.e. degree of reaction) corresponds to the reduced frequency

range where unsteady losses are highest [109]. Such realistic range of reduced frequencies

is targeted in this Chapter. The availability of experimental data in the wake traverses

at the flow regimes analysed allows to quantify the accuracy of the proposed numerical

approach.

The Chapter is organised as follows: first, a detailed introduction on the wake model-

ling strategy is presented, discussing the necessary compromises required to find a tradoff

between accuracy and computational cost. Subsequently, the flow dynamics on the suc-

tion surface is characterised in the various phases of the wake passing cycle, discussing

the Reynolds sensitivity of key features of the separation bubble. The following sections

focus on the time-averaged effect of the wake passing, analysing blade wall distributions,

boundary layer statistics and finally wake profiles and mixed-out variables, establishing a

comparison with highly accurate experimental data. Furthermore, an estimation of the

streamtube effect is produced and a first-order correction is discussed. The final part

of the loss discussion focuses on the phase-locked estimations which allow some insight

125
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Figure 6.1: Sketch of the computational setup. Cylinders and blade outline not to
scale.

into the strong modification to the loss-generating mechanisms introduced by the periodic

disturbances. The Chapter finally concludes by providing some remarks and highlighting

potential future research avenues to build on the contributions here presented.

6.2 Problem setup and numerical approach

6.2.1 LPT setup with wake passing

The configuration in analysis is shown schematically in Figure 6.1. The availability of

experimental data motivated the choice of the flow regimes simulated. Three Reynolds

numbers are considered, corresponding closely to the flow regimes discussed in Chapter

5: Re2 = 86K, 157K, 297K, based on mixed-out exit velocity U2 and suction surface peri-

meter S0. The LPT cascade is scaled by the true chord and inflow velocity, so that U∞ = 1.

The resolution requirements dictated by the need to capture the wake passing mechanism

introduced a steep increase in computational cost, thus limiting the computational domain

to a single pitchwise realisation of the cascade.
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When simulating the wake passing phenomenon, two nondimensional parameters are

of fundamental importance: the reduced frequency Fred, and flow coefficient Φ, defined as:

Fred =
UbC

PbU2
, (6.1)

Φ =
U∞,x
Ub

, (6.2)

where Ub indicates the bar velocity, Pb the vertical distance between bars, U2 the mixed-

out exit velocity and U∞,x the axial inlet velocity. These two parameters effectively control

the bar speed (which affects the inclination of the wake when it impinges on the blade)

and their relative distance. Together, these affect the frequency at which the wakes impact

on the blade. Therefore, in general there are two degrees of freedom in the specifications

of the bar parameters. Experimentally, this is simply obtained by adjusting the cylinders’

distance and speed, allowing to analyse more realistic situations in which rotor and stator

count are different. However, from a computational perspective there are further limit-

ations due to the nature of the experiment, which requires pitchwise periodic boundary

conditions. In order to simulate experiments with unequal rotor and stator count, it would

be necessary to increase the number of simulated vanes, but this is typically difficult due to

the resulting high computational cost. Therefore, the cascade pitch Py must be a multiple

of the distance between bars Pb.

From the available experimental data, the reduced frequency can be calculated from

various quantities that are either prescribed or measured:

Fred =
UbC

PbU2
=
C cos (α2)

PbΦ
. (6.3)

In the available data, the difference is within 0.02%, confirming the accuracy of the meas-

urements. From a computational perspective, the control parameter in the simulations is

the bar speed alone:

U sim
b =

FredU∞,xPb
C cos (α2)

. (6.4)

In this study, matching the exact value of the reduced frequency was deemed to be neces-

sary, while the flow parameter was enforced as a consequence of single-pitch periodicity and

therefore introducing a small discrepancy. The bar speed was calculated by substituting

the bar distance with cascade pitch (Pb = Py):

U sim
b =

FredU∞,xPy
C cos (α2)

. (6.5)

The numerical values imposed in the simulations are reported in Table 6.1. In the three

cases analysed, the relative error between nominal flow coefficient and effective flow coef-

ficient is 6.748%. The lower value of the computational flow coefficient means the wake

inclination is slightly higher than the experimental one, introducing an element of uncer-

tainty in the comparison.
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Table 6.1: LPT bar passing setup, with cylinder parameters in the upper portion of
the table. The lowest Reynolds number is simulated both with inflow wakes (IW)
and inflow turbulence (IT), while other regimes analyse IW alone. The compute
time is estimated on 1000 cores on the UK national supercomputer Archer, assuming
linear scaling and including problem setup, checkpoints and filters, thus providing a
conservative estimate.

Re2 86K (IW, IW+IT) 157K (IW) 297K (IW)

db/C 0.022973416 0.022973416 0.022973416
xb/C -0.656383328 -0.656383328 -0.656383328
Fred (C-based) 0.462034 0.464656 0.468738
Fred (S0-based) 0.624132 0.627675 0.633188
U sim
b /U∞ 0.705339 0.706414 0.708116

Φsim 1.17731 1.17414 1.16966
(Φ− Φsim)/Φ [%] 6.7478 6.7478 6.7478

α1 [◦] 33.86 33.96 34.08
∆t 2.5 · 105 2.5 · 105 2 · 105

Compute time for T = 1C/U∞ 8 h 40 min 8 h 40 min 10 h 45 min

The simulations were run for 12C/U∞ convective timescales to allow transients out of

the computational domain, and time-averaged samples were subsequently collected over

T = 24C/U∞. The wake passing period is defined as Tb = Pb/Ub. The simulation time

can be rewritten as a function of wake passing periods as t = mTb + ϕTb, where m is an

integer representing the number of periods Tb elapsed, and 0 ≤ ϕ ≤ 1 is the phase. Phase-

locked averaging capability was incorporated in the Nektar++ framework, and averages

were sampled in 8 equispaced phases (∆ϕ = 0.125) over m = 20 bar passing periods,

which correspond to just under T = 24C/U∞ for the specific parameters of the problem.

At phase ϕ = 0, the bar is situated at the same pitchwise location as the leading edge,

that is y = 0.

The inflow wakes are modelled by means of the Smoothed Profile Method introduced

in Section 2.4. The formulation of the time integration scheme is a modified version of

the VCS (described in Section 2.4.1) which requires solving the Poisson problem for pres-

sure twice. This approach introduces a significant increase in the computational cost, for

algorithmic reasons as well as due to the increased resolution requirements to accurately

model the cylinders. The limited computational resources available constrained the nu-

merical setup for the LPT cascade, compared to the standard maintained through previous

Chapters: the simulations were run at P = 6 and with a spanwise resolution of Nz = 72,

combined with a particularly refined base mesh shown in Figure 6.2. This setup results

in 52.67 M DoF. Despite the reduced resolution, Figure 6.3 shows that the resolution re-

quirements adopted through this work are still respected along the suction surface, where

the wake passing impact is most important.

The spanwise domain was modified from the value of Lz = 0.2C adopted in Chapter

5 to Lz = Py/4 = 0.21164C. Introducing a geometrical configuration where the pitchwise
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Figure 6.2: Base computational mesh, with 3191 quadrilateral elements in the O-mesh
and 20541 triangular elements. The zoomed insets show details on the wake passing
region, as well as the LE and TE. Figure not to scale.

domain is a multiple of the spanwise domain allowed to adopt the modified version of Dav-

idson’s inflow turbulence generation algorithm [35] introduced in Chapter 2, where only the

modes that can be exactly contained in the computational domain were selected, thereby

enforcing spanwise and pitchwise periodicity in the synthetic velocity signal generated.

The low Reynolds number case Re2 = 86K is anaysed with and without inflow turbulence

(on top of the discrete disturbances shed by passing bars). This simulates the flow envir-

onment in the back rows of the turbine, characterised by strong background turbulence

built up by the upstream airfoils. The inflow turbulence case required the generation of an

additional computational mesh to resolve the turbulent structures introduced at the inlet,

and is denoted with IT. This mesh is omitted and it differs from Figure 6.2 only in the

region comprised between the inflow and the vertically refined line where the bar passing

occurs. A nominal turbulence intensity TI = 3.5% is prescribed in combination with a

length scale Lt = 0.05C to guarantee domain independence [134]. The algorithm selected

30 modes to discretise the modified von Kármán spectrum, compared to 1024 specified in

Chapter 4. As a consequence of a coarser discretisation of the wavenumber space, the level

of turbulence intensity effectively introduced at the inlet of the computational domain is

measurably lower than prescribed: TI = 2.578%.

6.2.2 Numerical setup of SPM to model the bar passing effect

Adopting the Smoothed Profile Method as a way to generate inflow disturbances in the

form of periodic passing wakes, the computational mesh cannot ensure a local resolution

level sufficient to fully capture the cylinder’s dynamics at realistic flow regimes. Multiple

reasons can be identified. First of all, since the cylinders move across the whole pitch-

wise domain, the entire stripe extending across the domain would require extremely high
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Figure 6.3: Wall resolution along the suction surface with increasing Re2 and incoming
wakes.

resolution. For example, the adoption of a high-resolution configuration similar to the

one shown in mesh M3 of Chapter 2 (Figure 2.14) would require ≈ 90000 elements just to

capture the motion of the cylinder, equivalent to over 180.746M DoF per variable. Beyond

the increase in computational cost, the element size (with element side h approximately

6 times smaller than the smallest elements in the TE region) would introduce a signific-

ant CFL barrier, therefore effectively resulting in a further increase of the computational

cost to achieve the target time integration extent. However, an extremely high-resolution

is likely not necessary in this region, as the cylinder wake impacts on the turbine blade

in the very far wake. Given the parameters of the problem and accounting for the cor-

rect wake inclination, the cylinder wake reaches the leading edge of the turbine around

52 diameters downstream. Therefore, any computational effort to capture the correct

dynamics around the moving cylinders would require being supported for a considerable

distance (in the cylinder’s frame of reference). On top of this, due to the shear sheltering

mechanism [69, 63, 202] the high frequency perturbations do not penetrate the boundary

layer, and therefore the added computational cost would actually not produce justifiable

improvement in the results.

Therefore, the approach adopted is driven by practicality requirements, and it is aimed

at ensuring that the wake width and spectral content at low frequencies (i.e. vortex shed-

ding) is preserved. The element size in the SPM region should not be smaller than the

smallest elements in the trailing edge region, sufficiently far from the blade (where the

CFL number is measured to be highest). This guarantees that no further timestepping

restrictions are imposed by the introduction of the immersed boundaries. The computa-

tional mesh produced by imposing this constraint is such that in every pitchwise location

the region within the cylinder is represented with around 300 quadrature points, and the
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Figure 6.4: (a) L2-error of the projection of the φ function onto the LPT mesh, with
varying interface thickness parameter ξ. The contour of the φ profile shown for three
examples of ξ is extracted in correspondence to the dashed black lines and reported
in (b).

relative resolution in the cylinder’s frame of reference is analogous to that of mesh M1 in

Figure 2.14.

Since the choice of resolution is driven by the setup of the problem, this poses the

challenge of how to best select the interface thickness parameter ξ and the diameter of the

immersed boundary. Figure 6.4 shows the evolution of the L2 error of the projection of

the φ function describing the immersed boundary onto the discrete computational mesh

employed for the LPT simulations, at order P = 6. Lower interface thickness corresponds

to sharper definition of the body, but also higher error. The error itself tends to saturation

for ξ < 1 · 10−4 and ξ > 3 · 10−3. The effect of ξ can be visually appreciated in the

three contours of Figure 6.4a. The φ profiles extracted along the black dashed lines are

shown in Figure 6.4b, which highlights that the effect of under-resolution translates into

wiggles in the SPM profile, in case ξ = 3 · 10−4. Case ξ = 1 · 10−3 is the smallest choice

of interface thickness that accurately represents the shape of the smoothed profile, and

therefore ξ = 1 · 10−3 is selected for the LPT test case. However, the effect of employing

a relatively large interface thickness is that of increasing the effective diameter of the

cylinder. Therefore, a series of preliminary numerical experiments were carried out to

ensure the generation of realistic wake dynamics.

Auxiliary cylinder simulations

For each of the Reynolds numbers considered in the LPT cascade, a series of auxiliary sim-

ulations was targeted at observing the effect of diameter variations of the SPM profiles at

fixed interface thickness and resolution, analysing the mean wake profiles and the velocity

spectra and comparing them with results obtained in a corresponding DNS simulation.
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Table 6.2: Parameters employed for preliminary cylinder simulations.

Re2 Re1 ν = S
Re1

Uc Rec

86000 48000 2.8142 · 10−5 1.51112003 1233.56734
157000 84000 1.6081 · 10−5 1.51269516 2160.99304
297000 166000 8.1376 · 10−6 1.51493002 4276.84316

The auxiliary simulations (both DNS and SPM) were conducted on a stationary cyl-

inder test case with unitary diameter, with domain analogous to that adopted for the

SPM validation (Section 2.4.2). The DNS was carried out with the same computational

setup described in Section 2.4.2, at polynomial order P = 7 and Nz = 64, resulting in

15.16M DoF per variable. Instead, the SPM setup was tested with a mesh size analogous

to that of the LPT (scaled appropriately by the bars’ diameter and relative velocity in the

bars’ moving frame of reference) in order to mimic the effect of different SPM setups in

the cascade simulations at reduced computational cost, necessary to perform a parameter

sweep. Importantly, in order to fully mimic the resolution of the LPT case, the spanwise

domain of the SPM cases was scaled so that Lcz = Lz/d = 9.191667, while maintaing the

same number of spanwise planes as in the LPT case: Nz = 72. The resulting setup has

3.12M DoF per variable. The interface thickness ξ = 1 · 10−3 was scaled appropriately,

yielding ξ = 0.0435286.

Table 6.2 reports (in the LPT setup) the parameter scaling required to calculate Rec.

Uc is the true speed in the cylinder’s frame of reference, calculated from the triangle

constructed from the inflow velocity U∞ = 1 and the translational velocity of the bars.

These parameters were dictated by the experiments, reported in Table 6.1. The cylinder

test case is simulated at the flow regimes indicated by Rec.

For each Rec, five diameter sizes were tested ranging from dSPM = 1 to dSPM = 0.6, for

a total of 3 DNS cases and 15 SPM simulations. Analogously to the cylinder simulations

of Section 2.4.2, all cases were averaged over T = 400d/U∞, which corresponds to ' 83

vortex shedding cycles (assuming a Strouhal number St = 0.208). It should be highlighted

that the resolution of the SPM cases is extremely coarse, and therefore differences are

expected in the comparison with DNS results.

Figure 6.5 shows the mean streamwise velocity wake in the three Rec cases, extracted

at three streamwise locations. At Rec = 1233, 2161, in the near wake region the nominal

diameter dSPM = 1 produces a wider profile compared to DNS, while the wake is accurately

reproduced with a diameter of dSPM = 0.6. This highlights the effect of under-resolution

in the SPM region which yields a higher effective diameter. In the Rec = 4277 case the

negative peak in the near-wake is captured well by the dSPM = 1 case, which overestimates

the wake width significantly. Smaller diameters improve on the accuracy of the wake

flanks. For the application of interest, the behaviour in the under-resolved far wake is

particularly important. Introducing the adimensional streamwise coordinate x∗ = x/d,

at x∗ = 10 (shown at the bottom of Figure 6.5) a decreasing SPM size corresponds to
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Figure 6.5: Time-averaged streamwise velocity, comparing (left to right) three in-
creasing Rec = 1233, 2161, 4277 and (top to bottom) three streamwise stations
x∗ = 1.06, 1.54, 10, with the centre of the cylinder at x∗ = 0. The streamwise stations
are sampled assuming d = 1 in all cases. The black solid line indicate DNS results,
while dashed lines are SPM simulations with decreasing diameter corresponding to
lighter colour.
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improved agreement with the negative wake peak (which is overpredicted with dSPM = 1),

as well as the wake flanks and the progressively undisturbed velocity away from the body

(|y/d| > 3). Overall, the case dSPM = 0.6 produced the best agreement with the DNS in

all the streamwise velocity far wake comparisons.

To obtain a clearer picture of the wake behaviour, the intermediate location x∗ = 5 is

considered to further discuss other types of wake statistics, shown in Figure 6.6. The top

row shows the cross-flow velocity wake. In all Rec cases, the nominal value dSPM = 1 fails

to capture the correct peak intensity, which is overpredicted by a factor larger than two.

Decreasing values of dSPM progressively improve the agreement with DNS data, which is

extremely close in case dSPM = 0.6 at Reynolds numbers Rec = 1233, 2161. The highest

Reynolds case Rec = 4277 is less sensitive to changes in the SPM diameter. The relevant

components of the Reynolds stress tensor are reported below the vertical wake statistics

in Figure 6.6. At the lower Rec = 1233, 2161 cases the same trend was found to occur for

〈u′2〉, 〈v′2〉 and 〈u′v′〉, with dSPM = 0.6 producing extremely accurate agreement with DNS

data, both in terms of peak intensity and flank width. This is consistent with previous

findings on the mean streamwise velocity wakes. At the higher regime Rec = 4277, the

normal stresses achieve an improvement similar to the lower Reynolds cases, while in the

Reynolds stress wake 〈u′v′〉, the improvement derived from decreasing the SPM diameter

is less drastic, analogously to mean velocity statistics.

The streamwise velocity measured along the centreline is shown in the left column

of Figure 6.7. In all cases the nominal diameter dSPM = 1 results in an overprediction

of the separation bubble length, as well as an underprediction of the streamwise velocity

in the far wake. At Rec = 1233, decreasing the SPM diameter allows for significant

improvement with DNS results, but no diameter exactly captures the correct maximum

recirculation velocity (negative peak) and separation length. Overall, the configuration

dSPM = 0.6 produces the best agreement in the near and far wake. The same observations

apply to Rec = 2161, but in this case the improvement is not as significant, with all SPM

diameters producing close agreement with DNS data. At higher Rec = 4277, the trend

in the recirculation region is inverted with respect to Rec = 1233: a reduction in SPM

diameter results in marginal extension of the recirculation length. However, the far wake

is still better predicted by smaller SPM diameters, with the shift occurring at x∗ ≈ 5.

All in all, despite opposite trends observed in the recirculation region, the far wake effect

across the range of Reynolds numbers in analysis is that of marginal improvements in the

streamwise velocity with smaller diameter, supporting the findings previously discussed

on mean velocity wakes and turbulence quantities.

Lastly, the velocity spectra in the near wake are shown in the right column of Figure

6.7. The behaviour is extremely similar in all flow regimes. At low frequency, the vortex

shedding frequency corresponds to the dominant peak and is shown in the inset plot. At

all Rec, the diameter dSPM = 0.6 captures the vortex shedding frequency very accurately

compared to the DNS case: the curves are nearly overlapping. As highlighted in the case

of streamwise velocity wakes, larger SPM diameters produce a larger effective diameter,
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Figure 6.6: Time-averaged wake profiles sampled at x∗ = 5 comparing (left to right)
three increasing Rec = 1233, 2161, 4277. From top to bottom: cross-stream velo-
city, streamwise fluctuating velocity, cross-stream fluctuating velocity and Reynolds
shear stress. The black solid line indicate DNS results, while dashed lines are SPM
simulations with decreasing diameter corresponding to lighter colour.
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Figure 6.7: Left: time-averaged streamwise velocity along the wake centreline. Right:
streamwise velocity spectra at x/d = 2.57, y/d = 0.52. From top to bottom, three
increasing Rec = 1233, 2161, 4277.
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Figure 6.8: Isosurfaces of Q = 200 contoured by velocity magntitude in case
Re2 = 297K. The computational domain is replicated in the spanwise and pitch-
wise directions for graphical purposes.

thus reducing the frequency sampled. At higher frequency, the velocity spectra in the

SPM cases are overlapped, and differ from DNS spectra for f ≥ 5U∞/C because of the

significant difference in mesh resolution: the SPM mesh is extremely coarse and therefore

high frequencies are strongly damped.

Considering the various combinations analysed, both in terms of various Rec and SPM

diameters, it appears that with the fixed interface thickness parameter ξ = 1 · 10−3 the

SPM diameter dSPM = 0.6 produces the best agreement with DNS results. Therefore, the

nominal bar diameter in the LPT simulations was scaled by 60%. The improvement arising

in the near wake from smaller diameters is more pronounced at low Reynolds number, while

less sensitivity was measured at Rec = 4277. However, consistently improved results are

observed in the far wake region.

Overall, this section demonstrated the validity of the approach adopted for simulating

the wake passing effect in the LPT test case, and in particular how the SPM parameters

were tuned to guarantee the generation of a realistic cylinder wake, without additional

compromises in the computational cost of the LPT simulations owing to further timestep

restrictions and additional mesh refinement.

Practical implementation of SPM with pitchwise-periodic simulations

The setup of the SPM φ function in the case of vertically translating bodies in a pitchwise-

periodic simulation requires to be prescribed in a fictitious domain three times as large as

the actual domain. The simple reason is highlighted in Figure 6.1. Since the analytical

function that describes the cylinders refers to the centre of the cylinder, by prescribing

a single domain when the shape shifts out of the bottom and is moved to the top of the

domain, the top portion of the semicircle is removed and inserted instantaneously in the
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top domain. This requires the introduction of a fictitious domain of height Py above and

below, to ensure continuity in the translational motion of the SPM profiles.

The qualitative result of the implementation discussed above is shown in Figure 6.8 at

high Reynolds number, focusing on the suction surface of the LPT in analysis. The initial

stage of wake bending is visible in the Figure, while the suction surface transition leads

to fully turbulent boundary layer at the trailing edge. More details on the flow features

and the transition mechanism are discussed in the following section.

6.3 The wake passing effect on the suction surface

The time averaging operation masks the wealth of flow phenomena occurring in the bound-

ary layer of LPTs subject to incoming disturbances, and it particularly fails to highlight

the presence of high-amplitude events that precede the onset of turbulence. For this

reason, a discussion on some instantaneous flow statistics is presented before an in-depth

analysis of time-averaged statistics, to highlight some of the flow phenomena occurring on

the suction surface of the cascade at the various stages of the wake passing cycle.

6.3.1 Evidence of the transition mechanism

Figures 6.9, 6.10 and 6.11 provide qualitative insight into the suction surface dynamics at

consecutive phases ϕ for Re2 = 86K, 157K, 297K respectively. Case Re2 = 86K is con-

sidered first (Figure 6.9a). The incoming wakes impinge on the suction surface separation

bubble between ϕ = 0.25 and ϕ = 0.375. The extended region of weakly negative recircu-

lation (the pale yellow region) visible at ϕ = 0, 0.125 between s/S0 = 0.7− 0.95 is largely

suppressed by the incoming disturbance. Concurrently, at ϕ = 0.25 the shear layer rolls

up into two separate regions of recirculating flow, as previously highlighted in a number

of studies [111, 189, 108]. The upstream recirculation region is found at s/S0 ≈ 0.85,

while the second merges into the trailing edge. This mechanism can also be identified at

Re2 = 157K at ϕ = 0.375 but not at the higher regime Re2 = 297K.

As the wake impacts on the separation bubble, the region of high shear in the upstream

portion of the suction surface (the dark blue region) moves towards the trailing edge,

following the impinging disturbance. At ϕ ≈ 0.375, the attached flow region develops

a spanwise pattern of alternating high- and low-speed flow, called streaks, which play

an important role in the bypass transition mechanism [68, 203]. Streaks are found at

all the flow regimes analysed, and their spanwise length scale is inversely proportional

to the Reynolds number. The generation mechanism of elongated streaks in the suction

surface in presence of inflow turbulence was recently discussed in detail by Zhao et al.

[207]. Their inception is linked to large magnitude of the spanwise fluctuating velocity

component measured at the leading edge of the blade. The tangential vorticity ωt (aligned

with the tangent to the blade wall) can be related to the spanwise fluctuating velocity as

ω′t ∼ ∂w′/∂n. As the streamwise-aligned vortices are stretched around the high-curvature
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(a)

(b)

(c)

Figure 6.9: Instantaneous suction surface statistics for Re2 = 86K. (a) Instantaneous
skin-friction coefficient carpet plot on the aft portion of the suction surface, at 8 dif-
ferent phases. The dashed boxes in phases ϕ = 0.25 and ϕ = 0.625 are shown in detail
in (b) and (c), respectively. For (b) and (c) the top figure shows spanwise vorticity
in the blade-normal plane denoted with dash-dotted lines in (a), superimposed with
fluctuating velocity vectors. The middle and bottom figures show respectively wall-
parallel and wall-normal fluctuating velocity n/C = 0.01 away from the wall. The
solid and dashed lines in the bottom figures in (b) and (c) are isolines of w′ = ±0.15.
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(a)

(b)

(c)

Figure 6.10: Instantaneous suction surface statistics for Re2 = 157K. (a) Instantan-
eous skin-friction coefficient carpet plot on the aft portion of the suction surface, at 8
different phases. The dashed boxes in phases ϕ = 0.125 and ϕ = 0.5 are shown in de-
tail in (b) and (c), respectively. For (b) and (c) the top figure shows spanwise vorticity
in the blade-normal plane denoted with dash-dotted lines in (a), superimposed with
fluctuating velocity vectors. The middle and bottom figures show respectively wall-
parallel and wall-normal fluctuating velocity n/C = 0.005 away from the wall. The
solid and dashed lines in the bottom figures in (b) and (c) are isolines of w′ = ±0.15.
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(a)

(b)

(c)

Figure 6.11: Instantaneous suction surface statistics for Re2 = 297K. (a) Instantan-
eous skin-friction coefficient carpet plot on the aft portion of the suction surface, at 8
different phases. The dashed boxes in phases ϕ = 0.25 and ϕ = 0.625 are shown in de-
tail in (b) and (c), respectively. For (b) and (c) the top figure shows spanwise vorticity
in the blade-normal plane denoted with dash-dotted lines in (a), superimposed with
fluctuating velocity vectors. The middle and bottom figures show respectively wall-
parallel and wall-normal fluctuating velocity n/C = 0.005 away from the wall. The
solid and dashed lines in the bottom figures in (b) and (c) are isolines of w′ = ±0.15.
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region of the front portion of the suction surface, they generate streamwise streaks via

linear lift-up effect [18]. In the context of wake passing, the generation of streaks occurs

periodically, and its effect on the transition mechanism in the aft portion of the suction

surface is evident at 0.375 ≤ ϕ ≤ 0.75.

The nature of the disturbances that penetrate the boundary layer shear is determ-

ined by the shear sheltering mechanism [63, 43, 205], further discussed in the context of

transition in a compressor cascade by Zaki et al. [206, 203]: the boundary layer shear

acts as a filter for the high-frequency vortical disturbances. As previously highlighted by

Wissink [193], transition originates behind the wakes and it is due to local forcing. The

low-frequency perturbations that penetrate into the boundary layer promote strong shear

associated with the spanwise distortions (termed Klebanoff streaks) which may develop

into turbulent spots through localized secondary streak instability. These steps character-

ise the early stages of the bypass transition mechanism, described as a secondary instability

of lifted shear layers when they reach the top of the boundary layer, and they are subject

to high-frequency free-stream disturbances [198, 68, 204].

The physical mechanisms governing streak instability can be revealed through Floquet

analysis of secondary instability [94]. In the presence of Klebanoff streaks, the two most

unstable modes of the boundary layer are the inner mode (varicose instability) and the

outer mode (sinuous instability) [203], so called due to the wall-normal location of their

critical layer. The inner mode is most amplified in the overlap region between low- and

high-speed streaks, with highest growth rate at low streak amplitude. The outer mode

has high growth rate for high streak amplitude, and it is hosted by low-speed streaks, as

also highlighted previously by Schlatter et al. [147].

In the early stages of the wake passing cycle, the penetration of streaks within the

boundary layer has not reached the TE region yet. However, the formation of instabilities

is detected at ϕ ≈ 0.25 and highlighted in Figure 6.9b. The vorticity contour suggests

the presence of part-span K-H instability, which lifts up from the wall and develops across

the boundary layer edge. The alternating parallel fluctuating velocity patterns shown in

Figures 6.9b, 6.11b are consistent with the findings of Zhao et al. [207], where they are

argued to be evidence of varicose streak instability. However, in this case the instability is

most likely due to part-span K-H type instability which occurs naturally in the separation

bubble.

At the later phases of the wake passing cycle, the presence of developed turbulent spots

is detected (e.g. Figure 6.11c). However, the evidence here presented is not sufficient

to uniquely identify the physical streak instability mechanism (i.e. sinuous or varicose)

preceeding the inception of the spots. This would require the use of further advanced

analytical tools to compute the phase speed and track the time-space development of the

localised instability.

Common to the turbulent spot instances shown is their tendency to rapidly lift up in

the wall-normal direction and surpass the boundary layer edge, as shown in Figure 6.9c,

and at higher Reynolds in Figures 6.10c and 6.11c. Moreover, they are found to be within
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regions of positive fluctuating parallel velocity. The opposite behavious is highlighted

when the passing wake first impacts on the separated region (Figures 6.9b, 6.10b and

6.11b), and the instability arises within roll-ups of the separation bubble, which explains

the presence of negative tangential fluctuating velocity.

6.3.2 Space-time boundary layer behaviour

The time evolution of the spanwise-averaged effect of the wake interactions on the suction

surface boundary layer is shown in the space-time plots of momentum thickness and shape

factor of Figure 6.12. The BL evolution is captured over 4 wake passing periods Tb with

a resolution of 80 flow snapshots per period. Instantaneous statistics are here preferred

over phase-averaged realisations because of their ability to showcase the highly unsteady

nature of the wake interactions.

The momentum thickness pattern (shown in Figures 6.12a, 6.12c, 6.12e) is similar

across the Reynolds number ranges analysed. The presence of the separation bubble is

evident in Figures 6.12b, 6.12d, 6.12f, where solid isolines of Cf = 0 are superimposed with

the contours of shape factor, identifying the spanwise-averaged extent of separation. When

the wake interacts with the separation bubble, transition occurs and the flow reattaches

for the whole extent of the suction surface, as shown by the dashed arrow on Figures

6.12b, 6.12d and 6.12f. Concurrently, the momentum thickness is increased starting from

a location of s/S0 ≈ 0.7 to the TE, which is linked to a periodic increase of profile losses.

Following the wake-driven reattachment and the subsequent calmed region, the separation

bubble recovers as the separation line moves upstream. The topology of these phenomena

is similar across all Reynolds numbers, but at increased Re2 the momentum thickness is

lower over the entire extent of the suction surface shown. The separation bubble captured

in Figure 6.12f at Re2 = 297K is significantly smaller than at lower Reynolds numbers, due

to increased BL shear sheltering, but it is also subject to larger relative variability in terms

of both streamwise and temporal extent: the second instance of separation visualised in

in Figure 6.12f is roughly twice as persistent compared to the following instance. This

suggests that the dynamics of the boundary layer between s/S0 ≈ 0.7 − 0.9 is largely

affected by the presence or absence of streak instabilities trailing the passing of the wake

in every cicle (e.g. as previously shown in Figure 6.11a at ϕ = 0.625).

The solid box in the bottom-right of Figure 6.12b also highlights another flow feature

that occurs predominantly at low Reynolds number. The dashed lines mark the presence

of space-time regions of strong negative Cf . In particular, two thin, elongated areas can

be identified within the separated flow region. The first (in a temporal sense) begins at

s/S0 ≈ 0.9, and it is followed by another occurring upstream at s/S0 ≈ 0.85. The former

represents the inception of the effect of external disturbances on the state of the boundary

layer. Nested between the two dashed regions is a thin area of low shape factor and

thus reattached flow. This corresponds to the inception of two large-scale roll-ups with

a region of attached flow in between. The rolls appear consecutively and they are short-
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(e) (f)

Figure 6.12: Instantaneous spanwise-averaged space-time contour of suction surface
boundary layer parameters. Left: θ. Right: H superimposed with isolines of wall-
shear stress at two levels: Cf = 0 (continuous line), Cf = −0.024 (dashed line). From
top to bottom: (a,b) Re2 = 86K, (c,d) Re2 = 157K, (e,f) Re2 = 297K.
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lived. Following the second roll-up, the boundary layer undergoes transition to turbulence

and remains attached up to the TE. This pattern cannot be identified at higher Reynolds

number (Re2 = 297K), where the smaller separation bubble is periodically suppressed

due to bypass transition and without the formation of large-scale K-H roll-ups.

6.3.3 Phase-averaged flow visualisations

In order to provide further evidence of the change in the dynamics with increasing Re2,

phase-averaged detailed views of the spanwise vorticity, TKE and turbulence production

P k in the TE region are shown in Figure 6.13.

Two distinct regions of large vorticity associated with the interaction of the wake and

the separation bubble are visible in the vorticity contours for Re2 = 83K, 157K. In these

regions, strong turbulent activity is detected. As the Reynolds number is increased, the

transitional region is shifted upstream and away from the TE. At high Reynolds number

(Re2 = 297K), only the first K-H roll-up structure is visible but of significantly reduced

size, comparable to that of the thin shear layer. At the two lower Reynolds numbers,

higher levels of turbulence production are associated with the presence of roll-ups; two thin

regions of negative turbulence production are nested in the near-wall region, preceding and

following the first K-H roll-up. This phenomenon was documented in an adverse pressure

gradient turbulent boundary layer in the separated flow region upstream of reattachment

[156, 2] and more recently investigated in depth by Cimarelli et al. [28].

The kinematics of the wake convection through the blade passage was extensively

explored experimentally in its various phases [163, 164]. A comparison of the differences

in the kinematics of wake convection through the mean passage at different Reynolds

numbers is shown in Figure 6.14, where the phase-locked perturbation velocity vectors

are superimposed to phase-averaged TKE. The negative jet perturbation decelerates the

flow upstream of the wake center, and accelerates is downstream. Wake elongation and

convective transport away from the pressure surface promote a reduction of the turbulence

intensity on the pressure side, while wake stretching causes the same effect on the front

portion of the suction surface [60]. High levels of aligned turbulent stress and spatial

velocity gradients (which yield higher turbulent production) within the mean passage

promote higher levels of TKE [111] in the downstream portion of the bowing wake, which

has an impact on the subsequent blade row. From the Figure, the shape of the fluctuating

ensemble-averaged velocity vectors (i.e. negative jet effect on the suction surface, and large

contra-rotating vortical structures) is retained across the Reynolds numbers analysed. The

peak turbulence intensity at Re2 = 86K is larger than at higher Reynolds numbers, but

no significant changes can be visibly appreciated between Re2 = 157K and Re2 = 297K.

6.3.4 Fluctuating blade wall distributions

The results so far analysed provide insight into the effect of the periodic disturbances on the

suction surface separation bubble, importantly linked to the state of the boundary layer
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.13: Phase-locked fields at ϕ = 0.375 in the TE region. From top to bottom:
(a, b, c) spanwise vorticity, (d, e, f) TKE and (g, h, i) turbulence production P k. From
left to right: (a, d, g) Re2 = 86K, (b, e, h) Re2 = 157K and (c, f, i) Re2 = 297K.
Figures not to scale.
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Figure 6.14: Phase-locked TKE at ϕ = 0 superimposed with phase-locked fluctuating
velocity vector ũϕ=0 − u. The length of the arrows is proportional to the velocity
magnitude. From left to right: Re2 = 86K, 157K, 297K. Figures not to scale.

at the trailing edge and therefore profile losses. However, it is necessary to investigate

other quantitative results to gain insight into the potential effect of the wake passing

on the blade loading. Figure 6.15 shows the pressure and skin-friction coefficient on both

suction and pressure surface, with three types of information overlayed on every subfigure.

The black solid line indicates the time-averaged distribution, which is discussed in detail

in the next section. In order to highlight unsteady effects, the standard deviation of

the distributions (low transparency) and the envelope of instantaneous flow fields (high

transparency) are superimposed. Each Reynolds number is shown with the same shade

of colour adopted through the rest of the chapter. The pressure distribution alone is

not sufficient to isolate the potential effect on the blade loading, and the skin-friction

coefficient provides additional information.

The standard deviation of Cp remais extremely similar across all flow regimes: the

distribution is rather constant along the pressure surface and it becomes thinner in the aft

portion for s/S0 > 0.9. Analogously, the impact of the wake on the pressure distribution

in the front portion of the suction surface (s/S0 < 0.1) remains limited. The instantaneous

envelope trend is similar to the standard deviation in the entirety of the pressure surface

and the suction surface up to s/S0 ≈ 0.8, which corresponds approximately to the time-

averaged separation location. The impact of the wake increases significantly in the adverse

pressure gradient region of the suction surface. Comparing the pressure distributions and

skin-friction coefficient highlights the areas where flow separation occurs, which is the only

portion of the blade where significant differences are induced by an increase in the Reynolds

number. The overall behaviour of the fluctuating distributions in cases Re2 = 86K and

Re2 = 157K is extremely similar, and it differs with Re2 = 297K in the final part of the

suction surface, for s/S0 > 0.8. In this region, the shear layer periodically rolls up, which

is highlighted by the strong negative values reached by the Cf evelope, which are about
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Figure 6.15: Black line: time-averaged pressure distribution (a,c,e) and skin-friction
coefficient (b,d,f) for increasing Reynolds numbers: (a,b) Re2 = 86K, (c,d) Re2 =
157K, (e,f) Re2 = 297K. Dark area: Cp ± σ and Cf ± σ; light area: minimum and
maximum value envelope. Y-axis tick labels are omitted due to data sensitivity.
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three times as large in magnitude as the maximum positive fluctuating difference with

the time-averaged distribution. The region of large negative fluctuating wall-shear stress

reaches the trailing edge at lower Reynolds, while it is significantly shorter at Re2 = 297K,

reaching up to s/S0 ≈ 0.9 only. The increased positive wall-shear stress region extends to

the TE, thus denoting transition to a fully turbulent boundary layer. Having discussed the

impact on the blade wall distributions with focus on the unsteady effects on the suction

surface, the analysis of time-averaged statistics is the focus of the following section.

6.4 Blade wall distributions

The time-averaged and spanwise-averaged pressure distribution and skin-friction coeffi-

cient are shown in Figure 6.16. The data with LE forcing from Chapter 5 are included to

highlight the impact of the periodic disturbances on time-mean flow performance indic-

ators. Due to the presence of passing bars, the effective inflow angle is decreased, from

α1 = 33.86◦ to αeff
1 = 31.73◦ in Re2 = 86K, α1 = 33.96◦ to αeff

1 = 32.17◦ in Re2 = 157K

and α1 = 34.08◦ to αeff
1 = 32.18◦ in Re2 = 297K. The difference translates into discrepan-

cies in the front portion of the suction surface between the cases with and without passing

wakes, evident in the suction surface skin friction peak at s/S0 ≈ 0.05, where the IW

profiles are slightly lower than the cases without incoming wakes. In this same region of

the suction surface, lower Reynolds number corresponds to higher wall-shear stress.

The major differences due to the introduction of periodic disturbances are in the ad-

verse pressure gradient part of the suction surface. Especially at low Reynolds number, in

the Cp distribution the BF cases presents a short plateau region at s/S0 ≈ 0.85, indicative

of a weak separation bubble. This region is delayed and shortened with the introduction

of wake passing. The skin-friction coefficient distribution further clarifies the differences.

Due to the periodically modified transition mechanism on the suction surface, the wake

passing causes an upstream shift of the time-averaged separation bubble at Re2 = 86K

and Re2 = 157K. In both cases flow separation occurs at s/S0 ≈ 0.74, and the extent of

separation is almost halved compared to the cases with body forcing, as highlighted by the

quantitative values reported in Table 6.3. The negative Cf peak denoting the presence of

roll-ups and anticipating reattachment is moved upstream, flattened and only visible at

low Reynolds number. This is a consequence of the wake motion along the suction surface

and it does not correspond to stationary flow features. In both cases Re2 = 86K and

Re2 = 157K the flow is attached at the trailing edge, but not fully developed. Further

increasing the Reynolds number (Re2 = 297K) removes separation in a time-averaged

sense and yields a fully turbulent boundary layer at the trailing edge, as highlighted by

the flat Cf profile for s/S0 > 0.9.
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Figure 6.16: Blade wall distributions with increasing Re2, compared with momentum
forcing cases of Chapter 5. Left: pressure distribution, and right: skin-friction coefficient.
Y-axis tick labels are omitted due to data sensitivity.

Table 6.3: Time-averaged separation bubble statistics with inflow wakes and mo-
mentum forcing (presented in Chapter 5): separation point and reattachment point.
Due to data sensitivity, all values were intentionally nondimensionalised by the re-
spective values of case BF at Re2 = 297K, consistently with Chapter 5.

Re2 86K 157K 297K

Inflow IW BF IW BF IW BF

(s/S0)∗sep 1.04969 0.96801 1.04287 1.00905 - 1.0

(s/S0)∗reat 1.02477 - 0.97038 1.07885 - 1.0

6.5 Boundary layers

The impact of wake passing on the boundary layer behaviour is compared against the

body forcing data of Chapter 5. Figure 6.17 shows momentum thickness and shape factor

at the three Reynols numbers analysed.

The front portion of the suction surface before peak suction (for s/S0 / 0.6) is con-

sidered first. As the Reynolds number is increased, the momentum thickness decreases

indicating a thinner shear layer. No appreciable difference exists between the cases with

and without incoming wakes: in the favourable pressure gradient region of the profile, the

high shear sheltering mechanism prevents large boundary layer distortions. The shape

factor is similar in all cases, indicating self-similar boundary layer growth.

The aft portion of the blade (s/S0 ' 0.6) is considered next. The time-averaged

momentum thickness grows gradually at all Reynolds numbers. In the cases with no wakes,

downstream of s/S0 ' 0.75 its growth decreases up to the TE region, where BL transition

occurs. Downstream of transition, θ rises sharply, and only at the highest Reynolds number

Re = 297K the body forcing case presents a higher momentum thickness at the trailing
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Figure 6.17: Boundary layer parameters with increasing Re2, compared with clean inflow
cases of Chapter 5. Left: momentum thickness, and right: shape factor. Y-axis tick labels
are omitted due to data sensitivity.

edge. In the same region, the absence of incoming wakes yields a sharp increase in the

shape factor, which indicates a region of separated flow already discussed in Chapter 5.

Instead, the presence of periodic disturbances and their effect on the separation bubble

contribute to maintaining the shape factor at significantly lower values in the adverse

pressure gradient region. As previously highlighted by the skin-friction distribution in

Figure 6.16, in case Re = 297K the BL reaches a fully turbulent state before reaching the

TE, which is also reflected in the shape factor that settles for s/S0 > 0.9.

Further details on the boundary layer profiles are provided in Figure 6.18. The top

row shows velocity profiles; the last two BL profiles shown prior to the TE are identical

at Re = 297K, indicating that its state is fully developed. The same Figure shows that

the reattachment process at low Reynolds number occurs between s/S0 ≈ 0.85− 0.9 and

the BL at the trailing edge is not fully turbulent.

The TKE and P k boundary layer profiles are also shown in Figure 6.18. In the three

stations between 0.7 ≤ s/S0 ≤ 0.8, the case Re = 297K initiates transition, as highlighted

by a pronounced peak in the near-wall region. At s/S0 ≈ 0.8 the same mechanism also

develops at lower Reynolds numbers, but the peak is increasingly displaced away from

the blade surface. At s/S0 ≈ 0.85, a second peak develops in the high Reynolds number

case. This occurs at n/C ≈ 0.01 for the TKE profiles, and in the very near wall region

for the P k profiles. Therefore, the emergence of the second peak for TKE corresponds to

the damping of the first peak of P k, and vice versa. As the turbulent profile develops, the

fluctuations are enhanced away from the wall but the production mechanism is confined

in the region of large pressure gradients induced by the wall. This behaviour occurs in

the presence of a fully developed turbulent BL under adverse pressure gradient, and it is

not observed at lower Reynolds numbers, where the main peak of turbulence production

is driven by the presence of migrating roll-up vortices.
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Figure 6.18: Time-averaged boundary layer profiles in the aft portion of the suction
surface subject to incoming wakes, for increasing Re2. Each quantity is scaled by
an appropriate factor to improve visual clarity. Top: Parallel velocity component;
middle: turbulence kinetic energy; bottom: turbulence production.

In particular, at Re2 = 157K, a second peak of moderate intensity in the P k profile

is identified in the TE region, but the TKE profiles do not reflect the same topology as

Re2 = 297K and rather show a single peak at roughly half the height of the boundary

layer edge. This behaviour was analogously documented by Sarkar [146].

6.6 Wake traverses and experimental comparison

Extensive experimental data is available from LDA measurements and it is presented in

this section. As a reference for clarity of interpretation of the figures, the suction side is

located towards the right side of the profiles.
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6.6.1 Velocity wakes

The velocity wakes are compared with experiments in Figure 6.19a. The agreement is very

close at all flow regimes, accurately capturing both flank width and negative peak. The

same level of accuracy is achieved in the vertical velocity wakes reported in Figure 6.19c.

The agreement observed at Re2 = 86K represents a substantial improvement compared

to the clean inflow analysis of Chapter 5. The introduction of periodic disturbances and

the modified BL state at the trailing edge allow for a more faithful representation of the

flow physics measured in the experiments. The presence of background turbulence was

simulated at Re = 86K only and represented with dashed lines. The wake profiles overlap

closely to the curves obtained without incoming HIT, with marginal discrepancy observed

in the mean passage on the pressure side. This highlights that discrete disturbances are

the dominant mechanism in the dynamics of the suction surface separation bubble.

The axial flow component (Figure 6.19b) is underestimated both in the wake region

and especially in the mean passage. Particularly at Re2 = 86K, the experimental scatter

(defined in Equation 5.3 and represented as a grey shaded area) is higher compared to

the velocity magnitude and vertical component profiles. However, experimental precision

is not resposible for the full-pitch discrepancy. This effect is due to the experimental

streamtube contraction introduced in Section 5.2.1; the discussion is expanded in greater

detail later in the Chapter.

6.6.2 Loss profiles

The loss profiles are reported in Figure 6.20, showcasing excellent agreement with the

experiments. The trend captured is very similar to that of the velocity wakes, with agree-

ment improving at higher Reynolds numbers. The entity of losses in the mean passage

remains the same across the three flow regimes explored. The computed results capture

a slight decrease of the loss profile peak by ∼ 6% and 10% in cases Re2 = 157K and

Re2 = 297K, respectively. The experimental values remain however approximately con-

stant across the three flow regimes. At higher Re2, the wake width decreases significantly.

It is therefore evident that the smaller momentum thickness at the trailing edge typical of

high-Reynolds configurations, combined with a fully suppressed separation bubble due to

bypass transition results in a thinner loss profile.

6.6.3 TKE wakes

The turbulence length scale leaving the turbine measured from a spanwise line of probe

points is smaller in the high-Reynolds case, where the two-point correlation decays faster.

This in turn promotes lower levels of fluctuations in the wake. At low Re the separation

bubble is also periodically open, giving rise to large-scale vortex shedding which in turn is

visible in higher levels of fluctuating turbulence kinetic energy (Figure 6.21). The higher

Reynolds cases Re2 = 157K and Re2 = 297K have very similar profiles. At all flow

regimes, the TKE profile in the mean passage on the pressure side retains marginally



6.6. WAKE TRAVERSES AND EXPERIMENTAL COMPARISON 154

0.00 0.25 0.50 0.75 1.00

y/Py

||u
||/

U
2

Re2 = 86K

IW IW + IT Exp. S1 Exp. S2

0.00 0.25 0.50 0.75 1.00

y/Py

Re2 = 157K

0.00 0.25 0.50 0.75 1.00

y/Py

Re2 = 297K

(a)

0.00 0.25 0.50 0.75 1.00

y/Py

u
/U

2

Re2 = 86K

IW IW + IT Exp. S1 Exp. S2

0.00 0.25 0.50 0.75 1.00

y/Py

Re2 = 157K

0.00 0.25 0.50 0.75 1.00

y/Py

Re2 = 297K

(b)

0.00 0.25 0.50 0.75 1.00

y/Py

v
/U

2

Re2 = 86K

IW IW + IT Exp. S1 Exp. S2

0.00 0.25 0.50 0.75 1.00

y/Py

Re2 = 157K

0.00 0.25 0.50 0.75 1.00

y/Py

Re2 = 297K

(c)

Figure 6.19: Velocity profiles at x̂ = 0.513. Y-axis tick labels are omitted due to data
sensitivity.
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Figure 6.20: Total pressure loss profiles at x̂ = 0.513. Y-axis tick labels are omitted
due to data sensitivity.
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due to data sensitivity.
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higher values compared to the experiments; the presence of background fluctuations does

not modify the TKE profile in this region.

6.6.4 Mixed-out measurements

The mixed-out loss coefficient is shown in Figure 6.22a. The numerical results are very

close to the narrow band of uncertainty of the experimental measurements, overall show-

casing excellent agreement, particularly in the supercritical regime. At low Reynolds

numbers, where the separation periodically extends to the trailing edge, it is traditionally

very challenging to capture losses accurately. Case IW + IT at Re2 = 86K does not

improve the agreement with experiments, which were conducted in absence of background

fluctuations.

The mixed-out loss coefficient is an important design parameter, relevant in the context

of isolated blade rows. However, the realistic gap between rotor and stator rows is between

20− 35%Cax. Therefore, the losses when the wake impacts on the following blade row do

not exactly correspond to what is predicted by the mixed-out measurements (here carried

out at x̂ = 0.513). For this reason, the mass-averaged total pressure loss coefficient was

also calculated at x̂ = 0.2 for the IW cases and included in Figure 6.22a. The maturity

of the wake in a location representative of the leading edge of the following airfoil row is

shown by comparison of the mass-averaged and the mixed-out loss coefficient, the latter

calculated at the experimental measurement location. As shown in the Figure, at all flow

regimes the two values are extremely similar, suggesting that the wake quickly develops

downstream of the TE. This type of analysis is of relevance in the design of the axial gap,

and its impact on machine performance.

The relative error of the mixed-out total pressure loss coefficient with respect to the

experimental measurements is reported in Table 6.4, which highlights that the two extreme

regimes Re2 = 86K and Re2 = 297K provide the closest agreement. The strongest

impact deriving from the introduction of the wake passing effect is in the subcritical

regime. In fact, at Re2 < 150000, the mixed-out loss is drastically reduced with the

introduction of periodic disturbances, while in the supercritical regime the difference is

smaller. This can be appreciated in Figure 6.22b, which shows the relative difference of

the body forcing results of Chapter 5 (which provided the closest agreement with clean

inflow experiments) and the findings of the present Chapter, with inflow wakes. In the

subcritical regime (the light blue area) the loss coefficient measured in the experiments

reaches values ≈ 60% higher in the clean inflow case than the setup with incoming wakes.

The low Reynolds numerical results without inflow wakes did not achieve the same level of

agreement as the higher Reynolds cases, which explains the lower predicted difference of

≈ 35% at Re2 = 86K. In the critical regime, this difference drops to nearly zero both in

experimental and numerical results. At supercritical Reynolds numbers, the experimental

loss in the absence of incoming wakes is ≈ 10% lower than the value at Re = 157K, while

no significant difference is shown by the computational results, highlighting the lower
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Figure 6.22: (a) Mixed-out total pressure loss coefficient. The orange area indicates
an uncertainty of 2.5% associated with the measurement chain. The nomenclature
IW∗ indicates mass-averaged loss coefficient. (b) Relative difference of loss coeffi-
cient, comparing the inflow wakes and experimental results with the body forcing and
experiments of Chapter 5. Y-axis tick labels are omitted due to data sensitivity.

sensitivity of the loss coefficient at higher Reynolds numbers.

6.6.5 Exit angle and streamtube correction

The exit angle profiles are shown in Figure 6.23. The experimental data shows larger

uncertainty than in all other types of wake statistics, with significant differences between

the two experimental traverses S1 and S2. Within each traverse, the scatter (and therefore

the measurement precision) is also significant. The experimental set S1 shows a more

strongly varying profile in the pitchwise direction and is adopted as main reference. In

the experiments, as Re2 is increased the absolute variation of the exit angle is roughly

halved. In the computational cascade, the traverses do not capture such evolution but

remain similar in all flow regimes analysed. The superposition of inflow wakes and inflow

turbulence only introduces marginal differences in the flow angle profile at Re2 = 86K,

analogously to all previously shown statistics.

The streamwise component of the velocity wakes 6.19b is in deficit compared to the

experimental data, especially in the mean passage and at higher Re2. Therefore, the

exit angle is overestimated, predicting excessive flow turning. The various sources of

uncertainty in the wake profiles are dominated mainly by two factors. The first contributor

is the uncertainty in the experimental data, which is small for the velocity wakes: εu/U2
=

0.00426, 0.00256, 0.00243 for Re2 = 86K, 157K, 297K respectively. The exit angle presents

higher scatter in the experimental measurements, of εα2 = 0.3◦, 0.195◦, 0.188◦ for the three

Reynolds numbers considered. The second contributor to measurement discrepancies is the

streamtube effect, introduced conceptually in Section 5.2.1. A first-order correction is now

introduced to show that the absence of a modelling feature accounting for the streamtube

effect is mostly responsible for the lack of agreement in the streamwise velocity component



6.6. WAKE TRAVERSES AND EXPERIMENTAL COMPARISON 158

0.00 0.25 0.50 0.75 1.00

y/Py

α
2
[◦
]

Re2 = 86K

IW IW + ST-correction IW + IT Exp. S1 Exp. S2

0.00 0.25 0.50 0.75 1.00

y/Py

Re2 = 157K

0.00 0.25 0.50 0.75 1.00

y/Py

Re2 = 297K

Figure 6.23: Exit angle profiles at x̂ = 0.513. Y-axis tick labels are omitted due to
data sensitivity.

and the exit angle.

The ratio between the experimental and computational mass-flow rate can be estimated

as:

ks =

∫ py
0 uExp · n̂ dy∫ py
0 uIW · n̂ dy

=
1
2(
∫ py

0 uS1
Exp dy +

∫ py
0 uS2

Exp dy)∫ py
0 uIW dy

, (6.6)

considering the average of the mass flow rate calculated in the experimental passages S1

and S2. The streamwise velocity extracted from the numerical simulations is stretched:

umod
IW = ksuIW , (6.7)

and the exit angle profile as well as the mixed-out values are recalculated. The contracted

spanwise domain can also be estimated by imposing mass conservation:

L′z = Lz/ks . (6.8)

The corrected exit angle profile is represented by the dash-dotted lines in Figure 6.23.

The agreement with S1 is significantly improved, especially at high Reynolds numbers,

with the computational traverses well within the scatter bounds. The corrected streamwise

velocity profile (not shown) is completely overlapped to the experimental measurements.

However, this was expected since the mass flow rate is the metric adopted to adjust the

wakes extracted from the numerical experiments.

The mixed-out exit angle is shown in Figure 6.24. The values computed without

streamtube correction are offset by almost 1◦ but they capture the correct trend, indicating

the presence of a bias. Introducing the streamtube correction shifts the predicted exit

angle to a region within the error bounds of the experimental measurements, therefore

suggesting that a first-order estimation is sufficient to account for the correct physical
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Figure 6.24: Mixed-out exit angle as function of the Reynolds number. The orange
area indicates an uncertainty of ±0.2◦ associated with the measurement chain. Y-axis
tick labels are omitted due to data sensitivity.

Table 6.4: Summary of relative error between experimental and computational mixed-
out quantity, as well as summary of the streamtube contraction factors.

Parameter Re2 = 86K Re2 = 157K Re2 = 297K

||ωMIW−ωMExp||
ωMExp

[%] 2.91906711 5.38763974 2.51585411

||αM2,IW−αM2,Exp||
αM2,Exp

[%] 0.56329861 0.75750294 0.84060225

ks 1.0117741 1.01588824 1.01764736
||αM,mod

2,IW −αM2,Exp||
αM2,Exp

[%] 0.12881935 0.17132023 0.18656431

L′z/C 0.20870667 0.20786145 0.20750214
L′z−Lz
Lz

[%] -1.16370795 -1.56397498 -1.73413268

mechanism. Quantitatively, the mixed-out exit angle error is reduced by ≈ 80% in all

cases, as reported in Table 6.4. The streamtube contraction estimated to yield the correct

mass flow rate is between 1− 2% and it is larger at higher Reynolds number.

6.6.6 Phase-locked losses

The previous section presented a time-averaged estimation of wake traverses and losses.

However, in the context of the wake passing effect, the unsteady effects are dominant and

hidden in the time-averaging process. There exists extensive literature on the effect of dis-

crete incoming disturbances on losses in LPTs [109, 108, 92, 57] and compressors [90]. The

classical Denton loss analysis [38] was shown to be accurate only in cases without wakes

[109]: when the incoming wakes remain discrete, the discrepancy between mixed-out total

pressure losses and total Denton loss was found to be maximum, and the difference is
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Figure 6.25: Phase-average (top) trailing edge momentum thickness, (middle) mixed-
out loss and (bottom) exit angle. Horizontal lines indicate time-averaged values.
Y-axis tick labels are omitted due to data sensitivity.

mainly attributable to distortion losses due to variable area mixing within the blade pas-

sage. In other words, loss analysis that depends on the state of the boundary layer fails

to capture the multiple loss generation mechanisms in play. Figure 6.25 shows the be-

haviour of phase-locked quantities related to losses (top and mid-figure), reporting the

time-averaged values as a comparison metric. The impact of incoming wakes is extremely

significant: both boundary layer thickness at the trailing edge and mixed-out loss coeffi-

cient incur significant variations throughout the phase cycle. The lag that exists between

the boundary layer state and mixed-out loss is due to the distance between the TE and

the measurement traverse where losses are sampled: the wake impacting the aft portion

of the suction surface at ϕ ≈ 0.3 reaches the traverse at ϕ ≈ 0.75. For most of the phase

cycle, there exists a vertical shift in the trailing edge momentum thickness, between the

low Reynolds and high Reynolds numbers. The only exception is found in correspondence
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of the wake passing on the trailing edge at ϕ ≈ 0.3, where similar θTE are measured

in cases Re2 = 86K and Re2 = 157K, followed by larger recovery in the low Reynolds

number case. At this stage, profile losses associated with the boundary layer trailing edge

thickness reach the lowest point. When the impact of bubble suppression is measured at

the downstream wake traverse (ϕ ≈ 0.75) the loss coefficient is reduced to negative values,

and the flow turning is increased by almost 3%.

6.7 Discussion

This chapter discussed the introduction of the wake passing effect on a LPT cascade, fo-

cusing in particular on the Reynolds sensitivity of the flow in the suction surface trailing

edge region, and introducing an extensive comparison of wake measurements with exper-

iments. The three Reynolds numbers analysed correspond to the flow regimes discussed

in Chapter 5, representative of subcritical, critical and supercritical states of the suction

surface boundary layer.

In order to assess the accuracy of the representation of the bars (implemented by lever-

aging a high-order formulation of the Smoothed Profile Method, SPM), a set of auxiliary

stationary cylinder simulations were performed on a computational mesh that mimics the

resolution of the LPT setup. The interface thickness was selected to ensure accurate rep-

resentation of the SPM φ function (and it was thus driven by resolution requirements),

but not necessarily producing physical results in the wake. Therefore, the auxiliary study

focused on varying the diameter of the cylinders at fixed interface thickness. A smaller bar

diameter of dSPM = 0.6d was shown to produce wake profiles and spectral characteristics

that very closely match those of a DNS simulation over the range of Reynolds numbers

analysed. Therefore, the smaller modified diameter was adopted to accurately represent

the bar passing.

The analysis of the LPT flow features first focused on instantaneous statistics. Despite

the difficulty in tracking the time- and space-evolution of boundary layer instabilities

without the use of more advanced post-processing analytical tools, the aft portion of the

suction surface was shown to feature a range of different transition mechanisms, driven

by the periodic impingment of the wake passing. At low Reynolds number, two roll-up

regions are periodically identified where the wake suppresses the suction surface separation

bubble, but at higher Reynolds number this mechanism is not retained. This highlights the

high sensitivity of the suction surface separation to external disturbances in the subcritical

flow regime, which in turn has important implications on the cascade losses.

The comparison of wake traverses from the numerical simulations demonstrates ex-

tremely accurate agreement with experimental measurements, with significant improve-

ments with respect to the clean inflow results of Chapter 5. The introduction of background

turbulence alongside with wake passing does not produce appreciable effects in the wake

statistics, highlighting the dominant effect of discrete disturbances on the boundary layer

and wake dynamics. The discrepancies in the axial velocity traverses are owed to the
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experimental streamtube contraction, which is not modelled in the simulations. A first-

order estimation suggests that a spanwise contraction of the spanwise domain between

1% and 2% (inversely proportional to the Reynolds number) would adjust the mass-flow

rate and achieve the same level of accuracy in the axial velocity component u/U2 as in

the other wake profiles discussed. Minor discrepancies are observed on the pressure side

of the fluctuating TKE statistics, which are damped at higher Reynolds number.

Extremely accurate total pressure loss prediction is achieved relative to experiments,

with the numerical results within measurement uncertainty. Comparison of the loss coef-

ficient in the presence of wake passing and body forcing (i.e. the clean inflow formulation

with leading edge perturbation, introduced in Chapter 4 and applied to three Reynolds

numbers in Chapter 5) confirms that the loss regime strongly depends on the state of the

suction surface separation bubble: in the subcritical regime, the periodic suppression of

the open separation bubble results in significant loss reduction. In the supercritical regime

(Re2 ≈ 300K), where the boundary layer is attached and fully turbulent at the trailing

edge, the experiments highlight a small increase in losses due to the presence of periodic

wakes, while numerical experiments predict very similar values to the case Re2 = 157K.

Although the approach presented in the Chapter yields very accurate representation of

the flow physics demonstrated by the close agreement with experimental measurements,

a number of limitations can be outlined, highlighting potential future research avenues to

enhance the robustness of the methodology here introduced:

• The diameter scaling adopted to accurately model the bar passing is specifically

tuned for the resolution levels adopted in this study. This approach should be

generalised to simply relate local resolution levels and Reynolds number to a modified

bar diameter with equivalent characteristics to a well-resolved DNS simulation of a

cylinder at that flow regime.

• The use of periodic boundary conditions in the pitchwise direction introduces an

inherent limitation in the bar distances that can be simulated, which always need to

be an exact dividend of the pitch. A bar distance larger than Py could be simulated

by replicating the blade multiple times, thus multiplying the computational cost.

• As previously discussed in Chapter 5, the accuracy in the exit mass flux prediction

can be improved by accounting for the streamtube contraction. This is an important

effect because in turn the boundary layer behaviour in the trailing edge region may

be significantly affected; future research efforts should address this issue.

• In the longer term, the introduction of sliding planes [72, 46] is a necessary techno-

logical requirement to enable simulations of multiple rotor-stator stages. However,

for conformal discretisations the presence of a geometric discontinuity (e.g. hanging

nodes) in turn creates a geometric incompatibility because C0 continuity cannot be

enforced across multiple elements [77]. The natural solution would be the adoption
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of a compressible formulation via Discontinuous Galerkin projection, as opposed to

Continuous Galerkin. The choice of numerical methodology adopted to represent

the sliding planes poses further challenges, but it is an important stepping stone

in building the capability towards large-scale high-fidelity simulations of rotating

engine components.
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Chapter 7

Conclusions and future directions

This thesis presented an extensive study of the first application of the spectral/hp element

methods implemented in the Nektar++ framework to low pressure turbine cascades, in

a range of flow conditions and Reynolds numbers. The aim of the project was that of

establishing the grounding knowledge for the use of high-fidelity CFD in industrial setting,

aiding the design process and taking the role of a virtual wind tunnel. Throughout the

project, a large valuable database was generated, leveraging both the Imperial College

Research Computing Service [1] and the UK National Supercomputing Centre (ARCHER),

the latter through cumulative allocations of about 5 million core hours.

7.1 General conclusions

7.1.1 Mesh resolution

Approaching the task of simulating a low pressure turbine vane with the use of spectral/hp

element methods for the first time, the initial important requirement was to establish the

necessary level of resolution to accurately capture the flow physics of interest. This was

the topic of Chaper 3, which presented an extensive resolution study focusing on the effect

of different numerical setups on the main performance indicators. The polynomial order

in the spectral/hp element planes was shown to be a powerful tool to achieve order-of-

magnitude convergence, especially in the context of clean inflow simulations where the flow

is predominantly two-dimensional. With simple boundary conditions, the use of spatially

adaptive polynomial order was shown to drastically reduce the computational cost while

retaining high accuracy levels. However, it was not further investigated in the rest of the

thesis due to the difficulty of extending this approach to retain its algorithmic advantage

in the context of time-varying inflow boundary conditions. The numerical setup in the

spanwise direction (i.e. resolution and domain extent) was shown to have little effect on

commonly analysed blade wall distributions, useful notion to enable first order estimations

of the flow physics at low computational cost.

165
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7.1.2 Stochastic and deterministic unsteadiness

The lack of realistic inflow boundary conditions in Chapter 3 naturally suggested the

avenues of investigation presented in Chapters 4 and 6, respectively focusing on the de-

velopment of a validated capability to model stochastic and deterministic unsteadiness.

For the generation of inflow turbulence, no general consensus exists on which numerical

approach is best for the specific target application. As such, two different methodologies

were explored: the introduction of localised momentum forcing near the leading edge, and

synthetic inflow turbulence via Random Fourier Method. For each approach, advantages

and disadvantages were discussed, concurrently highlighting the difficulty of developing a

robust, physical and computationally efficient formulation.

The approach adopted to model the wake passing effect was an immersed boundary

method called Smoothed Profile Method, validated in length in the context of the flow past

a circular cylinder. The exceptional agreement of the LPT results with experimental meas-

urements was well within uncertainty levels, supporting the methodology here developed

for use in Industry with realistic geometries. The wake passing effect was shown to dom-

inate the flow physics when analysed in conjunction with inflow turbulence, highlighting

the relative impact of the two sources of unsteadiness on the loss production mechanism.

7.1.3 The flow physics across the operating range

In order to validate the accuracy of the numerical methodology developed in Chapter 3

across the entire operating range, a set of experiments was designed to analyse the blade

performance in the subcritical, critical and supercritical regimes with clean inflow and

momentum forcing near the leading edge (in Chapter 5), and wake passing (in Chapter 6).

In the latter case, excellent agreement with experiments was verified at every flow regime,

while in absence of inflow disturbances the dynamics of the separated shear layer was not

accurately captured at subcritical Reynolds number, with repercussions on the measured

wake traverses. The main discrepancies were attributed to the lack of modelling of the

experimental streamtube contraction, indicated below as one of the main future avenues

of investigation.

7.2 Limitations and recommendations for future work

The complexity of accurately modelling the flow past a turbine blade under realistic flow

conditions poses a number of significant challenges, highlighted in detail through the thesis.

Not all avenues of investigation could be explored through the course of this PhD project,

thus a number of limitations can be identified, and used to provide important indications

that may inform future research directions.

Three main limitations of the approach adopted through this work are identified, not

directly related to the content of any specific chapter, but rather arising from the modelling

approach itself:
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1. Through the thesis the incompressible Navier-Stokes solver was adopted, as opposed

to a compressible formulation. At the time of writing, the incompressible solver is the

most mature and most highly opimised solver within the Nektar++ software frame-

work: the execution time of various compressible and incompressible Navier-Stokes

solvers implemented in Nektar++ was measured in the context of the flow past a

circular cylinder [182]. The simulation time of the explicit compressible solver was

found to be over two orders of magnitude larger than the incompressible Quasi-3D

solver. The selection of the incompressible formulation was made on the basis that

the more efficient formulation would enable a first thorough investigation of a wide

range of phenomena without introducing an excessively constraining hypothesis. In

fact, LPTs generally experience significantly lower Mach and Reynolds numbers com-

pared to HPTs and HP compressors. The experimental data presented in this work

for validation purposes was collected under very low Mach numbers, supporting the

validity of this approximation. However, despite the low speed of these geometries,

at design condition the flow speed at peak suction may reach high subsonic values.

This was investigated by Michelassi et al. [111], who compared compressible URANS

with incompressible DNS and LES. The incompressible simulations were shown to

overpredict the strength and the extent of the adverse pressure gradient acting on

the suction surface after peak suction, causing an overestimation of the losses. The

low Mach number (but not quasi-incompressible) nature of the flow is peculiar of

direct-drive fan architectures, while geared fan architectures require adopting LPTs

designed with a reduced number of stages at lower work coefficient and higher Mach

number, thus highlighting the importance of a validated high-fidelity compressible

capability. It would be instructive to perform a comparative DNS study of com-

pressible and incompressible formulations in a benchmark test case for a range of

Mach numbers.

However, as discussed in Chapter 5, the use of redesign techniques allows to trans-

form blade shape and flow conditions so that experimental testing can be carried out

in low-speed wind tunnels. Therefore, the use of an incompressible approach is not

inherently a limitation: the validated incompressible DNS capability presented in

this thesis remains applicable in a wider range of cases, as a preliminary design and

analysis tool for low-speed turbines and the back stages of compressors, as well as

their interaction with cavities (which are typically characterised by very low Mach

number).

2. The limit in computational resources available often introduced constraints in the

spanwise extent that could be simulated. This consideration is particularly valid at

low Reynolds numbers and in two scenarios. First, when considering clean inflow

boundary conditions, the structures formed on the suction surface are not perturbed

by external disturbances, and therefore present weaker waviness in the spanwise

direction when compared to simulations that include inflow disturbances. This is
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supported by the two-point correlations presented in Chapter 3, showing that a span-

wise domain of at least Lz = 0.4C might be required to fully contain the turbulent

structures developing in the transitioning separated shear layer. However, the clean

inflow scenario is more important for validation and verification activities rather than

realistic simulations looking to provide insight into the flow physics. The second case

is that of inflow turbulence simulations as discussed in Chapter 4, where the com-

putational length scale must be chosen so that the largest structures are contained

in the domain. However, in order to simulate a realistic turbulent length scale of

20%, Pichler et al. [134] showed that a spanwise domain of Lz = 0.8Cax is required.

When a more constraining spanwise domain is adopted, the turbulence length scale

must be consequently adjusted, and this affects the rate of decay in the develop-

ment region, which is increased with inverse proportionality to the length scale and

direct proportionality to the turbulence intensity. This argument was found to be

less problematic in the context of the wake passing effect, where the lengthscales

generated in the frame of reference of the moving bars are generally well-contained

in the spanwise domain.

3. The simulations presented in this thesis did not introduce a systematic approach to

model the streamtube effect. The topic was discussed in greater detail in Sections

5.2.1 and 6.6.5. This effect is important when comparing with rig data, and it is

deemed to be one of the most likely causes of discrepancy in the wake profiles and

exit angle estimation. Introducing a methodology to model this effect from rig data

would allow for further improvements in accuracy when comparing numerical and

experimental results, especially at low Reynolds numbers.

A number of further research avenues and opportunities for methodology development

can be identified, at times arising from the limitations of this work but also as a continu-

ation of the efforts presented in the thesis. The are presented below as a list of topics, in

no particular order of importance:

• The resolution study of Chapter 3 was concerned with only one flow condition. The

outcome of the study was used to determine the numerical setup adopted through

the following Chapters, wholly dedicated to the analysis of the flow physics. As such,

an implicit assumption was made to extend the setup discussed with clean inflow at

low to moderate Reynolds number to higher flow regimes. Therefore, the resolution

study presented in Chapter 3 (or part of it) should be repeated in a number of

additional flow configurations. In particular, a more realistic physical setup should be

adopted (i.e. including wake passing disturbances), and the extremes of the operating

envelope should be explored to allow the construction of a more complete map of

the resolution requirements. Additional metrics based on turbulence measurements

(i.e. turbulence production and dissipation, as previously highlighted by Pichler et al.

[135]) should be adopted, enabled by the introduction of the combined filter and post-

processing tool described in Appendix A into Nektar++. Furthermore, in the current
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study the resolution in the x−y planes was only explored by means of P -refinement,

building on extensive prior theoretical findings supporting the algorithmic advantage

of higher order spatial discretisations. The analysis of combinations of base mesh

resolution and polynomial orders at fixed DoF could potentially confirm the approach

presented as the most efficient one, or rather indicate any better alternatives.

• Additional research efforts could be invested in further developing the inflow tur-

bulence capability discussed in Chapter 4. Concerning the body forcing approach,

future efforts could establish a direct connection between the intensity levels of the

forcing, and equivalent turbulence intensity levels introduced via synthetic inflow

turbulence. Regarding the latter approach, this thesis only investigated the effect of

homogeneous isotropic fluctuations on the blade statistics. The capability for gen-

erating anisotropic fluctuations could be introduced and validated in the context of

realistic industrial geometries.

• All simulations in this work were concerned with the midspan section, because in

blades with high aspect ratio the majority of stage losses are generated in this section.

Although the role of endwalls in LPTs is relatively minor compared to HPTs [144],

it is worthy of investigation. Due to the three-dimensional nature of the problem

and the added cost of simulating the whole span, only few studies are currently

available on the topic. Cui and Tucker [30] carried out the first endwall study using

LES, and observing its interaction with purge flows as well as its impact on loss

generation. More recently, in the first comparative endwall LES and RANS study,

the whole span was simulated analysing the dynamics of secondary flows [136] and

the associated loss generation mechanisms [100]. The combination of full-span and

sliding planes is an important avenue of investigation that will enable to advance the

understanding of rotor-stator interaction on endwall flows. Within the Nektar++

framework, the Quasi-3D incompressible solver was estimated to run approximately

an order of magnitude faster than the full 3D solver. Therefore, increased availability

of compute power is required to tackle the analysis of three-dimensional flows while

retaining the same level of accuracy as discussed in this thesis.

• On the side of methodology development, all simulations in this work adopted a

direct parallel system solve in conjunction with hybrid parallelisation, which was

shown to very efficient for a reasonably low number of partitions in the spectral/hp

planes. However, scaling up to larger simulations, in order to retain parallel efficiency

it may be necessary to adopt an alternative iterative approach, which will need

improvements: for the test cases of interest in this thesis, the performance of the

direct solver is significantly higher than the alternative conjugate gradient approach.

• Most of the discussion on technology development in this thesis was concerned with

the solver, and relatively less attention was devoted to pre- and post-processing.

A number of Python scripts were developed through the project to assist in mesh
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generation and data processing and analysis. However, the level of direct assistance

required in the various phases of the CFD cycle is still not negligible, and this is an

important consideration to be made when adopting a novel framework in industrial

setting. As such, some effort could be made to further develop the existing capability

into a Nektar++ toolchain that is specific for turbomachinery research and analysis,

to automate, facilitate and simplify meshing and post-processing activities, possibly

exploiting the ongoing development of a Python API for NekMesh and FieldConvert.

This could be extended to also address the current level of interaction required to

solve a new test case, having previously built a fundamental understanding on how

to robustly initialise new geometries and flow conditions. This would also help to

minimise the failure modes that an inexperienced user might encounter, despite the

fact that the SVV formulation adopted to stabilise the incompressible Navier-Stokes

solver was found to work very robustly.

• In recent years the use of machine learning algorithms gained widespread popularity

across several disciplines. A widely investigated application in CFD is the use of

learning agorithms to inform low order RANS and URANS models, fully enabled

by the presence of large data sets generated by high-fidelity DNS simulations. How-

ever, there is added value in high-fidelity CFD, which can be extracted through

the development of simple 1D surrogate models for preliminary design capability.

These correlation models are easy to derive compared to tuning turbulence models,

and they can gather the result of virtual tunnel testing (i.e. the capability developed

through the thesis) as an addedum to experimental testing, with promising potential

to deliver very valuable design indications in Industry.
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Appendix A

Turbulence kinetic energy budget

The calculation of turbulence statistics is of vital importance to scale-resolving simulations

of turbulent flows. This appendix shows the approach followed for the calculation of

Reynolds stresses and the components of the turbulence kinetic energy transport equation,

how it was incorporated into the Nektar++ framework and how it was validated.

Turbulence statistics are based on fluctuating velocity components. Adopting the

conventional Reynolds decomposition, u = U + u′, the mean velocity field Ui(x, y, z)

is only available at the end of the computation. Therefore, in order to compute these

quantities accurately, they must be obtained as a post-processing step.

The two-step process was developed and integrated in the incompressible Navier-Stokes

solver implemented in the Nektar++platform. The run-time sampling of the necessary

quantities is carried out by a filter (TKEBalance). The turbulence statistics are then ob-

tained in a post-processing phase, by adding a new module to Nektar++ post-processing

utility, FieldConvert. By default, this feature calculates the Reynolds Stresses, turbulence

production and dissipation. Additionally, the other components of the turbulence kin-

etic energy transport equation can optionally be calculated: viscous diffusion, transport,

velocity-pressure gradient, convection.

The process is based in part on the report by Vinuesa et al. [181] and illustrated in

more detail in the following section. Validation is performed on a well-known test case:

turbulent channel at Reτ = 180 [81]. The important properties of the averaging operators

employed for the following derivations are listed in [8].

A.1 TKEBalance filter

In runtime, the following quantities are accumulated and then time-averaged:

• u, v, w

• uu, uv, uw, vv, vw, ww

• e11 =
(
∂u
∂x

)2
+
(
∂u
∂y

)2
+
(
∂u
∂z

)2
189
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• e22 =
(
∂v
∂x

)2
+
(
∂v
∂y

)2
+
(
∂v
∂z

)2
• e33 =

(
∂w
∂x

)2
+
(
∂w
∂y

)2
+
(
∂w
∂z

)2
If all statistics are to be calculated (i.e. including viscous diffusion, transport, velocity-

pressure gradient and convection), the third-order moments are additionally sampled, as

well as the products of velocity and pressure gradients:

• uuu, uuv, uuw, uvv, vvv, vww, uww, vww, www

• u ∂p∂x , v ∂p∂y , w ∂p
∂z

A.2 TKEBalance post-processing module

The transport equation of the Reynolds Stress tensor can be written as:

∂

∂t
u′iu
′
j = Pij + εij +Dij + Tij + Πij − Cij . (A.1)

The equation is governed by the following tensors: production Pij , dissipation εij , viscous

diffusion Dij , transport Tij , velocity-pressure gradient
∏
ij and convection Cij . Taking

the trace of Eq. A.1 leads to the transport equation for the turbulence kinetic energy k:

∂k

∂t
= P k + εk +Dk + T k + Πk + Ck (A.2)

where each term of the respective tensor is obtained as Ak = 1
2(A11 +A22 +A33).

Reynolds Stresses

The Reynolds stresses are computed simply employing the relationship:

uiuj = UiUj + u′iu
′
j (A.3)

Turbulence production

The turbulence production tensor can be written as:

Pij = −u′iu′k
∂Uj
∂xk
− u′ju′k

∂Ui
∂xk

(A.4)

Turbulence kinetic energy production is therefore: P k = 1
2(P11 + P22 + P33).

P k =−
[
u′2

∂U

∂x
+ u′v′

∂U

∂y
+ u′w′

∂U

∂z

+ u′v′
∂V

∂x
+ v′2

∂V

∂y
+ v′w′

∂V

∂z

+ u′w′
∂W

∂x
+ v′w′

∂W

∂y
+ w′2

∂W

∂z

] (A.5)
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The mean flow gradients need to be computed. Since the Reynolds Stresses were calculated

at the previous step, turbulence kinetic energy production can then be obtained.

Turbulence dissipation

The turbulence dissipation tensor can be written as:

εij = −2ν
∂u′i
∂xk

∂u′j
∂xk

(A.6)

Turbulence kinetic energy dissipation is: εk = 1
2(ε11 + ε22 + ε33). Expanding this equation:

εk =− ν
{[(

∂u′

∂x

)2

+

(
∂u′

∂y

)2

+

(
∂u′

∂z

)2]
+

[(
∂v′

∂x

)2

+

(
∂v′

∂y

)2

+

(
∂v′

∂z

)2]
+

[(
∂w′

∂x

)2

+

(
∂w′

∂y

)2

+

(
∂w′

∂z

)2]}
(A.7)

Consider for the sake of the argument the quantity ∂u
∂x

∂u
∂x , sampled during simulation

time. It is can be expanded as follows:

∂u

∂x

∂u

∂x
=
∂(U + u′)

∂x

∂(U + u′)
∂x

=

(
∂U

∂x
+
∂u′

∂x

)(
∂U

∂x
+
∂u′

∂x

)
=

(
∂U

∂x

)2

+

(
∂u′

∂x

)2

− 2
∂U

∂x

∂u′

∂x
=

(
∂U

∂x

)2

+

(
∂u′

∂x

)2

− 2
∂U

∂x

∂u′

∂x

=

(
∂U

∂x

)2

+

(
∂u′

∂x

)2

− 2
∂U

∂x

∂u′

∂x
=

(
∂U

∂x

)2

+

(
∂u′

∂x

)2

− 2
∂U

∂x �
�
��7

0

∂u′

∂x

=

(
∂U

∂x

)2

+

(
∂u′

∂x

)2

Therefore: (
∂u′

∂x

)2

=

(
∂u

∂x

)2

−
(
∂U

∂x

)2

(A.8)

Substituting this in all the components of εk yields:

εk =− ν
{[(

∂u

∂x

)2

−
(
∂U

∂x

)2

+

(
∂u

∂y

)2

−
(
∂U

∂y

)2

+

(
∂u

∂z

)2

−
(
∂U

∂z

)2 ]
+

[(
∂v

∂x

)2

−
(
∂V

∂x

)2

+

(
∂v

∂y

)2

−
(
∂V

∂y

)2

+

(
∂v

∂z

)2

−
(
∂V

∂z

)2 ]
+

[(
∂w

∂x

)2

−
(
∂W

∂x

)2

+

(
∂w

∂y

)2

−
(
∂W

∂y

)2

+

(
∂w

∂z

)2

−
(
∂W

∂z

)2 ]}
(A.9)
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εk =− ν
{[ e11︷ ︸︸ ︷(

∂u

∂x

)2

+

(
∂u

∂y

)2

+

(
∂u

∂z

)2

−
(
∂U

∂x

)2

−
(
∂U

∂y

)2

−
(
∂U

∂z

)2 ]

+

[ e22︷ ︸︸ ︷(
∂v

∂x

)2

+

(
∂v

∂y

)2

+

(
∂v

∂z

)2

−
(
∂V

∂x

)2

−
(
∂V

∂y

)2

−
(
∂V

∂z

)2 ]

+

[ e33︷ ︸︸ ︷(
∂w

∂x

)2

+

(
∂w

∂y

)2

+

(
∂w

∂z

)2

−
(
∂W

∂x

)2

−
(
∂W

∂y

)2

−
(
∂W

∂z

)2 ]}
(A.10)

Using the definitions of eii introduced in Section A.1, turbulent dissipation can be finally

written as:

εk =ν

{[(
∂U

∂x

)2

+

(
∂U

∂y

)2

+

(
∂U

∂z

)2

− e11

]
+

[(
∂V

∂x

)2

+

(
∂V

∂y

)2

+

(
∂V

∂z

)2

− e22

]
+

(
∂W

∂x

)2

+

(
∂W

∂y

)2

+

(
∂W

∂z

)2

− e33

]} (A.11)

Velocity-pressure gradient

The velocity-pressure gradient tensor is:

Πi,j = −1

ρ

(
u′i
∂p′

∂xj
+ u′j

∂p′

∂xi

)
(A.12)

Taking its trace Πk = 1
2(Π11 + Π22 + Π33) yields:

Πk =
1

2

[
− 1

ρ

(
u′
∂p′

∂x
+ u′

∂p′

∂x

)
− 1

ρ

(
v′
∂p′

∂y
+ v′

∂p′

∂y

)
− 1

ρ

(
w′
∂p′

∂z
+ w′

∂p′

∂z

)]
=− 1

ρ

(
u′
∂p′

∂x
+ v′

∂p′

∂y
+ w′

∂p′

∂z

)
(A.13)

To calculate this quantity, the relationship below is employed:

ui
∂p

∂xj
= Ui

∂P

∂xj
+ u′i

∂p′

∂xj
(A.14)

The mean pressure gradient is calculated in the post-processing step, while the last three
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components of the equation are accumulated during the simulation, obtaining:

Πk =− 1

ρ

(
U
∂P

∂x
+ V

∂P

∂y
+W

∂P

∂z

+ u
∂p

∂x
+ v

∂p

∂y
+ w

∂p

∂z

) (A.15)

Convection

The convection tensor is the following:

Cij = Uk
∂

∂xk
u′iu
′
j (A.16)

Convection in the TKE equation is: Ck = 1
2(C11+C22+C33). Writing out the components:

Ck =
1

2

[(
U
∂

∂x
u′2 + V

∂

∂y
u′2 +W

∂

∂z
u′2
)

+

(
U
∂

∂x
v′2 + V

∂

∂y
v′2 +W

∂

∂z
v′2
)

+

(
U
∂

∂x
w′2 + V

∂

∂y
w′2 +W

∂

∂z
w′2
)] (A.17)

Having already calculated the Reynolds stresses, the spatial gradients of the normal

stresses are sufficient to compute Ck .

Viscous diffusion

The viscous diffusion tensor is the following:

Di,j = ν
∂2

∂x2
k

u′iu
′
j (A.18)

Viscous diffusion in the TKE equation is: Dk = 1
2(D11 + D22 + D33). Expanding the

components:

Dk =
1

2

[
ν

(
∂2

∂x2
u′2 +

∂2

∂y2
u′2 +

∂2

∂z2
u′2
)

+ ν

(
∂2

∂x2
v′2 +

∂2

∂y2
v′2 +

∂2

∂z2
v′2
)

+ ν

(
∂2

∂x2
w′2 +

∂2

∂y2
w′2 +

∂2

∂z2
w′2
)] (A.19)

The Reynolds stresses were made available from previous processing, as well as the first

derivative of the normal stresses. Therefore, the second derivative of u′2i must be calcu-

lated.
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Transport

The TKE transport tensor is:

Tij = − ∂

∂xk
u′iu
′
ju
′
k (A.20)

Turbulence transport in the TKE equation is: T k = 1
2(T11 + T22 + T33). The trace of the

tensor is:

T k =
1

2

[
−
(
∂

∂x
u′3 +

∂

∂y
u′2v′ +

∂

∂z
u′2w′

)
−
(
∂

∂x
u′v′2 +

∂

∂y
v′3 +

∂

∂z
v′2w′

)
−
(
∂

∂x
u′w′2 +

∂

∂y
v′w′2 +

∂

∂z
w′3
) (A.21)

In order to calculate this quantity, the third order moments are required. Considering for

example u′u′v′, it can be written as:

u′u′v′ =(u− U)2(v − V ) = (u2 − 2uU + u2)(v − V )

=u2v − 2uvU + vU2 − u2V + 2uUV − U2V

=u2v − 2uvU + vU2 − u2V + 2uUV − U2V

=u2v − 2uvU − u2V + 2U2V

(A.22)

Therefore, in general:

u′iu
′
iu
′
j = u2

iuj − 2uiujUi − u2
iUj + 2U2

i Uj (A.23)

All these quantities are known, so T k can be calculated by computing u′2i u
′
j , taking

its derivative in direction j and combining it all together. The full expression very long,

therefore a more compact version is reported:

T k =− 1

2

[(
∂

∂x
u′3 +

∂

∂y
u′2v′ +

∂

∂z
u′2w′

)
+

(
∂

∂x
u′v′2 +

∂

∂y
v′3 +

∂

∂z
v′2w′

)
+

(
∂

∂x
u′w′2 +

∂

∂y
v′w′2 +

∂

∂z
w′3
) (A.24)

A.3 Validation on turbulent channel flow at Reτ = 180

The validation of the TKEBalance filter and FieldConvert module is carried out by ana-

lysing a canonical turbulent channel flow problem. DNS of turbulent channel flow is one of

the most widely analysed geomemtries of the past few decades, widely adopted to support

the development of the state-of-art of turbulence research [81]. The main results are here

compared with turbulent channel flow data at Reτ = uτh
ν = 180 [81, 61].

The problem setup generally allows to discretise the computational domain using a
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Fourier Spectral method, leveraging the two periodic dimensions (streamwise and spanwise

directions). However, in this study the numerical setup is analogous to that employed

with LPT cases, combining a spectral/hp element discretisation in the x− y planes with

a Fourier expansion in the spanwise direction. The computational mesh employed to

discretise each x− y plane has 28 quadrilateral elements in the streamwise direction and

25 in the wall-normal direction (Figure A.1), stretched analogously to Kim et al. [81]. The

computational domain is Lz×Ly×Lz = 4πh× 2h× 2πh, with h = 1. An expansion order

of P = 8 is adopted in conjunction with Nz = 168 spanwise planes yielding Nx×Ny×Nz =

252×225×168 and thus ensuring DNS resolution (∆y+ ≈ 0.18). The flow is driven in the

streamwise direction by imposing constang mass flux, adopting the approach described in

detail in [120].

Figure A.1: Computational base mesh employed for the x− y planes.

Figure A.2: Isosurface of Q-criterion contoured by velocity magnitude. The increasing
size of turbulent scales away from the wall is clearly visible, alongside with the varied
topology of structures that populate the various regions of the flow [143].

Figure A.2 qualitatively shows the turbulent flow field after transition. Small-scale

structures are visible in the near-wall region, while larger scales dominate the outer region.

The mean streamwise velocity profiles in inner units is shown in Figure A.3a, showing

close agreement with the reference data. Analogous levels of accuracy are achieved in

the spanwise and vertical stresses 〈v′2〉 and 〈w′2〉 in Figure A.3b. The slight discrepancy
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found in the streamwise component 〈u′2〉may be due to a different computational approach

adopted to imposing constant mass flow rate compaed to the reference data. This figure

also validates the two-step approach introduced in this Appendix for accurate calculation of

Reynolds stresses against the existing approach based on accumulating the time-averaged

results in run-time. The two results are overlapped, validating the new implementation.

100 101 102

y+

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

U u
τ

Nektar++

Kim et al. (1987)

Hoyas & Jimenez (2008)

(a)

0 10 20 30 40 50 60 70 80

y+

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

〈u
′ iu

′ i〉1 2

u
τ

〈u′2〉

〈v′2〉

〈w′2〉

Kim et al. (1987)

Hoyas & Jimenez (2008)

Nektar++

Nektar++ (two-step)

(b)

Figure A.3: (a) Mean streamwise velocity profile, and (b) mean rms profile of the three
velocity components.

The components of the kinetic energy transport equation are shown in Figure A.4,

where very close agreement is demonstrated against existing data.
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Figure A.4: (a) Turbulence kinetic energy budget normalised by viscous scales, and (b)
ratio of production to dissipation P k/εk.



Appendix B

A brief note on the use of

colourmaps

This thesis includes a large number of figures representing 2D and 3D contour maps of

scalar quantities. The visualisation process consists of mapping scalar values to colours.

Extensive research exists to support the choice of a suitable colourmap, to better allow

the viewer to mentally perform reverse mapping to the scalar values. This section aims to

briefly outline the principles adopted to inform the choice of colourmaps in this work, but

without delving into thorough analysis. In the scientific community, the most popular has

traditionally always been the rainbow colourmap, which is however a poor colourmap for

a number of reasons, summarised by Moreland [115]: lack of natural perceived ordering,

nonuniformity of perceptual changes in the colours 1 and its sensitivity to deficiencies in

the human vision.

However, there is no clear “best” alternative colourmap, since every candidate has

its features and flaws. Therefore, a possible approach is to adopt a number of general

guidelines, and adapt them to the specific data set being analysed. The desirable charac-

teristic of a colour palette are [114]:

• The map yields images that are aesthetically pleasing.

• The map has a maximal perceptual resolution.

• Interference with the shading of 3D surfaces is minimal.

• The map is not sensitive to vision deficiencies.

• The order of the colours should be intuitively the same for all people: in other words,

there should be uniform luminance gradient.

• The perceptual interpolation matches the underlying scalars of the map without

creating artifacts.

1The human eye perceives stronger contrast in the yellow-orange-red part of the spectrum compared to
green-blue hues, creating artificial gradients in the yellow region of the spectrum.
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These general indications are translated into practice by following a few guidelines.

The type of data being visualised introduces a first discrimination in the type of accept-

able colourmaps, which ideally should have an intuitive relationship with the field being

visualised. Therefore, depending on the kind of data in analysis, a few suggestion can be

made for suitable colourmaps (as available in Paraview [4]):

• Data in a range [−a1, a2]; diverging palette: Cool to Warm, RdYlBu, Blue Orange

(divergent).

• Data in a range [0, a1] (or vice versa); sequential palette: 2hot, Black-Body Radiation,

and Inferno, Viridis, Magma, Plasma from matplotlib.

• Discrete data sets without inherent ordering: qualitative palette. The online tool

ColorBrewer.org [58] was found extremely useful for this purpose, (well as the gen-

eration of discrete sequential and diverging palettes).

• Cyclic data set: cyclic palette (not used in this work).

It should be noted that the above is not aiming to provide a comprehensive list of

the best colourmaps, but simply some that were found suitable for the applications here

presented.
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