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Abstract

One of the fundamental problems in mobile robotics is navigating unexplored

environments safely and efficiently. Efforts to address this issue are classified

into three categories: reactive-based approaches, which make instantaneous de-

cisions; map-based approaches, involving grid or topological representations;

and learning-based approaches. Evaluating and comparing approaches is essen-

tial to better understand them, particularly in how they perform in different

problem environments and in relation to each other. This information serves to

guide the development of further approaches, highlight problem environments,

and provide a clear mapping between approaches and environments. However,

current comparative studies within a single category have been limited by the

existence of a degree of similarity between the different approaches. There

has not yet been a comparative framework across different categories in nav-

igational robotics. Thus, this work aims to develop an evaluation method to

compare a variety of different approaches in the same environment to achieve

a better understanding of navigational algorithms. To this end, a framework

has been proposed that simulates these approaches in a common set of prob-

lem environments and evaluates them with the same set of metrics to compare

their effectiveness and efficiency. The most common reactive and map-based

approaches are implemented and a generic, precise, and empirical way to eval-

uate their performance to the set of environments they are in and compared to

the other different approaches is demonstrated. The resulting analysis shows

that methods like RRT* don’t improve on the RRT when benchmarked and the

evaluation of the problem areas of the Potential Field approach led to the de-

velopment of the novel Pheromone Potential Field approach. This work opens

the doors to more in-depth research into benchmarking across the different nav-

igational categories in static and dynamic environments, which will result in a

better understanding and significantly impact the future development of naviga-

tional approaches. This research is a step toward dynamic navigational planners

that match the different approaches to a set of problems or environments.
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Chapter 1

Introduction

Whilst the field of robotics can arguably be dated back to the time of the

ancient Egyptians using water clocks, where human figurines were used to strike

the hour bells, the first autonomous mobile robots were built in the 1940s. This

was when William Grey Walter built Elma and Elsie [1]. These two autonomous

mobile robots moved toward the light and avoided obstacles along the way. This

field of mobile robotics has developed significantly, having introduced various

navigational approaches able to traverse unknown environments.

Figure 1.1: This figure shows the first autonomous robot. This light and touch
sensitive robot uses these sensors to traverse environments whilst avoiding obstacles.

Current systems allow for extended real-world navigation through complex

environments. Whilst these systems have advanced the field of robotics sig-

nificantly; much work remains to be done in evaluating the approaches. The

evaluation of approaches is a necessary step that allows for quantifiable mea-

sures of an approach’s strengths and weaknesses. These measures aid in the

further development of an approach and in determining the optimal applica-

1
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tion. A complication with evaluation frameworks is the extreme variety of dif-

ferent approaches. This is particularly evident in the goal-directed navigation of

mobile robotics in unexplored environments. Current frameworks lack metrics

and environments, and research contributions do not utilise the benchmarking

frameworks to evaluate their approaches against a standard set of metrics and

various maps.

It is against this background that this research aims to answer the following

question:

Can we evaluate and quantify the performance of different naviga-

tional approaches in unknown environments with a common frame-

work?

This research project developed an evaluation methodology that aims to an-

swer this question. The methodology combines the relevant evaluation charac-

teristics and metrics in path planning and extends it to navigational approaches.

This work documents the information relevant to the development of this re-

search and the results that demonstrate the achievement of the objectives. The

first chapter introduces the motivation behind the development of this method-

ology, the objectives, and the structure of this work.

1.1 Motivation

Mobile robots exploring and navigating through unrevealed areas is a chal-

lenging research field covering many different areas. Motion planning (also

sometimes called path planning), is a problem area where an autonomous ve-

hicle finds the most optimal sequence of valid configurations to reach a goal

state whilst avoiding obstacles. Researchers have proposed different approaches

ranging from simple reactive strategies based on Brownian [2] or Braitenberg [3]

vehicles to artificial learning-based strategies using Genetic Algorithms. The

different approaches generate a variety of paths depending on their configura-

tion on what they are optimised for, as seen in Figure 1.2. This figure shows

four different paths; an invalid path (as seen with the red path colliding with

an object), a non-optimal path (as seen with the purple wall following path),

and two paths optimised for path length (the blue path) and path length with

consideration to a certain object clearance (the brown path).
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Figure 1.2: This figure shows several paths from the starting configuration marked
with a grey square to the goal location marked with the green square. The red path is an
invalid path as it collides with an obstacle. The purple wall follower, whilst valid does
generate a very long sub-optimal path towards the goal location. The remaining two
paths are more optimal solutions depending on the requirements. The blue generates
the shortest path possible whilst the brown path sacrifices a bit of the path length for
path smoothness and to keep a distance from the obstacles.

As more approaches are being proposed that allow mobile robots to ma-

noeuvre increasingly complex environments autonomously, the importance of

evaluating them grows. In the literature on mobile robotic path planners, it

is common practice to compare the proposed novel approach against a limited

number of algorithms, often only the approach it aims to improve on. These

comparisons are performed predominantly in explored environments and high-

light only the advancements made without presenting any of the limitations.

Performance metrics and results differ depending on the state of exploration in

the environment. This is evident from the findings produced by a recent com-

parison paper in explored environments [4] when compared to the findings in

this research project. This motivated the current research project to evaluate

different types of navigational approaches in a common framework. Further-

more, this evaluation is performed on maps that represent different problem

environments to get a more optimal representation of performance.

Currently, there are multiple research projects aimed at benchmarking the

different path planners in a common benchmarking framework [5] [6] [7]. Whilst

some frameworks [8] present a mechanism for demonstrating navigation through

unexplored environments [9], their capabilities could be improved in two key

aspects:

• Maps vary significantly between frameworks and do not have a well-defined

purpose [7]. As the maps are key to the evaluation efficiency of approaches,

this research proposes that frameworks should have:
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1. a map that covers a specific key problem in a simplistic form e.g. a

corridor

2. a set of maps that cover this key problem in an increasingly more com-

plex manner e.g. a tunnel that is a series of branching corridors

3. maps that combine different key problems e.g. a dungeon with tunnels

and rooms

4. maps that represent close to or real-life scenarios

• Evaluation methodologies are limited to the export of metrics that focus

on the success of an approach. However, achieving a goal alone is not the

perfect metric because there are other desirable properties that might be of

more value. With the ever-increasing efficiency of approaches, the importance

of other factors increases, and this needs to be represented in any benchmark-

ing framework. This, combined with the ability to quantify the success of an

approach, will aid in the development of further approaches.

This motivated this research project to address the aforementioned limita-

tions. The proposed methodology allows for such evaluation to be conducted

within this framework or it could be added to any of the existing path plan-

ning frameworks to extend their capabilities in benchmarking navigational ap-

proaches.

1.2 Aim and contributions

The main aim of this work is to develop a benchmarking framework that ad-

dresses the limitation and the research question set forth in the previous section.

Such a framework should cover the following objectives:

1. Define the metrics needed to evaluate and compare navigational approaches

in unknown environments.

2. Define a set of maps to cover a range of common problem areas.

3. Define an evaluation methodology that evaluates the efficiency of different

approaches and can be extended to different requirements, e.g. safety-

critical systems.

4. Define a set of tools that evaluate a given approach on a set of maps under

a given evaluation methodology

5. Define a single meaningful score value for any given navigation approach
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This research has successfully achieved these objectives by contributing the

following:

• Literature review: Chapter 2 evaluates the existing literature and examines

the approaches, metrics, maps, and evaluation methodologies used. Whilst

certain frameworks exist for robot exploration this research contributes the

first navigation framework that generates a benchmarking score from several

key metrics.

• Evaluation methodology: Section 3.5 presents an evaluation methodology

that can evaluate different approaches across a set of metrics and approaches

in unknown environments. This framework is used in Chapter 4 to evaluate

the performance of the Potential Field approach. The results led to the de-

velopment of the novel Pheromone Potential Field approach. Furthermore,

Chapter 5 evaluated the performance of commonly used approaches and gen-

erate a single meaningful score.

• Maps: A set of maps representing common problem areas in navigational

robotics are discussed in Chapter 3 and documented in the Appendix 6.3.

1.3 Selection of references

The sources for this research project are divided into two key aspects; the

path planning approaches and their benchmarking frameworks. Sources on

path planning were included when:

• the source was the original novel contribution, e.g. Dijkstra’s algorithm [10]

• the source was an improvement on the novel contribution e.g. A* approach [11]

• the source detailed the measurement in which the improvement was deter-

mined

• the source critically analysed an approach and reflected on the limitations of

an approach e.g. the limitations of potential fields [12]

When evaluating the sources for different contributions made to benchmark-

ing the path planning approaches, the following criteria were observed:

• the methodology was not limited to similar types of approaches i.e. limited

to only learning based-approaches or restricted to specific representations of

environments or data structures.

• the framework was recent and ideally still maintained
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The main aim of these sources is to reflect on the development of approaches

in path planning and the metrics used in individual contributions and bench-

marking frameworks to determine this improvement. IEEExplore and Google

Scholar are the initial starting point for sources. If the source did not meet the

criteria above, the evaluation of both the references and citations were used as

points to explore further sources that provided the information required. It is

preferred in the case of the benchmarking sources that they are recent and ac-

tively contribute to evaluating the state-of-the-art and validating the originality

of the contribution of this research.

1.4 Structure of this work

This chapter introduced the research project with its aims and objectives. The

remaining chapters are organised as follows:

• Chapter 2 - Overview of navigational approaches: addresses the first

object by presenting the literature review on path planning approaches and

evaluation frameworks. The first section covers the most commonly used

global and local path planners. These planners are presented with a specific

consideration as to how they have advanced and the methodologies used to

determine these advancements. The second section initially aims to evaluate

what would constitute an effective evaluation methodology. This is followed

by a review of the different evaluation methodologies and frameworks that

currently exist.

• Chapter 3 - Benchmarking framework development: addresses the

remaining objectives by presenting the framework developed in this research

to evaluate the different navigational approaches. After discussing the frame-

work’s necessary characteristics, this chapter presents the different problem

environments considered and the maps that embody them. This is followed

by a documentation of the representative approaches and their implemen-

tations. Finally, this chapter concludes by detailing the metrics used, the

experimental setup, and the evaluation methodology.

• Chapter 4 - Evaluating Potential Fields : presents the results of

evaluating the performance of the potential field method. The second section

presents the novel Pheromone Potential Field approach. These approaches are

detailed in implementation and evaluated in their performance in accordance

with the relevant parameter ranges, the different problem environments, and

metric scores. This chapter compares the two approaches demonstrating the
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capabilities of the framework in performance analysis and the improvement of

the Pheromone Potential Field over the traditional Potential Field methods.

• Chapter 5 - Benchmarking navigational approaches: compares the

performance of several representative path planning methods using the frame-

work. This chapter aims to benchmark these approaches quantitatively, using

the developed framework. The results of these benchmarks are presented and

discussed here. The experimental results are also assessed to determine the

optimal approach for each set of problem environments.

• Chapter 6 - Conclusion and future work : concludes the research find-

ings by discussing the outcomes of this project. This chapter also presents the

possible future extensions for this work with a specific focus on the dynamic

switch algorithms that would utilise the findings of Chapter 5 to navigate an

environment possibly more efficiently than a single approach could.

• Appendix - Environments : This appendix includes the documentation

of all the static and dynamic problem environments used in this research with

a discussion on the possible extensions for these maps to cover more known

navigational problems.

1.5 Scientific output

This thesis resulted in the following resources:

• Framework implementation: Source code for this framework is publicly

available at https://github.com/MoIdriez/Benchmarking.

• Initial work: The initial work that led to the proposed framework was

presented at TAROS, 2019 [13].

• Generated maps: are also publicly released along with the framework

implementation.

https://github.com/MoIdriez/Benchmarking
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Chapter 2

Overview of navigational

approaches

This chapter examines the literature on mobile robotic navigation, and the

evaluation of such approaches necessary for this research’s development. It

addresses the first objective of this research: the investigation and definition

of the metrics needed to evaluate and compare the performance of different

navigational approaches in unknown environments.

Due to the nature of this project, it is important to progress through several

main background aspects, all of which are explored in this research. First, an

introduction and overview of the research in mobile robotics path navigation

is given, demonstrating the different types of approaches in navigation and the

advancements made throughout the past couple of decades. This is followed by

a section reviewing the mechanism used to evaluate the success of an approach

and the advancements made compared to other methods. This is accomplished

by closely examining the metrics used within the different evaluation approaches

to determine the success and advancement of a navigational approach. This is

followed by a discussion of the methodologies of comparisons used in the litera-

ture alongside a review of the current evaluation and benchmarking frameworks

that exist. This chapter is concluded with a section discussing the outcomes of

the literature review.

The aim of conducting this review is to identify:

• the main approaches used in mobile robotics

• the key metrics that provide information on the approach and its effectiveness

• the modelling methodologies used to evaluate the approaches

9
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The resulting approaches, metrics, and methodologies are incorporated to

develop the benchmarking framework.

2.1 An introduction to navigational approaches

Mobile robotic navigation is one of the fundamental fields in robotics. The

research aims to enable a mobile robot to navigate safely from a start position

to a goal position. Navigation itself involves an interaction of multiple systems

drawing from separate, extensive research fields in perception, map building,

localization, motion control, and path planning [14]. Over the past several

decades, approaches addressing this problem have evolved from simple obstacle

avoidance systems to complex systems allowing for multi-robot exploration [15],

swarms [16], human aware navigation [17] and search and rescue [18] to name

a few.

More specifically, unexplored path navigation involves the essential step of

allowing a mobile robot to navigate a previously unexplored environment from

a start state to a goal state whilst avoiding obstacles. Efficient approaches save

time and energy usage and aid in more robust mobile robotic systems [19].

Mobile robotic path planning and navigation strategies are classified by the

availability of prior knowledge of the environment [19,20]. These classifications

are global path planning and local path planning. For global path planning

approaches, the mobile robot requires prior knowledge of the obstacle and the

goal positions, whereas, in local path planning, this information is not required.

In navigation, the goal is known. However, the environment and its obstacles

may be unknown. Therefore this work divides the approaches depending on

the importance of an internal representation of the environment. Each division

discusses the most prominent approaches, how they have advanced, and the

mechanisms used to determine this advancement.

2.1.1 Global navigational approaches

In global navigational approaches, there is a significant reliance on the overall

environment model. These approaches frequently adapt and recalculate routes

with the availability of new information. In this section, we will be looking at

the advancements made in the most popular approaches within this category.

Dijkstra’s algorithm is arguably the most popular navigational path plan-

ner originally conceived by Dijkstra [10]. This graph traversal algorithm finds
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the shortest path from any starting configuration to any node by creating a tree

from a starting node to all other points in the graph. It utilizes the weighted

edges, often distance, to keep track of the short distance from any node to

the starting point. The most common improvement is the A* algorithm [11]

which uses a goal-directed heuristic that allows for finding an optimally efficient

path [21]. Other improvements include incremental search [22], bidirectional

search [23], and the utilization of the Delaunay triangulation for surface mod-

eling [17]. Comparison attempts by Permanaet al. [24] and Zarembo [25] show

the overall efficiency of the Dijkstra-like approaches in terms of path length,

computational time, and memory usage. Due to their proven effectiveness as

a path planning approach in deterministically finding the shortest path in ex-

plored maps, the A* approach is used as a baseline in this research.

Genetic algorithms are artificial-intelligence-based approaches inspired by

natural selection. Whilst the computer simulations in evaluation can be dated

back to the works of Barricelli [26], the genetic algorithm was firstly proposed

by Holland [27]. In a genetic algorithm, all the possible solutions are encoded

as chromosomes and referred to as the initial population. Determined by a

fitness function, members of the initial population compete in a joint process

involving crossover, mutation, and selection. Liu et al. [28] introduced a genetic-

algorithmic approach to dynamic path planning. Their approach was evaluated

mostly on convergence speed and computational time. Liu identified in their

contribution the importance of comparing to more approaches, in more com-

plex environments, and with more metrics. A better evaluation was done by

Qu et al. [29], which proposed an improvement with the co-evolutionary strat-

egy. This improvement was determined by measuring the shortest path length,

computational time, and speed of convergence to an optimal path on 3 different

known and static map structures. Recently Bacchin et al. [30], developed a

human aware navigational approach using genetic algorithms.

Rapidly exploring random trees is a randomized path planning algorithm

proposed by LaValle [31] that takes a random free sample and connects this

sample to the nearest point on the tree within a predetermined range. The re-

duction in the number of connections leads to better performance of the PRM.

These methods have been improved by adding progressive search [32], the in-

troduction of goal-directed heuristics [33], combined with frontier selection [34],

and bi-directional tree growth [35] among others. Comparisons between the

many RRT approaches are limited to evaluations with one or two other similar

approaches. Noreen et al. [36] noted in their survey of the different approaches
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that a performance analysis in different problems would be beneficial.

A recent contribution compared the results of A*, GLS, RRT and PRM in a

simulated environment [4]. The evaluations were done on explored maps mea-

suring computational time and path distance. The results from this evaluation

show an increased processing time for the A* when compared to the other al-

gorithm. However, results from the current research project, presented both

in Section 5.3 and Appendix 6.3 show that when exploring unknown environ-

ments, this processing time is similar between approaches. This indicates the

importance of evaluating approaches on explored and unexplored maps. Most

research efforts have been on explored maps which motivated this research to

further contribute to evaluating the performance of approaches on unexplored

maps.

2.1.2 Local path planning

Probabilistic road map is a local approach, initially introduced by Kavraki

et al. [37], that takes random free samples and connects this sample to the near-

est k neighbours in a predetermined range. This generates an undirected road

map graph which can be utilized by any graph search approach to determine

the shortest path. The developments in the basic PRM approach come in the

form of efforts on how to best sample the space [38] [39], what local planners

to use, when to connect the nodes [40], and what pre and post-processing per-

form well [41] [42]. The first step toward creating a comparative framework was

developed by Geraerts and Overmars [43]. In their contribution, several PRM

approaches were evaluated on their collision checking, sampling and node addi-

tion. All performances were measured on a single metric of time. This research

project expands on their choice of experimental environments (see Section 3.3).

The Artificial Potential Field initially proposed by Khatib [44] is a pop-

ular path planning approach. The robot is affected by two types of forces; the

attractive gravitational force originating from the target that pulls the robot

towards it and a repulsive force pushing it away from other objects. Whilst this

approach allows for the robot to navigate from a start state to the goal state

whilst avoiding obstacles, it does have some well-known shortcomings [12] with

the biggest issue being local optimal solutions which have also been the subject

of focus for most further research. Initial approaches [45] [44] were often reac-

tive and had shortcomings in clearing closely situated obstacles which affected

the success rate. Furthermore, as the robot moved, drastic changes in forces
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could be calculated that would result in unstable and non-smooth paths. To

remedy these issues and the inherent issue of local minima, further research has

focused on the detection of, and escape from, local minima. Focusing primarily

on this issue, Ge and Cui [46] proposed that for dynamic systems, the con-

tinuous movement of the robot might help to overcome local minima. Simple

approaches like random movement and wall following can be used to accomplish

this. Vadakkepat [47] proposed a new approach named Evolutionary Artificial

Potential Field that utilizes genetic algorithms to fine-tune the potential field

functions and introduces a quantity named escape force to escape local minima

resulting in a higher success rate. A swarm intelligence-based approach using

similar potential fields was proposed by Dorigo et al. [48]. This approach, in-

spired by the foraging behavior of ants, has been used with several heuristic

methods [20] [49] [50] to explore and path plan environments.

2.2 Comparing evaluation frameworks

The advancements in any scientific field are built on the competition be-

tween different research groups and the exchange and evaluation of results and

ideas [51]. In the field of mobile robotic path planning and navigation, this

would require the benchmarking of different approaches under an identical eval-

uation methodology on a well-defined set of environments. This section looks

at the evaluation methodologies and frameworks that benchmark approaches.

Michel et al. [52], claim that RoboCup [53] should be recognized as a refer-

ence benchmarking in robotics. RoboCup, Robotics Soccer World Cup, is an

annual robotic competition where robots compete in a game of football. I find

myself aligned with the works of Balaguer et al. [54] in support of Baltes et

al. [55] that robotic competitions do not suffice in providing a generic frame-

work for performance evaluation due to their inherent nature and scope. This

also puts a spotlight on a general trend of literature in mobile robotics bench-

marking and performance evaluation, often being specific to certain algorithm

types and/or addressing specific issues.

Baltes et al. [55], whilst critical of the effectiveness of mobile robotic compe-

titions, do suggest several numerical metrics that can be seen as a step toward

quantifiable results. Caltes et al. [56] provides a common framework adding

the notion of time which in turn was extended by the work of Basilico and

Amigoni [57] adding the power consumption.

A key problem with finding an optimal navigational solution for distinct

environments is the ability to evaluate the different approaches with their vastly

different features. The selected metrics must not be biased and apply to a wide
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range of approaches in distinctly different environments.

Amato et al. [58] investigated the effect of different distance metrics on

probabilistic roadmap methods. Their research showed that a good choice is

the Scaled Euclidean distance metric with some deviations depending on the

environment. Gao et al. [59] however, argue that path planners primarily fo-

cused on the shortest distance generate inadequate paths that do not consider

smoothness or the distance of the path from obstacles.

Morales et al. [60] proposed that to allow for adaptive planners, metrics

should not only be calculated on a global level but also on a node and region

level. This allows for the introduction of more complex metrics, among others,

visibility and environment estimation, that are key for adaptive planners.

Currently, there are attempts of benchmarking frameworks for socially-aware

robots [61] [62], dynamic environments [63] [64], and multi-robot systems [65]

[66] among others. There most notable motion planning libraries, with some

benchmarking capabilities, are ROS [8], OMPL [67], and MoveIt [5]. There are

also several attempts made with OpenRAVE [6], PathBench [7], and OOPS [68]

that are noteworthy but haven’t had recent contributions made to them. The

contributions are discussed here.

The Robot Operating System (ROS) [8] is the standard in robotics. It

provides different motion planning algorithms and environments for a variety of

different types of robots. It acts as a base for many benchmarking frameworks.

Moll et al. [69] is one of the frameworks extending on ROS with the Planner

Arena. This benchmarking framework proposes to standardise many aspects of

benchmarking, including the extension of the OMPL and the generalisation of

the input and output file formats.

The Open Robotics and Animation Virtual Environments, (Open-

Rave) [6] is a high-level scripting framework that focuses on real-world robotics,

including simulations, visualizations, planning, and control.

The Online Open-Source Programming System for Motion Planning

(OOPS) [68] is an online framework for comparing different types of motion

planning approaches on a common set of maps. It provides implementations of

common approaches with some benchmarking capabilities.

PathBench [7] extends motion planning benchmarking with native support for

machine learning-based approaches. This framework utilizes maps developed by

Sturteven et al. [70].

The Open Motion Planning Library (OMPL) [67] is a motion planning

library that also has benchmarking capabilities. Whilst commonly used, it is

limited to sampling-based approaches only. A similar type of library is the
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MPK [71], but this library is not discussed as it does not extend beyond the

capabilities of OMPL, and it is not actively used or maintained.

MoveIt [5] is a framework that combines both ROS and OMPL that can be ex-

tended easily for new motion planning approaches. Cohen et al. [72] introduced

a benchmarking framework as part of the MoveIt [5] project. In this work, they

benchmark motion planning algorithms in robotic arm manipulation. Evalua-

tions were done according to the following metrics:

• Computational time: several times were measured including path planning,

simplifications, and post-processing

• Path length: the length of the path as total distance

• Smoothness of path: where α is the angle between two consecutive segments

of the path containing n number of segments. The smoothness is calculated

as k = 1
n

∑n
i=2 α

2
i

• Clearance: average minimum distance the path took from obstacles

• Success rate: the percentage of successful attempts a motion planning ap-

proach has within a specified time frame

Another noteworthy contribution is the effort by Sturtevant et al. [70] to create

a general set of maps to be used. Whilst this includes an extensive set of maps

there is no clear correlation to a navigational characteristic/problem. Therefore

in this research, we have opted to use simplified abstractions of some of those

maps that focus on specific problems. This framework could however be easily

extended to include the entire general set of maps.

2.3 Closing statement

This chapter presented the relevant research done in the progression of nav-

igational approaches and the methods to evaluate them. This review concludes

that whilst several frameworks exist that evaluate the performance of mobile

robotic path planning there are numerous limitations to them. These limitations

can be summarised as follow:

• maps: there is no standard to the maps used across the frameworks. The

choice of maps to be evaluated needs to be justified and represent specific

problems in navigational robotics.
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• metrics: the frameworks do not produce a single overall measure to deter-

mine the efficiency of an approach under a specific condition.

• approaches: the frameworks can be limited to the evaluation of a specific

approach type.

This research project aims to combine the various evaluation methodologies and

metrics scattered across the different frameworks within a single framework to

address these limitations. This framework is also complemented with a set of

maps that addresses common navigational problems.



Chapter 3

Benchmarking navigational

approaches

This chapter presents the proposed framework and evaluation methodology

to benchmark the performance of navigational mobile robotic approaches. In

developing this framework, the limitations identified in the literature review

conducted in the previous chapter have been considered. The efforts in this

evaluation framework are divided into two; the first part simulates the execu-

tion of a navigational approach on a mobile robot in a selected problem environ-

ment, and the second part evaluates the results of the first part and accordingly

benchmarks the performance of the navigational approach.

Section 3.1 presents the characteristics of this framework that are necessary

to address the limitations identified in the literature review. This is followed

by section 3.2 presenting an overview of the simulator. Section 3.3 presents the

different problem environments the simulator utilises to run the navigational

approach. The environments are presented in this chapter and documented

in detail in Appendix 6.3. Section 3.4 documents the implementation of the

different navigational approaches used in this research project. Finally, section

3.5 discusses the evaluation of an approach by detailing the metrics and the

evaluation methodology. These sections address the remaining objectives of

this research.

3.1 Characteristics of the proposed framework

The limitations identified in the literature review motivated the development

of an evaluation framework. This framework needs specific characteristics to

provide more insight into how certain navigational approaches perform on par-

17
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ticular challenges compared to other techniques. These characteristics are as

follows:

• The framework offers an unbiased and large number of environ-

ments. This characteristic was achieved by using many static maps alongside

procedurally generated maps. The maps address specific issues in naviga-

tional approaches or problem environments, not the navigational approaches

themselves.

• The framework can evaluate different types of navigational ap-

proaches in identical conditions. This is a fundamental characteristic

of the framework, which was also taken into consideration with the robot de-

velopment. This was achieved by allowing the robot to execute a navigational

approach’s plan, whether that is a list of nodes in a graph for more complex

path planning approaches, or a single location, as is the case in more reac-

tive approaches. The separation created by this between the mobile robot

and the approach also ensures that the robot is not biased towards a certain

approach.

• Metrics gathered are useful on a single run, per navigational ap-

proach evaluation, and in comparison with other navigational ap-

proaches. This research aims to aid in the general advancement of the field.

It is believed, therefore, that metrics must be meaningful per individual run

level for algorithmic development, across all the different environments for

validation, and in comparison with other navigational approaches to compare

overall efficiency.

3.2 Simulator overview

The simulator is a library that fundamentally takes a map and a navigational

approach as input and performs the simulated movement of a mobile robot in

the given environment. For these simulations, we use an omnidirectional robot

that can step from each point in the grid to the neighbouring grid points. This

robot is presumed to have object recognition and classification which enables

it to detect walls and the goal once it is in its sensory range. As the robot

navigates through the environment towards the goal, it creates an internal map

that the navigational approaches can utilise to make informed decisions. It also
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holds all the capabilities for measuring time, the usage of resources, and a mech-

anism to verify whether it is stuck at local minimum. This mechanism works

independently from any method implemented with an external tool, that may

be appropriate for a given approach. The simulator has two main components;

map generation and approach execution.

The map generator is a module that generates a range of 2D maps. These

static and procedural maps cover a range of different problem environments from

simple 50 by 50 arbitrary unit obstructing walls to a 200 by 200 unit procedurally

generated network of tunnels for the robot to navigate. This original map is

never made available to the navigational approach but is used to determine the

complexity of the map. The robot is aware of its starting location and the

goal location. Whilst the mobile robot navigates this unknown environment, it

generates an internal map of its surroundings allowing the navigational approach

to make more informed decisions. This module is covered in more detail in

section 3.3.

The approach executive is the module responsible for benchmarking the

approaches. The simulator executes an experiment given a set of maps and

approaches. An experiment consists of trials. At each trial, the framework

starts by obtaining an environment, generating the random or pseudo-random

spawns of the robot and goal location, and calculating the baseline for this

trial. The baseline is determined by running an A* approach on the trial’s fully

explored environment. This step also determines the validity of the setup by

ensuring connectivity (which is especially important in the case of generated

maps) and provides the necessary information for calculating the path length

and time metrics. The next step is executing all sets of approaches under

the trial configuration but with an unknown environment. An experiment can

instruct the framework to execute an environment several times. In this case,

for each time, a new trial is generated with the new robot and goal locations.

Figure 3.1 shows a visualisation of this process.

A run is an execution of an approach under a specific trial configuration. In

every run, the robot’s navigation toward the goal location is a step-wise iter-

ative mechanism. The robot, at every step, requests the next step from the

navigation approach. This next step is calculated at each iteration with reac-

tive approaches, e.g. the Potential Field approach. However, other approaches

generate a path consisting of a list of steps the robot follows, e.g. the RRT

approach. As the robot navigates through the environment, it builds an in-
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Figure 3.1: This figure visualises the steps the framework goes through when executing
an experiment.

ternal map of the explored areas. The navigational approaches can utilise this

exploration map to make informed decisions and alter the paths, e.g. to avoid

obstacles and improve path quality. This navigation toward the goal location

continues until it reaches the goal, gets stuck, hits max iteration, or hits max

time.

3.3 Problem environments

This section presents the environments used by the framework for evaluat-

ing the different navigational approaches. The environments represent common

problems in navigational mobile robotics. The static maps evaluate the ap-

proach’s performance on object avoidance, path obstruction, narrow corridors,

local minima, and a combination of the aforementioned. The dynamic ones in-

crease the complexity of a specific problem or combine several different types of

challenges. Furthermore, these dynamic maps provide non-deterministic maps

for evaluation. An environment is a two-dimensional grid map with an outer

layer wall. Within each environment, we randomly or pseudo-randomly spawn

a mobile robot and a goal. Within the map, we spawn a set of predetermined

or procedurally generated objects that the robot must avoid whilst navigat-
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ing towards the goal location. The environments are divided into static and

procedurally generated.

3.3.1 Static Environments

The first type of environment is the traditional static environment. These

environments aim to present a common navigational challenge in an isolated

environment. Unless expressly specified otherwise, maps are a grid of 50 x 50

arbitrary units with an outer border of an artificial wall. The robot and the

goal location occupy one grid location at any time. Each type of environment

is split into three levels of complexity, creating a total of 18 maps that are

evaluated. The figures in this sub-section show the static environments, the

possible robot spawn locations (marked in blue), and the possible goal spawn

locations (marked in green).

Wall Environment In these maps, the robot and goal are spawned on oppo-

site sides of a wall. The maps range from a wall blocking only 20% of the width

of the map to a wall blocking 70% of the available space. These relatively simple

maps provide insight into essential object avoidance. Furthermore, the higher

complexity levels generate local minima problems for particular approaches.

Figure 3.2: This figure shows the three Wall maps. These maps increase in com-
plexity from left to right. The robot and goal spawn randomly in the blue and green
rectangle, respectively.

Plank Pile Environment These maps feature increased complexity com-

pared to the previous environments. Rows of small walls separate the robot

and goal spawn regions. With every level of complexity, the map’s size and

the number of walls increase. The map’s sizes are; 50 x 50 units, 100 x 100

units, and 200 x 200 units. These maps aim to evaluate the performance of the

approaches with a large number of objects in an increasing size environment.
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Figure 3.3: This figure shows the three Plank Pile maps. These maps increase in
complexity from left to right. The robot and goal spawn randomly in the blue and
green rectangle, respectively.

Corridor Environment To explore further the challenge of navigating through

narrow environments, these environments split the robot and goal spawn areas

with a narrow corridor of an extended length. Initially, the corridor is a straight

corridor connecting the two areas. The complexity of the corridors grows with

each map’s complexity level. The first two complexity levels extend some of

the challenges of the previous environments in a different form. The final com-

plexity level explores in an obvious way how approaches deal with local minima

problems as the method would need to move away from the goal for a while to

be able to reach it.

Figure 3.4: This figure shows the three Corridor maps. These maps increase in
complexity from left to right. The robot and goal spawn randomly in the blue and
green rectangle, respectively.

Bug Trap Environment In these classic map types, we further explore the

effects of local minima problems. In these maps, the robot spawns inside a

U-shaped 3-wall obstacle. The goal spawns on the opposite side of the middle

wall. The robot would need to first navigate out of this “trap” before reaching

the goal. The complexity of this task is made more difficult by narrowing the

open side of this obstacle.

Figure 3.5: This figure shows the three Bug Trap maps. These maps increase in
complexity from left to right. The robot and goal spawn randomly in the blue and
green rectangle, respectively.
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Room Environment These maps aim at providing abstractions of human-

like environments. The complexity grows from straightforward room-like en-

vironments to larger maps more closely resembling maze-like environments to

combine all the characteristics of previous environments. The map’s sizes are;

50 x 50 units, 100 x 100 units, and 200 x 200 units.

Figure 3.6: This figure shows the three Room maps. These maps increase in com-
plexity from left to right. The robot and goal spawn randomly anywhere on the map
with at least 150 units in between them.

3.3.2 Generated Environments

In this novel map generation method the obstacle and tunnel environments are

procedurally generated. These maps are pseudo-randomly generated maps so

as not to allow for predictable path planning. These maps are larger in size,

being 200 x 200 units. The robot and goal spawn randomly across the map

with at least 150 steps in between them. The step count and connectivity are

ensured with the baseline step of the trial configuration. If the baseline step

can not connect the goal and robot location on the fully explored map, the map

is re-generated.

Obstacle Environments For these maps, we generate a random amount of

obstacles of different sizes within a specified range. The obstacles are permitted

to stack on top of each other to create interesting environments with odd shapes.

The map’s complexity starts from a sparse environment to maps cluttered with

obstacles. The main aim of these environments is to evaluate the performance

of an approach as environments get progressively restrictive. Table 3.1 shows

the quantity of 3x3 - 5x5 units obstacle used for setting up the 5 different

obstacle maps. The effect this has on the average free cells and average path

length is measured by generating 100 valid maps. Figure 3.7 shows five sample

environments with the different complexity levels.
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Obstacle Count Average Free Cells Average Path Length

70 - 75 86.90 % 163.40
190 - 195 69.95 % 162.00
330 - 335 51.79 % 185.10
450 - 455 38.23 % 198.80
510 - 515 32.59 % 217.10

Table 3.1: This table details the parameters for the 5 obstacle maps and the average
proportion of free cells. The average path length of the baseline approach also increases
with every complexity level

Figure 3.7: This figure shows five Obstacle maps. Starting from the left, these maps
increase in complexity. The robot and goal spawn randomly anywhere on the map
with at least 150 units in between them

Tunnel Environments These maps are generated by range-controlled ran-

dom room and corridor sizes. Initially, a room is placed that is followed by a

corridor in any of the cardinal directions. We connect a room to that corri-

dor and repeat the process till we reach the level of complexity needed for the

map. Rooms and corridors are permitted to overlap to create non-deterministic

shapes and maps. Table 3.2 show the parameters used to generate the five

tunnel maps. Note the increased path length with the decreased number of

rooms and corridors. Figure 3.8 shows five sample tunnel environments where

the complexity increases with a reduced number of pathways.
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Rooms Count Average Free Cells Average Path Length

110 - 155 42.79 % 164.00
81 - 85 31.31 % 175.80
61 - 65 26.57 % 191.90
41 - 45 19.85 % 191.50
21 - 25 11.14 % 207.40

Table 3.2: This table details the parameters for the 5 tunnel maps. The effect this
configuration has on the average path length is also demonstrated.

Figure 3.8: This figure shows the five Tunnel maps. Starting from the left, these
maps increase complexity due to fewer connections between tunnels. The robot and
goal spawn randomly anywhere on the map with at least 150 units in between them

3.4 Navigational approaches

This section documents the navigational approaches used in the experiments

and details their implementation. To fulfill the characteristics and require-

ments needed for the framework, these approaches are significantly different

approaches, ranging from purely reactive approaches to graph traversal-based

approaches. There are also examples of base approaches and improvements on

these approaches that allow this framework to quantify the degree of improve-

ment, if any. This framework could also be used to evaluate a trained or online

machine-learning mobile robotic approach. Future work will include the ability

to train on this framework and allow for mobile robotic systems.
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3.4.1 A* approach

This extension of Dijkstra’s algorithm [10] [11] uses heuristics to guide the

search for the shortest path. This approach generates a path from the starting

point to the goal location using the map information it has available. This

plan is followed by the robot till it reaches a point where the plan cannot be

followed due to the existence of an object. The navigational approach uses the

updated map of the environment obtained from the navigation up until that

point, to develop a new plan from that location to the goal location. This

incremental approach is followed until the robot reaches the goal or reaches any

of the end conditions specified. These end conditions are: being stuck, reaching

the maximum step count, or reaching the maximum time allowed.

The navigational approach for generating a path from the robot’s current

position to the goal location is as follows:

Algorithm 3.1 A* algorithm

This algorithm maintains two lists; an open and a visited list.
The open list contains all the nodes that are visited and need expanding.
The visited list contains all the nodes that are visited and expanded.

1: open ← robot location
2: while open has items do
3: current ← lowest value node from open
4: successors ← neighbouring cells to current
5: for each successor in successors
6: if successor == goal ; break
7: if successor is in visited with lower cost; continue
8: if successor is in open
9: if successor cost is lower than in open:
10: update open cost with successor cost
11: else
12: add successor to open
13: add current to visited
14: if current != goal :
15: exception // start and goal locations not connected

Note:
The lowest value node = cost from the start (distance between steps) + cost
till the end (euclidean distance to goal).

3.4.2 Potential field approaches

This navigational approach [44] generates repulsive and attractive force from

obstacles and the goal location, respectively. These forces guide the robot from

the start state to the goal state whilst avoiding obstacles. For this framework,
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the base Potential Field approach was implemented. Furthermore, the improved

Pheromone Potential Field has been proposed and implemented. These two

approaches have been studied and compared more in-depth in Chapter 4.

Potential Field The basic potential field navigational approach generates

its next step by considering all the obstacles within a specific range and the

attractive force from the goal at any range. The default algorithm is as follows:

Algorithm 3.2 Potential Field algorithm

This approach calculates the next step based on the current location and sur-
roundings.

1: while current != goal do
2: attractive ← dir * constant * (1 / distance) // Note 1
3: repulsive ← 0
4: for each obstacle point in max range
5: repulsive add dir * constant * (max range / distance) // Note 2
6: current ← current + attractive + repulsive // Note 3

Note 1: The direction is from the robot to the goal.
Note 2: The direction is from the obstacle to the robot.
Note 3: 1 unit step in any direction.

Pheromone Potential Field This extension of the basic potential field al-

gorithm [44] drops pheromones as it navigates through an environment. This

approach, inspired by the way ants move in nature, instructs the robot to drop

artificial pheromones at locations he has visited. However, contrary to the at-

tractive nature of pheromones for ants, these pheromones act as a source of a

repulsive force for the robot itself that guides the robot away from local minima

and locations it has visited. The more frequently a robot visits a location, the

more prominent the pheromones and thus the repulsive force. The navigational

algorithm looks as follows:
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Algorithm 3.3 Pheromone Potential Field algorithm

This algorithm maintains a pheromones list with all nodes visited and the
strength of these pheromones

1: while robot location != goal do
2: att ← dir * constant * (1 / distance)
3: rep ← 0
4: for each obstacle point in obstacle range
5: rep += dir * constant * (obstacle range / distance)
6: pher ← 0
7: for each pheromone point in pheromone range
8: pher += dir * constant * strength * (pheromone range / distance)
9: next step ← current + attr + rep + pher
10: if next step == obstacle point
11: next step = current
12: pheromones add next step or increase strength if exists
13: else
14: pheromones add current or increase strength if exists
15: robot location = next step

3.4.3 Rapidly exploring random tree approaches

This navigational approach [31] grows a tree from the robot’s location by

gathering random samples and connecting them to the nearest point on the

tree where possible. Once the tree reaches the goal, the shortest path along the

nodes of the tree from the starting point to the goal node is the path. This

work has been extended into RRT* [73] where each node has the travel cost

needed to get to this point from the start. When a new node is added, the

lowest cost node, as opposed to the shortest distance node, is selected. Finally,

the RRT* also checks the nodes neighbouring the new node to check whether

any re-wiring of those nodes would decrease the cost of that node.

Algorithm 3.4 RRT algorithm

1: current node ← (robot location, null) // Note 1
2: nodes ← current node
3: while current node distance to goal ¿ goal range do // Note 2
4: random location ← get random location within growth range of any node

in nodes // Note 2
5: current node ← (random location, nearest node)
6: nodes += current node

7: goal node = (goal location, current node)
8: path ← from goal node get all parent locations till null // Note 3

Note 1: A Node is a combination of a location and link to the parent node
Note 2: Straight line between points must be unobstructed
Note 3: This is a recursive method that returns a parent location and goes up
a level
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For the RRT* we can replace Line 6 with the re-wiring mechanism

Algorithm 3.5 RRT* Rewiring Nodes

1: neighbours ← all nodes within growth range from random location
2: current node ←(random location, lowest cost neighbours node)
3: nodes += current node
4: for each node in neighbours
5: if current node cost < node parent cost
6: node ← (node location, current node)

3.5 Evaluation methodology

This section presents the second part of the framework, the evaluation method-

ology. This model provides insight into the navigational approaches by bench-

marking the performance of the each approach in accordance with the metrics

generated. Metrics are measured for each run and aggregated over the whole

experiment. The evaluation methodology tracks the success, path length, path

smoothness, time, and visibility metrics. These are an aggregation of non-

approach-specific metrics used in the most notable existing evaluation frame-

works [8] [5] [67]. This section introduces each metric and how they are mea-

sured. All metrics score a value between 0 and 1.

Success: this metric measures whether the robot successfully navigated from

the start location to the goal location within the specified restrictions like ob-

stacle avoidance and below the specified maximum time and iterations. The

success rate sr is the average success rate across all map types, where si is the

average success rate on map type i:

sr =
1

n

n∑
i=1

si (3.1)

Path Length: this metric measures the path length efficiency. The path

length for any given run is the accumulated euclidean distance between every

two steps along the path travelled by the mobile robot. This length is evalu-

ated in a range from an upper boundary rmx to a lower boundary rmn that is

generated based on the baseline’s path length in the same trial. This metric is

configured to rate the baseline approach at an 0.9 score, allowing more efficient

methods to score higher.

rmx = bpk (3.2)
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rmn = bp −
rmx − bp

9
(3.3)

pl =
1

n

n∑
i=1

pi − rmx

rmn − rmx

(3.4)

Where:

bp is the total steps the baseline performed on this configuration

k is a constant used to calculate the max range

pi is the total steps the approach performed on configuration i

pl is the path length score

Note: that the upper boundary rmx generates a score of 0 and the lower

boundary rmn generates a score of 1 allowing efficient approaches to score higher.

Path Smoothness: this metric measures the cumulative angle between each

step segment. As drastic changes in directions are sub-optimal in robotic move-

ment, this measure of rotational movements provides insight into the smooth-

ness of the path generated by the navigational approach. This metric has a

direct effect on the power consumption of a mobile robot. The metric is calcu-

lated as follows:

ps =
1

n

n∑
i=2

α2
i (3.5)

where

n is the total steps the baseline performed on this configuration

αi is the angle between segment i− 1 and i

ps is the path length score

Time: this metric measures the execution time of the approach, including

the planning time. The time metric has proven to be a limiting factor for

approaches with extended planning periods. Chapter 5 discusses this metric’s

effect in more detail.

Visibility: this metric measures the level of obstruction to the field of view

the robot experiences as it navigates through the environment. This clear-

ance measure provides insight into the environment and the path choices of the

navigational approach, i.e. moving close to walls. This measure is vital for

safety-critical systems.
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Algorithm 3.6 Visibility algorithm

This method calculates the visibility around the robot at any given moment in
time where
start is the robot’s location
length is the length of the field of view

1: fov ← default
2: for each angle in field of vision
3: end ← (x : startx + length ∗ cos(angle), y : starty + length ∗ sin(angle))
4: fov add line(start , end)
5: visibility ← default
6: for each line in fov
7: points ← get points on line // algorithm below this one
8: visibility += points count till obstacle
9: visibility \= fov count

Algorithm 3.7 Points on line

This method returns all points on a line where:
x1 = line’s start point x value, y1 = line’s start point y value
x2 = line’s end point x value, y2 = line’s end point y value

1: if x2 - x1 == 0 // Vertical
2: inc ← y2 > y1 ?1 : −1
3: for (y=y1 ; y2 > y1 ? y <= y2 : y >= y2 ;y += inc)
4: if x1 >= 0 and y >= 0
5: points add (x1 , y)
6: else // Slope
7: m ← y2−y1

x2−x1

8: if (y2 -y1 ) > (x2 -x1 )
9: inc ← y2 > y1 ?1 : −1

10: for (y=y1 ; y2 > y1 ? y <= y2 : y >= y2 ;y += inc)
11: nx = y−y1

m
+ x1

12: if nx >= 0 and y >= 0
13: points add (nx, y)
14: else
15: inc ← x2 > x1 ?1 : −1
16: for (x=x1 ; x2 > x1 ? x <= x2 : x >= x2 ;x += inc)
17: ny = (x - x1 ) m + y1
18: if x >= 0 and ny >= 0
19: points add (x , ny)

The benchmark score is a singular value assigned to an approach to rate

the performance of that approach for the given environment(s). This score is

calculated from the success rate, path length, path smoothness, visibility, and

time scores.

This score combines the path length and visibility rating with a single weight

to reflect the trade-off between the metrics. The visibility or the safety distance
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from obstacles comes at the cost of path length. This associated path weight

pw indicates the importance of one or over the other. The other two measures

are each associated with their own weights and then normalized all with each

other.

The most important measure is still the success rate. This is why the success

rate is multiplied by the results of the previous calculations to act as a limiter

for the final score.

x = sr
plpw + v(1− pw) + tttw + pspsw

1 + tw + psw
(3.6)

where:

sr is the success rate

pl is the path length

ps is the path smoothness

v is the visibility rate

t is the time

tw is the time weight

pw is the path weight

psw is the path smoothness weight

3.6 Chapter Summary

This chapter presents the benchmarking framework, which encompasses the

evaluation methodology, maps, and navigational techniques. The aim of the

methodology is to evaluate the performance of navigational approaches in iden-

tical conditions. It achieves this performance evaluation by assessing the success

rate, path length, path smoothness, visibility and time metrics. The approach

is benchmarked relative to a baseline and results in scores on each metric and

an overall benchmarking score. The environments used to assess the different

approaches are detailed in this chapter and in Appendix 6.3. The following

chapters will utilise this framework’s capabilities to:

• discover the optimal hyper-parameters for an approach

• evaluate the improvement of two similar approaches e.g. the Potential Field

and the Pheromone Potential Field
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• benchmark all the navigational approaches mentioned in this chapter
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Chapter 4

Evaluating Potential Field

Approaches

Potential fields are one of the most fundamental methods in mobile robotic

path planning, navigation, and exploration. Due to this importance, an evalua-

tion of the Potential Field navigation approach is shown from the perspective of

benchmarking them. This chapter evaluates a basic Potential Field and demon-

strates the quantifiable improvement of the novel Pheromone Potential Field

approach to the Potential Field approach. Initially, a more in-depth look of the

Potential Field will be taken, with a focus on the stability of the algorithm by

exploring and demonstrating the range of successful and practical parameters.

This is followed by an analysis of its performance in various environments. The

second part of this chapter introduces the Pheromone Potential Field approach.

A similar analysis is performed and demonstrated. The two approaches are

then evaluated using the evaluation framework in different environments and

the results are presented.

4.1 Potential Field Parameter Evaluation

Fundamentally, a potential field [12] is an approach that utilizes a multitude

of forces to navigate an environment and avoid obstacles. The attractive force

is a gravitational-like pull that draws the robot towards the goal location which

can be written as follow:

Fa = Θ⃗rgc
1

drg
(4.1)

where:

Fa is the attractive force between the robot and the goal

35
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Figure 4.1: This figure shows a Potential Field approach navigating from the grey
start location towards the green target location whilst avoiding the wall separating
them.

drg is the distance between the robot and the goal

c is the attractive force constant

Θrg is the direction from the robot to the goal

The repulsive force pushes the robot away from an undesired location and

can be written as follow:

Fri =

Θ⃗rik(
dmax

dri
), dri < dmax

0, dri ≥ dmax

(4.2)

where:

Θrg is the direction from a robot to a location i

Fri is the repulsive force between the robot and a location i

k is the repulsive force constant

dmax is the maximum distance the repulsive force has an effect

dri is the distance between the robot and a location i

The sum of all the repulsive forces results in the total repulsive force Fr

which is then summed with the attractive force to produce:

F = Fa + Fr (4.3)

Figure 4.1 shows the navigation of the mobile robot in an environment with

the Potential Field approach where the robot and goal are separated by a wall.
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Figure 4.2: The left plot shows the average success rate of the Potential Field for a
range of parameter combinations. The results show that the average success rate falls
below 30%. The right plot filters the results to the highest quartile of success rate,
which demonstrates a clear preference for low obstacle ranges.

Research into potential fields has demonstrated significant limitations in this

approach [12]. Furthermore, the present study has also discovered that this

approach suffers from having a limited range of usable parameter values, if a high

rate of successful navigation for any given environment is desired. This section

aims at providing more insight into this alongside establishing the optimal set

of parameters for performance evaluation. The optimal parameter set for these

environments is used in the experiments of this chapter and the following.

To evaluate the effective parameter range, an experiment was conducted that

performs parameter sweeps across all the different environments. For this ex-

periment, the static environments were utilized, and the robot and the goal

locations were pseudo-randomly spawned in accordance with the map configu-

rations specified in Section 3.3.1. These trials explored the effective parameter

ranges of the dmax, k, and c parameters over the range of 1 to 10 with a step of

1.

Figure 4.2 presents the average success rate of a combination of parameters

on the potential field approach across all the different environments. The results

demonstrate that whilst most parameter combinations can lead to a result, none

score better than 38%. Analyzing the top quartile of results on success rate the

Potential Field approach is more optimal in low obstacle range settings. The

results shown in Table 4.1 demonstrate that this approach has an overall low

success rate of 28.02%. Grouping the approaches by map type shows that there

is clear evidence that the effectiveness of this approach is strongly tied to the

environment. Grouping the trials by the parameter combinations shows that



38

Figure 4.3: This left plot shows the average success rate of the Potential Field across
the different map types grouped by the map types. The right plot orders the results by
the average success rate on that map. The numbers stand for the complexity level of
a map type with 3 being the most complex. Maps are abbreviated as follow; W: Wall,
S: Slit, R: Room, P: PlankPile, C: Corridor, B: Bugtrap.

the approach produces similar results across a variety of maps. Furthermore,

excluding the level one maps which contain minimal obstacles the results remain

similar, further showing that even in difficult environments, the environment

itself plays a larger role than the parameters.

Potential Field Average success rate: 28.03%

Std Min 25% 50% 75% Max

By map type 31.90 0.00 1.83 17.8 44.27 95.02
By parameter set 2.75 21.39 26.11 27.50 29.44 37.50
By parameter set - 2.75 12.50 18.75 20.83 22.92 29.17
excl. level one maps

Table 4.1: This table shows the Potential Field parameter run average success rates
when grouped by map type and parameter set. The final row shows the grouping by
parameter set excluding the level one complexity maps

Figure 4.3 presents the results from the average success rate of the potential

field in each distinct environment. The left plot has the maps of similar types

grouped together whilst the other plot has them ordered by success. These re-

sults demonstrate that this approach has increased difficulties with the increase

of objects in the environment ultimately leading to little success with maps

designed around local minima e.g. the plank pile, and bug trap maps. Whilst

no single parameter combination has a success rate over 38% there are environ-

ments that average over 90% success rate further demonstrating the importance

of the environment over the parameter combination.
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Figure 4.4: This figure shows two trials where the Potential Field (on the left of
each trial) and the Pheromone Potential Field (on the right of each trial) attempt
to navigate a bug trap map from the grey starting location towards the green target
location whilst avoiding the walls separating them.

4.2 Pheromone Potential Field Parameter Eval-

uation

The primary problem with potential fields as demonstrated in the previous

section is the state of equilibrium that the robot reaches local minima. To

overcome the local minima problem of the potential field approach, a new force

is introduced that attempts to push it out of this sub-optimal solution toward

the goal [74]. In this research, we present a novel approach that is inspired by

the way ants navigate between the nest and their food source [75].

The Pheromone Potential Field field is an extension of the potential field

algorithm in which the robot continuously drops artificial pheromones on the

path it has travelled. These pheromones are represented by non-obstacle point

locations on the map and increase in strength when the robot traverses over

them. Unlike ants, these pheromones act as a minor repulsive force motivating

the robot to avoid locations it has previously visited, indirectly instilling ex-

ploratory behaviour. More importantly, if a robot were to be stuck in a local

minimum the increase in the strength of the pheromones would generate an

escape force pushing the robot out of this trap and onwards.

Figure 4.4 shows the result of a trial performed on the bug trap map between

the potential field and the pheromone potential field. The robot spawning on the

northern part of the map aims to get to the goal location marked with the green

square in the centre of the map. Whilst the potential field reaches equilibrium

early on, the pheromone potential field approach is pushed to explore away from

the local minima, eventually making its way to the goal location.

The pheromone potential field adds a new force called the pheromone force.

This force is a sum of all the repulsive forces generated from the pheromones

in the range of the robot. This force adds three more parameters to the ba-

sic potential field being: the range in which pheromones affect the robot, the

pheromone strength increase with each traverse, and a constant. Similar to the
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Figure 4.5: This left plot shows the average success rate of the Pheromone Potential
Field for a range of parameter combinations. The results show a significant improve-
ment in success rate compared to the Potential Field approach, especially on higher
ranges. The right plot is focused on the relationship between the pheromone’s strength
increase and the constant.

previous section, an experiment on the Pheromone Potential Field approach

was performed that evaluates the effective range of parameters across all the

different environments.

Figure 4.5 presents the average success rate of trials grouped by the three

parameters. These results demonstrate that this approach

• has a clear preference for longer pheromone inclusion ranges

• has a relationship qualitatively similar to inverse proportional hyperbolic re-

lationship, between the strength increase and constant parameter

• a significant improvement in the success rate when compared to the Potential

Field approach

Table 4.2 shows the resulting average success rate grouped by map types and

parameters. Whilst the environment is still an important factor, this importance

has been reduced with the Pheromone Potential Field approach. This surmise is

inferred from the drop in standard deviation when grouped by map type and the

relatively high success rate at the 25th percentile. A similar observation can be

seen in the 25th percentile when grouping by parameter combination indicating

that whilst there are some combinations that result in a low average success rate

the majority of parameters do perform well. The low rating parameter groups

are the low range pheromone settings as shown in Figure 4.5.
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Pheromone Field Average success rate: 74.05%

Std Min 25% 50% 75% Max

By map type 19.95 29.68 66.38 78.52 84.08 98.67
By parameter set 16.76 23.61 71.94 78.33 83.89 94.72
By parameter set - 17.63 15.42 64.17 71.67 78.33 93.75
excl. level one maps

Table 4.2: This table shows the Pheromone Potential Field parameter run average
success rates when grouped by map type and parameter set. The final row shows the
grouping by parameter set excluding the level one complexity maps

4.3 Benchmarking the approaches

In this section, we aim to evaluate the performance of the Potential Field ap-

proach and the Pheromone Potential Field approach with the optimal param-

eter set combinations obtained from the previous section. This experiment is

conducted in static environments where both approaches are run alongside the

baseline approach to calculate the performance. The previous two sections dis-

cussed the potential field success rate. This section will look into the path length

metric, the path smoothness metric, the visibility metric, and the performance

score.

Path length metric Figure 4.6 show the path lengths generated by both

approaches where the dotted lines show all the runs and the solid lines show all

the successful runs. The maximum path length permitted is 1000 units which is

achieved at the 25th percentile of path lengths for all Potential Field runs. This

in combination with the low path length at successful runs highlights that the

Potential Field approach works best in short ranged navigation where the goal is

nearby. By contrast, failure from path length is only encountered near the 100th

percentile for all Pheromone Potential Field runs, indicating that the majority

of navigation attempts succeed. Furthermore, the Pheromone Potential Field

has a low overall path length but is still able to achieve results close to the

maximum path length permitted demonstrating the ability to explore till the

goal is achieved.

Path Smoothness Evaluation Figure 4.7 shows the smoothness of the paths

generated by the approaches. The Potential Field approach across all runs scores

significantly worse than the Pheromone Potential Field approach, but successful

runs have comparable or better results than the Pheromone Potential Field

approach.
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Figure 4.6: Lower is better. This figure shows the path lengths the Potential Field
and Pheromone Potential Field approaches generate. The dashed lines represent all
runs whilst the filled lines represent all successful runs. Note that the Potential Field
, with an average success rate of 28.03%, is restricted to successful runs with paths
under 200 units and in the first quartile of length. However, the Pheromone Potential
Field , with an average success rate of 74.05%, demonstrates successful solutions
across all lengths of paths available.

Visibility metric Figure 4.8 shows the visibility metric of both approaches.

The visibility metric measures the amount of free space within the robot’s FOV

there is at every step and averages the values for each approach. Both ap-

proaches score similarly on this metric with the successful run having a higher

visibility score. This indicates that higher visibility scores are not just a measure

of safety, but could also be an indication of likely navigational success.

4.4 Closing statement

In this chapter, the benchmarking framework is used to evaluate and benchmark

two similar approaches individually and in comparison to each other. Here, the

Potential Field algorithm was evaluated and benchmarked using the framework

presented in the previous chapter. Whilst the results confirmed known limita-

tions [12] and a low success rate, they also demonstrated the importance of con-

sidering short object ranges to increase the success rate of this approach. This

chapter also presented the Pheromone Potential Field approach, which intro-

duced a pheromone force to the Potential Field approach. This novel approach

demonstrated significant improvements on the basic Potential Field approach

across all metrics except path smoothness.

The framework for evaluating these approaches demonstrates in a quanti-

tative measure the improvements the Pheromone Potential Field approach has
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Figure 4.7: Lower is better.This figure shows the smoothness of the paths Potential
Field and Pheromone Potential Field approaches generate. The dashed lines represent
all runs whilst the filled lines represent all successful runs. Note that the Potential
Field approach across all runs scores significantly worse than the Potential Field .
However, successful runs have comparable or better results than the Potential Field .

Figure 4.8: Higher is better.This figure shows the average visibility around the
robot the Potential Field and Pheromone Potential Field approaches generate. The
dashed lines represent all runs whilst the filled lines represent all successful runs.
Note that for both approaches the successful runs have a higher visibility score. This
indicates that higher visibility scores are not just a measure of safety, but could also
be an indication of likely navigational success.
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on the Potential Field approach. This framework also highlighted several short-

comings of the Pheromone Potential Field approach. Improvements to this

novel approach will focus on addressing the path smoothness and the relative

lower success rates in plank pile and corridor environments.

These findings demonstrated that the framework has similar parameter tun-

ing and metric evaluation capabilities to other frameworks like ROS [8]. How-

ever, this framework extends on these frameworks by indicating the exact prob-

lem environments and metrics to address for improvements alongside several

beneficial characteristics of the approaches.

The following chapter will look to extend this work by evaluating the per-

formance of the Potential Field approaches alongside an assortment of different

approaches.



Chapter 5

Benchmarking navigational

approaches

The previous chapter evaluated the performance of a navigational approach

in isolation and comparison with a similar type of approach. This evalua-

tion of the Potential Field and Pheromone Potential Field approaches demon-

strated the framework’s capabilities in quantitatively determining performance

improvement.

This chapter follows up on these capabilities by evaluating a more extensive

set of approaches with respect to their performance within specific problem

environments. Furthermore, this chapter expands the evaluation to generated

environments along with the static environments utilized so far. Here, the

results from the proposed framework show the significant success rate of A* but

also demonstrate this approach’s shortcomings in the visibility metric.

The first section details the framework’s experimental setup used to gener-

ate the results discussed in this chapter. Section 5.2 presents the comparison

between the base RRT approach with the improved RRT* approach. Section

5.3 benchmarks the different navigational approaches across all the environ-

ments and discusses the findings. The chapter concludes with section 5.4 that

summarises the findings.

5.1 Framework’s experimental setup

This section documents the experimental conditions in which the framework

evaluated the efficiency of the navigational approaches across all the environ-

ment types. The approaches explored in this experiment are the Potential Field,

Pheromone Potential Field, A*, RRT, and RRT* (See section 3.4). The frame-
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work implemented certain constraints for these experiments to demonstrate

more realistic scenarios. This is especially important in the larger and cluttered

maps where approaches converge very slowly to a solution making it impracti-

cal for real-world usage. Table 5.1 shows these parameters and fail conditions.

Alongside the static maps presented in section 3.3.1 this chapter also utilizes

the dynamically generated maps presented in section 3.3.2. The configuration

details for these maps and sample-generated environments are shown in their

respective sections.

Parameter Name Value Short Description

Robot FOV 30 the length of the robot’s field of
view

Max Step 1000 maximum amount of steps the robot
can perform

Max Time 10,000 maximum amount for all stages of
the navigation in ms

Stuck Condition 10/40 10 number of similar steps to points
in any 40 consecutive steps

Trials per configuration 100 the frequency an approach is run on
each map type

Time Weight 0.75 the time weight used to calculate
the approach’s score

Path Weight 0.75 the path weight used to calculate
the approach’s score

Path Smoothness Weight 0.25 the path smoothness weight used to
calculate the approach’s score

Table 5.1: This table details the framework’s parameters.

The experiment conducted in this framework consists of 100 trials per map

type. At each trial, the robot and goal spawn locations were either random

or pseudo-random per the configuration details. Firstly, the framework de-

termined a baseline by running an A* algorithm1 on the explored map. This

determined the connectivity of the map from the robot’s starting location to the

goal location in the generated maps and enabled the performance calculations

for the path length and execution duration. After the framework performed

1This approach differs from the incremental A* approach used to explore unknown envi-
ronments in it that has a fully explored map. Therefore, it is closer to a graph traversal than
actual navigation.
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the baseline calculations, it evaluated each approach under the same configu-

ration. Unlike the baseline calculations, the map is unknown for each method.

Each method only knows the robot and the goal location at the starting point.

The results from these trials are discussed in this chapter, with the full results

available in Appendix 6.3.

5.2 Comparison of the RRT approaches

The first notable results from the experiment’s results, as noted in Table 5.2,

showed that the RRT approach scored ever so slightly higher than the RRT*

approach. These results prompted a further investigation into the nature of

these results, of which the findings are presented here. This section aims to

evaluate the performance of the RRT* approach compared to its base RRT

approach and benchmark this improvement.

Approach Score Success Path Sc Smooth Sc Time Sc Vis Sc

RRT 0.67 0.82 0.83 0.88 0.88 0.49
RRT* 0.66 0.83 0.87 0.87 0.81 0.49

Table 5.2: The performance difference between the RRT and the RRT* approach.
All metrics: higher the better.

Table 5.2 demonstrates that the two approaches have similar scores overall.

The RRT* outperforms the RRT in both the success rate and the path score

whilst being surpassed in both the path smoothness score and the time score.

The time score is the metric with the highest difference between the two ap-

proaches, and the speed of the RRT approach relative to the RRT* is why it

scored higher. The difference between the approaches is that the RRT* performs

two additional operations: the best neighbour operation and the tree rewiring

operation. These operations lead to improved and shorter paths but also lead

to increased computational time [76]. This additional time is noticeable both

in the overall performance (seen in Table 5.2) and the failure scores (seen in

Table 5.3. Table 5.3 shows where the different approaches failed. The table

shows whether the approach failed by hitting the maximum step count, or the

maximum duration permitted. These results show that both approaches fail

about half of the generated environments’ runs due to the time or step count

restrictions. However, the RRT* approach almost exclusively fails in time.



48

All Map Types

Approach Step Fail Time Fail Total Fail Total Runs

RRT 179 315 494 2800
RRT* 1 479 480 2800

Static Map Types

Approach Step Fail Time Fail Total Fail Total Runs

RRT 2 0 2 1800
RRT* 0 0 0 1800

Generated Map Types

Approach Step Fail Time Fail Total Fail Total Runs

RRT 177 315 492 1000
RRT* 1 479 480 1000

Table 5.3: This table presents the failed runs for the RRT and the RRT* approach
showing whether an approach failed due to time constraints or the maximum amount
of steps.

Figure 5.1 shows that in the navigation of static environments, the two

approaches score similarly, with the RRT* outperforming the RRT approach

slightly in all maps except for the RoomThree map. When evaluating the re-

sults of the generated environments, as presented in figure 5.2, one can note that

both approaches struggle more in larger cluttered obstacle maps. However, the

RRT is relatively consistent in the tunnel environment and outperforms the

RRT* significantly in the higher complexity tunnel maps.

These findings indicate that the RRT* performs better and generates shorter

paths within an acceptable time frame in smaller and less cluttered environ-

ments. As maps grow more extensive and increasingly limiting in open space,

the effectiveness of this approach decreases significantly to the point where the

RRT outperforms it. These results suggest that the RRT* is more favourable

in large open space areas with decreased clutter. As the average free space de-

creases below 70% in obstacle environments and 30% in tunnel environments,

the RRT approach is a more optimal solution. The resulting framework anal-

ysis can be utilized in exciting ways discussed in more detail in the following

chapter.
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Figure 5.1: This figure shows the results of the RRT and the RRT* approaches in the
static environments. Each type of environment is separated by a vertical dotted line.
Each couple of bars represents one complexity level within the type of environment
increasing in difficulty to the right.

Figure 5.2: This figure shows the results of the RRT and the RRT* approaches in
the dynamically generated environments. The area on the left holds the obstacle maps
whilst the area on the right holds the tunnel maps. Each couple of bars represents one
complexity level within the type of environment increasing in difficulty to the right.
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5.3 Performance of the navigational approaches

This section will present the results of the performance of each approach and

in comparison with each other. The full results on each map type are presented

in Appendix 6.3. Table 5.4 presents the scores of each approach across all the

static and generated environments. Table 5.5 and Table 5.6 present the results

of the static and generated environment respectively. The comparison between

the approaches is first highlighted under two metrics: the success rate and the

visibility score. This is due to the interesting trends observed under these two

metrics.

Approach Score Success Path Sc Smooth Sc Time Sc Vis Sc

Base Line 0.84 1.00 0.90 0.91 0.90 0.45

A* 0.82 0.99 0.88 0.91 0.89 0.42
RRT 0.67 0.82 0.83 0.88 0.88 0.49
RRT* 0.66 0.83 0.87 0.87 0.81 0.49
Potential Field 0.16 0.18 0.90 0.83 0.90 0.59
Pheromone Field 0.62 0.76 0.86 0.84 0.89 0.48

Table 5.4: All metric results on All environments. Each metric is in the range of
[0.0-1.0] averaged across all maps. Higher is better.

Approach Score Success Path Sc Smooth Sc Time Sc Vis Sc

Base Line 0.85 1.00 0.90 0.91 0.90 0.51

A* 0.84 1.00 0.89 0.90 0.90 0.49
RRT 0.83 1.00 0.85 0.87 0.89 0.53
RRT* 0.83 1.00 0.88 0.87 0.88 0.51
Potential Field 0.24 0.29 0.90 0.82 0.90 0.57
Pheromone Field 0.75 0.91 0.86 0.85 0.89 0.52

Table 5.5: All metric results on Static environments. Note due to the exceptionally
low score of the Potential Field approach its results are excluded from the metric high
score.

5.3.1 Performance under environments and metrics

Table 5.5 and Figure 5.3 show the results of all approaches in static environ-

ments. These results, with the exception of the Potential Field approach, score

roughly the same. However, when evaluating the scores in the generated envi-

ronments, as shown in Table 5.6 and Figure 5.4, A* maintains its dominance as

complexity grows. Similarly, RRT performs better than RRT* as environment
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Figure 5.3: This figure shows the results for all the approaches in the static environ-
ments. Each type of environment is separated by a vertical dotted line. The complexity
level within the type of environment increases in difficulty to the right.

Figure 5.4: This figure shows the results for all the approaches in the generated
environments. Each type of environment is separated by a vertical dotted line. The
complexity level within the type of environment increases in difficulty to the right.
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Approach Score Success Path Sc Smooth Sc Time Sc Vis Sc

Base Line 0.83 1.00 0.90 0.92 0.90 0.34

A* 0.79 0.97 0.87 0.92 0.88 0.31
RRT 0.40 0.51 0.79 0.89 0.87 0.42
RRT* 0.38 0.52 0.86 0.87 0.64 0.42
Potential Field 0.004 0.004 0.90 0.95 0.90 0.84
Pheromone Field 0.39 0.48 0.86 0.81 0.90 0.40

Table 5.6: All metric results on Generated environments. Note due to the excep-
tionally low score of the Potential Field approach its results are excluded from the
metric high score.

complexity increases. Most notably, Pheromone Potential Field always per-

forms better than the Potential Field approach. Combining all the information

and evaluating across all environments, the results in Table 5.4 show that A*

is the most successful algorithm. This success is closely followed by the RRT

, RRT* , and the Pheromone Potential Field approaches. The Potential Field

approach has performed significantly worse. These results show the usefulness

of the generated environments in the proposed framework to bring performance

insights on the different approaches under various degrees of difficulty.

Even though the success rate is a valid metric to test the efficacy of an

approach under a given experimental setup, other metrics such as ‘Visibility

score’ are also crucial from a safety perspective. At the same time, it is essen-

tial to note that other metrics are only accumulated when a run of an approach

succeeds. As a result, if an approach fails many times, the sampling rate also

falls, which could make other metrics skewed towards success under easy trials.

This is where static environments are suitable for evaluating other metrics be-

cause most of (more than 90%) the trials succeed in all the approaches except

in Potential Field as shown in Table 5.5.

We can observe from Table 5.5 that A* has the lowest visibility score among

all the approaches, which indicates that A* paths are too close to walls and other

obstacles. This does generate specific concerns with safety-critical applications.

The RRT approach would be a more optimal solution in these scenarios. Even

though Potential Field shows the best visibility score, it is of little use because

its success rate is too low. However, the same cannot be said about other

metrics where A* is consistently among the top performers, with the rest of the

approaches remaining competitive.
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5.3.2 Approach-wise analysis

In this section, trends peculiar to a specific approach are noted. The following

analysis highlights the use case of any given approach based on the above results.

The A* approach performs significantly better than the other approaches in

the overall score metric. This iterative A* approach generates a new plan every

time a previous plan could not be followed due to the existence of an obstacle

as it explores an environment. This score is primarily due to the significant

success rate of this approach across the different environments. However, when

evaluating individual metrics, the other approaches have comparable or better

scores, with this approach specifically performing poorly on the visibility score.

This poor score indicates that this approach often moves close to obstacles and is

biased towards the shortest path. This suggests that if time and visibility scores

are essential for a specific application, it is better to look at the performance of

other approaches in a given environment.

The RRT and RRT* have similar performance ratings primarily due to

the limitations discussed in the previous section. The results indicate that the

RRT* has a better success rate by a small margin with shorter paths. The

apparent limitation is the computational time where this approach scores worse

than the RRT even in environments where it does reach the goal location. How-

ever, RRT and RRT* have outstanding visibility scores across all environments.

Hence, such methods can be beneficial if we do not have strict computational

limitations.

The Potential Field and Pheromone Potential Field have significantly

different results. The Potential Field approach suffers from a meagre success

rate which is the primary driver behind the low benchmarking score. The

individual metrics score high due to the Potential Field only being successful

in simple and almost unobstructed environments. However, the extremely low

computational cost of this approach is worth noting. The Pheromone Potential

Field has a comparable score to the RRT and the RRT* , with the key difference

being computational time efficiency. This difference is particularly evident in the

generated environments where the Potential Field approaches outperform the

RRT* approach. Due to efficient computational time, environments with low

obstacle counts and high visibility are best suited for the Pheromone Potential

Field approach. In particular, the Pheromone Potential Field outperforms the

baseline in these WallOne and SlitOne maps.
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The following section will make recommendations based on the above re-

sults on how to choose different approaches based on the complexity of the

environment and the importance of desired metrics.

5.4 Summary of findings

This chapter demonstrates the effectiveness of the proposed framework. It al-

lows various experimental setups throughout the different approaches and eval-

uates them using the same evaluation methodology. This section will look into

the results presented in this chapter. These results are summarised, and based

on these results, this section will make recommendations based on how to choose

different approaches based on the complexity of the environment and the im-

portance of desired metrics.

The findings of this chapter are as follows:

• Similar score of RRT and RRT* . The experimental results showed that

whilst the RRT* has a slightly improved success rate and path score, the

time requirement of this approach counteracts this. These findings conclude

that when choosing between these two approaches, the time requirement in

smaller and uncluttered maps is negligible and therefore, the RRT* approach

is the more optimal solution. As the average free space decreases below 70%

in obstacle environments and 30% in tunnel environments, the RRT approach

is a more optimal solution.

• The A* approach is the best approach in this experiment. This ap-

proach scored near baseline scores on all metrics. The limitations are in the

form of the time requirements and visibility score when it comes to larger,

more complex environments. This approach can serve as the base when nav-

igating unknown environments except for in open and uncluttered environ-

ments where Potential Field algorithms will outperform.

• Higher complexity obstacle maps suffered from the lowest success rates

of all different map types. More optimal approaches are needed for these

types of environments.

These findings demonstrate the framework’s ability to produce a far greater

aggregation of information and evaluation of approaches than the other compa-

rable frameworks in unexplored environments. It extends the common capabil-

ity of finding optimal approaches while also highlighting the complex problem

environments that need further research efforts. The results can also be used
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by adaptive planners to switch between approaches dependent on the environ-

ment type they are in. A good example of this is the effect of free space on the

optimality of the RRT and the RRT* approaches.
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Chapter 6

Conclusions and Future

Research Directions

This thesis presented an evaluation methodology and framework to benchmark

the performance of mobile robotic navigation in unknown environments. These

contributions were used to find optimal parameter sets for a range of approaches,

evaluate the performance of a method in isolation, and evaluate the performance

when compared to similar and different techniques. This research project ad-

dressed the limitations in current frameworks by evaluating navigational ap-

proaches with all important metrics across various approaches. The contribu-

tions made in this research can be used to improve new algorithms and highlight

deficiencies in existing approaches.

The final chapter starts by summarising the results and achievements of this

research and concludes with a section on recommendations for future research

directions.

6.1 Summary of contributions of the thesis

6.1.1 Navigational Environments

This research project describes a set of static environments that address specific

common problems in navigational robotics. These problem environments can

be summarised as simple obstacles, narrow corridors, traps, and the abstraction

of human-like maps. The static environments increasingly become larger, more

complex, and restrictive in requirements. This complexity introduces common

issues in mobile robotic navigation like narrow constrictions, local minima, and

safety clearance.

Furthermore, procedurally generated maps that extend the human-like maps

and cluttered obstacle maps are introduced. The generated obstacle environ-

57



58

ments increase in complexity from an average free cell rate of 86% to a rate of

32.59%. The results from the environments show that navigational approaches,

with the exception of A* struggled, with average free cell rates below the 52%.

All maps are detailed and documented in this research project, with recom-

mendations for future maps in the following section.

6.1.2 Pheromone Potential Field

Initial experimentation with the Potential Field approach in this research project’s

benchmarking framework emphasised certain limitations. These observed limi-

tations motivated the development of the Pheromone Potential Field approach.

The Pheromone Potential Field approach is an extension of the Potential Field

approach where this approach deploys pheromones along its navigated path to

avoid local minima and install a goal-directed exploration behaviour.

The experimental results have shown that this added behaviour significantly

improved the success rate of this approach from an average of 28.03% through

the Potential Field approach to 74.05%. Furthermore, this approach has com-

parable scores with the RRT and RRT* approaches. The Pheromone Potential

Field approach was also shown to be the most optimal approach in a few envi-

ronments.

The evaluation methodology also demonstrated several limitations with this

approach. Whilst comparable in scores, this approach suffers from a lower av-

erage success rate when compared to the A* , RRT , and RRT* approaches.

Improvements to this approach would focus on addressing the limitations in

problem environments CorridorThree and RoomThree which are narrower en-

vironments, with a larger focus on delayed rewards in goal distance.

6.1.3 Evaluation Methodology

This research presented a method to benchmark the navigational approach.

A framework combines the map generation and approach execution elements

to evaluate the performance of these algorithms. The achieved benchmarking

score evaluates the performance of an approach across several key metrics, in-

cluding the path length, path smoothness, visibility rating, computational time,

and success rate. The introduction of path smoothness is a metric to achieve

paths reflecting different optimality criteria than shortest path length. Shortest

path length criteria may lead to supposedly-optimal paths that introduce sud-

den changes of direction contrasting sharply with the smooth constant change

of direction desired for real-world applications. The visibility rating metric

looks into the robot’s average clearance from obstacles. This average distance
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from obstacles is critical in applications with safety concerns. This score can

be adapted with weights to better represent the needs for safety-critical and

resource-scarce systems. The evaluation methodology challenges common as-

sumptions that the RRT approach is improved by the RRT* . These findings

highlight the importance of benchmarking navigational robotic approaches in a

general framework.

This research project proposed a novel benchmarking evaluation methodol-

ogy that combines all evaluated metrics in a comparable score. This score is

accompanied by an aggregation of information that enables the indication of

exact problem environments and metrics. The results lead this project to the

introduction of a novel approach due to the clear indication of both success and

shortcomings.

6.2 Future Research Directions

In this section, we discuss potential prominent research directions for future

research projects based on the results reported in this thesis.

6.2.1 Integration with Robotic Frameworks

The literature review identified several key mobile robotic frameworks, of which

ROS [8] [9] is the most commonly used. The integration with this framework

would be beneficial to aid in the usage of this evaluation methodology in future

research contributions.

6.2.2 Approaches inclusion

This framework has an iteration-based mechanism that advances the simulation

in single steps, directed by the results from the navigational path planner. It

would be appropriate to expand on the current mechanism to evaluate the per-

formance of learning-based approaches and multi-robotic systems. This allows

for a wider variety of approaches and would generate a more accurate and uni-

versal benchmark. A possibility would be to include the navigational mechanism

in this framework and the learning-based mechanisms in PathBench [7] to ex-

pand on the MoveIt [5] framework. Furthermore, the author agrees with Moll et

al. [69] that the file formats must be standardised to allow for community-wide

usage.
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6.2.3 Environment Improvements

The results from the benchmarking in Chapter 4 and 5 indicate the significant

effect of the environment on navigation performance. An essential research

direction would include more maps that address specific or common navigational

problems. Future research should aim to expand this underdeveloped area with

systematically generated maps that address specific concerns within the field of

mobile robotics like dynamic environments, difficult terrain, large environments

with resource-constrained robots, and aquatic-based exploration. Furthermore,

metrics that better represent mobile robotics’ resource usage are needed to

benchmark these new proposed environments properly.

6.2.4 Adaptive motion planners

With the introduction of more environments and navigational approaches, the

author believes that the framework can establish a correlation between an en-

vironment and its optimal approach. An adaptive planner that can recognise

environments and utilise the most efficient approach for that environment could

lead to a more efficient navigation overall than any one navigational approach.

This research contributes efforts towards this in Chapter 5 with an example

threshold being presented in Section 5.2 for switching between the RRT and

RRT* approaches.

6.3 Final Summary

This research study presented a novel benchmarking framework that evaluated

the performance of mobile robotic navigational approaches. This evaluation

inspired the development of the novel Pheromone Potential Field approach that

addressed several of the shortcomings found in the Potential Field approach.

Furthermore, this study contributed several static and procedurally problem-

specific environments.

The field of mobile robotics has a need for standardised benchmarking and

evaluation for contributions. Future work aims to address this shortcoming by

allowing all branches of navigational mobile robotics to be evaluated on this

framework.
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All Maps

Static Maps This section documents all the static maps. Each map is in the

following format:

========================================

Map Name: W:Map Width H:Map Height

Robot Rectangle: X:[Robot MinX -Robot MaxX ] — Y:[Robot MinY -Robot MaxY ]

Goal Rectangle: X:[Goal MinX -Goal MaxX ] — Y:[Goal MinY -Goal MaxY ]

—————————————-

foreach O in Obstacles

Obstacle Rectangle: X:[O MinX -O MaxX ] — Y:[O MinY -O MaxY ]

========================================

WallOne: W:50 H:50

Robot Rectangle: X:[2-23] — Y:[2-47]

Goal Rectangle: X:[27-47] — Y:[2-47]

—————————————-

Obstacle Rectangle: X:[25-26] — Y:[0-10]

========================================

WallTwo: W:50 H:50

Robot Rectangle: X:[2-23] — Y:[2-47]

Goal Rectangle: X:[27-47] — Y:[2-47]

—————————————-

Obstacle Rectangle: X:[25-26] — Y:[0-25]

========================================

WallThree: W:50 H:50

Robot Rectangle: X:[2-23] — Y:[2-47]

Goal Rectangle: X:[27-47] — Y:[2-47]

—————————————-

Obstacle Rectangle: X:[25-26] — Y:[0-35]

========================================

SlitOne: W:50 H:50
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Robot Rectangle: X:[2-23] — Y:[2-47]

Goal Rectangle: X:[27-47] — Y:[2-47]

—————————————-

Obstacle Rectangle: X:[25-26] — Y:[0-7]

Obstacle Rectangle: X:[25-26] — Y:[40-48]

========================================

SlitTwo: W:50 H:50

Robot Rectangle: X:[2-23] — Y:[2-47]

Goal Rectangle: X:[27-47] — Y:[2-47]

—————————————-

Obstacle Rectangle: X:[25-26] — Y:[0-14]

Obstacle Rectangle: X:[25-26] — Y:[33-48]

========================================

SlitThree: W:50 H:50

Robot Rectangle: X:[2-23] — Y:[2-47]

Goal Rectangle: X:[27-47] — Y:[2-47]

—————————————-

Obstacle Rectangle: X:[25-26] — Y:[0-21]

Obstacle Rectangle: X:[25-26] — Y:[26-48]

========================================

RoomOne: W:50 H:50

Robot Rectangle: X:[-] — Y:[-]

Goal Rectangle: X:[-] — Y:[-]

—————————————-

Obstacle Rectangle: X:[0-5] — Y:[16-17]

Obstacle Rectangle: X:[0-5] — Y:[32-33]

Obstacle Rectangle: X:[16-17] — Y:[0-5]

Obstacle Rectangle: X:[16-17] — Y:[12-21]

Obstacle Rectangle: X:[16-17] — Y:[28-49]

Obstacle Rectangle: X:[12-21] — Y:[16-17]

Obstacle Rectangle: X:[12-21] — Y:[32-33]

Obstacle Rectangle: X:[32-33] — Y:[0-5]

Obstacle Rectangle: X:[32-33] — Y:[12-21]

Obstacle Rectangle: X:[32-33] — Y:[28-49]

Obstacle Rectangle: X:[28-37] — Y:[16-17]

Obstacle Rectangle: X:[28-37] — Y:[32-33]

Obstacle Rectangle: X:[45-49] — Y:[16-17]

Obstacle Rectangle: X:[45-49] — Y:[32-33]

========================================
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RoomTwo: W:100 H:100

Robot Rectangle: X:[-] — Y:[-]

Goal Rectangle: X:[-] — Y:[-]

—————————————-

Obstacle Rectangle: X:[0-8] — Y:[20-21]

Obstacle Rectangle: X:[0-8] — Y:[40-41]

Obstacle Rectangle: X:[0-21] — Y:[60-61]

Obstacle Rectangle: X:[15-26] — Y:[20-21]

Obstacle Rectangle: X:[15-26] — Y:[40-41]

Obstacle Rectangle: X:[15-26] — Y:[80-81]

Obstacle Rectangle: X:[20-21] — Y:[0-21]

Obstacle Rectangle: X:[20-21] — Y:[35-86]

Obstacle Rectangle: X:[40-41] — Y:[0-21]

Obstacle Rectangle: X:[40-41] — Y:[35-81]

Obstacle Rectangle: X:[35-46] — Y:[20-21]

Obstacle Rectangle: X:[35-46] — Y:[40-41]

Obstacle Rectangle: X:[40-51] — Y:[80-81]

Obstacle Rectangle: X:[40-61] — Y:[60-61]

Obstacle Rectangle: X:[60-61] — Y:[0-21]

Obstacle Rectangle: X:[60-61] — Y:[60-98]

Obstacle Rectangle: X:[55-66] — Y:[20-21]

Obstacle Rectangle: X:[60-81] — Y:[40-41]

Obstacle Rectangle: X:[60-81] — Y:[80-81]

Obstacle Rectangle: X:[80-81] — Y:[0-21]

Obstacle Rectangle: X:[80-98] — Y:[60-61]

========================================

RoomThree: W:200 H:200

Robot Rectangle: X:[-] — Y:[-]

Goal Rectangle: X:[-] — Y:[-]

—————————————-

Obstacle Rectangle: X:[20-21] — Y:[40-81]

Obstacle Rectangle: X:[20-21] — Y:[100-121]

Obstacle Rectangle: X:[20-21] — Y:[140-161]

Obstacle Rectangle: X:[40-41] — Y:[20-61]

Obstacle Rectangle: X:[40-41] — Y:[100-121]

Obstacle Rectangle: X:[60-61] — Y:[40-61]

Obstacle Rectangle: X:[60-61] — Y:[120-141]

Obstacle Rectangle: X:[80-81] — Y:[0-81]

Obstacle Rectangle: X:[80-81] — Y:[140-199]
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Obstacle Rectangle: X:[100-101] — Y:[20-61]

Obstacle Rectangle: X:[120-121] — Y:[120-161]

Obstacle Rectangle: X:[140-141] — Y:[0-21]

Obstacle Rectangle: X:[140-141] — Y:[60-121]

Obstacle Rectangle: X:[160-161] — Y:[120-181]

Obstacle Rectangle: X:[20-41] — Y:[20-21]

Obstacle Rectangle: X:[100-121] — Y:[20-21]

Obstacle Rectangle: X:[120-181] — Y:[40-41]

Obstacle Rectangle: X:[40-61] — Y:[60-61]

Obstacle Rectangle: X:[60-81] — Y:[80-81]

Obstacle Rectangle: X:[100-141] — Y:[100-101]

Obstacle Rectangle: X:[20-41] — Y:[120-121]

Obstacle Rectangle: X:[140-161] — Y:[120-121]

Obstacle Rectangle: X:[60-81] — Y:[140-141]

Obstacle Rectangle: X:[20-61] — Y:[160-161]

Obstacle Rectangle: X:[100-141] — Y:[160-161]

Obstacle Rectangle: X:[40-61] — Y:[180-181]

========================================

PlankPileOne: W:50 H:50

Robot Rectangle: X:[10-41] — Y:[2-7]

Goal Rectangle: X:[10-41] — Y:[43-47]

—————————————-

Obstacle Rectangle: X:[10-21] — Y:[16-17]

Obstacle Rectangle: X:[30-41] — Y:[16-17]

Obstacle Rectangle: X:[10-41] — Y:[32-33]

========================================

PlankPileTwo: W:100 H:100

Robot Rectangle: X:[15-86] — Y:[2-20]

Goal Rectangle: X:[15-86] — Y:[80-97]

—————————————-

Obstacle Rectangle: X:[15-41] — Y:[25-26]

Obstacle Rectangle: X:[60-86] — Y:[25-26]

Obstacle Rectangle: X:[15-86] — Y:[50-51]

Obstacle Rectangle: X:[15-41] — Y:[75-76]

Obstacle Rectangle: X:[60-86] — Y:[75-76]

========================================

PlankPileThree: W:200 H:200

Robot Rectangle: X:[5-195] — Y:[5-15]

Goal Rectangle: X:[5-195] — Y:[185-195]
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—————————————-

Obstacle Rectangle: X:[28-56] — Y:[30-31]

Obstacle Rectangle: X:[84-112] — Y:[30-31]

Obstacle Rectangle: X:[140-168] — Y:[30-31]

Obstacle Rectangle: X:[0-20] — Y:[60-61]

Obstacle Rectangle: X:[40-80] — Y:[60-61]

Obstacle Rectangle: X:[120-160] — Y:[60-61]

Obstacle Rectangle: X:[180-198] — Y:[60-61]

Obstacle Rectangle: X:[22-44] — Y:[90-91]

Obstacle Rectangle: X:[66-88] — Y:[90-91]

Obstacle Rectangle: X:[110-132] — Y:[90-91]

Obstacle Rectangle: X:[154-176] — Y:[90-91]

Obstacle Rectangle: X:[0-30] — Y:[120-121]

Obstacle Rectangle: X:[50-150] — Y:[120-121]

Obstacle Rectangle: X:[170-198] — Y:[120-121]

Obstacle Rectangle: X:[22-44] — Y:[150-151]

Obstacle Rectangle: X:[66-88] — Y:[150-151]

Obstacle Rectangle: X:[110-132] — Y:[150-151]

Obstacle Rectangle: X:[154-176] — Y:[150-151]

Obstacle Rectangle: X:[0-30] — Y:[180-181]

Obstacle Rectangle: X:[50-150] — Y:[180-181]

Obstacle Rectangle: X:[170-198] — Y:[180-181]

========================================

CorridorOne: W:50 H:50

Robot Rectangle: X:[3-8] — Y:[5-45]

Goal Rectangle: X:[43-48] — Y:[5-45]

—————————————-

Obstacle Rectangle: X:[13-37] — Y:[0-21]

Obstacle Rectangle: X:[13-37] — Y:[30-49]

========================================

CorridorTwo: W:50 H:50

Robot Rectangle: X:[3-8] — Y:[5-45]

Goal Rectangle: X:[43-48] — Y:[5-45]

—————————————-

Obstacle Rectangle: X:[13-23] — Y:[0-21]

Obstacle Rectangle: X:[23-37] — Y:[0-11]

Obstacle Rectangle: X:[13-30] — Y:[30-49]

Obstacle Rectangle: X:[30-37] — Y:[18-49]

========================================
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CorridorThree: W:50 H:50

Robot Rectangle: X:[3-8] — Y:[5-45]

Goal Rectangle: X:[43-48] — Y:[5-45]

—————————————-

Obstacle Rectangle: X:[13-37] — Y:[0-7]

Obstacle Rectangle: X:[13-18] — Y:[0-35]

Obstacle Rectangle: X:[13-28] — Y:[29-37]

Obstacle Rectangle: X:[23-37] — Y:[14-22]

Obstacle Rectangle: X:[32-37] — Y:[15-49]

Obstacle Rectangle: X:[13-37] — Y:[43-49]

========================================

BugTrapOne: W:50 H:50

Robot Rectangle: X:[10-41] — Y:[3-7]

Goal Rectangle: X:[13-38] — Y:[18-25]

—————————————-

Obstacle Rectangle: X:[10-41] — Y:[15-16]

Obstacle Rectangle: X:[10-11] — Y:[15-36]

Obstacle Rectangle: X:[40-41] — Y:[15-36]

========================================

BugTrapTwo: W:50 H:50

Robot Rectangle: X:[10-41] — Y:[3-7]

Goal Rectangle: X:[13-38] — Y:[18-25]

—————————————-

Obstacle Rectangle: X:[10-41] — Y:[15-16]

Obstacle Rectangle: X:[10-11] — Y:[15-36]

Obstacle Rectangle: X:[40-41] — Y:[15-36]

Obstacle Rectangle: X:[10-16] — Y:[35-36]

Obstacle Rectangle: X:[35-41] — Y:[35-36]

========================================

BugTrapThree: W:50 H:50

Robot Rectangle: X:[10-41] — Y:[3-7]

Goal Rectangle: X:[13-38] — Y:[18-25]

—————————————-

Obstacle Rectangle: X:[10-41] — Y:[15-16]

Obstacle Rectangle: X:[10-11] — Y:[15-36]

Obstacle Rectangle: X:[40-41] — Y:[15-36]

Obstacle Rectangle: X:[10-23] — Y:[35-36]

Obstacle Rectangle: X:[28-41] — Y:[35-36]



All Experimental Results

This appendix contains all the results from the experiment conducted in Chapter

5. The results are grouped by different map types where:

• Approach: the name of the navigational approach

• Overall: the overall achieved score for this approach on the specific map

type

• Success: the rate at which the robot successfully reaches the goal

• Path Sc: the path length score where the shorter the distance results in a

higher score

• Smooth Sc: the path smoothness score where straighter paths with fewer

turns obtain a higher score

• Time Sc: the duration it took the robot to achieve the goal location

• Vis Sc: the clearance rate from obstacles where robots that are safely navi-

gating further from the obstacle

All values are normalized to be between 0 and 1 where the optimal score is

1.

WallOne Overall Success Path Sc Smooth Sc Time Sc Vis Sc

BaseLine 0.861 1.00 0.90 0.77 0.90 0.72
AStar 0.861 1.00 0.90 0.78 0.90 0.72
RRT 0.857 1.00 0.89 0.77 0.90 0.71

RRTExtended 0.858 1.00 0.90 0.77 0.90 0.71
PotentialField 0.802 0.93 0.90 0.77 0.90 0.73
PheromoneField 0.862 1.00 0.90 0.78 0.90 0.72

Table 1: This table shows the scores for the map type: ’WallOne’ in the range of
[0.0-1.0]
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WallTwo Overall Success Path Sc Smooth Sc Time Sc Vis Sc

BaseLine 0.855 1.00 0.90 0.83 0.90 0.61
AStar 0.851 1.00 0.89 0.83 0.90 0.60
RRT 0.845 1.00 0.87 0.83 0.90 0.62

RRTExtended 0.849 1.00 0.88 0.83 0.90 0.62
PotentialField 0.503 0.59 0.90 0.77 0.90 0.65
PheromoneField 0.838 0.99 0.87 0.84 0.90 0.62

Table 2: This table shows the scores for the map type: ’WallTwo’ in the range of
[0.0-1.0]

WallThree Overall Success Path Sc Smooth Sc Time Sc Vis Sc

BaseLine 0.851 1.00 0.90 0.88 0.90 0.53
AStar 0.845 1.00 0.89 0.88 0.90 0.52
RRT 0.830 1.00 0.85 0.84 0.89 0.56

RRTExtended 0.838 1.00 0.87 0.84 0.90 0.55
PotentialField 0.234 0.28 0.90 0.72 0.90 0.57
PheromoneField 0.700 0.85 0.84 0.87 0.89 0.54

Table 3: This table shows the scores for the map type: ’WallThree’ in the range of
[0.0-1.0]

SlitOne Overall Success Path Sc Smooth Sc Time Sc Vis Sc

BaseLine 0.866 1.00 0.90 0.83 0.90 0.70
AStar 0.865 1.00 0.90 0.83 0.90 0.69
RRT 0.860 1.00 0.89 0.81 0.90 0.69

RRTExtended 0.863 1.00 0.90 0.83 0.90 0.69
PotentialField 0.801 0.92 0.90 0.85 0.90 0.71
PheromoneField 0.867 1.00 0.90 0.84 0.90 0.70

Table 4: This table shows the scores for the map type: ’SlitOne’ in the range of
[0.0-1.0]

SlitTwo Overall Success Path Sc Smooth Sc Time Sc Vis Sc

BaseLine 0.857 1.00 0.90 0.82 0.90 0.64
AStar 0.853 1.00 0.90 0.81 0.90 0.63
RRT 0.846 1.00 0.88 0.80 0.90 0.64

RRTExtended 0.851 1.00 0.89 0.81 0.90 0.64
PotentialField 0.637 0.74 0.90 0.82 0.90 0.67
PheromoneField 0.846 0.99 0.89 0.84 0.90 0.65

Table 5: This table shows the scores for the map type: ’SlitTwo’ in the range of
[0.0-1.0]
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SlitThree Overall Success Path Sc Smooth Sc Time Sc Vis Sc

BaseLine 0.850 1.00 0.90 0.86 0.90 0.54
AStar 0.843 1.00 0.89 0.85 0.90 0.53
RRT 0.828 1.00 0.85 0.84 0.89 0.55

RRTExtended 0.834 1.00 0.88 0.84 0.88 0.54
PotentialField 0.356 0.42 0.90 0.82 0.90 0.56
PheromoneField 0.807 0.98 0.84 0.87 0.89 0.54

Table 6: This table shows the scores for the map type: ’SlitThree’ in the range of
[0.0-1.0]

RoomOne Overall Success Path Sc Smooth Sc Time Sc Vis Sc

BaseLine 0.838 1.00 0.90 0.95 0.90 0.36
AStar 0.829 1.00 0.89 0.94 0.90 0.34
RRT 0.821 1.00 0.86 0.94 0.89 0.37

RRTExtended 0.825 1.00 0.88 0.94 0.89 0.37
PotentialField 0.326 0.39 0.90 0.93 0.90 0.35
PheromoneField 0.785 0.96 0.86 0.92 0.89 0.36

Table 7: This table shows the scores for the map type: ’RoomOne’ in the range of
[0.0-1.0]

RoomTwo Overall Success Path Sc Smooth Sc Time Sc Vis Sc

BaseLine 0.859 1.00 0.90 0.93 0.90 0.54
AStar 0.847 1.00 0.88 0.93 0.90 0.50
RRT 0.825 1.00 0.83 0.91 0.88 0.56

RRTExtended 0.831 1.00 0.86 0.91 0.87 0.55
PotentialField 0.222 0.26 0.90 0.88 0.90 0.55
PheromoneField 0.665 0.81 0.83 0.88 0.89 0.53

Table 8: This table shows the scores for the map type: ’RoomTwo’ in the range of
[0.0-1.0]

RoomThree Overall Success Path Sc Smooth Sc Time Sc Vis Sc

BaseLine 0.884 1.00 0.90 0.96 0.90 0.71
AStar 0.866 1.00 0.88 0.96 0.90 0.64
RRT 0.822 1.00 0.82 0.91 0.82 0.74

RRTExtended 0.807 1.00 0.86 0.91 0.75 0.70
PotentialField 0.151 0.17 0.90 0.94 0.90 0.75
PheromoneField 0.416 0.49 0.82 0.94 0.89 0.73

Table 9: This table shows the scores for the map type: ’RoomThree’ in the range of
[0.0-1.0]
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PlankPileOne Overall Success Path Sc Smooth Sc Time Sc Vis Sc

BaseLine 0.847 1.00 0.90 0.93 0.90 0.45
AStar 0.840 1.00 0.88 0.94 0.90 0.44
RRT 0.821 1.00 0.85 0.88 0.89 0.46

RRTExtended 0.829 1.00 0.87 0.88 0.89 0.46
PotentialField 0.000 0.00 0.00 0.00 0.00 0.00
PheromoneField 0.814 0.99 0.87 0.83 0.90 0.46

Table 10: This table shows the scores for the map type: ’PlankPileOne’ in the range
of [0.0-1.0]

PlankPileTwo Overall Success Path Sc Smooth Sc Time Sc Vis Sc

BaseLine 0.873 1.00 0.90 0.95 0.90 0.63
AStar 0.861 1.00 0.88 0.97 0.90 0.59
RRT 0.837 1.00 0.83 0.90 0.89 0.65

RRTExtended 0.848 1.00 0.86 0.91 0.89 0.64
PotentialField 0.000 0.00 0.00 0.00 0.00 0.00
PheromoneField 0.787 0.95 0.82 0.85 0.89 0.65

Table 11: This table shows the scores for the map type: ’PlankPileTwo’ in the range
of [0.0-1.0]

PlankPileThree Overall Success Path Sc Smooth Sc Time Sc Vis Sc

BaseLine 0.895 1.00 0.90 0.97 0.90 0.78
AStar 0.876 1.00 0.88 0.97 0.90 0.70
RRT 0.817 0.98 0.83 0.90 0.84 0.78

RRTExtended 0.837 1.00 0.87 0.92 0.81 0.74
PotentialField 0.000 0.00 0.00 0.00 0.00 0.00
PheromoneField 0.759 0.88 0.85 0.90 0.90 0.76

Table 12: This table shows the scores for the map type: ’PlankPileThree’ in the range
of [0.0-1.0]

CorridorOne Overall Success Path Sc Smooth Sc Time Sc Vis Sc

BaseLine 0.823 1.00 0.90 0.85 0.90 0.33
AStar 0.819 1.00 0.90 0.84 0.90 0.33
RRT 0.809 1.00 0.86 0.84 0.89 0.36

RRTExtended 0.812 1.00 0.89 0.80 0.89 0.35
PotentialField 0.276 0.34 0.90 0.74 0.90 0.36
PheromoneField 0.702 0.87 0.88 0.77 0.90 0.35

Table 13: This table shows the scores for the map type: ’CorridorOne’ in the range
of [0.0-1.0]
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CorridorTwo Overall Success Path Sc Smooth Sc Time Sc Vis Sc

BaseLine 0.829 1.00 0.90 0.94 0.90 0.30
AStar 0.819 1.00 0.89 0.91 0.90 0.28
RRT 0.801 1.00 0.85 0.86 0.89 0.32

RRTExtended 0.810 1.00 0.88 0.87 0.89 0.31
PotentialField 0.081 0.10 0.89 0.76 0.90 0.31
PheromoneField 0.708 0.89 0.86 0.78 0.89 0.31

Table 14: This table shows the scores for the map type: ’CorridorTwo’ in the range
of [0.0-1.0]

CorridorThree Overall Success Path Sc Smooth Sc Time Sc Vis Sc

BaseLine 0.822 1.00 0.90 0.95 0.90 0.22
AStar 0.812 1.00 0.88 0.94 0.90 0.22
RRT 0.794 1.00 0.85 0.88 0.89 0.25

RRTExtended 0.798 1.00 0.88 0.89 0.88 0.24
PotentialField 0.000 0.00 0.00 0.00 0.00 0.00
PheromoneField 0.556 0.72 0.82 0.84 0.89 0.23

Table 15: This table shows the scores for the map type: ’CorridorThree’ in the range
of [0.0-1.0]

BugTrapOne Overall Success Path Sc Smooth Sc Time Sc Vis Sc

BaseLine 0.841 1.00 0.90 0.96 0.90 0.37
AStar 0.832 1.00 0.88 0.96 0.90 0.35
RRT 0.816 1.00 0.84 0.93 0.89 0.40

RRTExtended 0.825 1.00 0.87 0.93 0.89 0.39
PotentialField 0.000 0.00 0.00 0.00 0.00 0.00
PheromoneField 0.822 1.00 0.87 0.88 0.90 0.40

Table 16: This table shows the scores for the map type: ’BugTrapOne’ in the range
of [0.0-1.0]

BugTrapTwo Overall Success Path Sc Smooth Sc Time Sc Vis Sc

BaseLine 0.841 1.00 0.90 0.97 0.90 0.36
AStar 0.831 1.00 0.88 0.96 0.90 0.35
RRT 0.817 1.00 0.85 0.92 0.89 0.40

RRTExtended 0.824 1.00 0.87 0.93 0.89 0.39
PotentialField 0.000 0.00 0.00 0.00 0.00 0.00
PheromoneField 0.822 1.00 0.87 0.88 0.90 0.40

Table 17: This table shows the scores for the map type: ’BugTrapTwo’ in the range
of [0.0-1.0]
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BugTrapThree Overall Success Path Sc Smooth Sc Time Sc Vis Sc

BaseLine 0.838 1.00 0.90 0.97 0.90 0.33
AStar 0.829 1.00 0.88 0.96 0.90 0.33
RRT 0.812 1.00 0.84 0.92 0.89 0.38

RRTExtended 0.821 1.00 0.87 0.91 0.89 0.37
PotentialField 0.000 0.00 0.00 0.00 0.00 0.00
PheromoneField 0.820 1.00 0.87 0.87 0.90 0.38

Table 18: This table shows the scores for the map type: ’BugTrapThree’ in the range
of [0.0-1.0]

ObstacleOne Overall Success Path Sc Smooth Sc Time Sc Vis Sc

BaseLine 0.876 1.00 0.90 0.89 0.90 0.72
AStar 0.869 1.00 0.90 0.87 0.90 0.70
RRT 0.808 0.96 0.81 0.87 0.89 0.75

RRTExtended 0.824 0.97 0.87 0.80 0.88 0.74
PotentialField 0.036 0.04 0.90 0.95 0.90 0.84
PheromoneField 0.807 0.93 0.87 0.92 0.90 0.72

Table 19: This table shows the scores for the map type: ’ObstacleOne’ in the range
of [0.0-1.0]

ObstacleTwo Overall Success Path Sc Smooth Sc Time Sc Vis Sc

BaseLine 0.842 1.00 0.90 0.89 0.90 0.44
AStar 0.829 1.00 0.89 0.90 0.89 0.40
RRT 0.285 0.36 0.77 0.87 0.87 0.51

RRTExtended 0.446 0.60 0.84 0.85 0.69 0.49
PotentialField 0.000 0.00 0.00 0.00 0.00 0.00
PheromoneField 0.347 0.43 0.82 0.87 0.89 0.45

Table 20: This table shows the scores for the map type: ’ObstacleTwo’ in the range
of [0.0-1.0]

ObstacleThree Overall Success Path Sc Smooth Sc Time Sc Vis Sc

BaseLine 0.823 1.00 0.90 0.92 0.90 0.27
AStar 0.792 1.00 0.86 0.93 0.87 0.22
RRT 0.007 0.01 0.71 0.88 0.84 0.38

RRTExtended 0.000 0.00 0.00 0.00 0.00 0.00
PotentialField 0.000 0.00 0.00 0.00 0.00 0.00
PheromoneField 0.016 0.02 0.86 0.85 0.90 0.33

Table 21: This table shows the scores for the map type: ’ObstacleThree’ in the range
of [0.0-1.0]
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ObstacleFour Overall Success Path Sc Smooth Sc Time Sc Vis Sc

BaseLine 0.815 1.00 0.90 0.93 0.90 0.19
AStar 0.622 0.81 0.84 0.94 0.85 0.16
RRT 0.000 0.00 0.00 0.00 0.00 0.00

RRTExtended 0.000 0.00 0.00 0.00 0.00 0.00
PotentialField 0.000 0.00 0.00 0.00 0.00 0.00
PheromoneField 0.000 0.00 0.00 0.00 0.00 0.00

Table 22: This table shows the scores for the map type: ’ObstacleFour’ in the range
of [0.0-1.0]

ObstacleFive Overall Success Path Sc Smooth Sc Time Sc Vis Sc

BaseLine 0.811 1.00 0.90 0.93 0.90 0.16
AStar 0.712 0.93 0.84 0.94 0.84 0.14
RRT 0.000 0.00 0.00 0.00 0.00 0.00

RRTExtended 0.000 0.00 0.00 0.00 0.00 0.00
PotentialField 0.000 0.00 0.00 0.00 0.00 0.00
PheromoneField 0.000 0.00 0.00 0.00 0.00 0.00

Table 23: This table shows the scores for the map type: ’ObstacleFive’ in the range
of [0.0-1.0]

TunnelOne Overall Success Path Sc Smooth Sc Time Sc Vis Sc

BaseLine 0.843 1.00 0.90 0.91 0.90 0.44
AStar 0.830 1.00 0.89 0.90 0.89 0.40
RRT 0.684 0.85 0.81 0.89 0.89 0.46

RRTExtended 0.734 0.97 0.86 0.86 0.72 0.46
PotentialField 0.000 0.00 0.00 0.00 0.00 0.00
PheromoneField 0.694 0.85 0.87 0.79 0.90 0.45

Table 24: This table shows the scores for the map type: ’TunnelOne’ in the range of
[0.0-1.0]

TunnelTwo Overall Success Path Sc Smooth Sc Time Sc Vis Sc

BaseLine 0.833 1.00 0.90 0.92 0.90 0.35
AStar 0.819 1.00 0.88 0.93 0.89 0.31
RRT 0.524 0.67 0.79 0.89 0.88 0.36

RRTExtended 0.645 0.91 0.85 0.89 0.62 0.37
PotentialField 0.000 0.00 0.00 0.00 0.00 0.00
PheromoneField 0.632 0.79 0.86 0.77 0.90 0.36

Table 25: This table shows the scores for the map type: ’TunnelTwo’ in the range of
[0.0-1.0]
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TunnelThree Overall Success Path Sc Smooth Sc Time Sc Vis Sc

BaseLine 0.828 1.00 0.90 0.92 0.90 0.30
AStar 0.812 1.00 0.88 0.93 0.88 0.28
RRT 0.595 0.76 0.79 0.90 0.88 0.34

RRTExtended 0.498 0.72 0.85 0.89 0.59 0.34
PotentialField 0.000 0.00 0.00 0.00 0.00 0.00
PheromoneField 0.532 0.67 0.86 0.76 0.90 0.32

Table 26: This table shows the scores for the map type: ’TunnelThree’ in the range
of [0.0-1.0]

TunnelFour Overall Success Path Sc Smooth Sc Time Sc Vis Sc

BaseLine 0.827 1.00 0.90 0.95 0.90 0.27
AStar 0.808 1.00 0.87 0.95 0.88 0.25
RRT 0.525 0.68 0.80 0.90 0.86 0.29

RRTExtended 0.382 0.57 0.86 0.89 0.53 0.29
PotentialField 0.000 0.00 0.00 0.00 0.00 0.00
PheromoneField 0.424 0.54 0.86 0.75 0.89 0.28

Table 27: This table shows the scores for the map type: ’TunnelFour’ in the range of
[0.0-1.0]

TunnelFive Overall Success Path Sc Smooth Sc Time Sc Vis Sc

BaseLine 0.824 1.00 0.90 0.96 0.90 0.23
AStar 0.803 1.00 0.87 0.96 0.88 0.22
RRT 0.607 0.79 0.82 0.90 0.84 0.26

RRTExtended 0.295 0.46 0.87 0.89 0.46 0.25
PotentialField 0.000 0.00 0.00 0.00 0.00 0.00
PheromoneField 0.423 0.54 0.86 0.74 0.89 0.25

Table 28: This table shows the scores for the map type: ’TunnelFive’ in the range of
[0.0-1.0]


	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Motivation
	Aim and contributions
	Selection of references
	Structure of this work
	Scientific output

	Overview of navigational approaches
	An introduction to navigational approaches
	Global navigational approaches
	Local path planning

	Comparing evaluation frameworks
	Closing statement

	Benchmarking navigational approaches
	Characteristics of the proposed framework
	Simulator overview
	Problem environments
	Static Environments
	Generated Environments

	Navigational approaches
	A* approach
	Potential field approaches
	Rapidly exploring random tree approaches

	Evaluation methodology
	Chapter Summary

	Evaluating Potential Field Approaches
	Potential Field Parameter Evaluation
	Pheromone Potential Field Parameter Evaluation
	Benchmarking the approaches
	Closing statement

	Benchmarking navigational approaches
	Framework's experimental setup
	Comparison of the RRT approaches
	Performance of the navigational approaches
	Performance under environments and metrics
	Approach-wise analysis

	Summary of findings

	Conclusions and Future Research Directions
	Summary of contributions of the thesis
	Navigational Environments
	Pheromone Potential Field
	Evaluation Methodology

	Future Research Directions
	Integration with Robotic Frameworks
	Approaches inclusion
	Environment Improvements
	Adaptive motion planners

	Final Summary

	References
	All Maps
	All Experimental Results

