
OXFORD BROOKES UNIVERSITY

Development of Machine Learning Models to Detect Dynamic
Disturbances in Human Gait

A thesis submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Computing and Mathematical Sciences

by

Shadi Eltanani

Committee in charge:

Dr Tjeerd V. olde Scheper, Chair
Professor Helen Dawes
Dr Peter Ball
Professor Angelo Cangelosi

2022



Copyright
Shadi Eltanani, 2022
All rights reserved.



The thesis of Shadi Eltanani is approved, and it
is acceptable in quality and form for publication
on microfilm:

Chair

Oxford Brookes University

2022

iii



DEDICATION

To the soul of my father, Yusuf who always wished me the best
success in my study and life
To my lovely mother, Amal

To my Wife, Hadil
and

to my dearest brothers and sisters

iv



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . xxvii

Vita and Publications . . . . . . . . . . . . . . . . . . . . . . . . xxviii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxix

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Criticality Analysis Methodology . . . . . . . . . . . . . . 3
1.3 Modelling Human Gait: Exploring the Spatiotemporal Os-

cillation Behaviour of Locomotion System . . . . . . . . . 4
1.4 Incorporation of Biomechanical Models for Gait Distur-

bances Detection . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 RCC Method Based on Theoretical Dynamic Model . . . . 10
1.6 Thesis Goals . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.7 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . 12
1.8 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . 13

Chapter 2 Literature Survey on Gait Analysis . . . . . . . . . . . . . . . . 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Overview to Machine Learning . . . . . . . . . . . . . . . . 18
2.3 Types of Machine Learning Algorithms . . . . . . . . . . . 19
2.4 State of the Art on Gait Analysis . . . . . . . . . . . . . . 23

2.4.1 Smart Motion Capture Systems . . . . . . . . . . . 24
2.4.2 Smart Homes . . . . . . . . . . . . . . . . . . . . . 26
2.4.3 Advanced Technology Using Virtual and Animation

Environments . . . . . . . . . . . . . . . . . . . . . 27

v



2.5 Machine Learning for Gait Analysis: A Critical Review of
Techniques and Limitations . . . . . . . . . . . . . . . . . 29
2.5.1 Recognition of Gait Phase and Event Prediction . . 29
2.5.2 Detection of Abnormal Gait Patterns . . . . . . . . 31
2.5.3 Monitoring of Neurological Diseases . . . . . . . . . 31
2.5.4 Gender Recognition . . . . . . . . . . . . . . . . . . 33

2.6 A Review of Support Vector Machine-based Approaches in
Human Gait Analysis with a Focus on Criticality Analysis 35

2.7 An Overview of K-Nearest Neighbour (KNN) Approaches
for Analysing Human Gait . . . . . . . . . . . . . . . . . . 43

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Chapter 3 Mathematical Modelling of Human Gait for Criticality Analysis 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Overview to Dynamic Systems . . . . . . . . . . . . . . . . 48
3.3 Incorporation of Biomechanical Berry Model . . . . . . . . 50
3.4 The Extended Model for Human Gait . . . . . . . . . . . . 53
3.5 Topology of Phase Space . . . . . . . . . . . . . . . . . . . 56
3.6 Extended Model Simulation Results . . . . . . . . . . . . . 56
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Chapter 4 Comparative Analysis of Support Vector Machine (SVM) and
K-Nearest Neighbour s (KNN) Algorithms for Human Gait . . . 63
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 K-Nearest Neighbour Algorithm . . . . . . . . . . . . . . . 64

4.2.1 Overview of KNN . . . . . . . . . . . . . . . . . . . 64
4.3 Support Vector Machine Algorithm . . . . . . . . . . . . . 65

4.3.1 Overview of SVM . . . . . . . . . . . . . . . . . . . 65
4.3.2 Basic Theory of SVM . . . . . . . . . . . . . . . . . 66

4.4 Proposed Support Vector Machine Algorithm . . . . . . . . 70
4.4.1 Preparing the Machine Learning Dataset . . . . . . 71
4.4.2 Performance Analysis of the Proposed SVM Model 71

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Chapter 5 Detecting Human Gait Metabolism Disorders Based on the Crit-
icality Analysis System . . . . . . . . . . . . . . . . . . . . . . . 75
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 CARDIGAN Dataset . . . . . . . . . . . . . . . . . . . . . 76
5.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 78

vi



5.3.1 Data Analysis . . . . . . . . . . . . . . . . . . . . . 79
5.3.2 Features Extraction . . . . . . . . . . . . . . . . . . 79
5.3.3 Criticality Analysis as a Data Representation Method 81

5.4 Statistical Analysis of Criticality Analysis Data . . . . . . 87
5.4.1 Scatter Analysis . . . . . . . . . . . . . . . . . . . . 87
5.4.2 Spatiotemporal Analysis . . . . . . . . . . . . . . . 94
5.4.3 Histogram Analysis . . . . . . . . . . . . . . . . . . 97

5.5 The Proposed SVM Classifier . . . . . . . . . . . . . . . . 101
5.6 The Proposed SVM Training . . . . . . . . . . . . . . . . . 102
5.7 Simulation Results . . . . . . . . . . . . . . . . . . . . . . 103

5.7.1 Confusion Matrix . . . . . . . . . . . . . . . . . . . 103
5.7.2 Receiver Operating Characteristics (ROC) Curve . 105
5.7.3 Area Under the ROC Curve (AROC) . . . . . . . . 108
5.7.4 Classification Decision Boundary . . . . . . . . . . 111
5.7.5 Mean Square Error Rate and Standard Deviation Test113

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Chapter 6 Detecting Dynamic Disturbances in Human Gait . . . . . . . . . 117
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3 MoRES Dataset . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3.1 Features Extraction . . . . . . . . . . . . . . . . . . 120
6.3.2 Criticality Analysis as a Data Representation Method121

6.4 Statistical Analysis of Criticality Analysis Data . . . . . . 125
6.4.1 Scatter Analysis . . . . . . . . . . . . . . . . . . . . 125
6.4.2 Spatiotemporal Analysis . . . . . . . . . . . . . . . 131
6.4.3 Histogram Analysis . . . . . . . . . . . . . . . . . . 134

6.5 The Proposed SVM Classifier . . . . . . . . . . . . . . . . 139
6.6 The Proposed SVM Training . . . . . . . . . . . . . . . . . 140
6.7 Simulation Results . . . . . . . . . . . . . . . . . . . . . . 140

6.7.1 Confusion Matrix . . . . . . . . . . . . . . . . . . . 141
6.7.2 Receiver Operating Characteristics (ROC) Curve . 144
6.7.3 Area Under the ROC Curve (AROC) . . . . . . . . 148
6.7.4 Classification Decision Boundary . . . . . . . . . . 150
6.7.5 Mean Square Error Rate and Standard Deviation Test158

6.8 Additional Experiment: K-Nearest Neighbour (KNN) Al-
gorithm for Classifying Human Gait Disturbances . . . . . 159

6.9 Methodology of KNN Experiment . . . . . . . . . . . . . . 159

vii



6.10 Cross Validation . . . . . . . . . . . . . . . . . . . . . . . . 160
6.11 Measuring Mean Square Error Rate . . . . . . . . . . . . . 160
6.12 Optimal Value of K in KNN Model . . . . . . . . . . . . . 161
6.13 Simulation Results of KNN Experiment . . . . . . . . . . . 161
6.14 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Chapter 7 Prediction of Human Age Based on Human Gait . . . . . . . . . 169
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.3 Museum Dataset . . . . . . . . . . . . . . . . . . . . . . . 171

7.3.1 Data Collection . . . . . . . . . . . . . . . . . . . . 172
7.3.2 Data Analysis and Features Extraction . . . . . . . 172
7.3.3 Criticality Analysis as a Data Representation Method172

7.4 Statistical Analysis of Criticality Analysis Data . . . . . . 176
7.4.1 Scatter Analysis . . . . . . . . . . . . . . . . . . . . 176
7.4.2 Spatiotemporal Analysis . . . . . . . . . . . . . . . 180
7.4.3 Histogram Analysis . . . . . . . . . . . . . . . . . . 184

7.5 The Proposed SVM Classifier . . . . . . . . . . . . . . . . 188
7.6 The Proposed SVM Training . . . . . . . . . . . . . . . . . 188

7.6.1 Experimental Settings . . . . . . . . . . . . . . . . 188
7.7 Simulation Results . . . . . . . . . . . . . . . . . . . . . . 190

7.7.1 Confusion Matrix . . . . . . . . . . . . . . . . . . . 191
7.7.2 Receiver Operating Characteristics (ROC) Curve . 194
7.7.3 Area Under the ROC Curve (AROC) . . . . . . . . 195
7.7.4 Classification Decision Boundary . . . . . . . . . . 196
7.7.5 Mean Square Error Rate and Standard Deviation Test197

7.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Chapter 8 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . 201
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Appendix A The Performance Measure Metrics of CARDIGAN Dataset . . . 206

Appendix B The Performance Measure Metrics of MoRES Dataset . . . . . . 219

Appendix C The Performance Measure Metrics of Museum Dataset . . . . . 232

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

viii



LIST OF FIGURES

Figure 3.1: Phase plot projection in the f −m plane of the uncontrolled Berry
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 3.2: Time-variations of m and f along the uncontrolled Berry model. 57
Figure 3.3: Time-variations of p and g along the uncontrolled Berry model. . 58
Figure 3.4: Phase plot projection in the f − m plane of the controlled Berry

model at ξp = −1 and ξp = −3 respectively. . . . . . . . . . . . . 59
Figure 3.5: Time-variations and their corresonding Log-log plots of m and f

along the controlled Berry model at ξp = −1. . . . . . . . . . . . 59
Figure 3.6: Time-variations and their corresonding Log-log plots of p and g

along the controlled Berry model at ξp = −1. . . . . . . . . . . . 60
Figure 3.7: Time-variations and their corresonding Log-log plots of m and f

along the controlled Berry model at ξp = −3. . . . . . . . . . . . 60
Figure 3.8: Time-variations and their corresponding Log-log plots of p and g

along the controlled Berry model at ξp = −3. . . . . . . . . . . . 61

Figure 5.1: The Methodology of CARDIGAN Data Analysis . . . . . . . . . 78
Figure 5.2: This figure shows the phase space plots for healthy control and

obesity walk patterns that correspond to the clinical gait exper-
iment conducted in w1. On the left is the healthy control walk
patterns portrait and on the right are the obesity walk patterns. . 83

Figure 5.3: This figure shows the phase space plots for healthy control and
obesity walk patterns that correspond to the clinical gait exper-
iment conducted in w2. On the left is the healthy control walk
patterns portrait and on the right are the obesity walk patterns. . 84

Figure 5.4: This figure shows the phase space plots for healthy control and
obesity walk patterns that correspond to the clinical gait exper-
iment conducted in w3. On the left is the healthy control walk
patterns portrait and on the right are the obesity walk patterns. . 84

Figure 5.5: This figure shows the phase space plots for healthy control and
obesity walk patterns that correspond to the clinical gait exper-
iment conducted in w4. On the left is the healthy control walk
patterns portrait and on the right are the obesity walk patterns. . 85

Figure 5.6: This figure shows the phase space plots for healthy control and
obesity walk patterns that correspond to the clinical gait exper-
iment conducted in w5. On the left is the healthy control walk
patterns portrait and on the right are the obesity walk patterns. . 85

ix



Figure 5.7: This figure shows the phase space plots for healthy control and
obesity walk patterns that correspond to the clinical gait exper-
iment conducted in w6. On the left is the healthy control walk
patterns portrait and on the right are the obesity walk patterns. . 86

Figure 5.8: This figure shows the scatter plots for healthy control and obe-
sity walk patterns that correspond to the clinical gait experiment
conducted in w1. On the left is the healthy control walk patterns
portrait and on the right are the obesity walk patterns. . . . . . . 88

Figure 5.9: This figure shows the scatter plots for healthy control and obe-
sity walk patterns that correspond to the clinical gait experiment
conducted in w2. On the left is the healthy control walk patterns
portrait and on the right are the obesity walk patterns. . . . . . . 89

Figure 5.10: This figure shows the scatter plots for healthy control and obe-
sity walk patterns that correspond to the clinical gait experiment
conducted in w3. On the left is the healthy control walk patterns
portrait and on the right are the obesity walk patterns. . . . . . . 89

Figure 5.11: This figure shows the scatter plots for healthy control and obe-
sity walk patterns that correspond to the clinical gait experiment
conducted in w4. On the left is the healthy control walk patterns
portrait and on the right are the obesity walk patterns. . . . . . . 90

Figure 5.12: This figure shows the scatter plots for healthy control and obe-
sity walk patterns that correspond to the clinical gait experiment
conducted in w5. On the left is the healthy control walk patterns
portrait and on the right are the obesity walk patterns. . . . . . . 90

Figure 5.13: This figure shows the scatter plots for healthy control and obe-
sity walk patterns that correspond to the clinical gait experiment
conducted in w6. On the left is the healthy control walk patterns
portrait and on the right are the obesity walk patterns. . . . . . . 91

Figure 5.14: The progression of healthy control gait for each individual over
a 6-week period. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Figure 5.15: The progression of obesity control gait for each individual over a
6-week period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Figure 5.16: This figure shows the box plots for healthy control and obesity
walk patterns that correspond to the clinical gait experiments
conducted in w1 and w2. . . . . . . . . . . . . . . . . . . . . . . . 95

Figure 5.17: This figure shows the box plots for healthy control and obesity
walk patterns that correspond to the clinical gait experiments
conducted in w3 and w4. . . . . . . . . . . . . . . . . . . . . . . . 96

x



Figure 5.18: This figure shows the box plots for healthy control and obesity
walk patterns that correspond to the clinical gait experiments
conducted in w5 and w6. . . . . . . . . . . . . . . . . . . . . . . . 96

Figure 5.19: This figure shows the histogram plots for healthy control and obe-
sity walk patterns that correspond to the clinical gait experiment
conducted in w1. On the left is the healthy control walk patterns
portrait and on the right are the obesity walk patterns. . . . . . . 98

Figure 5.20: This figure shows the histogram plots for healthy control and obe-
sity walk patterns that correspond to the clinical gait experiment
conducted in w2. On the left is the healthy control walk patterns
portrait and on the right are the obesity walk patterns. . . . . . . 98

Figure 5.21: This figure shows the histogram plots for healthy control and obe-
sity walk patterns that correspond to the clinical gait experiment
conducted in w3. On the left is the healthy control walk patterns
portrait and on the right are the obesity walk patterns. . . . . . . 99

Figure 5.22: This figure shows the histogram plots for healthy control and obe-
sity walk patterns that correspond to the clinical gait experiment
conducted in w4. On the left is the healthy control walk patterns
portrait and on the right are the obesity walk patterns. . . . . . . 99

Figure 5.23: This figure shows the histogram plots for healthy control and obe-
sity walk patterns that correspond to the clinical gait experiment
conducted in w5. On the left is the healthy control walk patterns
portrait and on the right are the obesity walk patterns. . . . . . . 100

Figure 5.24: This figure shows the histogram plots for healthy control and obe-
sity walk patterns that correspond to the clinical gait experiment
conducted in w6. On the left is the healthy control walk patterns
portrait and on the right are the obesity walk patterns. . . . . . . 100

Figure 5.25: ROC (Receiver Operating Characteristic) curves of w1 and w2
show the True Positive (Sensitivity) and False Positive (1-Specificity)
for the best different thresholds using kernel property of SVM. . . 106

Figure 5.26: ROC (Receiver Operating Characteristic) curves of w3 and w4
show the True Positive (Sensitivity) and False Positive (1-Specificity)
for the best different thresholds using kernel property of SVM. . . 107

Figure 5.27: ROC (Receiver Operating Characteristic) curves of w5 and w6
show the True Positive (Sensitivity) and False Positive (1-Specificity)
for the best different thresholds using kernel property of SVM. . . 107

Figure 5.28: The AROC versus the regularisation parameter C of w1 and w2. 109
Figure 5.29: The AROC versus the regularisation parameter C of w3 and w4. 110

xi



Figure 5.30: The AROC versus the regularisation parameter C of w5 and w6. 110
Figure 5.31: The boundary that separates the healthy control walk patterns

from the obesity patterns in an SVM model, with σ = 0.1 and
C = 0.1 for w1 and with σ = 0.1 and C = 1 for w2. . . . . . . . . 112

Figure 5.32: The boundary that separates the healthy control walk patterns
from the obesity patterns in an SVM model, with σ = 0.1 and
C = 1 for w3 and w4. . . . . . . . . . . . . . . . . . . . . . . . . . 113

Figure 5.33: The SVM decision boundary that separates the healthy control
walk patterns from the obesity patterns in an SVM model, with
σ = 0.1 and C = 10 for w5 and with σ = 0.1 and C = 1 for w6. . 113

Figure 5.34: This figure shows the average mean square error (MSE)(%) (on
the left) and the average standard deviation (%) (on the right)
of the SVM classification performance for each individual piece of
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Figure 6.1: The flowchart of MoRES proposed methodology. . . . . . . . . . 118
Figure 6.2: This figure shows the phase space plots for each walk pattern

that correspond to individual of p1. On the left is the normal
walk patterns portrait, while the strapped patterns are on the
right side of Figure 6.2. . . . . . . . . . . . . . . . . . . . . . . . 122

Figure 6.3: This figure shows the phase space plots for each walk pattern
that correspond to individual of p2. On the left is the normal
walk patterns portrait, while the strapped patterns are on the
right side of Figure 6.3. . . . . . . . . . . . . . . . . . . . . . . . 122

Figure 6.4: This figure shows the phase space plots for each walk pattern
that correspond to individual of p3. On the left is the normal
walk patterns portrait, while the strapped patterns are on the
right side of Figure 6.4. . . . . . . . . . . . . . . . . . . . . . . . 123

Figure 6.5: This figure shows the phase space plots for each walk pattern
that correspond to individual of p4. On the left is the normal
walk patterns portrait, while the strapped patterns are on the
right side of Figure 6.5. . . . . . . . . . . . . . . . . . . . . . . . 123

Figure 6.6: This figure shows the phase space plots for each walk pattern
that correspond to individual of p5. On the left is the normal
walk patterns portrait, while the strapped patterns are on the
right side of Figure 6.6. . . . . . . . . . . . . . . . . . . . . . . . 124

xii



Figure 6.7: This figure shows the phase space plots for each walk pattern for
all individuals of the same category. On the left is the normal
walk patterns portrait, while the strapped patterns are on the
right side of Figure 6.7. . . . . . . . . . . . . . . . . . . . . . . . 124

Figure 6.8: This figure shows the scatter plots for each walk pattern that
correspond to the individual p1. On the left is the normal walk
patterns distribution, while the strapped patterns distribution is
on the right side of Figure 6.8. . . . . . . . . . . . . . . . . . . . 126

Figure 6.9: This figure shows the scatter plots for each walk pattern that
correspond to the individual p2. On the left is the normal walk
patterns distribution, while the strapped patterns distribution is
on the right side of Figure 6.9. . . . . . . . . . . . . . . . . . . . 127

Figure 6.10: This figure shows the scatter plots for each walk pattern that
correspond to the individual p3. On the left is the normal walk
patterns distribution, while the strapped patterns distribution is
on the right side of Figure 6.10. . . . . . . . . . . . . . . . . . . . 128

Figure 6.11: This figure shows the scatter plots for each walk pattern that
correspond to the individual p4. On the left is the normal walk
patterns distribution, while the strapped patterns distribution is
on the right side of Figure 6.11. . . . . . . . . . . . . . . . . . . . 128

Figure 6.12: This figure shows the scatter plots for each walk pattern that
correspond to the individual p5. On the left is the normal walk
patterns distribution, while the strapped patterns distribution is
on the right side of Figure 6.12. . . . . . . . . . . . . . . . . . . . 129

Figure 6.13: This figure shows the scatter plots for each walk pattern for all
individuals of the same category. On the left is the normal walk
patterns distribution, while the strapped patterns distribution is
on the right side of Figure 6.13. . . . . . . . . . . . . . . . . . . . 129

Figure 6.14: This figure shows the spatiotemporal plots for each walk pattern
that correspond to each individual p1 and p2. . . . . . . . . . . . 132

Figure 6.15: This figure shows the spatiotemporal plots for each walk pattern
that correspond to each individual p3 and p4. . . . . . . . . . . . 133

Figure 6.16: This figure shows the spatiotemporal plots for each walk pattern
that correspond to each individual p5 and to all individuals from
the same category. . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Figure 6.17: This figure shows the histogram plots for each walk pattern that
correspond to the individual p1. . . . . . . . . . . . . . . . . . . . 135

xiii



Figure 6.18: This figure shows the histogram plots for each walk pattern that
correspond to the individual p2. . . . . . . . . . . . . . . . . . . . 136

Figure 6.19: This figure shows the histogram plots for each walk pattern that
correspond to the individual p3. . . . . . . . . . . . . . . . . . . . 136

Figure 6.20: This figure shows the histogram plots for each walk pattern that
correspond to the individual p4. . . . . . . . . . . . . . . . . . . . 137

Figure 6.21: This figure shows the histogram plots for each walk pattern that
correspond to the individual p5. . . . . . . . . . . . . . . . . . . . 137

Figure 6.22: This figure shows the histogram plots for each walk pattern of
individuals from the same gait category. . . . . . . . . . . . . . . 138

Figure 6.23: ROC (Receiver Operating Characteristic) curves of p1 show the
True Positive (Sensitivity) and False Positive (1-Specificity) for
the best different thresholds using kernel property of SVM. . . . . 145

Figure 6.24: ROC (Receiver Operating Characteristic) curves of p2 show the
True Positive (Sensitivity) and False Positive (1-Specificity) for
the best different thresholds using kernel property of SVM. . . . . 146

Figure 6.25: ROC (Receiver Operating Characteristic) curves of p3 show the
True Positive (Sensitivity) and False Positive (1-Specificity) for
the best different thresholds using kernel property of SVM. . . . . 146

Figure 6.26: ROC (Receiver Operating Characteristic) curves of p4 show the
True Positive (Sensitivity) and False Positive (1-Specificity) for
the best different thresholds using kernel property of SVM. . . . . 147

Figure 6.27: ROC (Receiver Operating Characteristic) curves of p5 show the
True Positive (Sensitivity) and False Positive (1-Specificity) for
the best different thresholds using kernel property of SVM. . . . . 147

Figure 6.28: ROC (Receiver Operating Characteristic) curves of all individu-
als’ gait subjects show the True Positive (Sensitivity) and False
Positive (1-Specificity) for the best different thresholds using ker-
nel property of SVM. . . . . . . . . . . . . . . . . . . . . . . . . . 148

Figure 6.29: The ROC area or Area under ROC curve (AROC) versus various
values of the regularisation parameter C when σ = 0.1 for each
individual p1 and p2, respectively. . . . . . . . . . . . . . . . . . . 149

Figure 6.30: The ROC area or Area under ROC curve (AROC) versus various
values of the regularisation parameter C when σ = 0.1 for each
individual p3 and p4, respectively. . . . . . . . . . . . . . . . . . . 149

Figure 6.31: The ROC area or Area under ROC curve (AROC) versus various
values of the regularisation parameter C when σ = 0.1 for the
individual p5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

xiv



Figure 6.32: The decision boundary when the SVM model trained on p1 nor-
mal walk patterns versus that of the strapped one, when: (a)
σ = 0.1 and C = 0.1 and (b) σ = 0.1 and C = 1. . . . . . . . . . 152

Figure 6.33: The decision boundary when the SVM model trained on p1 nor-
mal walk patterns versus that of the strapped one, when: σ = 0.1
and C = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Figure 6.34: The decision boundary when the SVM model trained on p2 nor-
mal walk patterns versus that of the strapped one, when: (a)
σ = 0.1 and C = 0.1 and (b) σ = 0.1 and C = 1. . . . . . . . . . 153

Figure 6.35: The decision boundary when the SVM model trained on p2 nor-
mal walk patterns versus that of the strapped one, when: σ = 0.1
and C = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Figure 6.36: The decision boundary when the SVM model trained on p3 nor-
mal walk patterns versus that of the strapped one, when: (a)
σ = 0.1 and C = 0.1 and (b) σ = 0.1 and C = 1. . . . . . . . . . 154

Figure 6.37: The decision boundary when the SVM model trained on p3 nor-
mal walk patterns versus that of the strapped one, when: σ = 0.1
and C = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Figure 6.38: The decision boundary when the SVM model trained on p4 nor-
mal walk patterns versus that of the strapped one, when: (a)
σ = 0.1 and C = 0.1 and (b) σ = 0.1 and C = 1. . . . . . . . . . 155

Figure 6.39: The decision boundary when the SVM model trained on p4 nor-
mal walk patterns versus that of the strapped one, when: σ = 0.1
and C = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Figure 6.40: The decision boundary when the SVM model trained on p5 nor-
mal walk patterns versus that of the strapped one, when: (a)
σ = 0.1 and C = 0.1 and (b) σ = 0.1 and C = 1. . . . . . . . . . 156

Figure 6.41: The decision boundary when the SVM model trained on p5 nor-
mal walk patterns versus that of the strapped one, when: σ = 0.1
and C = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Figure 6.42: The decision boundary when the SVM model trained on all indi-
viduals pAll normal walk patterns versus that of the strapped one,
when: (a) σ = 0.1 and C = 0.1 and (b) σ = 0.1 and C = 1. . . . 157

Figure 6.43: The decision boundary when the SVM model trained on pAll

normal walk patterns versus that of the strapped one, when: σ =
0.1 and C = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

xv



Figure 6.44: This figure shows the average mean square error (MSE)(%) (on
the left) and the average standard deviation (%) (on the right)
of the SVM classification performance for each individual piece of
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Figure 6.45: Pre-trained class labels associated with their medical conditions 162
Figure 6.46: Predicted class labels associated with their medical conditions . 163
Figure 6.47: Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Figure 6.48: MSE rates with respect to various k values . . . . . . . . . . . . 164
Figure 6.49: MSE rates against different data splitting ratios . . . . . . . . . 165
Figure 6.50: Simulation time versus various splitting ratios . . . . . . . . . . 166

Figure 7.1: The flowchart of the proposed methodology of Museum Dataset. 171
Figure 7.2: This figure shows the phase space plots for each walk pattern

that corresponds to each age category of the female group. . . . . 174
Figure 7.3: This figure shows the phase space plots for each walk pattern

that corresponds to each age category of the male group. . . . . . 175
Figure 7.4: This figure shows the scatter plots for each walk pattern that

corresponds to each age category (Children and Adolescents) of
the female group. . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Figure 7.5: This figure shows the scatter plots for each walk pattern that
corresponds to each age category (Young Adults and Middle Age)
of the female group. . . . . . . . . . . . . . . . . . . . . . . . . . 178

Figure 7.6: This figure shows the scatter plots for each walk pattern that
corresponds to each age category (Old Aged and All Ages Group)
of the female group. . . . . . . . . . . . . . . . . . . . . . . . . . 179

Figure 7.7: This figure shows the scatter plots for each walk pattern that
corresponds to each age category (Children and Adolescents) of
the male group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Figure 7.8: This figure shows the scatter plots for each walk pattern that
corresponds to each age category (Young Adults and Middle Age)
of the male group. . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Figure 7.9: This figure shows the scatter plots for each walk pattern that
corresponds to each age category (Old Age and All Ages Group)
of the male group. . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Figure 7.10: This figure shows the box plots for each walk pattern that corre-
sponds to each age category of the female group. . . . . . . . . . 183

Figure 7.11: This figure shows the histogram plots for each walk pattern that
corresponds to each age category of the female group. . . . . . . . 186

xvi



Figure 7.12: This figure shows the histogram plots for each walk pattern that
corresponds to each age category of the male group. . . . . . . . 187

Figure 7.13: This figure shows the average mean square error (MSE)(%) (on
the left) and the average standard deviation (%) (on the right) of
the SVM classification performance for sf1, sf2, sf3, sf4, sf5, sf6,
sf7, sf8, sf9 and sf10. . . . . . . . . . . . . . . . . . . . . . . . . . 197

Figure 7.14: This figure shows the average mean square error (MSE)(%) (on
the left) and the average standard deviation (%) (on the right) of
the SVM classification performance for sm1, sm2, sm3, sm4, sm5,
sm6, sm7, sm8, sm9 and sm10. . . . . . . . . . . . . . . . . . . . . . 198

Figure 7.15: This figure shows the average mean square error (MSE)(%) (on
the left) and the average standard deviation (%) (on the right) of
the SVM classification performance for sfm1, sfm2, sfm3, sfm4 and
sfm5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Figure C.1: ROC (Receiver Operating Characteristic) curves of sf1 show the
True Positive (Sensitivity) and False Positive (1-Specificity) for
the best different thresholds using kernel property of SVM. . . . . 285

Figure C.2: ROC (Receiver Operating Characteristic) curves of sf2 show the
True Positive (Sensitivity) and False Positive (1-Specificity) for
the best different thresholds using kernel property of SVM. . . . . 285

Figure C.3: ROC (Receiver Operating Characteristic) curves of sf3 show the
True Positive (Sensitivity) and False Positive (1-Specificity) for
the best different thresholds using kernel property of SVM. . . . . 286

Figure C.4: ROC (Receiver Operating Characteristic) curves of sf4 show the
True Positive (Sensitivity) and False Positive (1-Specificity) for
the best different thresholds using kernel property of SVM. . . . . 286

Figure C.5: ROC (Receiver Operating Characteristic) curves of sf5 show the
True Positive (Sensitivity) and False Positive (1-Specificity) for
the best different thresholds using kernel property of SVM. . . . . 287

Figure C.6: ROC (Receiver Operating Characteristic) curves of sf6 show the
True Positive (Sensitivity) and False Positive (1-Specificity) for
the best different thresholds using kernel property of SVM. . . . . 287

Figure C.7: ROC (Receiver Operating Characteristic) curves of sf7 show the
True Positive (Sensitivity) and False Positive (1-Specificity) for
the best different thresholds using kernel property of SVM. . . . . 288

xvii



Figure C.8: ROC (Receiver Operating Characteristic) curves of sf8 show the
True Positive (Sensitivity) and False Positive (1-Specificity) for
the best different thresholds using kernel property of SVM. . . . . 288

Figure C.9: ROC (Receiver Operating Characteristic) curves of sf9 show the
True Positive (Sensitivity) and False Positive (1-Specificity) for
the best different thresholds using kernel property of SVM. . . . . 289

Figure C.10: ROC (Receiver Operating Characteristic) curves of sf10 show the
True Positive (Sensitivity) and False Positive (1-Specificity) for
the best different thresholds using kernel property of SVM. . . . . 289

Figure C.11: ROC (Receiver Operating Characteristic) curves of sm1 show the
True Positive (Sensitivity) and False Positive (1-Specificity) for
the best different thresholds using kernel property of SVM. . . . . 290

Figure C.12: ROC (Receiver Operating Characteristic) curves of sm2 show the
True Positive (Sensitivity) and False Positive (1-Specificity) for
the best different thresholds using kernel property of SVM. . . . . 290

Figure C.13: ROC (Receiver Operating Characteristic) curves of sm3 show the
True Positive (Sensitivity) and False Positive (1-Specificity) for
the best different thresholds using kernel property of SVM. . . . . 291

Figure C.14: ROC (Receiver Operating Characteristic) curves of sm4 show the
True Positive (Sensitivity) and False Positive (1-Specificity) for
the best different thresholds using kernel property of SVM. . . . . 291

Figure C.15: ROC (Receiver Operating Characteristic) curves of sm5 show the
True Positive (Sensitivity) and False Positive (1-Specificity) for
the best different thresholds using kernel property of SVM. . . . . 292

Figure C.16: ROC (Receiver Operating Characteristic) curves of sm6 show the
True Positive (Sensitivity) and False Positive (1-Specificity) for
the best different thresholds using kernel property of SVM. . . . . 292

Figure C.17: ROC (Receiver Operating Characteristic) curves of sm7 show the
True Positive (Sensitivity) and False Positive (1-Specificity) for
the best different thresholds using kernel property of SVM. . . . . 293

Figure C.18: ROC (Receiver Operating Characteristic) curves of sm8 show the
True Positive (Sensitivity) and False Positive (1-Specificity) for
the best different thresholds using kernel property of SVM. . . . . 293

Figure C.19: ROC (Receiver Operating Characteristic) curves of sm9 show the
True Positive (Sensitivity) and False Positive (1-Specificity) for
the best different thresholds using kernel property of SVM. . . . . 294

xviii



Figure C.20: ROC (Receiver Operating Characteristic) curves of sm10 show
the True Positive (Sensitivity) and False Positive (1-Specificity)
for the best different thresholds using kernel property of SVM. . . 294

Figure C.21: ROC (Receiver Operating Characteristic) curves of sfm1 show
the True Positive (Sensitivity) and False Positive (1-Specificity)
for the best different thresholds using kernel property of SVM. . . 295

Figure C.22: ROC (Receiver Operating Characteristic) curves of sfm2 show
the True Positive (Sensitivity) and False Positive (1-Specificity)
for the best different thresholds using kernel property of SVM. . . 295

Figure C.23: ROC (Receiver Operating Characteristic) curves of sfm3 show
the True Positive (Sensitivity) and False Positive (1-Specificity)
for the best different thresholds using kernel property of SVM. . . 296

Figure C.24: ROC (Receiver Operating Characteristic) curves of sfm4 show
the True Positive (Sensitivity) and False Positive (1-Specificity)
for the best different thresholds using kernel property of SVM. . . 296

Figure C.25: ROC (Receiver Operating Characteristic) curves of sfm5 show
the True Positive (Sensitivity) and False Positive (1-Specificity)
for the best different thresholds using kernel property of SVM. . . 297

Figure C.26: ROC (Receiver Operating Characteristic) curves of sAll show the
True Positive (Sensitivity) and False Positive (1-Specificity) for
the best different thresholds using kernel property of SVM. . . . . 297

Figure C.27: The ROC area or Area under ROC curve (AROC) versus various
values of the regularisation parameter C when (a) σ = 0.1 and
C = 10 and (b) σ = 0.1 and C = 10. . . . . . . . . . . . . . . . . 298

Figure C.28: The ROC area or Area under ROC curve (AROC) versus various
values of the regularisation parameter C when (a) σ = 1 and
C = 1 and (b) σ = 0.1 and C = 1. . . . . . . . . . . . . . . . . . 298

Figure C.29: The ROC area or Area under ROC curve (AROC) versus various
values of the regularisation parameter C when (a) σ = 1 and
C = 10 and (b) σ = 1 and C = 10. . . . . . . . . . . . . . . . . . 299

Figure C.30: The ROC area or Area under ROC curve (AROC) versus various
values of the regularisation parameter C when (a) σ = 1 and
C = 10 and (b) σ = 0.1 and C = 10. . . . . . . . . . . . . . . . . 299

Figure C.31: The ROC area or Area under ROC curve (AROC) versus various
values of the regularisation parameter C when (a) σ = 0.1 and
C = 10 and (b) σ = 0.1 and C = 10. . . . . . . . . . . . . . . . . 300

xix



Figure C.32: The ROC area or Area under ROC curve (AROC) versus various
values of the regularisation parameter C when (a) σ = 0.1 and
C = 1 and (b) σ = 0.1 and C = 1. . . . . . . . . . . . . . . . . . 300

Figure C.33: The ROC area or Area under ROC curve (AROC) versus various
values of the regularisation parameter C when (a) σ = 0.1 and
C = 0.1 and (b) σ = 1 and C = 10. . . . . . . . . . . . . . . . . . 301

Figure C.34: The ROC area or Area under ROC curve (AROC) versus various
values of the regularisation parameter C when (a) σ = 0.1 and
C = 1 and (b) σ = 0.1 and C = 0.1. . . . . . . . . . . . . . . . . 301

Figure C.35: The ROC area or Area under ROC curve (AROC) versus various
values of the regularisation parameter C when (a) σ = 1 and
C = 1 and (b) σ = 0.1 and C = 1. . . . . . . . . . . . . . . . . . 302

Figure C.36: The ROC area or Area under ROC curve (AROC) versus various
values of the regularisation parameter C when (a) σ = 0.1 and
C = 10 and (b) σ = 1 and C = 10. . . . . . . . . . . . . . . . . . 302

Figure C.37: The ROC area or Area under ROC curve (AROC) versus various
values of the regularisation parameter C when (a) σ = 1 and
C = 10 and (b) σ = 1 and C = 10. . . . . . . . . . . . . . . . . . 303

Figure C.38: The ROC area or Area under ROC curve (AROC) versus various
values of the regularisation parameter C when (a) σ = 0.1 and
C = 10 and (b) σ = 1 and C = 10. . . . . . . . . . . . . . . . . . 303

Figure C.39: The ROC area or Area under ROC curve (AROC) versus various
values of the regularisation parameter C when (a) σ = 1 and
C = 1 and (b) σ = 1 and C = 10. . . . . . . . . . . . . . . . . . . 304

Figure C.40: The decision boundary when the SVM model trained on sf1 fe-
male group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b)
σ = 0.1 and C = 1, and (c) σ = 0.1 and C = 10. . . . . . . . . . 305

Figure C.41: The decision boundary when the SVM model trained on sf2 fe-
male group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b)
σ = 0.1 and C = 1, and (c) σ = 0.1 and C = 10. . . . . . . . . . 306

Figure C.42: The decision boundary when the SVM model trained on sf3 fe-
male group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b)
σ = 0.1 and C = 1, and (c) σ = 0.1 and C = 10. . . . . . . . . . 307

Figure C.43: The decision boundary when the SVM model trained on sf4 fe-
male group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b)
σ = 0.1 and C = 1, and (c) σ = 0.1 and C = 10. . . . . . . . . . 308

xx



Figure C.44: The decision boundary when the SVM model trained on sf5 fe-
male group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b)
σ = 0.1 and C = 1, and (c) σ = 0.1 and C = 10. . . . . . . . . . 309

Figure C.45: The decision boundary when the SVM model trained on sf6 fe-
male group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b)
σ = 0.1 and C = 1, and (c) σ = 0.1 and C = 10. . . . . . . . . . 310

Figure C.46: The decision boundary when the SVM model trained on sf7 fe-
male group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b)
σ = 0.1 and C = 1, and (c) σ = 0.1 and C = 10. . . . . . . . . . 311

Figure C.47: The decision boundary when the SVM model trained on sf8 fe-
male group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b)
σ = 0.1 and C = 1, and (c) σ = 0.1 and C = 10. . . . . . . . . . 312

Figure C.48: The decision boundary when the SVM model trained on sf9 fe-
male group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b)
σ = 0.1 and C = 1, and (c) σ = 0.1 and C = 10. . . . . . . . . . 313

Figure C.49: The decision boundary when the SVM model trained on sf10
female group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b)
σ = 0.1 and C = 1, and (c) σ = 0.1 and C = 10. . . . . . . . . . 314

Figure C.50: The decision boundary when the SVM model trained on sm1 male
group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1
and C = 1, and (c) σ = 0.1 and C = 10. . . . . . . . . . . . . . . 315

Figure C.51: The decision boundary when the SVM model trained on sm2 male
group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1
and C = 1, and (c) σ = 0.1 and C = 10. . . . . . . . . . . . . . . 316

Figure C.52: The decision boundary when the SVM model trained on sm3 male
group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1
and C = 1, and (c) σ = 0.1 and C = 10. . . . . . . . . . . . . . . 317

Figure C.53: The decision boundary when the SVM model trained on sm4 male
group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1
and C = 1, and (c) σ = 0.1 and C = 10. . . . . . . . . . . . . . . 318

Figure C.54: The decision boundary when the SVM model trained on sm5 male
group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1
and C = 1, and (c) σ = 0.1 and C = 10. . . . . . . . . . . . . . . 319

Figure C.55: The decision boundary when the SVM model trained on sm6 male
group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1
and C = 1, and (c) σ = 0.1 and C = 10. . . . . . . . . . . . . . . 320

xxi



Figure C.56: The decision boundary when the SVM model trained on sm7 male
group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1
and C = 1, and (c) σ = 0.1 and C = 10. . . . . . . . . . . . . . . 321

Figure C.57: The decision boundary when the SVM model trained on sm8 male
group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1
and C = 1, and (c) σ = 0.1 and C = 10. . . . . . . . . . . . . . . 322

Figure C.58: The decision boundary when the SVM model trained on sm9 male
group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1
and C = 1, and (c) σ = 0.1 and C = 10. . . . . . . . . . . . . . . 323

Figure C.59: The decision boundary when the SVM model trained on sm10
male group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b)
σ = 0.1 and C = 1, and (c) σ = 0.1 and C = 10. . . . . . . . . . 324

Figure C.60: The decision boundary when the SVM model trained on sfm1
male group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b)
σ = 0.1 and C = 1, and (c) σ = 0.1 and C = 10. . . . . . . . . . 325

Figure C.61: The decision boundary when the SVM model trained on sfm2
male group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b)
σ = 0.1 and C = 1, and (c) σ = 0.1 and C = 10. . . . . . . . . . 326

Figure C.62: The decision boundary when the SVM model trained on sfm3
male group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b)
σ = 0.1 and C = 1, and (c) σ = 0.1 and C = 10. . . . . . . . . . 327

Figure C.63: The decision boundary when the SVM model trained on sfm4
male group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b)
σ = 0.1 and C = 1, and (c) σ = 0.1 and C = 10. . . . . . . . . . 328

Figure C.64: The decision boundary when the SVM model trained on sfm5
male group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b)
σ = 0.1 and C = 1, and (c) σ = 0.1 and C = 10. . . . . . . . . . 329

Figure C.65: The decision boundary when the SVM model trained on sAll male
group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1
and C = 1, and (c) σ = 0.1 and C = 10. . . . . . . . . . . . . . . 330

xxii



LIST OF TABLES

Table 1: Extracted Gait Features of CA System . . . . . . . . . . . . . . . 82
Table 5.2: The correlation coefficient ρ of w1, w2, w3, w4, w5 and w6. . . . . . 92
Table 5.3: The median of w1, w2, w3, w4, w5 and w6. . . . . . . . . . . . . . . 97
Table 5.4: The mean of w1, w2, w3, w4, w5 and w6. . . . . . . . . . . . . . . . 101

Table 6.1: The correlation coefficient ρ of p1, p2, p3, p4 and p5. . . . . . . . . 130
Table 6.2: The correlation coefficient ρ of all individuals. . . . . . . . . . . . 130
Table 6.3: The median of p1, p2, p3, p4 and p5. . . . . . . . . . . . . . . . . . . 132
Table 6.4: The median of all individuals. . . . . . . . . . . . . . . . . . . . . 134
Table 6.5: The mean of p1, p2, p3, p4 and p5. . . . . . . . . . . . . . . . . . . . 138
Table 6.6: The mean of all individuals. . . . . . . . . . . . . . . . . . . . . . 139

Table 7.1: The correlation coefficient ρ of female and male age groups. . . . 177
Table 7.2: The correlation coefficient ρ of walk patterns for each age group in

total. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Table 7.3: The median of female and male age groups. . . . . . . . . . . . . 182
Table 7.4: The median of walk patterns for each age group in total. . . . . . 182
Table 7.5: The mean of female and male age groups. . . . . . . . . . . . . . 184
Table 7.6: The mean of walk patterns for each age group in total. . . . . . . 185

Table A.1: SVM Classification Results of w1 Walk Patterns at σ = 10. . . . . 207
Table A.2: SVM Classification Results of w1 Walk Patterns at σ = 0.1 and at

σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Table A.3: SVM Classification Results of w2 Walk Patterns at σ = 10. . . . . 209
Table A.4: SVM Classification Results of w2 Walk Patterns at σ = 0.1 and at

σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Table A.5: SVM Classification Results of w3 Walk Patterns at σ = 10. . . . . 211
Table A.6: SVM Classification Results of w3 Walk Patterns at σ = 0.1 and at

σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Table A.7: SVM Classification Results of w4 Walk Patterns at σ = 10. . . . . 213
Table A.8: SVM Classification Results of w4 Walk Patterns at σ = 0.1 and at

σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Table A.9: SVM Classification Results of w5 Walk Patterns at σ = 10. . . . . 215
Table A.10: SVM Classification Results of w5 Walk Patterns at σ = 0.1 and at

σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Table A.11: SVM Classification Results of w6 Walk Patterns at σ = 10. . . . . 217

xxiii



Table A.12: SVM Classification Results of w6 Walk Patterns at σ = 0.1 and at
σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Table B.1: SVM Classification Results of p1 Walk Patterns at σ = 10. . . . . 220
Table B.2: SVM Classification Results of p1 Walk Patterns at σ = 0.1 and at

σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Table B.3: SVM Classification Results of p2 Walk Patterns at σ = 10. . . . . 222
Table B.4: SVM Classification Results of p2 Walk Patterns at σ = 0.1 and at

σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Table B.5: SVM Classification Results of p3 Walk Patterns at σ = 10. . . . . 224
Table B.6: SVM Classification Results of p3 Walk Patterns at σ = 0.1 and at

σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Table B.7: SVM Classification Results of p4 Walk Patterns at σ = 10. . . . . 226
Table B.8: SVM Classification Results of p4 Walk Patterns at σ = 0.1 and at

σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Table B.9: SVM Classification Results of p5 Walk Patterns at σ = 10. . . . . 228
Table B.10: SVM Classification Results of p5 Walk Patterns at σ = 0.1 and at

σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Table B.11: SVM Classification Results of pAll Walk Patterns at σ = 10. . . . . 230
Table B.12: SVM Classification Results of pAll Walk Patterns at σ = 0.1 and

at σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Table C.1: SVM Classification Results of xf1 Walk Patterns at σ = 10. . . . . 233
Table C.2: SVM Classification Results of xf1 Walk Patterns at σ = 0.1 and

at σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Table C.3: SVM Classification Results of xf2 Walk Patterns at σ = 10. . . . . 235
Table C.4: SVM Classification Results of xf2 Walk Patterns at σ = 0.1 and

at σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Table C.5: SVM Classification Results of xf3 Walk Patterns at σ = 10. . . . . 237
Table C.6: SVM Classification Results of xf3 Walk Patterns at σ = 0.1 and

at σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
Table C.7: SVM Classification Results of xf4 Walk Patterns at σ = 10. . . . . 239
Table C.8: SVM Classification Results of xf4 Walk Patterns at σ = 0.1 and

at σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Table C.9: SVM Classification Results of xf5 Walk Patterns at σ = 10. . . . . 241
Table C.10: SVM Classification Results of xf5 Walk Patterns at σ = 0.1 and

at σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Table C.11: SVM Classification Results of xf6 Walk Patterns at σ = 10. . . . . 243

xxiv



Table C.12: SVM Classification Results of xf6 Walk Patterns at σ = 0.1 and
at σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Table C.13: SVM Classification Results of xf7 Walk Patterns at σ = 10. . . . . 245
Table C.14: SVM Classification Results of xf7 Walk Patterns at σ = 0.1 and

at σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Table C.15: SVM Classification Results of xf8 Walk Patterns at σ = 10. . . . . 247
Table C.16: SVM Classification Results of xf8 Walk Patterns at σ = 0.1 and

at σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Table C.17: SVM Classification Results of xf9 Walk Patterns at σ = 10. . . . . 249
Table C.18: SVM Classification Results of xf9 Walk Patterns at σ = 0.1 and

at σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Table C.19: SVM Classification Results of xf10 Walk Patterns at σ = 10. . . . 251
Table C.20: SVM Classification Results of xf10 Walk Patterns at σ = 0.1 and

at σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Table C.21: SVM Classification Results of xm1 Walk Patterns at σ = 10. . . . 253
Table C.22: SVM Classification Results of xm1 Walk Patterns at σ = 0.1 and

at σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Table C.23: SVM Classification Results of xm2 Walk Patterns at σ = 10. . . . 255
Table C.24: SVM Classification Results of xm2 Walk Patterns at σ = 0.1 and

at σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
Table C.25: SVM Classification Results of xm3 Walk Patterns at σ = 10. . . . 257
Table C.26: SVM Classification Results of xm3 Walk Patterns at σ = 0.1 and

at σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Table C.27: SVM Classification Results of xm4 Walk Patterns at σ = 10. . . . 259
Table C.28: SVM Classification Results of xm4 Walk Patterns at σ = 0.1 and

at σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
Table C.29: SVM Classification Results of xm5 Walk Patterns at σ = 10. . . . 261
Table C.30: SVM Classification Results of xm5 Walk Patterns at σ = 0.1 and

at σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
Table C.31: SVM Classification Results of xm6 Walk Patterns at σ = 10. . . . 263
Table C.32: SVM Classification Results of xm6 Walk Patterns at σ = 0.1 and

at σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
Table C.33: SVM Classification Results of xm7 Walk Patterns at σ = 10. . . . 265
Table C.34: SVM Classification Results of xm7 Walk Patterns at σ = 0.1 and

at σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Table C.35: SVM Classification Results of xm8 Walk Patterns at σ = 10. . . . 267
Table C.36: SVM Classification Results of xm8 Walk Patterns at σ = 0.1 and

at σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

xxv



Table C.37: SVM Classification Results of xm9 Walk Patterns at σ = 10. . . . 269
Table C.38: SVM Classification Results of xm9 Walk Patterns at σ = 0.1 and

at σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Table C.39: SVM Classification Results of xm10 Walk Patterns at σ = 10. . . . 271
Table C.40: SVM Classification Results of xm10 Walk Patterns at σ = 0.1 and

at σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Table C.41: SVM Classification Results of xfm1 Walk Patterns at σ = 10. . . . 273
Table C.42: SVM Classification Results of xfm1 Walk Patterns at σ = 0.1 and

at σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Table C.43: SVM Classification Results of xfm2 Walk Patterns at σ = 10. . . . 275
Table C.44: SVM Classification Results of xfm2 Walk Patterns at σ = 0.1 and

at σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Table C.45: SVM Classification Results of xfm3 Walk Patterns at σ = 10. . . . 277
Table C.46: SVM Classification Results of xfm3 Walk Patterns at σ = 0.1 and

at σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
Table C.47: SVM Classification Results of xfm4 Walk Patterns at σ = 10. . . . 279
Table C.48: SVM Classification Results of xfm4 Walk Patterns at σ = 0.1 and

at σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
Table C.49: SVM Classification Results of xfm5 Walk Patterns at σ = 10. . . . 281
Table C.50: SVM Classification Results of xfm5 Walk Patterns at σ = 0.1 and

at σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Table C.51: SVM Classification Results of xAll Walk Patterns at σ = 10. . . . 283
Table C.52: SVM Classification Results of xAll Walk Patterns at σ = 0.1 and

at σ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

xxvi



ACKNOWLEDGEMENTS

Firstly, I express my gratitude to God for providing me with countless blessings,
patience, and strength to successfully accomplish my goals.

I am thankful to my supervisor, Dr. Tjeerd V. olde Scheper, for his unwavering
support, guidance, and extensive knowledge during my PhD research. His excep-
tional care, attention, and motivation have impacted me both professionally and
personally, and I aim to carry forward his teachings and leadership in my future
academic endeavors.

I extend my sincere appreciation to Prof. Helen Dawes and Dr. Patrick Esser for
their valuable assistance and fpr providing me with the clinical data to conduct my
research, without which my research would not have been possible. It is an honor to
have Prof. Helen Dawes as my second supervisor.

I would like to thank my colleagues and friends at the School of Engineering, Com-
puting, and Mathematics at Oxford Brookes University for their support and making
my PhD journey enjoyable. My gratitude goes to Prof. Nigel Crook, Mrs. Gordana
Collier, Dr. Matthias Rolf, Prof. Michael Todinov, Mr. Peter Whittle, and other staff
members.

I am grateful to Oxford Brookes University for awarding me a fully-funded stu-
dentship to pursue my PhD and providing me with the opportunity to work as an
Associate Lecturer to gain teaching experience alongside my research.

My family deserves my deepest appreciation and lifelong gratitude. My parents
always emphasised the importance of education and worked tirelessly to ensure we
received the best possible education. Completing my PhD was a childhood ambition,
and I am thankful for the unwavering support, encouragement, and trust of my
siblings. I also thank my wife, Hadil, for her care and support throughout my PhD
research.

xxvii



VITA

2004-2009 B. S. in Electrical Engineering, Islamic University of
Gaza, Gaza Strip, Palestine

2014-2015 M. Sc. in Telecommunication Engineering, Staffordshire
University, Stoke-on-Trent, United Kingdom

2019-2022 Ph. D. in Computer Science, Oxford Brookes University,
Oxford, United Kingdom

PUBLICATIONS

Shadi Eltanani, Tjeerd Olde Scheper and Helen Dawes. A Novel Criticality Analysis
Technique for Detecting Dynamic Disturbances in Human Gait. Computers 2022,
11, 120. https://doi.org/10.3390/computers11080120.

Shadi Eltanani, Tjeerd Olde Scheper and Helen Dawes, K-Nearest Neighbour Al-
gorithm: Proposed Solution for Human Gait Data Classification, 2021 Symposium
on Computers and Communications (ISCC): 26th IEEE Symposium on Comput-
ers and Communications - Workshop on ICT Solutions for eHealth (ICTS4eHealth)
(ICTS4eHealth2021).

Shadi Eltanani, Tjeerd Olde Scheper and Helen Dawes. What Role Criticality Analy-
sis Play in Human Age Estimation?, (In-progress to appear in the IEEE Transactions
on Pattern Analysis and Machine Intelligence).

Shadi Eltanani, Tjeerd Olde Scheper and Helen Dawes. Detecting Human Gait
Metabolism Disorders Based on A Novel Criticality Analysis Methodology, (In-
progress to appear in the IEEE Transactions on Biomedical Engineering).

xxviii



ABSTRACT OF THE THESIS

Development of Machine Learning Models to Detect Dynamic
Disturbances in Human Gait

by
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Dr Tjeerd V. olde Scheper, Chair

Machine learning has transformed the medical field by automating tasks and
achieving objectives that are closer to human cognitive capabilities. Gait is a series
of intricate interactions for humans, and identifying impaired gait is critical for effec-
tive decision-making in clinical practice. However, analysing the complex biological
system that governs gait can be challenging. This research proposes a novel Crit-
icality Analysis (CA) methodology to extract dynamic interactions in human gait
and represent multivariate data in a nonlinear space. The proposed methodology
characterises each data sample with a unique orbit, resulting from perturbations of a
critical system composed of nonlinear controlled oscillators. The scale-free network
of orbits is a quantitative measure of non-scale-free interacting sets of patterns, which
reveal organised features of the structure of dynamic properties interconnected with
human gait. This thesis focuses on implementing robust machine learning algorithms
for effective detection and classification of complex dynamic patterns in human gait.
The CA method maps gait features into a nonlinear representation, which is then
used for training and testing categorisation algorithms. The proposed models utilise
the Kernel property of the Support Vector Machines (SVM) classifier to identify
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high-order interactions between multiple gait data variables that may be challenging
for traditional statistics. The algorithm was applied to three real datasets, and the
SVM models designed using the CA method achieved an accuracy of 88.27% on av-
erage, compared to the K-Nearest Neighbours (KNN) approach’s accuracy of 67.7%.
The proposed SVM models use the receiver operating characteristics (ROC) and the
area under the ROC metrics to evaluate their overall performance. The results of
this research suggest that the proposed SVM models, with the support of the CA
method, can perform as a robust and reliable classification tool for detecting dynamic
disturbances of biological data patterns. This provides tremendous opportunities for
clinical diagnosis and rehabilitation.
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Chapter 1

Introduction

1.1 Motivation

Human gait is a complex and nonlinear process that involves the integration of
many different systems in the body, including the musculoskeletal, neurological, and
cardiovascular systems [1]. Gait is a fundamental part of human locomotion and is
essential for daily activities such as walking, running, and jumping. Factors such
as body weight, height, age, gender, and physical fitness level influence gait [2].
Gait analysis is a tool used to measure and evaluate the biomechanical parameters
of gait, such as step length, stride length, step width, cadence, and velocity [3].
This analysis helps in the diagnosis and treatment of various gait-related disorders,
including Parkinson’s disease, cerebral palsy, stroke, and spinal cord injuries [208].

However, capturing and interpreting neurophysiological signals, such as gait for
humans, is crucial for medical diagnosis. Human gait represents nonlinear, nonsta-
tionary, and non-equilibrium biological processes that require advanced technology
or techniques to provide healthcare professionals with a useful clinical value of the in-
tricate sequential spatiotemporal interacting states of the motor system function [4].
Medical professionals often ask their patients to walk for several steps and monitor
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the pattern of their walk to obtain a rough estimate of the behaviour of human
gait for better diagnosis. However, the interpretation of the biological information
obtained from gait analysis can be challenging.

One of the challenges in studying human gait is the nonlinear dynamics involved.
Gait is a highly complex and nonlinear system, with many different factors influenc-
ing the movement of the body. Criticality analysis is a mathematical technique that
can be used to study the nonlinear dynamics of gait patterns. Criticality analysis
involves analysing the behaviour of a system at or near a critical point, where small
changes in the input can lead to large changes in the output. In the context of gait
analysis, criticality analysis can help to identify the stable and controlled orbits of
the nonlinear dynamics of gait patterns. By identifying these orbits, it is possible
to understand the underlying mechanisms that govern gait and develop strategies
for improving gait performance. The importance of criticality analysis extends be-
yond gait analysis and into the broader field of machine learning and AI. Criticality
analysis can be used to study the behaviour of complex systems, such as neural net-
works, and to identify the critical points where small changes in input can lead to
large changes in output. This can help to improve the performance and stability of
machine learning algorithms and enable the development of more sophisticated AI
systems. Thus, a combination of advanced gait analysis techniques, such as criti-
cality analysis, can help healthcare professionals to interpret the intricate sequential
spatiotemporal interacting states of the motor system function and improve diagnosis
and treatment of various gait-related disorders.

In this thesis, a novel approach called Criticality Analysis (CA) was developed to
create a distinct nonlinear representation space from biological data, specifically for
human gait analysis. The CA method can reveal intricate hidden patterns that are
not discernible through traditional analysis methods [34]. The discovered information
has the potential to aid in predicting gait-related injuries in older adults, identifying
walking irregularities in individuals, and elucidating the fundamental mechanisms
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of healthy and pathological biological system functions. The effectiveness of the
CA approach was demonstrated by its ability to successfully extract and represent
human gait information from measured time-series gait sensory data, as evidenced
in previous studies [50]. The output of the CA technique was subsequently used in
developing machine learning classification models.

1.2 Criticality Analysis Methodology

Criticality analysis (CA) is a method used in the field of physics to study the
behaviour of complex systems near the critical point, where small changes in the
system can lead to large-scale fluctuations [6]. In recent years, CA has been applied
to the study of human gait to better understand the dynamics of the gait pattern
and how it responds to perturbations [50]. The human gait is a complex, nonlinear
system that involves the coordination of multiple muscle groups and joints. The
dynamics of the gait pattern can be affected by a range of factors, such as changes in
speed, terrain, or external perturbations [7]. CA can be used to study how the gait
pattern responds to these perturbations and how it approaches the critical point,
where small changes can have a large effect on the dynamics of the system [50]. In
gait analysis, CA has been used to study the fluctuations in stride time and other
gait parameters, as well as to identify the presence of long-range correlations in
the gait pattern. Long-range correlations indicate that the fluctuations in the gait
pattern are not independent but are instead correlated over long periods of time,
indicating a degree of complexity in the system [8] [9]. CA has also been used to
study the effects of aging and neurological disorders on the gait pattern. For example,
studies have found that older adults and individuals with Parkinson’s disease exhibit
a reduced degree of criticality in their gait pattern, indicating a loss of complexity in
the system [10] [11]. These findings suggest that CA may be a useful tool for early
detection and monitoring of neurological disorders.
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In biological systems, criticality arises from the local nonlinear interactions of
small components, leading to complex interactions that enable the system to change
states and operate at the edge of chaos. However, in some cases, the system may
degenerate into unstable or chaotic states. To address this, the rate control of chaos
(RCC) mechanism has been proposed, which allows for dynamic control of the sys-
tem even when chaotically disrupted [13]. Mathematical modeling of such systems
involves a set of variables that describe the operation of variable quantities and derive
system properties. The RCC approach employs rate equations to describe how these
variable quantities change over time, with a control term that is dominated by non-
linear variable components and can affect the stability of the overall system. The rate
control function is then derived from the contributing variables to maintain a stable
control component for the rate of change equation. The CA methodology based on
the RCC concept involves outputting the variable quantities in the rate equations
that dominantly show nonlinear relationships and generate nonlinear representation
spaces from observations of the biological system [13].

1.3 Modelling Human Gait: Exploring the Spa-

tiotemporal Oscillation Behaviour of Locomo-

tion System

Since the human gait displays structured spatiotemporal oscillatory behavior,
there has been no consensus within the scientific community regarding the optimi-
sation of a mathematical model to represent the chaotic rhythmic behavior of the
locomotion system based on the bioenzymatic changes in the biological system.

The study of the human locomotion system has attracted the attention of re-
searchers from many scientific disciplines, such as engineering, physics, biology,
medicine, and others [14]. The majority of research on gait has focused on dynamic
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systems techniques, which are mostly based on well-known physical system ideas,
including nonlinear dynamics, thermodynamics, and biological systems [15] [16].

Some approaches in the literature have studied the structured spatiotemporal
behavior of human gait, taking into consideration the physical oscillators of dy-
namic systems such as mass-spring systems, pendula, or hybrid spring-pendulum
systems [17]. When running or walking, the stance phase of the gait cycle has been
represented as a mass-spring system and an inverted pendulum, respectively. Mod-
els of a pendulum and a hybrid spring-pendulum system have been used to describe
the swing phase of gait. A spring-mass system is an oscillatory system with a mass
attached to the free end of a spring. Using the force, displacement, stiffness, mass,
and frequency properties of this system, human gait can be modelled [17]. The
lower extremities resemble a spring, and the center of mass of the body serves as a
point mass that acts downward on the neuromusculoskeletal spring [18]. The spring-
like lower extremity exhibits the ability to self-assemble into a spring-like structure
when forced to move at different frequencies, with different masses, and on differ-
ent surfaces [19]. The system makes an effort to optimise how it interacts with the
environment in order to provide the proper stiffness and satisfy various task objec-
tives. It has been demonstrated that the complexity of the biological spring changes
from a linear spring at or above optimal movement frequencies to a nonlinear spring
below such frequencies [20]. The relationship between the mass-spring system and
the stance phase of the gait cycle was believed to have great promise for identify-
ing gait abnormalities and determining the best diagnostic procedures and forms of
treatment. The output of this model includes a number of possible characteristics,
namely frequency, amplitude, and velocity [18]. Additionally, the indirect relation-
ship between force and displacement that is derived from this model improves the
clinical evaluation of biological stiffness [21].

The inverted pendulum model, which assumes that the lower extremities and
trunk are rigid segments that rotate over the fixed foot in the sagittal plane around



6

the talocrural joint axis, has been used by researchers to study the stance phase of
gait during walking. Kram et al. [22] demonstrated the transition of gait between
walk and run cycles using the inverted pendulum model to investigate the storage
and recovery of mechanical energy, foot posture, and the stability of the frontal plane.
The inverted pendulum model is expanded to incorporate active neuromuscular vari-
ables, which constitute a dynamic system. The active control of gait derives from
the interplay of the hip and foot muscles with the gravitational factor [23]. At inter-
mediate gait velocities, the inverted pendulum system exhibits a unique minimum
energy state when the stance leg recovers the most energy [24]. During fast walking
and running, the model exhibits a dynamic shift towards a more spring-like behavior
during the stance phase, which limits its performance.

During the swing phase of the gait cycle, the motion of the leg has been optimised
to resemble a simple pendulum. This basic pendulum model has a variety of configu-
rations, including simple and compound pendulums, as well as a hybrid force-driven
harmonic oscillator. Among these configurations, the pendulum model includes a
solid lower extremity suspended from the pelvis. However, this model may be im-
proved to resemble a compound pendulum with several connected segments. Mochon
et al.[25] merged the operation of the double pendulum system, which stands in for
the swing leg, with the inverted pendulum model, which represents the stance leg.
Despite the fact that much research work has used pendulum dynamics to analyze
the swing phase, Whittlesey et al.[26] criticised the idea that the swing phase of gait
should be viewed as an unforced pendulum and interpreted as a passive action. In
addition, Holt et al. [27] adopted the force-driven harmonic oscillator system’s dy-
namic principle to describe human gait after discovering a substantial relationship
between stride frequency, resonance, and energy minima. Additionally, their research
demonstrated the use of varied stiffness to regulate the lower extremities’ temporal
behavior. The hybrid pendulum mass-spring system is the central component of
the force-driven harmonic oscillator model, which accounts for both the active and
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passive connective tissues of the locomotor system, as well as the stiffness of the
vibratory system. The length and mass of the lower extremities, which determine
their inertial characteristics, are fed into the force-driven harmonic oscillator model
as inputs. The harmonic oscillator is considered to be in a situation of dynamic
equilibrium when the quantity of periodic energy provided by muscle is equal to the
amount of energy required to maintain the oscillation, and the system eventually ex-
hibits observable behavior. There is a resonant frequency at the point of equilibrium
that can preserve the harmonic oscillation of the system, allowing biological systems
to be attracted to such preferable states.

Furthermore, Holt et al. [27] conducted research that precisely estimated the
stride frequency of both children and adults using the force-driven harmonic oscillator
model, and confirmed the presence of resonance states throughout the walking phase
of the gait cycle. The biological system has the ability to detect and self-select the
resonant frequency and other frequencies at a minimum level of energy during a
variety of activities such as walking, running, lifting, and upper body ergometry.
However, the force-driven harmonic oscillator model predicts the stride frequency at
which energy consumption would be at a minimum based on the stability boundary
of closed trajectories in the phase space. The locomotor system, which functions
similarly to the force-driven harmonic oscillator, has characteristics of a dynamic
system with preferred movement frequencies that are subject to energy limitations.

The aforementioned dynamical systems have been considered for modeling hu-
man gait based on how the various components of the musculoskeletal system are
connected to each other to enable body movement. However, these models only took
into account the two stages of gait: walking and running, and overlooked diseased
gait, which may hide a variety of unknown unhealthy conditions. Despite these ef-
forts, the scientific community has not reached a consensus on the research of the
locomotor system based on bioenzymatic changes occurring in the biological system
to not only characterise the dynamics of normal gait but also detect gait abnormal-
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ities in humans.
In this thesis, this challenge was overcome by using a bioenzymatic dynamical

model that incorporates the concept of rate control of chaos to limit the exponential
growth of the system and enable it to respond in accordance with various changes in
the biological system processes over a range of time scales by evolving, accelerating,
and decelerating and showing a power-law relationship in the direction of movement.
The model also has the adaptability to adopt new movement patterns in response
to modifications in system conditions. Furthermore, the model can capture the
actual dynamic patterns of human gait, generate nonlinear representation spaces
of these perturbation inputs, and understand the biological self-organisation of the
complex biological system when the biological system is exposed to perturbing forces,
whether they are sourced from inside or outside the biological system. Additionally,
the model can persist and remain stable even in the presence of disturbances, and
show variability in its phase space patterns when the effect of perturbations becomes
minimal or negligible. The dynamic system must have all of the aforementioned
capabilities to produce optimal gait patterns in which every part of the complex
system is operating toward a safe and energy-efficient state. Therefore, it is critical to
have a dynamic model that can incorporate experimental gait data into its theoretical
characteristics to detect dynamic disturbances affecting the locomotor system in
humans. The details of this model are thoroughly discussed in Chapter 3.

1.4 Incorporation of Biomechanical Models for Gait

Disturbances Detection

When the influence of biological enzymes oscillates, the system generates succes-
sive oscillations that allow it to behave chaotically, thereby disrupting vital organism
functions such as locomotion. This opens up new horizons for thinking about how to
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control this arising chaos, which acts as a source of perturbation to the main biolog-
ical system, so that the global stability state function can be maintained. Therefore,
it is imperative to understand how biological systems function in terms of a bio-
chemical mathematical model. However, unfortunately, some simplified or reduced
models represented by a set of ordinary differential equations in the time domain
do not sufficiently comprise the required complexity to characterise how the control
mechanism, responsible for translating the network behavior into spatial outcomes
in a biological system, maintains global stable and controlled states.

Biologically inspired by biochemical dynamic models, Hugues Berry [29] demon-
strated a general bienzymatic cyclic system using two autocatalytic loops to support
and give structure to cells and tissues in a biological system. This helps them com-
municate with each other and enhance their movement and functions. The model
adopts the kinetic rates of enzymes and is described by four ordinary differential
equations. This model is believed to provide oscillatory behaviors of complex bi-
ological processes, including human gait, and is therefore optimised based on the
rate control of chaos concept to control the disturbances (as chaos) of human gait.
Technical details of this model are included in Chapter 3.

Moreover, Decroley et al. [28] demonstrated a biochemical model that operates
similarly to the Berry model [29]. They studied the dynamics of two allosteric en-
zymes, where the enzyme itself is attached to small regulators (molecules) that change
the shape of the enzyme and affect its catalytic activity. The autocatalytic loops of
the two enzymes in the Berry model [29] originate from the synthesis of the enzyme
by the cell itself, while the autocatalytic loops of the two allosteric enzymes in the
other model arise directly from the regulated molecules bound in the separate cav-
ity of the enzyme. Although each model has its own characteristics, both provide
complex dynamics (oscillatory behaviors).
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1.5 RCC Method Based on Theoretical Dynamic

Model

The significance of merging experimental data into theoretical dynamic models to
analyse the behavior of disturbances that perturb the human locomotor system has
been discussed. Experimental measurements, commonly known as noisy perturbing
sources, are frequently used to find system parameters and provide system inputs for
theoretical modeling. To validate the theoretical modeling method, some empirically
measured parameters might be employed. A theoretical model, on the other hand,
may be used to guide the development of experimental methodologies that can be
utilised for routine clinical examinations. Furthermore, employing experimental data
assists in the estimation of non-measurable quantities as well as the interpretation
of experimental outcomes. Spatiotemporal information and moment inertia data of
human gait are employed in experimental measurements to establish system features
required for theoretical dynamic modeling.

Regardless of the representative biological model used, the RCC approach [208] is
considered a robust bio-inspired metabolic feedback control mechanism that allows
small external perturbations to grow exponentially in the biological system, enabling
it to stabilise any of the unstable periodic states that are inherently involved. The
unstable periodic chaotic response, for example, can be suitably stabilised into a con-
trolled periodic of oscillations by perturbing the operating conditions of the biological
system itself. Controlling the spatiotemporal changes or disturbances of human gait
patterns on a smaller scale requires tuning the biological system parameters in both
time and space. One of the best advantages of using the RCC concept in such a
dynamic model is that it can be applied without prior knowledge of a specific mech-
anism of the biological system but requires some instantaneous knowledge of some of
the variables of the perturbed system, unlike other control methods that require an
accurate model to describe the biological system to retain it in a stabilising mode.
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In this way, it is always possible, depending on the degree of applied disturbances,
to guide chaotic gait disturbances into different nonlinear oscillatory controlled stable
orbits. The interrelation between the biological system perturbations and the am-
plitude of controlled chaotic orbits shows power-law and exponential relations. This
also provides a structured representation at the edge of chaos of various biological
properties, such as those interconnected with the motor system of human gait, which
can remotely reflect a deep understanding of the underlying complex processes and
their corresponding functionalities. This is exactly what the proposed methodology
of the CA does. The CA technique allows for the nonlinear representation of various
human gait features that have perturbed the biological system and accommodates
them in a reduced lower-dimensional space.

1.6 Thesis Goals

Recent research has focused on dynamical modelling approaches, but stabilising
the chaotic behavior of these methods using another chaotic source, such as disturb-
ing inputs, to maintain stability and generate distinctive dynamical orbits based on
gait oscillations has received little attention. This prompts several research questions
to be addressed in this thesis:

• Research Question 1: Is it possible to identify the non-linear dynamics of
human gait using the criticality analysis technique?

• Research Question 2: How effective are the supervised machine learning
models, specifically the Support Vector Machine (SVM) classifiers, that have
been developed into practice for identifying and categorising patterns of human
gait disturbance?

The primary objective of this thesis is to contribute to filling gaps in the research
field of chaos control theory by creating a series of processes that utilise existing work
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based on the criticality analysis technique. The purpose is to improve the detection of
disturbances related to human gait and create innovative stable patterns of nonlinear
gait dynamics in a reduced dimensional space.

The results of the criticality analysis system will be used to train supervised ma-
chine learning models for classification and detection. To generate the gait patterns
that act as disturbance sources for the criticality analysis system, the CARDIGAN,
MoRES, and Museum datasets will be employed. To validate the effectiveness of
the criticality analysis system, two supervised machine learning algorithms, the K-
Nearest Neighbour (KNN) and the Support Vector Machine (SVM), have been pro-
posed. The KNN has only been implemented for training the gait features of the
MoRES dataset due to its low model accuracy. Meanwhile, the SVM has been de-
signed on all three datasets as it has shown promising performance in classifying the
extracted nonlinear gait patterns. To achieve generalisation performance, specific
model parameters were adapted to produce an average accuracy rate of 90% when
trained on the three datasets.

1.7 Thesis Contributions

The contribution of the thesis is significant in advancing the understanding of
human gait analysis using criticality analysis (CA) technique and supervised machine
learning models. The research provides a thorough analysis of three datasets of real-
time human gait data, which is a critical aspect in the development of accurate gait
recognition and monitoring systems. The use of the support vector machine (SVM)
classifier to identify nonlinear spatiotemporal patterns and detect disturbances in
human gait is a novel approach that adds to the existing literature. The performance
evaluation of the generated SVM models using relevant metrics such as the confusion
matrix, receiver operating characteristics (ROC) curve, and the area under the ROC
curve provides a comprehensive analysis of the models effectiveness. Furthermore, the
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implementation of the K-Nearest Neighbour (KNN) machine learning model to test
the validity of the data generated from the CA of the MoRES dataset is an innovative
step towards identifying gait patterns among various participants. Overall, this thesis
provides a valuable contribution to the field of human gait analysis and has the
potential to enhance the development of effective gait recognition and monitoring
systems.

1.8 Thesis Overview

The remainder of the thesis is organised in the following chapters as follows:

Chapter 2 describes an overview of gait analysis and its application using ad-
vanced technology, such as smart motion capture systems, smart homes, and virtual
reality environments. It then reviews the use of machine learning (ML) for analysing
gait, including gait phase recognition, event prediction, detection of abnormal gait
patterns, and monitoring neurological diseases, as well as gender recognition. The
chapter also highlights limitations in previously reported work in this area. Finally,
the chapter reviews specific applications of support vector machines (SVM) for gait
analysis.

Chapter 3 provides an overview of the biochemical mathematical model for the
CA that incorporates the RCC method as a fundamental design principle for mod-
elling disturbances in the locomotion system. The model comprises four ordinary
differential equations (ODEs) that describe the rate of enzymatic reactions in the
biological system. Along with the set of ODEs, two control exponential terms have
been established as RCC functions, which will be merged into the original ODEs
to regulate the release of enzymes and uphold the stability of the model. Finally,
the model’s output is characterised by two variables that depict the controlled gait
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disturbances.

Chapter 4 outlines a comparative analysis of two supervised machine learning
algorithms, Support Vector Machines (SVM) and K-Nearest Neighbour s (KNN), for
human gait analysis. Technical details for each technique, along with a comprehen-
sive explanation of the implementation process, are provided. It also addresses the
implementation of the proposed SVM algorithm processes and how the SVM model
employs the Kernel Trick feature to overcome the nonlinearity issue in human gait
data. Finally, the chapter emphasises the critical factors to consider when evaluating
the model’s performance.

Chapter 5 investigates the application of the proposed SVM method on the
CARDIGAN dataset, which provides insights into the gait patterns of both healthy
individuals and those suffering from obesity-related health disorders. Criticality anal-
ysis features were derived from the RCC-optimised Berry model [29] and segmented
into healthy control and obese groups of various individuals. The gait measurements
for each participant were recorded over a six-week trial period, and to gauge the effi-
cacy of the proposed models, a battery of tests such as the confusion matrix, receiver
operating characteristics (ROC), area under the ROC curve, and mean square er-
ror (MSE) were performed. The simulation results demonstrate that the Kernelised
SVM approach is a robust classifier tool, accurately distinguishing the unique dy-
namics of gait disruptions. Notably, the material in this chapter will be submitted
for publication in the IEEE Transactions on Biomedical Engineering, and the thesis
author is the primary author of the this material.

Chapter 6 details the implementation of the proposed SVM algorithm on the
MoRES dataset, which comprises both individuals with normal gait patterns and
those exhibiting abnormal patterns. The criticality analysis features of the dataset
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were obtained from the RCC-optimised Berry model [29] and classified into normal
and abnormal groups across five individuals. To evaluate the efficacy of the developed
models, the confusion matrix, receiver operating characteristics (ROC), area under
the ROC curve, and mean square error (MSE) tests were employed. Additionally, the
KNN technique was utilised to train the dataset features, with the cross-validation
test serving to validate the model’s performance. Based on the simulation results,
the Kernelised SVM method exhibited greater accuracy than the KNN model.

The majority of this chapter features previously published material, which ap-
peared in the MDPI Computers journal as part of a special issue titled "Advances
of Machine and Deep Learning in the Health Domain," and in the IEEE Sympo-
sium on Computers and Communications, Workshop on ICT Solutions for eHealth
(ICTS4eHealth) (ICTS4eHealth2021) as a conference paper. The author of this the-
sis is the principal author of the material.

Chapter 7 presents a detailed analysis of the implementation of a proposed
SVM algorithm on the Museum dataset. The Museum dataset contains gait patterns
from two gender groups across five different age categories. The criticality analysis
features of this dataset were derived from the RCC-optimised Berry model [29],
with unique features extracted for each age category. The proposed models were
evaluated for their robustness using tests such as the confusion matrix, receiver
operating characteristics (ROC), area under the ROC curve, and mean square error
(MSE). The simulation results indicate that the Kernelised SVM approach generates
accurate results, making it a reliable tool for classifying unique dynamics of gait
disruptions.

The contents of this chapter largely overlap with the material that will appear in
an upcoming publication in the IEEE Transactions on Pattern Analysis and Machine
Intelligence, of which the thesis author is the principal contributor.
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Chapter 8 provides a summary of the accomplishments of the thesis and offers
suggestions for future research directions.



Chapter 2

Literature Survey on Gait Analysis

2.1 Introduction

Gait analysis is a method used to study human walking in order to understand
and diagnose a wide range of conditions and disorders. The study of gait is important
as it can provide insight into an individual’s overall health and functional abilities.
Gait analysis is commonly used to assess patients with conditions such as Parkin-
son’s disease, stroke, and osteoarthritis, as well as to study the effects of aging and
rehabilitation on gait [12]. In recent years, there have been significant advancements
in the technologies and techniques used for gait analysis. The state-of-the-art in
gait analysis includes the use of motion capture systems, wearable sensors, and com-
putational models. Furthermore, machine learning techniques, particularly Support
Vector Machines, have been increasingly used in gait analysis with demonstrated
potential in detecting and analysing gait disorders, predicting fall risks, and so on.
The purpose of this literature review is to provide an overview of the state of the art
in gait analysis, to review the use of machine learning for analysing gait and to high-
light the limitations in previously reported work, and to review specific applications
of Support Vector Machines for gait analysis.

17
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2.2 Overview to Machine Learning

Artificial intelligence (AI) and machine learning (ML) are now being researched
numerously in medicine, with the potential to automate human activities and po-
tentially accomplish tasks beyond human capabilities [58].

Artificial intelligence (AI) is the processing of data by machines to achieve goals
that normally require human cognitive function. Recently, AI has processed massive
amounts of data and offered the opportunity to detect patterns that may be difficult
to classify. It also provided unique and novel data representation techniques to
handle different types of complex data patterns. Machine learning (ML) is an AI-
subfield that uses algorithms to train and learn patterns emprically from data. ML
broadens the domain of the conventional rules of statistics due to the ability it has to
map the multivariate and nonlinear high-dimensional data patterns that may appear
challenging to conventional methods of statistics.

Deep Learning (DL), which has recently appeared as a robust ML method, enables
efficient processing of dense datasets that require a huge amount of computational
power to facilitate better decisions on complex data. Recent advances in ML and
DL in a wide range of fields, including natural language processing, computer vision,
engineering, medicine, and other scientific sectors, have raised significant awareness
across a wide range of disciplines [59].

The use of AI in relation to human gait analysis is not a novel notion. How-
ever, the development of automation systems with well-designed ML algorithms and
hardware capabilites makes the role of AI in gait analysis attractive to medicine and
public health in terms of early disease detection and improving disorder prognosis
prediction [60].

With the support of state-of-the-art examples that are related to human gait
analysis and automated recognition, a general overview of the technical concepts of
artificial intelligence and machine learning will be presented, as well as the types of
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machine learning techniques will be introduced. Moreover, this chapter will restrict
the discussion only to two supervised machine learning approaches that have been
used in the implementation analysis of the three gait datasets analysed in Chap-
ter 5, 6, and 7, respectively. The mathematical intuition behind each technique
will be described. Prior studies on how machine learning research has impacted the
direction of research in human gait classification and detection will be explored. Fur-
thermore, this chapter will discuss the implementation procedures of the proposed
SVM algorithm and how the SVM model adopts the Kernel Trick feature [46] to solve
the nonlinearity problem of human gait data. Finally, this chapter will emphasise
the critical factors to consider while evaluating the model’s performance.

2.3 Types of Machine Learning Algorithms

In order for AI to analyse data, input data must be arranged as feature vectors.
The features are measurable attributes of the input data, which can be formatted
into feature vectors in order to be mathematically described and facilitate the com-
putation process of ML models [44]. The features can be a form of a variety of types
of data and are mostly extracted from the raw data, such as sensory variables of hu-
man gait that are collected by the inertia moment unit (IMU). In conventional ML
methods that do not use advanced approaches to data representation, the relevant
data features can be selected manually or by other dimensionality reduction methods.
Meanwhile, the developed CA approach is capable of automatically representing the
entire or relevant features from the original (collected or stored) data.

Machine learning may be categorised into four major groups based on model
properties and input data [61]:

1. Supervised Machine Learning:
The main role of supervised machine learning is to train a model that associates
input data, which is represented by features, with known labelled outputs of
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interest. Predicting labels on new data is referred to as classification, which
can either be binary ( for instance, discriminating between normal and abnor-
mal human gait) or multiclass ( for example, distinguishing between the type
of gait; normal versus gender-based versus unique age group, etc.), whereas
predicting a continuous resultant is referred to as regression (such as, pre-
dicting the likelihood of having healthy walking behaviour after serious gait
injury) [62].

The process of supervised machine learning is based on providing the training
data, which is composed of feature vectors and output labels, to a machine
learning classifier of interest. Then, the ML classifier creates a ML model by
learning through continuous iterations to correlate the input feature data to the
output labels. Once trained, the testing process starts, where the ML model
makes predictions based on new data.

There have been various supervised learning approaches developed throughout
the years that may identify correlations between input data and observation
outputs in a linear or nonlinear fashion. Beyond model selection, the most
significant aspect of model success in supervised machine learning is appropri-
ate feature engineering selection to reflect on the overall model’s performance.
There are several typical algorithms which are related to supervised learning,
such as (1) Logistic Regression [63], as it does classification rather than re-
gression. However, it does not automatically efficiently handle interaction or
nonlinearity of data. (2) Naïve Bayes [64], which is based on Baye’s theorem of
conditional probabilities. It is fast and only accommodates a limited number
of data samples, but may be difficult to interpret and presume independance
between data variables. (3) Random Forest [65], which integrates the results
of multiple decision trees to produce a single outcome. Even with a high num-
ber of variables, it is characterised by its capability of detecting interactions
between data variables. Also, it is resilient to overfitting and noisy data. The
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other two algorithms (K-Nearest Neighbour and Support Vector Machine) [61],
which are used in this research for classification purposes, are described in
detail in Section 4.2 and 4.3 respectively.

Due to the difficulty of deciding what type of supervised ML model would
perform best, the model itself undergoes development and optimisation proce-
dures, including selecting the learning algorithm of interest, optimal feature set,
and most importantly, fine-tuning the hyperparameters of the selected learning
method. Several methods exist for evaluating model performance during the
model development process [66]. Classification algorithms generate a continu-
ous output, instead of a binary or discrete outcome. The Receiver Operating
Characteristics (ROC) curve is utilised as a metric to evaluate the area under
the curve (AUC), depending on the ML model outcome [67]. The confusion ma-
trix is an alternative performance measure metric that can be used at specific
operating points on the receiver operating characteristic curve to compute the
model’s accuracy, sensitivity (sometimes referred to as recall), specificity, pre-
cision (also referred to as positive predictive value), negative predictive value,
and the F1−score [68]. On the other hand, the mean square error (MSE) or root
mean square error (RMSE) are commonly used to evaluate the performance of
regression models [69].

Data partitioning as a method of model optimization must be well-engineered,
depending on the functionality of the applied model (whether classification or
regression). As an unbiased data partitioning technique, the K−fold cross-
validation method is used to assess the effect of various ML model parameters
during model training iteratively over several K values in order to produce an
optimal model [70]. This method is commonly used in KNN machine learning
algorithm. In contrast to the cross-validation approach, which increases com-
putation time, there is another type of data partitioning strategy that divides a
dataset into three parts: a training set, a testing set, and a hold-out validation
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set [71]. The training set is used to fit the model, while the validation test
evaluates the model adjustments. Model improvements can be achieved on the
testing set to create an unbiased optimal model.

2. Unsupervised Machine Learning: Unsupervised machine learning tech-
niques are relatively uncommon in comparison with their supervised learning
counterparts. It usually measures patterns within input data that do not have
identifiable labels of interest [72]. Many methods have been developed for un-
supervised learning, such as: (1) Clustering Analysis [73], which is frequently
used to find subgroups in large amounts of complex dataset. (2) Hierarchical
Agglomerative Clustering [74], which creates small clusters of data whose pat-
terns are similar to each other, and then joins these clusters together to form
large clusters of similar patterns. (3) K-means Clustering [75] is an alternative
to hierarchical clustering in which the number of K clusters within the data is
pre-defined, allowing data samples close to the cluster’s centroid to have the
identity of that cluster. The authors in [76] used Sagittal plane gait features
as input to the K-means clustering approach to identify homogeneous groups
of individuals with cerebral palsy impairment who walk with excessive knee
flexion at initial contact as an example of this approach. (4) Dimensional-
ity Reduction [77], which used to rank the dimension of input data into lower
dimensions to facilitate data clustering. The criticality analysis methodology
developed in this study based on the RCC approach can be considered a type of
dimensionality reduction technique as it maps the original data patterns into a
new lower-dimension space. The criticality analysis method can transform un-
labeled data patterns into new identifiable or labelled features. In terms of the
challenges of unsupervised machine learning, it requires a massive amount of
computational power and thus excessive time to decide patterns within data,
and as a result, it may produce nebulous features that may not be relevant
to the patterns of interest. Also, choosing the number of clusters in various
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clustering analysis methods provides a high degree of ambiguity as it must be
premeasured and also depends on the data patterns. For example, although
the authors in [78] applied the K-means clustering analysis to classify flexible
flatfeet based on 3D foot kinematics during walking for a number of patients,
they ran an interative test to select the best or optimal number of clusters and
chose two clusters out of six that showed a minimal reduction in mean square
error rate.

3. Semi-supervised Machine Learning: This kind of learning combines ele-
ments of both supervised and unsupervised learning in which some data pat-
terns can be labelled while others do not contain labels [79]. It uses the knowl-
edge contained in a small amount of labelled data to produce a labelled outcome
from a large amount of unlabeled data patterns. If the training procedure re-
vealed that there were no relevant labels that could be used for class labelling,
the model may be overstressed and experience time-complexity issues. As an
example of this approach, the authors in [80] demonstrated a personalised clas-
sifer to detect human motion based on this semi-supervised learning concept.

4. Reinforcement Learning: It is sometimes referred to as "learning with crit-
icism" since it gives computers and agents the capacity to autonomously make
the optimal judgments within their environment [81]. It varies from other su-
pervised machine learning approaches in that there are no accurate input or
output sets, which means that when the algorithm knows the answer is incor-
rect, it makes no modifications to rectify it.

2.4 State of the Art on Gait Analysis

Cutting-edge gait analysis employs diverse technologies such as motion capture
systems, wearable sensors, and computational models to enable informed decision-
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making across various domains, including healthcare, rehabilitation, sports, and se-
curity.

2.4.1 Smart Motion Capture Systems

Smart motion capture systems are an essential technology used in gait analysis.
They consist of a series of cameras and sensing markers that are used to track the
movement of the body and to facilitate health monitoring and control, providing
highly accurate data on gait kinematics [82]. They are typically used in controlled
laboratory environments, and have been used to study a wide range of gait-related
conditions. A variety of wearable systems, including shoes [83], socks [84], kneepads
and anklets [85], insoles [86], smartphones [87], and smartwatches [88], are being
developed to gather gait data for passive mental health assessment and for use in
health, sports, security, and entertainment applications. Additionally, implantable
medical devices and wearable robotics such as prosthetics and orthotics are also being
developed. An example of this is the Ubiquitous Healthcare for Elderly (UbiHeld)
system, which uses gait data from a smartphone and a Kinect camera to monitor the
health, location, and other activities of elderly individuals at home [89]. The cre-
ation and advancement of smart gait devices poses a variety of difficulties, such as
the need for a balance between elasticity and ergonomic design, as well as aesthetic
appeal, compactness, and flexibility [90]. Additionally, these devices must be able to
withstand frequent washing and maintain their robustness and reliability over time.
Person identification is a crucial aspect of these devices, requiring a balance between
personalised user experience and user privacy. Ensuring seamless, ongoing user au-
thentication is crucial to protect against unauthorised access to medical records [91].
Additionally, these devices lack additional features that are essential for their in-
tended use, including water resistance, durability, and the capability to connect with
other smart devices and environments [83]. Several investigations have mainly cen-
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tred on the utilisation of sensing technology to fulfil these specifications. Wearable
devices utilise a variety of sensors including Inertial Measurement Units (IMUs),
capacitive sensors [92], Kinetic Energy Harvesters (KEH) [93], solar cells [94], re-
sistive sensors and stretchable conductive micro-fluids [86], and Triboelectric Nano-
generators (TENGs) [95]. These sensors are engineered to be compact, lightweight,
and resilient, while simultaneously delivering precise and dependable data. Research
has shown the effectiveness of using AI, sensors, and related technologies in predict-
ing movement intentions and recognizing human activities through the use of smart
gait devices. As examples, Yang and Yin (2021) [90] employed a Long Short-Term
Memory (LSTM) method in conjunction with a Convolutional Autoencoder (CAE)
to estimate joint torque using soft pneumatic sensors and 3D Inertial Measurement
Units (IMUs) in smart shoes. Similarly, Xu et al. (2021) [91] utilised an attention-
based LSTM for gait recognition while preserving the privacy of users through the
implementation of KEH PrivGait, a wearable device equipped with Kinematic and
Environmental Hybrid sensors. Sandhu et al. (2021) [94] used Random Forest (RF)
for human activity recognition in a wrist-worn device, known as SolAR, which is
self-powered through solar energy. Also, Zhang et al. (2020) [95] applied a 1D Con-
volutional Neural Network (CNN) for gait and human activity recognition in smart
textile-based socks for long-term monitoring. Lan et al. (2020) [92] employed Naive
Bayes (NB), Random Forest (RF), Decision Tree (DT), and K-Nearest Neighbours
(KNN) for human activity recognition in a self-powered shoe with embedded Capac-
itive Sensing technology. Gao et al. (2020) [96] utilised Recurrent Neural Networks
(RNN) for imitation learning in real-time prosthetic control with built-in motion
sensors in a transfemoral prosthesis. Zhang et al. (2020) [97] used Reinforcement
Learning (RL) for assist-as-needed control in robot-assisted gait training with motion
sensors in an SAFE orthosis. Llorente-Vidrio et al. (2020) [98] applied a Deep Dual
Neural Network (DDNN) for the classification of Electromyography (EMG) signals
to activate an event-driven controller with electromyography (EMG) sensors in a
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mobile lower limb active orthosis.

2.4.2 Smart Homes

Another technology that is commonly used in gait analysis is smart homes, such
as houses or residential environments that have been outfitted with technology that
allows for the monitoring and analysis of human gait patterns. This technology typ-
ically includes a variety of sensors, cameras, and other devices that are strategically
placed throughout the home to track and record individuals’ movement and gait
patterns [99]. The data collected by these sensors and cameras is then analysed by
specialised software to provide insights into a person’s gait, including information
on gait kinematics, speed, and symmetry. This information can be used to identify
and track gait-related conditions such as diseases or disorders, as well as to monitor
progress in rehabilitation and gait training programs. Smart homes for human gait
analysis can also include devices like smart shoes, smart socks, and other wearable
technology that can track gait and other movement data. The scientific community
has extensively explored the use of AI algorithms in smart home and wearable tech-
nologies. As an illustration, Borelli et al. (2019) [100] implemented AI algorithms
into smart objects such as a wall light for indoor localization, an armchair for sitting
posture monitoring, and a belt for capturing movement information. The focus of
their research was on the techniques, structure, planning, and creation of these in-
telligent devices, with the wall light additionally providing input to a fall detection
algorithm, where the wall panel and mobile devices acted as the user interface. Ac-
cording to Hsu et al. (2017) [101] study, 3D gesture recognition had a 95.3% accuracy
using Probabilistic Neural Network (PNN) and a 10-fold Cross Validation (CV). The
study also focused on pedestrian navigation, home safety and fire detection using a
wearable IMU on the wrist and feet, and environmental sensors. The smart home
testbed included a web camera and multisensory circuit module for these tasks. In
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Cook et al. (2015) study [99], various AI algorithms such as DT, NB, RF, SVM,
Adaptive DT, and Adaptive RF were tried out, with Adaptive DT providing the
best classification accuracy. Their study used a CASAS smart home and wearable
sensors for in-home health monitoring for early detection of changes associated with
PD and Mild Cognitive Impairment (MCI), and evaluation of treatment. Princi-
pal Component Analysis (PCA) was used to reduce features and k-Means clustering
and random resampling were used to add features in smaller datasets of individual
activities.

2.4.3 Advanced Technology Using Virtual and Animation

Environments

Another technology for analysing human gait is that uses virtual and animation
environments to analyse and understand human walking patterns. This technology
typically employs virtual reality, computer animation, and motion capture techniques
to simulate and record human gait movements [102]. This can be used for medical
and rehabilitation purposes, such as analysing and diagnosing gait disorders, or for
research and development in the field of biomechanics. This technology can also be
used for ergonomic evaluations, for example, for evaluating the design of footwear or
prosthetic devices [103]. Multiple AI algorithms are utilised for character control and
motion reconstruction in video games and virtual reality applications. In recent years,
various AI algorithms have been employed for motion reconstruction and character
control in video games and VR applications. For example, a study by Feigl et
al. (2020) [104] utilised head-mounted accelerometer data to reconstruct motion
using Threshold Based Method (THR), Pearson Correlation-based Method (COR),
SVM, and Bidirectional LSTM (BiLSTM). The results of the study found that the
COR method had the highest accuracy for real-time VR applications with low delay.
Another study by Bergamin et al. (2019) [105] used unstructured motion data from
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a motion capture system to create real-time physics-based character control for video
games using Data-Driven Responsive Control (DReCon), which is a motion matching
and deep RL technique. In a similar vein, Peng et al. (2018b) [106] used simulated
character models and YouTube video clips to learn dynamic physics-based character
controllers using OpenPose/Human Mesh Recovery (HMR) and DRL. Peng et al.
(2018a) [107] also used a character model and kinematic reference motion from video
clips to create physics-based character controllers using DeepMimic, another DRL
technique. Additionally, Huang et al. (2018) [108] used a Skinned Multi-Person
Linear (SMPL) body model and BiLSTM with 6 IMUs to reconstruct 3D human
poses from a sparse set of IMUs. Holden et al. (2016) [109] used the Carnegie Mellon
University (CMU) Motion Capture Database to learn an unsupervised human motion
manifold using CAE. Huang et al. (2015) [110] used a Surface Motion Graphs (SMG)
and part-based Laplacian deformation with three 4D Performance Capture (4DPC)
datasets to create a data-driven approach for animating 4DPC character models.
Ding and Fan (2015) [111] used multilayer Joint Gait-Pose Manifolds (JGPMs) and
topologically constrained Gaussian Process (GP) Latent Variable Models (GPLVMs)
with the CMU Motion Capture Database and simulated data to model human gait.
Finally, Alvarez-Alvarez et al. (2012) [112] used Fuzzy Finite State Machines (FFSM)
with automatic learning of the fuzzy knowledge base by Genetic Algorithm (GA) to
model human gait using an accelerometer attached to a belt. Overall, these studies
demonstrate the ongoing effort to develop sophisticated AI algorithms for motion
reconstruction and character control in video games and VR applications.
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2.5 Machine Learning for Gait Analysis: A Criti-

cal Review of Techniques and Limitations

Recently, the utilisation of Machine Learning (ML) techniques in gait analysis
has seen a significant increase for the purpose of classifying gait patterns and pre-
dicting gait-related outcomes. One of the key benefits of ML techniques is their
ability to automatically extract relevant features from raw spatiotemporal gait data,
thus enhancing the accuracy of gait analysis. While there are several data pre-
processing techniques employed, such as Ground Reaction Force (GRF) filtering,
time derivative, time normalisation, data reduction, weight normalisation, and data
scaling. Burdack et al. (2020) [113] found that only GRF filtering and supervised
data reduction methods, such as PCA, improved the performance of ML classifiers.
Additionally, the study revealed that Random Forest (RF) was more robust in feature
reduction when compared to Support Vector Machines (SVM), Multi-Layer Percep-
tron (MLP), and Convolutional Neural Networks (CNN). However, the research falls
short in taking into account the representation of all data features in a comprehensi-
ble manner, which is crucial for achieving the highest possible accuracy, as is the case
with the CA technique discussed in this thesis. ML techniques play a vital role in
various gait analysis applications, such as prediction of gait events and classification
of gait phases, health, and gender recognition.

2.5.1 Recognition of Gait Phase and Event Prediction

The way in which a human moves, known as gait, is a continuous sequence of
movements or cycles. Each gait cycle refers to the movement of a single limb from
heel-strike of one foot to heel-strike of the same foot again Gage et al. (1995) [114].
The two primary gait phases are the stance phase and the swing phase. Depending
on the intended use of the gait analysis, identifying these two phases alone may be



30

sufficient. This simplification allows for a more straightforward and cost-effective
gait analysis, particularly in wearable systems Di Nardo et al. (2020) [115]. How-
ever, a more common four-phase cycle includes initial contact, mid-stance, pre-swing,
and swing Jiang et al. (2018) [116]. The integration of Artificial Intelligence (AI)
in these studies is essential for real-time gait analysis, which is highly valuable in
various control devices such as orthotics and prosthetics, rehabilitation monitor-
ing, and fall detection systems for aging-in-place applications. There are various
studies on gait phase recognition and gait event prediction. As an illustration,
Vaith et al. (2020) [117] used LSTM-Net and DENSE-Net with 12 subjects and
7 IMUs, 2 IMU pressure insoles for offline AL to reduce labelling cost and online
gait phase classification. Pérez-Ibarra et al. (2020) [118] used a Hybrid Simulated
Annealing (SA) and Genetic Algorithm (GA) approach with 3 subjects, 1 HC, 2
impaired gaits, and an IMU at the back of the heel for online gait event detec-
tion. Di Nardo et al. (2020) [115] employed a MLP with 23 subjects and 1 electro-
goniometer per leg for gait phase classification, 2 phases (stance/swing). Morbidoni
et al. (2019) [119] used MLP with 23 healthy subjects, Surface Electromyography
(sEMG) and barographic data, natural walking conditions for gait phase classifica-
tion, 2 phases: stance/swing and gait event prediction, Heel-Strike (HS) and Toe-Off
(TO). Jiang et al. (2018) [116] used LDA with 9 healthy subjects, TW, 8 pressure
sensors in an ankle-worn band for wearable gait phase recognition system. Farah
et al. (2017) [120] used DT, RF, MLP, and SVM with 31 subjects and an inertial
sensor at the thigh for gait event detection. Mannini et al. (2014) [121] used HMM
with Short-Time Viterbi (STV) with 9 healthy subjects, Treadmill Walking (TW),
and 1 IMU gyro at the instep of the left foot for online gait event detection.
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2.5.2 Detection of Abnormal Gait Patterns

The application of Machine Learning (ML) in gait analysis for health is wide-
ranging and includes the detection of abnormal gait patterns (fatigued, and neuro-
logical gait) caused by conditions or diseases, sports performance management, fall
detection, and recognition of activities. Several studies on fatigued gait were con-
ducted. For instance, Russell et al. (2021) [122] used CNN with 97.8% accuracy and
data collected by an accelerometer worn around the chest and a GPS watch for loca-
tion tracking, to detect variations in terrain and fatigue. Baghdadi et al. (2021) [123]
used Multivariate Hierarchical Time Series Clustering Algorithm (MHTSCA) with
DTW as a dissimilarity measure and data collected by an IMU worn at the right
ankle, with 15 subjects to detect fatigue development over time. Sedighi Maman
et al. (2020) [124] used RF with Best Subset Selection (BSS) and 85.5% accuracy,
with data collected by one sensor in the torso, with 15 subjects to develop a 4-phase
fatigue management framework in the workplace (detection, identification, diagno-
sis, and recovery). Karvekar (2019) [125] used 2-class SVM with 91% accuracy, 24
subjects, and a smartphone attached to the shank to detect fatigue: baseline, low,
medium, and strong fatigued states, 3-class SVM with 76% accuracy, and 4-class
SVM with 61% accuracy. Baghdadi et al. (2018) [126] used SVM with 90% accu-
racy, data collected by one IMU in the ankle, and 20 subjects to detect fatigue after
Manual Material Handling (MMH) tasks. Janssen et al. (2011) [127] used SVM and
SOM with PCA with 98.1% accuracy, data collected by 9 subjects’ GRFs, to classify
inter and intra-personal gait before, during, and after leg exhaustion.

2.5.3 Monitoring of Neurological Diseases

Other studies in the field of Machine Learning (ML) have investigated the use
of ML techniques for the diagnosis and monitoring of neurological diseases, with the
goal of improving detection and therapy. There have been numerous studies that
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have employed machine learning techniques to identify pathological gait patterns.
For instance, Lu et al. (2020) [128] utilised a support vector machine with principal
component analysis on a dataset collected from a Kinect camera with image recti-
fication, resulting in an 88.89% accuracy in the detection of depression. Similarly,
Khodabandehloo et al. (2021) [129] applied HealthXAI Classification and Regres-
sion Trees (CART) on Partial Center for Advanced Studies in Adaptive Systems
(CASAS) dataset, including individuals with Parkinson’s disease and mild cognitive
impairment, to determine a numerical score and explanation of cognitive decline in
the elderly. Iosa et al. (2021) [130] applied an artificial neural network (ANN) on a
dataset collected from an inertial measurement unit to develop a stroke prognostic
tool that predicts the ability of an individual to return to work, achieving an accu-
racy of 93.9%. Zhu et al. (2020) [131] used RF with IAFSA on a dataset of 3 patients
with knee replacement to predict knee joint impairment. Zhou et al. (2020) [132]
used kernel PCA with SVM, RF, and ANN on a dataset of 239 subjects, includ-
ing young and old healthy individuals and those with geriatric conditions, achieving
an accuracy of 90%. Zeng et al. (2020) [133] used an RBF neural network with
Deterministic Learning (DL) for kinematic modelling and classification of Chronic
Unilateral ACL deficiency. Pepa et al. (2020) [134] using a novel FL on smart-
phone data for real-time, interpretable Freezing of Gait (FoG) detection. Kaur et
al. (2020) [135] used LR, SVM, and RF on GRFs from instrumented treadmill for
classification of Multiple Sclerosi (MS) mild and moderate. Guo et al. (2019) [136]
used SVM and BiLSTM on a light-weight telepresence robot equipped with a single
RGB-D camera to classify normal, in-toeing, out-toeing, and drop-foot gait with
no additional sensing feedback. Sato et al. (2019) [137] used ST-ACF DTW and
KNN with OpenPose on a CASIA-B dataset of frontal videos of two Parkinson’s
disease (PD) patients to quantify normal and Parkinsonian gait features from home
movies. Fang et al. (2019) [138] used RF on a dataset of 95 graduate students, 52
with depression and 43 healthy controls, to analyse depression through gait patterns.
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Acosta-Escalante et al. (2018) [139] used Logitboost and RF on a dataset of 14 Hunt-
ington’s disease (HD) patients and 7 healthy controls, using smart phones affixed to
both ankles, to classify HD gait patterns. Pulido-Valdeolivas et al. (2018) [140]
used RF with DTW based on an optokinetic IGA system to monitor the progres-
sion of HSP (Hereditary Spastic Paraplegia) and personalise therapies. Wan et al.
(2018b) [141] used DMLP (Deep Multi-Layer Perceptron) and a dataset of 50 indi-
viduals wearing a phone on the waist to analyse speech and movement data captured
by a smartphone to estimate the severity of Parkinson’s disease. Similarly, Arifoglu
and Bouchachia (2017) [142] used LSTM on a public dataset collected through envi-
ronmental sensors to perform human activity recognition and activity of daily living
for elderly people with dementia. Dolatabadi et al. (2017) [143] used Gaussian
Process Latent Variable Models (GPLVM) and KNN-DTW to discriminate between
healthy and pathological gait patterns because of stroke or ABI, with an F1-score
of greater than 0.94. Shetty and Rao (2016) [144] used SVM with Gaussian Radial
Basis Function (RBF) to distinguish PD gait from HD, ALS, and HC, achieving an
accuracy of 83.3%.

2.5.4 Gender Recognition

Gender recognition based on human gait is a method of identifying the gender of
an individual based on characteristics of their walk. This can be done using computer
vision and machine learning techniques, which have been widely used in recent years
for a variety of applications including surveillance, human-computer interaction, and
biometrics [152]. The human gait is a complex phenomenon that is influenced by
various factors such as body structure, muscle strength, and coordination. There
are specific gait characteristics that can be used to differentiate between men and
women, such as the length of steps, pace, posture, and the position of joints relative
to certain planes, known as swing energy [153]. Specific techniques, such as the his-
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togram of gradient method [154], can be used to extract features from video, depth,
or sensor data obtained from cameras. These features can then be converted into 1D
temporal descriptors for use in training machine learning models, using data from 3D
IMU sensors. The primary difficulty in identifying gender through gait analysis is the
variability in walking speed and other related factors such as clothing, footwear, and
carrying objects [155]. This, combined with the limitations of the size of the training
set and the complexity of the model, can greatly impact the gait parameters and
make it difficult to obtain accurate features, resulting in poor classification perfor-
mance [156]. Therefore, it is crucial to be aware of the limitations of this method and
not rely solely on it without additional information and evidence, as the recognition
may not always be reliable and may not always produce correct results. Additionally,
it is imperative to take into account the ethical and privacy implications of using this
technology as it could potentially be used to discriminate or profile individuals based
on their gender [157]. Therefore, further research is necessary to improve the perfor-
mance and reliability of gender recognition based on human gait while addressing the
ethical and privacy concerns associated with its use. A number of studies have been
conducted in recent years to evaluate the performance of gender recognition based
on human gait, using various datasets and methods. The results have been mixed,
with some studies reporting high accuracy rates, while others have reported lower
rates. This can be attributed to the complexity and variability of the data, as well as
the limitations of the models and the methods used. As an illustration, Castro et al.
(2017) [158] proposed an end-to-end approach using a CNN, which utilises gait signa-
ture representation of individuals extracted from low-resolution video using optical
flow maps to achieve high accuracy in recognising both gender and identity. Zhang
S. et al., (2019) [159] demonstrated that utilising a multi-task convolutional neural
network (CNN) architecture, in which the network learns multiple attributes simul-
taneously, can significantly improve the overall accuracy of the model. Furthermore,
Kwon et al. (2021) [160] reported an accuracy of 100% using a group of four machine
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learning techniques (KNN, SVM, NB, and DT) on UPCVgaitK1 and UPCVgaitK2
dataset for gait recognition. Various researchers such as Lu et al., (2014) [161] in the
field of ML have also focused on recognising gender from gait data using a variety
of techniques such as the combination of AP clustering and Sparse Reconstruction-
based Metric Learning (SPML) with an accuracy of 87.6%. Despite the advantages
of ML techniques, there are also limitations to their use in gait analysis [162]. One
limitation of previously reported work in this area is that many studies have focused
on small datasets or have used unrealistic or simplified gait models. This has limited
the generalizability of the results and the ability to apply the findings to real-world
situations. Additionally, while many studies have reported high accuracy rates for
ML-based gait analysis, these results may not be generalizable to other datasets or to
real-world scenarios. Another limitation is that ML algorithm use for Gait analysis
is often data heavy which leads to a lack of robustness to changes in the environ-
ment, making it difficult to apply to real world scenarios [163]. The dataset used
for training and testing the model should be diverse and inclusive to improve the
performance of the model in real world situations.

2.6 A Review of Support Vector Machine-based

Approaches in Human Gait Analysis with a

Focus on Criticality Analysis

The field of human gait analysis has seen significant advancements in recent
years, yet the application of criticality analysis and rate control of chaos remains an
under-explored area of research, particularly in human gait analysis. However, the
utilisation of Support Vector Machines (SVMs) as a tool for gait analysis has been
well-established in the literature. Although, most of the Machine Learning (ML)
methods and techniques applied to human gait analysis have focused on utilising
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gait features or patterns without fully understanding their biological significance.
These studies often employ ML approaches to gait data without considering the un-
derlying complexities of human gait. But the use of criticality analysis presents an
opportunity to unlock the understanding of these complexities by creating spatiotem-
poral patterns of gait patterns in a more interpretable space. This approach allows
for a deeper understanding of the dynamics of human gait. In this section, we aim to
review the existing literature on the use of SVMs in gait analysis, and its potential
applications in understanding the dynamics of human gait, particularly in the light of
criticality analysis. The objective of this review is to provide a thorough examination
of the state-of-the-art in this field and to serve as a foundation for future research
endeavours. One of the studies, which is conducted by Wonjin et al. (2021) [164] on
gait analysis for detection of initial characteristics of gait disorders is a valuable con-
tribution to the field of gait analysis and neurological disorder diagnosis. The use of
the SVM method to classify abnormal gait from a walking person, as well as the inte-
gration of gait features extracted from the individual’s walking movement using the
Kinect depth camera, are both strong points of the study. The 96.52% classification
accuracy achieved in the study is also noteworthy and suggests that the proposed
method has a high level of performance. However, it is important to note that this
study has several limitations. The sample size of the study is relatively small, which
can limit the generalisability of the results to a larger population. Additionally, the
study only uses one type of depth camera and it would be beneficial to test their pro-
posed method using other types of sensors to ensure the robustness of their proposed
method. Furthermore, the study does not provide any information on the cost and
practicality of their proposed method. The use of a depth camera and the required
computational resources may make their proposed method impractical for use in a
clinical setting. It would be useful to include an analysis of the cost-effectiveness
of the proposed method in future studies. Another study conducted by Iris et al.
(2010) [165] presented to detect and characterise gait abnormalities in individuals
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with Parkinson’s disease (PD) using wireless inertial sensor system measurements.
The study utilises the physical features of pitch, roll, and yaw rotations of the foot
during walking and applies the Principal Component Analysis (PCA) to select fea-
tures and the SVM method to create a classification model. The study found that
the model performed with over 93% sensitivity and specificity and 97.7% precision
in the binary classification task of detecting the presence of PD. This suggests that
the wireless inertial sensor system was able to successfully detect the presence of
PD based on physical features of gait and identify the specific features that charac-
terise parkinsonian gait. Furthermore, the use of a cost-sensitive learner in the study
reflected the different costs associated with misclassifying PD and control subjects,
which led to 100% specificity and precision while maintaining sensitivity of close to
89The study also performed a multi-class classification task of characterising parkin-
sonian gait by distinguishing among PD with significant gait disturbance, PD with
no significant gait disturbance, and control subjects. This resulted in 91.7% class
recall for control subjects and 84.6% precision for PD subjects with significant gait
disturbance. Furthermore, Nukala et al. (2015) [166] and Shibuya et al. (2015) [167]
used wireless gait analysis sensors (WGAS) to perform automatic fall detection and
have similar sensor designs, including a tri-axial accelerometer, 2 gyroscopes, and
a micro-controller. Both studies also used two supervised machine learning tech-
niques such as Back Propagation Artificial Neural Network (BP-ANN) and SVM for
fall classification. However, there were some differences in the methodology used in
these studies. Nukala et al. (2015) [166] used a total of 322 tests on young volunteers
and achieved an overall accuracy of 98.2% and 98.7% with BP-ANN. On the other
hand, Shibuya et al. (2015) [167] utilised SVM classifier to detect falls in real-time
and achieved high fall classification accuracy (98.8% and 98.7% for different sensor
positions) and high overall specificity (99.5%) and sensitivity (97.0%). However, the
study conducted by Nukala et al. (2015) [166] did not provide information about the
specific parameters used for the algorithm, which would have been useful to under-



38

stand the results and compare them to other studies. Additionally, the study only
reported the accuracy of the algorithm, without providing information about other
performance metrics such as precision, recall, or F1-score. On the other hand, the
study by Shibuya et al. (2015) [167] reported high fall classification accuracy (98.8%
and 98.7% for different sensor positions) and high overall specificity (99.5%) and sen-
sitivity (97.0%). The study also provided information about the specific parameters
used for the algorithm, which is useful to understand the results and compare them
to other studies. Additionally, the study examined the performance of the algorithm
in real-time, which is important in practical applications. In a similar vein, Huang
et al. (2018) [168] presented a novel approach to gait analysis by using audio data
instead of visual data. This is a significant advancement in the field as it addresses
the limitations of traditional gait analysis methods, which rely on visual data and
are affected by changes in clothing, visibility, and angles. The use of audio data in
gait analysis is an innovative approach as it is not affected by the same limitations
as visual data. The technique is based on the time differences between steps rather
than frequency-based features, which are affected by changes in footwear and floor
surfaces. This allows for a more robust and accurate analysis of gait. The authors
used SVM technique for classification. The results showed high classification rates
and excellent discriminative abilities, indicating that the method is effective in iden-
tifying individuals based on their gait. Additionally, Hayashi et al. (2015) [169]
study introduced to improve the diagnostic accuracy of lumbar spinal canal stenosis
(LSS) by using gait analysis as a classification method. The study group consisted
of 13 healthy individuals, 11 patients with L4 radiculopathy, and 22 patients with
L5 radiculopathy. The authors used video recordings and a development program
to analyse gait characteristics, and an SVM to classify L4 and L5 radiculopathy.
The study found that knee extension at initial contact was slightly greater in the
L4 group and a one-peak waveform pattern with the disappearance of the second
peak was present in 45.5% of the L5 group. The total classification accuracy was
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80.4% using the SVM, with the highest accuracy in the control group and the lowest
in the L4 group. The authors concluded that their walking motion analysis system
was able to identify useful factors for differentiating between healthy individuals and
patients with L4 and L5 radiculopathy with a high accuracy rate. The study has
several strengths, such as the use of a well-established method for gait analysis and
the use of a development program to analyse gait characteristics. Additionally, the
use of an SVM to classify L4 and L5 radiculopathy is a valid method and the results
of the study demonstrated that this method can be useful in identifying patients
with LSS. However, the study also has some limitations. Firstly, the sample size
is small, which may limit the generalisability of the findings. Secondly, the study
only analysed patients with L4 and L5 radiculopathy, and it is unclear if the findings
would be generalisable to other types of radiculopathy or other types of spinal steno-
sis. Additionally, the study only used healthy individuals as the control group and it
would be beneficial to also include patients with other conditions to compare the gait
characteristics. Similarly, Yoo et al. (2005) [170] proposed an automated system for
classifying gender by analysing human gait patterns. Their study provided valuable
insights into the application of gait analysis for gender identification. The three-stage
system proposed in the study is well-structured, with the detection and extraction of
the moving human body and its contour from image sequences, extraction of human
gait signature using joint angles and body points, and motion analysis and feature
extraction for classifying gender, providing a clear and logical progression in the
analysis. The use of 2D stick figures to represent the gait signature was found to
be an effective approach, as it allows for the clear visualisation of the gait patterns
and allows for easy comparison between subjects. Additionally, the use of an SVM
classifier to classify gender is a well-established method in machine learning, and its
application in this study demonstrates the robustness and reliability of the system.
The experiments performed on a large database showed a high performance of 96%
for classifying gender for 100 subjects, indicating that the system is highly accurate
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in identifying gender based on gait patterns. This is an important finding, as it has
potential applications in areas such as security and surveillance, where automated
gender identification is needed. However, the study has some limitations, such as the
lack of diversity in the sample population, which could limit the generalisability of the
findings. Additionally, the study did not address the potential ethical implications of
using gait analysis for gender identification, such as privacy concerns and potential
biases in the system. Besides, the research work presented by Begg et al. (2003) [171]
is a valuable contribution to the field of gait analysis and falls prevention in the older
population. The use of artificial intelligence techniques, specifically Neural Networks
(NN) and SVM classifiers, for automatic identification of young and old gait types
is a novel approach that has the potential to aid in early identification of at-risk gait
for falls prevention. The study design is well-executed, with 12 young and 12 elderly
participants being recorded and analysed using a motion analysis system and a force
platform. The extraction of 24 gait parameters for training and testing the NN and
SVM systems is a thorough approach that allows for a robust analysis of the data.
The results of the study indicated that the SVM system has a better performance
than NN with 91.7% and 83.3% respectively in distinguishing between young and
elderly gait patterns. This suggested that the SVM is a more effective tool for iden-
tifying at-risk gait patterns in the older population. Additionally, the classification
ability of SVM was found to be unaffected by the choice of kernel functions, further
highlighting the potential of SVM for applications in gait identification for falls-risk
minimisation in the elderly. However, the study is limited by the small sample size
of participants, which may not be representative of the older population as a whole.
Additionally, the study only included participants of a specific age range, and further
research is needed to evaluate the applicability of their results to older adults outside
of this range. Likewise, the work of Si et al. (2019) [172] on the development of a
wearable sensing system for studying gait dynamics is a valuable contribution to the
field of bio-mechanics and human movement analysis. The proposed system, con-
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sisting of sensing shoes worn by a tester, effectively captures data on various types
of movements, including standing, jumping, and walking. The use of five features
extracted from foot pressure signals for motion analysis is a novel approach, and
the application of SVM and fractal analysis for gait recognition is well thought-out.
The testing results of the system, with an overall accuracy of 93.57% using radial
basis function kernel function, were impressive and demonstrate the strong potential
for gait identification using this method. The limitations of the study include the
small sample size, lack of diversity in the population tested, which limits the gen-
eralisability of the results, and the lack of discussion on potential applications and
how the system can be used to improve human movement understanding. Moreover,
Kamruzzaman et al. (2006) [173] presented an interesting and valuable study on
the use of SVM to classify children with cerebral palsy (CP) using gait parameters.
The study makes use of two gait parameters, stride length and cadence, which are
known to be affected in children with CP. The results of the study showed that the
SVM classifier has an overall accuracy of 96.8% when normalised by leg length and
age. This is a high accuracy rate and suggests that the SVM is a useful tool for
identifying CP in children. One of the strengths of the study is that it compares
the performance of different classifiers, including polynomial and radial basis kernel.
The study found that these two classifiers performed comparably and outperformed
the others. This suggests that the choice of kernel is not a significant factor in the
performance of the SVM. This is an important finding as it can inform the selection
of kernel in future studies. However, there are also some limitations to their study.
Firstly, the sample size of the study is relatively small, with only 30 children with
CP and 30 healthy children. This limits the generalisability of the results. Secondly,
the study only used two gait parameters, stride length and cadence, which may not
be sufficient to fully classify children with CP.

In addition, Horst et al. (2016) [174] conducted an examination to understand
the nature of intrinsic inter-session variability in gait patterns. The use of 8 healthy
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subjects who performed 15 gait trials at a self-selected speed on 8 different days
within 2 weeks allows for a thorough analysis of the separable characteristics of gait
patterns between and within individuals in repeated measurement sessions. The
use of ground reaction forces and lower body kinematics as a means of quantifying
each trial is a sound choice, as it allows for a detailed examination of the movement
patterns of the subjects. The results of the study are analysed using an SVM classifier
and the coefficient of multiple correlation approach, which are both appropriate
methods for the type of data being analysed. The results showed that there are a
remarkable amount of individual characteristics in human gait and that gait patterns
can be assumed not to be constant over time, but rather exhibit discernible daily
changes within previously stated good repeatability. This is an important finding,
as it suggests that gait patterns are not always stable and may change depending
on various factors such as physical or emotional state. The use of SVM results
in an error-free assignment of gait patterns to the corresponding individual, which
demonstrates the robustness of the method. Additionally, the classification rates of
97.3% and 59.5% for the eight-day classification of lower body joint angles and ground
reaction forces, respectively, highlights the ability of the method to distinguish day-
specific characteristics within the range of individual gait patterns. The potential
implications of this study are that it may provide a basis for more individual and
situational diagnoses or therapy for gait patterns. This could lead to more effective
treatments for patients with gait disorders, as well as the ability to monitor changes
in gait patterns over time.
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2.7 An Overview of K-Nearest Neighbour (KNN)

Approaches for Analysing Human Gait

The K-Nearest Neighbour (KNN) approach is a robust supervised machine learn-
ing technique that leverages data learning to effectively handle classification prob-
lems, achieving superior classification performance. KNN’s strength as a reliable
gait classifier lies in its ability to create strong prediction models. By computing the
Euclidean distance in a Euclidean space and considering the majority vote of Neigh-
bour ing labels, KNN determines the best k nearest Neighbour s. Previous research
has explored various applications of the KNN method in gait classification. For ex-
ample, in [188], researchers employed the KNN methodology to identify neurological
disorders in the brain through distinct human gait features. Additionally, the KNN
classification procedure was utilised to recognise individuals walking at the same
speed in [189]. In [190], researchers proposed a KNN-based-rule to identify healthy
gait patterns in Parkinson’s disease patients. In [189], the KNN concept was applied
to construct a secure authentication system that could recognise human cognitive
processes based on the distance between right and left gait skeletal joints. Similarly,
in [191], the KNN approach was used to classify biometric-related gait characteris-
tics based on data collected from a wearable sensor device. The study utilised the
best-matched gait signature metrics as a classification measure to identify individu-
als. Furthermore, in [192], the KNN classification rule was employed to categorise
human activities based on their sitting, standing, running, and walking configura-
tions. Likewise, in [193], Micro-Doppler data of gait characteristics were used for
classification purposes. The authors in [194] discussed the use of the KNN technique
to classify pedestrian motion based on the location of the inertial measurement units
(IMUs) device on various portions of human joints, such as fixed hands, swinging
hands, pockets, and backpacks. In addition, the study in [195] used a KNN classifier
to recognise a variety of turning actions of a lower limb prosthesis utilising wearable
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sensor data. One limitation of the KNN approach for gait analysis is its sensitivity
to noise and outliers in the data. Since KNN relies on the distances between Neigh-
bour ing data points to make predictions, noisy or outlier data points can greatly
affect the accuracy of the classification. Another limitation is that the choice of the
number of nearest Neighbour s, k, can have a significant impact on the performance
of the algorithm. Choosing a value of k that is too small can result in overfitting,
while choosing a value that is too large can result in underfitting. Finally, KNN can
also be computationally expensive, especially when dealing with large datasets or
high-dimensional feature spaces.

2.8 Summary

In conclusion, gait analysis is a multifaceted field that incorporates various tech-
nologies, techniques, and methods to study human walking. The state-of-the-art in
gait analysis involves the use of a variety of technologies, including motion capture
systems, wearable sensors, and computational models. These tools have allowed for
a deeper understanding of human gait and its underlying mechanisms, as well as
the identification of gait abnormalities in a wide range of conditions and popula-
tions. Advanced technology such as robotics, deep learning and machine learning
have been used to enhance the gait analysis. However, it is important to note that
the technology and techniques used in gait analysis are constantly advancing and new
approaches are continually being developed. Therefore, it is crucial for researchers
and practitioners to stay up-to-date with the latest developments in order to improve
the diagnosis, treatment, and monitoring of gait-related conditions.



Chapter 3

Mathematical Modelling of Human
Gait for Criticality Analysis

3.1 Introduction

Scientists have been challenged for decades to define the order and function of
biological systems. The functional order of the biological system, which typically rep-
resents self-organised dynamical states of living matter, underpins the vast majority
of biological processes. These states include spatial, temporal, and spatiotemporal
structures that may be found in both living and non-living materials. Several non-
linear phenomena evolve in space and time, including patterns that depict static
functions, oscillatory modes that exhibit rhythmic processes (including human gait
behavior), and travelling and spiralling waves. From a mathematical point of view,
biological functions must be understood with respect to its dynamic properties. Bi-
ological systems show some degrees of stability for some states, however in most
common scenarios the biological system exhibits high degree of chaos behaviour.
Chaos lies in between regularity and randomness, in which the system exposes un-
predictable explanations when the system remains far away from its equilibrium state

45
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due to nonlinear interactions between biological sub-related functions. The complex
functions of a biological system necessitate the development of theoretical mathemat-
ical models capable of describing the nonlinear effects of biological interactions and
understanding the motions of small atoms and the concentration of biochemical re-
actions in biological cells to provide a comprehensive understanding of the biological
system’s interaction dynamics. The primary goal of this chapter is to quantitatively
characterise the spatiotemporal patterns of human gait when the biological system
is activated by a source of perturbations, either internally or externally. It is also
worth noting that chaos is only one aspect of the intriguing behavior that nonlinear
systems may exhibit. In particular, disturbance or turbulence must be investigated
when exposed to a biological system to observe how stable the system can survive.

Human motor systems, which are a subset of the global biological system, are
physiologically complicated, and no mathematical models exist to accurately char-
acterise their dynamics in both time and space dimensions. When a normal gait is
disrupted, the entire dynamic state of the biological system drifts chaotically to a
more critical state due to an excessive rise in biological system kinetic energy, and
the behavior may exhibit near power-law and exponential interactions.

The interactions of the biological system functions within these disruptions pro-
duce a very complicated phenomenon that can be measured in the same way as the
concentration of metabolic reactions in the biological system. Fluctuations in the dy-
namics of the biological system can be regulated, but they must also be analytically
modelled. The RCC method, which has recently been demonstrated to be a robust
technique for stabilising a dynamic system’s nonlinear chaotic disturbance, regulates
the evolution rate of a nonlinear system so that the exponential growth of such an
unstable chaotic oscillator is controlled into stable trajectories. The control is set to
utilise the rate of growth of some of the variables in proportion to their total em-
bedded phase space. This is then passed into an exponential control function, which
allows the variable’s rate of change to be regulated or controlled to accelerate or
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decelerate. When no control is applied or the system is not changing exponentially,
the proportionate rate of change equals unity.

Despite being a recently developed technique in previous research [208] [34] [50] [41],
the CA based on the RCC method has been utilised in this thesis due to its robust-
ness in detecting disturbances in human gait. This novel technique is able to control
disturbances that could otherwise affect other biological functions in the biological
system. Its effectiveness in addressing these issues has made it a valuable tool in
analysing gait patterns, which is essential in identifying and treating various dis-
orders. It is inspired by the traditional biochemical enzyme control concept that
adjusts the reaction control [29]. Controlling the reaction rate of biochemical reac-
tions on the basis of local information allows the biological system to operate under
a broad spectrum of certain conditions. This can certainly be extended further to
control spatiotemporal chaos to achieve stability, such as the underlying dynamics
of human gait. The stability of the overall biological system trajectories must meet
the Lyapunov stability, such that the biological system can return to its equilibrium
region of its phase space-controlled dynamics. The RCC can restore the perturbed
biological system to its normal stable state by applying localised control to some of
its variables; however, it does not completely suppress the biological system’s un-
derlying nonlinear behaviour, as it still has some nonlinear properties, allowing it
to respond to perturbations and be less chaotic. Therefore, the RCC method does
not entirely eliminate the chaotic properties of the underlying nonlinear system, but
it applies limited localised control to the system to maintain an apparently stable
system. The controlled system retains many of the nonlinear system’s properties,
including the ability to respond nonlinearly to weakly chaotic perturbations.

This chapter will discuss some important background information related to the
concepts of nonlinear dynamic systems, supported by their mathematical formula-
tions. Different types of dynamical systems will also be explored. Furthermore, the
oscillatory behaviour of dynamic systems will be highlighted. The baseline charac-
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teristics of the biochemical model derived by Berry model [29] will be presented. The
optimised version of the Berry model [29], which is used to describe the spatiotem-
poral disturbances affecting the human gait, based on the rate of control of chaos,
will be discussed. Simulation analysis will follow to support the proof-of-concept.

3.2 Overview to Dynamic Systems

Dynamical systems methods have been widely used in the field of mathematical
biology to model various phenomena at different scales, ranging from the molecular
level to the population level [175]. At the cellular level, these methods can be used to
model metabolic pathways and cellular signalling networks, among other processes.
In the context of behavioural gait phenomena, the use of dynamical systems meth-
ods can be relevant in several ways. For example, the coordination of the muscles
involved in walking can be modelled using coupled oscillators, where each oscillator
represents the activity of a specific muscle or group of muscles. These models can
capture the phase relationships between the oscillators and how they change over
time to produce coordinated movement [176]. Dynamical systems methods can also
be used to study the stability and adaptability of gait patterns under different condi-
tions, such as changes in speed, terrain, or external perturbations [177]. For instance,
a model of human walking can be constructed using a system of differential equations
that describe the dynamics of the various muscle groups, as well as the interactions
between the body and the environment. This model can be used to predict how
changes in the parameters of the system (e.g., muscle activation levels, joint angles,
etc.) affect the stability and adaptability of the gait pattern [178]. Furthermore,
dynamical systems methods can be used to analyse and interpret data from experi-
ments on gait patterns [179]. For example, time series data on the joint angles and
muscle activations during walking can be analysed using techniques such as phase
space reconstruction, attractor reconstruction, and Lyapunov exponents [180]. These
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techniques can provide insights into the underlying dynamics of the gait pattern, as
well as the degree of variability and stability of the pattern over time. The use of
dynamical systems methods for modelling cell-level metabolic phenomena can be
relevant to the study of behavioural gait phenomena by providing a framework for
understanding the underlying dynamics of the gait pattern, as well as its stability
and adaptability under different conditions.

A dynamic system can be represented by a set of ordinary differential equations
(ODEs) that describe the evolving state of the system forward in time. Time can
be either a continuous or a discrete integer-valued variable. A dynamical system is
said to be deterministic if it has a single future state for a definite current state and
stochastic if the future state is determined by a probability distribution of potential
states. Chaos theory is the study of certain deterministic dynamical systems that
are extremely sensitive to initial conditions [30]. A chaotic system is a deterministic
dynamical system with sensitivity to its initial conditions. Mathematically, this can
be expressed as a set of ODEs:



dx(1)

dt
= F1(x(1), x(2), x(3), ..., x(N))

dx(2)

dt
= F1(x(1), x(2), x(3), ..., x(N))

...
dx(N)

dt
= F1(x(1), x(2), x(3), ..., x(N)),

(3.1)

which can also be given in a vector form as:

x(t)
dt

= F [x(t)] (3.2)

where x is an N–dimensional vector. The future system state x(t) for t > 0 can be
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determined for any initial condition of the system at x(0). The phase space is the
solution of the dynamic system F [x(t)] represented by (x(1), x(2), x(3), ..., x(N)).

The states of a chaotic system are often thought to exist in an N -dimensional
region known as phase space [31]. A chaotic system evolves in its phase space over
time according to the system variables that drive the dynamics. A trajectory or orbit
is the path taken by the system over time, and an attractor is the area of phase space
where the trajectories settle down as time approaches infinity [32].

The behaviour of the dynamic system F [x(t)] in terms of stability (equilibrium),
instability, or chaos can be measured when the dynamic system F [x(t)] = 0. If there
is a constant solution that satisfies F [x(t)] = 0, then the system is at equilibrium
or stable state [33]. When the dynamic system repeats itself after a specific time
interval, such that F [x(t)]=F [x(t + nT )], then the dynamic system exhibits periodic
obits or cycles. When the dynamic system shows an unstable behaviour that is
neither stable (or in equilibrium) nor periodic, then the sytem is in chaos state. This
also means that the system is sensitive to small perturbations of its initial conditions,
allowing the sytem to diverage from its equilibrium point [33].

3.3 Incorporation of Biomechanical Berry Model

The biochemical enzyme control of the Berry model [29] is recognisably applica-
ble for several types of control needed for biological control processes, such as the
motor system of the human gait. The RCC method has mainly been used to control
many different models, including Rossler, Lorenz, and Grey-Scott models [34] [35] to
analytically model biological patterns in critical systems, such as the release process
of insulin.

The original enzymatic system consists of two cyclically ordered enzyme processes
that interconvert chemicals A and B through antagonist enzymes E1 and E2. The
impact of B on the activity of both enzymes results in the formation of two auto-
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catalytic loops. B accelerates the rate of its formation, acting as a positive feedback
loop, as well as its consumption, acting as a positive forward loop. This fundamen-
tal design idea is shown in the context of extracellular matrix degradation balance.
Proteinases (p) breakdown insoluble extracellular matrix proteins (m) into soluble
proteolysis fragments (f), which can then be cross-linked by transglutaminase (g)
or another intermolecular protein-cross-linking enzyme to create new insoluble ex-
tracellular matrix proteins m. Proteinases (p) and transglutaminase (g) act as two
opposing enzymes that interconvert extracellular matrix proteins (m) and soluble
proteolysis fragments (f). The impact of f on the generation of p and g by the
surrounding cells causes the autocatalytic loops. Cells use many membrane recep-
tors that uniquely detect extracellular matrix elements to assess the features of the
surrounding extracellular matrix in vivo [36].

These receptors respond to physical and chemical changes in the extracellular
matrix by regulating signal transduction cascades within the cells [37]. In a first
autocatalytic loop, f increases proteinase amount, which raises f formation rate.
Likewise, the amount of extracellular matrix surrounding the cells can modulate
transglutaminase expression and secretion [38]. Assuming that cells can up-regulate
g in response to f amount, a second autocatalytic loop starts. Other biologically
relevant mechanisms must be considered in addition to the fundamental bienzymatic
arrangement. Surrounding cells create extracellular matrix proteins m at a constant
rate rim [39]. Except for p autoproteolysis, which is characterised as a simple second-
order rate, the equations describing this system are based on the standard Michaelis-
Menten formalism [36]. The autocatalytic loops do not directly impact the enzyme
activity but instead regulate p and g cell production. Therefore, the bienzymatic
cyclic model with two autocatalytic loops can mathematically be presented as:

dm

dt
= kg

fg

KG + f
− mp

1 + m
+ rim (3.3)
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df

dt
= −kg

fg

KG + f
+ mp

1 + m
− fp

1 + f
(3.4)

dp

dt
= γ

fn

KR
n + fn

− kap2 (3.5)

dg

dt
= β

f l

KS
l + f l

− kdeg
gp

Kdeg + g
(3.6)

The m variation rate is described by equation (3.3), where the first term represents
the synthesis of m from both f and g. The terms kg and KG correspond to the
catalytic and Michaelis constants, respectively. Also, the second term describes the
consumption of m by the proteolysis p. The final term, rim, is a constant that
controls the production of m by other cells.

equation (3.4) describes the f variation rate, where the first and second terms
are identical to their counterparts in equation (3.3), and the last term describes f

proteolysis by p.
The first term in equation (3.5) refers to the first autocatalytic loop, where γ

represents its level. The term KR is the threshold constant, while the hill number n

controls the first autocatalytic loop. The second term of equation (3.5) describes p

autoproteolysis, where ka is a constant.
Similarly, the second autocatalytic loop is represented by equation (3.6), where

β describes its level. The term KS is the threshold constant, while the hill number
l controls the second autocatalytic loop. Transglutaminase g proteolysis is modelled
as a Michaelis-Menten rate in the second term, where kdeg and Kdeg correspond to
the catalytic and Michaelis constants, respectively.

It is worth noting that m and f concentrations evolve as a result of existing
enzymes, whereas p and g are introduced into the system through cell synthesis.
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3.4 The Extended Model for Human Gait

The nonlinear biochemical enzyme control model discussed in Section 3.3 is be-
ing extended to describe human gait function and the effect of its disturbance to
the overall biological system [40]. Using the RCC method, the model, described by
equations (3.10)–(3.13), has been proven to be controllable. The model applied a
control to allow the stabilisation of the external perturbations to the motor system
by adjusting the amount of enzyme used to determine the concentration of variable
f . This model illustrates the regulation process of two enzymes: proteinase p, which
converts the matrix into filaments, and transglutaminase g, which returns the fila-
ments to the matrix. The process results in the creation of extracellular matrix m

from soluble filaments f .
Proteinase p converts the matrix into filaments, while transglutaminase g returns

the filaments to the matrix. The extracellular matrix m is produced at a constant
rate by neighbouring cells rim, and each protein degrades in catalytic processes is
proportional to the concentration of proteinase p. The bifurcation parameter rim

is an external turbulent input that causes the biological system to lose stability
and attain a chaotic state. The RCC is defined by the soluble filaments f supplied
in equation (3.7) and the rate of change of enzyme production p and g stated in
equations (3.8) and (3.9). The output of this controlled model can be presented as
either a time series of the primary changing parameters f and m or a phase space
plot. In the latter, f is plotted on the (x-axis) and m is plotted on the (y-axis).

δf = f

f + ηf

(3.7)

Θp(δf ) = fpe(ξpδf ) (3.8)

Θg(δf ) = fge(ξgδf ) (3.9)
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dm

dt
= kg

fg

KG + f
− mp

1 + m
+ rim (3.10)

df

dt
= −kg

fg

KG + f
+ mp

1 + m
− fp

1 + f
(3.11)

dp

dt
= Θp(δf )γ fn

KR
n + fn

− kap2 (3.12)

dg

dt
= Θg(δf )β f l

KS
l + f l

− kdeg
gp

Kdeg + g
(3.13)

The extended Berry model [29] parameters are as follows [40]: γ = 0.026, β =
0.00075, KR = 4.5, KS = 1, KG = 0.1, Kdeg = 1.1, kg = kdeg = 0.05, ka =
kdeg

Kdeg
= 0.0455, and the Hill numbers n = l = 4. The rim bifurcation parameter

exhibits a wide spectrum of dynamic behaviours, including periodic stable limited
cycles, bistability, and chaos. This parameter remains constant for all oscillators
within the chaotic domain. In this extended model, an external input is used as a
perturbation to this rim parameter, as shown in equation (3.14). This parameter
links different oscillators together by using a relative scale contribution from all
other oscillators. Several parameters of the RCC extended model throughout the
experiment simulations, as shown in equations (3.7)–(3.9) (fp = fg = 1, ξp = ξg =
−1, and ηf = 2), remained constant despite the fact that their values could change,
allowing the local oscillator to change its oscillatory orbits.

rim
i =

n∑
j=1,j ̸=i

wjmj + ε (3.14)

The connectivity strength between various oscillators is represented by wj, which
can be 0.00011, 0.00012, or 0.00025. The ε parameter represents the uniform Gaus-
sian distribution of the external perturbations applied to each oscillator and is scaled
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over the domain [−1, 1]. Moreover, the perturbation is graphically observed over a
range of evolution steps. This allows the system to explore various perturbation val-
ues resulting in different oscillatory cycles. To determine the connectivity strength
value wj = 0.0002, the chaotic domain of the underlying oscillators was used. For
each oscillator, this value may change to affect only the dynamics, not the overall
stability.

The incorporated RCC control method of the extended Berry model [29] has
been shown to stabilise the local nonlinear spatiotemporal patterns of the human
gait. The RCC method performs effectively when the response of the underlying
system is chaotic. This method enhances the stability of nonlinear systems into
stabilised periodic limited cycles according to the local dynamic behaviour of each
dynamic oscillator. The network of nonlinear models consists of 16 oscillators, such
that each individual oscillator can adjust its local dynamics to accommodate the
external perturbations from its adjacent Neighbour s. The total model is simulated
by EuNeurone software [41] using Fehlberg-RK as an Ordinary Differential Equation
(ODE) fixed step integration method. The total unweighted dynamics of M and F

as in equations (3.15) and (3.16) is measured by the net sum of the individual oscil-
lators, which can be seen by a remote observer even though the individual oscillators
themselves are invisible.

M =
n∑

i=1
mi (3.15)

F =
n∑

i=1
fi (3.16)
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3.5 Topology of Phase Space

The phase space manifold is the space that contains all of the system states. Fu-
ture states of a deterministic dynamical system can be determined by using current
and previous states of knowledge. However, the system equations may be too so-
phisticated for some applications, such as the interpretation of human gait dynamics.
Despite this complexity, the phase space topology contains significant information
about the dynamic system and can be described mathematically as:

x(t) = (x(1), x(2), x(3), ..., x(N)) (3.17)

The phase space manifold in the extended model can be written as:

x(t) = (F, M) (3.18)

3.6 Extended Model Simulation Results

The original and extended models were simulated to demonstrate how the RCC-
incorporated method improves the stability of the RCC-free model. At the given
values of the other system parameters, the initial conditions of m(0) = f(0) =
p(0) = g(0) = 0.8 were used. The simulation used 94 × 105 data points with a 0.5
time step size. The phase plot of the original model depicted in Figure 3.1 shows the
projection of system trajectories over time in f − m plane. It also shows that the
generated orbits fluctuate between small and large amplitudes on the trajectories.
As a result, future state time-variation plots shown in Figures 3.2 and 3.3, exhibit
abrupt and high peaks interrupted by intervals of relative quiescence, represented by
smaller amplitude oscillations.
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Figure 3.1: Phase plot projection in the f −m plane of the uncontrolled Berry model.

Figure 3.2: Time-variations of m and f along the uncontrolled Berry model.
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Figure 3.3: Time-variations of p and g along the uncontrolled Berry model.

When the RCC approach is applied to the original model shown in equations (3.10)–
(3.13), the extended model becomes more stable in more structured trajectories at
ξp = −1 as illustrated in Figure 3.4a, with a minor drop in amplitude when compared
to the trajectories of the RCC-free model. The future state time-variation plots of
the extended model shown in Figures 3.5 and 3.6, it exhibits on average consistent
oscillations around 9.2561 × 104. The phase plot of the extended model at ξp = −3,
on the other hand, exhibits sparse trajectories on the f − m plane, but it stabilises
on average 10.743 × 104 slower than when ξp = −1. The values of ξp and ξg are -1
for the stable trajectories and -3 for the sparse trajectories.
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(a) At ξp = −1 (b) At ξp = −3

Figure 3.4: Phase plot projection in the f − m plane of the controlled Berry model
at ξp = −1 and ξp = −3 respectively.

Figure 3.5: Time-variations and their corresonding Log-log plots of m and f along
the controlled Berry model at ξp = −1.



60

Figure 3.6: Time-variations and their corresonding Log-log plots of p and g along
the controlled Berry model at ξp = −1.

Figure 3.7: Time-variations and their corresonding Log-log plots of m and f along
the controlled Berry model at ξp = −3.
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Figure 3.8: Time-variations and their corresponding Log-log plots of p and g along
the controlled Berry model at ξp = −3.

The phase space trajectories of the extended model in the f − m plane indicate
the prominent characteristics that explain the behavior of the dynamic system and
its sensitivity to small perturbations. Therefore, the vector space of these manifolds
was used as an input feature for the proposed SVM supervised machine learning
algorithm.

3.7 Summary

In this chapter, fundamental concepts of nonlinear dynamic systems and their
mathematical formulation are introduced. Additionally, a mathematical model is
presented, which explains how rate control of chaos can regulate disturbances that
affect the biological system, particularly the gait system in humans. The model op-
erates at specific parameters that maintain the stability of the motor system, with
the connectivity strength that connects multiple oscillators being the most crucial
parameter. A slight deviation or shift in the connectivity value can cause the system
to operate in a chaotic mode, limiting the overall system’s stability and control.
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Chapter 4

Comparative Analysis of Support
Vector Machine (SVM) and
K-Nearest Neighbour s (KNN)
Algorithms for Human Gait

4.1 Introduction

The focus on the two machine learning (ML) methods, K-Nearest Neighbour
(KNN) and Support Vector Machines (SVM), for gait analysis is primarily due to
their ability to handle high-dimensional data and their effectiveness in classifica-
tion tasks [181]. Gait analysis often involves processing large amounts of data from
multiple sources, such as accelerometers, gyroscopes, and force sensors [182]. The
resulting data can be high-dimensional, making it challenging to extract relevant
features and perform classification tasks. KNN and SVM are both well-suited for
handling high-dimensional data and have been shown to perform well in gait analysis
tasks [181]. KNN is a non-parametric method that classifies data points based on
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their proximity to a set of training examples. It has been used in gait analysis to
classify gait patterns based on features extracted from accelerometer and gyroscope
data. KNN is relatively simple to implement and can be effective in cases where
the decision boundary between classes is highly nonlinear [183]. SVM, on the other
hand, is a supervised learning method that finds a hyperplane in a high-dimensional
space that maximally separates the classes of data points [184]. It has been used in
gait analysis to classify gait patterns based on features extracted from force plate
data, electromyography (EMG) signals, and other sensor data [185]. SVM can han-
dle non-linearly separable data by using kernel functions, which transform the data
into a higher-dimensional space where it can be separated by a hyperplane [186].
While there are many other ML methods that can be used for gait analysis, KNN
and SVM are among the most widely used and have been shown to perform well
in many applications. Other methods such as Artificial Neural Networks (ANNs),
Random Forests (RF), and Principal Component Analysis (PCA) have also been
used in gait analysis, but their performance may depend on the specific application
and dataset [187].

4.2 K-Nearest Neighbour Algorithm

4.2.1 Overview of KNN

The KNN is a non-parametric supervised machine learning classification tech-
nique. The principle of KNN relies on computing the Euclidean distance between the
test (unknown data points) and the training data samples. Let x ∈ Rn×d=(x1, ..., xn)
be the matrix of features, where n is the number of training samples and d is the
number of features. For a given an arbitrary point in the unknown samples set xo,
the Euclidean distance in the feature plane Rp, where p = 2 is a real number, can be
formulated as:
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di = ∥xr − xo∥p =
 n∑

i=1
|xi − xo|p

 1
p

(4.1)

To classify a number of features into M classes, then the outcome of classi-
fied entities can be presented as Ω={Ω1, ..., Ωm}, where 1 ≤ m ≤ d. Choosing
the k training samples with the minimum distance to the unknown data point
xo, the KNN algorithm calculates the number of Neighbours assigned to each data
class l ∈ R1×d=(l1, ..., ld) existing in the training set Sr={(x1, l1), ..., (xn, ld)}, where
xr ∈ Rn×1=(x1, ..., xn) is the training example associated with Sr. Each member in
Sr corresponds to a class label in Ω. The process is fundamentally based on esti-
mating the conditional probability for each class as an empirical fraction. This can
mathematically be given by:

Pr = p
[
m(l) ∈ l | x = xo

]
= 1

k

∑
i∈N (l,Sr)

I(xr ∈ l) (4.2)

where N (l, Sr) are the indices of the k nearest data samples to l in the training
set Sr. I(.) is an indicator function expressed as:

I(w) =


1, if w is True

0, otherwise
(4.3)

4.3 Support Vector Machine Algorithm

4.3.1 Overview of SVM

The Support Vector Machine (SVM) represents a powerful and versatile tool in
the realm of machine learning. Its ability to handle non-linearly separable data and
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perform both binary classification and regression estimation tasks has made it a
widely adopted technique in various fields such as disease diagnosis, image classifi-
cation, and facial recognition [42] [43] [44]. The utilisation of a kernel technique in
the SVM algorithm allows for the formation of a non-linear class decision boundary,
which is crucial in tackling complex classification problems. The primary objec-
tive of an SVM classifier is the identification of an optimal separating hyperplane
(OSH) that maximises the margin between the different classes. The kernel tech-
nique transforms the input data into a high-dimensional space, and subsequently, an
OSH is created to classify the various data labels in the transformed feature space.
As a result, the linear OSH leads to the formulation of a non-linear boundary in the
original data input space. The data vectors closest to the OSH in the transformed
space are referred to as support vectors, as they contain vital information regarding
the OSH. The choice of kernel function is crucial in SVM as it greatly affects the
classification accuracy. Using the right kernel can enhance the SVM’s performance,
so it is important to carefully consider the nature of the data and the task at hand
when selecting a kernel.

4.3.2 Basic Theory of SVM

Given a training dataset, Ω = {(xi, yi)} i = 1N , independently drawn from a
probability distribution on (X , Y), where X ∈ Rm represents the input features
and Y ∈ {−1, +1} represents the classification output, the Support Vector Machine
(SVM) model can achieve optimal separation of linearly separable patterns in m-
dimensional space by generating a decision function, wT ϕ(xi) + b = 0, through the
minimisation of an appropriate trade-off between the structural empirical risk and
the model complexity of its optimisation problems. The optimal adjustable weight
vector, w◦, and the optimal bias, b◦, of the decision function are defined when the
feature vectors xi are maximised. For any two arbitrary classes, {−1, +1}, the SVM
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finds two parallel hyperplanes that correctly classify all training data points and ei-
ther maximises the distance, 2

∥w∥ , or minimises the margin, 1
2∥w∥2, between them.

For each linearly separable case, the SVM standard classification optimisation prob-
lem can be mathematically expressed as:

min
w,b

1
2∥w∥2

subject to yi(wT ϕ(xi) + b) ≥ 1
(4.4)

The SVM classifier, represented by the equation yi = sign(wT ϕ(xi) + b), is
utilised to assign each class to either side of the hyperplane. The minimum value of
(wT ϕ(xi) + b) is 1, and the maximum value is −1, when the conditions yi = +1 and
yi = −1 are satisfied, respectively. In practical applications, it is common for data
points to fall within the margin space or beyond the decision boundary, which poses
a significant challenge for accurate classification. To address this issue, the use of a
soft margin approach, utilising slack variables ξi, has been proposed as a practical
solution for handling non-separable data. The primal form of the SVM as defined in
4.4 can be re-formulated accordingly.

min
w,b,ξ

1
2∥w∥2 + C

n∑
i=1

ξi

subject to yi(wT ϕ(xi) + b) ≥ 1 − ξi

ξi ≥ 0

(4.5)

In the context of SVM, the regularisation parameter, denoted by C, serves to
balance the trade-off between the margin and the loss. As outlined in equation 4.5,
when yi(wT ϕ(xi) + b) ≥ 1, the value of ξi is set to zero, as previously stated in
equation 4.4. However, if yi(wT ϕ(xi) + b) < 1, then ξi takes on a positive value that
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satisfies yi(wT ϕ(xi) + b) = 1 − ξi. The SVM employs the Hinge loss function as a
means of assessing the empirical risk of the training data points in accordance with
the inequality yi(wT ϕ(xi) + b) < 1. It should be noted that data points located in
proximity to the boundary of the separating hyperplane may exhibit noise, which
has the potential to skew the resultant separating hyperplane. To mitigate this issue
and minimise model complexity, the SVM incorporates a regularisation term into its
optimization problem. The standard form of the SVM Definition with slack variable,
as represented in equation 4.5, can be represented as follows:

min
w,b

1
2∥w∥2 + C

n∑
i=1

θ
(

yi(wT ϕ(xi) + b)
)

(4.6)

Utilising the Hinge loss function, represented by the variable θ,

θ(α) = (1 − α) =


1 − α, 1 − α > 0

0 otherwise

The optimisation problem presented in equation 4.5, when combined with equa-
tion 4.6, can be mapped to a constrained optimisation problem with linear constraints
and a global minimum. The methodology for evaluating the optimal values of w◦

and b◦ can be found in the references [42] [45]. For the purpose of simplicity, the bias
or offset parameter b can be disregarded and the output of the prediction function f

can be parameterised by w as f(x) = ⟨w, ϕ(xi)⟩. Thus, the SVM model outlined in
equation 4.6 aims to solve the optimization problem as follows:

min
w∈H

1
2∥w∥2 + C

n∑
i=1

θ(yi, ⟨wT , ϕ(xi)⟩) (4.7)

In the context of a Reproducing Kernel Hilbert space (RKHS) H induced by a
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kernel function κ(ϕ(x), ϕ(z)) and a feature mapping function ϕ : Rm 7→ H, the
SVM model of equation 4.7 presents challenges in terms of efficiency when ad-
dressing nonlinear problems. This is due to the fact that the function ϕ(·) is of-
ten high-dimensional and potentially infinite in terms of its mapping capabilities.
However, through the utilisation of the representer theorem [46], it can be shown
that there exists a vector β∗ ∈ Rm such that the solution of equation 4.7 holds
w∗ = ∑m

i=1 β∗iϕ(xi). By substituting w = ∑m
i=1 βiϕ(xi) into equation 4.7, the opti-

misation problem can be presented as a finite-dimensional equivalent as follows:

min
β∈Rm

1
2∥w∥2 + C

n∑
i=1

θ(yi, Kiβi) (4.8)

In the equation presented, the kernel matrix, denoted as K, satisfies the relation-
ship Ki,j = κ(xi, xj), where Ki represents the k-th row of K. It has been established
in literature, specifically in [45], that the coefficient βi is subject to a bound, as it
satisfies the inequality 0 ⩽ βi ⩽ C.

The Gaussian kernel function, also known as the radial basis function (RBF), is
a commonly utilised technique in the capacity control and regularisation of radial
basis function networks. This function, as outlined in [47], takes the form Ki,j =
κ(xi, xj) = exp

(
−∥xi−xj∥2

2σ2

)
, where the function space is based on the norm in the

RKHS. It has been observed that as the data points xi move away from the center xj,
the function monotonically decreases. The width parameter σ plays a crucial role in
controlling the rate at which the RBF function decreases, and it has been established
that this parameter is inversely proportional to its norm, as stated in [48].
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4.4 Proposed Support Vector Machine Algorithm

The proposed Support Vector Machine (SVM) model capitalises on the utilisation
of the Kernel property outlined in Section 4.8, owing to its capability of converting
this nonlinear dynamic gait data into a novel feature space, thereby streamlining the
classification process. The controlled CA model extracts salient features, represented
by f of equation 3.11 on the x-axis and m of equation 3.10 on the y-axis, that serve as
inputs for the SVM algorithm, enabling the assessment of classification performance
under varying settings. The proposed SVM classifier underwent rigorous training and
testing utilising these extracted features, specifically for both the healthy control and
obese groups. The primary objective of this experiment was to evaluate the capacity
of the SVM to discern gait patterns between the two groups. Algorithm 1 outlines
the implementation procedures of the proposed SVM algorithm.

Algorithm 1 Pseudocode of SVM Implementation
1: Input: Given a training set Ω = (xi, yi) : xi ∈ Rm, yi ∈ {−1, +1} ,

i = {1, 2, ..., N} and testing dataset x ∈ Rm.
2: Output: Predict subjects label for testing data x.
3: Select a regularisation parameter C such that C > 0 and choose an appropriate

kernel width control variable σ for validation.
4: Compute Gaussian Kernel RBF κ(xi, xj) = exp

(
−∥xi−xj∥2

2σ2

)
.

5: Solve the kernalised optimisation problem in equation (4.8) using CVX optimi-
sation solver [51] in MATLAB.

6: Obtain optimal value of β in equation (4.8) and the bias b in equation (4.6).
7: Predict labels for testing data x.
8: Obtain performance measure (confusion matrix, accuracy, Receiver Operating

Characteristics (ROC) Curve.
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4.4.1 Preparing the Machine Learning Dataset

The proposed technique trains the extracted CA gait features from the Berry
model [29] and uses them as input data for the SVM approach. The CA dataset’s
input data is split into two sets: (1) Training Set, which is used to fit the SVM
model by learning a set of quantifiable properties of the input data and the data
outcome labels. This is followed by (2) Testing Set, which evaluates the trained
machine learning model on new data. To compensate for any data deviation, both
sets are normalised using the z−score, which scales the data features to have a ’0’
mean and a ’1’ standard deviation. The SVM standard form finds it challenging to
handle nonlinear data in the input space due to the dynamics involved in human
gait. Therefore, nonlinear data samples can be mapped from their original input
space to a new higher-dimensional feature space using this method. To express the
binary SVM model, the dot product is applied to all data points, which transforms
the original feature space to a new one through the Kernel Trick using a Kernel
function like the Linear Kernel, Polynomial Kernel, or Gaussian Kernel [201]. In
this case, the Gaussian Kernel is used and defined as Ki,j in equation (4.8) due
to its ability to handle nonlinear data effectively, which is based on computing the
distance between data samples in the input space. When two points in the input
space are close together, the angle between the vectors representing them in the
Kernel feature space is small. After Kernelisation of the CA dataset, the developed
convex optimization toolbox in Matlab is employed to solve the dual SVM issue
stated in equation (4.8), ensuring misclassified data samples are within the SVM
margin thresholds.

4.4.2 Performance Analysis of the Proposed SVM Model

Once the model has been optimised as shown in equation (4.8) and trained, the
next phase involves testing the model on newly generated data and predicting la-
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bels for the test data. The proposed SVM algorithm’s performance is evaluated using
three primary metrics: the Confusion Matrix, which includes four key measures: true
positive, false positive, true negative, and false negative values. Additionally, preci-
sion, recall, F1−score, true positive rate, false positive rate, specificity, and overall
accuracy of the model are calculated using the four metrics of the confusion matrix.
These metrics are analysed in-depth in subsequent chapters. The following code
snippet illustrates how to implement the confusion matrix parameters in Matlab.

1 %Confusion Matrix Ca l cu l a t i on s
2

3 y t e s t ; % Test s e t
4 ypred ; % Pred i c t i on s e t
5 npos = sum( Y_test == 1) ; %Number o f p o s i t i v e samples in the t e s t s e t
6 nneg = sum( Y_test == −1) ; %Number o f negat ive samples in the t e s t s e t
7

8 TP = sum ( ( ypred == 1) & ( Y_test == 1) ) ; % True p o s i t i v e
9 FP = sum ( ( ypred == 1) & ( Y_test == −1) ) ; % False p o s i t i v e

10 FN = sum ( ( ypred == −1) & ( Y_test == 1) ) ; % False negat ive
11 TN = sum ( ( ypred == −1) & ( Y_test == −1) ) ; % True negat ive
12

13 p r e c i s i o n = 0 ;
14 i f ( (TP + FP) > 0)
15 p r e c i s i o n = TP / (TP + FP) ; % P r e c i s i o n
16 end
17

18 r e c a l l = 0 ;
19 i f ( (TP + FN) > 0 )
20 r e c a l l = TP / (TP + FN) ; % Reca l l
21 end
22

23 F1 = 0 ;
24 i f ( ( p r e c i s i o n + r e c a l l ) > 0)
25 F1 = 2 ∗ p r e c i s i o n ∗ r e c a l l / ( p r e c i s i o n + r e c a l l ) ; % F1−s c o r e
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26 end
27

28 TPR = TP/npos ; % True po s i t v e ra t e
29

30 FPR = FP/nneg ; % False po s i t v e ra t e
31

32 S p e c i f i c i t y= TN/(TN + FP) ; % S p e c i f i c i t y
33

34 ConfusionTable= [TP, FP; FN, TN] ; % Confusion tab l e
35

36 ModelAccuracy= (TP + TN) /( npos + nneg ) ; % Accuracy o f the SVM model

Moreover, the proposed SVM model is designed to focus specifically on computing
the area under the ROC curve (AUC), which is a standard performance metric used
to evaluate machine learning models by measuring the discriminative ability between
two classes through the area under the receiver operating characteristic (ROC) curve.
The AUC value ranges from 0.5 to 1, where 0.5 indicates random classification and
1 indicates perfect classification. Generally, AUC values can be categorised as poor
performance (≤ 70%), fair performance (≥ 70%), good performance (≥ 80%), and
excellent performance (≥ 90%). Furthermore, the following code snippet illustrates
how to implement the ROC curve and estimate the AUC in Matlab.

1 %Confusion Matrix Ca l cu l a t i on s
2

3 y t e s t ; % Test s e t
4 ypred ; % Pred i c t i on s e t
5

6 y t e s t=ytest >0;
7 [ ypred , ind ] = s o r t ( ypred ) ;
8 y t e s t = y t e s t ( ind ) ;
9

10 f p r = cumsum( y t e s t ) /sum( y t e s t ) ; % Fal se p o s i t i v e ra t e
11 tpr = cumsum(1− y t e s t ) /sum(1− y t e s t ) ; % True p o s i t i v e ra t e
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12 tpr = [ 0 ; tpr ; 1 ] ;
13 f p r = [ 0 ; f p r ; 1 ] ;
14 n = s i z e ( tpr , 1) ;
15 AROC = sum ( ( fp r ( 2 : n ) − f p r ( 1 : n−1) ) . ∗ ( tpr ( 2 : n)+tpr ( 1 : n−1) ) ) /2 ; % Area

under the ROC curve
16

17 p lo t ( fpr , tpr ) ; % Plot ROC curve and AROC measures the area under the
ROC curve

4.5 Summary

This chapter provides a comparative analysis of two supervised machine learning
algorithms, Support Vector Machines (SVM) and K-Nearest Neighbour s (KNN),
for human gait analysis. The chapter outlines technical details for each technique,
along with a comprehensive explanation of the implementation process. While KNN
is implemented on one dataset, the SVM is employed in the implementation study
of all three datasets explored in chapters 5, 6, and 7. Each strategy’s mathemat-
ical foundation is explained in detail, along with a contemporary perspective on
how machine learning research has influenced human gait recognition and detection.
Furthermore, this chapter specifically addresses the implementation of the proposed
SVM algorithm processes and how the SVM model employs the Kernel Trick fea-
ture to overcome the nonlinearity issue in human gait data. Finally, the chapter
emphasises the critical factors to consider when evaluating the model’s performance.



Chapter 5

Detecting Human Gait
Metabolism Disorders Based on
the Criticality Analysis System

5.1 Introduction

The human gait is determined by the interactions between the neurological, mus-
culoskeletal, and cardiorespiratory systems, and can be affected by age, personality,
mood, and environmental factors [202]. Safe walking requires healthy intellect and
executive control. Gait abnormalities can lead to a loss of personal freedom, falls,
injuries, and a significant decline in the quality of life [203]. The sudden onset of a
gait issue may indicate cerebrovascular or other acute nervous system injuries, sys-
temic disorders, or harmful drug effects, especially from polypharmacy containing
sedatives [204]. Normal gait is characterised by rhythmical and seamless movement,
with legs swinging freely and an upright body posture. However, disturbances to
vital functions can cause partial or complete impairment to the biological system,
leading to abnormal gait behavior. In addition to external factors causing physical

75
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gait impairments, inherited metabolic disorders such as obesity, which may be caused
by genetic conditions or excessive calorie consumption, can lead to metabolism and
enzyme deficiency issues, resulting in imbalanced gait [205].

This chapter introduces the proposed Kernelised SVM algorithm, which is based
on the developed criticality analysis technique of gait. The algorithm aims to build
several binary classification models to identify individuals at risk of obesity among
healthy control teenagers. A comprehensive experimental study is conducted, result-
ing in improved classification accuracy and overall model performance.

5.2 CARDIGAN Dataset

In an effort to support the Criticality Analysis of Diabetic Gait in Children
(CARDIGAN) project, a provisional clinical study was conducted at Mexico Chil-
dren’s Hospital (MCH) between January 2019 and January 2020. Participants, who
were at the early adolescence age and suffering from both Obesity and Diabetes, were
offered the opportunity to participate in the study in accordance with the Newton
Fund Grant Agreement. All participants provided informed consent prior to their
involvement in the study.

The critical pathology characteristics of the participants were assessed by a med-
ical professional prior to and during walking exercise. This assessment aimed to
measure the participants’ ability to walk independently as their primary means of
mobility, as well as to determine the underlying causes of their health conditions and
their level of motivation to follow the program during the clinical study. Addition-
ally, a healthy control group, free from peripheral injury or other conditions that
may impede their mobility without the use of assistive devices, was also recruited to
participate in the trial.

For the clinical experiment, the participants, consisting of 50 individuals, were
asked to walk back and forth along a 30-metre track on a flat surface over a period of
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6 minutes, starting at a slow walking speed and gradually increasing to a fast walking
speed. Critical changes in walking control, stride frequency, and length of steps were
observed as the participants changed speed, effectively stressing their mobility. The
experiment was repeated after 3 and 6 months as a follow-up.

The assessment was based on the use of a movement sensor, placed on the fourth
lumbar vertebra located on the top left of the anatomical position of the lumber
spine, known as the body Centre of Mass (CoM). The sensor was designed to be
incredibly flexible, providing for mobility in many different planes including flexion,
extension, side bending, and rotation. The single built-in Inertial Measurement Unit
(IMU) sensory helped determine the motion, orientation, and heading of the body’s
motor function. Participants were also provided with a wrist-worn Axivity AX3
triaxial accelerometer, which measures linear acceleration from +/− 2g to +/− 16g

range along three orthogonal axes known as z (upward and downward), y (left and
right), and x (forward and backward), to record and track their physical activity.
The dynamics of their walking activity were monitored using the Polar Team tracking
system [207].

As part of the research work of this thesis, Oxford Brookes University received
access to the CARDIGAN dataset for research purposes, which has been anonymised
in accordance with the regulations outlined in the General Data Protection Regu-
lation (GDPR). The data underwent official approval procedures by the University
Research Ethics Committee (UREC) before being analysed. The data was divided
into three groups: Healthy controls, individuals with Obesity, and those with Dia-
betes. However, because of a lack of diabetic data points, they were not included in
the analysis. Only 40 data points were used for the analysis, with 20 coming from
the healthy control group and the remaining from the Obesity group.
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5.3 Methodology

The proposed methodology for classifying human gait disorders includes a frame-
work consisting of several key components, including data collection, data processing,
feature extraction, and the use of the SVM technique. This methodology is illus-
trated in Figure 5.1.

Start

CARDIGAN Dataset

Features Extraction by DGAS

Spatial

Multi-dimensional

and Phase

Plot Analysis

Temporal

Criticality Analysis (CA)Applying Statistics

SVM Classification

Prediction

Performance Measure of SVM End

Figure 5.1: The Methodology of CARDIGAN Data Analysis
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5.3.1 Data Analysis

The analysis of the CARDIGAN dataset was conducted using the DataGait Anal-
ysis Software (DGAS), which was commercially developed as a stand-alone software
analysis package using LabVIEW2011 (National Instruments, Ireland) by the Move-
ment Science Group at Oxford Brookes University. DGAS serves as a self-contained
software analysis tool designed to extract gait parameters from sensor data obtained
from an inertial measurement unit (IMU) containing accelerometers, gyroscopes,
and magnetometers. To achieve this, DGAS employs quaternion rotation matrices
and double integration to measure translational vertical CoM accelerations during
walking and obtain a relative change in position. This process involves transposing
the acceleration frame of the object’s z−axis to the global system, and the qual-
ity of human gait parameters on a global scale is assessed by measuring upward
CoM [206] [207].

5.3.2 Features Extraction

It is imperative to note that DGAS relies on the analysis of a single inertial
measurement unit (IMU) that comprises of three-dimensional accelerometers, gyro-
scopes, and magnetometers, which accurately provide orientation and acceleration
data. The single-sensor approach was deliberately chosen to facilitate the description
of bodily movements in a quick and straightforward manner. The approach involves
the attachment of an IMU over the projected center of mass of the human body,
which is positioned above the fourth lumbar vertebra. This placement allows for
easy accessibility and application of the required sensors for gait analysis, with the
CoM aligning with the top of the Iliac crest. The use of the single sensor method
described earlier enables the application of pendulum mathematics to analyse data
and extract parameters related to walking. The DGAS software extracts a total of
17 features from the IMU sensor data, as summarised in Table 1. The gait features
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that have been extracted are divided into three sub-groups:

• Temporal and Spatial Parameters: When describing someone’s gait pat-
tern, temporal and spatial parameters are commonly utilised. The timing
aspect of gait is referred to as temporal parameters, while the distance aspect
is denoted as spatial parameters.

Temporal Gait Parameters:

1. Cadence [steps/min] refers to the number of steps taken in a given time
period, typically measured in steps per minute, with the adult norm being
113 steps per minute.

2. Step Time [ms], measured in milliseconds, refers to the duration between
the first contact of one foot to the first contact of the opposite foot, with
the adult norm being 500ms.

3. Stride Time [ms], also measured in milliseconds, refers to the duration
between the first contact of one foot to the next contact of the same foot,
with the adult norm being 1000ms or 1 second.

Spatial Gait Parameters:

1. Step Length [m] refers to the distance between the first contact of one
foot and the initial contact of the other foot, with an adult average of
0.69m.

2. Stride Length [m] indicates the distance between the initial contact of
one foot and the next contact of the same foot, with an adult average of
1.38m.

3. Velocity [m/s] indicates the distance traveled in a specific amount of
time, with an adult average of 1.5m/s.

• Multi-dimensional Gait Parameters:
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1. Duty Factor Double Stance [%] is the duration in the gait cycle when
both feet touch the ground, referred to as the stance phase, which typically
accounts for 38-40% of the cycle in adults.

2. Duty Factor Single Stance [%] refers to the time when one foot con-
tacts the ground, also called the swing phase, and usually lasts for 60-62%
of the cycle in adults.

3. Froude Number [au] is a dimensionless gait parameter used to deter-
mine the optimal walking speed, normalised by an individual’s height or
leg length.

4. Walk Ratio [mm/steps/min] is a gait ratio calculated by dividing the
steplength by the cadence, and it is believed that this ratio should remain
constant, regardless of speed.

• Phase Plot Analysis: The aim of this analysis is to investigate gait variabil-
ity. The output of this analysis consists of four numerical values:

1. Beta Angle [Degree (◦)] represents the alteration in step length as
measured by the vertical movement of CoM.

2. SDa [au] is a non-standard unit that indicates the change in step fre-
quency and step length.

3. SDb [au] is a non-standard unit that indicates the change in step fre-
quency.

4. Ratio [Dimensionless] is the ratio between SDa and SDb.

5.3.3 Criticality Analysis as a Data Representation Method

The features extracted from the data, as shown in Table 1, are utilised to perturb
the mathematical model represented by equations (3.10)–(3.13). This perturbation
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Table 1: Extracted Gait Features of CA System

Gait Parameter Measurement Unit

Step Time [ms]
Temporal Step Time (Left) [ms]

Step Time (Right) [ms]

Stride Time [ms]

Cadence [steps/min]

Step Length (Left) [m]
Spatial Step Length (Right) [m]

Stride Length [m]

Velocity [m/s]

Duty Factor Double Stance [%]
Multi-dimensional Duty Factor Single Stance [%]

Froude Number [au]

Walk Ratio [mm/steps/min]

Beta Angle [Degree (◦)]
Phase Plot Analysis SDa [au]

SDb [au]

Ratio= SDa/SDb [Dimensionless]
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is achieved using the Criticality Analysis method, which converts the multivariate
dynamic data into a nonlinear representation space, where each sample is charac-
terised by a unique orbit. The orbit is a result of the perturbation of the underlying
critical system, which is composed of a network of nonlinear controlled oscillators.
This network is critical because any small input change leads to a state change in the
orbit of the entire network, while remaining stable. The resulting orbit is a scale-free
representation of the original data, which can be used to demonstrate that a specific
set of attributes representing a patient’s or control’s gait is similar to the matching
category of the sample, relative to other data members [208] [50]. The representation
of the data samples in this way reduces the dimensionality of the CARDIGAN raw
data, as presented in Table 1. The phase space plots of the CA data representation
for each categorised group (Healthy Control and Obesity) of the participants during
the 6 clinical weeks are displayed in Figures 5.2, 5.3, 5.4, 5.5, 5.6 and 5.7.

Figure 5.2: This figure shows the phase space plots for healthy control and obesity
walk patterns that correspond to the clinical gait experiment conducted in w1. On
the left is the healthy control walk patterns portrait and on the right are the obesity
walk patterns.
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Figure 5.3: This figure shows the phase space plots for healthy control and obesity
walk patterns that correspond to the clinical gait experiment conducted in w2. On
the left is the healthy control walk patterns portrait and on the right are the obesity
walk patterns.

Figure 5.4: This figure shows the phase space plots for healthy control and obesity
walk patterns that correspond to the clinical gait experiment conducted in w3. On
the left is the healthy control walk patterns portrait and on the right are the obesity
walk patterns.
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Figure 5.5: This figure shows the phase space plots for healthy control and obesity
walk patterns that correspond to the clinical gait experiment conducted in w4. On
the left is the healthy control walk patterns portrait and on the right are the obesity
walk patterns.

Figure 5.6: This figure shows the phase space plots for healthy control and obesity
walk patterns that correspond to the clinical gait experiment conducted in w5. On
the left is the healthy control walk patterns portrait and on the right are the obesity
walk patterns.
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Figure 5.7: This figure shows the phase space plots for healthy control and obesity
walk patterns that correspond to the clinical gait experiment conducted in w6. On
the left is the healthy control walk patterns portrait and on the right are the obesity
walk patterns.

The dynamic representations of individual data samples can be utilised to com-
pare between categories, individual data samples, and track the progression over time
of the same individual. In this thesis, these properties are employed to illustrate how
obese patients’ gait progresses over the weeks of treatment by comparing it within
their category and against normal healthy gait. Healthy gait exhibits a considerable
amount of variability, which enables individuals to move without physical restric-
tions, as evidenced by their changing behavior during the trials. Obese children, on
the other hand, experience more limitations in varying their gait, which is difficult
to discern from the data due to its high nonlinearity. The analysis of the CA phase
plots, presented in Figures 5.2, 5.3, 5.4, 5.5,5.6 and 5.7, demonstrates that obese
individuals exhibit a gait pattern that is slower and more labored in comparison
to healthy individuals. Additionally, their base of support is wider and steps are
shorter. The additional weight carried by obese individuals leads to increased stress
on joints and muscles, resulting in stiffness during walking. Furthermore, obesity
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is associated with an increased risk of conditions such as joint pain and arthritis,
which can contribute to stiffness in the gait. Conversely, healthy individuals display
a gait pattern that is smooth and fluid with a narrower base of support and longer
steps and have less stiffness in their walking. It is also important to note that the
gait features depicted in these figures can have an impact on the network of coupled
CA oscillators. The scaling of additive connectivity strength in response to external
perturbations of gait can either enhance or hinder gait patterns. This is done to
ensure that the input provided to each oscillator does not exceed a certain threshold
and remains within the controlled domain.

5.4 Statistical Analysis of Criticality Analysis Data

5.4.1 Scatter Analysis

A scatter plot is a graphical representation of a set of data points, where each
point represents an observation in a two-dimensional coordinate system. In the con-
text of spatiotemporal gait analysis, a scatter analysis can be used to visualise the
relationship between two variables that are measured during gait. For example, a
scatter plot of the CA data can reveal whether there is a linear relationship be-
tween their two variables. Alternatively, the scatter plot may reveal a non-linear
relationship, indicating that the relationship between gait variables is more complex.
Scatter plot analysis can also be used to identify outliers or other patterns in the
data, which may indicate abnormal gait patterns or other issues that require further
investigation.

The interpretation of Figures 5.2 to 5.7 is presented in the distribution of CA
data representation for each categorised individual orbit, as shown in Figures 5.8 to
5.13. The plots, labeled from w1 −w6, depict the variability of gait interaction events
over time in the musculoskeletal system during the six-week clinical trials. As the
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CA data shows a correlation between the two extracted features in 2D space, the
Pearson’s correlation coefficient ρ measures both the direction and strength of the
dependency between them, with 0 ≤ ρ ≤ 1.

Figure 5.8: This figure shows the scatter plots for healthy control and obesity walk
patterns that correspond to the clinical gait experiment conducted in w1. On the left
is the healthy control walk patterns portrait and on the right are the obesity walk
patterns.
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Figure 5.9: This figure shows the scatter plots for healthy control and obesity walk
patterns that correspond to the clinical gait experiment conducted in w2. On the left
is the healthy control walk patterns portrait and on the right are the obesity walk
patterns.

Figure 5.10: This figure shows the scatter plots for healthy control and obesity walk
patterns that correspond to the clinical gait experiment conducted in w3. On the left
is the healthy control walk patterns portrait and on the right are the obesity walk
patterns.
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Figure 5.11: This figure shows the scatter plots for healthy control and obesity walk
patterns that correspond to the clinical gait experiment conducted in w4. On the left
is the healthy control walk patterns portrait and on the right are the obesity walk
patterns.

Figure 5.12: This figure shows the scatter plots for healthy control and obesity walk
patterns that correspond to the clinical gait experiment conducted in w5. On the left
is the healthy control walk patterns portrait and on the right are the obesity walk
patterns.
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Figure 5.13: This figure shows the scatter plots for healthy control and obesity walk
patterns that correspond to the clinical gait experiment conducted in w6. On the left
is the healthy control walk patterns portrait and on the right are the obesity walk
patterns.

Table 5.2 displays the correlation coefficient (ρ) of six gait variables (w1 to w6)
for two categories: Healthy Control and Obesity. The correlation coefficients for the
Healthy Control group range from 0.79 to 0.95, with the highest correlation observed
for w5. The correlation coefficients for the Obesity group range from 0.64 to 0.92,
with the highest correlation observed for w3. Overall, the correlation coefficients
suggest strong positive correlations between the gait variables for both groups, with
slightly higher correlations observed for the Healthy Control group.

Table 5.2 provides a summary of the ρ values for each group of disorders over a
6-week period.
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Table 5.2: The correlation coefficient ρ of w1, w2, w3, w4, w5 and w6.

Category
Correlation Coefficient (ρ)

w1 w2 w3 w4 w5 w6

Healthy
Control

0.92 0.85 0.84 0.79 0.95 0.80

Obesity 0.82 0.91 0.92 0.83 0.90 0.64

Additionally, it should be highlighted that the distribution demonstrated in Fig-
ures 5.2–5.7 and Figures 5.8–5.13 quantifies the extent of variation in CA data and
displays how the position of each data point changes over time relative to the others.
Each data point on the w1 − w6 graphs for both healthy controls and obese individ-
uals represents an individual participant, and each plot replicates the others over a
six-week duration. To comprehend how gait behavior evolves for each participant
within their respective disorder category over the course of the trial, Figures 5.14
and 5.15 show the confidence standard deviation region over the six-week period.
Since the total number of cases for each disorder is identical, twenty plots labeled
from p1 to p20 are generated, each corresponding to a unique participant, illustrating
the progression of their gait performance throughout the entire trial. Each graph
distinctly shows a central line, which represents the average or mean of the y−axis
features that corresponds to their projected features on the x−axis. This line indi-
cates the shift in the position of an individual’s gait, while the shaded region of the
standard deviation is used to determine the magnitude of change in scale within the
95% confidence interval. Furthermore, it can be observed from both Figures 5.14
and 5.15 that the evolution of gait fluctuates over time, allowing for comparison be-
tween various disorder groups by visualising and mapping the development of gait
against normal gait patterns.



93

Figure 5.14: The progression of healthy control gait for each individual over a 6-week
period.

Figure 5.15: The progression of obesity control gait for each individual over a 6-week
period.
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5.4.2 Spatiotemporal Analysis

The Spatiotemporal Analysis of Gait Data features provide several insights into
a person’s gait. These features can be used to analyse and quantify various aspects
of gait, including step length, step width, stride length, cadence, and velocity. By
examining these features, one can identify abnormalities or asymmetries in gait that
may be indicative of certain neurological or musculoskeletal conditions. For example,
changes in step length or cadence may indicate the presence of diseases or other
movement disorders, while changes in stride length or velocity may be indicative of
muscle weakness or joint dysfunction. In addition, these features can also be used
to track changes in gait over time and evaluate the effectiveness of interventions or
treatments aimed at improving gait.

By comparing the gait disorder resulting from obesity to healthy controls using
the CA data, Figures 5.16– 5.18 visually demonstrate that gait disorders significantly
impact gait progression. The spatiotemporal gait analysis figures also present a visual
display of how data is distributed across various categories, including individuals with
gait obesity disorders and healthy controls. The figures typically display the median
as a central line within a box that extends from the lower to the upper quartile of
the data. The whiskers extend from these figures to indicate the range of the data,
with outliers represented by individual points beyond the whiskers. The figures also
allow for quick and easy comparison of the distribution of spatiotemporal gait data
between different categories. They can provide insight into the location and degree of
variation of specific gait parameters, such as step length or velocity, among different
groups. Additionally, changes in these figures over time can be used to evaluate the
effectiveness of interventions or treatments aimed at improving gait in patients with
gait disorders.



95

Figure 5.16: This figure shows the box plots for healthy control and obesity walk
patterns that correspond to the clinical gait experiments conducted in w1 and w2.

Table 5.3 provides the median values of six features (w1, w2, w3, w4, w5, and
w6) for two categories, healthy control, and obesity. The median value is a measure
of central tendency that indicates the middle value of the data set. In this case,
it represents the average value of the respective feature for each category. The
table indicates that for features w1, w4, w5, and w6, the median value is lower for
healthy control than obesity, while for features w2 and w3, it is higher for healthy
control than obesity. This suggests that there are differences in spatiotemporal gait
features between healthy control and obesity, and these differences could be used to
distinguish between the two categories.
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Figure 5.17: This figure shows the box plots for healthy control and obesity walk
patterns that correspond to the clinical gait experiments conducted in w3 and w4.

Figure 5.18: This figure shows the box plots for healthy control and obesity walk
patterns that correspond to the clinical gait experiments conducted in w5 and w6.
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Table 5.3: The median of w1, w2, w3, w4, w5 and w6.

Category
Median

w1 w2 w3 w4 w5 w6

Healthy
Control

17.6 19.4 18.6 17.9 17.6 17.2

Obesity 19.7 18.9 17.5 18 19.2 19.1

5.4.3 Histogram Analysis

Figures 5.19–5.24 illustrate the histogram of individual features and their respec-
tive frequencies, providing unique statistical characteristics of the distribution of CA
data. The distribution of the 20 obese participants showed a higher average mean
compared to the other healthy control individuals. The right-skewed distribution of
each category is evident from both Figures 5.19–5.24, with some data points acting
as outliers on the right tail of the data stream due to increased variability, higher
skewness, and the lower bound of data features being almost one-sided. These out-
liers occur due to unintentional changes in trial settings that affect the direction of
distribution. Figure 5.19– 5.24 of w3 stands out for its absence of outliers, with the
average mean of obesity cases increasing by approximately 4.5% compared to the
healthy control group.
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Figure 5.19: This figure shows the histogram plots for healthy control and obesity
walk patterns that correspond to the clinical gait experiment conducted in w1. On
the left is the healthy control walk patterns portrait and on the right are the obesity
walk patterns.

Figure 5.20: This figure shows the histogram plots for healthy control and obesity
walk patterns that correspond to the clinical gait experiment conducted in w2. On
the left is the healthy control walk patterns portrait and on the right are the obesity
walk patterns.
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Figure 5.21: This figure shows the histogram plots for healthy control and obesity
walk patterns that correspond to the clinical gait experiment conducted in w3. On
the left is the healthy control walk patterns portrait and on the right are the obesity
walk patterns.

Figure 5.22: This figure shows the histogram plots for healthy control and obesity
walk patterns that correspond to the clinical gait experiment conducted in w4. On
the left is the healthy control walk patterns portrait and on the right are the obesity
walk patterns.
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Figure 5.23: This figure shows the histogram plots for healthy control and obesity
walk patterns that correspond to the clinical gait experiment conducted in w5. On
the left is the healthy control walk patterns portrait and on the right are the obesity
walk patterns.

Figure 5.24: This figure shows the histogram plots for healthy control and obesity
walk patterns that correspond to the clinical gait experiment conducted in w6. On
the left is the healthy control walk patterns portrait and on the right are the obesity
walk patterns.

Table 5.4 presents the means of six variables (w1, w2, w3, w4, w5, and w6) for
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two groups of participants: Healthy Control and Obesity. The means of w2, w3, and
w5 were higher in the Healthy Control group than in the Obesity group. On the
other hand, the means of w1, w4, and w6 were higher in the Obesity group than
in the Healthy Control group. The results suggest that there might be significant
differences between the two groups in terms of their weight-related factors. However,
it is important to note that these differences might be due to various confounding
factors, such as age, gender, physical activity, and dietary habits. Table 5.4 provides
a summary of the mean values for each disorder category throughout the six-week
period, as shown below:

Table 5.4: The mean of w1, w2, w3, w4, w5 and w6.

Category
Mean

w1 w2 w3 w4 w5 w6

Healthy
Control

30.7 33.7 34.6 26.4 31.9 32.2

Obesity 37.8 33.5 29.2 30 27.3 36.7

5.5 The Proposed SVM Classifier

The proposed SVM model capitalises on the utilisation of the Kernel property
outlined in Section 4.3.2, owing to its capability of converting this nonlinear dynamic
gait data into a novel feature space, thereby streamlining the classification process.
The DGAS software was utilised to extract features from the CARDIGAN dataset,
which were then inputted into the CA analysis model. The controlled CA model
extracts salient features, represented by f of equation 3.11 on the x-axis and m of
equation 3.10 on the y-axis, that serve as inputs for the SVM algorithm, enabling the
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assessment of classification performance under varying settings. The proposed SVM
classifier underwent rigorous training and testing utilising these extracted features,
specifically for both the healthy control and obese groups. The primary objective
of this experiment was to evaluate the capacity of the SVM to discern gait pat-
terns between the two groups (obesity and healthy control). Algorithm 1 outlines
the implementation procedures of the proposed SVM algorithm. The SVM algo-
rithm’s performance was evaluated using several metrics, including the confusion
matrix, receiver operating characteristics, and other measures, which were analysed
in Appendix A.

5.6 The Proposed SVM Training

The CARDIGAN dataset for this study comprises 20 data points per gait subject,
resulting in a total of 40 data samples for both the healthy control and obesity
subjects. The training and testing of the Kernel SVM classifier employed a 50%
splitting ratio. In preparation for the SVM algorithm training process, all CA gait
features were normalised using the z-score method, resulting in a zero mean and unity
standard deviation for the data samples. The Kernel SVM algorithm, as outlined
in Algorithm 1, was implemented utilising MATLAB to examine the influence of
Kernel characteristics, specifically the regularisation parameter C and control width
σ, on the classification performance of gait data. The generalisation performance
of the trained Kernel SVM was evaluated by measuring the prediction accuracy
for each model, analysing the confusion matrix, plotting the Receiver Operating
Characteristics (ROC) curve, and computing the area under the ROC curve. These
evaluations are discussed in the subsequent sections of this thesis.
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5.7 Simulation Results

In order to more accurately assess the efficacy of the suggested approach described
earlier, the subsequent performance metrics will be employed:

5.7.1 Confusion Matrix

When dealing with a binary classification problem, the dataset labels are re-
stricted to two possibilities: positive or negative. The decision of the SVM classifier
in this scenario can be visualised using a structured contingency table called a con-
fusion matrix. This matrix comprises actual and predicted binary classification data
and is helpful in evaluating the classification algorithm’s ability to differentiate be-
tween different categories. The confusion matrix is characterised by four primary
metrics:

• True Positive (TP ): indicates the number of positive samples (i.e., healthy
control participants) that are correctly identified as positive (i.e., healthy).

• False Positive (FP ): denotes the number of negative samples (i.e., obese
participants) that are wrongly identified as positive (i.e., healthy).

• True Negative (TN): represents the number of negative samples (i.e., obese
individuals) that are correctly identified as negative (i.e., obese).

• False Negative (FN): denotes the number of positive samples (i.e., healthy
control participants) that are wrongly identified as negative (i.e., obese indi-
viduals).

A classifier’s additional performance metrics include accuracy, precision, F1-
Score, Recall or Sensitivity or True Positive Rate (TPR), Specificity or True Negative
Rate (TNR), and False Positive Rate (FPR). These metrics are computed based
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on the values of TP , FP , TN , and FN as mentioned earlier. The following are the
definitions of these metrics:

• Accuracy: measures the proportion of accurate predictions and reflects the
general level of success. This ratio is calculated by dividing the number of
correctly classified labels (TP + TN) by the total number of data samples
(TP + TN + FP + TN), expressed mathematically as:

Accuracy = TP + TN

TP + TN + FP + TN
.

• Precision: is used to measure the ratio of accurately predicted positive labels
indicating healthy control status to the total labels predicted to be in good
health, expressed as:

Precision = TP

TP + FP
.

• Recall (TPR): is used to measure the proportion of healthy data samples
with correctly predicted positive labels for healthy control status, defined as:

Recall = TP

TP + FN
.

• F1−Score: maintains a balance between precision and recall, calculated as
follows:

F1 − Score = 2 × Precision

Precision + Recall
.

• True Negative Rate (TNR): the negative predictive value for obesity is
determined by calculating the ratio of correctly predicted negative labels among
all samples with obesity. This value is expressed as:
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TNR = TN

TN + FP
.

• False Positive Rate (FPR): the misclassification rate, which represents the
ratio of healthy control data that are incorrectly labeled among all obesity data
samples, is expressed as follows:

FPR = FP

FP + TN
.

The objective of the aforementioned metrics is to assess the effectiveness of the
proposed SVM algorithm in detecting abnormal gait patterns in various individuals.
Tables A.1–A.12 in Appendix A present the performance metrics of the SVM classifier
for each of the six-week trials, based on CA data features and different values of σ

and C (0.1, 1, and 10). For instance, Tables A.3– A.4 of Appendix A report the
performance of SVM classification for w2 walk patterns with different values of σ

and C. Table A.3 reports the results of classification at σ = 10 and for C values 0.1,
1, and 10. Also, Table A.4 reports the results of classification at σ = 0.1 and σ = 1 for
the same C values. Comparing the two tables, we can observe that the performance
of SVM classification is dependent on the values of σ and C. At σ = 10, the SVM
model performs poorly as all TP , FP , FN , and TN values are low. However, when
σ is reduced to 0.1 or 1, the model performs better with higher TP , FP , FN , and
TN values. Also, the accuracy and AROC increase for σ = 0.1 and σ = 1 compared
to σ = 10. The combinations of σ and C values demonstrated that relying solely on
accuracy is inadequate for assessing the SVM classifier’s overall effectiveness.

5.7.2 Receiver Operating Characteristics (ROC) Curve

The confusion matrix parameters include true positives (TP ), false positives
(FP ), false negatives (FN), and true negatives (TN). These parameters are used
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to calculate other measures, such as precision, recall, F1−score, specificity, and the
area under the ROC (AROC). The ROC curve is a graph that shows the trade-off
between TPR and FPR for different classification thresholds. The ROC curve il-
lustrates how sensitivity (TPR) and the complementary probability of specificity
(≈ 1 − TNR) vary across a range of threshold levels from 0 to 1. Figures 5.25– 5.27
display the ROC curves for the optimal combination of σ and C values that resulted
in the highest accuracy throughout the entire experiment.

Figure 5.25: ROC (Receiver Operating Characteristic) curves of w1 and w2 show
the True Positive (Sensitivity) and False Positive (1-Specificity) for the best different
thresholds using kernel property of SVM.
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Figure 5.26: ROC (Receiver Operating Characteristic) curves of w3 and w4 show
the True Positive (Sensitivity) and False Positive (1-Specificity) for the best different
thresholds using kernel property of SVM.

Figure 5.27: ROC (Receiver Operating Characteristic) curves of w5 and w6 show
the True Positive (Sensitivity) and False Positive (1-Specificity) for the best different
thresholds using kernel property of SVM.

It is obvious from these ROC plots (Figures 5.25– 5.27) that, in the context of
SVM, the parameter C controls the trade-off between maximising the margin and
minimising the misclassification error. A smaller value of C results in a wider margin,
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but with more misclassifications, while a larger value of C results in a narrower
margin but with fewer misclassifications.

The parameter σ is used to control the width of the Kernel Gaussian function
that is used to map the input data into a higher dimensional space, where a linear
boundary can be found. A larger value of σ results in a wider Gaussian function,
which leads to a softer decision boundary and a higher bias, while a smaller value of
σ results in a narrower Gaussian function, which leads to a harder decision boundary
and a higher variance.

When σ is small, the decision boundary is more sensitive to the input data, which
can lead to overfitting. On the other hand, when σ is large, the decision boundary is
less sensitive to the input data, which can lead to underfitting. Therefore, the value
of σ has an impact on the generalisation performance of the SVM.

A good value for C and σ are the one that balance the trade-off of bias and
variance, that is a good balance between overfitting and underfitting.

The ROC curves shown in Figures 5.25– 5.27 performed well with σ = 0.1 and 1
for various values of C of the SVM are likely because the classifier is able to find a
good balance between overfitting and underfitting by adjusting the value of C and
σ which in turn results in a good performance.

5.7.3 Area Under the ROC Curve (AROC)

The Area Under the Curve (AUC) is a measure of the overall performance of a
binary classifier that considers all possible classification thresholds. A higher AROC
value indicates better performance. The ROC curve and AUC are used to evaluate
the performance of binary classifiers, especially when the classes are imbalanced.
The AROC value ranges from 0 to 1, with 0.5 indicating random guessing and 1
indicating perfect classification.

In the given Tables A.1– A.12 of Appendix A , the AROC values are reported
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for each combination of σ and C. We can observe that the AROC values increase
with increasing values of C for σ = 0.1 and σ = 1. This indicates that increasing
C improves the overall performance of the classifier. However, for σ = 10, the
AROC values are low for all values of C, indicating that the classifier performs
poorly. Overall, the results show that the performance of SVM classification is highly
dependent on the values of hyperparameters σ and C. A small value of σ improves
the performance of the model, while a large value of σ results in poor performance.
Moreover, the results highlight the importance of selecting appropriate values of
hyperparameters for machine learning models.

Figure 5.28: The AROC versus the regularisation parameter C of w1 and w2.
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Figure 5.29: The AROC versus the regularisation parameter C of w3 and w4.

Figure 5.30: The AROC versus the regularisation parameter C of w5 and w6.

The area under the ROC curve, also known as the AUC (Area Under the Curve),
is a measure of the performance of a binary classifier. In the context of SVM, the
AUC represents the ability of the classifier to distinguish between the positive and
negative classes. A higher AUC value indicates that the classifier is able to correctly
classify more instances of the positive class as positive, while also correctly classifying
more instances of the negative class as negative. An AUC of 1.0 represents a perfect
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classifier, while an AUC of 0.5 represents a classifier that performs no better than
random guessing.

Figures 5.28– 5.30 show how the performance of the SVM model changes as the
regularisation parameter strength C is varied. The regularisation parameter C con-
trols the trade-off between maximising the margin (the distance between the decision
boundary and the closest training instances) and minimising the classification error.
When C is small, the model will focus more on maximising the margin, which can
lead to a simpler decision boundary but also a higher classification error. As C is
increased, the model will focus more on minimising the classification error, which
can lead to a more complex decision boundary but also lower classification error.

From Figures 5.28– 5.30, if the AUC increases as C increases, it means that the
model’s performance is improving as the regularisation strength C increases. This
may suggest that the model was underfitting the data when C was small and that
increasing the regularisation strength helped to improve the model’s performance.
On the other hand, if the AUC decreases as C increases, it means that the model’s
performance is worsening as the regularisation strength increases. This may sug-
gest that the model was overfitting the data when C was small and that increasing
the regularisation strength C caused the model to become too simplistic and lose
important information from the data.

The optimal value of C is where the AUC is the highest, this is the sweet spot
where the model is able to balance the trade-off between maximising the margin
and minimising the classification error in a way that leads to the best classification
performance.

5.7.4 Classification Decision Boundary

The decision boundary of an SVM classifier is determined by the support vectors,
which are the data points closest to the boundary. The parameters C and σ, also
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known as the regularisation and kernel parameters respectively, control the width of
the margin and the shape of the decision boundary. For instance, When σ is set to
0.1 and C is set to 1, the decision boundary will be complex and more influenced by
the individual data points. The width of the margin will be relatively small and the
classifier will be more sensitive to the presence of outliers, as the algorithm tries to
minimise misclassification errors. Moreover, When σ is set to 0.1 and C is set to 10,
the decision boundary will be even more complex as C has a greater influence on the
decision boundary. The width of the margin will be even smaller and the classifier
will be even more sensitive to outliers. Furthermore, When σ is set to 0.1 and C is
set to 0.1, the decision boundary will be relatively simple as C has a much smaller
influence on the decision boundary. The width of the margin will be relatively large
and the classifier will be less sensitive to outliers. The classification boundaries of
the SVM model are depicted in Figures 5.31 to Figures 5.33 using the best classifi-
cation parameters, enabling the model to accurately categorise participants into the
appropriate group.

Healthy Control Group

Obesity Group

Misclassified from Healthy Control Group

Misclassified from Obesity Group

Healthy Control Group

Obesity Group

Misclassified from Healthy Control Group

Misclassified from Obesity Group

Figure 5.31: The boundary that separates the healthy control walk patterns from
the obesity patterns in an SVM model, with σ = 0.1 and C = 0.1 for w1 and with
σ = 0.1 and C = 1 for w2.
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Healthy Control Group

Obesity Group

Misclassified from Healthy Control Group

Misclassified from Obesity Group

Healthy Control Group

Obesity Group

Misclassified from Healthy Control Group

Misclassified from Obesity Group

Figure 5.32: The boundary that separates the healthy control walk patterns from
the obesity patterns in an SVM model, with σ = 0.1 and C = 1 for w3 and w4.

Healthy Control Group

Obesity Group

Misclassified from Healthy Control Group

Misclassified from Obesity Group

Healthy Control Group

Obesity Group

Misclassified from Healthy Control Group

Misclassified from Obesity Group

Figure 5.33: The SVM decision boundary that separates the healthy control walk
patterns from the obesity patterns in an SVM model, with σ = 0.1 and C = 10 for
w5 and with σ = 0.1 and C = 1 for w6.

5.7.5 Mean Square Error Rate and Standard Deviation Test

Figure 5.34 displays the average mean square error (MSE) and variations ob-
served in clinical data trials conducted over a 6-week period. The average MSE for
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each participant was obtained by computing the mean of the incorrect data patterns
obtained for each curve depicted in Figures 5.28– 5.30. The average MSE for w6 was
found to be below 25% with minimum variation rates, indicating accurate classifica-
tion of gait disorder patterns. However, the average MSE and standard deviation for
individuals’ data collected during w2 and w5 were considerably high in comparison.

Figure 5.34: This figure shows the average mean square error (MSE)(%) (on the
left) and the average standard deviation (%) (on the right) of the SVM classification
performance for each individual piece of data.

The proposed SVM model’s performance was evaluated as noticed in Appendix A,
and it was found that the optimal generalisation performance was achieved with the
best classification parameters (σ = 0.1 and C = 0.1). The 6-week evaluation of the
SVM shows fluctuating accuracy in classifying participants into the healthy control
and obesity groups. A high accuracy reflects consistent participant characteristics,
facilitating accurate classification by the SVM, whereas a low accuracy indicates
high variability in participant characteristics, making classification challenging. The
results also revealed that the accuracy is highest in the first week, but drops dra-
matically in the third week, with slight improvement in the fourth week, followed by
decreases in the fifth and sixth weeks. The fluctuation in the accuracy of the SVM



115

model during the 6 weeks period, despite the uniform diet and exercise regimen fol-
lowed by the participants, could be attributed to various reasons such as variations in
compliance levels, where some participants may have been more diligent in adhering
to the regimen than others, leading to different classifications into healthy control or
obesity groups. Other factors include individual differences such as genetics, medical
history, and personal habits, measurement inaccuracies, and changes in the partici-
pants characteristics over time, even when following the prescribed diet and exercise
regimen. For instance, participants stress levels or health status could impact their
classification into healthy control or obesity groups.

5.8 Summary

The aim of this chapter was to investigate the utility of the CA technique in
detecting gait abnormalities in children with metabolic disorders, specifically obesity.
The study hypothesised that by incorporating gait features obtained from the CA
biomechanical system into the SVM classifier, the detection rate of gait disturbances
in children with obesity would be increased to 78.2% on average and their gait quality
would be enhanced. Hence, the main objective of the research in this paper has
been achieved, demonstrating that CA is an effective approach for multivariate data
representation and dimension reduction.

The effectiveness of the proposed approach was assessed using the confusion ma-
trix, receiver operating characteristics (ROC), and area under the ROC metrics. The
combination of the CA method and the kernelised properties of the SVM model pro-
duced better results. These findings suggest that the proposed SVM model with CA
support can be a reliable tool for identifying dynamic disruptions in biological data
patterns, providing great potential for clinical diagnosis and rehabilitation.

The limited sample size of the CARDIGAN dataset, which consisted of only 40
samples, used in this study, could impact the performance of the SVM classification
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process. However, our previous research [40] applied the CA methodology with a
larger dataset of 6000 data samples and achieved an impressive 94% accuracy.

Despite this constraint, our results hold promise and offer various opportunities
for further exploration, such as investigating how the CA method can be combined
with other machine learning models to increase accuracy and performance. This
could involve incorporating CA with other unsupervised methods such as dimension-
ality reduction, or with supervised methods such as neural networks or regression.
The outcomes from CA can also serve as inputs or features for other models. The
objective of this integration is to harness the strengths of different techniques and
overcome their limitations.

Overall, the criticality analysis approach presented in this thesis was demon-
strated as a valuable tool for representing gait data and improving medical outcomes.
The detection of gait disorders is a complex and interdisciplinary process that can
benefit from the integration of advanced technologies. By utilising a combination
of criticality analysis and supervised machine learning methods, such as the SVM
classifier, this research has the potential to significantly advance the field of gait anal-
ysis and lead to more precise diagnoses, improved patient outcomes, and empowered
individuals in managing their health.



Chapter 6

Detecting Dynamic Disturbances
in Human Gait

6.1 Introduction

Disturbances related to human gait are a prevalent concern, particularly among
elderly individuals, which can be caused by reduced mobility resulting from sensory
deficits, medical procedures, and falls caused by medication. These factors signif-
icantly affect quality of life and can increase morbidity and mortality rates [209].
This chapter presents a support vector machine learning-based approach for classify-
ing gait disturbances. By analysing clinical data collected from multiple individuals,
this method can identify abnormalities in human gait. Additionally, the KNN algo-
rithm was utilised to distinguish normal and abnormal gait patterns, with further
details provided in this chapter.

117
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6.2 Methodology

This section delineates the methodology framework proposed, which comprises
of four key stages: data collection, data processing, feature extraction technique,
and the deployment of the SVM classifier. The graphical representation of this
methodology is presented in Figure 6.1.

MoRES DatasetStart

3D Accelerome-

ter Measurements

Criticality Analysis (CA)Applying Statistics

SVM Classification

Prediction

Performance Measure of SVM End

Figure 6.1: The flowchart of MoRES proposed methodology.

6.3 MoRES Dataset

Adult participants with both healthy normal walk and disturbed walk, known as
strapped walk, were invited to participate in a provisional clinical study to support
the Criticality Analysis of Gait in Adults (CAGA) project at the Movement, Occu-
pational and Rehabilitation Sciences (MoRES) centre at Oxford Brookes University
in the UK. All participants provided informed consent prior to participation. The
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clinical study aimed to evaluate the ability of participants to walk independently as
a primary means of mobility, identify the underlying causes of their health condi-
tions, and assess their level of motivation to follow the program during the study.
The psychological measurements were carried out by a medical professional prior to
and during the walking exercise. Additionally, a group of healthy individuals, with-
out peripheral injury or other conditions that may affect mobility without assistive
devices, was recruited for the trial.

To obtain a feasible outcome, the five participants were instructed to walk back
and forth on a flat surface for six seconds while their walking control, stride frequency,
and step length were monitored. Critical changes were observed as participants
changed their speed, effectively testing their mobility.

The procedures governing the operation of data collection are outlined below:

(1) The IMU movement sensor unit is employed to gather gait data from each
participant, while the Axivity AX3 accelerometer, worn on the non-dominant
wrist, is utilised to capture the participant’s physical activity.

(2) The AX3 accelerometer is linked to a USB hub on a laptop using a Micro
USB cable for the purpose of transferring data. The acquired data is then
saved internally onto a memory device with a storage capacity of one Terabyte
(1TB) in the form of a raw binary file.

(3) The AX3 OMGUI software, installed on a laptop, enables access to the collected
data. Instructions for software installation and data recording configuration
can be found in the documentation provided in [49].

(4) The Faculty of Health and Life Sciences at Oxford Brookes University’s Move-
ment, Occupational and Rehabilitation Sciences center oversaw the complete
data collection process. The data collected has been designated as the MoRES
dataset, acknowledging the center’s role as a provider of data.
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(5) The MoRES dataset was made compliant with the General Data Protection
Regulation (GDPR) by anonymising it and securely sharing it with Oxford
Brookes University’s School of Engineering, Computing, and Mathematics (ECM)
as part of the research work of this thesis. The University Research Ethics
Committee (UREC) officially approved the dataset through their procedures.

(6) The MoRES dataset comprises the unprocessed data collected by the 3D IMU
sensory unit. It includes two sets of measurements for each participant: normal
walk patterns, which are observable gait subjects, and strapped walk patterns,
which are non-observable gait subjects. Both sets of data are utilised as in-
puts for the CA methodology explained by equations (3.10)–(3.13) to attain
a multivariate representation of the 3D IMU feature measurements, reducing
them to only two features. More information on this process can be found in
Section 6.3.1.

6.3.1 Features Extraction

The MoRES dataset contains raw data gathered by the 3D accelerometer, gyro-
scope and magnetometer IMU sensor unit, comprising two sets of measurements for
each participant: observable gait patterns during normal walking and non-observable
gait patterns while wearing straps. Both sets of data are utilised as inputs for the
CA methodology described by equations (3.10)–(3.13) to derive a multivariate repre-
sentation of the 3D IMU feature measurements, reducing them to only two features:
f (x-axis) and m (y-axis). By analysing the phase space portraits of both features,
it is possible to identify unique changes in the structural patterns of the dynamics
of human gait.
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6.3.2 Criticality Analysis as a Data Representation Method

The features extracted from the 3D IMU sensor data in the MoRES dataset
are used to perturb a mathematical model represented by equations (3.10)–(3.13)
through the Criticality Analysis method. This method converts multivariate dy-
namic data into a nonlinear representation space, where each sample is characterised
by a unique orbit resulting from perturbing a critical system composed of a network
of nonlinear controlled oscillators. This critical network remains stable despite small
input changes leading to state changes in the orbit of the entire network. The re-
sulting trajectory is an independent depiction of the initial dataset, devoid of any
scaling, and can serve as evidence of the likeness of a particular subset of features rep-
resenting either an abnormal or normal walking pattern to its corresponding group
in the sample set when compared to other members of the dataset [208] [50]. This
representation reduces the dimensionality of the MoRES raw data into two predomi-
nant dimensionless features, namely f and m, which are plotted on the x and y axes,
respectively.

The phase space plots of the CA data representation for each categorised group
of participants are presented in Figures 6.2–6.6. Figure 6.7 depicts the phase plot for
all individuals in each walk category, where normal walk behaviour exhibits greater
variability in the phase space as compared to strapped walk patterns. This indicates
that healthy individuals have an unrestricted gait without any physical restrictions,
resulting in more structured patterns. The CA approach enables the detection and
classification of healthy and affected gait patterns in the time domain, without requir-
ing machine learning training. Furthermore, the dynamic representation of individual
data samples can be compared and monitored over time. In this experiment, CA is
used to distinguish normal walk patterns from their strapped counterparts, demon-
strating the varying behaviour of participants. The normal phase plots displayed in
the left side of Figures 6.2–6.7 show that external perturbations to the network of
coupled oscillators can affect gait behaviour patterns due to the scaled additive con-
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nectivity strength to the external perturbations, while ensuring the system remains
within a controlled domain.

Figure 6.2: This figure shows the phase space plots for each walk pattern that cor-
respond to individual of p1. On the left is the normal walk patterns portrait, while
the strapped patterns are on the right side of Figure 6.2.

Figure 6.3: This figure shows the phase space plots for each walk pattern that cor-
respond to individual of p2. On the left is the normal walk patterns portrait, while
the strapped patterns are on the right side of Figure 6.3.
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Figure 6.4: This figure shows the phase space plots for each walk pattern that cor-
respond to individual of p3. On the left is the normal walk patterns portrait, while
the strapped patterns are on the right side of Figure 6.4.

Figure 6.5: This figure shows the phase space plots for each walk pattern that cor-
respond to individual of p4. On the left is the normal walk patterns portrait, while
the strapped patterns are on the right side of Figure 6.5.
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Figure 6.6: This figure shows the phase space plots for each walk pattern that cor-
respond to individual of p5. On the left is the normal walk patterns portrait, while
the strapped patterns are on the right side of Figure 6.6.

Figure 6.7: This figure shows the phase space plots for each walk pattern for all
individuals of the same category. On the left is the normal walk patterns portrait,
while the strapped patterns are on the right side of Figure 6.7.

The dynamic representations of CA analysis revealed that individuals with strapped
walk experience more limitations in varying their gait, which is challenging to dis-
cern due to the high nonlinearity of the data. The CA phase plots presented in
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Figures 6.2–6.6 as well as Figures 6.7 demonstrated that strapped walk individuals
exhibit a gait pattern that is slower and more labored than that of individuals with
normal healthy gait. Additionally, strapped walk individuals have a wider base of
support and shorter steps, likely due to the increased stress on their joints and mus-
cles from carrying extra weight. Strapped walk individuals are also at an increased
risk for joint pain and arthritis, which can contribute to stiffness in their gait.

In contrast, individuals with normal healthy gait exhibit a smoother and more
fluid gait pattern, with a narrower base of support and longer steps. The gait features
depicted in the figures have an impact on the network of coupled CA oscillators, with
the scaling of additive connectivity strength responding to external perturbations of
gait. This is done to ensure that the input provided to each oscillator remains within
the controlled domain and does not exceed a certain threshold.

6.4 Statistical Analysis of Criticality Analysis Data

6.4.1 Scatter Analysis

A scatter plot analysis for gait data can be a useful tool for discriminating between
normal and strapped gait patterns. Scatter plot analysis involves plotting the CA gait
data on a graph with the x-axis representing one variable and the y-axis representing
another variable. By analysing the scatter plot, we can visually identify any patterns
or trends in the data that may differentiate normal gait from strapped gait patterns.
For example, we may observe that individuals with strapped gait patterns tend to
have shorter stride lengths and wider step widths compared to those with normal
gait patterns.

Figures 6.8–6.13 illustrate the distribution of CA data representation for each
individual’s walk pattern, corresponding to the figures depicted in Figures 6.2–6.7.
Each plot shows the variability of continuous or successive gait interaction events
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over time that an individual takes. Since there is a degree of association between the
two dominant extracted features in the 2D space, the Pearson’s correlation coefficient
ρ, which measures the direction and strength of the dependency of extracted features
on each other, is bounded by 0 ≤ ρ ≤ 1. The average of ρ for normal walk patterns
across all individuals is significantly higher and positive than that for strapped pat-
terns. In other words, the effect of ρ for strapped features decreases steadily by an
average of 0.28% compared to normal patterns.

Figure 6.8: This figure shows the scatter plots for each walk pattern that correspond
to the individual p1. On the left is the normal walk patterns distribution, while the
strapped patterns distribution is on the right side of Figure 6.8.
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Figure 6.9: This figure shows the scatter plots for each walk pattern that correspond
to the individual p2. On the left is the normal walk patterns distribution, while the
strapped patterns distribution is on the right side of Figure 6.9.

The figures depicted in Figures 6.8–6.13 exhibit the strapped gait on their right-
hand side. These figures illustrate that there is a discernible concentration of data
points over the range of data space or non-uniformity in the distribution of data
samples, thereby distinguishing them from a typical walking pattern, as exemplified
in Figure 6.10.
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Figure 6.10: This figure shows the scatter plots for each walk pattern that correspond
to the individual p3. On the left is the normal walk patterns distribution, while the
strapped patterns distribution is on the right side of Figure 6.10.

Figure 6.11: This figure shows the scatter plots for each walk pattern that correspond
to the individual p4. On the left is the normal walk patterns distribution, while the
strapped patterns distribution is on the right side of Figure 6.11.
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Figure 6.12: This figure shows the scatter plots for each walk pattern that correspond
to the individual p5. On the left is the normal walk patterns distribution, while the
strapped patterns distribution is on the right side of Figure 6.12.

Figure 6.13: This figure shows the scatter plots for each walk pattern for all indi-
viduals of the same category. On the left is the normal walk patterns distribution,
while the strapped patterns distribution is on the right side of Figure 6.13.

Table 6.1 shows the correlation coefficient values for five different variables, p1

through p5, between normal and strapped walking patterns. The correlation coeffi-
cients are approximately higher for the strapped walk pattern, indicating a stronger
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relationship between these variables for this type of gait, while Table 6.2 summarises
the correlation coefficient values for all individuals in both normal and strapped walk-
ing patterns. The correlation coefficients for both types of gaits are relatively high,
with a slightly higher value for normal walking patterns. This suggests that there
is a significant correlation between the variables across all individuals, regardless of
the gait pattern.

Tables 6.1 and 6.2 provide a summary of the correlation coefficient values (ρ)
for different walking patterns, including values for individual participants as well as
for all individuals in the same category. Specifically, Table 6.1 reports the ρ values
for different variables in normal and strapped walking patterns, while Table 6.2
summarises the ρ values for all individuals in each gait pattern category.

Table 6.1: The correlation coefficient ρ of p1, p2, p3, p4 and p5.

Category
Correlation Coefficient (ρ)

p1 p2 p3 p4 p5

Normal
Walk

0.815 0.846 0.832 0.84 0.847

Strapped
Walk

0.86 0.819 0.871 0.838 0.778

Table 6.2: The correlation coefficient ρ of all individuals.

Category
Correlation Coefficient (ρ)

All Individuals

Normal Walk Patterns 0.8337

Strapped Walk Patterns 0.8255
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6.4.2 Spatiotemporal Analysis

Spatiotemporal analysis of gait data refers to the study of the space and time as-
pects of human walking patterns. It involves the measurement and analysis of various
parameters related to gait, such as step length, stride length, cadence, velocity, and
variability. When comparing normal and strapped walk patterns, spatiotemporal
analysis can provide valuable insights into the differences between the two. Strapped
walk patterns refer to walking while wearing some form of restriction or constraint,
such as ankle weights or braces, which can affect gait parameters. Compared to
normal walking, strapped walking patterns may exhibit changes in spatiotemporal
parameters such as shorter stride length, reduced velocity, increased variability, and
altered gait symmetry. The specific changes observed will depend on the type and
severity of the restriction or constraint.

Figures 6.14 to 6.16 present a graphical comparison between normal gait dynamic
patterns and strapped patterns, revealing significant effects of gait dynamic distur-
bances on gait progression. This analysis particularly highlights the variations and
locations of gait patterns in individuals with certain gait abnormalities. The median
is represented by the middle line of each categorical box, with the degree of disper-
sion and skewness of the CA data measured by the difference in variability between
each category for each individual. Table 6.3 presents the median values of p1 to p5

for normal and strapped walking patterns. The data shows that the median values of
p1 to p5 for the strapped walking pattern are lower compared to the normal walking
pattern. The median value of p1 for the strapped walking pattern is the lowest among
all the categories, indicating that individuals with certain gait abnormalities experi-
ence significant disruptions in their gait dynamics during strapped walking. Overall,
these findings suggest that spatiotemporal analysis of gait data can reveal important
insights into the differences between normal and strapped walking patterns and can
aid in clinical or rehabilitation interventions to improve gait function.
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Table 6.3: The median of p1, p2, p3, p4 and p5.

Category
Median

p1 p2 p3 p4 p5

Normal
Walk

21.804 22.252 22.709 21.869 23.029

Strapped
Walk

19.99 24.645 21.527 22.085 20.637

Table 6.4 provides the median values for two categories of walking, normal walk
and strapped walk, for all individuals. The median value for normal walk is 22.253
while the median value for strapped walk is 20.130. This indicates that individuals in
the normal walk category tend to have a higher median value compared to individuals
in the strapped walk category.

Figure 6.14: This figure shows the spatiotemporal plots for each walk pattern that
correspond to each individual p1 and p2.
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Figure 6.15: This figure shows the spatiotemporal plots for each walk pattern that
correspond to each individual p3 and p4.

Figure 6.16: This figure shows the spatiotemporal plots for each walk pattern that
correspond to each individual p5 and to all individuals from the same category.
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Table 6.4: The median of all individuals.

Category
Median

All Individuals

Normal Walk 22.253
Strapped Walk 20.130

6.4.3 Histogram Analysis

Histogram analysis of gait data can provide insight into the frequency and dis-
tribution of certain gait parameters, such as step length, stride length, and cadence.
By comparing the histograms of gait data between normal and strapped walk pat-
terns, one can identify differences in the gait patterns. For example, if the histogram
for a normal walk pattern shows a single peak centered around a certain value, and
the histogram for a strapped walk pattern shows a broader distribution with multi-
ple peaks, this could suggest that the strapped walk pattern is less consistent and
less efficient than the normal walk pattern. Similarly, if the histogram for a nor-
mal walk pattern shows a roughly symmetric distribution, and the histogram for
a strapped walk pattern shows a skewed distribution with a longer tail, this could
suggest that the strapped walk pattern is characterised by longer and possibly more
variable strides, which may be indicative of compensatory mechanisms due to the
use of straps.

Visual representations in the form of histograms are depicted in Figures 6.17
through 6.21, demonstrating the unique statistical properties of the distribution of
CA data by illustrating the frequencies of individual features. Table 6.5 displays
a significantly higher average mean for the strapped walk distribution compared to
the normal walk distribution. Furthermore, it is evident that the strapped walk
data distribution for CA individuals is skewed to the right, which is expected for
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individuals p1, p2, p4 and p5, while the distribution of p3 is skewed to the left. As
the degree of skewness increases, so does the level of variability. This one-sided
distribution is caused by the lower bound of data features and results in outliers
due to an unintended change in experiment settings that affects the distribution’s
direction. Additionally, Table 6.6 presents the mean values for all individuals in two
categories of walking: normal walk and strapped walk. The mean value for normal
walk is 23.838, while the mean value for strapped walk is 23.198. This suggests that
the overall mean of normal walk is higher than that of strapped walk.

Figure 6.17: This figure shows the histogram plots for each walk pattern that corre-
spond to the individual p1.
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Figure 6.18: This figure shows the histogram plots for each walk pattern that corre-
spond to the individual p2.

Figure 6.19: This figure shows the histogram plots for each walk pattern that corre-
spond to the individual p3.
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Figure 6.20: This figure shows the histogram plots for each walk pattern that corre-
spond to the individual p4.

Figure 6.21: This figure shows the histogram plots for each walk pattern that corre-
spond to the individual p5.
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Table 6.5: The mean of p1, p2, p3, p4 and p5.

Category
Mean

p1 p2 p3 p4 p5

Normal
Walk

24.483 22.803 23.522 24.257 24.287

Strapped
Walk

22.497 25.99 22.124 23.914 25.835

Figure 6.22: This figure shows the histogram plots for each walk pattern of individ-
uals from the same gait category.
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Table 6.6: The mean of all individuals.

Category
Mean

All Individuals

Normal Walk 23.838
Strapped Walk 23.198

6.5 The Proposed SVM Classifier

The proposed Support Vector Machine (SVM) model is based on the kernel prop-
erty discussed in Section 4.3.2. The most dominant gait features extracted by the
RCC Berry model [29], represented by f (equation (3.11)) on the x-axis and m (equa-
tion (3.10)) on the y-axis, exhibit high correlation and nonlinearity. The Kernel SVM
is well-suited to handle and transform such dynamic and nonlinear gait data into a
new feature space to facilitate the classification process for various data subjects.
To train and test the classification performance of various models, the extracted
features from the controlled CA model were used as input to the SVM algorithm.
The SVM classifier was trained and tested on the nonlinear CA extracted features
for each individual of various gait subjects. Specifically, the two-dimensional normal
and strapped walk subjects were used for training and testing, respectively. This
scenario was repeated to train the Kernel SVM on all individual data, where the
normal patterns were used for training and the strapped ones were used for test-
ing to reduce the number of parameters that could lead to unnecessary overfitting
in training the gait data. The purpose of conducting these two experiments is to
evaluate the performance of the SVM and its ability to classify various dynamic gait
subjects, as well as detect disturbances associated with individual walk behavior.
The implementation procedures of the proposed SVM algorithm are described in
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Algorithm 1.

6.6 The Proposed SVM Training

A total of 3000 data points are available for each gait subject, namely normal or
strapped, with an equal distribution among five participants. This results in a total
of 6000 data samples for both subjects, corresponding to the extracted features in-
put to the classification algorithm. Each participant in a given gait category has 600
data samples. The training and testing of the Kernel SVM algorithm were carried
out using a 50% splitting ratio. Prior to training the SVM, all CA gait features were
normalised using the z-score to center the data samples at zero mean and unity stan-
dard deviation. The implementation of the Kernel SVM algorithm was conducted
using MATLAB for statistical analysis of gait data, including the development of
various Kernel SVM models to examine the impact of Kernel characteristics (regu-
larisation parameter C and control width σ) on the classification performance of gait
data. The generalisation performance of the trained Kernel SVM was evaluated by
measuring the prediction accuracy for each model, analysing the confusion matrix
(refer to Appendix B), plotting the Receiver Operating Characteristics (ROC) curve,
and calculating the area under the ROC curve. Further details on this evaluation
process are discussed in subsequent sections.

6.7 Simulation Results

In order to ascertain the efficacy of the methodology proposed earlier, the subse-
quent performance metrics are employed:
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6.7.1 Confusion Matrix

In a binary classification problem, the dataset labels are classified as either pos-
itive or negative. The output of the SVM classifier in such a scenario can be repre-
sented by a structured contingency table, commonly known as a confusion matrix.
This matrix contains information about the actual and predicted binary classification
and is used to evaluate the performance of the classification algorithm in differentiat-
ing between different categories, such as normal or strapped. The confusion matrix
has four key components, as outlined by the literature [52]:

• True Positive (TP ): the term pertains to the accurate identification and clas-
sification of positive data samples, which in this context refers to participants
engaging in normal walking behavior.

• False Positive (FP ): the term "false positives" pertains to the count of neg-
ative data instances, specifically those from participants who engaged in a
strapped walk, that have been inaccurately identified as positive or normal.

• True Negative (TN): this pertains to the count of negative instances within
the data set (namely individuals participating in a strapped walk) that have
been accurately identified as negative (i.e., subjected to strapping).

• False Negative (FN): the term "false negatives" pertains to the count of
positive data points, which correspond to individuals exhibiting normal walking
behavior, that are erroneously identified as negative, indicating that they are
wearing a brace or other similar assistive device.

The evaluation of a classifier’s performance includes several metrics, including
accuracy, precision, F1-score, recall or sensitivity (also known as True Positive Rate or
TPR), specificity (also known as True Negative Rate or TNR), and false positive rate
(FPR). These metrics are calculated using the True Positive (TP ), False Positive
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(FP ), True Negative (TN), and False Negative (FN) values. The definitions of
these metrics are as follows:

• Accuracy: denotes the comprehensive rate of successful predictions, which
is calculated as the proportion of accurately classified labels (represented by
TP + TN) to the total number of data samples (TP + TN + FP + TN). This
metric is mathematically defined as:

Accuracy = TP + TN

TP + TN + FP + TN
.

• Precision: used for detecting normal walking status. It is computed as the
ratio of accurately predicted positive labels for normal walking to the total
number of predicted labels indicating a normal walking condition. It is calcu-
lated using the following formula:

Precision = TP

TP + FP
.

• Recall (TPR): pertains to the accuracy of correctly predicting positive labels
with normal walk status, in relation to all normal walk data samples. Its
calculation is determined by the following formula:

Recall = TP

TP + FN
.

• F1−Score: is a metric that maintains a balance between precision and recall.
Its calculation is as follows:

F1 − Score = 2 × Precision

Precision + Recall
.

• True Negative Rate (TNR): refers to the ratio of accurately predicted neg-
ative labels under strapped walk conditions, as a proportion of all the samples
in the strapped walk dataset. Mathematically, it is expressed as:

TNR = TN

TN + FP
.
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• False Positive Rate (FPR): quantifies the proportion of strapped walk sam-
ples that are inaccurately labeled as normal walk data, in relation to the total
number of strapped data samples. Mathematically, FPR is represented as:

FPR = FP

FP + TN
.

The purpose of the aforementioned metrics is to assess the effectiveness of the
proposed SVM algorithm in identifying the atypical gait patterns associated with
diverse individuals. The performance metrics of the SVM classifier for each individual
at specific levels of regularisation parameters C = (0.1, 1, 10) are summarised in
Appendix B. Among these metrics, the accuracy is the primary validation measure
that provides a comprehensive evaluation of the SVM classifier’s overall performance.
Notably, the accuracy of the classifier is contingent on the values of σ and C. In
general, the optimal outcomes were obtained when σ was set to 0.1 or 1. In light
of one of the primary discoveries concerning the confusion matrix, it is essential
to reflect upon its implications. For instance, Table B.9 presents the results of
SVM classification for p5 walk patterns at σ = 10. The table demonstrates the
classification performance of SVM with varying values of C (i.e., 0.1, 1, and 10).
The performance measures such as TP (true positives), FP (false positives), FN

(false negatives), TN (true negatives), FPR (false positive rate), precision, recall,
F1-score, specificity, AROC (area under the receiver operating characteristic curve),
and accuracy are provided. The table indicates that for all values of C, the SVM
correctly classified 298 instances as true positives and misclassified 302 instances as
false positives. No instances were misclassified as false negatives or true negatives.
The F1-score for all values of C was 0.663, indicating that the precision and recall
were balanced.

Table B.10 shows the SVM classification results for p5 walk patterns at σ = 0.1
and σ = 1. The table provides performance measures for SVM with different values
of C (i.e., 0.1, 1, and 10) at both values of sigma. For σ = 0.1, the SVM correctly
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classified 268, 264, and 266 instances as true positives for C values of 0.1, 1, and 10,
respectively, while misclassifying 9, 1, and 0 instances as false positives. Additionally,
30, 34, and 32 instances were misclassified as false negatives for C values of 0.1, 1,
and 10, respectively. The F1-score for C values of 0.1, 1, and 10 was 0.932, 0.937,
and 0.943, respectively. The accuracy was 93.5%, 94.17%, and 94.67% for C values
of 0.1, 1, and 10, respectively.

For σ = 1, the SVM correctly classified 298 instances as true positives for all C

values, while misclassifying 134, 66, and 45 instances as false positives for C values
of 0.1, 1, and 10, respectively. No instances were misclassified as false negatives or
true negatives. The F1-score for C values of 0.1, 1, and 10 was 0.816, 0.9, and 0.929,
respectively. The accuracy was 77.67%, 89%, and 92.33% for C values of 0.1, 1, and
10, respectively.

6.7.2 Receiver Operating Characteristics (ROC) Curve

The Receiver Operating Characteristic (ROC) plot is an additional tool for as-
sessing the performance of the SVM classifier. This plot displays a representation
of True Positive Rate (TPR) or sensitivity versus the complement of True Nega-
tive Rate (≈ 1 − TNR) across a range of threshold levels, ranging from 0 to 1. In
Figures 6.23–6.28, ROC curves were generated for the optimal σ and C values that
produced the highest accuracy during the overall trial period for each individual,
as well as for all individuals as depicted in Figure 6.28. The results show that the
Kernel SVM performed well in detecting normal and strapped features for each indi-
vidual, as well as for the different gait subjects of all individuals. The area under the
ROC curve (AROC) also increased with increasing values of C, indicating a better
ability to distinguish between the positive and negative classes. However, at σ = 1,
the accuracy remained at its maximum value, but the AROC value decreased as the
value of C increased. This suggests that the model is overfitting to the training data
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and not performing well on the test data. The false positive rate (FPR) increased
as the value of C increased, indicating that the model is classifying more negative
instances as positive. Overall, the AROC and ROC curve suggest that the model’s
performance is highly dependent on the values of σ and C. The ROC curve in the
context of the SVM classifier is influenced by both the choice of the regularisation
parameter C and the kernel parameter σ. The regularisation parameter C controls
the balance between the training error and the complexity of the decision boundary,
while the kernel parameter σ affects the shape and flexibility of the decision bound-
ary. The choice of C and σ can have a significant impact on the performance of the
SVM classifier, as well as the shape and location of the ROC curve. Therefore, it
is important to carefully tune both parameters to achieve the best possible perfor-
mance. In the given context, the ROC curve was plotted for the best pair of σ and
C values that satisfy the highest accuracy during the overall trial period for each
individual and for all individuals. It was shown that the kernel SVM performed well
in most cases for detecting normal and strapped features per individual, as well as
between the different gait subjects of all individuals.

Figure 6.23: ROC (Receiver Operating Characteristic) curves of p1 show the True
Positive (Sensitivity) and False Positive (1-Specificity) for the best different thresh-
olds using kernel property of SVM.



146

Figure 6.24: ROC (Receiver Operating Characteristic) curves of p2 show the True
Positive (Sensitivity) and False Positive (1-Specificity) for the best different thresh-
olds using kernel property of SVM.

Figure 6.25: ROC (Receiver Operating Characteristic) curves of p3 show the True
Positive (Sensitivity) and False Positive (1-Specificity) for the best different thresh-
olds using kernel property of SVM.
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Figure 6.26: ROC (Receiver Operating Characteristic) curves of p4 show the True
Positive (Sensitivity) and False Positive (1-Specificity) for the best different thresh-
olds using kernel property of SVM.

Figure 6.27: ROC (Receiver Operating Characteristic) curves of p5 show the True
Positive (Sensitivity) and False Positive (1-Specificity) for the best different thresh-
olds using kernel property of SVM.
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Figure 6.28: ROC (Receiver Operating Characteristic) curves of all individuals’ gait
subjects show the True Positive (Sensitivity) and False Positive (1-Specificity) for
the best different thresholds using kernel property of SVM.

6.7.3 Area Under the ROC Curve (AROC)

The Area Under the Curve (AUC), which takes into account all possible classi-
fication thresholds, provides an overall assessment of binary classifier performance.
A higher AUC value signifies superior performance, with the ROC curve and AUC
serving as useful tools for evaluating binary classifiers, particularly in cases of im-
balanced classes. AROC values range from 0 to 1, with 0.5 representing random
guessing and 1 signifying flawless classification. The ROC area for each individual
walk’s Gaussian kernel as a function of the regularisation parameter C is depicted
in Figures 6.29–6.31. The SVM classifier’s performance can be influenced by the C

parameter, and there is a particular value or range that can enhance efficiency rela-
tive to others. Tables B.2–B.12 in Appendix B demonstrate that the SVM classifier
achieves optimal results when σ = 0.1 and, in some cases, when σ = 1, compared
to other σ values. Based on this, Figures 6.29–6.31 were generated, illustrating that
for certain individuals, a range of C values can produce optimal performance. Addi-
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tionally, it is demonstrated in Figures 6.29– 6.31 that for some individuals, a higher
sensitivity level results in a larger Area under the Curve and better performance.

Figure 6.29: The ROC area or Area under ROC curve (AROC) versus various values
of the regularisation parameter C when σ = 0.1 for each individual p1 and p2,
respectively.

Figure 6.30: The ROC area or Area under ROC curve (AROC) versus various values
of the regularisation parameter C when σ = 0.1 for each individual p3 and p4,
respectively.
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Figure 6.31: The ROC area or Area under ROC curve (AROC) versus various values
of the regularisation parameter C when σ = 0.1 for the individual p5.

Tables B.2–B.12 in Appendix B demonstrate that the SVM model measurements
indicate a high level of efficiency in distinguishing between normal and strapped gait
disturbances, as the AUC and accuracy values are closely aligned. The AUC was
computed through the custom algorithm software routines developed in MATLAB.

6.7.4 Classification Decision Boundary

The decision boundary of a SVM is a hyperplane that separates the different
classes of data. The position and orientation of the decision boundary are determined
by the SVM algorithm during the training process, based on the training data. The
SVM algorithm has two key parameters, C and σ, that can influence the position and
orientation of the decision boundary. The C parameter is a regularisation parameter
that controls the trade-off between maximising the margin (i.e., the distance between
the decision boundary and the nearest data points from each class) and minimising
the classification error. A higher value of C will result in a narrower margin and
a more complex decision boundary, which can potentially lead to overfitting to the
training data. Conversely, a lower value of C will result in a wider margin and
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a simpler decision boundary, which can potentially lead to underfitting. The σ

parameter is the width of the Gaussian kernel function used by the SVM algorithm
to transform the input data into a higher-dimensional space. A smaller value of σ will
result in a more peaked kernel function, which can lead to overfitting, while a larger
value of σ will result in a smoother kernel function, which can lead to underfitting.
Therefore, the values of C and σ can affect the position, orientation, and complexity
of the decision boundary, and can impact the performance of the SVM classifier
on unseen data. It is important to choose appropriate values of C and σ through
cross-validation or other techniques to achieve the best classification accuracy.

The decision boundary visualisations in Figures 6.32– 6.42, which are in support
of the results presented in the left graph of Figure 6.23– 6.28, demonstrate the effec-
tiveness of the Kernel SVM model in identifying gait abnormalities or dynamics that
deviate from normal patterns. These figures illustrate the decision boundary for the
SVM trained on the walk patterns of all individuals as opposed to just the strapped
individual. The robustness of the model in this regard is noteworthy. Notably, the
SVM model achieves optimal performance at σ = 0.1 and 1 for a range of C values.
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Normal Walk (DB)

Strapped Walk (DB)

Misclassified Patterns from Normal Walk (DB)

Misclassified Patterns from Strapped Walk (DB)

(a) σ = 0.1 and C = 0.1

Normal Walk (DB)

Strapped Walk (DB)

Misclassified Patterns from Normal Walk (DB)

Misclassified Patterns from Strapped Walk (DB)

(b) σ = 0.1 and C = 1

Figure 6.32: The decision boundary when the SVM model trained on p1 normal walk
patterns versus that of the strapped one, when: (a) σ = 0.1 and C = 0.1 and (b)
σ = 0.1 and C = 1.

Normal Walk (DB)

Strapped Walk (DB)

Misclassified Patterns from Normal Walk (DB)

Misclassified Patterns from Strapped Walk (DB)

(a) σ = 0.1 and C = 10

Figure 6.33: The decision boundary when the SVM model trained on p1 normal walk
patterns versus that of the strapped one, when: σ = 0.1 and C = 10.
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Normal Walk (EM)

Strapped Walk (EM)

Misclassified Patterns from Normal Walk (EM)

Misclassified Patterns from Strapped Walk (EM)

(a) σ = 0.1 and C = 0.1

Normal Walk (EM)

Strapped Walk (EM)

Misclassified Patterns from Normal Walk (EM)

Misclassified Patterns from Strapped Walk (EM)

(b) σ = 0.1 and C = 1

Figure 6.34: The decision boundary when the SVM model trained on p2 normal walk
patterns versus that of the strapped one, when: (a) σ = 0.1 and C = 0.1 and (b)
σ = 0.1 and C = 1.

Normal Walk (EM)

Strapped Walk (EM)

Misclassified Patterns from Normal Walk (EM)

Misclassified Patterns from Strapped Walk (EM)

(a) σ = 0.1 and C = 10

Figure 6.35: The decision boundary when the SVM model trained on p2 normal walk
patterns versus that of the strapped one, when: σ = 0.1 and C = 10.
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Normal Walk (IR)

Strapped Walk (IR)

Misclassified Patterns from Normal Walk (IR)

Misclassified Patterns from Strapped Walk (IR)

(a) σ = 0.1 and C = 0.1

Normal Walk (IR)

Strapped Walk (IR)

Misclassified Patterns from Normal Walk (IR)

Misclassified Patterns from Strapped Walk (IR)

(b) σ = 0.1 and C = 1

Figure 6.36: The decision boundary when the SVM model trained on p3 normal walk
patterns versus that of the strapped one, when: (a) σ = 0.1 and C = 0.1 and (b)
σ = 0.1 and C = 1.

Normal Walk (IR)

Strapped Walk (IR)

Misclassified Patterns from Normal Walk (IR)

Misclassified Patterns from Strapped Walk (IR)

(a) σ = 0.1 and C = 10

Figure 6.37: The decision boundary when the SVM model trained on p3 normal walk
patterns versus that of the strapped one, when: σ = 0.1 and C = 10.
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Normal Walk (JC)

Strapped Walk (JC)

Misclassified Patterns from Normal Walk (JC)

Misclassified Patterns from Strapped Walk (JC)

(a) σ = 0.1 and C = 0.1

Normal Walk (JC)

Strapped Walk (JC)

Misclassified Patterns from Normal Walk (JC)

Misclassified Patterns from Strapped Walk (JC)

(b) σ = 0.1 and C = 1

Figure 6.38: The decision boundary when the SVM model trained on p4 normal walk
patterns versus that of the strapped one, when: (a) σ = 0.1 and C = 0.1 and (b)
σ = 0.1 and C = 1.

Normal Walk (JC)

Strapped Walk (JC)

Misclassified Patterns from Normal Walk (JC)

Misclassified Patterns from Strapped Walk (JC)

(a) σ = 0.1 and C = 10

Figure 6.39: The decision boundary when the SVM model trained on p4 normal walk
patterns versus that of the strapped one, when: σ = 0.1 and C = 10.
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Normal Walk (KH)

Strapped Walk (KH)

Misclassified Patterns from Normal Walk (KH)

Misclassified Patterns from Strapped Walk (KH)

(a) σ = 0.1 and C = 0.1

Normal Walk (KH)

Strapped Walk (KH)

Misclassified Patterns from Normal Walk (KH)

Misclassified Patterns from Strapped Walk (KH)

(b) σ = 0.1 and C = 1

Figure 6.40: The decision boundary when the SVM model trained on p5 normal walk
patterns versus that of the strapped one, when: (a) σ = 0.1 and C = 0.1 and (b)
σ = 0.1 and C = 1.

Normal Walk (KH)

Strapped Walk (KH)

Misclassified Patterns from Normal Walk (KH)

Misclassified Patterns from Strapped Walk (KH)

(a) σ = 0.1 and C = 10

Figure 6.41: The decision boundary when the SVM model trained on p5 normal walk
patterns versus that of the strapped one, when: σ = 0.1 and C = 10.
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Normal Walk

Strapped Walk

Misclassified Patterns from Normal Walk

Misclassified Patterns from Strapped Walk

(a) σ = 0.1 and C = 0.1

Normal Walk

Strapped Walk

Misclassified Patterns from Normal Walk

Misclassified Patterns from Strapped Walk

(b) σ = 0.1 and C = 1

Figure 6.42: The decision boundary when the SVM model trained on all individuals
pAll normal walk patterns versus that of the strapped one, when: (a) σ = 0.1 and
C = 0.1 and (b) σ = 0.1 and C = 1.

Normal Walk

Strapped Walk

Misclassified Patterns from Normal Walk

Misclassified Patterns from Strapped Walk

(a) σ = 0.1 and C = 10

Figure 6.43: The decision boundary when the SVM model trained on pAll normal
walk patterns versus that of the strapped one, when: σ = 0.1 and C = 10.
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6.7.5 Mean Square Error Rate and Standard Deviation Test

The figure presented in Figure 6.44 displays the SVM model’s average mean
square error (MSE) rate for the data of five individuals. To calculate the average
MSE for each person, the accuracy obtained for each curve shown in Figures 6.29–
6.31 was averaged. The individuals p1 and p4 had an average MSE of less than 6%
with minimal variation rates, respectively, in their ability to classify patterns of gait
abnormalities. On the other hand, when compared to individuals p2, p3, and p5,
their average MSE and average standard deviation were found to be extremely high.

Figure 6.44: This figure shows the average mean square error (MSE)(%) (on the
left) and the average standard deviation (%) (on the right) of the SVM classification
performance for each individual piece of data.
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6.8 Additional Experiment: K-Nearest Neighbour

(KNN) Algorithm for Classifying Human Gait

Disturbances

K-Nearest Neighbour (KNN) is a supervised machine learning technique that is
highly effective in solving classification problems by learning from data. It relies
on a binary criterion to model data and assigns categorical labels to input samples.
KNN’s binary classification basis is particularly useful for detecting and diagnosing
gait pattern abnormalities, which can aid in early clinical interventions to prevent the
disruption of the biological system and facilitate motor recovery, especially in patients
with chronic illnesses who have lost their independence. This type of classification
has significant potential for future KNN applications, especially in gait diagnosis.
KNN is a reliable gait classifier because it can construct robust predictive models
by considering the optimal k nearest Neighbour s in a Euclidean space based on
majority votes from Neighbour ing labels.

6.9 Methodology of KNN Experiment

The KNN algorithm was implemented using the entire set of the CA gait features
as inputs. A software routine was created in Matlab R2018b to conduct various tests,
such as tuning the k parameter through cross-validation to improve classification
performance. The KNN model’s generalisation performance was determined by cal-
culating the average of the mean square error from both training and cross-validation
tests, using different values of k. To ensure fair and independent distributions, the
dataset was randomly split into training and testing sets, which is a critical aspect of
KNN. This allows unbiased estimation of the generalisation mean error rate, where
one portion of data is used for fitting and the other for evaluation. This approach
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provides promising results for actual performance.

6.10 Cross Validation

Cross-validation is a widely used method for testing classification models that
aims to avoid bias in the performance results. It involves systematically excluding a
small portion of the gait data during the training process to maintain the performance
of each gait class prediction, while the excluded data points are used to test the
trained model. This process is repeated until all data points are included in the
testing dataset. Given that the gait dataset comprises only 6000 trials from five
individuals, it is crucial to validate the data using different scales and observe the
error rates associated with each data split. To draw accurate conclusions about
the effectiveness of the KNN classification model, it is essential to test the MoRES
dataset across various data splitting scenarios.

6.11 Measuring Mean Square Error Rate

In order to assess the effectiveness of the KNN classification model algorithm, it is
essential to evaluate the mean square error (MSE) between the actual data samples
and the predicted data points. This measurement allows for a determination of the
predictive model’s accuracy. Ideally, the model performs well when the average error
rate E is minimised. The MSE can be calculated as follows:

E = 1
N

N∑
i=1

(
yi − ŷi

)2
(6.1)

where yi is the original data samples (N) and ŷi is the predicted data points.



161

6.12 Optimal Value of K in KNN Model

The KNN model, named for its reliance on Neighbour ing data points, requires
careful consideration when selecting the optimal value for the parameter, k. This pa-
rameter specifies the number of Neighbour s to consider during classification and can
significantly impact model complexity and efficacy. The ideal value of k depends on
several factors, including dataset size and data point distribution within their coor-
dinate space. To achieve minimal classification error and accurately reflect the KNN
model’s accuracy, k must be explicitly selected using cross-validation techniques.

6.13 Simulation Results of KNN Experiment

In this experiment, a 70-fold cross-validation test was conducted on 6000 gait
data points, divided into approximately 86 subsets. The majority of the data (90%)
was allocated for training, while the remaining 10% was used for testing. This
experimental setup resulted in minimal test and cross-validation error rates. The
K-nearest Neighbour (KNN) model performed optimally with a value of k = 4.
The model’s performance was evaluated using the mean square error quantifiable
approach. The percentage of unclassified data points was averaged over 100 runs of
the training and testing data sample sets to ensure fair and reliable results.
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Figure 6.45: Pre-trained class labels associated with their medical conditions

The histogram distribution of MoRES data for normal and strapped gait pat-
terns is depicted in Figure 6.45. The figure clearly illustrates qualitative differences
between the two groups, such as increased variability, significant decrease in central
tendency, and high skewness in the normal well-apparent plots. The experimentally
derived features from Figure 6.45 were utilised to train a KNN model to classify gait
patterns corresponding to the five different data labels: EM, IR, KH, DB, and JC.
These labels are defined to comply with data protection rules and regulations. The
prediction results of the trained KNN model are shown in Figure 6.46. The figure
indicates that all label patterns were accurately classified, but the predicted data
distribution for strapped gait patterns is clustered more closely and becomes more
dense due to the limited mobility caused by stiffness.
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Figure 6.46: Predicted class labels associated with their medical conditions

The confusion matrix shown in Figure 6.47 illustrates the KNN model’s capacity
to categorise data labels based on their corresponding features. The diagonal ele-
ments of the matrix represent the number of instances where the predicted and true
class labels agree, indicating how closely the predicted labels align with their actual
mean or average values. It also indicates the degree of joint variability of each data
label with itself, highlighting well-classified (positively correlated) test data points.
Conversely, the off-diagonal elements signify incorrectly classified (negatively corre-
lated) test data samples by the classifier. Notably, there is a pronounced correlation
between the IR and KH data labels along the diagonal line, as well as a comparable
correlation in medical conditions patterns between the other three labels.
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Figure 6.47: Confusion Matrix

The normalised row of the primary matrix presents the true positive and false
positive rates as percentages for each genuine category, while the normalised col-
umn displays the positive predictive values and false predictive rates as percentages
for each predicted category. The accuracy of accurately classified data patterns is
estimated to be approximately 67.7%.
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Figure 6.48: MSE rates with respect to various k values
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In Figure 6.48, the KNN model underwent 100 iterations for various values of
k, with classification mean square error evaluated against cross-validation, training,
and testing. Overfitting occurred when k exceeded 4, leading to a significant increase
in the error rate. The optimal value of k for minimising cross-validation error was
found to be 4, while the lowest testing error was achieved at k = 10. In this case, the
KNN model displayed reasonably high accuracy and consistency, with significantly
low classification error rates. Figure 6.49 displays the observed cross-validation and
testing error rates across multiple data splitting ratios.
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Figure 6.49: MSE rates against different data splitting ratios
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Figure 6.50: Simulation time versus various splitting ratios

The optimal split ratio for MoRES data appears to be a quarterly division of the
testing and training sets, resulting in the lowest error rates for both cross-validation
and testing. However, it is important to consider the simulation time of the KNN
model. As demonstrated in Figure 6.50, the training time gradually increases with
larger split ratios. Notably, at the halfway point of the MoRES data splitting, the
training time reaches a maximum before decreasing. This figure presents a vertical
error bar plot for each data point, where the range of values indicates the length of
the error bar above and below the data point, with a total length twice the size of
the error value.

6.14 Summary

This chapter presented the implementation of a proposed SVM algorithm, which
utilises a criticality analysis technique to classify and detect dynamic abnormalities
and disturbance patterns in human gait. The study demonstrates that gait features
extracted through the criticality analysis methodology provide valuable information
regarding the dynamics of human walking behavior, which can be used to train
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a machine learning model to recognise walking deviations from the normal gait of
individuals. Early detection of gait disturbances through this supervised pattern
recognition technique can enhance the chances of identifying gait impairments and
preventing gait injuries. Previous research has utilised Neural Networks (NNs) and
fuzzy clustering techniques for automated gait classification to diagnose pathological
human gait [53] [54] [55]. However, the SVM algorithm with the support of the CA
method demonstrated superior performance in gait classification, making it a robust
and reliable tool for detecting dynamic disturbances of biological data patterns. This
study creates a tremendous opportunity for clinical diagnosis and rehabilitation.

As explained in this chapter, the CA method has been utilised to extract data
that represents various gait patterns and feed them into SVM. This approach serves
a dual purpose. Firstly, the CA-extracted data offer a more realistic measure of the
kinematic motor system and provide a comprehensive representation of the dynamics
that impact individual gait. Secondly, the SVM’s kernelised nonlinearity can effec-
tively classify the CA data patterns, which are inherently nonlinear. Additionally,
the CA methodology generated sufficient data samples that can facilitate a proper
analysis of human gait. The distribution of data can deteriorate, and classification
performance can suffer when there is an insufficient number of gait samples due to
short data measurements. To obtain more stable and controlled CA data patterns
of human gait, the pre-processed raw data is recorded for a longer walk cycle period
of 6 seconds, producing a reliable and useful statistical distribution of gait patterns.

The effective performance of the proposed Kernel SVM in classification is pri-
marily dependent on the appropriate selection of the regularisation parameter C,
as demonstrated in Figures 6.29– 6.31 and Tables B.2–B.12 of Appendix B. The
penalty parameter C compensates for misclassification accuracy, and careful selec-
tion is necessary to achieve optimal performance. Comparing the performance of
SVM at different C values corresponding to different σ control width values, it was
found that SVM performed best when σ = 0.1, followed by σ = 1, as smaller values
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of σ result in faster decline of the Kernel Gaussian function. The Kernel Gaussian
function proved to be the most effective in detecting abnormal gait data patterns,
as evident from the recorded accuracy at these specific values. Furthermore, Fig-
ures 6.29– 6.31 indicate that the optimal value of C varies according to individual
data patterns. C can be selected using a trial and error method, and one way to
accomplish this is by visualising the dependence of classification performance on C.

The results of this chapter indicated that the proposed SVM models, supported
by the CA method, can serve as a reliable and robust tool for detecting dynamic
disturbances in human gait patterns. To achieve good generalisation performance, it
is essential to target the best features that can contribute to improved performance.
Notably, the CA method is suggested in this thesis for feature selection, which can
represent the entire data set without excluding any features. The findings presented
in Figures 6.2– 6.7 demonstrated that changes in gait patterns can be detected and
distinguished even without machine learning training. Also, the scatter and his-
togram plots of CA gait features extracted from dynamic gait data were helpful
in distinguishing between normal and abnormal gait patterns. This indicates that
changes in gait patterns due to an individual’s condition or behavior are reflected
in their visual patterns. The histogram plots presented in Figures 6.17– 6.22 pro-
vide a statistical interpretation of the CA data distribution, while the scatter plots
illustrated in Figures 6.8– 6.13 describe the variability of the CA gait data in space.
These plots are useful for detecting gait abnormalities and monitoring the progress
of individual walks in clinical settings. The CA gait features, represented by the
distribution and variability measures, serve as the basis for the classification process
between the two distinct gait patterns.



Chapter 7

Prediction of Human Age Based
on Human Gait

7.1 Introduction

Human gait analysis is essential in many areas of healthcare, including rehabilita-
tion, geriatrics, and sports medicine. As we age, our gait patterns undergo changes,
which can be indicative of various age-related health conditions [211]. Detecting these
changes is crucial for the diagnosis and management of these conditions. However,
identifying gait patterns based on age can be challenging, and traditional methods
of analysis may not be effective in distinguishing age-related changes. This is where
criticality analysis, a multivariate data representation tool, comes into play.

The criticality analysis approach is based on the concept of criticality, which
refers to the state of a system when it is at the brink of a transition from one state
to another. In the case of human gait analysis, criticality analysis considers gait
patterns as a complex system, which undergoes changes with age. The approach
analyses the system properties in a multivariate space, enabling the detection of
subtle differences that may not be evident through traditional analysis methods.

169
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The rationale behind using criticality analysis in gait analysis is its ability to
identify associated factors and distinguish between gait patterns based on age. For
instance, criticality analysis can help identify age-related changes in gait that are
not directly associated with age but may be caused by other factors such as obesity,
diabetes, or musculoskeletal disorders. By analysing gait patterns in a multivariate
space, criticality analysis can distinguish between gait patterns that are directly
related to age and those that are associated with other factors.

An example of how criticality analysis could be used is in the diagnosis of Parkin-
son’s disease, a neurodegenerative disorder that affects the nervous system, resulting
in tremors, stiffness, and balance problems. Parkinson’s disease is often diagnosed by
observing changes in gait patterns. However, these changes may not be apparent in
the early stages of the disease, making diagnosis difficult. By using criticality analy-
sis, gait patterns can be analysed in a multivariate space, enabling the detection of
subtle changes that may indicate the early stages of Parkinson’s disease.

This chapter uses the CA system’s representationof gait data to train an SVM
classifier, which can subsequently be employed to classify new representations. Simi-
lar to binary comparisons, the aim was to develop an age-category classifier based on
gait data. The chapter simulation results demonstrated that the SVM model, sup-
ported by the CA approach, significantly improves age classification accuracy and
efficiency. Hence, it serves as a reliable classification tool for detecting human ages
based on gait data patterns, presenting an immense opportunity for future clinical
diagnosis and rehabilitation.

7.2 Methodology

The proposed methodology framework is detailed in this section, which includes
data collection, data processing, feature extraction techniques, and implementation
of the SVM classifier. Figure 7.1 illustrates the flowchart of this methodology.
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Figure 7.1: The flowchart of the proposed methodology of Museum Dataset.

7.3 Museum Dataset

The Science Museum in London, United Kingdom sought the participation of
individuals between the ages of 5 and 80 in its Live Sciences section. Prior to par-
ticipation, informed consent was obtained with approval from the Oxford Brookes
University Research Ethics Committee (UREC). As part of the research work of this
thesis, Oxford Brookes University received access to the Museum dataset for research
purposes, which has been anonymised in accordance with the regulations outlined in
the General Data Protection Regulation (GDPR)



172

7.3.1 Data Collection

The study collected information about the participants, which included age in
years, gender, country of birth, height in meters, weight in kilograms, foot length
based on shoe size, and leg length in meters. The participants were asked to walk a
distance of 10 meters at their preferred speed while wearing an inertial measurement
unit on their lower lumbar spinal region [206], [212]. Gait models that rely on leg
length [213] and foot size [214], [215], [216] were used to measure the spatiotemporal
features of gait, such as step time in milliseconds, cadence in steps per minute, step
length and stride length in meters, as well as walking speed in meters per second.
These gait characteristics were established and validated by means DGAS software.

7.3.2 Data Analysis and Features Extraction

The Museum dataset comprises unprocessed data collected from a 3D accelerom-
eter, gyroscope, and magnetometer IMU sensor unit. To derive spatiotemporal fea-
tures, the 3D IMU data underwent a transformation using the DGAS software dis-
cussed in Section 5.3.1 and described in Section 7.3.1. The DGAS feature extraction
tool produced an output dataset consisting of two gender categories and five age
groups: Children, Adolescents, Young Adults, Middle Aged, and Old Aged. The
CA methodology, as described by equations (3.10)–(3.13), was applied to the out-
put dataset. This transformed the spatiotemporal measurements into a two-feature
representation, namely f (x-axis) and m (y-axis). The resulting phase space por-
traits for both features were analyzed, revealing distinctive changes in the structural
patterns of human gait dynamics.

7.3.3 Criticality Analysis as a Data Representation Method

Using the Criticality Analysis method, it is possible to create a controlled self-
organised critical system from RCC-controlled networks of oscillators. This system
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can be used to represent arbitrary data in a nonlinear space, allowing for easy clas-
sification without the need for training. Each data sample has a unique orbit that
is a result of perturbing the critical system underlying it. This system is considered
critical because it is composed of a network of nonlinear controlled oscillators, which
results in emergent critical properties. Even small changes in inputs can cause state
changes in the total network’s orbit, but it remains stable. The resulting orbit repre-
sents the original data in a scale-free manner, which allows for comparing the gait of
an individual patient or control to the matching category of the sample versus other
data members [50]. This representation also helps to reduce the dimensionality of
the dynamic data.

The phase space plots in Figures 7.2–7.3 illustrate the walking differences between
gender and age groups in the CA data representation. The plots at the bottom right
of the Figures 7.2–7.3 show the walking patterns associated with each gender and
age group. The male age groups exhibit greater variability in their walking patterns
compared to the female age groups [217]. The visualizations also reveal that the
walking rate for the elderly group is generally lower than the other groups, and has
more variations. This rate is particularly lower for males due to their less frequent
movement or normal walking routine. These findings suggest that Neighbour hood
environments can influence the walking behavior of men and women across different
age groups similarly. The CA dynamic representation of human gait data can be
used to compare and monitor changes in walking behavior over time based on age
and gender. The phase plots of Figures 7.2–7.3 demonstrate that even small or large
impacts to the motor system resulting from psychological or environmental factors
can affect the gait behavior patterns across age and gender groups, as reflected in
the CA response of each walk pattern.
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Figure 7.2: This figure shows the phase space plots for each walk pattern that cor-
responds to each age category of the female group.
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Figure 7.3: This figure shows the phase space plots for each walk pattern that cor-
responds to each age category of the male group.
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7.4 Statistical Analysis of Criticality Analysis Data

7.4.1 Scatter Analysis

Scatter analysis can be used to compare the gait patterns of different age and
gender groups, and to identify any differences or similarities in gait behavior. It can
also be used to monitor changes in gait patterns over time, such as changes in response
to injury or rehabilitation. Additionally, scatter analysis can provide insights into
the underlying mechanisms that influence gait, such as changes in muscle strength,
balance, and coordination.

Figures 7.4–7.9 illustrate the distribution of CA data representation for different
age/gender walk patterns, corresponding to the visualisations shown in Figures 7.2–
7.3. Each graph represents the changes in successive gait interaction patterns over
time. The CA system demonstrates a strong correlation between the two dominant
features extracted from the CA model, which is measured using the Pearson’s corre-
lation coefficient ρ, ranging between 0 and 1. Tables 7.1 and 7.2 provide the values
of ρ for different walk patterns and age/gender categories. Table 7.1 provides the
correlation coefficient ρ for different age groups and gender categories. The values of
ρ range from 0.713 to 0.896 and indicate a strong positive correlation between the
two dominant features extracted from the CA model. Also, Table 7.2 summarises
the correlation coefficient ρ for all age groups and gender categories, which is 0.807
for female walk patterns and 0.811 for male walk patterns. These values suggest a
strong positive correlation between the two dominant features for all age groups and
gender categories.
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Table 7.1: The correlation coefficient ρ of female and male age groups.

Category
Correlation Coefficient (ρ)

Child Adolescents Young
Adults

Middle
Aged

Old Aged

Female
Walk

0.873 0.713 0.822 0.821 0.875

Male Walk 0.769 0.844 0.807 0.829 0.896

Table 7.2: The correlation coefficient ρ of walk patterns for each age group in total.

Category
Correlation Coefficient (ρ)

All Age Groups

Female Walk 0.807

Male Walk 0.811
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Figure 7.4: This figure shows the scatter plots for each walk pattern that corresponds
to each age category (Children and Adolescents) of the female group.

Figure 7.5: This figure shows the scatter plots for each walk pattern that corresponds
to each age category (Young Adults and Middle Age) of the female group.
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Figure 7.6: This figure shows the scatter plots for each walk pattern that corresponds
to each age category (Old Aged and All Ages Group) of the female group.

Figure 7.7: This figure shows the scatter plots for each walk pattern that corresponds
to each age category (Children and Adolescents) of the male group.
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Figure 7.8: This figure shows the scatter plots for each walk pattern that corresponds
to each age category (Young Adults and Middle Age) of the male group.

Figure 7.9: This figure shows the scatter plots for each walk pattern that corresponds
to each age category (Old Age and All Ages Group) of the male group.

7.4.2 Spatiotemporal Analysis

Spatiotemporal analysis refers to the study of how spatial and temporal aspects of
human movement change over time. In the context of analysing human gait based on
age-gender groups, spatiotemporal analysis involves measuring and quantifying the
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changes in the patterns of movement that are specific to each age-gender group. This
may include analysing the speed, stride length, step width, and other parameters
of gait that vary with age and gender. By using spatiotemporal analysis, useful
insights can be gained into how gait patterns change as people age, and how these
changes differ between males and females. These insights can be useful for developing
interventions to improve gait and mobility in older adults and other populations.

Figure 7.10 displays the location and fluctuations of gait patterns for each age/-
gender group. The middle line in each categorical box represents the median. The
extent of variation in gait data between categories in each age/gender group deter-
mines the degree of dispersion and skewness of gait in various individuals. Table 7.3
presents the median values of CA gait data for each age/gender category. The mea-
surements reveal that the median value for male gait is slightly higher than that of
female walk patterns. Moreover, Table 7.4 shows that the median for the combined
age group of male walk patterns is higher than that of female walk patterns. The
parallel whisker lines illustrate the range of gait data for each age/gender category
beyond the quartile interval. The CA gait data for females in each age group are
devoid of outliers, whereas some undesired data points exist between certain age
groups of males’ walk patterns.

Figure 7.10 shows the location and variations of gait patterns across age/gender
category. The middle line of each categorical box represents the median. The amount
of difference in the variability of gait data between each category for each age/gender
group measures the degree of dispersion and skewness of various individuals’ gait.
Table 7.3 describes the median values of CA gait data for each age/gender category.
The measurements indicated that the average median of the male gait is slightly
higher than that one of the female walk patterns. Also, the median of the combined
age group of male walk patterns shows higher records when compared with that of
the female walk patterns, as shown in Table 7.4. Furthermore, the parallel lines of
whiskers depict the variation of gait data for each age/gender category outside the
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limits of the quartiles interval. Also, the CA gait data of females per age category
are free of outliers, while some unwanted data points exist between some age groups
of males walk patterns.

Table 7.3: The median of female and male age groups.

Category
Median

Child Adolescents Young
Adults

Middle
Aged

Old Aged

Female
Walk

19.72 19.56 19.56 19.85 19.89

Male Walk 19.54 19.71 19.77 19.49 20.18

Table 7.4: The median of walk patterns for each age group in total.

Category
Median

All Age Groups

Female Walk 19.63

Male Walk 19.69



183

Figure 7.10: This figure shows the box plots for each walk pattern that corresponds
to each age category of the female group.
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7.4.3 Histogram Analysis

In the context of human gait analysis based on age-gender groups, histogram anal-
ysis involves examining the distribution of data values for each age-gender group to
identify patterns and differences in gait characteristics. The histogram plots of both
female and male gait features and their corresponding frequencies, which describe
the distribution of CA gait data in space, are graphically represented in Figures 7.11–
7.12. Table 7.5 presents the mean values of CA gait data for each age/gender cate-
gory. The measurements show that, on average, females have a slightly longer stride
length than males, except for older age groups where males have a longer stride.
However, the mean of the combined age group of male walk patterns is lower than
that of the female walk patterns, as presented in Table 7.6.

Table 7.5: The mean of female and male age groups.

Category
Mean

Child Adolescents Young
Adults

Middle
Aged

Old Aged

Female
Walk

36.04 35.85 35.09 35.93 35.17

Male Walk 34.78 35.11 34.76 34.01 38.83
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Table 7.6: The mean of walk patterns for each age group in total.

Category
Mean

All Age Groups

Female Walk 35.46

Male Walk 34.83



186

Figure 7.11: This figure shows the histogram plots for each walk pattern that corre-
sponds to each age category of the female group.
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Figure 7.12: This figure shows the histogram plots for each walk pattern that corre-
sponds to each age category of the male group.
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7.5 The Proposed SVM Classifier

In order to fully validate the efficacy of our CA method in terms of detecting
and classifying age based on human gait, we conducted a series of experiments using
various models based on the SVM’s Kernelised property, as explained in Section 4.3.2.
These experiments included classifying a single age group against other age groups
within the same gender category, classifying an age group from one gender against
the corresponding age group from the opposite gender, and classifying the combined
age groups from one gender against the combined age groups from the other gender.

7.6 The Proposed SVM Training

7.6.1 Experimental Settings

Based on the details oulined in section 7.3.1, Museum dataset is obtained. It is
made up of 2019 data samples, distributed as follows: 1105 data points for female
group and 914 for male group. There are five age categories (Children [2–12 Yrs],
Adolescents [13–18 Yrs], Young Adults [19–44 Yrs], Middle Ages [45–64 Yrs], and Old
Aged [65+ Yrs]) that correspond to each gender group. Four experimental scenarios
have been conducted, aiming at:

• Scenario 1: Classify age category per female gender group, for example: (xf1)
Female Children as a training set versus Female Adolescent as a testing set,
(xf2) Female Children as a training set versus Female Young Adults as a testing
set, (xf3) Female Children as a training set versus Female Middle Aged as a
testing set, (xf4) Female Children as a training set versus Female Old Aged as
a testing set, (xf5) Female Adolescent as a training set versus Female Young
Adults as a testing set, (xf6) Female Adolescent as a training set versus Female
Middle Aged as a testing set, (xf7) Female Adolescent as a training set versus
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Female Old Aged as a testing set, (xf8) Female Young Adults as a training set
versus Female Middle Aged as a testing set, (xf9) Female Young Adults as a
training set versus Female Old Aged as a testing set, and (xf10) Female Middle
Aged as a training set versus Female Old Aged as a testing set. So in total, 10
SVM models have been implemented for each scenario.

• Scenario 2: Classify age category per male gender group, for example: (xm1)
Male Children as a training set versus Male Adolescent as a testing set, (xm2)
Male Children as a training set versus Male Young Adults as a testing set,
(xm3) Male Children as a training set versus Male Middle Aged as a testing
set, (xm4) Male Children as a training set versus Male Old Aged as a testing
set, (xm5) Male Adolescent as a training set versus Male Young Adults as a
testing set, (xm6) Male Adolescent as a training set versus Male Middle Aged
as a testing set, (xm7) Male Adolescent as a training set versus Male Old Aged
as a testing set, (xm8) Male Young Adults as a training set versus Male Middle
Aged as a testing set, (xm9) Male Young Adults as a training set versus Male
Old Aged as a testing set, and (xm10) Male Middle Aged as a training set
versus Male Old Aged as a testing set. So in total, 10 SVM models have been
implemented for each scenario.

• Scenario 3: One-to-one mapped classification per age category between female
and male gender groups, for example: (xfm1) Female Children as a training set
versus Male Children as a testing set, (xfm2) Female Adolescents as a training
set versus Male Adolescents as a testing set, (xfm3) Female Young Adults as a
training set versus Male Young Adults as a testing set, (xfm4) Female Middle
Aged as a training set versus Male Middle Aged as a testing set, and (xfm5)
Female Old Aged as a training set versus Male Old Aged as a testing set. So
in total, 5 SVM models have been implemented for each scenario.

• Scenario 4: (xAll) All Female age groups are trained against all Male age
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groups, which used as a testing set.

The RCC model, specified by equation (3.10)–equation (3.13), utilises the 24 gait
parameters of the Museum dataset as perturbation input to extract the most signifi-
cant gait features (f from equation (3.11) on the x-axis and m from equation (3.10)
on the y-axis). These extracted features are highly nonlinear and correlated, and
thus a Kernel SVM is proposed to transform the dynamic gait data samples into a
new feature space to aid in classifying various data subjects. The SVM algorithm is
trained and tested using the extracted features as input, with the third scenario being
implemented to reduce the number of parameters and avoid overfitting. The main
objective of performing the three experiments is to assess the SVM’s classification
performance and ability to classify human age based on walk behavior. Algorithm 1
details the implementation steps of the proposed SVM algorithm.

The CA gait features underwent normalisation using the z-score to standardise
the data samples to have a mean of zero and a standard deviation of one prior to
training the SVM algorithm. The Kernel SVM algorithm was employed in MAT-
LAB to perform statistical analysis of the gait data and create various Kernel SVM
models to investigate the impact of Kernel characteristics (such as the regularisation
parameter C and control width σ) on the classification performance of gait data.
The trained Kernel SVM’s ability to generalise was evaluated by determining the
prediction accuracy for each model, analysing the confusion matrix in Appendix C,
generating the Receiver Operating Characteristics (ROC) curve, and calculating the
area under the ROC curve. Further details on these procedures are discussed in
subsequent sections.

7.7 Simulation Results

In order to thoroughly assess the efficacy of our proposed methodology, the ex-
perimental results for each individual task in the subsequent subsections will be
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presented in-depth.

7.7.1 Confusion Matrix

When dealing with a binary classification task, the labels within the dataset are
limited to either positive or negative. The output of the SVM classifier can be anal-
ysed through a well-defined contingency table called a confusion matrix, which con-
tains information regarding the actual and predicted classifications. This matrix can
provide insights into the effectiveness of the classification algorithm in distinguish-
ing between different categories, such as children or adolescents walk. According to
sources cited as reference [52], the confusion matrix can be characterised by four
primary properties:

• True Positive (TP ): refers to the number of positive data samples (partici-
pants of targeted age walk) that are correctly classified and detected as positive
(targeted age).

• False Positive (FP ): refers to the number of negative data samples (par-
ticipants of non-targeted age walk) that are incorrectly classified as positive
(targeted age).

• True Negative (TN): refers to the number of negative data samples (par-
ticipants of non-targeted age walk) that are correctly classified as negative
(non-targeted age).

• False Negative (FN): refers to the number of positive data samples (par-
ticipants of targeted age walk) that are incorrectly classified as negative (non-
targeted age).

The other performance metrics of a classifier are accuracy, precision, F1−Score,
Recall or Sensitivity or True Positive Rate (TPR), Specificity or True Negative Rate
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(TNR), and False Positive Rate (FPR), which are evaluated on the basis of the
above-stated TP , FP , TN , and FN numbers. Their definitions are as follows:

• Accuracy: represents the overall success rate of correct predictions. It is
mathematically expressed as the ratio between the correctly classified labels
(TP + TN) and the total number of data samples (TP + TN + FP + TN). It
is given by:

Accuracy = TP + TN

TP + TN + FP + TN
.

• Precision: is the ratio of correctly predicted positive labels with targeted walk
status to the total labels predicted to have a targeted age walk condition. It is
measured by the following expression:

Precision = TP

TP + FP
.

• Recall (TPR): is defined as the proportion of correctly predicted positive
labels with targeted age walk status among all targeted age walk data samples.
It is measured by the following expression:

Recall = TP

TP + FN
.

• F1−Score: is known as the F measure, which preserves the equilibrium be-
tween the precision and the recall. It is measured as:

F1 − Score = 2 × Precision

Precision + Recall
.

• True Negative Rate (TNR): is defined as the proportion of correctly pre-
dicted negative labels with non-targeted age walk conditions among all non-
targeted age walk data samples. It is formulated as:

TNR = TN

TN + FP
.
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• False Positive Rate (FPR): is measured as the proportion of the non-
targeted age walk samples mislabeled as targeted age walk data among all
the non-targeted age data samples. It is given as:

FPR = FP

FP + TN
.

The metrics outlined above serve the purpose of evaluating the ability of the pro-
posed SVM algorithm to differentiate targeted age gait patterns from non-targeted
walk patterns within each gender/age group. Appendix C summarises the SVM
classifier’s performance metrics for each individual at different values of the regu-
larisation parameter C = (0.1, 1, 10) in Tables C.1–C.20. The primary validation
metric that provides insight into the overall performance of the SVM classifier is
accuracy. The accuracy of the classifier depends on the values of σ and C, and the
best performance was achieved when σ = 0.1 and 1. For instance, Tables C.51– C.52
demonstrate how to assess the overall performance of the confusion matrix parame-
ters through reflection. Tables C.51– C.52 present the SVM classification results of
xAll walk patterns at different values of C and σ. The values of true positive (TP ),
false positive (FP ), false negative (FN), and true negative (TN) are presented along
with the performance measures, such as precision, recall, F1-score, specificity, area
under the ROC curve (AROC), and accuracy. At σ = 10, the values of TP , FP , FN ,
and TN are the same for all values of C. However, the performance measures are
not meaningful because the values of specificity and AROC are zero. This indicates
that the model is not capable of distinguishing between positive and negative cases.
Also, at σ = 0.1 and σ = 1, the performance measures improve significantly. At
σ = 0.1, the model achieves high precision, recall, F1-score, specificity, AROC, and
accuracy for all values of C. Similarly, at σ = 1, the model achieves high precision,
recall, F1-score, AROC, and accuracy for all values of C. However, the specificity is
relatively low for C = 0.1 and C = 1. This indicates that the model has a higher
false positive rate for these values of C.
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7.7.2 Receiver Operating Characteristics (ROC) Curve

The ROC curve is a useful tool for assessing the performance of the SVM classifier,
as it illustrates the relationship between the true positive rate (TPR) (sensitivity)
and the complement of the true negative rate (≈ 1 − TNR) at various threshold
levels ranging from 0 to 1. Section 7.6.1 outlines the experimental settings, and the
following is a summary of the results obtained.

Scenario 1: The ROC curves depicted in Figures C.1–C.10 illustrate the results for
the optimal σ and C values that yield the highest accuracy for female age groups.
These curves indicate that the Kernel SVM approach performs well in most cases
when it comes to detecting the age categories of female individuals. The SVM model
achieves its best performance when σ takes values of 0.1 and 1 for various values of
C, as evidenced by the results presented in Tables C.2– C.20.

Scenario 2: Figures C.11–C.20 display ROC curves generated for the optimal σ

and C values that maximise accuracy within each male age group. The Kernel
SVM method proves to be highly effective in detecting male individuals across a
range of age categories, as evidenced by the majority of cases. Specifically, the SVM
model achieves optimal performance when σ = 0.1 and 1 across various C values, as
indicated in Tables C.22– C.40.
Scenario 3: The figures, labeled as Figures C.21–C.25, exhibit ROC curves for
the optimal pair of σ and C values that yield the highest accuracy for female age
groups compared to their corresponding age groups of male individuals. The results
demonstrate that the Kernel SVM performed well in detecting similar age categories
between males and females. The SVM model’s optimal performance is achieved when
σ values of 0.1 and 1 are paired with various values of C, as illustrated in Table C.50.

Scenario 4: The ROC curve illustrated in Figure C.26 depicts the optimal pair of σ
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and C values that achieve the highest accuracy across all male and female age groups.
Notably, the Kernel SVM exhibited strong performance in detecting various age
categories of male individuals. Specifically, the SVM model demonstrated optimal
performance for a range of C values, particularly when σ was set to either 0.1 or 1,
as indicated in Tables C.52.

7.7.3 Area Under the ROC Curve (AROC)

The SVM classifier’s ability to distinguish between different age categories for
males, females, and both genders can be measured using the Area Under the Curve
(AUC) estimation or ROC area. A higher AUC value indicates a better classifier
performance. In Section 7.6.1, we present four scenarios, and the ROC area of the
Gaussian kernel is shown as a function of the regularisation parameter C for each
age group in Figures C.27– C.39. It is important to note that the C parameter can
affect the SVM classifier’s performance, and there is a specific value or range that can
maintain better efficiency than others. The analysis of Tables C.2–C.20 reveals that
the SVM classifier demonstrates superior performance at σ = 0.1, and occasionally
at σ = 1, in contrast to other values of σ. The corresponding Figures C.27–C.39
were generated based on these results, indicating that certain C values can produce
optimal performance. Additionally, some age groups exhibit greater Area under the
Curve and superior performance with higher sensitivity levels. The measurements of
the SVM model in Tables C.2–C.52 confirm that the AUC and accuracy values are
similar, implying that the proposed SVM algorithm is highly efficient at differenti-
ating between normal and strapped gait disturbances. The optimal values utilised
to generate Figures C.27– C.39 are indicated in the description of each graph. The
AUC was calculated using our MATLAB software routines.
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7.7.4 Classification Decision Boundary

The SVM finds a decision boundary that separates the data points of different
classes. In SVM, the decision boundary is known as the hyperplane. The hyperplane
is defined by a set of parameters known as the weights and bias. It also tries to
find the hyperplane that maximises the margin between the two classes. The margin
is the distance between the hyperplane and the closest data points of each class.
The closer the data points are to the hyperplane, the more likely they are to be
misclassified. Therefore, maximising the margin is a way to increase the robustness
of the classifier. The σ and C values in SVM are hyperparameters that affect the
decision boundary. The sigma parameter is used to control the width of the Gaussian
kernel function, which is used in the radial basis function (RBF) kernel. The RBF
kernel is a popular kernel function used in SVM for non-linear classification problems.
The kernel function computes the similarity between two data points in the feature
space. A smaller σ value leads to a wider kernel function, which makes the decision
boundary smoother. On the other hand, a larger σ value leads to a narrower kernel
function, which makes the decision boundary more complex. The C parameter is
used to control the trade-off between the margin maximisation and the classification
error. A larger C value leads to a narrower margin and a more complex decision
boundary. This can result in overfitting, where the model fits the training data too
closely and performs poorly on new, unseen data. On the other hand, a smaller C

value leads to a wider margin and a simpler decision boundary. This can result in
underfitting, where the model is too simple and cannot capture the complexity of the
data. To support the results presented in Figures C.1–C.39, Figures C.65– C.49 are
displayed, depicting the decision boundaries obtained when the SVM was trained on
all experimental scenarios using the optimal values of σ and C. This demonstrates
the capability of the Kernel SVM in accurately detecting age categories based on
gait dynamics of each gender group. The decision boundaries in all the graphs are
depicted for σ = 0.1 and C values of 0.1, 1, and 10.
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7.7.5 Mean Square Error Rate and Standard Deviation Test

Figures 7.13–7.15 illustrate the mean square error (MSE) rate of the SVM model
for female and male individuals across various age categories, as well as for com-
bined age categories within each gender group. The average MSE for each group
was calculated by averaging the accuracy obtained from each curve presented in Fig-
ures C.1–C.39. The results reveal that the average MSE for females is lowest for
age categories sf8, sf9, and sf10, while the SVM trained on male individuals’ data
produced the highest values for age categories sm5 and sm6. Additionally, when the
SVM classifier was tested on combined similar age categories between gender groups,
high average MSE rates were recorded for sfm1 and sfm5. The standard deviation
plots presented on the right-hand side of Figures 7.13– 7.15 display the degree of
variability among individual data points.

Figure 7.13: This figure shows the average mean square error (MSE)(%) (on the
left) and the average standard deviation (%) (on the right) of the SVM classification
performance for sf1, sf2, sf3, sf4, sf5, sf6, sf7, sf8, sf9 and sf10.
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Figure 7.14: This figure shows the average mean square error (MSE)(%) (on the
left) and the average standard deviation (%) (on the right) of the SVM classification
performance for sm1, sm2, sm3, sm4, sm5, sm6, sm7, sm8, sm9 and sm10.

Figure 7.15: This figure shows the average mean square error (MSE)(%) (on the
left) and the average standard deviation (%) (on the right) of the SVM classification
performance for sfm1, sfm2, sfm3, sfm4 and sfm5.
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7.8 Summary

In this chapter, the proposed SVM algorithm utilising a criticality analysis tech-
nique was applied to classify and distinguish between male and female individuals
of different age groups based on their walking patterns. The results demonstrate
that the SVM, when trained with the support of the CA method, can be an effective
and reliable tool for accurately detecting gait patterns based on demographic factors
such as age and gender.

The classification performance of the proposed kernel SVM in this study largely
depends on the selection of the regularisation parameter C, which is discussed in
Figures C.1–C.26 and Tables C.1– C.52. This parameter serves as a penalty for
misclassification accuracy and must be carefully optimised to achieve the highest
performance accuracy. Results indicate that the SVM performs best when σ is set
to 0.1 or 1, as these values correspond to a faster decline in the Kernel Gaussian
function. This function was found to effectively capture the non-linearities of different
gait patterns, resulting in high SVM accuracy at these specific values. Moreover,
Figures C.27– C.39 illustrate that the optimal value of C varies depending on the
individual data pattern, and thus trial and error may be required to determine the
appropriate value.

The criticality analysis (CA) approach was implemented in conjunction with the
support vector machine (SVM) algorithm on the CARDIGAN dataset, as discussed
in Chapter 5, resulting in an average accuracy of 78.2%. Similarly, when applied to
the MoRES dataset presented in Chapter 6, the CA approach achieved an accuracy
of 94%. In the current chapter, the CA approach was applied to the Museum dataset,
resulting in an accuracy of 92%.

Overall, criticality analysis is a valuable tool in gait analysis, especially in detect-
ing age-related changes in gait patterns. The approach’s ability to identify associated
factors and distinguish between gait patterns based on age makes it a powerful tool
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in healthcare, rehabilitation, and sports medicine. Its ability to detect subtle changes
that may not be apparent through traditional analysis methods makes it an essential
tool in early disease diagnosis and management.



Chapter 8

Conclusion and Future Work

8.1 Conclusion

This section provides a synopsis of the primary contribution of the thesis, which
addressed two key research inquiries initially introduced in Chapter 1.

In the initial stage of this research, an extensive examination was conducted to
investigate the dynamical models that have been employed for the analysis of human
gait. Out of the various models, only two dynamic models were identified, which have
tremendous potential for providing profound insights into the analysis of human gait,
particularly during the stance phase of the gait cycle. The first model is the mass-
spring system, which is used to identify gait during running, while the second is the
simple inverted pendulum, which is utilised to recognise gait during walking. The
hybrid pendulum mass-spring system, which combines both models, was employed
to analyse the gait cycle during the swing phase and account for the stiffness of the
locomotor system’s tissues. However, these physical harmonic systems solely focused
on the structure of the musculoskeletal system, which comprises muscles, bones, and
other connective tissues that facilitate body movement. Moreover, these models only
considered the two stages of gait: walking and running, and neglected the abnormal

201
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gait, which is associated with several unidentified disorders and pathological condi-
tions. Therefore, it is imperative to comprehend the nonlinear complexity of human
gait as a biological mathematical model, which not only reflects normal gait patterns
but also provides insights into spatiotemporal patterns when they are disrupted or
violated. To achieve this, the thesis has been developed to address the first research
question.

Is it possible to identify the non-linear dynamics of human gait using
the criticality analysis technique?

Chapter 3 presented an established bioenzymatic system that offers biological rel-
evance in explaining the biological interactions of biological system functions through
the concentrations of metabolic reactions. This system’s strength lies in its ability to
capture the dynamic interactions that affect biological mechanisms using a flexible
set of Ordinary Differential Equations (ODEs). Additionally, the system’s criticality
analysis technique proved effective in detecting the biological dynamics of human gait
by generating new data representations from the system’s chaotic behavior. The im-
proved detection technique resulted from the application of the rate control of chaos
(RCC) principle, which regulates the rate of change of system variables that exhibit
nonlinear and chaotic effects. A comprehensive evaluation of the RCC approach, as
discussed in Chapter 3, demonstrated its effectiveness in regulating the time-varying
chaotic response of the adopted Berry model [29]. By adjusting certain parameters,
the model remained stable and in a state of harmony.

The utilisation of a novel criticality analysis technique for human gait analysis in
conjunction with supervised machine learning approaches has effectively addressed
a significant research gap in the medical field pertaining to gait therapy. This ap-
proach has yielded conclusive findings on the detection of the dynamic characteristics
of human gait. Additionally, the study has effectively dealt with the issue of non-
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linearity in gait patterns through the use of machine learning automation methods.
Consequently, the second research question was comprehensively discussed.

How effective are the supervised machine learning models, specifically
the Support Vector Machine (SVM) classifiers, that have been devel-
oped into practice for identifying and categorising patterns of human
gait disturbance?

Chapter 4 of this thesis examined the effectiveness of the proposed support vector
machine algorithm in classifying nonlinear patterns of data. The algorithm offers
customisable design parameters that can adapt to various classification challenges.
In Chapter 5, 6, and 7, the successful implementation of supervised machine learning
models on three datasets, namely CARDIGAN, MoRES, and Museum, respectively,
were extensively analysed using the SVM algorithm.

Additionally, we exclusively investigated the K-Nearest Neighbouring algorithm
on the MoRES dataset, which showed adequate performance, but not as good as the
SVM approach.

The Kernelised SVM technique was applied to analyse the CARDIGAN, MoRES,
and Museum datasets. In the CARDIGAN dataset, the accuracy of the technique
in detecting metabolic disorders associated with human gait was found to be 78.2%
on average for distinguishing obese individuals from those in a healthy state. The
classifier trained on the MoRES dataset showed a higher classification accuracy of
approximately 94% for identifying gait abnormalities in individuals. The Museum
dataset was used to classify different gait patterns based on age-gender categories
and investigate the effect of aging on gait progression. The evaluation performance of
the classification was relatively high at around 92.6% compared to the other datasets
(CARDIGAN and MoRES) with an average performance of 86.1%. The regularisa-
tion parameter C and control width σ of the Gaussian kernel function were impor-
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tant factors affecting the overall classification performance. The best results were
obtained when sigma was set to 0.1 and 1 due to the minimal variance of data points
around the average of neighbouring data samples.

The primary focus of the three dataset analyses was to establish the suitability
of the confusion matrix as a measure of accuracy, particularly in evaluating the sen-
sitivity and specificity of the model in categorising different categories. Sensitivity
and specificity were calculated across a range of threshold values, and their relation-
ship was inversely related. The Receiver Operating Characteristics (ROC) plot was
utilised to graphically depict the results, including the area under the curve, which
served as an effective evaluation of the overall accuracy of the model. The greater
the area under the curve, the more accurate and robust the model is in detecting
and classifying different categories.

8.2 Future Work

In biological processes, the human body expends significant amounts of energy
to operate and select appropriate functions to accomplish various tasks. Therefore,
there is a need to create a unique model that can comprehensively describe the in-
tegrated functions of the locomotion system. Future research should assess current
dynamic systems and their potential for aiding individuals with gait disorders. As
dynamic systems are increasingly utilised in evaluating proof-of-concepts for ma-
chine learning and artificial intelligence approaches, it is crucial to demonstrate the
clinical validity and reliability of these systems for gait function. Moreover, the crit-
icality analysis methodology could be an effective tool for analyzing the behavior of
human gait function using physical nonlinear harmonic oscillation models, such as
the van der Pol oscillator, Kuramoto oscillator, Rayleigh oscillator, Nosé-Hoover os-
cillator, Munmuangsaen oscillator, KBB oscillator, thermostated ergodic oscillator,
MKT doubly-thermostated ergodic oscillator, Sinusoidally-forced parametric oscilla-
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tor, Symmetric parametrically-coupled oscillators, and Asymmetric parametrically-
coupled oscillators [218].

There are various research avenues to explore, including the possibility of further
extending and optimizing the model presented in Chapter 3 to achieve controllable
phase space trajectories. One potential approach involves modulating the bifurcation
parameter rim, which governs system stability, with external perturbent inputs using
an exponential function, such that rim

∗ = rime− 1
2 xi

2 . This method eliminates the need
for intricate adjustment of nonlinear system variables, resulting in stable, structured,
and differentiable phase space trajectories.

Chapter 4 discusses machine learning classification algorithms that can be fur-
ther explored to create an effective model with universal classification performance.
Graph neural networks are a popular choice for analysing high-dimensional health-
care data and extracting important information from biological systems, as noted
in [223]. The automation, identification, and classification tasks can benefit from
this approach. Specifically, human gait can be represented as a time-varying sig-
nal that provides detailed information about the functional status of the biological
system. Using deep learning techniques, the aim is to convert the spatiotemporal
dynamics of gait into graph signals and establish a graph-based architecture of gait
signal features that can be inputted into graph convolutional networks for identifi-
cation and classification tasks, going beyond the use of graph neural networks.



Appendix A

The Performance Measure Metrics
of CARDIGAN Dataset

This appendix displays the performance measures, as represented by the confusion
matrix, of the proposed SVM on the CARDIGAN dataset, as discussed in Chapter 5.
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Table A.1: SVM Classification Results of w1 Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 0 14 14
FP 0 12 12
FN 14 0 0
TN 12 0 0

FPR 0 1 1
Precision 0 0.538 0.538

Recall 0 1 1
F1−Score 0 0.7 0.7
Specificity 1 0 0

AROC 0.511 0.511 0.511
Accuracy(%) 46.15 53.84 53.84
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Table A.2: SVM Classification Results of w1 Walk Patterns at σ = 0.1 and at σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 11 14 14
FP 1 5 5
FN 3 0 0
TN 11 7 7

FPR 0.083 0.416 0.416
Precision 0.916 0.736 0.736

Recall 0.785 1 1
F1−Score 0.846 0.848 0.848
Specificity 0.916 0.583 0.583

AROC 0.875 0.755 0.755
Accuracy(%) 84.61 80.76 80.76

Performance
σ = 1

C=0.1 C=1 C=10

TP 14 14 14
FP 9 10 9
FN 0 0 0
TN 3 2 3

FPR 0.75 0.833 0.75
Precision 0.608 0.583 0.608

Recall 1 1 1
F1−Score 0.756 0.736 0.756
Specificity 0.25 0.166 0.25

AROC 0.708 0.636 0.648
Accuracy(%) 65.38 61.53 65.38
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Table A.3: SVM Classification Results of w2 Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 0 13 14
FP 0 13 13
FN 14 1 0
TN 15 2 2

FPR 0 0.866 0.866
Precision 0 0.5 0.518

Recall 0 0.928 1
F1−Score 0 0.65 0.682
Specificity 1 0.133 0.133

AROC 0.519 0.5 0.557
Accuracy(%) 51.72 51.72 55.17
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Table A.4: SVM Classification Results of w2 Walk Patterns at σ = 0.1 and at σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 5 13 13
FP 0 8 8
FN 9 1 1
TN 15 7 7

FPR 0 0.533 0.533
Precision 1 0.619 0.619

Recall 0.357 0.928 0.928
F1−Score 0.526 0.742 0.742
Specificity 1 0.466 0.466

AROC 0.714 0.742 0.742
Accuracy(%) 68.96 68.96 68.96

Performance
σ = 1

C=0.1 C=1 C=10

TP 13 14 14
FP 10 10 9
FN 1 0 0
TN 5 5 6

FPR 0.667 0.667 0.6
Precision 0.565 0.583 0.608

Recall 0.928 1 1
F1−Score 0.702 0.736 0.756
Specificity 0.333 0.333 0.4

AROC 0.638 0.7 0.719
Accuracy(%) 62.06 65.51 68.96
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Table A.5: SVM Classification Results of w3 Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 0 0 12
FP 0 0 7
FN 15 15 3
TN 11 11 4

FPR 0 0 0.636
Precision 0 0 0.631

Recall 0 0 0.8
F1−Score 0 0 0.705
Specificity 1 1 0.363

AROC 0.690 0.690 0.660
Accuracy(%) 42.30 42.30 61.53
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Table A.6: SVM Classification Results of w3 Walk Patterns at σ = 0.1 and at σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 0 11 11
FP 0 3 3
FN 15 4 4
TN 11 8 8

FPR 0 0.272 0.272
Precision 0 0.785 0.785

Recall 0 0.733 0.733
F1−Score 0 0.758 0.758
Specificity 1 0.727 0.727

AROC 0.690 0.769 0.769
Accuracy(%) 42.30 73.07 73.07

Performance
σ = 1

C=0.1 C=1 C=10

TP 10 14 15
FP 5 9 11
FN 5 1 0
TN 6 2 0

FPR 0.454 0.818 1
Precision 0.667 0.608 0.576

Recall 0.667 0.933 1
F1−Score 0.667 0.736 0.731
Specificity 0.545 0.181 0

AROC 0.696 0.703 0.690
Accuracy(%) 61.53 61.53 57.69
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Table A.7: SVM Classification Results of w4 Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 0 13 13
FP 0 10 12
FN 13 0 0
TN 13 3 1

FPR 0 0.769 0.923
Precision 0 0.565 0.52

Recall 0 1 1
F1−Score 0 0.722 0.684
Specificity 1 0.231 0.076

AROC 0.366 0.521 0.408
Accuracy(%) 50 61.53 53.84
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Table A.8: SVM Classification Results of w4 Walk Patterns at σ = 0.1 and at σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 5 13 13
FP 0 5 5
FN 8 0 0
TN 13 8 8

FPR 0 0.384 0.384
Precision 1 0.722 0.722

Recall 0.384 1 1
F1−Score 0.556 0.838 0.838
Specificity 1 0.615 0.615

AROC 0.562 0.804 0.804
Accuracy(%) 69.23 80.76 80.76

Performance
σ = 1

C=0.1 C=1 C=10

TP 12 11 12
FP 6 6 5
FN 1 2 1
TN 7 7 8

FPR 0.461 0.461 0.384
Precision 0.667 0.647 0.705

Recall 0.923 0.846 0.923
F1−Score 0.774 0.733 0.8
Specificity 0.538 0.538 0.615

AROC 0.686 0.639 0.745
Accuracy(%) 73.06 69.23 76.92
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Table A.9: SVM Classification Results of w5 Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 13 13 13
FP 9 9 9
FN 0 0 0
TN 0 0 0

FPR 1 1 1
Precision 0.591 0.591 0.591

Recall 1 1 1
F1−Score 0.742 0.742 0.742
Specificity 0 0 0

AROC 0.384 0.384 0.384
Accuracy(%) 59.09 59.09 59.09
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Table A.10: SVM Classification Results of w5 Walk Patterns at σ = 0.1 and at σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 13 13 13
FP 9 7 2
FN 0 0 0
TN 0 2 7

FPR 1 0.777 0.222
Precision 0.591 0.65 0.867

Recall 1 1 1
F1−Score 0.742 0.787 0.928
Specificity 0 0.222 0.777

AROC 0.384 0.461 0.821
Accuracy(%) 59.09 68.18 90.90

Performance
σ = 1

C=0.1 C=1 C=10

TP 13 11 12
FP 9 1 1
FN 0 2 1
TN 0 8 8

FPR 1 0.111 0.111
Precision 0.591 0.916 0.923

Recall 1 0.846 0.923
F1−Score 0.742 0.88 0.923
Specificity 0 0.888 0.888

AROC 0.384 0.837 0.880
Accuracy(%) 59.09 86.36 90.91
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Table A.11: SVM Classification Results of w6 Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 14 14 14
FP 10 10 10
FN 0 0 0
TN 0 0 0

FPR 1 1 1
Precision 0.583 0.583 0.583

Recall 1 1 1
F1−Score 0.736 0.736 0.736
Specificity 0 0 0

AROC 0.385 0.385 0.385
Accuracy(%) 58.33 58.33 58.33
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Table A.12: SVM Classification Results of w6 Walk Patterns at σ = 0.1 and at σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 14 14 13
FP 10 6 6
FN 0 0 1
TN 0 4 4

FPR 1 0.6 0.6
Precision 0.583 0.7 0.684

Recall 1 1 0.928
F1−Score 0.736 0.823 0.787
Specificity 0 0.4 0.4

AROC 0.385 0.678 0.642
Accuracy(%) 58.33 75 70.83

Performance
σ = 1

C=0.1 C=1 C=10

TP 14 14 14
FP 10 5 4
FN 0 0 0
TN 0 5 6

FPR 1 0.5 0.4
Precision 0.583 0.736 0.778

Recall 1 1 1
F1−Score 0.736 0.848 0.875
Specificity 0 0.5 0.6

AROC 0.385 0.721 0.792
Accuracy(%) 58.33 79.16 83.33



Appendix B

The Performance Measure Metrics
of MoRES Dataset

This appendix displays the performance measures, as represented by the confusion
matrix, of the proposed SVM on the MoRES dataset, as discussed in Chapter 6.
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Table B.1: SVM Classification Results of p1 Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 320 320 320
FP 280 280 280
FN 0 0 0
TN 0 0 0

FPR 1 1 1
Precision 0.533 0.533 0.533

Recall 1 1 1
F1-Score 0.695 0.695 0.695

Specificity 0 0 0
AROC 0.519 0.519 0.519

Accuracy(%) 53.33 53.33 53.33



221

Table B.2: SVM Classification Results of p1 Walk Patterns at σ = 0.1 and at σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 317 283 289
FP 34 7 5
FN 3 37 31
TN 246 273 275

FPR 0.121 0.025 0.017
Precision 0.903 0.975 0.982

Recall 0.990 0.884 0.903
F1-Score 0.944 0.927 0.941

Specificity 0.878 0.975 0.982
AROC 0.944 0.937 0.949

Accuracy(%) 93.83 92.67 94

Performance
σ = 1

C=0.1 C=1 C=10

TP 316 320 320
FP 54 23 12
FN 4 0 0
TN 226 257 268

FPR 0.192 0.082 0.042
Precision 0.854 0.932 0.963

Recall 0.987 1 1
F1-Score 0.915 0.965 0.981

Specificity 0.807 0.917 0.957
AROC 0.902 0.962 0.981

Accuracy(%) 90.33 96.17 98
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Table B.3: SVM Classification Results of p2 Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 300 300 300
FP 300 300 300
FN 0 0 0
TN 0 0 0

FPR 1 1 1
Precision 0.5 0.5 0.5

Recall 1 1 1
F1-Score 0.667 0.667 0.667

Specificity 0 0 0
AROC 0.504 0.504 0.504

Accuracy(%) 50 50 50
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Table B.4: SVM Classification Results of p2 Walk Patterns at σ = 0.1 and at σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 249 239 244
FP 10 2 1
FN 51 61 56
TN 290 298 299

FPR 0.033 0.006 0.003
Precision 0.961 0.991 0.995

Recall 0.83 0.796 0.813
F1-Score 0.89 0.883 0.895

Specificity 0.966 0.993 0.996
AROC 0.899 0.901 0.909

Accuracy(%) 98.83 89.5 90.5

Performance
σ = 1

C=0.1 C=1 C=10

TP 300 300 300
FP 97 74 42
FN 0 0 0
TN 203 226 258

FPR 0.323 0.246 0.14
Precision 0.755 0.802 0.877

Recall 1 1 1
F1-Score 0.86 0.89 0.934

Specificity 0.676 0.753 0.86
AROC 0.837 0.877 0.931

Accuracy(%) 83.83 87.67 93
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Table B.5: SVM Classification Results of p3 Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 331 331 331
FP 269 269 269
FN 0 0 0
TN 0 0 0

FPR 1 1 1
Precision 0.551 0.551 0.551

Recall 1 1 1
F1-Score 0.711 0.711 0.711

Specificity 0 0 0
AROC 0.504 0.504 0.504

Accuracy(%) 55.17 55.17 55.17
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Table B.6: SVM Classification Results of p3 Walk Patterns at σ = 0.1 and at σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 265 244 247
FP 51 12 11
FN 66 87 84
TN 218 257 258

FPR 0.189 0.044 0.04
Precision 0.838 0.953 0.957

Recall 0.8 0.737 0.746
F1-Score 0.81 0.955 0.959

Specificity 0.81 0.955 0.959
AROC 0.815 0.848 0.854

Accuracy(%) 80.5 83.5 84.17

Performance
σ = 1

C=0.1 C=1 C=10

TP 331 331 331
FP 212 195 184
FN 0 0 0
TN 57 74 85

FPR 0.788 0.724 0.684
Precision 0.609 0.629 0.642

Recall 1 1 1
F1-Score 0.757 0.772 0.782

Specificity 0.211 0.275 0.315
AROC 0.611 0.648 0.673

Accuracy(%) 64.67 67.5 69.33
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Table B.7: SVM Classification Results of p4 Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 332 332 332
FP 268 268 268
FN 0 0 0
TN 0 0 0

FPR 1 1 1
Precision 0.553 0.553 0.553

Recall 1 1 1
F1-Score 0.712 0.712 0.712

Specificity 0 0 0
AROC 0.502 0.502 0.502

Accuracy(%) 55.33 55.33 55.33
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Table B.8: SVM Classification Results of p4 Walk Patterns at σ = 0.1 and at σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 330 311 313
FP 27 1 1
FN 2 21 19
TN 241 267 267

FPR 0.1 0.003 0.003
Precision 0.924 0.996 0.996

Recall 0.993 0.936 0.942
F1-Score 0.957 0.965 0.969

Specificity 0.899 0.996 0.996
AROC 0.944 0.971 0.977

Accuracy(%) 95.17 96.33 96.67

Performance
σ = 1

C=0.1 C=1 C=10

TP 330 331 331
FP 70 104 135
FN 2 1 1
TN 198 164 133

FPR 0.261 0.388 0.503
Precision 0.825 0.76 0.71

Recall 0.993 0.996 0.996
F1-Score 0.901 0.863 0.829

Specificity 0.738 0.611 0.496
AROC 0.871 0.81 0.738

Accuracy(%) 88 82.5 77.33
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Table B.9: SVM Classification Results of p5 Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 298 298 298
FP 302 302 302
FN 0 0 0
TN 0 0 0

FPR 1 1 1
Precision 0.496 0.496 0.496

Recall 1 1 1
F1-Score 0.663 0.663 0.663

Specificity 0 0 0
AROC 0.495 0.495 0.495

Accuracy(%) 49.67 49.67 49.67



229

Table B.10: SVM Classification Results of p5 Walk Patterns at σ = 0.1 and at σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 268 264 266
FP 9 1 0
FN 30 34 32
TN 293 301 302

FPR 0.029 0.003 0
Precision 0.967 0.996 1

Recall 0.899 0.885 0.892
F1-Score 0.932 0.937 0.943

Specificity 0.97 0.996 1
AROC 0.931 0.941 0.943

Accuracy(%) 93.5 94.17 94.67

Performance
σ = 1

C=0.1 C=1 C=10

TP 298 298 298
FP 134 66 45
FN 0 0 0
TN 168 236 257

FPR 0.443 0.218 0.149
Precision 0.689 0.818 0.868

Recall 1 1 1
F1-Score 0.816 0.9 0.929

Specificity 0.556 0.781 0.85
AROC 0.769 0.88 0.92

Accuracy(%) 77.67 89 92.5
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Table B.11: SVM Classification Results of pAll Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 1619 1619 1619
FP 1381 1381 1381
FN 0 0 0
TN 0 0 0

FPR 1 1 1
Precision 0.539 0.539 0.539

Recall 1 1 1
F1-Score 0.701 0.701 0.701

Specificity 0 0 0
AROC 0.50 0.50 0.50

Accuracy(%) 53.96 53.96 53.96
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Table B.12: SVM Classification Results of pAll Walk Patterns at σ = 0.1 and at
σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 1480 1435 1507
FP 62 16 32
FN 139 184 112
TN 1319 1365 1349

FPR 0.044 0.011 0.023
Precision 0.959 0.988 0.979

Recall 0.914 0.886 0.930
F1-Score 0.936 0.934 0.954

Specificity 0.955 0.988 0.976
AROC 0.939 0.945 0.957

Accuracy(%) 93.3 93.33 95.2

Performance
σ = 1

C=0.1 C=1 C=10

TP 1618 1619 1619
FP 316 288 221
FN 1 0 0
TN 1065 1093 1160

FPR 0.228 0.208 0.16
Precision 0.836 0.848 0.879

Recall 0.999 1 1
F1-Score 0.91 0.918 0.936

Specificity 0.771 0.791 0.839
AROC 0.886 0.903 0.924

Accuracy(%) 89.43 90.4 92.63



Appendix C

The Performance Measure Metrics
of Museum Dataset

Chapter 7 discusses the performance of the proposed SVM on the Museum
dataset, and this appendix presents the performance measures in the form of a confu-
sion matrix. Additionally, the appendix includes various figures related to the SVM
performance, such as ROC curves, the area under the ROC curves, and decision
boundaries.
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Table C.1: SVM Classification Results of xf1 Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 112 112 112
FP 82 82 82
FN 0 0 0
TN 0 0 0

FPR 1 1 1
Precision 0.577 0.577 0.577

Recall 1 1 1
F1-Score 0.732 0.732 0.732

Specificity 0 0 0
AROC 0.502 0.502 0.502

Accuracy(%) 57.73 57.73 57.73
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Table C.2: SVM Classification Results of xf1 Walk Patterns at σ = 0.1 and at σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 112 112 112
FP 29 29 27
FN 0 0 0
TN 53 53 55

FPR 0.353 0.353 0.329
Precision 0.794 0.794 0.805

Recall 1 1 1
F1-Score 0.885 0.885 0.892

Specificity 0.646 0.646 0.67
AROC 0.821 0.817 0.825

Accuracy(%) 85.05 85.05 86.08

Performance
σ = 1

C=0.1 C=1 C=10

TP 112 112 112
FP 60 31 29
FN 0 0 0
TN 22 51 53

FPR 0.731 0.378 0.353
Precision 0.651 0.783 0.794

Recall 1 1 1
F1-Score 0.788 0.878 0.885

Specificity 0.268 0.621 0.646
AROC 0.639 0.819 0.835

Accuracy(%) 69.07 84.02 85.05
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Table C.3: SVM Classification Results of xf2 Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 343 343 343
FP 251 251 251
FN 0 0 0
TN 0 0 0

FPR 1 1 1
Precision 0.577 0.577 0.577

Recall 1 1 1
F1-Score 0.732 0.732 0.732

Specificity 0 0 0
AROC 0.49 0.49 0.49

Accuracy(%) 57.74 57.74 57.74
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Table C.4: SVM Classification Results of xf2 Walk Patterns at σ = 0.1 and at σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 338 343 342
FP 84 75 74
FN 5 0 1
TN 167 176 177

FPR 0.334 0.298 0.294
Precision 0.8 0.82 0.822

Recall 0.985 1 0.997
F1-Score 0.883 0.901 0.901

Specificity 0.665 0.701 0.705
AROC 0.829 0.855 0.858

Accuracy(%) 85.01 87.37 87.37

Performance
σ = 1

C=0.1 C=1 C=10

TP 343 341 342
FP 160 101 108
FN 0 2 1
TN 91 150 143

FPR 0.637 0.402 0.43
Precision 0.681 0.771 0.76

Recall 1 0.994 0.997
F1-Score 0.81 0.868 0.862

Specificity 0.362 0.597 0.569
AROC 0.668 0.789 0.77

Accuracy(%) 73.06 82.65 81.64
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Table C.5: SVM Classification Results of xf3 Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 89 89 89
FP 62 62 62
FN 0 0 0
TN 0 0 0

FPR 1 1 1
Precision 0.589 0.589 0.589

Recall 1 1 1
F1-Score 0.741 0.741 0.741

Specificity 0 0 0
AROC 0.543 0.543 0.543

Accuracy(%) 58.94 58.94 58.94
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Table C.6: SVM Classification Results of xf3 Walk Patterns at σ = 0.1 and at σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 87 87 88
FP 24 22 21
FN 2 2 1
TN 38 40 41

FPR 0.387 0.354 0.338
Precision 0.783 0.798 0.807

Recall 0.977 0.977 0.988
F1-Score 0.87 0.878 0.888

Specificity 0.612 0.645 0.661
AROC 0.806 0.817 0.82

Accuracy(%) 82.78 84.1 85.43

Performance
σ = 1

C=0.1 C=1 C=10

TP 89 89 89
FP 35 18 18
FN 0 0 0
TN 27 44 44

FPR 0.564 0.29 0.29
Precision 0.717 0.831 0.831

Recall 1 0.994 0.997
F1-Score 0.835 0.908 0.908

Specificity 0.435 0.709 0.709
AROC 0.726 0.882 0.88

Accuracy(%) 76.82 88.07 88.07
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Table C.7: SVM Classification Results of xf4 Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 13 13 13
FP 10 10 10
FN 0 0 0
TN 0 0 0

FPR 1 1 1
Precision 0.565 0.565 0.565

Recall 1 1 1
F1-Score 0.722 0.722 0.722

Specificity 0 0 0
AROC 0.515 0.515 0.515

Accuracy(%) 56.52 56.52 56.52
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Table C.8: SVM Classification Results of xf4 Walk Patterns at σ = 0.1 and at σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 11 12 12
FP 0 3 3
FN 2 1 1
TN 10 7 7

FPR 0 0.3 0.3
Precision 1 0.8 0.8

Recall 0.846 0.923 0.923
F1-Score 0.916 0.857 0.857

Specificity 1 0.7 0.7
AROC 0.946 0.8 0.8

Accuracy(%) 91.3 82.6 82.6

Performance
σ = 1

C=0.1 C=1 C=10

TP 13 13 13
FP 4 2 2
FN 0 0 0
TN 6 8 8

FPR 0.4 0.2 0.2
Precision 0.764 0.866 0.866

Recall 1 1 1
F1-Score 0.866 0.928 0.928

Specificity 0.6 0.8 0.8
AROC 0.823 0.93 0.93

Accuracy(%) 82.6 91.3 91.3
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Table C.9: SVM Classification Results of xf5 Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 335 335 335
FP 241 259 259
FN 0 0 0
TN 18 0 0

FPR 0.93 1 1
Precision 0.581 0.563 0.563

Recall 1 1 1
F1-Score 0.735 0.721 0.721

Specificity 0.06 0 0
AROC 0.518 0.487 0.487

Accuracy(%) 59.42 56.39 56.39
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Table C.10: SVM Classification Results of xf5 Walk Patterns at σ = 0.1 and at
σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 300 334 329
FP 18 49 44
FN 35 1 6
TN 241 210 215

FPR 0.06 0.189 0.169
Precision 0.943 0.872 0.882

Recall 0.895 0.997 0.982
F1-Score 0.918 0.93 0.929

Specificity 0.93 0.81 0.83
AROC 0.909 0.897 0.894

Accuracy(%) 91.07 91.58 91.58

Performance
σ = 1

C=0.1 C=1 C=10

TP 334 320 331
FP 127 19 13
FN 1 15 4
TN 132 240 246

FPR 0.49 0.07 0.05
Precision 0.724 0.943 0.962

Recall 0.997 0.955 0.988
F1-Score 0.839 0.949 0.974

Specificity 0.509 0.926 0.949
AROC 0.739 0.941 0.97

Accuracy(%) 78.45 94.27 97.13
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Table C.11: SVM Classification Results of xf6 Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 79 79 79
FP 72 72 72
FN 0 0 0
TN 0 0 0

FPR 1 1 1
Precision 0.523 0.523 0.523

Recall 1 1 1
F1-Score 0.686 0.686 0.686

Specificity 0 0 0
AROC 0.543 0.543 0.543

Accuracy(%) 52.31 52.31 52.31
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Table C.12: SVM Classification Results of xf6 Walk Patterns at σ = 0.1 and at
σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 78 77 76
FP 12 11 13
FN 1 2 3
TN 60 61 59

FPR 0.166 0.152 0.18
Precision 0.866 0.875 0.853

Recall 0.987 0.974 0.962
F1-Score 0.923 0.922 0.904

Specificity 0.833 0.847 0.819
AROC 0.923 0.905 0.882

Accuracy(%) 91.39 91.39 89.4

Performance
σ = 1

C=0.1 C=1 C=10

TP 79 75 78
FP 37 10 0
FN 0 4 1
TN 35 62 72

FPR 0.513 0.138 0
Precision 0.681 0.882 1

Recall 1 0.949 0.987
F1-Score 0.81 0.914 0.993

Specificity 0.486 0.861 1
AROC 0.764 0.921 0.994

Accuracy(%) 75.49 90.72 99.33
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Table C.13: SVM Classification Results of xf7 Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 9 9 9
FP 14 14 14
FN 0 0 0
TN 0 0 0

FPR 1 1 1
Precision 0.391 0.391 0.391

Recall 1 1 1
F1-Score 0.562 0.562 0.562

Specificity 0 0 0
AROC 0.46 0.46 0.46

Accuracy(%) 39.13 39.13 39.13
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Table C.14: SVM Classification Results of xf7 Walk Patterns at σ = 0.1 and at
σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 8 8 9
FP 3 1 2
FN 1 1 0
TN 11 13 12

FPR 0.214 0.071 0.142
Precision 0.727 0.888 0.818

Recall 0.888 0.888 1
F1-Score 0.8 0.888 0.9

Specificity 0.785 0.928 0.857
AROC 0.769 0.888 0.865

Accuracy(%) 82.6 91.3 91.3

Performance
σ = 1

C=0.1 C=1 C=10

TP 9 7 9
FP 7 4 0
FN 0 2 0
TN 7 10 14

FPR 0.5 0.285 0
Precision 0.562 0.636 1

Recall 1 0.777 1
F1-Score 0.72 0.7 1

Specificity 0.5 0.714 1
AROC 0.769 0.73 1

Accuracy(%) 69.56 73.91 100
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Table C.15: SVM Classification Results of xf8 Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 81 81 81
FP 70 70 70
FN 0 0 0
TN 0 0 0

FPR 0.698 0.698 0.698
Precision 0.536 0.536 0.536

Recall 1 1 1
F1-Score 0.698 0.698 0.698

Specificity 0 0 0
AROC 0.548 0.548 0.548

Accuracy(%) 53.64 53.64 53.64
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Table C.16: SVM Classification Results of xf8 Walk Patterns at σ = 0.1 and at
σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 80 81 81
FP 17 7 6
FN 1 0 0
TN 53 63 64

FPR 0.242 0.1 0.085
Precision 0.824 0.92 0.931

Recall 0.987 1 1
F1-Score 0.898 0.958 0.964

Specificity 0.757 0.9 0.914
AROC 0.907 0.971 0.969

Accuracy(%) 88.07 95.36 96.02

Performance
σ = 1

C=0.1 C=1 C=10

TP 80 78 81
FP 26 6 7
FN 1 3 0
TN 44 64 63

FPR 0.371 0.085 0.1
Precision 0.754 0.928 0.92

Recall 0.987 0.962 1
F1-Score 0.855 0.945 0.958

Specificity 0.628 0.914 0.9
AROC 0.833 0.958 0.972

Accuracy(%) 82.11 94.03 95.36
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Table C.17: SVM Classification Results of xf9 Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 10 10 10
FP 13 13 13
FN 0 0 0
TN 0 0 0

FPR 1 1 1
Precision 0.434 0.434 0.434

Recall 1 1 1
F1-Score 0.606 0.606 0.606

Specificity 0 0 0
AROC 0.376 0.376 0.376

Accuracy(%) 43.47 43.47 43.47
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Table C.18: SVM Classification Results of xf9 Walk Patterns at σ = 0.1 and at
σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 10 9 10
FP 4 2 0
FN 0 1 0
TN 9 11 13

FPR 0.307 0.153 0
Precision 0.714 0.818 1

Recall 1 0.9 1
F1-Score 0.833 0.857 1

Specificity 0.692 0.846 1
AROC 0.7 0.83 1

Accuracy(%) 82.6 86.95 100

Performance
σ = 1

C=0.1 C=1 C=10

TP 10 10 10
FP 3 1 1
FN 0 0 0
TN 10 12 12

FPR 0.23 0.076 0.076
Precision 0.769 0.909 0.909

Recall 1 1 1
F1-Score 0.869 0.952 0.952

Specificity 0.769 0.923 0.923
AROC 0.861 0.923 0.923

Accuracy(%) 86.95 95.65 95.65
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Table C.19: SVM Classification Results of xf10 Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 6 12 12
FP 0 11 11
FN 6 0 0
TN 11 0 0

FPR 0 1 1
Precision 1 0.521 0.521

Recall 0.5 1 1
F1-Score 0.666 0.685 0.685

Specificity 1 0 0
AROC 0.696 0.439 0.439

Accuracy(%) 73.91 52.17 52.17
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Table C.20: SVM Classification Results of xf10 Walk Patterns at σ = 0.1 and at
σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 10 12 12
FP 0 1 0
FN 2 0 0
TN 11 10 11

FPR 0 0.09 0
Precision 1 0.923 1

Recall 0.833 1 1
F1-Score 0.909 0.96 1

Specificity 1 0.909 1
AROC 0.931 0.909 1

Accuracy(%) 91.3 95.65 100

Performance
σ = 1

C=0.1 C=1 C=10

TP 12 10 12
FP 4 1 1
FN 0 2 0
TN 7 10 10

FPR 0.363 0.09 0.09
Precision 0.75 0.909 0.923

Recall 1 0.833 1
F1-Score 0.857 0.869 0.96

Specificity 0.636 0.909 0.909
AROC 0.833 0.856 0.909

Accuracy(%) 82.6 86.95 95.65
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Table C.21: SVM Classification Results of xm1 Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 80 80 80
FP 63 63 63
FN 0 0 0
TN 0 0 0

FPR 1 1 1
Precision 0.559 0.559 0.559

Recall 1 1 1
F1-Score 0.717 0.717 0.717

Specificity 0 0 0
AROC 0.467 0.467 0.467

Accuracy(%) 55.94 55.94 55.94
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Table C.22: SVM Classification Results of xm1 Walk Patterns at σ = 0.1 and at
σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 79 78 76
FP 12 9 10
FN 1 2 4
TN 51 54 53

FPR 0.19 0.142 0.158
Precision 0.868 0.896 0.883

Recall 0.987 0.975 0.95
F1-Score 0.923 0.934 0.915

Specificity 0.809 0.857 0.841
AROC 0.894 0.892 0.863

Accuracy(%) 90.9 92.3 90.2

Performance
σ = 1

C=0.1 C=1 C=10

TP 80 80 80
FP 37 16 15
FN 0 0 0
TN 26 47 48

FPR 0.587 0.253 0.238
Precision 0.683 0.833 0.842

Recall 1 1 1
F1-Score 0.812 0.909 0.914

Specificity 0.412 0.746 0.761
AROC 0.668 0.861 0.854

Accuracy(%) 74.12 88.81 89.51
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Table C.23: SVM Classification Results of xm2 Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 254 254 254
FP 224 224 224
FN 0 0 0
TN 0 0 0

FPR 1 1 1
Precision 0.531 0.531 0.531

Recall 1 1 1
F1-Score 0.693 0.693 0.693

Specificity 0 0 0
AROC 0.487 0.487 0.487

Accuracy(%) 53.13 53.13 53.13
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Table C.24: SVM Classification Results of xm2 Walk Patterns at σ = 0.1 and at
σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 250 249 246
FP 55 30 29
FN 4 5 8
TN 169 194 195

FPR 0.245 0.133 0.129
Precision 0.819 0.892 0.894

Recall 0.984 0.98 0.968
F1-Score 0.894 0.934 0.93

Specificity 0.754 0.866 0.87
AROC 0.864 0.916 0.91

Accuracy(%) 87.65 92.67 92.25

Performance
σ = 1

C=0.1 C=1 C=10

TP 254 252 254
FP 148 38 42
FN 0 2 0
TN 76 186 182

FPR 0.66 0.169 0.187
Precision 0.631 0.868 0.858

Recall 1 0.992 1
F1-Score 0.774 0.926 0.923

Specificity 0.339 0.83 0.812
AROC 0.66 0.908 0.895

Accuracy(%) 69.03 91.63 91.21



257

Table C.25: SVM Classification Results of xm3 Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 55 55 55
FP 45 45 45
FN 0 0 0
TN 0 0 0

FPR 1 1 1
Precision 0.55 0.55 0.55

Recall 1 1 1
F1-Score 0.709 0.709 0.709

Specificity 0 0 0
AROC 0.543 0.543 0.543

Accuracy(%) 55 55 55
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Table C.26: SVM Classification Results of xm3 Walk Patterns at σ = 0.1 and at
σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 52 55 55
FP 0 4 4
FN 3 0 0
TN 45 41 41

FPR 0 0.088 0.088
Precision 1 0.932 0.932

Recall 0.945 1 1
F1-Score 0.971 0.964 0.964

Specificity 1 0.911 0.911
AROC 0.981 0.966 0.966

Accuracy(%) 97 96 96

Performance
σ = 1

C=0.1 C=1 C=10

TP 55 55 55
FP 27 3 3
FN 0 0 0
TN 18 42 42

FPR 0.6 0.066 0.066
Precision 0.67 0.948 0.948

Recall 1 1 1
F1-Score 0.802 0.973 0.973

Specificity 0.4 0.933 0.933
AROC 0.73 0.97 0.973

Accuracy(%) 73 97 97
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Table C.27: SVM Classification Results of xm4 Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 14 14 14
FP 8 8 8
FN 0 0 0
TN 0 0 0

FPR 1 1 1
Precision 0.636 0.636 0.636

Recall 1 1 1
F1-Score 0.777 0.777 0.777

Specificity 0 0 0
AROC 0.526 0.526 0.526

Accuracy(%) 63.63 63.63 63.63
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Table C.28: SVM Classification Results of xm4 Walk Patterns at σ = 0.1 and at
σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 12 14 14
FP 0 2 2
FN 2 0 0
TN 8 6 6

FPR 0 0.25 0.25
Precision 1 0.875 0.875

Recall 0.857 1 1
F1-Score 0.923 0.933 0.933

Specificity 1 0.75 0.75
AROC 0.892 0.821 0.821

Accuracy(%) 90.9 90.9 90.9

Performance
σ = 1

C=0.1 C=1 C=10

TP 14 13 13
FP 3 0 0
FN 0 1 1
TN 5 8 8

FPR 0.375 0 0
Precision 0.823 1 1

Recall 1 0.928 0.928
F1-Score 0.802 0.973 0.973

Specificity 0.625 1 1
AROC 0.821 0.955 0.955

Accuracy(%) 86.36 95.45 95.45
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Table C.29: SVM Classification Results of xm5 Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 250 250 250
FP 173 228 228
FN 0 0 0
TN 55 0 0

FPR 0.758 1 1
Precision 0.591 0.523 0.523

Recall 1 1 1
F1-Score 0.742 0.686 0.686

Specificity 0.241 0 0
AROC 0.61 0.486 0.486

Accuracy(%) 63.8 52.3 52.3
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Table C.30: SVM Classification Results of xm5 Walk Patterns at σ = 0.1 and at
σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 218 246 246
FP 11 37 45
FN 32 4 4
TN 217 191 183

FPR 0.048 0.162 0.197
Precision 0.951 0.869 0.845

Recall 0.872 0.984 0.984
F1-Score 0.91 0.923 0.909

Specificity 0.951 0.837 0.802
AROC 0.902 0.899 0.88

Accuracy(%) 91 91.42 89.74

Performance
σ = 1

C=0.1 C=1 C=10

TP 250 249 250
FP 134 47 43
FN 0 1 0
TN 94 181 185

FPR 0.587 0.206 0.188
Precision 0.651 0.841 0.853

Recall 1 0.996 1
F1-Score 0.788 0.912 0.920

Specificity 0.412 0.793 0.811
AROC 0.697 0.887 0.899

Accuracy(%) 71.96 89.95 91
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Table C.31: SVM Classification Results of xm6 Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 49 51 51
FP 1 49 49
FN 2 0 0
TN 48 0 0

FPR 0.02 1 1
Precision 0.98 0.51 0.51

Recall 0.96 1 1
F1-Score 0.97 0.675 0.675

Specificity 0.979 0 0
AROC 0.965 0.533 0.533

Accuracy(%) 97 51 51
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Table C.32: SVM Classification Results of xm6 Walk Patterns at σ = 0.1 and at
σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 46 50 51
FP 2 9 10
FN 5 1 0
TN 47 40 39

FPR 0.04 0.183 0.204
Precision 0.958 0.847 0.836

Recall 0.901 0.980 1
F1-Score 0.929 0.909 0.91

Specificity 0.959 0.816 0.795
AROC 0.932 0.899 0.897

Accuracy(%) 93 90 90

Performance
σ = 1

C=0.1 C=1 C=10

TP 51 50 51
FP 31 11 11
FN 0 1 0
TN 18 38 38

FPR 0.632 0.224 0.224
Precision 0.621 0.819 0.822

Recall 1 0.98 1
F1-Score 0.766 0.892 0.902

Specificity 0.367 0.775 0.775
AROC 0.707 0.879 0.894

Accuracy(%) 69 88 89
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Table C.33: SVM Classification Results of xm7 Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 0 14 14
FP 0 8 8
FN 14 0 0
TN 8 0 0

FPR 0 1 1
Precision 0 0.636 0.636

Recall 0 1 1
F1-Score 0 0.777 0.777

Specificity 1 0 0
AROC 0.526 0.526 0.526

Accuracy(%) 36.36 63.63 63.63
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Table C.34: SVM Classification Results of xm7 Walk Patterns at σ = 0.1 and at
σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 12 14 14
FP 0 1 1
FN 2 0 0
TN 8 7 7

FPR 0 0.125 0.125
Precision 1 0.933 0.933

Recall 0.857 1 1
F1-Score 0.923 0.965 0.965

Specificity 1 0.875 0.875
AROC 0.919 0.892 0.892

Accuracy(%) 90.9 95.45 95.45

Performance
σ = 1

C=0.1 C=1 C=10

TP 14 14 14
FP 3 0 1
FN 0 0 0
TN 5 8 7

FPR 0.375 0 0.125
Precision 0.823 1 0.933

Recall 1 1 1
F1-Score 0.903 1 0.965

Specificity 0.625 1 0.875
AROC 0.821 1 0.919

Accuracy(%) 86.36 100 95.45
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Table C.35: SVM Classification Results of xm8 Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 51 51 51
FP 49 49 49
FN 0 0 0
TN 0 0 0

FPR 1 1 1
Precision 0.51 0.51 0.51

Recall 1 1 1
F1-Score 0.675 0.675 0.675

Specificity 0 0 0
AROC 0.521 0.521 0.521

Accuracy(%) 51 51 51
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Table C.36: SVM Classification Results of xm8 Walk Patterns at σ = 0.1 and at
σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 51 50 50
FP 10 2 5
FN 0 1 1
TN 39 47 44

FPR 0.204 0.04 0.102
Precision 0.836 0.961 0.909

Recall 1 0.98 0.98
F1-Score 0.91 0.97 0.943

Specificity 0.795 0.959 0.897
AROC 0.895 0.979 0.94

Accuracy(%) 90 97 94

Performance
σ = 1

C=0.1 C=1 C=10

TP 51 51 51
FP 21 7 15
FN 0 0 0
TN 28 42 34

FPR 0.428 0.142 0.306
Precision 0.708 0.879 0.772

Recall 1 1 1
F1-Score 0.829 0.935 0.871

Specificity 0.571 0.857 0.693
AROC 0.796 0.921 0.857

Accuracy(%) 79 93 85
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Table C.37: SVM Classification Results of xm9 Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 14 14 14
FP 8 8 8
FN 0 0 0
TN 0 0 0

FPR 1 1 1
Precision 0.636 0.636 0.636

Recall 1 1 1
F1-Score 0.777 0.777 0.777

Specificity 0 0 0
AROC 0.526 0.526 0.526

Accuracy(%) 63.63 63.63 63.63
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Table C.38: SVM Classification Results of xm9 Walk Patterns at σ = 0.1 and at
σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 14 14 14
FP 1 0 0
FN 0 0 0
TN 7 8 8

FPR 0.125 0 0
Precision 0.933 1 1

Recall 1 1 1
F1-Score 0.965 1 1

Specificity 0.875 1 1
AROC 0.892 1 1

Accuracy(%) 95.45 100 100

Performance
σ = 1

C=0.1 C=1 C=10

TP 14 13 14
FP 2 0 1
FN 0 1 0
TN 6 8 7

FPR 0.25 0 0.125
Precision 0.875 1 0.933

Recall 1 0.928 1
F1-Score 0.933 0.962 0.965

Specificity 0.75 1 0.875
AROC 0.901 0.955 0.919

Accuracy(%) 90.9 95.45 95.45
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Table C.39: SVM Classification Results of xm10 Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 11 14 14
FP 0 8 8
FN 3 0 0
TN 8 0 0

FPR 0 1 1
Precision 1 0.636 0.636

Recall 0.785 1 1
F1-Score 0.88 0.777 0.777

Specificity 1 0 0
AROC 0.892 0.526 0.526

Accuracy(%) 86.36 63.63 63.63
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Table C.40: SVM Classification Results of xm10 Walk Patterns at σ = 0.1 and at
σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 12 14 14
FP 0 2 2
FN 2 0 0
TN 8 6 6

FPR 0 0.25 0.25
Precision 1 0.875 0.875

Recall 0.857 1 1
F1-Score 0.923 0.933 0.933

Specificity 1 0.75 0.75
AROC 0.892 0.821 0.821

Accuracy(%) 90.9 90.9 90.9

Performance
σ = 1

C=0.1 C=1 C=10

TP 14 13 14
FP 3 0 0
FN 0 1 0
TN 5 8 8

FPR 0.375 0 0
Precision 0.823 1 1

Recall 1 0.928 1
F1-Score 0.903 0.962 1

Specificity 0.625 1 1
AROC 0.83 0.937 1

Accuracy(%) 86.36 95.45 100
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Table C.41: SVM Classification Results of xfm1 Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 97 97 97
FP 74 74 74
FN 0 0 0
TN 0 0 0

FPR 1 1 1
Precision 0.567 0.567 0.567

Recall 1 1 1
F1-Score 0.723 0.723 0.723

Specificity 0 0 0
AROC 0.486 0.486 0.486

Accuracy(%) 56.72 56.72 56.72
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Table C.42: SVM Classification Results of xfm1 Walk Patterns at σ = 0.1 and at
σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 96 96 96
FP 35 27 25
FN 1 1 1
TN 39 47 49

FPR 0.472 0.364 0.337
Precision 0.732 0.78 0.79

Recall 0.989 0.989 0.989
F1-Score 0.842 0.872 0.88

Specificity 0.527 0.635 0.662
AROC 0.768 0.804 0.816

Accuracy(%) 78.94 83.62 84.79

Performance
σ = 1

C=0.1 C=1 C=10

TP 97 97 97
FP 46 23 16
FN 0 0 0
TN 28 51 58

FPR 0.621 0.31 0.216
Precision 0.678 0.808 0.858

Recall 1 1 1
F1-Score 0.808 0.894 0.923

Specificity 0.378 0.689 0.783
AROC 0.691 0.859 0.922

Accuracy(%) 73.09 86.54 90.64
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Table C.43: SVM Classification Results of xfm2 Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 77 77 77
FP 66 66 66
FN 0 0 0
TN 0 0 0

FPR 1 1 1
Precision 0.538 0.538 0.538

Recall 1 1 1
F1-Score 0.7 0.7 0.7

Specificity 0 0 0
AROC 0.46 0.46 0.46

Accuracy(%) 53.84 53.84 53.84
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Table C.44: SVM Classification Results of xfm2 Walk Patterns at σ = 0.1 and at
σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 74 74 77
FP 15 12 13
FN 3 3 0
TN 51 54 53

FPR 0.227 0.181 0.196
Precision 0.831 0.86 0.855

Recall 0.961 0.961 1
F1-Score 0.891 0.907 0.922

Specificity 0.772 0.818 0.803
AROC 0.856 0.871 0.884

Accuracy(%) 87.41 89.51 90.9

Performance
σ = 1

C=0.1 C=1 C=10

TP 77 73 72
FP 36 9 0
FN 0 4 5
TN 30 57 66

FPR 0.545 0.136 0
Precision 0.681 0.89 1

Recall 1 0.948 0.935
F1-Score 0.81 0.918 0.966

Specificity 0.454 0.863 1
AROC 0.691 0.892 0.95

Accuracy(%) 74.825 90.9 96.5
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Table C.45: SVM Classification Results of xfm3 Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 266 266 266
FP 212 212 212
FN 0 0 0
TN 0 0 0

FPR 1 1 1
Precision 0.556 0.556 0.556

Recall 1 1 1
F1-Score 0.715 0.715 0.715

Specificity 0 0 0
AROC 0.488 0.488 0.488

Accuracy(%) 55.64 55.64 55.64
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Table C.46: SVM Classification Results of xfm3 Walk Patterns at σ = 0.1 and at
σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 263 264 264
FP 47 18 17
FN 3 2 2
TN 165 194 195

FPR 0.221 0.084 0.08
Precision 0.848 0.936 0.939

Recall 0.988 0.992 0.992
F1-Score 0.913 0.963 0.965

Specificity 0.778 0.915 0.919
AROC 0.882 0.947 0.951

Accuracy(%) 89.53 95.81 96.02

Performance
σ = 1

C=0.1 C=1 C=10

TP 265 260 265
FP 83 23 19
FN 1 6 1
TN 129 189 193

FPR 0.391 0.108 0.089
Precision 0.761 0.918 0.933

Recall 0.996 0.977 0.996
F1-Score 0.863 0.947 0.963

Specificity 0.608 0.891 0.91
AROC 0.798 0.928 0.94

Accuracy(%) 82.42 93.93 95.81
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Table C.47: SVM Classification Results of xfm4 Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 57 57 57
FP 43 43 43
FN 0 0 0
TN 0 0 0

FPR 1 1 1
Precision 0.57 0.57 0.57

Recall 1 1 1
F1-Score 0.726 0.726 0.726

Specificity 0 0 0
AROC 0.549 0.549 0.549

Accuracy(%) 57 57 57
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Table C.48: SVM Classification Results of xfm4 Walk Patterns at σ = 0.1 and at
σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 55 55 56
FP 5 4 4
FN 2 2 1
TN 38 39 39

FPR 0.116 0.093 0.093
Precision 0.916 0.932 0.933

Recall 0.964 0.964 0.982
F1-Score 0.94 0.948 0.957

Specificity 0.883 0.906 0.906
AROC 0.937 0.94 0.946

Accuracy(%) 93 94 95

Performance
σ = 1

C=0.1 C=1 C=10

TP 57 53 54
FP 20 1 0
FN 0 4 3
TN 23 42 43

FPR 0.465 0.023 0
Precision 0.74 0.918 1

Recall 1 0.929 0.947
F1-Score 0.85 0.954 0.972

Specificity 0.534 0.976 1
AROC 0.79 0.962 0.974

Accuracy(%) 80 95 97
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Table C.49: SVM Classification Results of xfm5 Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 14 14 14
FP 8 8 8
FN 0 0 0
TN 0 0 0

FPR 1 1 1
Precision 0.636 0.636 0.636

Recall 1 1 1
F1-Score 0.777 0.777 0.777

Specificity 0 0 0
AROC 0.526 0.526 0.526

Accuracy(%) 63.63 63.63 63.63
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Table C.50: SVM Classification Results of xfm5 Walk Patterns at σ = 0.1 and at
σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 13 13 13
FP 6 3 3
FN 1 1 1
TN 2 5 5

FPR 0.75 0.375 0.375
Precision 0.684 0.812 0.812

Recall 0.928 0.928 0.928
F1-Score 0.787 0.866 0.866

Specificity 0.25 0.625 0.625
AROC 0.669 0.767 0.767

Accuracy(%) 68.18 81.81 81.81

Performance
σ = 1

C=0.1 C=1 C=10

TP 14 14 14
FP 5 3 3
FN 0 0 0
TN 3 5 5

FPR 0.625 0.375 0.375
Precision 0.736 0.823 0.823

Recall 1 1 1
F1-Score 0.848 0.903 0.903

Specificity 0.375 0.625 0.625
AROC 0.723 0.83 0.794

Accuracy(%) 77.27 86.36 86.36
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Table C.51: SVM Classification Results of xAll Walk Patterns at σ = 10.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 514 514 514
FP 400 400 400
FN 0 0 0
TN 0 0 0

FPR 1 1 1
Precision 0.562 0.562 0.562

Recall 1 1 1
F1-Score 0.719 0.719 0.719

Specificity 0 0 0
AROC 0.5 0.5 0.5

Accuracy(%) 56.23 56.23 56.23
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Table C.52: SVM Classification Results of xAll Walk Patterns at σ = 0.1 and at
σ = 1.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 510 507 508
FP 75 11 19
FN 4 7 6
TN 325 389 381

FPR 0.187 0.027 0.047
Precision 0.871 0.978 0.963

Recall 0.992 0.986 0.988
F1-Score 0.928 0.982 0.975

Specificity 0.812 0.972 0.952
AROC 0.905 0.976 0.968

Accuracy(%) 91.35 98.03 97.26

Performance
σ = 1

C=0.1 C=1 C=10

TP 491 492 505
FP 57 24 9
FN 23 22 9
TN 343 376 391

FPR 0.142 0.06 0.022
Precision 0.895 0.953 0.982

Recall 0.955 0.953 0.982
F1-Score 0.924 0.955 0.982

Specificity 0.857 0.94 0.977
AROC 0.911 0.949 0.978

Accuracy(%) 91.24 94.96 98.03
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Figure C.1: ROC (Receiver Operating Characteristic) curves of sf1 show the True
Positive (Sensitivity) and False Positive (1-Specificity) for the best different thresh-
olds using kernel property of SVM.

Figure C.2: ROC (Receiver Operating Characteristic) curves of sf2 show the True
Positive (Sensitivity) and False Positive (1-Specificity) for the best different thresh-
olds using kernel property of SVM.
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Figure C.3: ROC (Receiver Operating Characteristic) curves of sf3 show the True
Positive (Sensitivity) and False Positive (1-Specificity) for the best different thresh-
olds using kernel property of SVM.

Figure C.4: ROC (Receiver Operating Characteristic) curves of sf4 show the True
Positive (Sensitivity) and False Positive (1-Specificity) for the best different thresh-
olds using kernel property of SVM.
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Figure C.5: ROC (Receiver Operating Characteristic) curves of sf5 show the True
Positive (Sensitivity) and False Positive (1-Specificity) for the best different thresh-
olds using kernel property of SVM.

Figure C.6: ROC (Receiver Operating Characteristic) curves of sf6 show the True
Positive (Sensitivity) and False Positive (1-Specificity) for the best different thresh-
olds using kernel property of SVM.
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Figure C.7: ROC (Receiver Operating Characteristic) curves of sf7 show the True
Positive (Sensitivity) and False Positive (1-Specificity) for the best different thresh-
olds using kernel property of SVM.

Figure C.8: ROC (Receiver Operating Characteristic) curves of sf8 show the True
Positive (Sensitivity) and False Positive (1-Specificity) for the best different thresh-
olds using kernel property of SVM.
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Figure C.9: ROC (Receiver Operating Characteristic) curves of sf9 show the True
Positive (Sensitivity) and False Positive (1-Specificity) for the best different thresh-
olds using kernel property of SVM.

Figure C.10: ROC (Receiver Operating Characteristic) curves of sf10 show the True
Positive (Sensitivity) and False Positive (1-Specificity) for the best different thresh-
olds using kernel property of SVM.
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Figure C.11: ROC (Receiver Operating Characteristic) curves of sm1 show the True
Positive (Sensitivity) and False Positive (1-Specificity) for the best different thresh-
olds using kernel property of SVM.

Figure C.12: ROC (Receiver Operating Characteristic) curves of sm2 show the True
Positive (Sensitivity) and False Positive (1-Specificity) for the best different thresh-
olds using kernel property of SVM.
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Figure C.13: ROC (Receiver Operating Characteristic) curves of sm3 show the True
Positive (Sensitivity) and False Positive (1-Specificity) for the best different thresh-
olds using kernel property of SVM.

Figure C.14: ROC (Receiver Operating Characteristic) curves of sm4 show the True
Positive (Sensitivity) and False Positive (1-Specificity) for the best different thresh-
olds using kernel property of SVM.
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Figure C.15: ROC (Receiver Operating Characteristic) curves of sm5 show the True
Positive (Sensitivity) and False Positive (1-Specificity) for the best different thresh-
olds using kernel property of SVM.

Figure C.16: ROC (Receiver Operating Characteristic) curves of sm6 show the True
Positive (Sensitivity) and False Positive (1-Specificity) for the best different thresh-
olds using kernel property of SVM.
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Figure C.17: ROC (Receiver Operating Characteristic) curves of sm7 show the True
Positive (Sensitivity) and False Positive (1-Specificity) for the best different thresh-
olds using kernel property of SVM.

Figure C.18: ROC (Receiver Operating Characteristic) curves of sm8 show the True
Positive (Sensitivity) and False Positive (1-Specificity) for the best different thresh-
olds using kernel property of SVM.
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Figure C.19: ROC (Receiver Operating Characteristic) curves of sm9 show the True
Positive (Sensitivity) and False Positive (1-Specificity) for the best different thresh-
olds using kernel property of SVM.

Figure C.20: ROC (Receiver Operating Characteristic) curves of sm10 show the True
Positive (Sensitivity) and False Positive (1-Specificity) for the best different thresh-
olds using kernel property of SVM.
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Figure C.21: ROC (Receiver Operating Characteristic) curves of sfm1 show the True
Positive (Sensitivity) and False Positive (1-Specificity) for the best different thresh-
olds using kernel property of SVM.

Figure C.22: ROC (Receiver Operating Characteristic) curves of sfm2 show the True
Positive (Sensitivity) and False Positive (1-Specificity) for the best different thresh-
olds using kernel property of SVM.
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Figure C.23: ROC (Receiver Operating Characteristic) curves of sfm3 show the True
Positive (Sensitivity) and False Positive (1-Specificity) for the best different thresh-
olds using kernel property of SVM.

Figure C.24: ROC (Receiver Operating Characteristic) curves of sfm4 show the True
Positive (Sensitivity) and False Positive (1-Specificity) for the best different thresh-
olds using kernel property of SVM.
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Figure C.25: ROC (Receiver Operating Characteristic) curves of sfm5 show the True
Positive (Sensitivity) and False Positive (1-Specificity) for the best different thresh-
olds using kernel property of SVM.

Figure C.26: ROC (Receiver Operating Characteristic) curves of sAll show the True
Positive (Sensitivity) and False Positive (1-Specificity) for the best different thresh-
olds using kernel property of SVM.
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Figure C.27: The ROC area or Area under ROC curve (AROC) versus various values
of the regularisation parameter C when (a) σ = 0.1 and C = 10 and (b) σ = 0.1 and
C = 10.

Figure C.28: The ROC area or Area under ROC curve (AROC) versus various values
of the regularisation parameter C when (a) σ = 1 and C = 1 and (b) σ = 0.1 and
C = 1.
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Figure C.29: The ROC area or Area under ROC curve (AROC) versus various values
of the regularisation parameter C when (a) σ = 1 and C = 10 and (b) σ = 1 and
C = 10.

Figure C.30: The ROC area or Area under ROC curve (AROC) versus various values
of the regularisation parameter C when (a) σ = 1 and C = 10 and (b) σ = 0.1 and
C = 10.
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Figure C.31: The ROC area or Area under ROC curve (AROC) versus various values
of the regularisation parameter C when (a) σ = 0.1 and C = 10 and (b) σ = 0.1 and
C = 10.

Figure C.32: The ROC area or Area under ROC curve (AROC) versus various values
of the regularisation parameter C when (a) σ = 0.1 and C = 1 and (b) σ = 0.1 and
C = 1.
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Figure C.33: The ROC area or Area under ROC curve (AROC) versus various values
of the regularisation parameter C when (a) σ = 0.1 and C = 0.1 and (b) σ = 1 and
C = 10.

Figure C.34: The ROC area or Area under ROC curve (AROC) versus various values
of the regularisation parameter C when (a) σ = 0.1 and C = 1 and (b) σ = 0.1 and
C = 0.1.
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Figure C.35: The ROC area or Area under ROC curve (AROC) versus various values
of the regularisation parameter C when (a) σ = 1 and C = 1 and (b) σ = 0.1 and
C = 1.

Figure C.36: The ROC area or Area under ROC curve (AROC) versus various values
of the regularisation parameter C when (a) σ = 0.1 and C = 10 and (b) σ = 1 and
C = 10.
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Figure C.37: The ROC area or Area under ROC curve (AROC) versus various values
of the regularisation parameter C when (a) σ = 1 and C = 10 and (b) σ = 1 and
C = 10.

Figure C.38: The ROC area or Area under ROC curve (AROC) versus various values
of the regularisation parameter C when (a) σ = 0.1 and C = 10 and (b) σ = 1 and
C = 10.
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Figure C.39: The ROC area or Area under ROC curve (AROC) versus various values
of the regularisation parameter C when (a) σ = 1 and C = 1 and (b) σ = 1 and
C = 10.
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Figure C.40: The decision boundary when the SVM model trained on sf1 female
group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1 and C = 1, and
(c) σ = 0.1 and C = 10.
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Figure C.41: The decision boundary when the SVM model trained on sf2 female
group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1 and C = 1, and
(c) σ = 0.1 and C = 10.
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Figure C.42: The decision boundary when the SVM model trained on sf3 female
group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1 and C = 1, and
(c) σ = 0.1 and C = 10.
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Figure C.43: The decision boundary when the SVM model trained on sf4 female
group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1 and C = 1, and
(c) σ = 0.1 and C = 10.
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Figure C.44: The decision boundary when the SVM model trained on sf5 female
group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1 and C = 1, and
(c) σ = 0.1 and C = 10.
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Figure C.45: The decision boundary when the SVM model trained on sf6 female
group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1 and C = 1, and
(c) σ = 0.1 and C = 10.
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Figure C.46: The decision boundary when the SVM model trained on sf7 female
group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1 and C = 1, and
(c) σ = 0.1 and C = 10.
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Figure C.47: The decision boundary when the SVM model trained on sf8 female
group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1 and C = 1, and
(c) σ = 0.1 and C = 10.
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Figure C.48: The decision boundary when the SVM model trained on sf9 female
group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1 and C = 1, and
(c) σ = 0.1 and C = 10.
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Figure C.49: The decision boundary when the SVM model trained on sf10 female
group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1 and C = 1, and
(c) σ = 0.1 and C = 10.
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Figure C.50: The decision boundary when the SVM model trained on sm1 male group
walk patterns, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1 and C = 1, and (c)
σ = 0.1 and C = 10.
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Figure C.51: The decision boundary when the SVM model trained on sm2 male group
walk patterns, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1 and C = 1, and (c)
σ = 0.1 and C = 10.
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Figure C.52: The decision boundary when the SVM model trained on sm3 male group
walk patterns, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1 and C = 1, and (c)
σ = 0.1 and C = 10.
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Figure C.53: The decision boundary when the SVM model trained on sm4 male group
walk patterns, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1 and C = 1, and (c)
σ = 0.1 and C = 10.
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Figure C.54: The decision boundary when the SVM model trained on sm5 male group
walk patterns, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1 and C = 1, and (c)
σ = 0.1 and C = 10.
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Figure C.55: The decision boundary when the SVM model trained on sm6 male group
walk patterns, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1 and C = 1, and (c)
σ = 0.1 and C = 10.
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Figure C.56: The decision boundary when the SVM model trained on sm7 male group
walk patterns, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1 and C = 1, and (c)
σ = 0.1 and C = 10.
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Figure C.57: The decision boundary when the SVM model trained on sm8 male group
walk patterns, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1 and C = 1, and (c)
σ = 0.1 and C = 10.
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Figure C.58: The decision boundary when the SVM model trained on sm9 male group
walk patterns, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1 and C = 1, and (c)
σ = 0.1 and C = 10.
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Figure C.59: The decision boundary when the SVM model trained on sm10 male
group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1 and C = 1, and
(c) σ = 0.1 and C = 10.
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Figure C.60: The decision boundary when the SVM model trained on sfm1 male
group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1 and C = 1, and
(c) σ = 0.1 and C = 10.
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Figure C.61: The decision boundary when the SVM model trained on sfm2 male
group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1 and C = 1, and
(c) σ = 0.1 and C = 10.
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Figure C.62: The decision boundary when the SVM model trained on sfm3 male
group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1 and C = 1, and
(c) σ = 0.1 and C = 10.
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Figure C.63: The decision boundary when the SVM model trained on sfm4 male
group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1 and C = 1, and
(c) σ = 0.1 and C = 10.
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Figure C.64: The decision boundary when the SVM model trained on sfm5 male
group walk patterns, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1 and C = 1, and
(c) σ = 0.1 and C = 10.
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Figure C.65: The decision boundary when the SVM model trained on sAll male group
walk patterns, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1 and C = 1, and (c)
σ = 0.1 and C = 10.
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