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Abstract The objective of the work presented in this paper was to generate the thermodynamically 

consistent coupled thermo-elastic-plastic damage model of solid media at a macroscopic level applicable to 
hypervelocity impacts. The model is based on the thermodynamics of irreversible processes and the assumption 
that damage within a continuum can be represented as a damage tensor ijω  [1], [4]. This allows for definition 

of two scalars that are 3/kkωω = (the volume damage) [2], [3] and ijijωωα ′′= (a norm of the damage 

tensor deviator ijijij ωδωω −=′ ) [4]. The parameter ω  describes the accumulation of micro-pore type 
damage (which may disappear under compression) and the parameter α  describes the shear related damage. 
The parameter ω  may be considered as a volume content of micro-pores in the material. In the damage-free 
material we have 0==αω ; if damage is accumulated, ω  and α  increase in such a manner that they remain 
less than one. This damage evolution is then coupled to a strain, strain-rate and temperature dependent 
plasticity model. The initiation of failure is based on a critical value of a specific dissipation function. The 
performance of the model in modelling high velocity impacts is illustrated by few numerical examples. 

Keywords: damage, ductile failure, irreversible thermodynamics, dissipation. 

1. Introduction 
Thermo-mechanical processes which occur in deformable solids under intensive dynamic loading consist of 

coupled mechanical, thermal and structural stages. The structural processes involve the formation, motion and 
interaction of defects in metallic crystals, phase transitions, breaking of bonds between molecules, 
accumulation of micro-structural damages (pores, cracks), etc. Irreversible deformations, zones of adiabatic 
shear and micro-fracture are caused by these processes. Dynamic fracture is a complicated multistage process 
which includes the initiation, evolution and coalescence of micro-defects (damage) and cracks. 

The development of fracture mechanics originated in the papers of Kachanov [2] and Rabotnov [3], dealing 
with theory of creeping of materials, where one scalar damage parameter was introduced. Some time later, 
Ilyushin [1] proposed tensor damage. Attempts to introduce these tensors are currently being considered [4], [5-
7]. The introduction of the damage parameters into the system of internal variables and the use of 
thermodynamic principles of continuum mechanics allows the construction of thermodynamically-correct 
coupled models of solids with damage Coleman [4] and [6, 7]. 
 

The model presented in this paper is constructed within the framework of continuum damage mechanics is 
used to describe the initiation and evolution of damage under impact loadings. The damage growth ultimately 
results in the initiation of macro-cracks. The model for ductile fracture is intended for isentropic damage 
conditions including the commonly observed stages of ductile fracture:   
The formation of voids  
The growth of voids due to plastic straining and hydrostatic stress 
The coalescence of growing voids leading to fracture 
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The model allows for spherical and ellipsoidal microvoids whose size, shape and orientation can evolve. The 
thermodynamic potential is a quadratic, that can also be used to define a yield function, in which the MTS 
model is used to define flow stress.  

 

2. Basic Thermodynamics Assumptions 
 
The basic premise of the theory of a thermo-elastic-plastic medium with damage is that the state of material 

at any point within continuum is fully determined by:  
 
The elastic and plastic parts of the full strain tensor, i.e. the rate of deformation is can be divided into elastic 
and plastic parts: ep εεε &&& ~~~ += , plastic rate of deformation is regarded as incompressible 0=p

kkε&  as it is in 

the basic theory of plasticity and elastic strains are assumed small: 1~:~ <<ee εε .  

The temperature or entropy s , (Where ie dsdsds += , eds - is the differential of external entropy, ids - is 
the differential of internal entropy which describes the irreversibility of deformation), Damage parameters ω  
and α , which describe the void growth in solids, ℜwhich characterize the extent of work hardening. 

 
Further, the derivation is done using Lagrange’s (material) coordinates. Besides, it is assumed that the 

system meets conservation laws of mass and momentum. Having in mind that the objective is modeling of high 
velocity impacts a further assumption is made that the deformation process is adiabatic and consequently there 
is neither heat exchange nor heat source within the material.   

Using Lagrange’s coordinate system regarding current configuration the first law of thermodynamics 
(conservation of energy equation) in differential form is: 
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The second law of thermodynamics could be expressed in the form of Clausius-Duhem inequality: 
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On introducing free energy TsUF −=  in place of internal energy U  Equation (1) could be rewritten in 
the following form: 
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The inequality Equation (3), using Equation (4) takes the form: 
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The free energy being the function of state parameters ),,,,~,~( ℜ= αωεε TFF pe , pe εεε &&& ~~~ += , the 
inequality Equation (5) yields the following condition valid for all the processes taking place within the 
continuum: 
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It follows from Equation (6) that: 
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Using Equation (7) the inequality Equation (6) can be transformed as follows: 
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Equations (9) show that the accumulation of dissipation process is governed not by actual stresses ∑
~

, but by 
the dissipation contributing stress defined by the expression in brackets.  The dependency of F  on plastic 
deformation pε~ , allows for the strain anisotropy of the material to be taken into account in plastic deformation.   
 
Making use of Equation (9) and TsUF −=  Equation (1) could be written in the following form: 

qdds FM
r

& ⋅∇−+=ρ                                             (10) 
 

The general equations developed above are applied to modeling damage in metals by making the following 
assumptions: 

 
1. Elastic strains are small: 1~:~ <<ee εε  
2. The dissipation function Equation (8) is a sum of three non-negative terms defined by Equations (9):   
 

0≥Md , 0≥Fd , 0≥Td                                          (11) 
 
According to Duhamel’s law for heat conductivity Tgradq ⋅−= κr

 thermal dissipation is non-negative, i.e.:   
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Where: 0>κ -is a symmetrical heat conductivity tensor (positive semidefinite).  
 
 
The hypothesis 01 ≥Md - is easy to proof using Clausius - Plank’s inequality. 0~:~

≥−−∑ TsFp &&&ε . 
 
3. For dissipation due to development of damage and fracturing the following equations of state are assumed:   
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The relationship Equation (13) establishes a linear functional dependence between the thermodynamic force 
and thermodynamic flux in accordance with Onsager theory. Therefore, dissipation due to damage and fracture 
is non-negative 0≥Fd  and dissipation due to of work hardening 02 ≥Md .   
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4. The free energy of the medium could be presented in the form of a sum of two terms:   

),~(),~( 21 TFTFF pe εε +=                                         (14) 
 
The first equation of state in Equations (7) combined with Equations (13) is equivalent to an assumption that 
accumulated plastic deformation does not lead to any variations of elastic properties of the material.   
 
Furthermore, the following relationship: 
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is assumed, where 0≥Γ is the parameter for material strain anisotropy, which characterizes the strain 
anisotropy which develops due to the plastic deformation.   
 
5. It is assumed that all thermodynamic potentialsU , F  and S contain one term that depends only on 
temperature, for example:   

)~,(ˆ)()~,( 0 ii TFTFTF µµ +=                                         (16) 
 

6. For free energy it is assumed that   
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7. Elastic parameter Lameλ , shear modulusµ , dynamic viscosityη , yield stress Y  are functions of the 
damage parametersω , α : 

)1)(1(0 αωλλ −−= , )1)(1(0 αωµµ −−= , )1)(1(0 αωηη −−= , )1)(1(0 αω −−= YY   (18) 

Where: 0K , 0µ , 0η , 0Y are material parameters in an undamaged state.   
 
8. The kinetic (evolution) equations for ω  and α have the following form [4], [5]:   
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The kinetic equation for the volume damage ω  consists of three terms. The first one has the form of the 
Tuler – Bucher equation [9] and describes the initiation and growth of the volume damageω .  The second term 
takes into account the viscous void growth in tension, while the third term describes the viscoplastic flow in 
compression see Kiselev, Lukyanov [4].  
 

3. Constitutive Assumptions 
The behaviour of materials under general three-dimensional stress states is usually simulated by 

decomposing the stress into hydrostatic components (pressure term) and deviatoric components. The two 
formulations are taken to be independent of each other since plastic flow is considered to be independent of 
pressure at low pressures for fully dense metals. At very high pressures, some attempts have been made to 
incorporate pressure dependence into the yield criterion [10]. 

From the continuum point of view simplest model of rate-dependence plasticity requires the specification of  
rate of plastic deformation, thermodynamic force according to the hardening parameter and rate of work 
hardening:  
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In the literature of adiabatic shearing and plasticity see Wright [11], the usual practice is to specify a flow 
rule corresponding to the Equation (24) and a work hardening relation corresponding to the Equation (25), but 

to ignore the specification of the thermodynamic force ( )ℜℜ ,,~ˆ TQ . In this work we take into account the 

thermodynamic force which is described through the Onsager theory by the Equation (23). Equations (23) and 
(25) give contribution to the system of constitutive equation as it will be shown further. 

Mathematical models for effect of temperature and strain rate generally fall into one of two categories. 
Either the modelling is strictly empirical and intended only to capture dominant effects over a limited range of 
variables, or it is based on arguments from more or less elementary dislocation dynamics and then calibrated by 
choosing unknown parameters so as to fit selected data. 

3.1 Description of Mechanical Threshold Stress (MTS) model 
MTS stands for mechanical threshold stress (see 11-13]) and refers to internal variable (or variables) that 

evolves as plastic deformation progresses. The basic idea is the same as that used by Zerilli and Armstrong, that 
the stress required to move a single dislocation past an obstacle is composed of both thermal and athermal 
components. The strain rate for the thermal component obeys an Arrhenius law. The flow stress can be written 
in the following form: 
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where n  is number of different types of impediments to the motion of dislocation, and the power m  is chosen 
empirically, 21 ≤≤ m . The term aℜ  is called an athermal stress and may be either a constant or an evolution 

internal variable, and the if̂  are called structural variables that also evolve as deformation progresses, 

),( Tf p
i γ& . 

In this paper the following flow stress is considered: 
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where µ  is shear modulus, 0µ  is shear modulus at the reference temperature, ),(1 Tf ε&  is thermal activation 

function. Function 1̂f  evolves with strain and can be described as following relation: 
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where 0θ  is hardening (initial) due to dislocation accumulation, rθ  is the dynamic recovery rate. Assumption 
that rate of hardening decreasing with increasing deformation is assumed and Equation (27) can be written in 
the following form: 
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where )ˆ( fF  is empirically derived dynamic recovery rate. To complete system of equation which is 

described flow stress several function of )ˆ( fF  was suggested. One of the expression can be written in the 
following rule:   
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where α  is an empirical best-fit constant which dictates the rate at which saturation is achieved, esf̂  is 

temperature and rate-sensitive saturation stress, 1̂f  represents flow stress contribution. Relationships for initial 

strain hardening rate 0θ  and saturation threshold stress esf̂  can be expressed as follows: 
naaa εεθ && 2100 )ln( ++=                       (31) 
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where A  is material constant, k  is Boltzmann’s constant, b  is magnitude of Burger’s vector, 0
êsf  is 

saturation threshold stress at “0” K. Thermal activation function is a function of absolute temperature and strain 
rate and defines the ratio between the flow stress and mechanical threshold stress. This function can be 
obtained from the Arrhenius law with activation energies and temperature as follows: 
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where p , q  are material constant, 0ε&  is reference strain rate, µ  is shear modulus, k  is Boltzmann’s 

constant, b  is magnitude of Burger’s vector, 0g  is normalized activation energy. 

3.2 Constitutive Relation  
In order to obtain close system of constitutive equations the stress-strain relation should be defined. In a 

case of high velocity (shock inducing) impact the spherical part of stress tensor is described by the EOS. Using 
Equation (7), (13), (19), (20), (21), (25) the following relation can be written: 
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Using Equation (34), (35), (36), (39) the relation for deviatoric part of stress tensor (isotropic case) the 
following expression can be written: 
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4. Criteria for Fracture Initialization 
The development of intensive plastic flow and accumulation of damage are processes that precede fracture. 

Macroscopic failure starts as formation of new free surfaces in the material − the sides of a crack. The criterion 
for the macroscopic failure is based on the entropy criterion for the specific critical dissipation [4]: 

                     ( )dtdddD
t

TFM∫ ++=
*

0
*

1
ρ

                           (26) 

where: *t  is the time required for the macroscopic failure to start, *D is a material constant (critical specific 

entropy), Md , Fd  and Td  are mechanical dissipation, dissipation due to fracture (dissipation of continuum 
fracture) and thermal dissipation.   

When the criterion, given in Eq. (26), is satisfied at a point in the material, a crack forms at that location. 
The approach used to redefine the grid and map the parameters on to the new grid is in itself an independent 
problem in the framework of computational mechanics [14] and is not addressed in this paper.  

The proposed approach is capable of modeling tensile and compressive/shear types of failure. If material is 
undergoing large rapid plastic deformation then the major contribution to dissipation, Eq. (26), is made by 

Md and by term 2
1ω&Λ  in Fd . As for the development of shear plastic flow with formation of zones of 

adiabatic shear, the major contribution to dissipation D  is made by Md , Td  and by the term 2
2α&Λ  in Fd . 

4.1 Definition of Material Constants 
 
The proposed damage model uses some non-standard constants related to damage parameters which ought 

to be determined.  
To determine the MTS parameters a series of uniaxial tensile tests was performed in the temperature range 

-70ºC to 200ºC and for the strain rate range 1310 −− s  to 1100 −s .  An example of the test data used to fit the 
parameters is shown in Figure 4.1.   
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Figure 4.1  An example of tensile test data used to fit the MTS parameters for AA7010   
 
 
 
 
 

 
Figure 4.2 Longitudinal stress vs. time for the plate impact tests on AA 7010  

 
The definition of the two damage parameters requires the following constants: B, C, 1Λ , 2Λ , 0η  *∑ , 

*
иℜ , *D  In order to determine these constants, a method based on combination of experiments and numerical 

modelling of the plate impact problem was used [4], [13], [14].  Note that experiments with spall failure are 



© 2004, The First International Conference on Computational Mechanics (CM’04) 
Belgrade, Serbia and Montenegro, November 15-17, 2004 

http://www.cm2004.matf.bg.ac.yu 
Printing Faculty of Mathematics, University of Belgrade 

 
nowadays the most common tool for construction of dynamic constitutive equations for materials [4,13,14]. 

Experimental data used to determine the material parameters is shown in Figure 4.2.  It corresponds to 
plate impact tests for Al alloy 7010 at two velocities V=895, 450 and 234 m/s.  In the tests performed at V=234 
and 450 m/s no spall was observed while in the test at V=895 m/s the specimen fully spalled.  The tests were 
performed in Cranfield’s gas gun facility.   
 

5. Validation of the Model  

5.1 Taylor Test 
Taylor cylinder specimens, 9.3 mm diameter with length 46.5 mm giving the length-to-diameter ratio L/D=5, 
were cut of from AA7010 rolled plate.  A test coordinate system (axes X, Y, Z) aligned with the material 
coordinate system was adopted such that compressive impact loading was applied along Z-axis, see Figure 5.1. 

 
Figure 5.1 Schematic drawing of a Taylor cylinder impact test 
 

Several Taylor tests were conducted at velocities of 200, 214, 244, 400 m/s, using a single stage gas gun.   

 

 
Side View             Footprint 

Fig. 5.2 Photographs of the post-test geometry for the AA 7010 Taylor specimen V=200 m/s 

Figures 5.2 and 5.3, present photographs of side profiles for the velocities of 200 m/s and 214 m/s, 
respectively, along with the footprints from a typical post-impact specimen. The observed footprints were 
asymmetric (elliptical) with a different level of eccentricity.   
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       Side view              Footprint 

Fig. 5.3. Photographs of the post-test geometry for the AA 7010 Taylor specimen V=214 m/s 

Tests were performed at velocities 244, 400 m/s resulted in failure dominated by shear and were not of direct 
relevance to the work presented in the paper.   

 
Geometries for the deformed specimens were digitised using a 3D scanning machine.  The geometrical data of 
specific interest was side profiles for minor and major axis.  Final specimen heights are: 42.2 mm for specimen 
impacted at 200 m/s, and 42.1 mm for specimen impacted at 214 m/s.  Eccentricity (ratio of major to minor 
diameters) for the specimen impacted at 200 m/s was 1.04, and eccentricity for specimen impacted at 214 m/s 
was 1.06.  Figure 5.4 shows comparison of minor and major side profiles of post-test geometry plotted as radial 
strain vs. distance. 

 
 

 
 

Fig. 5.4. Comparisons of the major and minor axis profiles of post-test geometry for the AA 7010 Taylor 
specimens impacted at 200 and 214 m/s plotted as radial strain vs. distance 
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5.2 Taylor test simulation 
 
In order to analyse proposed model for tensile failure, it was implemented in DYNA3D code and incorporated 
into MTS material model. The strength material model was used in the combination with a Gruneisen Equation 
of State. The material parameters of the Gruneisen Equation of State for AA 7010 are summarized in the Table 
5.1.  A series of FE simulations of Taylor cylinder impact test were performed for AA7010.  In the simulations 
the sgcm µ−−  system of units was used. 
 
Table 5.1. Grunisen EOS constants 

Parameter Description Nominal value 
C0 Bulk sound speed 0.5386 scm µ/  
S1 First Hugoniot slope coefficient 1.339 
S2 Second Hugoniot slope coefficient 0 
S3 Third Hugoniot slope coefficient 0 

0γ  Gruneisen coefficient 1.97 

B First order volume correction coefficient 0.48 
E0 Initial internal energy 0.0 
V0 Initial relative volume 1.0 
 

On the basis of published data for spall strength for aluminium alloy AA 7020 [17] (Figure 5.5), 
parameters, which are included in proposed failure criterion, were determined as: threshold stress 

GPa05.10 =σ , normalized activation energy 0087.00 =u  and critical time stc µ20 = . 
Values of the other parameters, which are included in the proposed criterion are: Boltzmann’s constant 

K
JXk 231038.1 −= , Burger’s vector mXb 910286.0 −= , and 

Shear modulus 
1)exp(

0

−
−=

T
b
bb

2

1µ , where GPab 83.280 =  is shear modulus at 0K, and 

GPab 45.41= , Kb 5.2482 = . 
 

 
Figure 5.5. Normalized critical spall stress versus critical time of loading for AA7020 

 

In order to reduce the number of elements in the simulations model, and the overall time of 
simulations, only quarter of Taylor cylinder was modelled with a uniform solid butterfly mesh. 
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                V=214 m/s 
Figure 5.6. Damage distribution at response time t=9 µs and t= 25 µs in AA7010 Taylor specimen for impact 
velocity V=200 m/s 

 
Damage generated in Taylor specimen for impact velocity of 200 m/s at two different response times 

is shown in Figure 5.6.  Loading that material is exposed to generates tensile stresses in materials, leading to 
damage and fracture, if the amplitude and duration of the loading are sufficient. This computer simulation 
showed that reflected compressive and lateral release waves interacting in the specimen, generated tensile 
stresses high enough to cause development of damage and fracture.  The damage is distributed in the region 
around the axis of the cylinder close to the impact surface. The voids that developed and coalesced in the initial 
stage of the impact were compressed at the later stages of the cylinder deformation process (see Figure 5.6).   

 
 

Implemented damage model initiates damage if the mean stress become more tensile then the specific 
limit, threshold stress. Once initiated, damage evolves according to the proposed cumulative law and when the 
criterion for macroscopic failure is reached the elements fails and is removed from calculation.   
 

Comparisons of simulated Taylor cylinder profile with minor and major side profiles of post-test 
geometry for Taylor specimens impacted at 200 m/s and 214 m/s are presented in Fig. 5.7 and Fig. 5.8. 
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Fig. 5.7. Major and minor side profile of post-test geometry and simulation results for the AA 7010 Taylor 
specimen impacted at 200 m/s plotted as radial strain vs. distance 
 

 
Fig. 5.8. Major and minor side profile of post-test geometry and simulation results for the AA 7010 Taylor 
specimen impacted at 214 m/s plotted as radial strain vs. distance 
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6.  Summary 
Parameters for constitutive relations were derived on the basis of tensile and plate impact tests, and used as 
input parameters for numerical simulation of Taylor impact test for AA7010. 
Comparing the experimental with DYNA3D simulation results, which incorporated the proposed damage 
model with MTS constitutive model, the following conclusions can be made. 
Simulations clearly show, that proposed damage/failure model, based on the assumption that fracture process 
occurs with assistance of thermal activation processes, together with MTS constitutive relation, can simulate 
high strain rate deformation processes and dynamic failure in tension.  
The MTS flow stress model needs to be carefully characterized for the material of interest within strain, strain 
rate and temperature regime to obtain accurate calculation results, in this case capturing the cylinder specimen 
heights, and axial major and minor distributions of plastic strain.   
Proper validation of the damage model will be done when analysis of damage in the test specimens is 
completed.   
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