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ABSTRACT 
Gas turbines operational requirements continue to become more demanding in response to 

the need for extended component life, increased reliability and improved overall efficiency. To 
support these requirements, new model-based gas turbine control and diagnostics concepts 
have been introduced. 

Traditionally gas turbine control system transforms real engine limits, into limits which 
are based on measured engine variables. As a result of that, engines operate with increased 
safety margins and thus with non-optimal performance. To overcome this problem model 
based control concepts have been proposed. Model based control approach exploits real-time 
on-line engine models to estimate control feedback signals, enabling the implementation of 
novel control methods. 

Model-based diagnostics employs engine models tuned to match the observed engine state 
in the same manner as model-based control. The residual deviations between predicted and 
sensed parameters are modelled, again usually as variations in component losses and flow 
capacity, and the best match is used to identify likely component degradation modes and 
faults. 

The use of model based techniques to diagnose and adaptively manage degradation of 
engine component characteristics is crucial for operational effectiveness of gas turbines. This 
paper gives overview of current and evolving model-based techniques and discusses benefits 
of these concepts in operational management of the gas turbines. 
 

NOMENCLATURE 
DDM   Data Driven Modelling 
EHM   Engine Health Monitoring 
GPA   Gas Path Analysis 
LEC   Life Extending Control 
MBT   Model Based Tracking 
MBD   Model Based Diagnostics 

MBP   Model Based Prognostics 
MBIA   Model Based Isolation &     Accommodation 
MBC   Model Based Control 
MPC   Model Predictive Control 
PBM   Physics Based Modelling 

 
INTRODUCTION 

Model based techniques exploit real-time engine models to estimate gas turbine internal 
conditions, enabling in that way implementation of novel control and diagnostic methods. Model-
based information is the foundation of many diagnostics and control strategies, ranging from simple 
thresholding to sophisticated pattern recognition methods. 

Engine performance is represented by a set of so-called health parameters. These health 
parameters deviate from initially healthy baseline values as the engine components degrade. 
Estimation of health parameters from engine data is often referred to as gas path analysis (Urban, 
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1972, 1974). The use of weighted-least-square estimation (Doel, 1992, 1993) and Kalman Filters 
(Kobayashi et al., 2003, 2005), are widely used for gas path analysis (GPA). More recently various 
techniques such as Neural Networks (Ogaji, 2003), Bayesian Belief Networks (Lee et al., 2010), 
Genetic Algorithms (Sampath et al., 2003), Polynomial Functions (Cerri et al.,2011) and different 
hybrid methods (Volponi et al., 2005, 2007) have been explored for use in performance fault 
diagnosis and tracking. 

Most gas turbine diagnostics tools are based on engine steady state measurements, because 
during engine life most of the time engine will operate at steady state conditions. However, 
significant diagnostic content can be found in transient operation of engine, and hence transient gas 
turbine performance deterioration and diagnosis were analyzed by many researchers (Merrington, 
1988, 1993, Meher-Homji and Bhargava, 1992, Bird and Schwartz, 1994). 

Engine models used in gas turbine diagnostics fulfill two main purposes. Firstly they are used to 
determine performance baseline in order to calculate differences between measurements and such a 
baseline. Secondly they are used for obtaining fault signatures, which represent different engine 
faults and degradation mechanisms. 

We can also recognize two different approaches in gas turbine diagnostics. Goal of system 
identification technique is to determine gas turbine fault parameters that minimize difference 
between measured engine variables and model-based variables usually obtained by physics based 
models (PBM). Second approach is based on pattern recognition technique and mostly uses data-
driven models (DDM). Once when fault pattern is available, a data-driven recognition tool is 
usually trained without detailed knowledge of the gas turbine system, and used for diagnostic 
purposes.  

The data driven models, e.g. artificial neural network models, give relationship between input 
and output variables that can be obtained on the basis of available real data without the need of gas 
turbine system knowledge. This can be seen as an advantage over physics based models, because 
this approach has a theoretical possibility to exclude model inaccuracy from diagnostic process. 
Disadvantage of data driven approach is reduced availability of data that can be used to form a 
representative fault classification because of the occasional occurrence of faults and on the other 
hand high cost of real fault simulation on a test bed. 

The physics based models, e.g. thermodynamic models, require detailed knowledge of the gas 
turbine, and generally present more or less complex software. Physical models usually consist of set 
of different component models. Behaviour of single components is described by physical equations 
or by using component characteristics, which are obtained using rig tests or various prediction tools. 
The main drawback of physics based modelling approach is that model inaccuracy can cause 
elevated errors in estimation of fault parameters. 

 
GAS TURBINE PERFORMANCE MODELLING 

Gas turbine thermodynamic models are physics based models, and they are extensively used for 
simulation of steady state and transient behaviour of gas turbine engines. Over the years steady 
state thermodynamic models establish themselves as a main tool in gas turbine gas path analysis. 
Mathematically, these are non-linear steady state models, represented by system of algebraic 
equations reflecting mass, heat and energy balance for all components operating under stationary 
conditions. Steady state thermodynamic model computes vector y  of gas path monitored variables, 
as a function of steady state variables x , control variables u  and operating conditions v : 
 

( )vuxgy ,,=           (1) 

To describe various types of gas turbine deterioration and faults such as fouling, tip rubs, 
erosion, etc., this set of equations could be augmented with an additional state vector h  containing 
health or fault parameters characterizing different engine degradation modes: 

( )vuhxgy ,,,=           (2) 
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For given steady state operating point above model can be reduced to: 
( )hgy =            (3) 

Simplified model can be obtained by linearization of nonlinear dependency between gas path y  
and health h  parameters determined for a fixed steady state operating conditions: 

hHy δδδδδδδδ =            (4) 
This linear steady state model connects vector of hδδδδ  small changes of the health or fault 

parameters with a vector yδδδδ of the corresponding relative deviations of the monitored variables by 
influence matrix H . 

Although most of the diagnostics methods are developed at steady state, current trend 
demonstrates increasing interest in the diagnostics during transient operation (Loboda et al., 2006). 
Dynamic physics based models are used to describe behaviour of engine under transient conditions. 
Non-linear dynamic model is described with following generalized system of equations: 

( ) ( ) ( ) ( )( )ttvtutxftx x ,,,=&         (5.1.) 

( ) ( ) ( ) ( )( )ttvtutxgty ,,,=          (5.2.) 
where x  and u  stand for the state and the input variables, respectively, and t  is the time. In steady 
state conditions, the left hand side in above equation (Eq.5.1.) is zero, and it degenerates into 
algebraic equation or system of equations. Second equation (Eq. 5.2.) is output equation that 
describes system output variables y . 

Many existing model-based methods are designed with assumption that the system exhibits 
linear behaviour in the neighbour of a steady-state operating point, and therefore linearization-based 
method are used. By linearizing the engine model (Eq. 5.1 and 5.2.) around a nominal operating 
conditions, i.e. 0x  and 0u , following linear dynamic model is obtained: 

( ) ( ) ( ) ( ) ( )tutBtxtAtx +=&          (6.1.) 

( ) ( ) ( ) ( ) ( )tutDtxtCty +=          (6.2.) 
where ( ) ( )tCtA ,  and ( ) ( )tDtB ,  are state and input distribution matrices, respectively, for the linear 
state and output equations. 

Above equations (Eq. 6.1. and Eq. 6.2.) represent a linear time-varying model, and in this 
general form, system matrices are functions of time. Further simplifications in the gas turbine model 
could be introduced by assuming that the system parameters are constant in time. In that case the 
system model simplifies to linear time-invariant model, which can be described with following set 
of equations: 

( ) ( ) ( )tButAxtx +=&          (7.1.) 

( ) ( ) ( )tDutCxty +=          (7.2.) 
where elements of system matrices A, B, C and D can be treated as constants. 

Approaches that involve linearizing engine dynamics around steady state conditions and 
subsequent blending of parameters and controllers for selected operating points can lead to rather 
complicated procedure. In addition, when the effects of various faults are included into account, 
modelling complexity could be significantly increased, which makes design of model-based 
techniques and their real-time implementation very difficult. Therefore, future model-based control 
(MBC) and model-based diagnostic (MBD) systems will benefit significantly from new methods 
that are directly based on intrinsic nonlinearities of the engine dynamics. 
 
Dynamic modelling 

The accurate modelling of engine behaviour is complex task, because of the large number of 
effects that have to be taken into account. For example, if compressor and combustor stability 
effects are considered by simulation tool, high frequency gas volume dynamics should be included 
in the model. These high dynamic effects are in the range of 1 kHz and are usually neglected by the 
dynamic models. On the other hand, heat transfer effects and shaft inertia associated with the low 



 4

frequency dynamics, are crucial for the dynamic behaviour of engine and control system, and are 
often considered by gas turbine transient models. When gas dynamics is not modelled, range of 
model sampling frequency reduces to 10 Hz. 

Typically dynamic models have a component-oriented architecture where an engine model is 
composed of modules representing individual components (Schobeiri, 1994, Visser and Broomhead, 
2000, Camporeale et al., 2006, Panov,  2009). The different component models are usually 
connected via conservation laws for mass, momentum and energy. The component models include 
conservation of mechanical energy for engine shafts, heat-soaking effects for metal parts (blades, 
discs and casing), and conservation of thermodynamic energy within different gas volume in the 
engine. This modelling approach generally leads to a set of non-linear differential equations, which 
can be solved by appropriate numerical methods such as integration algorithms. 

The detailed dynamics model of gas turbine engine can be expressed with a system of non-
linear differential equations in state space: 

( )vuxfx x ,,=&  

( )vuxgy mm ,,=           (8) 

( )vuxgy nn ,,=  

where x  is state coordinate vector, u  is control vector and v  is vector of operating conditions. 
Vector my  contains measurable observable parameters and vector ny  non-measurable parameters. 

As a gas turbine engine undergoes internal changes, these changes may be manifested in 
performance degradation. To account for this degradation original state and output equations could 
be augmented with an additional state vector h  containing health parameters:   

( )vuhxfx x ,,,=&  

( )vuhxgy mm ,,,=          (9) 

( )vuhxgy nn ,,,=  

The vector h  contains health parameters that indicate the engine health conditions. Health 
parameters are usually represented by efficiencies and flow capacities of the engine components. As 
they deviate from their normal health conditions, the performance delivered by each component 
degrades, and this can be recognized as a shift in component characteristics (Razak, 2007). 
Generally speaking, we can recognize two main reasons for engine performance deviation: engine-
to-engine variations and engine deterioration. 

The engine-to-engine variation accounts for manufacturing and assembly variation found in new 
engines, and it is based on engine parameter measurements of a sample of the engine population. 
This engine-to-engine variation, adds a normally distributed random value to the nominal value of 
each measured engine parameter.   

Over the lifetime of operation, engine components will undergo some amount of degradation. 
This deterioration may be gradual or abrupt. Some of the known deterioration mechanisms are 
seal and secondary flow leaks, clearance increases, erosion and fouling. While engine health 
deterioration is normal aging process that occurs in all engines as a result of usage, abrupt abnormal 
event such as foreign object damage are not predictable as they happen unexpectedly. 
 
PERFORMANCE TRACKING 

Since the gas turbine model represents “nominal” engine, it must be adapted or tuned to the 
performance of the real engine as it deviates from nominal baseline with time. To mitigate this 
problem, tuning of engine model can be performed so that model aligns to actual engine being 
monitored using model based tracking (MBT) approach (Fig. 1.). The idea behind this approach is 
to minimize the deviations or modelling errors of engine model that runs in parallel to gas turbine, 
by correcting parameters of “nominal” engine’s behaviour. This approach effectively removes the 
uncertainty introduced with engine to engine variability, different disturbances, unknown initial 
conditions and modelling simplifications. 
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Fig. 1. Performance tracking 

 
The tracking methods are usually based on the errors between the measured engine variables 

and the corresponding simulated variables, where generated errors are used to correct engine 
component characteristics. The measured variables z  are compared with simulated variablesmy , 

and then corresponding simulation error vector erry  is multiplied by a matrix K , where resulting 

vector is used to correct the model state variables x  and health parametersh . Therefore dynamic 
model described with system of equations Eq. 9., expanded with tracking filter takes following 
form: 

( ) ( )mx yzKvuhxfx ˆ,,ˆ,ˆˆ −+=&  

( )vuhxgy mm ,,ˆ,ˆˆ =          (10) 

( )vuhxgy nn ,,ˆ,ˆˆ =  

where function K  represents gain matrix, which determines model correction and sensitivity to 

measurement and modelling process noise. Vectors x̂  and ĥ  represent the estimates of the state 
variables and health parameters, and vectors mŷ  and nŷ  represent the estimates of the measurable 

and non-measurable model outputs, respectively. Gain matrix K  can be designed using linear 
quadratic theory to form Kalman filter gain matrix (Dewallef and Leonard, 2003, Tagashira et al., 
2009). Non-linear observer described with Eq. 10. is called Extended Kalman Filter and requires 
continuous evaluation when engine operating point is moving. 

DIAGNOSTICS 
Fault detection and isolation play a critical role in enhancing the engine reliability and reducing 

operating cost of gas turbine engines. Engine component degradation and faults may occur in 
various degrees of severity and at various locations, and numerous scenarios are possible. We can 
distinguish three general classes of engine faults, namely, sensor, actuator and gas turbine 
component faults. 

The detection process evaluates the residuals between measurements and estimates, and 
monitors if a fault has occurred. The approach commonly used for model–based diagnostics (Fig. 
2.) is composed of two steps (Jaw and Wang, 2006). First step consists of generation of residual 
signals from measurements and their nominal values: 

( ) ( ) ( )tytzt m−=ℜ          (11) 

followed by calculation of normalized relative deviation z∆  for measured variables from their 
nominal values: 

( ) ( )ty
t

tz
mσσσσ

)(ℜ=∆           (12) 

where standard deviation σσσσ  accounts for measurement uncertainty and it is calculated based on the 
assumption of Gaussian distribution for measurement noises. Second step contains comparison of 
residuals with thresholds to make fault detection decisions: 

( ) γγγγ>∆ tz            (13) 
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In order to diagnose gas turbine faults under transient conditions above equation for normalized 
relative deviation (Eq. 12.) could be transformed into following form (Li, 2003): 

( )
( ) ( )[ ]

( )∫

∫ −

=∆ t

t
m

t

t
m

dtty

dttytz

tz

0

0

σσσσ
         (14) 

 
Fig. 2. Diagnostics 

ISOLATION 
Once a fault is successfully detected, the next step is to isolate particular fault from other 

potential faults. The goal of fault isolation is to identify which degradation state variable, i.e. health 
parameter has exceeded the alarm threshold: 

( ) εεεε>tĥ            (15) 
In reality there is a very wide range of different engine faults. Classification of faults is usually 

based on different criteria, and generally they can be divided into single and multiple faults. It 
would be ideal to address all these faults (sensor, actuator and component faults) under one unified 
diagnostic framework, and several researchers have investigated the development of such diagnostic 
framework (Tang et al., 2010). 

In practice, for the analysis of the engine degradation, engine faults have to be divided into the 
limited number of fault classes. Typically it is considered that every fault class corresponds to one 
engine component.  For example, compressor fouling and turbine erosion are considered as two 
different component fault classes. Compressor fouling fault class is detectable with decreased 
compressor efficiency and capacity, and erosion of turbine component can be detected as increase in 
turbine capacity and decrease in turbine efficiency. 

To isolate the diagnostic information, a classifier is added to model-based detection process, and 
numerous techniques have been applied in the past as a classification engines (Li, 2002). Detection 
process consists of a preliminary variable selection and computation of variable residuals. 
Subsequently, further features such as health parameters are calculated by using previously 
determined variable residuals. And finally, after feature selection process, the determined features 
are subjected to classifications, where classification engine isolate final fault state. 
 
ACCOMMODATION 

The goal of fault accommodation system is to regain operability and maintain stability after a 
fault has been detected and isolated. The output of the diagnostic system triggers the 
accommodation, i.e. actuator control adjustments, to achieve stability margins in a faulted engine 
that are equal to or greater than the pre-fault values (Fig. 3.). 

A successful model based isolation and accommodation (MBIA) strategy should protect engine 
stability and operability under steady state and transient conditions. Due to large number of possible 
accommodation parameters, they have to be carefully balanced to ensure the overall stability of the 
gas turbine and its subsystems (Rausch et al., 2005). 
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Fig. 3. Isolation and accommodation 

PROGNOSTICS 
Prognosis is the ability to predict the remaining useful life of a component based on engine 

performance. The main task of prognostics is to predict how performance degradation will 
deteriorate to an unacceptable level, which can be summarized as follows: 

( ) κκκκ>+∆ dtz           (16.1.) 

( ) µµµµ>+ dtĥ           (16.2.) 
where  κκκκ  is the acceptable performance limit for useful service and µµµµ  is the corresponding state 
variable, i.e. health parameter degradation limit, and d  is time to failure or remaining useful life of 
the component. 

Prognostics holds central place in prognosis based asset management, and it has potential to 
contribute towards reducing the operating cost of running gas turbines. Condition based component 
lifing and inspection, instead of operating to fixed intervals, is based on engine health, where 
component state\level of damage and plant profitability dictate when optimal inspection should take 
place (Cerri et al., 2008). 

It is common practice to base damage calculation on a fleet average loading cycle mix. Using 
model based prognostic (MBP) technique it is possible to perform these calculations for each 
engine, taking into account engine to engine variation and specific engine application. Damage 
assessment could be done for selected critical components and could account different failure 
mechanisms. This proactive approach can be used to perform engine specific schedule maintenance 
and logistic activities. 

Following current practice engine components are retired with useful life remaining. 
Introducing prognosis based management components will realize their life entitlement, because the 
life prognostics will be based on actual engine performance. This would lead towards lower engine 
operational costs and a shift from current practice, i.e. fixed predetermined maintenance intervals 
(Hindle et al., 2006). 

LIFE EXTENSION 
Gas turbine engine components operate under cyclic loading conditions and harsh 

environments, and hence they are subjected to deterioration. This component deterioration is 
generally described by damage evolution. Due to elevated temperatures and operational stresses, the 
design life of a hot section component is significantly reduced compared to that of a cold section 
component. The most common failure modes for a gas turbine engine include: low cycle fatigue 
(LCF), high cycle fatigue (HCF), thermo mechanical fatigue (TMF), creep, rupture, corrosion, 
oxidation and erosion. 

The most important aspect of life extending control (LEC) concept is the identification of the 
type of damage that is most life limiting. TMF, creep and rupture are the main candidates for 
damage control and life extension on a continuous operation basis. Creep and creep rapture are 
primary damage modes for turbo-machinery, and these damage modes are further aggravated by 
extreme temperature cycles. By reducing temperature gradients in hot section components, 
significant life extension of critical components could be achieved. These thermal gradients in hot 
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section components induce thermal stresses, which eventually can cause component failure. 
Especially during engine acceleration and deceleration high thermal gradients could be achieved, 
and hence a control policy that reduces engine transients can significantly influence remaining life 
of critical components (Guo et al., 2005). 

The control strategies should be re-evaluated to include operating cost, and extending the life of 
engine is one approach to achieve that. In this way, maintenance cost could be potentially reduced if 
the life of engine is considered as an objective during the design of the engine controls philosophy. 
Disadvantage of life extension control concept, lies in the fact, that performance and life of engine 
are in opposition of each other. However, utilization of intelligent engine control algorithms can 
drastically increase the engine life, with minimum sacrifice in engine performance (Behbahani et 
al., 2006). Further development of damage models for turbine engines, should lead to 
implementation of online damage models in real-time that will allow for more robust damage 
prevention (Fig. 4.). 

 
Fig. 4. Prognostics and life extension 

MODEL BASED CONTROL 
Model based control (MBC) explicitly uses virtual parameters created by on-line gas turbine 

engine models (Fig. 5.). Not all of the engine variables can be measured, or they can be measured 
only with reduced accuracy. Using real-time on-line engine models it is possible to obtain non-
measured engine variables, such as temperatures, pressures and mass flows at relevant engine 
stations. By using those virtual measurements it is possible to calculate the dynamic responses of 
parameters, which are not available or data are affected with high measurement lags or low update 
frequencies. Another benefit that integrated real-time engine models can offer is analytical 
redundancy of existing sensors, which has been considered to be more cost-effective then 
commonly used hardware redundancy. 

Since the component characteristics change significantly during service interval, these control 
systems must sense degradation and damage to multiple components and adapt to it. This adaption 
can range from provisions to trim control constants and schedules, through to automated 
modifications of characteristics of individual components based on sensed parameters. Proposed 
control methods include numerous strategies such as clearance and compressor stability control, 
blade flutter and combustion instability suppression (Lietzau and Kreiner, 2001, Turevskiy et al., 
2002). In addition, as previously discussed, life extending control also has potential to reduce 
impact of thermo-mechanical fatigue on hot components life caused by transients and short-term 
over-fuelling. 

Various control philosophies such as adaptive (Fuller et al., 2006), active (Gastineau, 2001, 
Garg et al., 2010), and predictive control (MPC) (Essen and Lange, 2000, Brunell et al., 2004), have 
been explored for use in model based control concepts. Below is a brief description of model based 
control strategies that can enhance existing gas turbine control functions.  
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Fig. 5. Model-based control 

 
Turbine life 

Typically, the turbine component is protected by the engine control parameter, which is based on 
the measured gas temperature. The temperature of the combustion gases leaving the combustor is 
not directly controlled because measurement of the extremely high temperature at the inlet of the 
high pressure turbine is very difficult and impractical. Hot gas temperature is usually measured by a 
plurality of thermocouples disposed either at the outlet of turbine section or between high pressure 
and low-pressure turbine. At these engine stations, energy has been already extracted from hot gas, 
and gas temperature is correspondingly reduced to a suitable level, which may be practically 
measured. 

Because the thermocouple probes at the turbine exit are constructed for accuracy and durability, 
but not for quick response, temperature measurement results in a lag with relatively slow response 
as compared to that of the critical turbine hardware. Although consideration of this temperature lag 
is not critical for engine accelerations of long duration, the delay becomes most significant when 
attempting to accurately compensate for thermocouple dynamics during rapid accelerations of short 
duration. 

In order to prevent transient temperature overshoot from damaging turbine, model based 
temperature limiting control parameter provided by an on-line engine model can be used by control 
system to avoid or limit the temperature peaks that occur during rapid engine accelerations (Panov, 
2011). Moreover, by introducing LEC strategy, this limitation of transient behavior could be 
adjusted to accommodate current component degradation level. 

Depending on the degree of detail of the used simulation model, metal temperature of turbine 
vanes\blades or the hot gas temperature at the high-pressure turbine inlet can be used as a virtual 
measurement. To provide these virtual measurements, engine model has to capture effects 
associated with gas dynamics (volume packing) and heat soaking, which requires model sampling 
frequency in the range of 100 Hz. 

 
Compressor stability 

Operating range of compressors is limited by the onset of flow instabilities. Compressor 
aerodynamic instabilities are generally categorized in two distinct classes: rotating stall and surge. 
Surge is violent instability characterized by one-dimensional fluctuation in mass flow through the 
compression system. The occurrence of surge is preceded by the stalling of some compressor blade 
row elements, and it is characterized by regions of reduced or reversed flow that rotate around the 
annulus of the compressor. Especially during fast transient manoeuvres, such as rapid acceleration, 
a stall of the flow around the compressor blades, leading to compressor surge should be avoided. 
However, the distance of the current operating point to the stability line usually cannot be measured 
by available engine instrumentation. 
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Conventional control system overcome this measurement deficiency by imposing a limit on gas 
generator shaft acceleration or/and deceleration by using fuel schedules based on measured 
variables such as compressor delivery pressure to prevent compressor instabilities. 

On-line model integrated within control system, can be utilized to determine the stability margin 
between current operating point and the surge line for “new and clean” component and provide the 
control system with this information. Combining this information with the knowledge of current 
degradation level of surge line, obtained by real-time model, adaptive and active model-based 
control strategies could be used for compressor stability management (Greitzer et al., 1992, 
Paduano and Epstein, 2000). 

 
Emissions control 

Emission of combustion system is usually managed by controlling fuel/air mixture. The 
challenge for this control concept is development of emission sensors for the harsh engine 
environment. Integration of simplified NOx prediction models with online dynamic models could 
offer cost effective approach to actively control the fuel/air ratio. 

 
Combustion dynamics 

To achieve low level of NOx (Nitrogen Oxides) emissions in gas turbines, combustor must 
operate at “lean” conditions where the fuel/air mixture is richer in air to allow for complete 
combustion of the fuel. As the fuel/air ratio approaches the lean blow-out limit, concentration of CO 
(Carbon Monoxide) in combustor increases. For specific range of fuel/air ratio and corresponding 
flame temperature, NOx and CO will result in low concentration. However, thermo-acoustic 
instabilities in these regimes are commonly observed and they must be addressed to secure optimal 
operation of combustion system. 

To overcome problem associated with combustion instabilities usually passive techniques are 
employed. Those techniques include solutions such as increase of acoustic damping within the 
system or modification of combustor geometry to prevent excitation of unstable modes.  These 
passive solutions generally require considerable development time, and they are limited to a specific 
system and operating range. 

More flexible approach is to utilize active combustion instability management based on closed-
loop control by monitoring the combustor pulsation in real-time (Morgans and Dowling, 2005). 
Model-based active combustion control can offer further enhancement of this concept by optimizing 
combustion pulsation and emission levels (Schneider et al., 2008). 
 
SUMMARY 

The various engine health-monitoring (EHM) systems of today provide a basic level of 
monitoring. Their capabilities are relatively limited and usually they are collection of separated, 
unrelated technologies. Information they provide is used mostly to initiate maintenance actions, but 
not for on-line decision making in real-time. While these traditional control and diagnostics 
techniques are reliable, they are not optimal, and new advanced techniques provide the promise to 
meet the challenging requirements of increased reliability, improved efficiency and extended 
operational life. Using an on-line real-time dynamic engine model to meet the challenging control 
and diagnostics requirements has emerged as the most viable approach. These models could provide 
unified framework for advanced model based control and diagnostics technologies.  

Among the intended uses for such a model, is to enable real-time, on-line tracking of engine 
performance changes and engine parameter synthesis for fault detection and accommodation. Model 
tracking methodology offers a means to compensate engine to engine variations, and furthermore 
aligns the model to particular engine being monitored to insure accurate performance tracking while 
engine performance deteriorate with time. 

Adaptive model based control with integrated model based diagnostics, isolation and 
accommodation has significant potential to contribute to operational improvement of gas turbine 
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engines, due to ability to diagnose and adaptively manage degradation of engine components while 
taking into account engine-to-engine variation and current operating conditions. These model based 
control strategies include methods for optimization of operational limits such as compressor and 
combustor stability, turbine life and emissions. In addition life extending control can contribute 
towards reduction of operational costs, taking into consideration the impact on component life 
usage in ways that trade minor performance degradation, for significant component life extension. 

Model based prognostic approach is also increasingly favoured due to capability to provide 
more accurate estimation of remaining useful life. This approach is naturally extensible to the 
physics of failure, and hence it has been considered to be a promising enhancement of the 
conventional prognostic technology. The potential payoffs of prognosis based asset management are 
increased component life entitlement, improved time in service, better asset utilization and lowered 
engine maintenance costs. 

There are number of technical challenges that must be met in order to model based concepts 
become a standard practice for gas turbine engines. Development and implementation of online 
damage models is prerequisite for robust prognostic and damage prevention strategies. More 
accurate gas turbine models that capture the dynamics of interest are required to guide the 
development of both, diagnostic and control methods, and on the other hand, simplified dynamic 
models are needed to enhance the performance of the engine under adaptive control while 
maintaining stability and operability margins.  
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