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ABSTRACT

Gasturbines operational requirements continue to become more demanding in response to
the need for extended component life, increased reliability and improved overall efficiency. To
support these requirements, new model-based gas turbine control and diagnostics concepts
have been introduced.

Traditionally gas turbine control system transforms real engine limits, into limits which
are based on measured engine variables. As a result of that, engines operate with increased
safety margins and thus with non-optimal performance. To overcome this problem model
based control concepts have been proposed. Model based control approach exploits real-time
on-line engine models to estimate control feedback signals, enabling the implementation of
novel control methods.

Model-based diagnostics employs engine models tuned to match the observed engine state
in the same manner as model-based control. The residual deviations between predicted and
sensed parameters are modelled, again usually as variations in component losses and flow
capacity, and the best match is used to identify likely component degradation modes and
faults.

The use of model based techniques to diagnose and adaptively manage degradation of
engine component characteristicsis crucial for operational effectiveness of gas turbines. This
paper gives overview of current and evolving model-based techniques and discusses benefits
of these conceptsin operational management of the gasturbines.

NOMENCLATURE

DDM Data Driven Modelling MBP Model Based Prognostics

EHM Engine Health Monitoring MBIA Model Based Isolation & Accommodation
GPA Gas Path Analysis MBC Model Based Control

LEC Life Extending Control MPC Model Predictive Control

MBT Model Based Tracking PBM Physics Based Modelling

MBD Model Based Diagnostics

INTRODUCTION

Model based techniques exploit real-time engine efeodo estimate gas turbine internal
conditions, enabling in that way implementationnofel control and diagnostic methods. Model-
based information is the foundation of many diagieesand control strategies, ranging from simple
thresholding to sophisticated pattern recognitiethuds.

Engine performance is represented by a set of ledchealth parameters. These health
parameters deviate from initially healthy baselwvedues as the engine components degrade.
Estimation of health parameters from engine dat#ten referred to agas path analysis (Urban,



1972, 1974). The use of weighted-least-square astm (Doel, 1992, 1993) and Kalman Filters
(Kobayashi et al., 2003, 2005), are widely usedgs path analysis (GPA). More recently various
techniques such as Neural Networks (Ogaji, 2008)eBian Belief Networks (Lee et al., 2010),
Genetic Algorithms (Sampath et al., 2003), Polyrairfiunctions (Cerri et al.,2011) and different
hybrid methods (Molponi et al., 2005, 2007) haverbexplored for use in performance fault
diagnosis and tracking.

Most gas turbine diagnostics tools are based omengieady state measurements, because
during engine life most of the time engine will ope at steady state conditions. However,
significant diagnostic content can be found in $rant operation of engine, and hence transient gas
turbine performance deterioration and diagnosisevaralyzed by many researchers (Merrington,
1988, 1993, Meher-Homji and Bhargava, 1992, Bird Sohwartz, 1994).

Engine models used in gas turbine diagnosticdIifthido main purposes. Firstly they are used to
determingperformance baseline in order to calculate differences between measeinésrand such a
baseline. Secondly they are used for obtaifmgt signatures, which represent different engine
faults and degradation mechanisms.

We can also recognize two different approachesas tgrbine diagnostics. Goal efstem
identification technique is to determine gas turbine fault parameters thatimize difference
between measured engine variables and model-baseables usually obtained by physics based
models (PBM). Second approach is basegbaitern recognition technique and mostly uses data-
driven models (DDM). Once when fault pattern is ia@de, a data-driven recognition tool is
usually trained without detailed knowledge of thas dgurbine system, and used for diagnostic
purposes.

The data driven models, e.g. artificial neural network models, give redaship between input
and output variables that can be obtained on tkes loh available real data without the need of gas
turbine system knowledge. This can be seen as wntaje over physics based models, because
this approach has a theoretical possibility to estel model inaccuracy from diagnostic process.
Disadvantage of data driven approach is reducedabildy of data that can be used to form a
representative fault classification because ofdbeasional occurrence of faults and on the other
hand high cost of real fault simulation on a test.b

The physics based models, e.g. thermodynamic models, require detailed kedgé of the gas
turbine, and generally present more or less comgdétwvare. Physical models usually consist of set
of different component models. Behaviour of singbenponents is described by physical equations
or by using component characteristics, which ataiobd using rig tests or various prediction tools.
The main drawback of physics based modelling ambraa that model inaccuracy can cause
elevated errors in estimation of fault parameters.

GASTURBINE PERFORMANCE MODELLING

Gas turbine thermodynamic models are physics baweltls, and they are extensively used for
simulation ofsteady state andtransient behaviour of gas turbine engines. Over the yemady
state thermodynamic models establish themselvesmain tool in gas turbine gas path analysis.
Mathematically, these armon-linear steady state models, represented by system of algebraic
equations reflecting mass, heat and energy balmmcall components operating under stationary
conditions. Steady state thermodynamic model coespuctory of gas path monitored variables,

as a function of steady state variablescontrol variables: and operating conditions:

y=g(x,u,v) (1)

To describe various types of gas turbine determmaand faults such as fouling, tip rubs,
erosion, etc., this set of equations could be amgmdewith an additional state vectoarcontaining
health or fault parameters characterizing diffeedine degradation modes:

y = g(x,h,u,v) 2)



For given steady state operating point above mealebe reduced to:

y=g(h) (3)

Simplified model can be obtained by linearizatidmonlinear dependency between gas path
and healthh parameters determined for a fixed steady stateatipg conditions:

d=Ha (4)

This linear steady state model connects vector obh small changes of the health or fault
parameters with a vectay of the corresponding relative deviations of the ntoyed variables by

influence matrixH .

Although most of the diagnostics methods are deesloat steady state, current trend
demonstrates increasing interest in the diagnodticsig transient operation (Loboda et al., 2006).
Dynamic physics based models are used to desceifi@vimur of engine under transient conditions.
Non-linear dynamic model is described with following generalized systeneqfiations:

x(t)= £ (x(t),u(t),v(t),t) (5.1.)

y(t) = g(x(t).u(t). v(t).t) (5.2)
where X and U stand for the state and the input variables, @y, andt is the time. In steady
state conditions, the left hand side in above egoatEqg.5.1.) is zero, and it degenerates into
algebraic equation or system of equations. Secapét®n (Eq. 5.2.) is output equation that
describes system output variabhes

Many existing model-based methods are designed asgumption that the system exhibits
linear behaviour in the neighbour of a steady-st@erating point, and therefore linearization-based
method are used. By linearizing the engine modgl &1 and 5.2.) around a nominal operating
conditions, i.e.x, andu,, following linear dynamic model is obtained:

x(t)= A(t)x(t)+ B(t)ult) (6.1.)

y(t)=C(t)x(t)+ D(t)ut) (6.2)
where A(t),C(t) and B(t),D(t) are state and input distribution matrices, respelgt for the linear
state and output equations.

Above equations (Eq. 6.1. and Eq. 6.2.) represelhear time-varying model, and in this
general form, system matrices are functions of tifwether simplifications in the gas turbine model
could be introduced by assuming that the systeranpeters are constant in time. In that case the
system model simplifies thnear time-invariant model, which can be described with following set
of equations:

x(t) = Ax(t)+ Bu(t) (7.1)

y(t) = Cx(t)+ Dul(t) (7.2.)
where elements of system matrices A, B, C and Dbeaineated as constants.

Approaches that involve linearizing engine dynam&sund steady state conditions and
subsequent blending of parameters and controltersdlected operating points can lead to rather
complicated procedure. In addition, when the effamft various faults are included into account,
modelling complexity could be significantly increals which makes design of model-based
techniques and their real-time implementation \@ffycult. Therefore, futuranodel-based control
(MBC) andmodel-based diagnostic (MBD) systems will benefit significantly from nemethods
that are directly based on intrinsic nonlinearitéshe engine dynamics.

Dynamic modelling

The accurate modelling of engine behaviour is cemphsk, because of the large number of
effects that have to be taken into account. Fomgi@, if compressor and combustor stability
effects are considered by simulation tool, higlg@rency gas volume dynamics should be included
in the model. These high dynamic effects are inréimge of 1 kHz and are usually neglected by the
dynamic models. On the other hand, heat transfectefand shaft inertia associated with the low



frequency dynamics, are crucial for the dynamicavedur of engine and control system, and are
often considered by gas turbine transient modelsemMgas dynamics is not modelled, range of
model sampling frequency reduces to 10 Hz.

Typically dynamic models have a component-orierdaszhitecture where an engine model is
composed of modules representing individual comptngchobeiri, 1994, Visser and Broomhead,
2000, Camporeale et al., 2006, Panov, 2009). Tifereht component models are usually
connected via conservation laws for mass, momemtoghenergy. The component models include
conservation of mechanical energy for engine shhftat-soaking effects for metal parts (blades,
discs and casing), and conservation of thermodynamergy within different gas volume in the
engine. This modelling approach generally leads $et of non-linear differential equations, which
can be solved by appropriate numerical methods asi¢chtegration algorithms.

The detailed dynamics model of gas turbine engme lme expressed with a system of non-
linear differential equations in state space:

x=f,(x,u,v)
Y = G (X, U,V) ®)
yn = gn(X'u’V)

where x is state coordinate vectow, is control vector ands is vector of operating conditions.
Vector y_ contains measurable observable parameters anat yechon-measurable parameters.

As a gas turbine engine undergoes internal charthese changes may be manifested in
performance degradation. To account for this degran original state and output equations could
be augmented with an additional state ve¢taontaining health parameters:

x=f (x,h,u,v)

Yo = O (X,0,u,V) 9)

yn = gn(X’h'u'V)

The vectorh contains health parameters that indicate the enbealth conditions. Health
parameters are usually represented by efficieramidsflow capacities of the engine components. As
they deviate from their normal health conditiortse performance delivered by each component
degrades, and this can be recognized as a shiftomponent characteristics (Razak, 2007).
Generally speaking, we can recognize two main reagmr engine performance deviati@ngine-
to-engine variations andengine deterioration.

The engine-to-engine variation accounts for martufagy and assembly variation found in new
engines, and it is based on engine parameter negasuats of a sample of the engine population.
This engine-to-engine variation, adds a normalstriuted random value to the nominal value of
each measured engine parameter.

Over the lifetime of operation, engine componenii imdergo some amount of degradation.
This deterioration may bgradual or abrupt. Some of the knowieterioration mechanisms are
seal and secondary flow leaks, clearance increasesjon and fouling. While engine health
deterioration is normal aging process that ocauiliengines as a result of usage, abrupt abnormal
event such as foreign object damage are not pedadécais they happen unexpectedly.

PERFORMANCE TRACKING

Since the gas turbine model represents “nominadjiren it must be adapted or tuned to the
performance of the real engine as it deviates frmminal baseline with time. To mitigate this
problem, tuning of engine model can be performedhsd model aligns to actual engine being
monitored usingnodel based tracking (MBT) approach (Fig. 1.). The idea behind thisrapgh is
to minimize the deviations or modelling errors afjme model that runs in parallel to gas turbine,
by correcting parameters of “nominal” engine’s babar. This approach effectively removes the
uncertainty introduced with engine to engine valigh different disturbances, unknown initial
conditions and modelling simplifications
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Fig. 1. Perfor mance tracking

The tracking methods are usually based on the between the measured engine variables
and the corresponding simulated variables, whereergéed errors are used to correct engine

component characteristics. The measured variablese compared with simulated variablges
and then corresponding simulation error vecygr is multiplied by a matrixkK , where resulting

vector is used to correct the model state variakleend health parameters Therefore dynamic
model described with system of equations Eq. 9aesed with tracking filter takes following
form:

X = fx(i,ﬁ,u,v)+ K(z-9,)
V. =0, (R,ﬁ,u,v) (10)
¥, =g, ()“(,ﬁ,u,v)
where functionK represents gain matrix, which determines modetection and sensitivity to

measurement and modelling process noise. Vectoend h represent the estimates of the state
variables and health parameters, and vecfgrsaand y,, represent the estimates of the measurable

and non-measurable model outputs, respectivelyn Gatrix K can be designed using linear
guadratic theory to form Kalman filter gain mat{Rewallef and Leonard, 2003, Tagashira et al.,
2009). Non-linear observer described with Eqg. $0called Extended Kalman Filter and requires
continuous evaluation when engine operating psimaving.

DIAGNOSTICS

Fault detection and isolation play a critical roleenhancing the engine reliability and reducing
operating cost of gas turbine engines. Engine compiodegradation and faults may occur in
various degrees of severity and at various locafiand numerous scenarios are possible. We can
distinguish three general classes of engine faul&gsnely, sensor, actuator and gas turbine
component faults.

The detection process evaluates the residuals betweeasurements and estimates, and
monitors if a fault has occurred. The approach comlgnused for model-based diagnostics (Fig.
2.) is composed of two steps (Jaw and Wang, 20&6t step consists of generation of residual
signals from measurements and their nominal values:

0(t)=2(t)- v (t) (12)
followed by calculation of normalized relative daton Az for measured variables from their
nominal values:

Az(t)=ﬂ (12)
a9, (t)
where standard deviatiom accounts for measurement uncertainty and it isutated based on the
assumption of Gaussian distribution for measuremeides. Second step contains comparison of
residuals with thresholds to make fault detectieaisions:

Az(t)>y (13)



In order to diagnose gas turbine faults under tesmiconditions above equation for normalized
relative deviation (Eq. 12.) could be transformetw ifollowing form (Li, 2003):

I [2(t) = v (1)l
Az(t) =" (14)
aJ' Yo ()

to
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|ISOLATION

Once a fault is successfully detected, the next &eto isolate particular fault from other
potential faults. The goal of fault isolation isittentify which degradation state variable, i.ealtte
parameter has exceeded the alarm threshold:

h(t)> e (15)

In reality there is a very wide range of differemigine faults. Classification of faults is usually
based on different criteria, and generally they bandivided intosingle and multiple faults. It
would be ideal to address all these faults (sertuator and component faults) under one unified
diagnostic framework, and several researchers imxestigated the development of such diagnostic
framework (Tang et al., 2010).

In practice, for the analysis of the engine degiiadaengine faults have to be divided into the
limited number offault classes. Typically it is considered that every fault clagsresponds to one
engine component. For example, compressor fowdimg) turbine erosion are considered as two
different component fault classes. Compressor figufiault class is detectable with decreased
compressor efficiency and capacity, and erosidnirine component can be detected as increase in
turbine capacity and decrease in turbine efficiency

To isolate the diagnostic information, a classifeeadded to model-based detection process, and
numerous techniques have been applied in the pastiassification engines (Li, 2002). Detection
process consists of a preliminary variable selectamd computation of variable residuals.
Subsequently, further features such as health pdessn are calculated by using previously
determined variable residuals. And finally, afteatuire selection process, the determined features
are subjected to classifications, where classiboagngine isolate final fault state.

ACCOMMODATION

The goal of fault accommodation system is to reggaarability and maintain stability after a
fault has been detected and isolated. The outputthef diagnostic system triggers the
accommodation, i.e. actuator control adjustmemtsgchieve stability margins in a faulted engine
that are equal to or greater than the pre-faulieal(Fig. 3.).

A successfumodel based isolation and accommodation (MBIA) strategy should protect engine
stability and operability under steady state anddient conditions. Due to large number of possible
accommodation parameters, they have to be cardfalpnced to ensure the overall stability of the
gas turbine and its subsystems (Rausch et al.,)2005
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Fig. 3. Isolation and accommodation

PROGNOSTICS

Prognosis is the ability to predict the remainirggeful life of a component based on engine
performance. The main task of prognostics is todiptehow performance degradation will
deteriorate to an unacceptable level, which casubemarized as follows:

Az(t+d)>k (16.1.)
h(t+d)> u (16.2.)
where K is the acceptable performance limit for usefulvmer and i is the corresponding state

variable, i.e. health parameter degradation liamt] d is time to failure or remaining useful life of
the component.

Prognostics holds central placeprognosis based asset management, and it has potential to
contribute towards reducing the operating cosuahmg gas turbines. Condition based component
lifing and inspection, instead of operating to tixetervals, is based on engine health, where
component state\level of damage and plant profitahlictate when optimal inspection should take
place (Cerri et al., 2008).

It is common practice to base damage calculatioma fleet average loading cycle mix. Using
model based prognostic (MBP) technique it is possible to perform thesécwations for each
engine, taking into account engine to engine vianaand specific engine application. Damage
assessment could be done for selected critical oopms and could account different failure
mechanisms. This proactive approach can be uspdrtorm engine specific schedule maintenance
and logistic activities.

Following current practice engine components ar@reae with useful life remaining.
Introducing prognosis based management componelhtealize their life entitlement, because the
life prognostics will be based on actual engindgrerance. This would lead towards lower engine
operational costs and a shift from current practiee fixed predetermined maintenance intervals
(Hindle et al., 2006).

LIFE EXTENSION

Gas turbine engine components operate under cydading conditions and harsh
environments, and hence they are subjected to ioketiéon. This component deterioration is
generally described by damage evolution. Due teagdel temperatures and operational stresses, the
design life of a hot section component is signifiba reduced compared to that of a cold section
component. The most common failure modes for atgdsne engine include: low cycle fatigue
(LCF), high cycle fatigue (HCF), thermo mechanitafigue (TMF), creep, rupture, corrosion,
oxidation and erosion.

The most important aspect bfe extending control (LEC) concept is the identification of the
type of damage that is most life limiting. TMF, epeand rupture are the main candidates for
damage control and life extension on a continucuesration basis. Creep and creep rapture are
primary damage modes for turbo-machinery, and tlieseage modes are further aggravated by
extreme temperature cycles. By reducing temperagreglients in hot section components,
significant life extension of critical componentsutd be achieved. These thermal gradients in hot



section components induce thermal stresses, whigimteally can cause component failure.
Especially during engine acceleration and decetardtigh thermal gradients could be achieved,
and hence a control policy that reduces enginesigats can significantly influence remaining life
of critical components (Guo et al., 2005).

The control strategies should be re-evaluateddind® operating cost, and extending the life of
engine is one approach to achieve that. In this wayntenance cost could be potentially reduced if
the life of engine is considered as an objectivenduthe design of the engine controls philosophy.
Disadvantage of life extension control conceps liethe fact, that performance and life of engine
are in opposition of each other. However, utiliaatiof intelligent engine control algorithms can
drastically increase the engine life, with minimwsawcrifice in engine performance (Behbahani et
al., 2006). Further development of damage models ttobine engines, should lead to
implementation of online damage models in real-tithat will allow for more robust damage
prevention (Fig. 4.).
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Fig. 4. Prognostics and life extension

MODEL BASED CONTROL

Model based control (MBC) explicitly uses virtual parameters creatgddm-line gas turbine
engine models (Fig. 5.). Not all of the engine &hlés can be measured, or they can be measured
only with reduced accuracy. Using real-time on-lexgine models it is possible to obtain non-
measured engine variables, such as temperaturessupes and mass flows at relevant engine
stations. By using thosertual measurements it is possible to calculate the dynamic resporges
parameters, which are not available or data aeci@fl with high measurement lags or low update
frequencies. Another benefit that integrated remaét engine models can offer @mnalytical
redundancy of existing sensors, which has been consideredetomore cost-effective then
commonly usedhardware redundancy.

Since the component characteristics change signilic during service interval, these control
systems must sense degradation and damage to lmglimponents and adapt to it. This adaption
can range from provisions to trim control constaatsd schedules, through to automated
modifications of characteristics of individual cooments based on sensed parameters. Proposed
control methods include numerous strategies suctie@sance and compressor stability control,
blade flutter and combustion instability suppressjhietzau and Kreiner, 2001, Turevskiy et al.,
2002). In addition, as previously discussed, lifgerding control also has potential to reduce
impact of thermo-mechanical fatigue on hot comptsdife caused by transients and short-term
over-fuelling.

Various control philosophies such as adaptive @fudlt al., 2006), active (Gastineau, 2001,
Garg et al., 2010), and predictive control (MPC34&n and Lange, 2000, Brunell et al., 2004), have
been explored for use in model based control cdsc&glow is a brief description of model based
control strategies that can enhance existing gagmticontrol functions.
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Fig. 5. Model-based control

Turbinelife

Typically, the turbine component is protected by éimgine control parameter, which is based on
the measured gas temperature. The temperatures aotinbustion gases leaving the combustor is
not directly controlled because measurement ofettieemely high temperature at the inlet of the
high pressure turbine is very difficult and impreat. Hot gas temperature is usually measured by a
plurality of thermocouples disposed either at thded of turbine section or between high pressure
and low-pressure turbine. At these engine statiensrgy has been already extracted from hot gas,
and gas temperature is correspondingly reduced soitable level, which may be practically
measured.

Because the thermocouple probes at the turbineaexitonstructed for accuracy and durability,
but not for quick response, temperature measurenaesotts in a lag with relatively slow response
as compared to that of the critical turbine harehwaithough consideration of this temperature lag
is not critical for engine accelerations of longation, the delay becomes most significant when
attempting to accurately compensate for thermo@dphamics during rapid accelerations of short
duration.

In order to prevent transient temperature overstfomnh damaging turbine, model based
temperature limiting control parameter providedalnyon-line engine model can be used by control
system to avoid or limit the temperature peaks tlcaur during rapid engine accelerations (Panov,
2011). Moreover, by introducing LEC strategy, thimitation of transient behavior could be
adjusted to accommodate current component degoadatiel.

Depending on the degree of detail of the used sitimi model, metal temperature of turbine
vanes\blades or the hot gas temperature at thephegsure turbine inlet can be used as a virtual
measurement. To provide these virtual measuremamtgine model has to capture effects
associated with gas dynamics (volume packing) aat koaking, which requires model sampling
frequency in the range of 100 Hz.

Compressor stability

Operating range of compressors is limited by theebrof flow instabilities. Compressor
aerodynamic instabilities are generally categoriretivo distinct classes: rotating stall and surge.
Surge is violent instability characterized by onexehsional fluctuation in mass flow through the
compression system. The occurrence of surge ig@eecby the stalling of some compressor blade
row elements, and it is characterized by regionsedticed or reversed flow that rotate around the
annulus of the compressor. Especially during flastsient manoeuvres, such as rapid acceleration,
a stall of the flow around the compressor bladeadihg to compressor surge should be avoided.
However, the distance of the current operating tpmirthe stability line usually cannot be measured
by available engine instrumentation.



Conventional control system overcome this measunéaheficiency by imposing a limit on gas
generator shaft acceleration or/and decelerationusipng fuel schedules based on measured
variables such as compressor delivery pressureete@ept compressor instabilities.

On-line model integrated within control system, b&nutilized to determine the stability margin
between current operating point and the surgeftnénew and clean” component and provide the
control system with this information. Combiningghnformation with the knowledge of current
degradation level of surge line, obtained by reakt model, adaptive and active model-based
control strategies could be used for compressdriléya management (Greitzer et al.,, 1992,
Paduano and Epstein, 2000).

Emissions control

Emission of combustion system is usually managedcontrolling fuel/air mixture. The
challenge for this control concept is developmehtemission sensors for the harsh engine
environment. Integration of simplified NOx predarti models with online dynamic models could
offer cost effective approach to actively contia fuel/air ratio.

Combustion dynamics

To achieve low level of NOx (Nitrogen Oxides) enoss in gas turbines, combustor must
operate at “lean” conditions where the fuel/air taig is richer in air to allow for complete
combustion of the fuel. As the fuel/air ratio apgrbes the lean blow-out limit, concentration of CO
(Carbon Monoxide) in combustor increases. For $ige@nge of fuel/air ratio and corresponding
flame temperature, NOx and CO will result in lowncentration. However, thermo-acoustic
instabilities in these regimes are commonly obseved they must be addressed to secure optimal
operation of combustion system.

To overcome problem associated with combustioraimkties usually passive techniques are
employed. Those techniques include solutions sucinerease of acoustic damping within the
system or modification of combustor geometry tovprég excitation of unstable modes. These
passive solutions generally require considerableldpment time, and they are limited to a specific
system and operating range.

More flexible approach is to utilize active comhaostinstability management based on closed-
loop control by monitoring the combustor pulsationreal-time (Morgans and Dowling, 2005).
Model-based active combustion control can offethieir enhancement of this concept by optimizing
combustion pulsation and emission levels (Schnetatl., 2008).

SUMMARY

The variousengine health-monitoring (EHM) systems of today provide a basic level of
monitoring. Their capabilities are relatively limtt and usually they are collection of separated,
unrelated technologies. Information they providessd mostly to initiate maintenance actions, but
not for on-line decision making in real-time. Whiteese traditional control and diagnostics
techniques are reliable, they are not optimal, & advanced techniques provide the promise to
meet the challenging requirements of increasedabiity, improved efficiency and extended
operational life. Using an on-line real-time dynarengine model to meet the challenging control
and diagnostics requirements has emerged as theviabke approach. These models could provide
unified framework for advanced model based coranal diagnostics technologies.

Among the intended uses for such a model, is tblenaal-time, on-line tracking of engine
performance changes and engine parameter synfbe&silt detection and accommodation. Model
tracking methodology offers a means to compensagie to engine variations, and furthermore
aligns the model to particular engine being moeiaio insure accurate performance tracking while
engine performance deteriorate with time.

Adaptive model based control with integrated modbeised diagnostics, isolation and
accommodation has significant potential to contebto operational improvement of gas turbine
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engines, due to ability to diagnose and adaptiveyage degradation of engine components while
taking into account engine-to-engine variation andent operating conditions. These model based
control strategies include methods for optimizatednoperational limits such as compressor and
combustor stability, turbine life and emissions.addition life extending control can contribute
towards reduction of operational costs, taking intmsideration the impact on component life
usage in ways that trade minor performance degaagdor significant component life extension.

Model based prognostic approach is also increasifayloured due to capability to provide
more accurate estimation of remaining useful [ifeis approach is naturally extensible to the
physics of failure, and hence it has been considéoe be a promising enhancement of the
conventional prognostic technology. The potentafgifs of prognosis based asset management are
increased component life entitlement, improved timservice, better asset utilization and lowered
engine maintenance costs.

There are number of technical challenges that rhesmet in order to model based concepts
become a standard practice for gas turbine engbegelopment and implementation of online
damage models is prerequisite for robust progncatid damage prevention strategies. More
accurate gas turbine models that capture the dysamwi interest are required to guide the
development of both, diagnostic and control methadsl on the other hand, simplified dynamic
models are needed to enhance the performance okrigae under adaptive control while
maintaining stability and operability margins.
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