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Abstract. We investigate fixed-point properties of automor-
phisms of groups similar to R. Thompson’s group F . Revisiting
work of Gonçalves–Kochloukova, we deduce a cohomological cri-
terion to detect infinite fixed-point sets in the abelianization, im-
plying the so-called property R∞. Using the BNS Σ-invariant and
drawing from works of Gonçalves–Sankaran–Strebel and Zarem-
sky, we show that our tool applies to many F -like groups, includ-
ing Stein’s F2,3, Cleary’s Fτ , the Lodha–Moore groups, and the
braided version of F .

1. Introduction

Many groups admit automorphism groups with a rich structure.
Though in general, fully describing automorphism groups can be chal-
lenging. Given a group Γ with unknown Aut(Γ), one might draw inspi-
ration from dynamics and ask for qualitative information on arbitrary
elements φ ∈ Aut(Γ). For instance, one may ask whether φ is periodic
(i.e., of finite order), how the subgroup of fixed points Fix(φ) looks
like, whether φ stabilizes interesting subsets of Γ besides characteristic
subgroups, or if the whole group Aut(Γ) acts on an interesting object.

In this work we address questions concerning fixed-point properties
and stabilized subsets of automorphisms of groups in a family F of
Thompson-like groups. That is, we look at relatives of R. Thompson’s
group F , which is a group of dyadic rearrangements of the unit inter-
val [18]. The groups we look at are not residually finite, are typically
finitely presented, and include nonamenable examples. Throughout we
let F denote the family consisting of the following:

(1) the F -like groups G(I;A,P ) of Bieri–Strebel [7, 32];
(2) the braided variant Fbr of Thompson’s group F of Brady–

Burillo–Cleary–Stein [10]; and
(3) the Lodha–Moore groups G, yG,Gy, yGy introduced in [39];
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cf. Section 3 for precise definitions of the groups above. We remark
that Thompson’s F , Stein’s F2,3 and Cleary’s irrational-slope group Fτ

all belong to F ; see Section 3.3. Our main result is the following.

Theorem 1.1. Let Γ be a group in the family F as above and let
φ ∈ Aut(Γ) be arbitrary. Then φ stabilizes (set-wise) infinitely many
cosets of the commutator subgroup [Γ,Γ]. Equivalently, the fixed-point
set of the induced map φab on the abelianization Γab is infinite.

This phenomenon — that is, all automorphisms having infinitely
many fixed points in the abelianization — has been observed for other
interesting families. For instance, many soluble arithmetic groups ex-
hibit this property; see, e.g., [38, 41]. In contrast, other groups occur-
ring naturally — such as free or free nilpotent groups — do not satisfy
this; cf. Section 2 for a discussion.

A consequence of Theorem 1.1 is the following implication about
Reidemeister numbers, which give the number of orbits of the twisted
conjugation action of group automorphisms; we refer to Section 2 for
definitions.

Corollary 1.2. All groups in the family F have property R∞, that is,
the Reidemeister number of any of their automorphisms is infinite.

The result above is proved as Corollary 5.8 in Section 5.2. For
Thompson’s group F , property R∞ was known by work of Bleak–
Fel’shtyn–Gonçalves [9]. For the F -like Bieri–Strebel groups it
was established by Gonçalves–Kochloukova and Gonçalves–Sankaran–
Strebel [29, 32], though it was not explicitly stated for Stein’s F2,3 nor
Cleary’s Fτ . To the best of our knowledge we record here the first
proof that Fbr and the Lodha–Moore groups have property R∞. De-
spite this, we remark that this fact is found implicitly in the literature
as it can also be deduced by combining the works of Zaremsky [50, 51]
and Gonçalves–Kochloukova [29]; see the alternative proof of Corol-
lary 5.8 for such groups in Section 5.1. Paraphrasing Zaremsky [50],
our results provide a further point of similarity between the Lodha–
Moore groups and Thompson’s F — though by the time of writing it
is still unknown whether F is nonamenable.

Our main technical result, however, is Theorem 5.1 in Section 5.
Roughly speaking, it is a cohomological fixed-point criterion to check
for property R∞. This theorem is a generalization of the (implicit)
core idea behind the main results of [29]. Instead of stating it here
in full generality, we record a special case below which might be of
independent interest; cf. Theorem 5.4 for the general version.

Theorem 1.3. If a finitely generated group Γ does not have prop-
erty R∞, then the canonical action of Aut(Γ) on the first integral co-
homology H1(Γ) does not admit nonzero global fixed points.
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The previous result is motivated by, and further highlights, con-
nections between Reidemeister numbers and fixed-point results in al-
gebra, geometry and topology; see Section 2 for examples and refer-
ences. Other representation-theoretic properties concerning the exis-
tence of fixed points (or lack thereof) include Kazhdan’s property (T),
the Haagerup property, and Serre’s property FA; cf. [3, 48]. It is un-
known to us whether there is a connection between property R∞ for
a group Γ and its automorphism group Aut(Γ) having (or not) prop-
erty (T).

Regarding the proofs, Theorem 1.1 is shown by combining The-
orem 5.1 with well-known results about characters and the Bieri–
Neumann–Strebel Σ-invariant [6]. For groups in F , the Σ-invariants
were studied by Gonçalves–Sankaran–Strebel [32] and Zaremsky [50,
51]. The general version of Theorem 1.3 is stated in Section 5 and
follows easily from Theorem 5.1 and standard facts about cohomology.

The organization of these notes is as follows. Section 2 is an expo-
sition where we recall known discoveries about Reidemeister numbers
and fixed-point results, posing motivating questions, considering exam-
ples, and discussing the state of knowledge. (Section 2 is thus inde-
pendent of the material on Thompson-like groups, and our questions
might be of general interest.) In Section 3 we give a brief introduction
to the Thompson-like groups we consider. We then recall statements
about their BNS Σ-invariant in Section 4. Our main results are proved
in Section 5. Motivated by fixed-point phenomena studied here and in
the literature, we raise multiple related questions throughout the text.

2. Background – Reidemeister numbers and fixed points

Properties relating group actions to the topological study of fixed
points have been of paramount importance in multiple areas [3, 31,
48]. Among those is property R∞, which combines automorphisms
and conjugation. Given φ ∈ Aut(Γ), its Reidemeister number R(φ) is
the number of orbits of the φ-twisted conjugation action Γ × Γ → Γ,
(g, a) 7→ gaφ(g)−1. One then says that Γ has property R∞ in case
R(φ) = ∞ for every φ ∈ Aut(Γ).

Interest in Reidemeister numbers goes back to the 1930s, and check-
ing whether a group has R∞ sheds some light on its automorphism
group and on related fixed-point theorems. This is illustrated by re-
sults, e.g., for algebraic and Lie groups [46, Theorem 10.1], in algebraic
topology [31, Theorem 6.1], and on dynamics of Gromov hyperbolic
groups [37, Theorem 0.1]. For instance, suppose f : X → X is a
self-map of a compact connected simplicial complex such that the in-
duced map f∗ on π1(X) is an automorphism. Then the Reidemeister
trace of f takes values in a Z-module whose rank is precisely R(f∗);
see [5, 27] for more on the Reidemeister trace and its connection to
Bass’ conjecture. In case X is, additionally, a nilmanifold and f is a
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self-homeomorphism, results of Lefschetz, Thurston and others imply
that f has no fixed points (up to homotopy) if and only if R(f∗) = ∞;
cf. [31].

From the group-theoretic perspective, the literature shows connec-
tions between the Reidemeister number R(φ) and fixed point sets (or
stabilized subsets) of the given automorphism φ, as we now elucidate.

Example 2.1 (Folklore). Given φ ∈ Aut(Γ), consider the map

Fφ : Γ −→ [1]φ := {g · 1 · φ(g)−1 | g ∈ Γ}
g 7−→ gφ(g)−1

from Γ onto the φ-twisted conjugacy class of the identity 1 ∈ Γ. Now
look at the subgroup of fixed points Fix(φ) = {g ∈ Γ | φ(g) = g},
sometimes also denoted by CΓ(φ) and called the centralizer of φ in Γ.
One has that Fφ is injective if and only if Fix(φ) = {1}. Hence, if Γ is
a finite group, it holds R(φ) = 1 ⇐⇒ |Fix(φ)| = 1. △

Example 2.1 also occurs for some linear algebraic groups as long as
φ is an algebraic automorphism; see, for instance, [38, 46].

The case of abelian groups also has the following useful observation,
which has been frequently used in the literature.

Lemma 2.2 ([24, Corollary 4.3]). Assume Γ is finitely generated
abelian and let φ ∈ Aut(Γ). Then |Fix(φ)| = ∞ ⇐⇒ R(φ) = ∞.

We stress that E. Jabara [34] generalized one of the above impli-
cations: replacing ‘abelian’ by ‘residually finite’ it holds |Fix(φ)| =
∞ =⇒ R(φ) = ∞; see [43, Proposition 3.7] for a proof of Jabara’s
lemma. (Recall that Γ is residually finite if the intersection of all its
normal subgroups of finite index is trivial.)

In case one is set to check whether R(φ) = ∞, the following well-
known observation is particularly useful.

Lemma 2.3 ([24, Corollary 2.5]). Let φ ∈ Aut(Γ) and suppose N ⊴ Γ
is φ-invariant. Then φ induces an automorphism φ ∈ Aut(Γ/N) given
by gN 7→ φ(g)N and moreover R(φ) ≥ R(φ).

Since the commutator subgroup is characteristic, one always obtains
from φ ∈ Aut(Γ) an induced automorphism on the abelianization Γab =
Γ/[Γ,Γ], which we henceforth denote by φab.

Now, given an automorphism φ which is known to have infinite Rei-
demeister number, one might ask whether its fixed-point set Fix(φ) is
also infinite. This is not the case, not even assuming residual finite-
ness as in Jabara’s lemma. In a remarkable paper, Cohen and Lustig,
building upon work of Goldstein–Turner, analysed the dynamics of au-
tomorphisms of free groups by looking at their action on a graph which
precisely describes the twisted conjugacy classes in free groups.
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Example 2.4 (Cohen–Lustig [21]). Let Γ = Fn be a finitely generated
free group. Then one can construct automorphisms φ ∈ Aut(Fn) with
the following properties:

(1) [φ] ∈ Out(Fn) is nontrivial,
(2) the automorphism φab induced on the abelianization Fn

ab ∼= Zn

is the identity (thus R(φ) = ∞ by Lemmas 2.2 and 2.3), but
(3) |Fix(φ)| = 1.

For an explicit example, take Γ = F3 = ⟨x, y, z⟩ and
φ : F3 −→ F3

x 7−→ z3xz−3,

y 7−→ z−1xz2x−1yz−1,

z 7−→ zφ([y, x]).

It is straightforward to check that properties (1) and (2) hold, while
property (3) follows from [21, Theorem 1]. △

We stress the importance of considering outer automorphisms.
Firstly, composing with inner automorphisms does not alter the Rei-
demeister number: for any ι ∈ Inn(Γ) and all φ ∈ Aut(Γ) it holds
R(ι ◦ φ) = R(φ); see [24, Corollary 2.3]. Secondly, inner automor-
phisms might well have few fixed points.

Example 2.5. Take Γ = SL2(Z). Straightforward computations show
that the inner automorphism

ι (( a b
c d )) = ( 3 1

2 1 ) (
a b
c d ) (

3 1
2 1 )

−1 =
(
3a−6b+c−2d −3a+9b−c+d
2a−4b+c−2d −2a+6b−c+3d

)
satisfies

Fix(ι) =
{
( 1 0
0 1 ) ,

( −1 0
0 −1

)}
.

But the class number R(id) — i.e., the total number of conjugacy
classes — of SL2(Z) is infinite; see, e.g., [19] for a number-theoretic
proof. Thus R(ι) = R(ι ◦ id) = R(id) = ∞. △
Remark 2.6. The groups Fn and SL2(Z) actually have property R∞.
This follows, e.g., from the fact that nonelementary Gromov hyperbolic
groups do so; c.f. [37]. (Recall that SL2(Z) is virtually free (on two
generators), thus quasi-isometric to a finitely generated nonabelian free
group, which in turn is Gromov hyperbolic.)

In particular, Examples 2.4 and 2.5 show that a converse to Jabara’s
lemma, mentioned above, cannot hold. Since fixed-point sets and Rei-
demeister numbers have a deeper connection in the abelian case, one
might wonder whether a partial converse to Jabara’s lemma holds for
amenable groups. Once again it all fails, as the next result will show.

Proposition 2.7. There exists a finitely generated, residually finite,
amenable group GW with property R∞ and an automorphism φ ∈
Aut(GW) with the following properties.
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(1) [φ] ∈ Out(GW) is nontrivial, and
(2) both Fix(φ) and Fix(φab) are finite.

Proof. Given a natural number b, let B denote the matrix

B = ( −1 b
0 1 ) ∈ GL2(Z).

The group GW is defined as the extension

GW := Z2 ⋊B Z,
where Z acts on Z2 via B ∈ GL2(Z) ∼= Aut(Z2). That is, writing the
elements of Z2 as (integral) column vectors in R2, the product in GW is
given by

(( x1
y1 ) , z1) · (( x2

y2 ) , z2) = (( x1
y1 ) +Bz1 · ( x2

y2 ) , z1 + z2) .

Now define φ : GW → GW by setting

φ ((( x
y ) , z)) =

(( −x
−y

)
,−z

)
.

As B2 = id and hence B−z = Bz for any z ∈ Z, it follows that φ is a
homomorphism since

φ ((( x1
y1 ) , z1) · (( x2

y2 ) , z2)) = φ ((( x1
y1 ) +Bz1 · ( x2

y2 ) , z1 + z2))

= (− ( x1
y1 )−Bz1 · ( x2

y2 ) ,−z1 − z2)

=
(
− ( x1

y1 ) +B−z1 ·
( −x2
−y2

)
, (−z1) + (−z2)

)
= (− ( x1

y1 ) ,−z1) · (− ( x2
y2 ) ,−z2)

= φ ((( x1
y1 ) , z1)) · φ ((( x2

y2 ) , z2)) .

By construction, the kernel of φ is trivial and any (( x
y ) , z) ∈ Z2 ⋊B Z

lies in the image of φ, whence φ ∈ Aut(GW).
The fact that φ is not an inner automorphism is immediate since

conjugating (( x
y ) , z) by any element of GW fixes the coordinate z. Also,

Fix(φ) is trivial by the very definition of GW and φ.
Let us now check that Fix(φab) is finite. To see this, we observe that

GW admits the following presentation.

GW ∼= ⟨e1, e2, t | [e1, e2] = 1, te1t
−1 = e−1

1 , te2t
−1 = eb1e2⟩.

In the above, we identify the normal subgroup Z2 with ⟨e1, e2⟩, and
the quotient Z is generated by t. Forcing the generators to commute,
(the image of) e1 becomes an involution with a vanishing power. More
precisely,

GWab ∼= ⟨e1, e2, t | [e1, e2] = [e1, t] = [e2, t] = e1
2 = e1

b = 1⟩

∼=

{
C2 × Z2 if b ∈ 2N,
Z2 otherwise.

Moreover, the map induced by φ on the abelian group GWab simply
inverts the powers of its generators. Thus φab fixes 1 and e1, in case b
is even, and only the identity element otherwise.
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Since GW is an extension of Z2 by Z, it is (elementary) amenable,
finitely generated, and residually finite. In fact, one can recognize GW

geometrically as a 3-dimensional crystallographic group by a result of
Zassenhaus’ (see [22, Theorem 2.1.4]) since t2 acts trivially on e1 and
e2 by conjugation, which implies that ⟨e1, e2, z2⟩ is a maximal abelian
subgroup isomorphic to Z3 and of index 2. That GW has property R∞
follows from the fact that it admits the infinite dihedral group as a char-
acteristic quotient; cf. [25, Proposition 4.9] for a proof. The proposition
follows.

□

Remark 2.8. Our construction draws from the ideas of Gonçalves–
Wong in [30], where they give examples of polycyclic groups of expo-
nential growth that do not have property R∞. Our examples differ
from theirs in that they consider extensions Z2 ⋊A Z with A ∈ SL2(Z)
(instead of GL2(Z)) and having eigenvalues of absolute value different
from 1. This allows them to obtain groups without R∞ and of exponen-
tial growth, whereas our extension GW = Z2 ⋊B Z is actually virtually
abelian and thus of polynomial growth; see [49].

Remark 2.9. In an earlier version of the present paper, the authors
mistakenly claimed to obtain an infinite family of groups with the prop-
erties prescribed in Proposition 2.7. (And with the stronger require-
ment that |Fix(φ)| = |Fix(φab)| = 1.) Although the group GW depends
on a parameter b ∈ N, the classification of crystallographic groups (see
[22, Chapter 2]) implies that there are only finitely many such groups
up to isomorphism. (Notice that choosing b even or odd yields noniso-
morphic groups.)

Constructing groups as in Proposition 2.7 that have non-inner au-
tomorphisms with few fixed points — both in the given group and in
its abelianization — seems a nontrivial matter. Indeed, many soluble
groups were shown to have R∞ by finding infinitely many fixed points
in their abelianizations or in characteristic subgroups (cf. [25, 31, 38]).
Other candidates of amenable groups with the properties listed in
Proposition 2.7 would be certain branch groups [2], such as the groups
of Gupta–Sidki [26, 33]. In fortunate cases, a result of Lavreniuk–
Nekrashevych shows that the automorphisms of such groups are in-
duced by conjugation by an automorphism of the corresponding regular
rooted tree [36]. However, it seems often the case that the centralizers
of automorphisms of the given trees are infinite.

It is thus unclear to us whether there exist, up to isomorphism, infin-
itely many finitely generated, residually finite, amenable groups with
property R∞ and admitting non-inner automorphisms with a single
fixed point in the given group and in its abelianization.
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All of the previous examples happened in the residually finite (in
fact, linear) world. These considerations motivated our present work,
namely with the following problems in mind.

Question 2.10. Do there exist (finitely generated) non-residually fi-
nite groups with property R∞ such that every outer automorphism Φ
is represented by an element φ ∈ Φ with infinitely many fixed points?

In view of formulae and bounds relating Reidemeister numbers of a
given automorphism to Reidemeister numbers and fixed points of the
induced map on a characteristic quotient, one lands on the following
version of the previous question.

Problem 2.11. Give examples of (finitely generated) non-residually
finite groups Γ with a characteristic quotient Γ/N all of whose auto-
morphisms φ induced by φ ∈ Aut(Γ) fix infinitely many points.

Problem 2.11 has a sibling in the literature. Dekimpe and Gonçalves
initiated the study of groups admitting characteristic quotients all of
whose induced automorphisms φ have R(φ) = ∞; see [23].
Though we are unable to settle Question 2.10, it turns out that

a group of R. Thompson partially solves it while also solving Prob-
lem 2.11.

Recall that Thompson’s F is the group of piecewise-linear
(orientation-preserving) self-homeomorphisms of the unit interval [0, 1]
whose elements f ∈ F have: finitely many singularities; slopes in
the multiplicative subgroup ⟨2⟩ ≤ (R×, ·); and the singularities lie in
Z[1

2
], the ring of dyadic rationals. (We remind the reader that F is

finitely presented and ‘not far’ from being simple as [F, F ] is simple
and F ab ∼= Z2 [18].) In the following we record a slight refinement of
the fact that Thompson’s group F has property R∞, which was first
proved by Bleak–Fel’shtyn–Gonçalves [9].

Proposition 2.12. Thompson’s group F satisfies |Fix(ψab)| = ∞ for
any ψ ∈ Aut(F ) and thus has property R∞. Moreover, there exist
infinitely many outer automorphisms of F of finite order, and every
φ ∈ Aut(F ) of finite order satisfies |Fix(φ)| = ∞.

Proof. In a seminal paper, Brin [11] completely determined Aut(F ).
Building upon this, Bleak–Fel’shtyn–Gonçalves observed that any ele-
ment of Aut(F ) induces a matrix A ∈ GL2(Z) ∼= Aut(F ab) having 1 as
an eigenvalue; cf. the proof of [9, Theorem 3.3]. Thus |Fix(ψab)| = ∞
for any ψ ∈ Aut(F ) and, by Lemmas 2.2 and 2.3, F has property R∞.
Again from Brin’s work (see [11, Theorem 1]), there is a subgroup of

index two Aut+(F ) ⊴ Aut(F ) that fits into a short exact sequence F ↪→
Aut+(F ) ↠ T × T , where T is Thompson’s simple group T [18]. This
sequence, in turn, implies that Out(F ) contains a subgroup (of finite
index) that contains copies of T , which is known to contain infinitely
many torsion elements [28].
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Finally, any element φ ∈ Aut(F ) of finite order satisfies |Fix(φ)| =
∞. This is because Fix(φ) contains a copy of F or is not even finitely
generated — for a short proof of this fact we refer the reader to (the
proof of) [35, Corollary 5.2]. □

We will see that many groups similar to F also solve Problem 2.11,
and discuss how Proposition 2.12 extends to some of them; see Sec-
tion 5.

3. Thompson-like Groups

Thompson groups are those generalizing or resembling Richard
Thompson’s original trio F ⊂ T ⊂ V ; see [18]. Groups in this family
are typically finitely presented and not far from being simple, and are
prominent for exhibiting peculiar properties [14, 18].

Motivated by the case of F seen in Section 2, here we are interested
in the Lodha–Moore groups (cf. Section 3.1), the braided Thompson
group Fbr (cf. Section 3.2) and the Bieri–Strebel groups G(I;A,P ) (cf.
Section 3.3), which are in a sense ‘F -like groups’. The Lodha–Moore
groups were the first finitely presented torsion-free counterexamples
to the von Neumann conjecture [39], while Fbr serves as an ‘Artinian
version’ of F [10], and the F -like Bieri–Strebel groups are natural gen-
eralizations of F as piecewise-linear homeomorphisms of intervals [7].

In this note we use the usual ‘left-hand notation’ for maps.

3.1. The Lodha–Moore Groups. We consider self-transformations
of the Cantor set 2N, whose points are infinite binary sequences
ξ = a0a1a2 · · · with each digit ai ∈ {0, 1}. Define the following two
functions of 2N.

x(ξ) :=


0η, if ξ = 00η,

10η, if ξ = 01η,

11η, if ξ = 1η,

and y(ξ) :=


0(y(η)), if ξ = 00η,

10(y−1(η)), if ξ = 01η,

11(y(η)), if ξ = 1η.

One similarly defines x−1 and y−1. Now, given s ∈ 2<N, the set of all
finite binary sequences, define the following families of maps on 2N.

xs(ξ) :=

{
s(x(η)), if ξ = sη,

ξ otherwise,
and ys(ξ) :=

{
s(y(η)), if ξ = sη,

ξ, otherwise.

If s is the empty sequence ø, we set xs = x and ys = y. Considering
N0 := {0} ∪ N, the Lodha–Moore groups are the following subgroups
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of bijections 2N → 2N:

yGy := ⟨xs, yt | s, t ∈ 2<N⟩,

yG := ⟨xs, yt | s, t ∈ 2<N, t /∈ {1n}n∈N0
⟩,

Gy := ⟨xs, yt | s, t ∈ 2<N, t /∈ {0n}n∈N0
⟩ and

G := ⟨xs, yt | s, t ∈ 2<N, t /∈ {0n, 1n}n∈N0
⟩.

Here, 0n and 1n denote constant binary sequences, where n ∈ N0. In
particular, 00 and 10 also represent the empty sequence ø.
For our purposes, we shall need the following defining relators [39]

for the larger group yGy ≥ yG,Gy, G, indexed by sequences s, t ∈ 2<N.

(LM1) x2s = xs1xsxs0;
(LM2) If xs(t) is well-defined, then xsxt = xxs(t)xs;
(LM3) If xs(t) is well-defined, then xsyt = yxs(t)xs;
(LM4) If s ∈ 2<N is not a prefix of t ∈ 2<N, nor is t a prefix of s, then

ysyt = ytys;
(LM5) ys = ys11y

−1
s10ys0xs.

In the sentence “xs(t) is well-defined” we mean that the finite sequence
t has s as its prefix and that xs can act on t as it does on an infinite
binary sequence ξ = sη. In order to restrict such relations to the other
Lodha–Moore groups, one simply restricts which subscripts are used
for the yt-generators. It is as instructive as helpful to check that the
four Lodha–Moore groups are in fact finitely generated [39, 50].

3.2. The braided version of F . Throughout, by a tree we mean a
finite rooted binary tree. That is, a tree whose vertices have valency 3
except for the root and the leaves, which have valency 2 and 1, respec-
tively. The trivial tree is made of a single node. We fix a numbering on
the n leaves of a tree by labeling them from 1 to n from left to right.
If v is not a leaf vertex, it is connected to two vertices u and w that
are farther away from the root than v. Such a vertex v together with
the two edges and their vertices u,w form a caret.

A braided paired tree diagram is a triple (T−, b, T+) consisting of
trees T− and T+ both with n ∈ N leaves and an element b of the braid
group on n strings Bn. Following [10], we represent such triples as
split-braid-merge diagrams: we draw T− with its root on the top and
the n leaves at the bottom and T+ with its root at the bottom and its n
leaves at the top, aligned with the leaves of T+ so that the braid element
b ∈ Bn can be represented between them; see Figure 1. In accordance
with braid diagrams, we regard isotopic diagrams to be equal.

Given a leaf ℓ− of T−, let ℓ+ denote the unique leaf of T+ connected
to ℓ− by a strand sℓ of b. An expansion of (T−, b, T+) is given as
follows: one adds a caret to the leaf ℓ− and another one to ℓ+, then
one bifurcates the strand sℓ into two parallel strands; see Figure 1. A
reduction is the reverse of an expansion. We refer the reader to [10]
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Figure 1. A diagram (left) and an expansion of it (right).

for a more detailed explanation. Two braided paired tree diagrams are
equivalent if one can be obtained from the other by performing finitely
many reductions and expansions. We remark that every such diagram
admits a unique reduced representative.

The set of equivalence classes of braided paired tree diagrams
forms a group, denoted Vbr [10]. Similarly to the strand diagrams
of Belk–Matucci [4], multiplication in Vbr works as follows: given
T = (T−, b, T+) and R = (R−, b

′, R+) ∈ Vbr, we obtain T · R by
gluing the root of T+ to the root of R− and then performing the reduc-
tion moves from Figure 2 until reaching a braided paired tree diagram;
cf. [17, Section 1.1]. For an example of multiplication see Figure 3.
We stress that, due to Newman’s Diamond Lemma (cf. [1]), the order
of reductions does not matter since the corresponding abstract rewrit-
ing system is confluent. Recall that a braid b lies in the pure braid
group PBn ≤ Bn if its induced permutation on n elements is the iden-
tity. The braided Thompson group Fbr is the subgroup of Vbr whose
elements (T−, b, T+) only have pure braids b ∈ PBn in their diagrams.

Type I Type II

Figure 2. Reduction moves.

We now recall a finite generating set for Fbr. First notice that F can
be regarded as the subgroup of Fbr of triples (T−, 1, T+), where T−, T+
are trees with n leaves and 1 is the identity element in PBn. Denote
by x0, x1 the usual generators of F ≤ Fbr. Now for each n ∈ N denote
by Rn the right vine with n leaves, i.e., the tree where no caret has a
left child. Consider also the elements An

ij ∈ PBn, for i < j, which wrap
the ith strand around the jth one. For 1 ≤ i < j, let

αij = (Rj+1, A
j+1
ij , Rj+1) and βij = (Rj, A

j
ij, Rj).



12 P. M. LINS DE ARAUJO, A. S. OLIVEIRA-TOSTI, AND Y. SANTOS REGO

Type II Isotopic Type I Type I

Figure 3. Multiplication on Vbr.

By [10, Theorem 6.1], the group Fbr is generated by

x0, x1, α1,2, α1,3, α2,3, α2,4, β1,2, β1,3, β2,3, β2,4.

Figure 4. Some generators of Fbr.

3.3. The F -like Bieri–Strebel groups. Let PL◦(R) be the group of
all orientation-preserving piecewise-linear homeomorphisms of the real
line with only finitely many singularities.

Given a nontrivial additive subgroup A ≤ (R,+), a nontrivial (pos-
itive) multiplicative subgroup P ≤ (R×

>0, ·) such that P ·A ⊆ A, and a
closed interval [0, ℓ] ⊂ R with ℓ ∈ A, the corresponding F -like Bieri–
Strebel group is the subgroup

G([0, ℓ];A,P ) ≤ PL◦(R)

whose elements g ∈ G([0, ℓ];A,P ) map A to A and have

• supp(g) ⊆ [0, ℓ], where supp(g) = {r ∈ R | g(r) ̸= r} is the
support of g;

• all its singularities belonging to A;
• all its slopes lying in P .

These groups were first studied by Bieri and Strebel [7] in the 1980s
as natural generalizations of F . (We remark that, in the paper [32], the
authors view PL◦(R) as a group of increasing homeomorphisms. Our
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definitions of the F -like Bieri–Strebel groups are nevertheless equiva-
lent, for ‘increasing’ and ‘orientation-preserving’ can be interchanged
here.)

Since any homeomorphism of a closed interval that fixes its endpoints
can be extended to a homeomorphism of the whole real line, one readily
detects that the groups G([0, ℓ];A,P ) include familiar examples.

Example 3.1. (1) Thompson’s F is just G([0, ℓ];A,P ) with ℓ = 1,
A = Z[1

2
] and P = ⟨2⟩ = {2k | k ∈ Z} ≤ R×

>0.
(2) The group nowadays known as Stein’s group F2,3 is simply

F2,3 = G([0, 1];Z[1
6
], ⟨2, 3⟩); cf. [44, 45].

(3) Using the (small) golden ratio τ =
√
5−1
2

, Cleary constructed
the irrational-slope group Fτ = G([0, 1];Z[τ ], ⟨τ⟩); see [16, 20].

△

We remark that it is still an open problem to classify all finitely
generated F -like Bieri–Strebel groups; see [7].

4. Characters and Σ-invariants

Investigating properties of automorphisms of a group Γ usually re-
quires deep knowledge on the full automorphism group Aut(Γ). This
was illustrated in Section 2, and particularly for Thompson’s group
F in Proposition 2.12. However, it is sometimes possible to obtain
qualitative information on Aut(Γ) bypassing an explicit computation
of Aut(Γ). We shall take this route with help of (the complement of)
the geometric invariant Σ1(Γ) of Bieri–Neumann–Strebel [6].

A character of a group Γ is a homomorphism χ : Γ → R, where R is
the additive group of real numbers, and χ is discrete if Im(χ) ⊆ Z.
When Γ is finitely generated, its character sphere is defined as

S(Γ) := (Hom(Γ,R) \ {0}) / ∼,
where the equivalence relation ∼ is given by

µ1 ∼ µ2 ⇐⇒ ∃ r ∈ R>0 such that rµ1 = µ2.

The equivalence class of a character µ is denoted by [µ], and the in-
variant Σ1(Γ) ⊆ S(Γ) of the group Γ is then defined as

Σ1(Γ) := {[µ] | Cay(Γ)µ⩾0 is connected} ,
where Cay(Γ) is the Cayley graph of Γ using some finite generating set
of Γ. Here, Cay(Γ)µ⩾0 is the full subgraph of Cay(Γ) whose vertices
are mapped to nonnegative real numbers by µ. In practice, it is often
more convenient to work with the complement of Σ1, defined by

Σ1(Γ)c = S(Γ) \ Σ1(Γ);

we refer the reader to Strebel’s notes [47] for more on Σ1 and its com-
plement. An important feature is that Σ1(Γ) and Σ1(Γ)c do not depend
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on the generating set for Γ (cf. [6]), which is why we omit this in the
notation for the Cayley graph Cay(Γ).

4.1. Characters of Thompson-like groups. Though computing Σ1

can be challenging in general, Zaremsky observed in [50] and [51] that
certain characters of G, yG, Gy, yGy and Fbr, closely related to two
well-known characters of Thompson’s F , are particularly important.

From now on, we adopt the following notation.

Γ0 = Fbr, Γ1 = G, Γ2 = yG, Γ3 = Gy, and Γ4 = yGy.

In [50], the following discrete characters of the Γi are considered.

χ0 : Γi → Z, for i = 1, 3, χ1 : Γi → Z, for i = 1, 2,

w 7→
{−1, if w = x0n , n ∈ N0,

0, otherwise,
w 7→

{
1, if w = x1n , n ∈ N0,

0, otherwise,

ψ0 : Γi → Z, for i = 2, 4, ψ1 : Γi → Z, for i = 3, 4,

w 7→
{
1, if w = y0n , n ∈ N0,

0, otherwise,
w 7→

{
1, if w = y1n , n ∈ N0,

0, otherwise.

Turning to Γ0 = Fbr, we recall the following two discrete characters
from [51]. Given a tree T , considered as a metric graph with edge
lengths all equal to 1, denote by L(T ) the length of the shortest path
from the root of T to its leftmost leaf. Similarly, denote by R(T ) the
length of the shortest path from the root of T to its rightmost leaf.
Define φ0, φ1 : Γ0 → Z by

φ0(T−, p, T+) = L(T+)−L(T−) and φ1(T−, p, T+) = R(T+)−R(T−).

Theorem 4.1 ([50, Theorem 4.5] and [51, Theorem 3.4]). The com-
plement Σ1(Γi)

c of the Σ-invariant of Γi equals Pi ⊂ S(Γi), with Pi as
follows.

i = 0 i = 1 i = 2 i = 3 i = 4
Γi Fbr G yG Gy yGy

Pi {[φ0], [φ1]} {[χ0], [χ1]} {[ψ0], [χ1]} {[χ0], [−ψ1]} {[ψ0], [−ψ1]}

The Σ-invariant of the F -like Bieri–Strebel groups G([0, ℓ];A,P ) has
been partially studied in the monograph [7], though we will not make
use of them here. Instead, we shall need the following result due
to Gonçalves–Sankaran–Strebel, which was also obtained by making
heavy use of the Σ-invariant.

Theorem 4.2 ([32, Theorem 1.4]). For any F -like Bieri–
Strebel group G([0, ℓ];A,P ) there exists a nontrivial homomorphism
f : G([0, ℓ];A,P ) → R such that f ◦ φ = f for any φ ∈
Aut(G([0, ℓ];A,P )).
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5. Main results and proofs

The main technical result of the present note is the following theo-
rem. Since it has not appeared before in the literature (neither explic-
itly nor in the version stated below), we provide a detailed proof. It
generalizes the core idea from [29] (see also [32]) — the main difference
is that they do not lift back to the abelianization to construct stabilized
cosets as we do here.

Theorem 5.1. Let G be a finitely generated group and let φ ∈ Aut(G).
Suppose there is a nontrivial f ∈ Hom(G,A) with A abelian and f(G)
containing an element of infinite order. Assume further that there ex-
ists a φ-invariant N ⊴ G contained in ker(f), and let

φ ∈ Aut(G/N), gN 7→ φ(g)N,

f ∈ Hom(G/N,A), gN 7→ f(g)

be the maps from G/N induced by φ and f , respectively. In the above
notation, if f ◦ φ = f , then |Fix(φab)| = ∞.

Proof. It suffices to show that R(φab) = ∞ and Lemma 2.2 will assure
that |Fix(φab)| = ∞. Our proof idea is to construct a φab-invariant

subgroupM of Gab such that the induced automorphism φab on Gab/M

satisfies R(φab) = ∞. Then, Lemma 2.3 will assure that

R(φab) ≥ R(φab) = ∞.

The hypothesis f ◦φ = f guarantees that ker(f) is φ-invariant, which
in turn assures that φ induces an automorphism

φ :
G/N

ker(f)
−→ G/N

ker(f)
.

For simplicity, write G = G/N

ker(f)
and g = (gN) ker(f) ∈ G.

Since f has abelian image, one has that G itself is a quotient of Gab

via the natural projection

p : G/[G,G] −→ G

x[G,G] 7−→ x.

We shall take ker(p) as the subgroup M ≤ Gab mentioned above.
First, we need to check that ker(p) is φab-invariant. This is equivalent

to showing that any element x[G,G] ∈ ker(p) satisfies

p(φab(x[G,G])) = 1.

Since p(φab(x[G,G])) = φ(x), we need to prove that φ(xN) ∈ ker(f),
which is a direct consequence of the assumption f ◦ φ = f .

It is left to verify that R(φab) = ∞, where φab is the automorphism
induced by φab on the quotient Gab/ ker(p). Notice that Gab/ ker(p) is
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isomorphic to G and that φab and φ are the same automorphism. Thus,
we need only prove that R(φ) = ∞, which is equivalent to showing that
φ has infinitely many fixed points by Lemma 2.2.

Let g ∈ G be an element such that f(g) is of infinite order in A. Let

us check that g has infinite order in G and φ(g) = g. We shall write A
additively.

In fact, g
n
= 1 is equivalent to gnN ∈ ker(f). This means that

0 = f(gnN) = f(gn) = nf(g).

The fact that f(g) has infinite order implies that n = 0.
Finally, φ(g) = φ(gN) ker(f) can only coincide with g = (gN) ker(f)

if φ(gN)g−1N ∈ ker(f). This is the case because

f(φ(g)g−1N) = f ◦ φ(gN)− f(gN),

and since f ◦ φ = f , this means that f(φ(g)g−1N) = 1. □

Remark 5.2. The conclusion of Theorem 5.1 is equivalent to the
following statement: there exists g ∈ G such that gn /∈ [G,G] for
any n ∈ Z \ {0} and the set g[G,G] is φ-invariant. Indeed, if
the statement above holds, then the induced automorphism φab fixes
Z ∼= ⟨g[G,G]⟩ ≤ Gab pointwise. Conversely, if |Fix(φab)| = ∞, then
because Gab is finitely generated abelian, there must exist an element
g[G,G] ∈ Gab of infinite order fixed by φab. Thus

g[G,G] = φab(g[G,G])
Def.
= φ(g)[G,G] = φ(g[G,G])

since the commutator subgroup [G,G] is characteristic.

As we have seen in Proposition 2.12, automorphisms of Thompson’s
group F fix infinitely many points in the abelianization. Putting (the
conclusion of) Theorem 5.1 further into perspective, consider the fol-
lowing.

Example 5.3. There exist infinitely many Dedekind domains of S-
arithmetic type OS for which the metabelian groups

( ∗ ∗
0 ∗ ) ≤ PGL2(OS)

are finitely presented and such that all their automorphisms φ have
Fix(φab) infinite; cf. [38]. △

In fact, besides the above example and the family F to be discussed
in Section 5.2, there are uncountably many finitely generated groups
to which Theorem 5.1 applies; cf. Remark 5.7.

5.1. Applications. As mentioned in Section 2, the study of Reide-
meister numbers has its roots in fixed-point theory in different areas.
Our technical Theorem 5.1 has the following interpretation as a fixed-
point result in group cohomology.



THOMPSON GROUPS, REIDEMEISTER NUMBERS, FIXED POINTS 17

By a trivial G-module M we mean a Z[G]-module such that the
elements of G act as the identity on M . A global fixed point in a group
action H ↷ X is an element x ∈ X such that h(x) = x for all h ∈ H.

Theorem 5.4. Let G be finitely generated. Suppose there exists a
torsion-free trivial G-module M and a nonzero global fixed point [c] ∈
H1(G,M) under the canonical action Aut(G) ↷ H1(G,M). Then G
has property R∞.

Proof. First, a clarification. When computing cohomology with coeffi-
cients H∗(G,M) using the standard cochain complex C∗(G,M), then
precomposing a cochain with an element φ ∈ Aut(G) again yields a
cochain; see, for instance, [13, Chapter III]. While this a priori yields
no action of Aut(G) on cohomology (due to contravariance), invert-
ing the automorphisms and then precomposing suffices — this is the
canonical action alluded to in the statement. (The action will be made
clearer in the sequel.)

Now let M be a trivial G-module with no torsion. Since G acts
trivially on M , the derivations d : G → M amount to (group) homo-
morphisms and the principal derivations are trivial. Thus, one obtains
the (well-known) canonical isomorphism

H1(G,M) ∼= Hom(G,M),

cf. [13, Chapter III]. Under the above identification, the canonical
action Aut(G) ↷ H1(G,M) ∼= Hom(G,M) is given by

Aut(G)× Hom(G,M) −→ Hom(G,M)

(φ, f) 7−→ φ∗(f) := f ◦ φ−1.

The existence of a nonzero global fixed point [c] ∈ H1(G,M) ↶ Aut(G)
means that there exists a corresponding nontrivial homomorphism
fc : G→M fixed by every automorphism of G, that is,

φ∗(fc) = fc ◦ φ−1 = fc,

whence fc = fc ◦ φ for any φ ∈ Aut(G). Since M is torsion-free
and fc is nontrivial, the image of fc obviously contains an element of
infinite order. We can thus apply Theorem 5.1 taking N = 1 ⊴ G and
A = M and f = fc, yielding |Fix(φab)| = ∞ for any φ ∈ Aut(G). By
Lemmas 2.2 and 2.3, it follows that R(φ) = ∞ for all φ ∈ Aut(G),
which finishes the proof. □

Theorem 1.3 is just a special case of the previous result.

Proof of Theorem 1.3. Take the contrapositive of Theorem 5.4 with
M = Z as a trivial Γ-module. □
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5.2. The case of Thompson-like groups. We now apply our ma-
chinery to the Thompson-like groups considered here, following the
same line of arguments as Gonçalves–Kochloukova in [29, Section 3].
Recall that F is the family consisting of the F -like Bieri–Strebel groups
G([0, ℓ];A,P ), the Lodha–Moore groups G, yG, Gy, yGy, and the
braided Thompson group Fbr defined in Section 3.

To give a (mostly) self-contained, non-overly technical proof of The-
orem 1.1, we need some further facts about characters for the Lodha–
Moore groups and Fbr.

We keep the notation established in Section 4. Moreover, for n ∈
N, we define JnK = {1, . . . , n} and JnK0 = {0} ∪ JnK. Recall from
Theorem 4.1 that Σ1(Γi)

c = Pi. Now fix

Ni =
⋂

[χ]∈Pi

ker(χ) and Vi = Hom(Γi/Ni)

where i ∈ J4K0. We shall describe Γi/Ni more precisely. In what follows,
given g ∈ Γi, denote by g its canonical image in Γi/Ni.

Proposition 5.5. The group Γi/Ni is isomorphic to Z2 for all i ∈ J4K0.

Proof. Throughout we let {e1, . . . , ek} denote the canonical basis for
Zk. It is clear that the Γi/Ni are abelian and, since R is itself torsion-
free, the same holds for Γi/Ni.
Looking back at the generating set of Γ0 = Fbr (cf. Section 3.2),

one sees that elements of the form (T, b, T ) ∈ Γ0 must lie in N0 =
ker(φ0) ∩ ker(φ1). In particular, the generators of Γ0 of the form αij

and βij all belong to N0. Thus Γ0/N0 is generated by the images of
x0 and x1 under the projection Γ0 ↠ Γ0/N0. Since xn0x

m
1 ∈ N0 if and

only if 0 = n = m, the map f : Γ0/N0 → Z2 given by f(x0) = e1 and
f(x1) = e2 is an isomorphism.

Now we check the isomorphism only in the case i = 1, as the re-
maining cases are established along similar lines. Since xs, yt ∈ N1 for
all s ∈ 2N \ {0n, 1n}∞n=1 and t ∈ 2N, the group Γ1/N1 is generated by
x0n , x1n with n ∈ N0. We claim that this quotient is generated by x0
and x1. Indeed, since x0(0

n) = 0n−1, relation (LM2) implies that

x03 = x−1
0 x02x0.

Inductively, we have

x0n = x−1
0 x0n−1x0 = x2−n

0 x02x
n−2
0 .

The relation (LM1) with s = 0 gives x20 = x02x0x01. Since x01 ∈ N1, it
follows that x0 = x02 . Similar arguments show that

x1n = xn−2
1 x12x

2−n
1 ,

and x1 = x12 . Last but not least, relation (LM1) with s = ø implies

x2 = x1xx0
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in Γ1/N1. Since this group is abelian, we get

x = x0x1.

We then conclude that Γ1/N1 is generated by x0, x1. Because xa0x
b
1 ∈

N1 ⇐⇒ 0 = −a = b, the map g : x0 7→ e1, x1 7→ e2 extends to an
isomorphism Γ1/N1

∼= Z2. □

It follows from Proposition 5.5 that Vi ∼= Hom(Z2,R) ∼= R2.

Corollary 5.6. For each i ∈ J4K0 the image of {χ | [χ] ∈ Pi} in Vi ∼=
R2 is a basis for Vi.

Proof. We first argue that the canonical image {φ0, φ1} of {φ0, φ1} in
V0 = Hom(Γ0/N0,R) is a basis of V0 ∼= R2. Let α, β ∈ R satisfy

(5.1) αφ0 + βφ1 ≡ 0

in Γ0/N0. Equality (5.1) means that αφ0(w) + βφ1(w) = 0 for all
w ∈ Γ0/N0, and linear independence means both α and β must be 0.
Since

αφ0(x0) + βφ1(x0) = −α + β and αφ0(x1) + βφ1(x1) = β,

we see that the only solution for (5.1) is (α, β) = (0, 0), as desired.
Lastly we again restrict ourselves to the case i = 1, the remaining

ones being entirely analogous. To check linear independence let α, β ∈
R satisfy

(5.2) αχ0 + βχ1 ≡ 0

in Γ1/N1. Recall that Γ1/N1 is generated by {x0, x1}, so that

αχ0(x0) + βχ1(x0) = −α and αχ0(x1) + βχ1(x1) = β.

Thus the only solution for equation (5.2) is (α, β) = (0, 0). □

With elementary facts established, we can prove the main result from
the Introduction.

Proof of Theorem 1.1. Let Γ ∈ F . If Γ is one of the F -like groups of
Bieri–Strebel (cf. Section 3.3), we know from Theorem 4.2 that there
exists a nontrivial homomorphism f : Γ → R such that f ◦ φ = f for
any φ ∈ Aut(Γ). We then just apply Theorem 5.1 with N = 1 and
A = R.
Now suppose Γ is one of the Lodha–Moore groups or Fbr and let

φ ∈ Aut(Γ). By Theorem 4.1, one has that Σ1(Γ)c consists of two
(classes of) discrete characters. By Corollary 5.6, there are repre-
sentatives χ1 and χ2 of such classes so that their respective images
χ1, χ2 ∈ Hom(Γ/N,R) are linearly independent.

Now set N = ker(χ1 ∩ ker(χ2). Since the natural action of φ on
the character sphere S(Γ) stabilizes the whole invariant Σ1(Γ)c (see
[47, p. 47]), one has that N is φ-invariant. We can thus consider
the induced map φ ∈ Aut(Γ/N). Following [29, Lemma 3.1] (up to
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replacing the representatives χ1 and χ2 to obtain appropriate integer
coordinates for their respective images χ1 and χ2), we obtain

(5.3) φ({χ1, χ2}) = {χ1, χ2}.

(We remark that ker(χ1) = ker(rχ1) and ker(χ2) = ker(rχ2) for any
r ∈ R \ {0}.) Defining

f : Γ −→ R
g 7−→ χ1(g) + χ2(g),

one has N ⊆ ker(f). It is clear that f ∈ Hom(Γ,R) is nontrivial (e.g.,
by linear independence of the χ1 and χ2) and that f(Γ) has elements
of infinite order. Again using equality (5.3), it follows that the induced
map f : Γ/N → R satisfies f ◦ φ = f . Applying Theorem 5.1 to N ,
A = R and f chosen above thus finishes off the proof. □

Although we have restricted ourselves to F -like Bieri–Strebel groups
as defined in Section 3.3, it should be noted that there are many more
Bieri–Strebel groups for which Theorem 5.1 applies, as the following
shows.

Example 5.7 (Gonçalves–Sankaran–Strebel). Start with p ∈ R>1 and
q = ea/b with a

b
∈ Q>1. Then, choose r ∈ T>1 ⊂ R, where T is

a set of irrational representatives for the orbits of the action of the
group

(
a/b 0
0 1

)
·GL2(Z) ·

(
b/a 0
0 1

)
by fractional linear transformations on

S1 ∼= R ∪ {∞}. Now consider the following PL homeomorphisms fp,
gq, hr of the unit interval [0, 1].

fp(x) =


x
p

for x ∈
[
0, 3p

4p+4

]
,

3
4p+4

+ p
(
x− 3p

4p+4

)
for x ∈

[
3p

4p+4
, 3
4

]
,

x for x ∈
[
3
4
, 1
]
.

gq(x) =


x for x ∈

[
0, 1

4

]
1
q
(x− 1

4
) + 1

4
for x ∈

[
1
4
, 4q+1
4q+4

]
,

q+4
4q+4

+ q
(
x− 4q+1

4q+4

)
for x ∈

[
4q+1
4q+4

, 1
]
.

hr(x) =


x for x ∈

[
0, 1

4

]
1
r

(
x− 1

4

)
+ 1

4
for x ∈

[
1
4
, 4r+1
4r+4

]
,

r+4
4r+4

+ r
(
x− 4r+1

4r+4

)
for x ∈

[
4r+1
4r+4

, 1
]
.

The Bieri–Strebel group G(p, q, r) := ⟨fp, qg, hr⟩ ≤ PL◦([0, 1]) is
finitely generated by construction, and varying the defining triple
(p, q, r) yields uncountably many such groups. Finally, by [32, The-
orem 1.7], there always exist a nontrivial homomorphism χ from
G(p, q, r) to a torsion-free abelian group such that χ ◦ φ = χ for any
φ ∈ Aut(G(p, q, r)). △
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Now Corollary 1.2 from the Introduction is easily deduced. For con-
venience, we restate it below.

Corollary 5.8. Any Γ ∈ F has property R∞. In particular, Stein’s
group F2,3, Cleary’s irrational-slope group Fτ , the Lodha–Moore groups
G, yG,Gy, yGy, and the braided Thompson group Fbr have R∞.

Proof. Immediate from Theorem 1.1 and Lemmas 2.2 and 2.3. □

As mentioned, Corollary 5.8 had already been established for ‘most’
groups in the family F , including F2,3 and Fτ ; see [29, 32]. While
Corollary 5.8 for the Lodha–Moore groups and Fbr has not appeared
elsewhere before, we point out that it also follows directly from the
work of Zaremsky in [50, 51] combined with [29, Theorem 3.2]. Below
we briefly outline the arguments.

Alternative proof of Corollary 5.8 for G, yG,Gy, yGy, Fbr. Gonçalves–
Kochloukova deduced a direct criterion to check for property R∞
using the Σ-invariant; see [29, Theorem 3.2]. To apply this result, the
first step is to check that the complement of the BNS Σ-invariant for
the group in question is finite, nonempty, and represented by discrete
characters. This is the content of Zaremsky’s Theorem 4.1. For the
last step, keeping the notation from the beginning of this section,
one needs to check that the image of the discrete representatives
{χ | [χ] ∈ Σ1(Γi)

c} in Vi = Hom(Γi/Ni,R) is a basis for Vi, as we did
in Corollary 5.6. But this result is also implicitly found in the work
of Zaremsky; cf. [50, Section 1.2] for the Lodha–Moore case and [51,
Section 1.4] for the braided case. □

It is interesting to note that the alternative arguments above to de-
duce R∞ might fail for F -like Bieri–Strebel groups. Indeed, Spahn–
Zaremsky [44] showed that Σ1(F2,3)

c contains nondiscrete characters, so
that [29, Theorem 3.2] is not applicable. In contrast, Lewis Molyneux,
Brita Nucinkis and the third author recently computed the BNSR Σ-
invariants of Fτ — particularly, Σ1(Fτ )

c is finite (nonempty), contains
only discrete characters, and [29, Theorem 3.2] does apply.

As discussed at the end of Section 2, it would be interesting to
find non-residually finite groups with R∞ and infinite fixed point sets
of automorphisms; cf. Question 2.10. Drawing from the work of
Kochloukova, Mart́ınez-Pérez and Nucinkis, we point out that many
F -like Bieri–Strebel groups behave similarly to F in this regard, as in
Proposition 2.12.

Proposition 5.9. Let n ∈ N≥2 be arbitrary and write BSn := G([0, n−
1];Z[1/n], ⟨n⟩). Then every φ ∈ Aut(BSn) satisfies |Fix(φab)| = ∞
and, if φ is of finite order, it also holds |Fix(φ)| = ∞. Moreover,
there are infinitely many elements in Out(BSn) of finite order.
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Proof. That |Fix(φab)| = ∞ for any φ ∈ Aut(BSn) has just been proved
in Theorem 1.1 (and BSn has R∞).

We now recall that, for every n ∈ N and i ∈ Z[1/n], the general-
ized Thompson groups Fn,∞ and Fn,i from [12] are isomorphic by [12,
Lemma 2.1.6] and [35, Lemma 2.1], and in turn the Fn,0 are isomorphic
to the F -like groups BSn of Bieri–Strebel; cf. [12, Lemma 2.3.1 and
Definition 1.1.1]. We may thus work with Fn,∞ instead of BSn.

Now suppose φ ∈ Aut(Fn,∞) has finite order. If the fixed subgroup
Fix(φ) is infinitely generated, we are done. Otherwise, it follows from
[35, Lemmas 4.2 and 5.1] that there is an element f ∈ Fix(φ) fixing
a point i /∈ Z[1/n] ⊂ R with slope not equal to 1 at i. By [35, Theo-
rem 4.14], this condition implies that Fix(φ) is isomorphic to the group
Fn,[i,∞], which in turn contains (multiple copies of) Fn,∞ itself by [35,
Proposition 4.4]. Thus, again one has |Fix(φ)| = ∞.
For the last claim, the case n = 2 has been dealt with in Propo-

sition 2.12 since F = G([0, 1];Z[1/2], ⟨2⟩) = BS2. For n ≥ 3,
Kochloukova–Mart́ınez-Pérez–Nucinkis construct in [35, Section 10] in-
finitely many ‘exotic’ automorphisms of finite order, which implies the
claim. □

We close with related open questions. The automorphism groups of
F ⊂ T ⊂ V and BSn are by now well studied [8, 12]. Moreover, the
generalizations Tn,r of T also have property R∞ [15, 42]. We ask:

Question 5.10. What are the automorphism groups of Fbr and of the
Lodha–Moore groups? Do analogues of exotic automorphisms [12] exist
for such groups? Does Thompson’s group V have property R∞?

We also remark that the proof by Burillo–Matucci–Ventura that F
and T have property R∞ employs combinatorial techniques and relates
to decision problems [15]. In particular, they solve the twisted conju-
gacy problem for F . Since there has been recent progress [14, 40] on
the study of conjugacy classes of Thompson groups closely related to
Fbr, G, yG,Gy and yGy, we are also led to the following.

Question 5.11. Is the conjugacy (or twisted conjugacy) problem de-
cidable for all the groups in F?
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[31] Gonçalves, D., and Wong, P. Twisted conjugacy classes in nilpotent
groups. J. reine angew. Math. 633 (2009), 11–27.
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