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ABSTRACT: Due to the low resolution of pattern recognition and disorganized textures of the surfaces of most natural 

objects observed under a microscope, computer vision technology has not been widely applied in precision positioning 

measurement on machine tools, which needs high resolution and accuracy. This paper presents a systematic method to solve 

the surface recognition problem which makes use of ultra-precision diamond machining to produce a functional and polar-

coordinate surface named ‘polar microstructure’. The unique characteristic of a polar microstructure is the distinctive pattern 

of any locations including rotation in the global surface which provides the feasibility of achieving precise absolute positions 

by matching the patterns by utilizing computer vision technology. A polar microstructure which possesses orientation 

characteristics is also able to measure the displacement of rotation angle. A series of simulation experiments including feature 

point extraction, orientation detection as well as resolution of pattern recognition was conducted, and the results show that 

a polar microstructure can achieve a resolution of 9.35 nm which is capable of providing a novel computer vision-based 

nanometric precision measurement method which can be applied in positioning on machine tools in the future. 
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1. Introduction 

Currently, there are many principles of precision positioning measurement such as time-of-flight distance principle, absolute 

laser interferometer principle, surface encoding principle [1], etc. One of the common features of the above principles is that 

the strict requirements for their components and the environment such as a vacuum is needed to control the above uncertainty 

source, [2-4]. The space and operation convenience of the above devices also need improvements. Considering the rapid 

development of computer vision [5-8], it is a good idea to use the improvement of algorithms in robustness and accuracy to 

partially replace the rigorous requirements for the physical properties of measurement equipment. Computer vision has been 

used in various fields such as face recognition [9], astronomy [10], target tracking [11], cryptography [12], etc. Much 
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research has focused on improving the speed and robustness of computer vision and has achieved great success [13-15]. 

However, there are few related surveys on improving the resolution and precision of computer vision because most of the 

applied fields of computer vision are of macroscopic size. Moreover, resolution and precision are necessary to be considered 

in precision measurement. In order to improve the resolution, microscopic observation of the target is an important solution, 

but it causes difficulty to have a high resolution of pattern recognition on most natural object surfaces. In addition, regularity 

and reproducibility of the surface are also the important considerations. Generation of textured surface with high resolution 

of pattern recognition to the nanometer level is a core and tough issue. Ultra-precision machining (UPM) technology aims 

to achieve surface roughness with form accuracy in the range of sub-micrometer and a few nanometers [16-20]. In this paper, 

an integrated ultra-precision machining and computer vision method are used for precision measurement. The block diagram 

of the proposed technique is as shown in Fig. 1. 

 

Fig. 1 A framework of the integrated ultra-precision machining and computer vision method 

 

UPM has been applied in many areas such as aerospace, semiconductors, medical, optics, etc. UPM with computer vision is 

a great combination for the generation of a desirable functional surface. A process chain system in UPM as shown in Fig. 2 

is used in this paper to propose the functional microstructure surface with high resolution of pattern recognition. 
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Fig. 2 A schematic diagram of the design of the process chain system for ultra-precision machining polar microstructures 

 

As shown in Fig 1, the objective is to machine a micro-structured surface to achieve feature distinction at the nanometer 

level which provides some invariance to geometric and photometric differences. Considering the objectives, Fig. 3 

summarizes the requirements of the microstructure. In regard to computer vision, for the further considerations, this 

microstructure should have the function to be detected by the rotation angle displacement and the microstructure should 

have an obvious orientation. Furthermore, the microstructure surface should have enough and uniform features for 

subsequent matching. Considering the situation in this paper, there should be at least two feature points anywhere under the 

vision field of a microscope, but more feature points help to improve the matching accuracy [10]. In regard to UPM, in order 

to have greater advantages than the current precision measurement methods, the microstructure should possess high 

machining efficiency with high reproducibility at a low cost. 

 

Fig. 3 Requirements of microstructure surface 
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2. Design of the polar microstructure 

Briefly, the principle of computer vision-based precision measurement is to firstly capture a microscopic image above the 

microstructure surface, and the absolute position of the captured image on the global microstructure surface is then 

determined. Hence, the original positioning information is in the form of images. Consequently, the original positioning data 

are images. Generally, a grayscale image is a two-dimensional exhibit ( )A m n : 
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The number ( , )m n  means rows and columns of the 2-D array which refers to the pixel number in the vertical ( )m  and 

horizontal ( )n  directions respectively of the grayscale image. The element value 
uva  in the array refers to the intensity 

value I of the pixel ( , )u v , where [0,255]uva  . According to Euclidean distance shown as Eq. (1) [6]: 
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where ( )D   is the Euclidean distance,   is the rotation angle of array A , and i and j represent the initial and incremental 

stage respectively. One feasible solution of the array A  is expressed as Eq. (2): 

[ .. .. .. ]nA W BW BW W= ,  (2) 

where [255...255]T

mW = , [0...0]T

mB = . Its physical expression is shown in Fig. 4(a).  

In UPM, single point diamond broaching (SPDB) is chosen to machine the microgrooves because of its high efficiency. 

More importantly, SPDB and the next machining process can be performed by the same machine tool. The spacing of two 

adjacent broaching grooves is 50 μm which guarantees significant orientation features at the microscale as illustrated in Fig. 

4(b).  
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Fig. 4 Orientation line of microstructure (a) Physical express (b) Machining process 

 

Besides the orientation, to register two images, there is a need to find a transformation model that can transform the geometry 

of one image to resemble the geometry of the other. To find a suitable transformation model, a set of locally unique points 

is selected from each image, correspondence is established between points in the images, and from the coordinates of 

homologous points, the parameters of the transformation model to register the images are determined. As local geometric 

differences between the images increase, a larger number of homologous points are required to account for the increased 

geometric differences among the images. Sufficient homologous points are obtained to compute the parameters of a 

transformation model, and there is a need to find a sufficiently large number of feature points in each image. 

A feature point represents the center of a dark or bright blob, the point of intersection of two or more straight edges, the point 

of locally maximum curvature along an edge contour, or the center of a unique neighborhood in an image. To obtain adequate 

and uniform feature points, there should be a subsequent machining process to form uniform intersection points with SPDB. 

Moreover, considering the needed high resolution of pattern recognition, the formed pattern is necessary to be non-periodic, 

which is very different from the previous research which mostly uses periodic pattern and phase difference principles for 

precision measurement. In the second machining process, single point diamond turning (SPDT) is used to machine the 

concentric grooves with the same machine tool (Moore Nanotech 350FG) as that of SPDB. The final design of the polar 

microstructure is shown in Fig. 5. 
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Fig. 5 Design of the polar microstructure 

 

The designed microstructure is named ‘polar microstructure’ because it looks like a polar coordinate. Mostly, the visual field 

of a microscope is larger than a square visible area which is 100 μm x 100 μm, and each area in the polar microstructure in 

this area is unique. This means that the grayscale intensity distribution of this area is unique. In addition, the precision 

manufacturing process of the polar microstructure is only undertaken by a single machine tool, which avoids positioning 

errors caused by machine tool transfer during machining; therefore, it is highly efficient and accurate as well as creating low 

machining difficulty for machining polar microstructures to obtain a unique micro-structured surface. 

Fig. 6 shows the machining steps with reference to the design principles. Ps  is the spacing distance of straight grooves, 

s  is the offset of straight groove from the machining circle center of the workpiece which solves the problem of the same 

appearance after being rotated 180 degrees. 
rP  is the spacing distance between concentric grooves.  
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Fig. 6 Machining steps with reference to the design principles. a) The first machining process which broaches straight grooves. b) The 

second machining process is turning round grooves. c) Formative mixed surface texture after the above machining process chain. d) 

Machining equipment: Nanoform 350G from Nanotechnology Inc., USA. 

 

3. Modeling and manufacturing of micro-structured surface 

Considering modeling of the designed machining process chain associated with the machining process SPDB and SPDT, all 

the previous machining processes contribute and result in the final surface topography. Concisely, considering any point on 

the workpiece, the surface height chainh  ultimately depends on the lowest height of preh , conh  and strh , which can be 

mathematically defined as Eq. (3): 

 

( , )
arg max{ , , }chain pre con str

x y R
h h h h


=    (3) 

where R is the total area on the workpiece surface, preh  refers to the surface height of the pre-machined workpiece, strh  

represents the surface height of straight grooves machined with SPDB and conh  refers to the surface height of circular 

grooves machined with SPDT. The machining parameters are optimized and chosen as experimental parameters as shown 

in Table I. The workpiece material in machining the polar microstructure is nickel-copper. The workpiece was diamond 
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machined by an ultra-precision machining system named Nanoform 350G. In fact, diamond-machined materials such as 

aluminum and copper are applicable for the machining of polar microstructures.  Fig. 7 shows a comparison between the 

designed model (see Fig, 7(a)) and experimental results measured with a microscope (see Fig, 7(b)). Simulated surface 

topography and measured surface topography are compared in Fig. 6(c) and Fig. 6(d). It is interesting to note that under 

UPM, polar microstructures have great productivity which improves the reliability for mass production in the future. 

Table I Machining parameters of the polar microstructure 

Pre-machining process 

(Rough turning) 

Spindle speed: r/min 3,000 

Feed rate: mm/min 2 

Depth of cut: um 5 

Machining straight grooves 

(SPDB) 

Feed rate of broaching straight grooves (mm/min) 800 

Feed rate of reaching workpiece (mm/min) 10 

Feed rate of leaving workpiece (mm/min) 400 

Depth of cut: um 5 

s (μm) 10 

sp (μm) 50 

Number of straight grooves: 250 

Machining round grooves 

(SPDT) 

Duration time of machining round grooves (s) 3 

Feed rate of reaching workpiece (mm/min) 10 

Feed rate of leaving workpiece (mm/min) 400 

Depth of cut: um 5 

rp (μm) 50 

Number of round grooves: 250 

The radius of the smallest round groove 100 
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Fig. 7 Comparison between simulation results and measured results of the polar microstructure. a) Top view from the workpiece center. 

b) Corresponding area with Fig. 7a) measured with a Pearl Centering Microscope. c) Simulated surface topography. d) Corresponding 

area with Fig. 7c) measured with a ZygoTM interferometer. 

4. Performance validation 

Based on the objectives and requirements of polar microstructures, a series of experiments was conducted to test the 

following capability of polar microstructures: feature point extraction, orientation and resolution of pattern recognition. In 

the validation experiments, the polar microstructure workpiece was placed on the optical surface profiler (Zygo TM) as shown 

in Fig. 8. 
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Fig. 8 Experimental setup 

4.1 Feature point extraction 

The central moments method to detect feature points was utilized [21, 22]. Considering a small n n  window centered at 

0 0( , )x y  in grayscale image ( , )I x y , the central moment of order pq  of the window is defined by Eq. (4): 

0 0

0 0

/2 /2

0 0 0 0

/2 /2

( , ) ( ) ( ) ( , )
x n y n

I p q

pq

x x n y y n

x y x x y y I x y
+ +

= − = −

= − − 
,  (4) 

where p  and q  are nonnegative integers. The moments are computed with respect to the center of the window and within 

a square window in order not to favor the x-coordinates more than or less than the y-coordinates when detecting points. 

To detect more distinct neighborhoods in an image, instead of intensity I  in Eq. (4), intensity gradient magnitude 
gI  is 

used calculated from Eq. (5) to Eq. (7): 

2 2 1/2( , ) { ( , ) ( , )}g x yI x y I x y I x y= +
,  (5) 

( , ) ( 1, ) ( , )xI x y I x y I x y= + −
,  (6) 

( , ) ( , 1) ( , )yI x y I x y I x y= + −
,  (7) 

where ( , )xI x y is the gradient in the x-direction and ( , )yI x y  is the gradient in the y-direction at ( , )x y . 

Based on the central momentum algorithm, Fig. 9 shows the feature point extraction result performed. It can be noticed from 

Fig. 9(b) that the detected feature points are separated uniformly on the surface of the polar microstructure. An enlarged 

view is shown in Fig. 9(c). Feature points are concentrated on the intersection points of SPDT and SPDB, which indicates 

that the machining process of the polar microstructure meets the requirement of generating uniform and enough feature 

points. Moreover, it is interesting to note in Fig. 9(b) that not all feature points can be determined as well as that of Fig. 9(c). 

There are a few feature points which do not coincide with the locations of the machining intersection points exactly. This is 

caused by many factors such as the machining quality, imaging quality as well as the algorithm error. However, this has little 

influence on the subsequent measurement accuracy because not only are there enough detected feature points for subsequent 

matchings, but also the images are all captured on the same manufactured polar microstructure surface; therefore, the 

accuracy of actual feature point locations can be guaranteed in different-view images. Overall, the polar microstructure is 
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competent to provide enough, uniform and accurate feature points for measurement matching. 

 

Fig. 9 Feature point extraction result (a) Original image (b) Feature point extraction result (c) An enlarged area of the feature point 

extraction result 

 

4.2 Orientation 

The determination of orientation is firstly based on the edge detection method which has been investigated extensively [23-

25] and is not described in this paper. This paper gives a brief description of the orientation detection principle based on 

edge detection. Given a sequence of pixels along an edge contour, it can be expressed by Eq. (8) [23]: 

{ ( , ) : 0,..., 1}i i ix y i n= = = −P p
,   (8) 

the parametric curve approximating the contour takes the form as shown in Eq. (9) [23]: 

( ) [ ( ), ( )]u x u y u=p ,   (9) 

the rational Gaussian (RaG) curve approximating the sequence of edge pixels in P  is defined by Eq. (10) to Eq. (12) [23]: 
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where ( )ig u are the basis functions of the curve, and ( )iG u is a Gaussian of height and standard deviation   centered at 

parameter
iu . The tangent direction 𝜃 at a curve point with parameter u is defined by Eq. (13) to Eq. (15) [23]: 

( ) /
( ) arctan( )

( ) /

dy u du
u

dx u du
 =

 ,  (13) 
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( ) ( ) ( )

2

dy u y u u y u u

du u

 



+ − −
=

   (15) 

At this point, the orientation can be determined. In order to test the orientation identification ability of the polar 

microstructure, the relevant experiment was conducted. The image of the polar microstructure was rotated by six different 

angles: 0°, 45°, 60°, 80°, 90° and 180°. The abovementioned orientation algorithm was then used to calculate and display 

the orientation line of different images. Considering that the objective was mainly to contribute to length positioning 

measurement, the resolution of the algorithm was set as 0.1°. The experiment results are shown in Fig. 10, and it should be 

noticed that the orientation lines in Fig. 9 are all generated by calculation. The experimental results show that the calculated 

orientation agreed well with the actual values. The calculated results were for 0.0°, 45.0°, 60.0°, 80.0°, 90.0° and 180.0°. 

However, the resolution can be improved in the future by A+ [26], ANR [27], Zeyde [28], or other methods. In other words, 

the polar microstructure allows a feasible integrated method to be used to detect the angular displacement. 

 

Fig. 10 Orientation detection of the polar microstructure 

 

4.3 Resolution of pattern recognition 

Template matching and sub-pixel interpolation methods were used to test the resolution of pattern recognition. Fig. 11 shows 

the experimental setup. The global image was the surface texture observed by the optical surface profiler (Zygo Nexview™ 

3D Optical Surface Profiler); its actual area size was 1400 μm   1400 μm with 924 pixels   924 pixels. A template image 

was chosen from the midpoint area of the global image. The location was both the 331st pixel of the global image along X 
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and Y directions respectively. The actual area size of the template image was 400 μm   400 μm with 264 pixels   264 

pixels. The matching process started from the top left corner of the global image and ended at its bottom right corner. The 

reference image had the same size as the template image, moving with each pixel step in the search region. During each 

moving step, the corresponding similarity between the reference image and template image was determined. Here, 

Normalized Cross Correlation ( NCC ) [29] was chosen as the indicator to describe the similarity which is expressed by Eq. 

(16) [17]: 

1 1

( , ) 1 1

2 2
2 2

1 1 1 1

[ ( , ) ( , )] [ ( , ) ]

( ( , ) ( , )) ( ( , ) )

m n

i j

u v

m n m n

i j i j

R u i v j R u v T i j T

NCC

R u i v j R u v T i j T

= =

= = = =

+ + −  −

=

   
+ + −  −   

   



 
  (16) 

where ( , )R u v represents the reference image of thu  row of thv  column and ( , )R u v . ( , )R u v
−

 is the grayscale average 

intensity of reference image ( , )R u v , whereas T
−

 is the grayscale average intensity of template image T . These values 

are defined by Eq. (17) and Eq. (18) [17]: 

1 1

1
( , ) ( , )

m n

i j

R u v R u i v j
m n = =

= + +

   (17) 

1 1

1
( , )

m n

i j

T T i j
m n = =

=

   (18) 

The NCC  values are delivered between the interval [-1, 1], which means that if NCC  = 1 the similarity is the best 

possible, whereas if NCC = -1 the template and the corresponding image are completely different. As a result, the point 

( , )u v  which presents the best possible resemblance between R  and T  is defined by Eq. (19) and Eq. (20) [17]: 

ˆ ˆ( , )
ˆ ˆ( , ) arg max ( , )

u v A
u v NCC u v


=   (19) 

where, 

 ˆ ˆ( , ) |1 ,1A u v u M m v N n=   −   −   (20) 
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Fig.11 Experimental setup of the resolution and distinction rate test 

 

All NCC  value distribution after calculations in the searching region is shown in Fig. 12(a). The result shows that the NCC  

value creeps up at the midpoint ( 331, 331u v= = , after Eq (3)) of the search region which indicates the largest similarity 

between the template image and reference image. In this experimental step, the calculated position was the same as the actual 

position of the template image. However, in general conditions, the movement distance is not an integer multiple of pixel 

size, but resolution is an important indicator to show the measurement accuracy. The current resolution of the matching 

method was calculated by 1400 / 924 1.515=  μm/pixel, which cannot achieve nanometer-level accuracy. Hence, sub-pixel 

interpolation needs to be conducted after determining u  and v .  

The pixel ( 331, 331)u v= =  and its eight neighboring pixels totaling nine pixels were interpolated with the Bilinear 

Interpolation (BI) method [30]. After interpolation, each previous pixel was divided into smaller pixels with a higher 

resolution. In this experiment, the resolution changed from 1.51 μm/pixel to 9.35 nm/pixel. Further template matching was 

conducted among the sub-pixels. The NCC   value distribution in the sub-pixel region is shown in Fig. 12(b). The 

experimental result shows that the NCC values still distributed differently in the sub-pixel region, and the closer to the center, 

the larger the value. The middlemost sub-pixel had the highest NCC  value of 1.00. It should be noticed that the images in 

this experiment were generated by an interferometer whose original pixel size was 1.51 μm/pixel and achieved a resolution 

of 9.35 nm after sub-pixel interpolation. In future practical applications, polar microstructure will be observed with a 
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microscope whose original pixel size can achieve the 400 nm/pixel level. With the help of sub-pixel interpolation [26-28, 

30], its final resolution could feasibly achieve 3 nm which means polar microstructures have a feature resolution of pattern 

recognition at the nanometer level. 

 

Fig. 12 NCC  value distribution of different matching areas. (a) The global area (b) Enlarged area from Fig. 11(a) center which is 

near to the maximum similarity. 

 

4.4 Global resolution of pattern recognition 

In the previous experiments in section 4.3, the template image was a fixed choice which is not universal. To test the resolution 

of pattern recognition of the global polar microstructure surface, the template image was changed along the x and y directions 

in 10-μm steps. Fig. 13 shows the changing area with 400 μm   400 μm, so a total of 1,681 template images were chosen. 

In each chosen template image, a repeated experiment as shown in Fig. 10 was conducted. The experimental steps were as 

follows: 

1) Choose the template image; 

2) Calculate all NCC  values between the reference images with the chosen template image (see section 4.3); 

3) Choose another template image and repeat Step 2 until 1,681 template images are obtained. 
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Fig. 13 Matchinig map 

 

To judge the global pattern recognition performance of polar microstructures [31-33], this paper presents two criteria to 

judge it. One criterion is to consider the maximum degree of the mean, which is expressed by /max meanNCC NCC . The other 

criterion is to consider the maximum degree of highlighting in the secondary maximum, which is expressed by 

( )2  2  /max nd max nd maxNCC NCC NCC− . Using the abovementioned two criteria in each chosen template image aims to test the 

significance between the maximum value of NCC  with both the average value of NCC  and the second maximum value 

of NCC  . /max meanNCC NCC   is more inclined to indicate the design rationality of polar microstructures, while 

( )2  2  /max nd max nd maxNCC NCC NCC−  is more inclined to show the matching accuracy of polar microstructures using the NCC  

method. The larger /max meanNCC NCC   and ( )2  2  /max nd max nd maxNCC NCC NCC−   are, the more significant the resolution of 

pattern recognition is. The distribution of the values in the matching map is shown in Fig. 14. As shown in Fig. 14(a), the 

values of /max meanNCC NCC  are all larger than 2 and the average value is 2.53. According to the recognized criteria [31], a 

value over 2 shows that the polar microstructure has good ability to be distinguished. According to Fig. 14(b), the values of 

( )2  2  /max nd max nd maxNCC NCC NCC−  are all larger than 0.05 and the average value is 0.18. This shows that NCC  is a good 

indicator to express the resolution of pattern recognition. A large difference value of ( )2  2  /max nd max nd maxNCC NCC NCC−  

guarantees the accuracy of the NCC  method. 
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Fig. 14 The distribution of values in the matching map. (a) The values of (NCCmax/NCCmean). (b) The values of ((NCCmax-NCC2nd 

max)/NCC2nd max) 

 

Overall, the above validation experiments demonstrate the functional performance of polar microstructures. Its nanometer-

level accuracy and feature resolution of pattern recognition show its feasibility to be applied in precision measurement, 

especially positioning on machine tools in the future. 

5. Conclusion 

In this paper, a polar microstructure achieving high resolution of pattern recognition is proposed. Generation of polar 

microstructures is based on the schematic diagram in the design of the process chain system in UPM. Also, the objectives 

and requirements in regard to computer vision are the consideration of feature point extraction, orientation, discrimination 

rate, etc. A polar microstructure was designed and fabricated based on the modeling of surface generation in UPM as well 

as the principles of image processing technology. To test the performance of the polar microstructure, a series of validation 

experiments was conducted such as feature point extraction, orientation test, resolution of pattern recognition, etc. The 

simulation experimental results show that the extraction of feature points is successful, and the orientation detection is 

feasible which will play an important role in angle displacement detection in the future. Moreover, the polar microstructure 

was able to achieve nanometer-level resolution of pattern recognition on the global map. The judging criteria for resolution 

of pattern recognition on global polar microstructure surface were also proposed and relevant simulations were conducted 

using the proposed criteria to validate the global resolution of pattern recognition performance of polar microstructures. In 
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conclusion, the performance of the polar microstructure demonstrates its feasibility for precision measurement and 

application for positioning of machine tools in the future. 
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