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ABSTRACT Besides the complex nature of colonoscopy frameswith intrinsic frame formation artefacts such
as light reflections and the diversity of polyp types/shapes, the publicly available polyp segmentation training
datasets are limited, small and imbalanced. In this case, the automated polyp segmentation using a deep
neural network remains an open challenge due to the overfitting of training on small datasets. We proposed a
simple yet effective polyp segmentation pipeline that couples the segmentation (FCN) and classification
(CNN) tasks. We find the effectiveness of interactive weight transfer between dense and coarse vision
tasks that mitigates the overfitting in learning. This motivates us to design a new training scheme within
our segmentation pipeline. Our method is evaluated on CVC-EndoSceneStill and Kvasir-SEG datasets.
It achieves 4.34% and 5.70% Polyp-IoU improvements compared to the state-of-the-art methods on the
EndoSceneStill and Kvasir-SEG datasets, respectively and achieves real-time performance in inference. The
model and code are available at https://github.com/MELSunny/Keras-FCN

INDEX TERMS Colonoscopy, real-time polyp segmentation, transfer learning, convolutional neural
network.

I. INTRODUCTION
Colorectal cancer is the fourth most common cancer in the
UK, with over 42,000 new cases reported each year. Regular
and accurate diagnosis is recommended to reduce mortal-
ity from colorectal cancer, especially for people in the age
group of high risk. Screening is one of the effective methods
for early detection and diagnosis of colorectal cancer [1].
During the screening operation, an optical colonoscopy is
utilised to find colonic polyps, which are considered the early
stage of colorectal cancer. Accurate detection of polyps and
removal of them at the early stage can reduce the risk of
colorectal cancer [2]. However, some studies have reported
the miss rate of polyps during the screening is up to 28%
[3], [4]. In practice, the accuracy of detecting and monitoring
polyps relies on the operator’s experience in the colonoscopy
operation [5], [6]. However, in some cases, it is challenging
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to distinguish polyps from the background since the visual
characteristics of varied polyps are small [7], flat and sessile
[3]. This, in turn, results in themissed detection of polyps dur-
ing the screening. Moreover, human visual fatigue [8] is the
additional factor leading to large intra-observer variabilities.

A series of methods have been proposed which have
reached some success for automated polyp detection and
segmentation, the success was mainly driven by the deep
learning that has revolutionised computer vision over the
last few years. At the core of these achievements are the
significant advances of representation learning inherited in
the CovNet with hierarchical network design.

The prior work leverages the CovNet to learn the complex
appearances in colonoscopic frames, which includes intrinsic
frame formation artefacts such as light reflections, bubbles
and the diversity of polyp types and shapes. As the main
limitation is due to the intrinsic data-hungry profile within
deep learning methods, the size and scale of the dataset for
training are crucial to model generalisation. However, the
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main challenge in the medical imaging field is the small
dataset with limited samples and labels. More specifically,
for the polyp segmentation and detection, to some extent,
the accurate segmentation performance using deep networks
relies on the large dataset and high-quality and consistent
annotations/Ground truths. Nevertheless, on the one hand, the
publicly available polyp segmentation datasets (∼1 k images)
are far smaller than the natural image datasets (1 million
images) in the typical semantic segmentation vision task.
On the other hand, it’s very time-consuming to produce dense
clinical annotations, and the consistency of the annotations
is subject to the experts’ experience. Therefore, beyond the
diversity of the polyp appearance, the main challenge comes
up with the small and imbalanced training samples, which
is highly likely to lead to overfitting and training difficulty
when training a deep network on a small dataset. In this
case, we treat the polyp segmentation problem as devel-
oping a dense prediction method that works on the small
dataset while mitigating the overfitting issue in the training
process.

Transfer learning is one of the current well-known tech-
niques to address the small dataset issue in training. It is
crucial to boost the network performance in the prior segmen-
tation methods, which could be categorised into two typical
training pipelines regarding different initialisation strate-
gies: 1) random initialisation with task-specific modules and
2) initialisation with pre-trained weights, e.g. ImageNet [9].

It is common to adopt random initialisation for those
segmentation task-specific networks with customised lay-
ers or modules, where the main focus would be the design
of new networks to lean more representative features.
Whereas adopting well-established backbone networks with
pre-training weights derived from a large-scale dataset is
essential for the following finetuning on the target dataset,
where the improvement is mainly gained from the simple
weights transfer across the inter/intra domains.

In this study, given the small datasets in polyp segmen-
tation, we followed the later strategy to investigate the effi-
ciency of a new weights transfer scheme across domains
that improves the segmentation while mitigating overfitting.
We investigated the impact of transferring weights between
two networks designed for different visual tasks (classifi-
cation and segmentation). The two vision tasks were then
integrated into a single segmentation pipeline sharing the
finetuned weights.

More specifically, the Fully Convolution Network (FCN)
with ResNet50 backbone and atrous convolution is used
to generate the region proposals. Further, the classification
convolution neural network with the same backbone is used
for region proposal refinement. Specific transfer learning
schemes are investigated, which are designed to mitigate
overfitting by exploring the impact of inter-domain and intra-
domain weights transfer in the learning stage.

Our main contributions can be summarised as follows:
1) We proposed a simple yet effective polyp segmenta-

tion pipeline that couples the segmentation (FCN) and

classification (CNN) tasks. The atrous convolution was
employed to enlarge the field of view for automatic
polyp segmentation.

2) We proposed a new training scheme to train the
network that mitigates the impact of overfitting in
learning. We investigated the impact of transfer learn-
ing between two vision tasks. In our weight transfer
scheme, we found the weights finetuned on the seg-
mentation task (dense scale) can be used to accelerate
the convergence in the classification task (coarse task)
while the weights derived from the classification can
be back-projected to the segmentation task to boost the
segmentation performance continuously.

3) Our approach achieved state-of-the-art (SOTA) polyp
segmentation performance on two publicly available
datasets CVC-EndoSceneStill [10] and Kvasir-SEG
dataset [11], with IoU of 76.68%, outperform-
ing the previous state-of-the-art by 4.34% on the
CVC-EndoSceneStill dataset. Notably, our method
achieved the IoU of 80.22% on the Kvasir-SEG dataset,
gaining a significant margin of 5.70% compared to the
previous state of the art. Due to the simple design, our
method can achieve real-time performance in inference
with a single GPU (4.35ms for one-stage) that allows it
to be easily deployed to the colonoscopy examination.

The rest of this paper is organised as follows. We summarise
the related work in section II. Our method is described in
section III, followed by the experimental results and analysis
in section IV. The paper is concluded in section V.

II. RELATED WORKS
A series of approaches for computer-aided polyp segmenta-
tion and detection have been proposed in colonoscopic videos
over the last few years. The conventionalmethods proposed in
earlier studies have commonly extracted intrinsic polyp fea-
tures determined manually, such as texture information [12],
colour [10], geometric features [13], [14] and contours [10].

In recent years, deep learning based methods have suc-
cussed and become the de-facto approach in multiple vision
tasks and many deep learning based approaches have been
proposed for polyp segmentation or detection in colonoscopy
images. In comparison with traditional methods, deep learn-
ing based methods tend to have good segmentation perfor-
mances. The fully convolutional network (FCN) [15] is the
first end-to-end network for semantic segmentation using the
convolutional network. Vázquez et al. [10] proposed a bench-
mark for endoluminal scene segmentation in Colonoscopy
Frames and validated it on the FCN. They train and evaluate
the fully convolutional network on the CVC-EndoSceneStill.
By comparison, they found that FCN outperforms prior
approaches in endoluminal scene segmentation. Another
dataset Kvasir-SEG is proposed [11] and evaluated on the
Deep Residual U-Net (ResUNet++) [16] as a baseline
performance. Further, by applying Conditional Random
Field and Test-Time Augmentation for ResUNet++ [17]
Sánchez-Peralta et al. [18] proposed a U-Net-based
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FIGURE 1. The framework of the method. The input image is initially segmented by Fully Convolution Network. The candidate
patches are further classified by the Classification network using CNN. The result’s false-positive objects are removed finally.

segmentation method and investigated the impacts of
multiple image argumentation methods on two datasets,
CVC-EndoSceneStill [10] and Kvasir-SEG [11]. They
claimed that the most suitable transformation in data aug-
mentation for each dataset is subject to the properties of
the dataset, e.g., the polyp area, brightness and contrast.
Further, they [19] present a new dataset for polyp detection,
localisation and segmentation.

The combinations of two encoders (VGG16, Densenet121)
and two decoders (LinkNet, VGG16) are evaluated on mul-
tiple datasets. Based on the best combination, the proposed
method (LinkNet+ Densenet121) achieves the high accu-
racy on both CVC-EndoSceneStill [10] and Kvasir-SEG [11]
test sets. The latest research [20] proposed a lightweight
PolypSeg+. This model includes an adaptive scale context
(ASC) module with a lightweight attention mechanism, and
feature pyramid fusion (FPF). In [21], Hu et al. proposed a
two stages colorectal polyp region extraction method based
on the saliency detection mechanism, where the Single-
Valued Neutrosophic Set (SVNS) is employed for the detec-
tion and suppression of the specular reflection before the
polyp region extraction via the CNN-based saliency detection
network.

In recent years, Vision Transformer [22] (ViT) has
achieved highly competitive performance for image analy-
sis tasks in multiple applications by splitting an image into
patches and tokenizing the patches for feature extraction
in Transformer [23]. proposed a novel ColonFormer, inte-
grating Transformer and CNN as a unified architecture for
polyp segmentation. A residual axial attention module is used
for the refinement of segmentation. Another research [24]
combines Res2Net [25] with ResNeXt [26] as a backbone,
and uses Multi-Head self-attention and reverse attention
mechanism for accurate polyp segmentation. In the field of

transfer learning, research [27] on two large-scale datasets
for medical imaging shows that transfer learning provides
little performance improvement. However, we claim that
ImageNet-pertained weights are critical to achieving compet-
itive performance via weights transfer if the medical dataset
is very small.

III. METHODS
The proposed automatic polyp segmentation framework
consists of two convolutional neural networks. A fully
convolutional network (FCN) [15] is utilised to segment
polyps and a classification convolutional network (CNN) is
employed to reduce the false positive rate. These two net-
works are designed by using the same backbone architecture
ResNet50 [28] with atrous convolution [29]. A task-specific
network training scheme via transfer learning is investigated
to reduce the risk of overfitting in learning. Particularly, the
effectiveness of sharing weights between the classification
network and segmentation network (FCN) is investigated in
this study.

A. THE FRAMEWORK FOR POLYP SEGMENTATION
A general framework of the method is shown in Fig. 1. Our
polyp segmentation framework is composed of two stages:
Firstly, pixel-wise region proposals are generated by the fully
convolutional network (FCN) with atrous convolution. Sec-
ondly, those region proposals are further extracted as the
image patch candidates, which are classified into polyp/non-
polyp patches by a binary CNN-based classifier.

B. BACKBONE ARCHITECTURE
ResNet [28] is well known as a residual network. Com-
pared to the previous convolution neural network (e.g.
VGG19 [30]), it performs identity mapping and adds shortcut
connections to simplify the optimisation and address the
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FIGURE 2. The overview structure of our segmentation FCN network with
atrous convolution.

degradation problem without increasing the computational
complexity. Thus, ResNet can benefit from gaining accuracy
by increasing network depth. ResNet and its variant networks
have shown remarkable performance in many downstream
vision tasks, e.g., object classification/recognition and detec-
tion, semantic/instant segmentation, pose estimation and so
on. In this experiment, we selected the plain 50 layers of the
residual network (ResNet50) as the backbone structure for
classification and segmentation considering the size of the
training samples.

C. ATROUS CONVOLUTION
Atrous convolution is a kind of special convolution with a
sparse convolution kernel. The input signal is sampled with
interspace. The dilate rate in atrous convolution defines the
size of the interspace. It allows the network to enlarge the field
of view of filters to incorporate a larger context with reduced
computation. It controls the field-of-view and balances the
trade-off between accurate localisation (small field-of-view)
and context assimilation (large field-of-view).

In our network, instead of using pooling layers that could
potentially reduce the resolution of the featuremap, the atrous
convolution is employed to enlarge the field of view (FOV)
and keep the resolution of the feature map with even less
computation.

The overview backbone structure of our FCN is presented
in Fig. 2. Each identity block contains 3 stacked convolution
layers whose kernel sizes are 1×1, 3×3 and 1×1, respectively
as well as the identity shortcuts connections. A slightly dif-
ferent design compared with the original ResNet50, the last
three block uses a 2×2 atrous convolution with a 1×1 stride
to avoid downsampling of feature size.

D. CNN-BASED REGION REFINEMENT
The region refinement is the postprocessing based on the
initial prediction from the FCN.More specifically, the refine-
ment firstly utilises the find-contours function [31] to distin-
guish the multiple candidates of objects from the label maps
of the segmentation. For each candidate of objects, the image
patches are cropped out by the bounding box of the contours.
Each cropped image patch is then fed to the patch classifica-
tion network (Fig. 3) for refinement. This designwas based on
the observation that the foreground objects (polyps) are rather
smaller than the background but similar to other artefacts,

FIGURE 3. The CNN-based region refinement. The inference from FCN has
2 objects and these objects are cropped into image patches. Each image
patch is classified by CNN. Based on the result of CNN, the false positive
objects are removed.

which could lead to some false positives. In our method, the
region refinement is conducted by patch-based classification,
considering the features at different scales (pixel-wise against
patch-wise). As we use the same resnet50 as the backbone
in classification and segmentation, the weights trained from
different vision tasks can mutually be transferred to each
other. For example, the pre-trained weights can transfer to the
classification network so that the final segmentation can be
enhanced by recognising and removing false positive objects
from the initial segmentation.

E. TRAINING SCHEME
The proposed segmentation method was trained using the
following protocol (Fig. 4 training scheme 1). Firstly, the
FCN is initialised with the ImageNet pre-trained weights and
finetuned on the colonoscopy training dataset. Secondly, the
finetuned weights of the FCN are transferred to the classifica-
tion CNN network with the same resnet50 backbone to refine
the polyp patches. Finally, the tuned weights of reset50 on
the CNN classification are circulated to FCN again for the
final segmentation tuning. We also conducted an alternative
training loop, which starts from CNN classification followed
by FCN tunning and ends with classification tunning again
(Fig. 4 training scheme 2). We empirically found that training
scheme1 can mitigate overfitting in training and continu-
ally boost the FCN performance. More specifically, weight
transfer from a dense task (segmentation) to a coarse task
(classification) can accelerate the CNN training convergence.
Meanwhile, it is worth noting that the FCN segmentation
performance can be continually improved by circulating the
finetuned weights of CNN back to the FCN. More experi-
mental results and comparisons are presented in section IV-C
ablation study.

F. LOSS FUNCTIONS
For training the classification networks, Binary Cross
Entropy loss is used for the optimisation:

LossBE (y, ŷ) = −

∑N
n=1 ŷn × log yn + (1 − ŷn) log (1 − yn)

N
(1)
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where, yn is the nth probability in the model output, ŷn is
the nth value in the corresponding ground truth. N is the
minibatch size.

For evaluation of the segmentation models, the similar
Softmax Sparse Cross Entropy loss is used:

LossCE
(
y, ŷ

)
= −

∑N
n=1 ŷn × log σ (yn)

N
(2)

σ (x)i =
exi∑C
j=1 e

xj
(3)

where σ is the softmax function, making the label map ŷ
normalised to 0∼1, meanwhile, for each class on a specific
voxel, the total of all class values is 1. xi is the feature
prediction for class i, C is the total amount of classes.

G. EVALUATION METRIC
A set of standard classification, segmentation and detection
evaluation metrics are employed to evaluate the method. The
classification performance is evaluated by the accuracy met-
ric, the segmentation is evaluated by the IoU also known as
the Jaccard index.

Classification

Accuracy =
TP

TP+ FP
(4)

Segmentation

IoU (X ,Y ) =

∑N
c=1

|Xc∩Yc|
|Xc∪Yc|

N
=

∑N
c=1

TPc
TPc+FPc+FN c

N
(5)

Dice (X ,Y ) =

∑N
c=1

2|Xc∩Yc|
|Xc|+|Yc|

N
=

∑N
c=1

2TPc
2TPc+FPc+FN c

N
(6)

MeanIoU =
IoUPolyp + IoUBackground

2
(7)

whereN is the number of classes. |Xc| and |Yc| are the number
of voxels for class c, TPc is the true positive for class c, FPc is
false positive for class c, FN c is the false negative for class c

IV. EXPERIMENTS AND RESULTS
A. EXPERIMENT MATERIALS
To validate our method and training scheme, two public
datasets (the CVC-EndoSceneStill [10] and the Kvasir-SEG
datasets [11]) are used for training and evaluation in our
experiments.

The CVC-EndoSceneStill is a combination of
CVC-ColonDB and CVC-ClinicDB, which includes 912
images obtained from 44 video sequences acquired from
36 patients. In the CVC-ColonDB, there are 300 colonoscopy
images with a resolution of 500 × 574 pixels. And the
CVC-ClinicDB has 612 colonoscopy images with a lower
resolution of 384 × 288 pixels. According to the metadata,
the dataset is split into 547 training frames, 183 validation
frames and 182 testing frames.

The Kvasir-SEG dataset [11] has relatively more images
which contain 1000 colonoscopy frames of various sizes.

The image resolution ranges from 332 × 487 to 1920 ×

1072 pixels. We followed the same strategy in [20] to split
the dataset into training, validation and tests for compari-
son. More specifically, the total of 1000 images is split into
800 training images, 100 validation images and 100 testing
images.

In the experiments, the binary label is used for training and
evaluation of polyp patch classification, while for the seg-
mentation, two classes are used, where pixels corresponding
to the polyp are labelled with 1 and 0 otherwise.

B. TRAINING PROTOCOL AND SETTINGS
Two sets of training hyperparameters are applied to the classi-
fication and segmentation network, respectively. The details
of the settings are summarized as follows.

Classification network:

• SGD optimiser with 0.9 momentum
• 1e−3 initial learning rate with cosine decay
• 250 training epochs
• 24 batch size

Segmentation network:

• Adam optimiser [32] with amsgrad [33]
• 1e−4 learning rate
• 500 training epochs
• 24 batch size

We developed an image patch generator to generate image
patches (polyp or non-polyp patch) for the classification
network training. Specifically, image patches of polyp are
generated by a bounding box on the polyp of the segmentation
mask. And then, background image patches are generated
by random cropping on the image but excluding the polyp
region.

Since the dataset is small, with only 547 training images,
data augmentation was employed in our experimentations
that could potentially reduce the overfitting, and the follow-
ing data augmentation factors were applied to increase the
training simples:

• Keep aspect ratio resize from range 0.8x to 1.25x with
padding zero value

• 0◦ to 180◦ rotation range
• Random horizontal and vertical flip
• 0.1 Width and height Shift range

Regarding the thresholds of segmentation and classification
that balance the trade-off between sensitivity and specificity,
in our experiments, we empirically selected a thresholding of
0.2 following the FCN to keep as many potential regions as
possible that can be fed into the stage 2 patch classification
for further optimisation. This, in turn, would reduce False
Negative. Fig 9. demonstrates the effectiveness of the refine-
ments stage in the experimental results. Moreover, given
the distribution of polyp and non-poppy samples is skewed,
we tuned the thresholding of classification based on the val-
idation dataset. To reduce the miss detection rate, we choose
the thresholding of 0.1 in our experiments.
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FIGURE 4. Two training schemes, The ImageNet weights in scheme 1 on the top, start with finetuning on FCN, then are trained on CNN and
finally return to FCN for final finetuning. In scheme 2, the ImageNet weights start with training on CNN, and so on.

FIGURE 5. Evaluation for segmentation networks with various input sizes.
The numbers in the legend indicate the input size.

All experiments were conducted on the machine with
six core 12 threading CPUs running on 3.8Ghz (Intel
Core i7 6850K) with 32GB DDR4 RAM. The NVIDIA
RTX 3090 GPU with 24GB VRAM is used to accelerate the
training. The implementation is based on TensorFlow [34]
and Keras. The software development environment is Ubuntu
20.04 with NVIDIA CUDA 11.

C. ABLATION STUDY
1) INPUT SIZE
We argue that the input size affects the overall performance of
the polyp segmentation. We validated various input sizes of
192×192, 224×224, 256×256, 320×320 and 384×384 in
training and validation to spot an optimised input size for
the segmentation. The commonly used metric of polyp Inter-
section over Union (IoU) is accessed for these segmentation
networks with different input sizes. The result in Fig. 5 shows

that the input size of 320×320 has reached the highest perfor-
mance for the segmentation in the validation set. Compared
to the size of 384 × 384, we can observe that the size of
320 × 320 input has very competitive performance in the
early training epochs but has better IoU since 160 epochs.

This counterintuitively shows that the segmentation perfor-
mance won’t keep improving when increasing the input size
in the FCN network. In our experiments, we adopted the input
size of 320 ×320 for segmentation, considering its superior
performance as well as the slightly less computational cost.

2) TRAINING SCHEME AND WEIGHTS TRANSFER
We investigated the performance and impact of sharing
weights between segmentation and classification networks,
which are equipped with the same backbone architecture
(ResNet 50). Two training schemes shown in Fig. 4 for the
proposed method are conducted to investigate the impact of
the weights transferring between Patch-wise coarse predic-
tion (classification) and pixel-wise dense prediction (segmen-
tation). In the first scheme (i.e., top flow in Fig. 4 FCN->
CNN->FCN), the weights are transferred in the path of
learning from dense prediction task (with FCN) to patch-
wise classification task (CNN), and then we circulated the
trained CNN weights back to FCN again. More specifically,
we finetuned the FCN Segmentation (noted as Model S1)
on the polyp dataset, of which the backbone was initialized
by ImageNet pre-trained weights. And then, we finetuned
the CNN classification network (Model C2) by preloading
weights of FCN (Model S1). Finally, the finetuned CNN
weights were transferred back to the FCN again for the final
segmentation training, denoted as FCN (Model S3).

Alternatively, in the second scheme (i.e., bottom flow
in Fig. 4 corresponding to the path CCN->FCN->CCN as
coarse to fine task transfer), We initialised CNN (Model C1)
with ImageNet pre-trained weights and trained it on the colon
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FIGURE 6. Evaluations of the segmentation networks, Dashed lines
denote validation IoU, solid lines denote training IoU.

patches, then we finetuned FCN (Model S2) by preload-
ing CNN (Model C1) weights. Finally, we finetuned CNN
(Model C3), with preloading FCN (Model S2) weights.

Additionally, to validate the weights transfer with or with-
out pre-trained weights, the random weights initialisation for
the segmentation FCN (denoted as Model S0) is used in
training for the comparison. This ablation is also designed to
assess the effectiveness of weight transfers from the natural
to the medical domain.

We evaluated two training schemes on the polyp segmenta-
tion dataset. Fig. 6 shows the training and validation curves of
all FCN networks (S0-S3) with different initialisation strate-
gies with or without transfer learning. We can observe that
model (S0) training with the randomly initialised weights has
slower convergence compared to the other models (S1-S3),
which are initialised or finetuned based on the ImageNet pre-
training weight. The S0 also tends to be overfitting more eas-
ily. We conjecture that on the small dataset, the inter-domain
or cross-domain weight transfer from the natural images
ImageNet to the medical image domain (polyp images) is
non-trivial for the downstream polyp segmentation task.

Moreover, Fig. 6 shows that the S1 of training scheme 1
has a similar convergence in training compared to S2 of the
training scheme2. However, the fluctuance of the S2 vali-
dation (Val 2) curve demonstrates unstable performance and
less generalisation. This indicates that fine-tuningwith coarse
classification across domains before dense segmentation does
not help the segmentation. We speculate the weights directly
transferred from the ImageNet to the polyp domain are cor-
rupted during the patch-wise classification finetuning due
to the limited training samples. However, the classification
finetuning (C2) initialised by the intra-domain tuned weights
from S1 has a stepstone effect that continuously boosts the
segmentation performance, as shown in Fig. 6. model S3.
The training and validation curves of S3 demonstrate faster
convergence in the early epochs and training stability in the
ongoing epochs.

FIGURE 7. Evaluations of the classification networks, Dashed lines
denote validation accuracy, solid lines denote training accuracy.

FIGURE 8. Evaluations of the classification networks, Dashed lines
denote validation accuracy, solid lines denote training accuracy.

We further investigate the effectiveness of the weight trans-
fer in classification networks within two training schemes.
Fig. 7 presents the evaluation results in terms of accuracy for
the classification of the validation dataset. We can observe
that model C1 using ImageNet weights has a slower con-
vergence speed compared to model C3 with the weights of
model S2.

Although model C3 in scheme 2 has a slightly improved
performance and convergence speed than model C2 in
scheme 1 in both training and validation phases, the C3 tends
to be unstable with large fluctuation in validation around
50 epochs in Fig. 7. The competitive performance between
the C2 and C3 (both are initialised with FCN-trained weights)
also verifies the benefits of transferring the weight of the
segmentation task to classification.

In addition, to verify whether FCN can be further
improved by the aforementioned iterative training scheme 1
(FCN-CNN-FCN), We stacked one more iteration, namely
(FCN-CNN-FCN-CNN-FCN), sharing weights between

VOLUME 11, 2023 16189



Y. Wen et al.: Rethinking the Transfer Learning for FCN Based Polyp Segmentation in Colonoscopy

TABLE 1. Comparison of the segmentation methods on the
CVC-EndoSceneStill test dataset.

TABLE 2. Refinement on the CVC-EndoSceneStill test dataset.

FCN and CNN, denoted the model S4. Fig. 8 shows that
model S4 does not have significant improvements. Instead,
the S3 demonstrates slightly faster convergence. This indi-
cates that the performance of FCN cannot be continuously
improved by sharing weights between segmentation and
classification networks.

Based on our ablations and discovered components lead-
ing to the segmentation improvement, we choose training
scheme 1 with models S3 and C2 for polyp segmentation.

D. SEGMENTATION EVALUATION RESULT
Our segmentation method is evaluated on two public
datasets (CVC-EndoSceneStill and Kvasir-SEG). The eval-
uation results, alongside the previous methods on the
CVC-EndoSceneStill test set, are summarized in Table 1.
The S1 model achieves 75.84% of polyp IoU, which veri-
fies the improvement of polyp features by introducing the
Atrous convolution in the FCN-16s backbone. The segmen-
tation performances are further improved by adopting our
training scheme that achieves 76.58% of Polyp IoU and
86.74% of dice scores with the same or fewer computations.
With the refinement (S3+C2), our method achieves the IoU
of 76.68%, outperforming the previous state-of-the-art by
4.34% on the CVC-EndoSceneStill dataset. It’s worth noting
that our pure convolution-based method outperforms the lat-
est transformer-based method and achieves 86.66% of mIoU
on the EndoSceneStill test dataset.

As the combination of the S3+C2 has further improvement
compared with S3, we assess the effectiveness of the refine-
ment and report the results in table 2. TABLE 2 shows that
some false positive objects are removed which improves the
polyp segmentations e.g., IoU, and accuracy. Fig. 9 illustrates

FIGURE 9. Comparison of Segmentation results. (a) Input image
(b) Ground Truth (c) FCN with ImageNet weights initialization (d) the
proposed method.

TABLE 3. Comparison of the segmentation methods on the Kvasir-SEG
test dataset.

examples that show how refinement improved the segmen-
tation inference. The initial segmentations derived from S0
(Fig. 9 Column c) contain a few segmented objects, some of
which are false positives. These false positives are removed
after the refinement by polyp patch classification, whilst the
true positives in examples remain.

We find consistent improvements in our method on the
Kvasir-SEG dataset that shows the effectiveness of the
proposed method and training scheme. On average, mode
S3+C2 achieves significant 2.48% polyp IoU improvements
compared to model S1. Our method achieves state-of-the-art
performance on this dataset in terms of metrics Polyp IOU,
Polyp Dice, mean IOU and Accuracy with 80.22%, 89.02%,
87.97% and 96.38%, respectively. Notably, the polyp IoU
of 80.22% on the Kvasir-SEG dataset, gaining a significant
margin of 5.70% compared to the previous state of the art.

Fig. 10 shows the segmentation results of our method
(S3 + C2 refinement) on some representative cases, includ-
ing polyps in various sizes and shape, as well as, various
image attributes, including resolution, clarity, and bright-
ness. Thanks to the atrous convolution, the receptive field
of the model is widened, as a result, the polyps with large
scale are segmented effectively in the result of (a) and
(d). More challenging cases of some imperceptible polyps,
caused by the confusion with folds (g), low clarity image
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FIGURE 10. Qualitative results. (a)∼(d) are cases from the Kvasir-SEG test set, (e)∼(i) are cases from CVC-EndoSceneStill. In each case, the left image is
the input image with highlighted (purple) prediction generated from our method. The right image is the overlap (aqua) of ground truth(green) and
prediction (blue).

TABLE 4. Processing time for segmentation.

(e) and edge location, are successfully segmented. In the
result of (g), the proposed method gives a larger segmented
region than the ground truth. But the uncertainty remains in
deciding the precise polyp region in this case. The large area
from themodel inference can be preserved for further analysis
by the radiologist.

The result of (c) shows that the method has the ability of
multi-object segmentation. Case (i) contains an irregularly
shaped polyp, and the proposed method provides a consistent
contour to the ground truth.

Regarding efficiency, TABLE 4 summarises the inference
time of the segmentation approaches on colonoscopy. Our
model S3 approach is 4.35 milliseconds, achieving an aver-
age of 23 FPS on the single GPU card, which is suffi-
cient for real-time application. The postprocessing costs extra
2.76 milliseconds, resulting average of 14 FPS. The speed
of our approach is close to the fastest [20], while S3 cost
additional 1.13 milliseconds achieving 13% more on polyp
IoU. Moreover, its inference is based on batch size 1 with
single CPU threading for pre-processing and post-processing.

Lower latency and higher fps could be achieved after proper
optimisation.

V. CONCLUSION
In this paper, we propose an automatic polyp segmentation
method in colonoscopy frames which integrates atrous FCN
with ResNet50 backbone for region proposal and classifi-
cation CNN for region refinement. A new training scheme
is designed to mitigate overfitting due to the small dataset,
which is a common issue in medical imaging. We discover
several key components regarding the weight transfer leading
to the improvement of polyp segmentation. We find that cir-
culating the weight transfer between dense and coarse predic-
tion tasks (segmentation and classification) canmitigate over-
fitting even using the small dataset and continue to boost the
final segmentations. This motivates us to design a segmen-
tation framework with a new training scheme. Our method
is evaluated on two pubic datasets (CVC-EndoSceneStill and
Kvasir -SEG). It achieves the segmentation performance with
86.80% of Polyp Dice, 86.66% of mean IOU and 96.88%of
Accuracy on the EndoSceneStill dataset, and 89.02% of
Polyp Dice, 87.97% of mean IOU and 96.38%of Accuracy
on the Kvasir -SEG. Our method achieves state-of-the-art
and outperforms the existing methods on polyp segmentation
with the same or fewer computations by 4.34% and 5.70%
of Polyp IoU on EndoSceneStill and Kvasir-SEG datasets,
respectively.

APPENDIX
The implantation of our experiment has been released on
GitHub: https://github.com/MELSunny/Keras-FCN
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