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Abstract

Harmonizing the analysis of data, especially of 3-D image volumes, consisting

of different number of slices and annotated per volume, is a significant problem

in training and using deep neural networks in various applications, including

medical imaging. Moreover, unifying the decision making of the networks over

different input datasets is crucial for the generation of rich data-driven knowl-

edge and for trusted usage in the applications. This paper presents a new deep

neural architecture, named RACNet, which includes routing and feature align-

ment steps and effectively handles different input lengths and single annotations

of the 3-D image inputs, whilst providing highly accurate decisions. In addition,

through latent variable extraction from the trained RACNet, a set of anchors

are generated providing further insight on the network’s decision making. These

can be used to enrich and unify data-driven knowledge extracted from different

datasets. An extensive experimental study illustrates the above developments,

focusing on COVID-19 diagnosis through analysis of 3-D chest CT scans from

databases generated in different countries and medical centers.
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1. Introduction

In a variety of applications, input data are in the form of 3-D volumetric

images, i.e., two dimensional image sequences which include different number of

frames, or slices, and which are annotated in terms of a single label per sequence.

Such applications are, for example, 3-D chest CT scan analysis for pneumonia,

COVID-19, or Lung cancer diagnosis [1], [2]; 3-D magnetic resonance image

(MRI) analysis for Parkinson’s, or Alzheimer’s disease prediction [3], [4]; 3-D

subject’s movement analysis for action recognition & Parkinson’s detection [5];

analysis of audiovisual data showing subject’s behaviour for affect recognition

[6]; anomaly detection in nuclear power plants [7]. Dealing with a single annota-

tion per volumetric input and harmonizing the input variable length constitutes

a significant problem when training Deep Neural Networks (DNNs) to perform

the respective prediction, or classification task.

Furthermore, in each of the above application fields, public, or private datasets

are produced in different environments and contexts and are used to train deep

learning systems to successfully perform the respective tasks. Extensive research

is currently made on using data-driven knowledge, extracted from a single, or

from multiple datasets, so as to deal with other datasets. Transfer learning,

domain adaptation, meta-learning, domain generalization, continual or life long

learning are specific topics of this research, based on different conditions related

to the considered datasets [8]. An additional condition can be that some, or all

of the datasets may not be available during continual learning, due for exam-

ple to privacy, or General Data Protection Regulation (GDPR) issues. In such

cases it can be possible to perform diagnosis by only sharing some data-driven

knowledge, like the weights of independently trained DNNs.

COVID-19 diagnosis based on medical image analysis is the application do-

main examined in this paper. Various methods have been proposed to diagnose

COVID-19, using analysis of chest x-rays, or CT scans. In particular, chest

3-D CT images can be used for precise COVID-19 early diagnosis. Recent ap-

proaches target segmentation and automatic detection of the pneumonia region
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in lungs and subsequent prediction of anomalies related to COVID-19 [9]. Com-

mon anomalies are multiple ground-glass opacity, consolidation, and interlobular

septal thickening in both lungs, which are mostly distributed under the pleura.

Such approaches require large training datasets. A few databases with CT

scans have been recently developed [10], [11]. However, a rather fragmented

approach is followed: research is based on specific datasets, provided by small,

or larger numbers of hospitals, with no proof of good performance generalization

over different datasets and clinical environments. Moreover, many datasets

are small, in terms of total CT scans, or scan slices, or COVID-19 annotated

CT scans, or number of patients [12]. In this paper we use a new very large

database, COV19-CT-DB, which we have developed, including chest 3-D CT

scans, aggregated from different hospitals. In particular, it includes 7,750 3-D

CT scans, annotated for COVID-19 infection; 1,650 are COVID-19 cases and

6,100 are non-COVID-19 cases. The 3-D CT scans consist of different numbers

of CT slices, ranging from 50 to 700, totalling around 2,500,000 CT slices. Part

of the database was successfully used in a recently held Competition [13]. The

whole database is being currently made available to the research community

through our website.

In the paper, we develop a deep neural architecture able to: i) analyze the

3-D CT scan inputs, ii) effectively handle the problem that each CT scan con-

sists of a different number of CT slices and iii) provide a very high performance,

when used on COV19-CT-DB and on other public datasets for COVID-19 diag-

nosis. RoutingAlignCovidNet (RACNet) is a CNN-RNN architecture [14] that

is modified to include routing and feature alignment steps that dynamically se-

lect the specific RNN outputs to be fed to the dense (fully connected) layers for

decision making, i.e., COVID-19 diagnosis.

In addition, we extract latent variables from the trained RACNet and derive

a set of anchors which can provide insight into the network’s data driven knowl-

edge. Moreover, these anchors are used for unification with other datasets, thus

developing a continual learning framework which does not require sharing of the

input datasets.
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The rest of the paper is organized as follows. Related work is presented

in Section II. Section III provides a short description of the COV19-CT-DB

database. The RACNet architecture is described in Section IV. Section V

includes the experimental study presenting evaluation of the performance of

RACNet when trained with COV19-CT-DB and then refined on other public

databases. Conclusions and future work are presented in Section VI.

2. Related Work

A variety of 3-D CNN models have been used for detecting COVID-19 and

distinguishing it from other common pneumonia (CP) and normal cases, using

volumetric 3-D CT scans. In [15], a pretrained DenseNet-201 was trained with

CT scan images to classify them to the COVID-19, or non-COVID-19 category.

The network’s performance was compared to that of pre-trained and fine-tuned

VGG16, ResNet152V2, and Inception-ResNetV2 networks. In [16] a CNN plus

RNN network was used, taking as input CT scan images and discriminating

between COVID-19 and non-COVID-19 cases. In [17], the authors developed

a multi-task architecture consisting of a (common) encoder that takes a 3-D

CT scan as input and i) a decoder that reconstructs it; ii) a second decoder

that performs COVID lesion segmentation; and iii) a multi-layer perceptron for

classification between COVID and non-COVID categories.

In [2], a weakly supervised deep learning framework was presented using 3-D

CT volumes for COVID-19 classification and lesion localization. A pre-trained

UNet was utilized for segmenting the lung region of each CT scan slice; the latter

was fed into a 3-D DNN that provided the classification outputs; the COVID-19

lesions were localized by combining the activation regions in the DNN and some

connected components in unsupervised way. [18] first used 3D models, such

as ResNet3D101 and DenseNet3D121, to establish the baseline performance.

Then it proposed a differentiable neural architecture search (DNAS) framework

to automatically search the 3D DL models for CT scan classification. It has

published the used training, validation and test datasets for future research.
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3. The COV19-CT-DB Database

COV19-CT-DB includes 3-D chest CT scans annotated for existence of

COVID-19. Data collection was conducted in the period from September 1

2020 to November 30 2021. It consists of 1,650 COVID and 6,100 non-COVID

chest CT scan series, which correspond to a high number of patients (more than

1150) and subjects (more than 2600). In total, 724,273 slices correspond to the

CT scans of the COVID-19 category and 1,775,727 slices correspond to the non

COVID-19 category.

Annotation of each CT slice has been performed by 4 very experienced (each

with over 20 years of experience) medical experts; two radiologists and two

pulmonologists. Labels provided by the 4 experts showed a high degree of

agreement (around 98%). Each of the 3-D scans includes different number of

slices, ranging from 50 to 700. This variation in number of slices is due to

context of CT scanning. The context is defined in terms of various factors, such

as the accuracy asked by the doctor who ordered the scan, the characteristics of

the CT scanner that is used, or specific subject’s features, e.g., weight and age.

Figure 1: Four CT scan slices, two from a non-COVID-19 CT scan, on the left and two from

a COVID-19 scan, on the right, including bilateral ground glass regions in lower lung lobes.

Figure 1 shows four CT scan slices, two from a non-COVID-19 CT scan, on

the left and two from a COVID-19 scan, on the right. Bilateral ground glass

regions are seen especially in lower lung lobes in the COVID-19 slices.
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Figure 2: Histogram of CT scan lengths

4. RACNet: The Proposed Architecture

4.1. 3-D Analysis and COVID-19 Diagnosis

Let us focus on the COVID-19 diagnosis problem, so that we specifically

define the input data characteristics. The input sequence is a 3-D signal, con-

sisting of a series of chest CT slices, i.e., 2-D images, the number of which is

varying. The 3-D signal can be handled using a 3-D CNN architecture, such as

a 3-D ResNet. However, handling the different input lengths, i.e., the different

number of slices that each CT scan contains, can only be tackled in some ad-hoc

way, by selecting a fixed input length and removing slices when a larger length

is met, or duplicating slices when the input contains a smaller number of slices.

The 3-D signal could alternatively be handled using different Multiple Instance

Learning methods [19]. Nevertheless, this does not fit this case, as the problem

is not to identify one or more CT slices that illustrate COVID-19 occurrence; it

is to learn doctors’ diagnosis making, after examining the whole 3-D CT scan.

In the following we propose a CNN-RNN architecture, RoutingAlignClus-

terNet (RACNet), instead of a 3-D CNN one. By including a Mask Layer after

the RNN part, RACNet dynamically selects RNN outputs taking into account

the input length, i.e., the number of slices of the analyzed CT scan. This is

depicted in Figure 3, where t denotes the maximum number of slices that ap-

pear among all available chest CT scans; the Mask Layer performs a dynamic

routing procedure, as is explained below.
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Figure 3: The proposed Pipeline: A 3-D input composed of, up to t chest CT slices is processed

for COVID-19 diagnosis; 3-D analysis is performed by a CNN-RNN architecture, while a

routing mechanism including an ’alignment’ step and a Mask Layer handles the varying input

length t. A dense layer follows, preceding the output layer that provides the COVID-19

diagnosis; the neuron outputs of the dense layer are further analyzed through clustering to

derive a latent variable model and a related set of anchors that provide further insight into

the achieved decision making.

There are two modes of feeding input data to our model. In the first, seg-

mentation of each 2-D slice is performed so as to detect the lung regions; then

the resulting segmented image constitutes the input to the CNN. In the second,

the whole unsegmented 2-D slices are fed as input to the CNN part. Both modes

are studied in the presented experimental study of the paper.

At first all input CT scans are padded to have length t (i.e., consist of t

slices). Then the CNN part performs local, per 2-D slice, analysis, extracting

features mainly from the lung regions. The target is to make diagnosis using

the whole 3-D CT scan series, similarly to the way medical experts provide the

annotation. The RNN part provides this decision, analyzing the CNN features

of the whole 3-D CT scan, sequentially moving from slice 0 to slice t.

As shown in Figure 3, we get RNN features corresponding to each CT slice,

from 0 to t. We then concatenate these features and feed them to the Mask

Layer. The original (before padding) length l of the input series is transferred

from the input to the Mask Layer to inform the routing process. During RAC-

Net training, the routing mechanism performs dynamic selection of the RNN
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outputs/features. In particular, it selects as many of them as denoted by the

length l of the input series, keeping their values, while zeroing the values of the

rest RNN outputs. In this way, it is routing only the selected ones into the

following dense layer.

This can be done: a) by selecting the first l RNN outputs, or, b) through

an ’alignment’ step, i.e., by first placing the l RNN outputs in equidistant po-

sitions in [0, t] and by then placing the remaining outputs in the in-between

positions; the Mask gets their positions and performs routing of the respective

RNN outputs to the following dense layer.

This dense layer learns to extract high level information from the concate-

nated RNN outputs. During training, we update only the weights that connect

the dense layer neurons with the RNN outputs routed in the concatenated vector

by the Mask layer. The remaining weights are updated whenever (i.e., in an-

other input CT scan) respective RNN outputs are selected in the concatenated

vector by the Mask Layer. Loss function minimization is performed, as in net-

works with dynamic routing, by keeping the weights that do not participate in

the routing process constant, and ignoring links that correspond to non-routed

RNN outputs.

The final output layer follows, using a softmax activation function and pro-

viding the final COVID-19 diagnosis.

4.2. The ’alignment’ step

Let us, for example, assume that a maximum input length of 700 CT scan

slices is considered. For a specific input CT scan consisting of 50 slices, 650

duplicate slices are inserted so that the scan is made to contain 700 slices in

total. During training, all 700 slices are fed to the CNN-RNN network.

In the case where no ’alignment’ is performed, the network’s output is fed to

the Mask layer which: i) zeroes the features corresponding to the 650 duplicate

slices (slices 50-699), ii) lets the first 50 features (corresponding to original slices

0-49) keep their values.

In the case where ’alignment’ is performed, the features extracted from the
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CNN-RNN part are re-positioned as follows. The features corresponding to the

50 original slices (0-49) are placed in equidistant positions in [0, 699]. The rest

features corresponding to the 650 duplicate slices are placed in the in-between

positions. The operation of the Mask Layer is the same as when no ’alignment’

is performed; it i) zeroes the features corresponding to the 650 duplicate slices

(slices 50-699), ii) lets the other 50 features (corresponding to original slices

0-49) keep their values.

In both cases, the ’masked features of CT slices 0-49’ and the ’masked fea-

tures of duplicate CT slices 50-699’ are fed to the dense layer that precedes the

output layer.

4.3. Latent Variable Analysis and Anchor Set Generation

In the proposed methodology we extract and further analyze, through clus-

tering, the, say L, neuron outputs of the dense layer of the trained RACNet.

These latent variables carry high level, semantic information, which is used to

generate the final classification at the output layer. We choose to discard the

output layer and perform unsupervised analysis of these variables, so as to gen-

erate a representation that can provide further insight into the achieved decision

making ability.

Let us assume that we feed the presented architecture with a training dataset.

For each 3-D CT scan input k, we extract the L neuron outputs of the dense

layer, forming a vector v(k). In total, we get:

V =
{

(v(k), k = 1, . . . , N
}

(1)

where N is the number of available training data.

We aim to generate a concise representation of the v vectors, that can be

used as a backward model, to trace the most representative CT scan inputs

for the performed diagnosis. This is achieved using a clustering algorithm,

e.g., k-means++ [20], which generates, say, M clusters Q = {q1, . . . ,qM} by
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minimizing the following criterion:

Q̂k-means = arg min
Q

M∑
i=1

∑
v∈V
‖v− µi‖

2
(2)

where µi is the mean of v values included in cluster i.

Then, we compute each cluster center c(i), generating the set C, which

constitutes the targeted concise representation:

C =
{

(c(i), i = 1, . . . ,M
}

(3)

The CT scan inputs corresponding to the cluster centers can be then exam-

ined by medical experts, who can add semantic information related to each one

of them.

The generated C set can be used as an anchor set model assisting COVID-

19 diagnosis in new subject cases. By testing the trained RACNet model on a

new input CT scan case, we will extract the corresponding v vector of latent

variables and will compute the euclidean distance between this vector and each

cluster center, i.e., anchor, in C. As a consequence, the new input case is linked

to the cluster center with the minimum euclidean distance and is annotated

with the label of this center.

The presented latent variable extraction and anchor generation can, there-

fore, be used to assist COVID-19 diagnosis in a rather efficient way; by comput-

ing M distances between L-dimensional vectors and selecting their minimum

value. Moreover, by computing the respective cluster radii, we can provide

confidence levels in addition to the confidence levels provided by the RACNet

output layer.

An additional advantage of this approach, when added to the main RACNet

architecture, is that the latter needs retraining, or fine-tuning with new datasets,

whenever such datasets become available, e.g., are generated by another hospi-

tal, or in another country. Due to privacy purposes, it is highly probable that it

is not possible for different medical centers to share their datasets for retraining

with all of them. It can, however, be possible for different medical centers to
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share, or find on github, the best performing networks trained on others’ data,

as well as the respective anchor derived information. By continual aggregation

of older and newer anchor sets, together with the respective trained (RACNet)

networks, they can generate common enriched data-driven representations.

Regarding implementation of the proposed methodology: i) we used Effi-

cientNetB0 as CNN model, stacking a global average pooling layer on top, a

batch normalization layer and dropout (with keep probability 0.8); ii) we used

a single one-directional GRU consisting of 128 units as RNN model; iii) the first

dense layer consisted of 128 hidden units. Our model was fed with 3-D CT scans

composed of CT slices; each slice was resized from its original size of 512× 512

to 256× 256.

In k-means clustering, we tried values of k ∈ {2, .., 25}, whilst evaluating

the performance of our model on the validation set of COV19-CT-DB; k =

11 (7 clusters labelled as COVID-19 and 4 as non COVID-19) provided the

optimal performance. Batch size was equal to 5 (i.e, at each iteration our

model processed 5 CT scans) and the input length ’t’ (see Figure 3) was 700

(the maximum number of slices found across all CT scans). Loss function was

the softmax cross entropy. Adam optimizer was used with learning rate 10−4.

Training was performed on a Tesla V100 32GB GPU.

5. Experimental Study

This section describes a set of experiments evaluating the performance of

the proposed approach.

At first, we compare the performance of RACNet with the performance of

other types of networks, i.e., 3-D CNNs and CNN-RNNs, using non-segmented

CT scans of the COV19-CT-DB database; we show that it outperforms these

networks in COVID-19 diagnosis. Furthermore, we perform ablation studies

that illustrate the contribution of the various components of RACNet. In par-

ticular, we focus on: the routing mechanism (’alignment’ step and mask); the

choice of CNN model; the number of units in the dense layer; the use of 3-D
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convolution layers instead of RNN.

Next, we segment all CT scans in COV19-CT-DB and use the segmented

CT scans for training RACNet. In particular, in order to compare RACNet’s

performance to the performance of the three winning methods in a ICCV 2021

Competition on COVID-19 diagnosis [13], we adopted the same part of the

COV19-CT-DB, composed of 5000 CT scans which was used in this Competi-

tion. The dataset was split in training, validation and testing sets. The training

set contained, in total, 1552 3-D CT scans corresponding to 707 COVID-19 cases

and 845 non-COVID-19 cases. The validation set consisted of 374 3-D CT scans,

165 of which represented COVID-19 cases and 209 represented non-COVID-19

cases. Finally the test set included 443 COVID-19 and 3012 non COVID-19

CT scans. We make a comparison of RACNet’s performance, trained with the

above dataset, to the performance of the three winning methods in the above-

mentioned Competition, showing that RACNet outperforms all three methods.

Then we evaluate RACNet’s performance on another publicly available CT-

scan database, CC-CCII, and show the improved performance when compared

to that of the recently published state-of-the-art DNAS framework referenced

in Section II [18].

Finally, we perform latent variable extraction from the trained RACNet,

deriving the set of anchors and subsequently use them (in addition to RACNet)

to derive a unified model over the COV19-CT-DB and the CC-CCII [11].

5.1. Comparison with 3-D CNN and CNN-RNN

At first, we considered a 3-D CNN, the 3-D ResNet-50. According to [21] 3-D

CNNs require a large number of labeled image sequences to learn the 3-D kernels.

Therefore, we used a pre-trained for action recognition 3-D ResNet-50 [22] and

further trained it on COV19-CT-DB. We also considered the MedicalNet[23], a

3-D ResNet-34 network trained for pulmonary nodule classification. MedicalNet

has been trained with CT scans (i.e., the same input considered in this paper).

We used it as a pre-trained network and further trained it on COV19-CT-DB.

Finally we utilized a conventional CNN-RNN that outputs a probability for
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each CT scan slice and is followed by a voting scheme that makes the final

decision; the voting scheme is either a majority voting, or an at-least one voting

(i.e., if at least one slice in the scan is predicted as COVID-19, then the whole CT

scan is diagnosed with COVID-19, otherwise it is diagnosed with non-COVID-

19); the CNN and RNN parts of this network were the same as the respective

parts of COV19-RACNet, i.e., EfficientNetB0 and single-directional GRU (we

also considered a dense layer between the RNN and the output layer, but the

achieved performance was worse).

Table 1 compares the performance of these networks to the performance of

the proposed RACNet over the non-segmented COV19-CT-DB database. It

can be seen that RACNet outperforms all of them, in terms of both accuracy

and F1 score, for both COVID-19 and non COVID-19 categories. Particularly,

RACNet -although a lighter model- outperforms the 3-D ResNet-50 that has

been pre-trained on a large action database. It also outperforms MedicalNet

that has been pre-trained, not on action recognition (which is another task),

but on a task similar to this paper’s one. This shows that the proposed model

structure, although lighter than the 3-D ones (around 7M parameters versus

about 63M and 46M respectively) and although it is not pre-trained on another

task, achieves a better performance.

In addition, RACNet outperforms the CNN-RNN network; the main down-

side of that model is that there exists only one label for the whole CT scan

and there are no labels for each CT scan slice. It should be mentioned that,

in contrast to this, RACNet analyzes the whole CT scan, based on information

extracted from each slice, as was described in the former Section.

5.2. Ablation Studies

i) We studied the effect of the routing mechanism on our developed model’s

performance. We compared the performance of RACNet when the mask was

used (and thus, only the RNN outputs corresponding to true input slices were

routed to the dense and output layers) and when the mask was not used (and

thus, inserted duplicates of input slices were also fed to the dense layers). Table 2
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Table 1: Performance comparison between RACNet and other state-of-the-art structures on

COV19-CT-DB database (non-segmented data)

Method Accuracy F1 Score

COVID non COVID

3D ResNet-50 [22] 0.74 0.80 0.82

MedicalNet [23] 0.78 0.83 0.86

EfficientNet-GRU 0.73 0.80 0.82

RACNet 0.82 0.86 0.90

illustrates the efficacy of the proposed mask, compared to the case of no masking.

The mask effectively filtered out unnecessary and repeating information.

If a constant input length was used, slice duplication, or sub-sampling would

be needed. However, duplication of slices, to increase the input length, is an

ad-hoc procedure, since there does not exist any general pre-known template for

choosing which slices to duplicate. Moreover, sub-sampling slices within a CT

scan to reach a fixed number of slices is also ad-hoc, since significant information

for the final prediction could be discarded. We have examined these options in

our experiments, achieving worse performance. We have not included these

experiments in Table 2, so as to not clutter the presented results.

ii) Next we studied the effect of the ’alignment’ step on RACNet’s perfor-

mance. We compared the performance when the ’alignment’ step was included,

or not. Table 2 illustrates that the ’alignment’ case provided the best results.

This result was expected, since it managed to better align the important slices

in each CT scan series.

iii) Then we studied the effect of using various CNNs in RACNet. Table 2

shows that, when EfficientNetB0 was used as the CNN part of RACNet, best

performance was achieved, compared to the cases when other state-of-the-art

CNNs were used, in particular ResNet-50 and DesneNet-121. We also studied

the effect of using 3-D convolutions instead of a RNN in RACNet. Table 2

shows that using the RNN provides a better performance, with the model being
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Table 2: Performance comparison in various ablation studies on COV19-CT-DB database

(non-segmented data)

COV19-RACNet Accuracy F1 Score

COVID non COVID

64 units in dense layer 0.79 0.83 0.86

16 units in dense layer 0.78 0.82 0.85

3D conv instead of RNN 0.79 0.84 0.87

ResNet-50 as CNN 0.80 0.85 0.88

DenseNet-121 as CNN 0.79 0.84 0.87

without ’alignment’ 0.80 0.85 0.88

without mask 0.78 0.84 0.87

total (non-segmented data, 128 units in dense layer) 0.82 0.86 0.90

also lighter. In addition, we studied the effect of using different numbers of

hidden units in the first dense layer of RACNet. Table 2 illustrates that 128

units provided the best performance compared to the cases when 16 or 64 units

were utilized.

Until this point, the presented results refer to the case where no segmenta-

tion has been performed on the 3-D CT scan inputs); we did that as we did

not want the specific selection of the lung segmentation method to affect the

presented analysis and obtained results. In the following Subsection we exam-

ine the obtained performance of RACNet when its input are the segmented

CT scans and compare its performance to the best performing methods in the

above-mentioned ICCV Competition.

5.3. Comparison with best performing methods in ICCV Competition

As described in [13], the FDVTS-COVID network achieved the top perfor-

mance in this Competition. It included a Periphery-aware Spatial Prediction

network, which predicted whether a pixel belonged to the interior of the lung

region, as well as the distance to the region boundary. This network was a

pre-trained U-Net network with an encoder-decoder architecture; ResNet was

adopted as the encoder. Each CT image was at first augmented and then fed
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into this encoder, generating vector representations. A classifier was trained

on top of these representations for COVID-19 classification. Meanwhile, these

representations were mapped by a projection network to new representations

which were further enhanced in a contrastive learning manner.

The SenticLab.UAIC network ranked second, using an inflated 3D ResNet50

model with non local operations on the second and third layers. Inflated convo-

lutions were obtained by expanding filters and pooling kernels of 2D ConvNets

into 3D, resulting in learning spatio-temporal feature extractors from 3D im-

ages while using ImageNet architectures and label smoothing. To handle the

variable length of CT-Scans, a sub-sampling technique, or padding, was used

for lengths above, or under 128 respectively. During inference, parts of a single

CT-Scan volume were inputted several times in the model; a threshold proce-

dure followed to eliminate some results; final prediction was based on majority

voting over remaining results.

The ACVLab network ranked third, based on either slice-level, or 3D volume

analysis. In the first case a vision Swin-Transformer was used for single-slice

level classification followed by Wilcoxon signed-rank test. In the second case a

Within-Slice-Transformer and a Between-Slice-Transformer were used, based on

ResNet50 for feature extraction and self-attention for context-encoded features.

To compare the performance of RACNet with these methods, we first per-

formed segmentation of all 3-D CT scans. We used a combination of morpholog-

ical transforms and a pre-trained U-Net model [24] resulting in a 2D semantic

segmentation network. More specifically, for each CT-scan, every slice first

passed through the pre-trained U-Net model. After all slices of the ct-scan were

segmented by the U-Net model, there was a checking procedure to assure that

all slices were segmented. If a slice had a mask area less than 40 % of the largest

mask area of the CT-scan, then morphological transforms were used to segment

this slice. Then RACNet was trained with the segmented data.

Table 3 compares the performance of these three networks and RACNet, in

terms of the criterion used in the Competition (Macro F1), whilst showing the

F1 criterion values for both the COVID and non-COVID categories. It can be
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Table 3: Competition Results on COV19-CT-DB (segmented data); F1 Score in %

Networks Macro F1 F1 (COVID) F1 (non-COVID)

FDVTS COVID 90.43 83.60 97.27

SenticLab.UAIC 90.06 82.96 97.17

ACVLab 88.74 80.63 96.84

RACNet 93.83 93.62 94.04

seen that RACNet outperforms all three networks, improving the total Macro

F1 values, by an additional 3.5-5.0 %. Moreover, it has a much larger increase in

diagnosis of COVID-19 cases, which is very important, improving F1 by adding

more than 10 % to the best detection.

By comparing Tables 1 and 3 one can see that the improvement in RACNet

performance when using segmented CT scans compared to non-segmented ones

is an additional 3.8 % in F1 value. The accuracy values for COVID-19 and

non-COVID categories, in the case of segmented inputs, were 0.88 and 0.89,

compared to 0.82 and 0.86 in the non-segmented case respectively.

5.4. Comparison with 3-D CNNs on CC-CCII Database

In the following, our aim is to test the effectiveness of RACNet on other

databases. We consider the CC-CCII database [10]. The original CC-CCII

dataset contains a total number of 617,775 slices of 6,752 CT scans obtained

from 4,154 patients. However, there were some problems with it (i.e., damaged

data, non-unified data type, repeated and noisy slices, disordered slices, and

non-segmented slices). The authors of [18] published training and test partitions

that did not include damaged data, naming this version of CC-CCII as ’Clean

CC-CCII’. Clean CC-CCII is annotated in terms of COVID and non-COVID

categories.

In order to handle the different number of input CT-scan length, the authors

of [18] used two slice sampling algorithms: random sampling and symmetrical

sampling. Specifically, the random sampling strategy was applied to the train-
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ing set, which can be regarded as data augmentation, while the symmetrical

sampling strategy was performed on the test set to avoid introducing random-

ness into the testing results. The symmetrical sampling strategy referred to

sampling from the middle to both sides at equal intervals. The relative order

between slices remained the same before and after sampling.

For a fair comparison we trained, fine-tuned and evaluated RACNet using

the same Clean CC-CCII partitions. In particular: i) we trained the RACNet

architecture with the Clean CC-CCII training set and tested its performance

on the test set; ii) we pre-trained RACNet on COV19-CT-DB, then fine-tuned

on the Clean CC-CCCII training set and tested its performance on the test set.

Table 4 presents the performance of three state-of-art 3-D CNN networks, as

well as of the above-described model, COVIDNet3D-L [18]. It also presents the

performance of RACNet in the two above-mentioned contexts. The presented

results in Table 4 indicate that RACNet greatly outperforms all three 3-D CNNs

models, as well as the method proposed in [18]. It also indicates that the

new COV19-CT-DB database can be used as an excellent prior for transfer

learning and pre-training of deep neural networks for COVID-19 diagnosis in

other medical environments.

In addition, we compared RACNet’s performance to another network pro-

posed in [10] which was trained using the original CC-CCII database. This

network was trained for distinguishing NCP (COVID-19) from other common

pneumonia and normal control CT scans. The utilized training set consisted of

752 covid patients, 797 common pneumonia patients and 697 normal controls.

This model was evaluated on a test set consisting of 138 NCP, 135 common pneu-

monia and 129 normal control CT scans. The model achieved 92.49% accuracy

in the test set. However the authors of [10] did not publicize the exact data

partitions. In order to obtain a fair comparison when comparing this model’s

performance to RACNet, we conducted a five-fold cross validation strategy, in

each fold of which we kept the same numbers for the training and test sets as

reported above. The accuracy obtained by RACNet for each fold was 96.1 %,

96.9 %, 96.2 %, 95.6 % and 95.9 % respectively. The average accuracy of the
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Table 4: Comparison of Performance of RACNet to that of 3-D CNNs on the CC-CCII

Database (segmented data)

Method Accuracy score

Resnet3D101 [18] 89.62

Densenet3D121 [18] 88.97

MCE 18 [18] 87.11

COVIDNet3D-L [18] 90.48

RACNet 93.64

RACNet (pre-trained on COV19-CT-DB) 95.33

five folds was 96.14 %, outperforming by 3.6 % the network proposed in [10].

5.5. Anchor Set Creation & Unification across Databases

Table 5: Description of the Severity Categories

Category Severity Description

1 Mild Few or no Ground glass opacities. Pulmonary parenchymal in-

volvement ≤ 25% or absence

2 Moderate Ground glass opacities. Pulmonary parenchymal involvement

25− 50%

3 Severe Ground glass opacities. Pulmonary parenchymal involvement

50− 75%

4 Critical Ground glass opacities. Pulmonary parenchymal involvement

≥ 75%

In the following we implemented the procedure of latent variable extraction

and anchor set generation when training RACNet with 3206 CT scans (1634, i.e.,

almost all COVID-19 samples and a similar number, i.e., 1572 of non-COVID

samples) from the COV19-CT-DB database. A validation set of 340 COVID-19

and 260 non-COVID-19 CT scans was used for selecting the best number of

clusters. As was already mentioned, this resulted in a set of 11 anchors, each

represented by a vector in the 128-dimensional space. 7 of them corresponded
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Table 6: Number of elements per cluster, cluster category, Severity category

Cluster ID Number of CT Scans Category Severity Category

0 231 COVID-19 3

1 360 COVID-19 2

2 344 COVID-19 4

3 106 COVID-19 1

4 195 COVID-19 4

5 156 COVID-19 3

6 242 COVID-19 4

7 107 non COVID-19 1

8 586 non COVID-19 1

9 557 non COVID-19 1

10 322 non COVID-19 1

to COVID-19 cases, with the rest corresponding to non COVID-19 cases.

Table 6 provides the number of CT scans, belonging to RACNet training

data, assigned to every generated cluster and their COVID-19, or non-COVID-

19 category. It also provides a ranking of the severity of COVID-19, as classified

by our medical experts, in the range from 1 to 4, with 4 denoting the critical

status. Table 5 describes each of these categories [11]. The centers of the

above 11 clusters formed the anchor set generated during RACNet training on

COV19-CT-DB database.

For validation, we used this anchor set to classify the COV19-CT-DB test

set. In particular, we fed each 3-D CT scan in the test set of the RACNet

architecture; we extracted the corresponding dense layer neuron outputs; we

computed their euclidean distance from each anchor. Then they were classified

according to the label of their nearest cluster center. The obtained classifica-

tion performance over the test dataset was similar to the original RACNet’s

classification performance.

Moreover, our medical experts examined the 3-D scan inputs corresponding

to the 11 cluster centres and produced justification for the respective diagnosis.
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Table 7 presents the findings detected in each cluster center.

Table 7: Description of findings in each cluster center

Cluster ID Description

0 Bilateral shadows ground-glass that become more compact locally in lower

lung lobes with an image of pneumonia due to COVID-19; severe category

1 Bilateral shadows ground-glass as in pneumonia due to COVID-19; moder-

ate category

2 Minimal shadows ground-glass in left upper lung lobe. Severe thickening

shadows, dense atelectasis of lower lung lobes. Minimal pleural fluid on the

right. Possible microbial cause; critical category

3 Bilateral shadows ground-glass mainly in lower lung lobes as in pneumonia

due to COVID-19 in rather mild condition; mild category

4 Bilateral shadows ground-glass that occupy more than 75 % of the pul-

monary parenchyma as in pneumonia COVID-19 of critical condition; crit-

ical category

5 Bilateral shadows ground-glass that occupy about 50 % of the pulmonary

parenchyma as in pneumonia COVID-19 of critical condition; severe cate-

gory

6 Bilateral shadows ground-glass that occupy more than 75 % of the pul-

monary parenchyma as in pneumonia COVID-19 of critical condition; crit-

ical category

7 Bilateral emphysematous lesions as in chronic obstructive pulmonary dis-

ease. Dense atelectasis in paravertebral right lung; mild category

8 Normal CT scan; mild category

9 Normal CT scan; mild category

10 Normal CT scan; mild category

Some examples of CT slices from the cluster centers are given below. Figure

4 shows 10 consecutive slices from COVID-19 cluster center 0. Medical experts

have annotated it as ’bilateral ground glass regions that appear, especially in

lower lung lobes’. Figure 5 shows 10 slices from COVID-19 cluster center 2.

According to medical experts’ annotation, this is consistent with ’COVID-19

pneumonia bilateral thickening filtrates’. Figure 6, on the contrary, shows 10
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slices from non COVID-19 cluster center 9.

Figure 4: Slices from cluster center 0 of COVID-19 category. Bilateral ground glass regions

are seen especially in lower lung lobes.

Figure 5: Slices from COVID-19 cluster center 2, which is consistent with COVID-19 pneu-

monia bilateral thickening filtrates.

Figure 6: Slices from non COVID-19 cluster center 9.

The major advantage of the anchor set model is the insight that it introduces
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in the diagnosis process. In each new test case, the generated decision is ac-

companied by the information about the anchor to which this case was assigned

through the above nearest neighbor classification procedure. As a result, the

patient, or the doctor, can see which part of RACNet data-driven knowledge

was used to make the specific diagnosis.

In the following we used the RACNet trained on COV19-CT-DB and the

set of 11 anchors for unification with similar data-driven knowledge generated

from another database, i.e., the aforementioned CC-CCII one. We developed

an efficient unification procedure based on the generated anchor set, which, on

the one hand, alleviates the problem of ’catastrophic forgetting’ when transfer

learning is used and, on the other hand, reduces the high computational cost

needed for retraining the deep learning model.

Firstly, we computed the 128-dimensional features for each CT scan of the

CC-CCII database using the RACNet’s model which had been trained with

the COV19-CT-DB training set. Then, these 128-dimensional features formed

the input to train a neural network, say NN(1), consisting of 3 fully connected

layers, so as to predict the Covid/non-COVID status of the CC-CCII data. The

three layers included 64, 128 and 2 (output) neurons respectively. In a similar

way, as we extracted the 11 clusters from RACNet in 4.3, we extracted a set

of representations from the layer with 128 neurons; then, through clustering,

we generated another set of cluster centres. In this case, the number of cluster

centers that produced the best performance over the CC-CCII test partition set

was 13. Figure 7, shows 10 slices from one of the extracted COVID-19 cluster

centers.

As a result, we have created: a) a set of 11 clusters & respective cluster

centers, using COV19-CT-DB and RACNet, b) a set of 13 clusters & respective

cluster centers, using CC-CCII, RACNet and NN(1).

In the following, we generated a unified prediction model, by: a) merging the

11 cluster centers from COV19-CT-DB and the 13 cluster centers from CC-CCII,

b) using the RACNet -NN(1) as the combined test model. In particular, we could

classify any CT scan in the COV19-CT-DB and CC-CCII databases, by passing
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Figure 7: Slices of a new COVID-19 anchor, with ground glass regions in the lungs.

it through RACNet -NN(1) and computing which one out of the 24 cluster centers

was nearest to the extracted representation in the 128-dimensional space. The

obtained performance was almost identical to the one obtained when processing

each database independently. This result was achieved without exchanging any

data between the holders of the two databases. It was only assumed that the

RACNet and NN(1) networks and the cluster center representations in the 128-

dimensional space were made available to each other.

6. Conclusions and Future work

In this paper we have developed RACNet, a new deep neural architecture

which: a) harmonizes analysis of 3-D image volumes consisting of different num-

ber of slices and annotated per volume, b) unifies decisions made over different

input datasets, thus enriching data-driven knowledge and improving its trusted

use. RACNet was successfully used for obtaining high performance in COVID-

19 diagnosis based on chest 3-D CT scans, whilst permitting continual learning

and avoiding catastrophic forgetting.

Future work includes extension of the RACNet model and of the presented

approach, so as to include uncertainty estimation and domain adaptation to a

large variety of related applications, referenced in the Introduction of the paper.
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