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ABSTRACT

In recent times, surgical data science has emerged as an im-
portant research discipline in interventional healthcare. There
are many potential applications for analysing endoscopic sur-
gical videos using machine learning (ML) techniques such
as surgical tool classification, action recognition, and tissue
segmentation. However, the efficacy of ML algorithms to
learn robust features drastically deteriorates when models are
trained on noise-affected data [1]. Appropriate data prepro-
cessing for endoscopic videos is thus crucial to ensure robust
ML training. To this end, we demonstrate the presence of
label leakage when surgical tool classification is performed
naively and present SegCrop, a dynamic U-Net model with
an integrated attention mechanism to dynamically crop the
arbitrary field of view (FoV) in endoscopic surgical videos
to remove spurious label-related information from the data.
In addition, we leverage explainability techniques to demon-
strate how the presence of spurious correlations influences the
model’s learning capability.

Index Terms— Surgical Data Science, Surgical Tool De-
tection, Image Segmentation, Robust ML, Explainable AI

1. INTRODUCTION

Over the past few years, surgical data science has received
increasing attention from the research community. Various
vision-related tasks have been modelled using endoscopic
surgical videos, such as surgical task detection [2] and surgi-
cal tool detection and tracking [3]. Particularly, surgical tool
detection is a critical problem that can be used to model high-
level image semantics and dynamics for applications such
as surgical skills assessment. For such vision-oriented tasks,
deep learning (DL) algorithms now represent the state of the
art due to their superior performance compared to classical
image processing techniques.
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Fig. 1. Our proposed method for dynamic cropping of endo-
scopic surgical images using attention-based U-Net.

Endoscopic surgical videos are afflicted with numerous
problems such as data imbalance (that could lead to the de-
velopment of a biased model) and different noise types that
could result in spurious correlations being learned rather than
robust features. A key issue that significantly misleads the
training process is the presence of leaky labels. In label leak-
age, input data used for training models also contain target la-
bels directly or indirectly, which the learning algorithm may
use as a shortcut [4]. Consequently, the model ends up pick-
ing spurious correlations instead of robust features, which ul-
timately results in impressive models (in terms of accuracy),
however, they are not robust. It is therefore critical to thor-
oughly analyse surgical ML models to confirm that they are
learning robust features before clinical deployment.

In this paper, we attempt to empirically investigate the
effect of spurious correlations that are caused by label leak-
age when a DL-based surgical tool detection system is devel-
oped. Our proposed method is illustrated in Figure 1. We
used the dataset of a recent Medical Image Computing and
Computer-Assisted Intervention (MICCAI) challenge on sur-
gical tool detection and localisation. The names of surgical
tools are included in the lower part of the videos (shown on
the robotic dashboard for guiding surgeons), which can mis-
lead the model learning. To this end, we empirically demon-
strate this leaked tool information significantly influences the
learning capabilities of our multi-class ConvNext classifier (a
famous vision model [5]). We took corrective measures to re-
duce the field of view (FoV) by dynamically cropping regions



leaking the tool names using a U-Net-based data preprocess-
ing strategy.

In summary, the main contributions of this paper are:
1. We leverage IntegratedGrad and GradCAM for inter-

pretability to demonstrate the effect of label leakage on
the model trained for surgical tool detection.

2. We present a dataset of 24,694 images along with corre-
sponding human-generated masks.

3. We present the use of a dynamic U-Net model with an at-
tention mechanism for dynamically reducing FoV in sur-
gical endoscopic videos.

2. METHODOLOGY

We have formulated the dynamic cropping of the FoV as a
segmentation problem. The intuition is based on the need to
crop each video with a different size depending on the loca-
tion where the tool information appears within the video. This
can be a time-consuming and labour-intensive task if done
manually. Similarly, it is crucial to ensure efficiency in a sys-
tem developed to eradicate this form of label leakage. For a
given image I with a spatial resolution of m × n, where m
and n denote the number of rows and columns, our objec-
tive is to crop the FoV in I to a variable dimension of i and
j such that redundant tool information gets completely trun-
cated, thus I(i, j) ∈ I(m,n). Note that the tool information
could appear at either the top or bottom of a video with differ-
ent sizes (see Figure 2). In addition, redundant image pixels
(i.e., black borders) can also result in wasted computations
while not contributing to the model’s learning. Therefore,
the development of an automatic mechanism to learn dynamic
cropping is desirable to reduce human effort, time, and cost.

2.1. Data Description

We used the dataset provided by MICCAI 2022 challenge on
surgical tool detection in endoscopic videos.1 It contains sur-
gical videos acquired at a frame rate of 60fps and annotations
for 14 different surgical tools. This dataset also has significant
noise in training labels that is introduced by extracting tool in-
formation from robot system data directly. We extracted and
manually created segmentation masks for selective frames
from each video using CVAT (a widely adopted annotation
tool for images). As a result, we created 24, 694 mask images
required for training a generative model to dynamically crop
the robotic UI and borders from unseen videos. Therefore,
we have a paired data D(x, y), where x is the image to be
cropped and y is the corresponding ground truth mask.

2.2. Proposed SegCrop Method for Dynamic Cropping

We trained a dynamic cropping model using a variant of the
U-Net model that contains an attention mechanism and our

1https://surgtoolloc.grand-challenge.org/

Fig. 2. Examples images requiring dynamic cropping (tool
panel width varies across images). Note that a few images
have a top banner while others do not (cf. see second row, first
image). Also, black borders also incur wasted computation.

paired data D. In the case of image segmentation, the at-
tention mechanism highlights the relevant information during
model training, thus forcing the U-Net model to learn bet-
ter features while reducing computations and increasing the
model’s generalizability [6]. The generative network G learns
the mapping between the input x and ground truth y to clas-
sify the content of the image into the foreground (i.e., FoV)
and background (i.e., redundant to be eliminated) and gener-
ates the candidate mask m to crop the image. The algorithm
to dynamically crop the endoscopic videos using a predicted
mask from the network is described in Algorithm 1.

Algorithm 1 SegCrop algorithm for dynamic cropping of en-
doscopic images.
Input: Generative model G, paired data D{I(m,n), y(i, j)}, epochs ϵ,
bunch size B, learning rate η, batch size β
Output: Ic(i, j)
Initialize: ϵ, B, η, β
for e = 1, ..., ϵ do

train G using D{I(m,n), y(i, j)} and β
end
Return: Trained model Gtrained

Create: Bunches of D each having size B and return set Bn =
{b1, b2, b3, ..., bn}
for b = b1, ..., Bn do

Get: generated mask m using Gtrained

Perform: Pixel-level boundary detection using m
Return: Coordinates (x1, y1) and (x2, y2) for detected boundary
Perform: Cropping of images in bunch b using the (x1, y1) and
(x2, y2)
Return: Cropped image Ic(i, j)

end

Segmentation Model’s Architecture: We have used an
hourglass U-Net architecture with skip connections as shown
in Figure 1. To augment the capabilities of the network we
integrated an attention mechanism within the U-Net archi-
tecture. The network has a total of 6 layers in the encoder
part and 14 layers in the decoder part. There are three 1D
convolutions layers in the bottleneck. We employed batch
normalization and ReLU activation functions in the encoder
and decoder, whereas ReLU is only used after the last 1D
convolutional layer in the bottleneck. We used ResNet34 as
the backbone network in the segmentation model that learns



the classification of foreground and background. The net-
work has approximately 40M parameters out of which 20M
are trainable and 21M are non-trainable parameters.

Evaluation Strategy: To empirically evaluate the effect of
label leakage due to the presence of tool information at the
bottom of the videos, we trained a famous ConvNext model
for surgical tool classification. We then demonstrate the label
leakage using two widely adopted interpretability techniques
known as gradient class activation map (GradCAM) and Inte-
gratedGrad. The results are described in the next section.

3. EXPERIMENTS AND RESULTS

3.1. Experimental Setup

We partitioned the data into training and testing sets using a
split of 80% and 20%, respectively. To augment the efficacy
of the segmentation network, we employed data augmentation
using the squish method. The best learning rate (LR) for each
model was selected using the LR scheduler that scales the
magnitude of weight updates to minimize the network’s loss
function. The training progresses slowly if the LR is too low
since small updates are made to model weights. It can cause
undesirable divergent behaviour if it is too high. We em-
ployed a cyclic LR for training the models as explained in [7],
where stochastic gradient descent with warm restarts is used
to combine an aggressive annealing schedule with periodic
“restarts” to create an LR schedule. This approach signifi-
cantly improved the model’s learning abilities. We adopted a
similar strategy to choose the optimal LR to train the surgical
tool detection models to evaluate the label leakage phenom-
ena. To ensure fair comparison we train the model with origi-
nal data and the model using cropped data using an LR of 1e-
4. Each model was trained for a maximum of 12 epochs. We
used a batch size of 32 for the training segmentation model
and a batch size of 64 for training tool detection models (i.e.,
models using original and cropped data). All implementation
was performed using the fastai ML library [8].

3.2. Results and Discussions

Dynamic Cropping: Proposed SegCrop provided an aver-
age accuracy of 99.29% on the validation data. In addition,
the SegCrop outperformed ground-truth human-generated
segmentation masks while generating candidate masks for
cropping (Figure 3). The figure demonstrates that the seg-
mentation network efficiently adapts to the semantics of the
input image while dynamically cropping the images (retain-
ing the FoV). Finally, we employ pixel-level edge detection
to refine the generated segmentation masks.

Evaluating the Effect of Cropping on Tool Classification:
As described above, we evaluated the effect of label leak-
age for surgical tool detection in endoscopic videos. Specif-
ically, we trained the classification model on both the un-
cropped and cropped data after performing cropping using

Fig. 3. Candidate masks generated by the dynamic U-Net that
are further refined at the pixel level. Model effectively learns
to predict FoV boundary while surpassing target masks.

Fig. 4. Depiction of tool detection model training using orig-
inal data (a) and using cropped data (b).

the SegCrop method. The learning curves for both models
are shown in Figure 4. It is evident that the model shows a
fluctuating behaviour on validation loss for the original un-
cropped data (Figure 4 (a)), while comparatively stable and
smoother curve on cropped data (Figure 4 (b)). Despite this,
surprisingly, we have got comparatively similar average per-
formance in terms of accuracy and F1-score for both models.
The model trained on original data has an average accuracy
and F1-score of 99.57% and 99.4%, respectively. Likewise,
the model trained on the cropped data provided an average
accuracy and F1-score of 99.56% and 95.45%, respectively.
Therefore, we decided to deeply investigate the tool detection
model to identify whether or not label leakage in endoscopic
frames is influencing the model.

Using Explainability to Interpret Models’ Predictions:
We used two explainable ML methods (i.e., GradCAM and
IntegratedGrad) to interpret the model decision for surgical
tool classification (Figure 5). These methods identified re-
gions (i.e., pixels) used by the model to inform the prediction.
Figure 5 provides a comparison of surgical tool detection for
a single tool label with the ConvNext model trained on orig-
inal and cropped data. It also depicts the focused regions of
the two models informing their predictions. It is evident from
Figure 5 that the label leakage in the original images (without
cropping) influences the model to focus on more pixels that
do not constitute or are closer to the tool under consideration.
Whereas, we see that when the ConvNext model is trained
on cropped images using SegCrop is effectively able to see
relevant regions for the desired tool (see the darker points
in IntegratdGrad plots and dark yellow regions in GradCAM



Fig. 5. Demonstrating the effect label leakage using IntegratedGrad (IG) and GradCAM (GC) for ConvNext trained using
original data (left) and cropped data (right). The darker pixels in IG and yellow in GC plots shows regions used by the model
for predicting tools. Note label leakage in IG plots (left), where the entire image is being focused (as darker pixels are spread
across the whole image instead of the tool under consideration).

plots highlight the most focused pixels during the model’s
prediction). It is worth noting that underlying data has enor-
mous label noise. The tool classifier is trained for 14 classes
while only three tools can be present in a specific video.
Many videos are said to have three tools from provided labels
but in actuality, only fewer than three tools are present. This
noise gets translated to individual video frames when labels
are extrapolated from videos to frame level. As we are only
showing the interpretability plots for one class (so they are
not only focusing on the specific regions) and label noise
might influence interpretability in some cases.

4. CONCLUSIONS

We present an empirical approach for investigating a model to
explain features informing its predictions. In our endoscopic
tools detection task, the model is revealed to use regions in
videos that leak tool information. Such models certainly fail
in production. We overcome label leakage by a dynamic U-
Net model for cropping arbitrary pixels. The U-Net model
created cropped images at a human-level performance we are
used for training the multi-class tools detection model. The
revised tool classification model started to focus on more rel-
evant regions to make predictions. This approach not only
tackles data leakage but also avoids unnecessary computation
(wasted in processing irrelevant pixels). In the future, we will
extend our research toward creating a systematic methodol-
ogy for tackling noisy labels from endoscopic videos.
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