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We report experimental results from three successful 

runs of a Bullard-type homopolar disc dynamo. The 

set-up consisted of a copper disc with a radius of 

30 cm and thickness of 3 cm which was placed co-

axially beneath a fat, multi-arm spiral coil of the 

same size and connected to it electrically at the 

centre and along the circumference by sliding liquid-

metal contacts. The magnetic feld was measured 

using Hall probes which were fxed on the top face 

of the coil. We measured also the radial voltage 

drop across the coil. When the disc rotation rate 

reached Ω ≈ 7 Hz, the magnetic feld increased steeply 

approaching B0 ≈ 40 mT in the central part of the coil. 

This feld was more than two orders of magnitude 

stronger than the background magnetic feld. In the 

frst two runs, the electromagnetic torque braking the 

disc in the dynamo regime exceeded the breakdown 

torque of the electric motor driving the disc. As 

a result, the motor stalled and the dynamo was 

interrupted. Stalling did not occur in the third run 

when the driving frequency was set higher and 

increased faster. We also propose an extended disc 

dynamo model which qualitatively reproduces the 

experimental results. 
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1. Introduction 2 

Bullard’s disc dynamo [1] is arguably the simplest model of the magnetohydrodynamic dynamo. 

It is often used to illustrate the self-excitation of the magnetic feld by moving conductors [2]. 

This is how the magnetic felds of the Earth, the Sun and many other cosmic bodies are thought 

to come about [3]. In its basic form, the Bullard dynamo consists of a solid metal disc and a wire: 

the former spinning about its central axis and the latter twisted around and connected through 

sliding contacts to the rim and axis of the disc. If the disc spins suffciently fast and in the right 

direction, such a set-up can amplify the electric current circulating in the system and, thus, the 

associated magnetic feld. This happens when the rotation rate of the disc exceeds a certain critical 

threshold above which the potential difference induced across the disc exceeds the voltage drop 

caused by the ohmic resistance of the system. Then the current starts to grow exponentially in 

time resulting in the self-excitation of the magnetic feld. The growth stops when the braking 

electromagnetic torque becomes so strong that it slows down the disc. This is how the dynamo 

would operate in the ideal case with no background magnetic feld. 

In the presence of a background magnetic feld, the dynamo may manifest itself somewhat 

differently. In this case, a current is induced in the set-up as soon as the disc starts to rotate. If the 

disc rotates in the right direction, the induced current amplifes the background magnetic feld 

which, in turn, amplifes the current. Thus, the rate of amplifcation increases with the speed of 

rotation and becomes formally infnite at the dynamo threshold. 

Despite its simplicity, the implementation of the disc dynamo is faced with severe technical 

challenges. The main problem is the sliding electrical contacts which are required to convey 

the current between the rim and the axis of the rotating disc. The electrical resistance of 

sliding contacts, which are usually made of solid graphite brushes, is typically several orders 

of magnitude higher than that of the rest of the set-up. This results in unrealistically high rotation 

rates which are required for the dynamo to operate. Therefore, in contrast to the fuid dynamos, 

which have been realised in several laboratory experiments using liquid metal [4, 5, 6] ([7] in 

preparation), the disc dynamo was thought to be technically unfeasible [8, 9, 10]. 

We overcome this problem by using sliding liquid-metal electrical contacts which are similar to 

those employed previously in the homopolar motors and generators [11, 12, 13] as well as in the 

laboratory model of Herzenberg dynamo [14] built by Lowes and Wilkinson [15, 16]. The set-up 

consists of a coil made of a stationary copper disc which is divided into spiral-shaped sections by 

thin slits [17]. The coil is placed co-axially above the solid copper disc and connected to the latter 

by sliding liquid-metal contacts. The slits make the conductivity of the coil anisotropic which 

allows this essentially axially symmetric dynamo to generate an axially symmetric magnetic feld 

[18, 19]. 

In this paper, which is organised as follows, we report results from three successful runs of 

such a dynamo. Set-up is described in Sec. 2. Experimental results are presented in Sec. 3. In Sec. 

4, we introduce an extended disc dynamo model which is used in Sec. 5 for the interpretation and 

analysis of experimental results. Summary and conclusions are presented in Sec. 6. 

2. Experiment set-up 

The dynamo set-up shown in Fig. 1 consists of a rotating copper disc and a coil. The latter is made 

of a fat copper cylinder of radius ro = 30 cm and thickness d = 3 cm which is sectioned starting 

from the radius r̃i = 7.5 cm by 40 logarithmic spiral slits with a constant pitch angle α ≈ 58◦ . The 

disc has an annular channel along the rim and a cylindrical cavity at the centre. The coil, which has 

a cylindrical solid electrode protruding 4 cm out from the centre of its bottom face, is placed 3 mm 

above the disc. At the inner and outer radii, ri =4.5 cm and ro = 30 cm, there are two annular 

gaps of width δ =0.25 mm and height d = 3 cm which separate the coil from the disc. These gaps 

were flled with the eutectic alloy of GaInSn, which is liquid at room temperature. The coil and 
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3 

(a) 

(b) 

Figure 1. (a) Set-up consisting of coil (1), disc (2), iron frame (3), gearing system (4), and AC motor (5); (b) a cross-

sectional view showing coil (1), disc (2), and sliding liquid-metal contacts (3). 

disc are held by electrically insulated iron supports. Note that, in the initial design with 3 mm 

annular gaps, electrical contacts failed before the dynamo threshold was attained [20]. 

The disc was driven by a 3 HP (2.2 kW) 6-pole AC motor which had a synchronous rotation 

rate of 1200 RPM at 60 Hz input frequency. The sense of rotation was opposite to the orientation 

of the spiral arms of the coil which corresponds to a clock-wise rotation in the set-up shown in Fig. 

1(b). The rotation rate was changed using a variable frequency drive (VFD) Delta VFD022EL23A 

with a rated output current of 11 A. The VFD output frequency was controlled from a PC using 

the LabVIEW software. With default settings, the output voltage was reduced directly with the 

driving frequency. In this standard VFD regime, the driving torque was maintained constant 

while the motor power dropped off directly with the rotation rate. It means that the maximal 

power the motor can produce, when operated suffciently close to the expected dynamo threshold 

of 600 RPM (10 Hz), is only half of its rated power, i.e., ≈ 1 kW. The actual output power may be 

signifcantly lower when the rotation rate starts to drop because of too high a load. 

The rotation rate was determined using a self-made opto-mechanical tachometer which 

consisted of a disc with periodic slits with a light source on one side and a photodiode on the other. 

The magnetic feld was measured using the THM1176 3-axis Hall Magnetometer of Metrolab with 

the low- and medium-feld probes THM1176-LF and THM1176-MF. These probes have an active 

volume and the upper magnetic feld strength of 6×3.4×3 mm3 ,8 mT and 16.5×5×2.3 mm3 , 
100 mT, respectively. The probes were fxed with adhesive tape on the upper face of the coil 

next to one of the crossed iron arms holding the coil. Three components of feld were acquired for 

a period of several minutes at the rate of 30 samples per second. The voltage between the inner 

and outer radii of the spiral arms was measured using a digital multimeter Keithley 2100. 

3. Experimental results 

In this section, we present experimental results for three runs in which the disc rotation rate 

was measured together with the induced voltage and the magnetic feld at the upper face of the 

coil. The runs differ mainly by the way in which the frequency driving the motor was varied. 

In the frst run, for which the results are shown in the top row of Fig. 2, the driving frequency 

was ramped up from zero to Ωd =7.33 Hz nearly linearly in ≈ 79 s. Although the rotation rate Ω 
closely followed Ωd, there was a difference between both frequencies. This difference increased as 

the magnetic feld became stronger. In this run, the magnetic feld was measured using only the 

low-feld probe which was placed in the vicinity of the inner radius of the spiral slits. Before the 
~disc started to rotate, a background feld B0 ≈−(0.18, 0.77, 0.57) mT with y component directed 

rs
p
a
.ro

ya
ls

o
c
ie

ty
p
u
b
lis

h
in

g
.o

rg
 
P

ro
c
 R

 S
o
c
 A

 0
0
0
0
0
0
0

 
.......................................................... 

https://rspa.royalsocietypublishing.org


 10  8 
4 

 8

 6

 4

 2

 0

 5

 8  8Wd Wd Wd10 20 

M
ag

ne
tic

 f
ie

ld
, 

B
 (

m
T

) 

D
ri

vi
ng

 c
ur

re
nt

, 
I 

(A
)W W W 

C
oi

l v
ol

ta
ge

, 
V

 (
m

V
)7 7 7 

R
ot

at
io

n 
ra

te
, W

 (
H

z)
 

R
ot

at
io

n 
ra

te
, W

 (
H

z)
 

R
ot

at
io

n 
ra

te
, W

 (
H

z)
 

R
ot

at
io

n 
ra

te
, W

 (
H

z)
 

R
ot

at
io

n 
ra

te
, W

 (
H

z)
 

R
ot

at
io

n 
ra

te
, W

 (
H

z)

B V Ix  6 6 6 

5 

−B 8y 15B  5 5 

4 

z 

6 
4 

3 

2 

1 

4
10 

3 

25

 1 

34 

2 

1 
2 

0  0  0  0  0
 0  50  100  150  200  250  300  0  50  100  150  200  250  300  0  50  100  150  200  250  300(a) (b) (c) 

Time, t (s) Time, t (s) Time, t (s)

 40 Wd
 9  9  14 Wd

 9Wd9 

M
ag

ne
tic

 f
ie

ld
, 

B
 (

m
T

)

8 8 

D
ri

vi
ng

 c
ur

re
nt

, 
I 

(A
) 8W W W 

C
oi

l v
ol

ta
ge

, 
V

 (
m

V
)35 128B V I7 7 7x30 7-B 10y

 6 6 6Bz25 6 
85 

4 

5 5520 
4 46415 

3 
10

 2 

3 3 

2 
3 4 

22 
211 1 1 

0  0  0  0  0  0
 0  100  200  300  400  500  0  100  200  300  400  500  0  100  200  300  400  500(d) (e) (f) 

Time, t (s) Time, t (s) Time, t (s)
 50  10  14  10  30 Wd

 10Wd WdW  9  9  9 

M
ag

ne
tic

 f
ie

ld
, 

B
 (

m
T

) 

D
ri

vi
ng

 c
ur

re
nt

, 
I 

(A
)W W 

C
oi

l v
ol

ta
ge

, 
V

 (
m

V
) 

R
ot

at
io

n 
ra

te
, W

 (
H

z)
 

R
ot

at
io

n 
ra

te
, W

 (
H

z)B 12 

R
ot

at
io

n 
ra

te
, W

 (
H

z) 25x 
V I40 B 8 88y

B 10z 7 77 20 
6 6 

15  5 
4 

30  6 

5 

20  4 

3 

10 2 

8 
5 

6  4 

4 3 
2 

2
 1 

10 3 
25 
1 

1
 0  0  0  00  0  0  20  40  60  80  100  120  0  20  40  60  80  100  120(g) (h) (i) 0  20  40  60  80  100  120 

Time, t (s) Time, t (s)Time, t (s) 

Figure 2. The magnetic feld (Bx, By , Bz ) at the inner radius of the coil (a,d,g), the voltage between the centre and the 

rim of the coil (b,e,h), and the electric current supplied to the motor (c,f,i) along with the driving (
d) and rotation (
) 

frequencies recorded during the frst (a,b,c), second (d,e,f) and third (g,h,i) runs.
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Figure 3. The magnetic feld (Bx, By , Bz ) at the outer radius of the coil along with the driving (
d) and rotation (
) 

frequencies in the second (a) and third (b) runs. 

downwards and x and z components in the plane of the coil was detected. This feld, which was 

more than an order of magnitude stronger than Earth’s magnetic feld, was obviously due to the 

iron frame holding the coil. 

As the rotation rate increased, the magnetic feld raised steeply, especially its vertical (y) 

component, which is seen Fig. 2(a) to exceed the upper limit of the low-feld Hall sensor by 

reaching By ≈−9.3 mT at Ω ≈ 6.5Hz (t ≈ 76 s). A few seconds later, the increase in the driving 

frequency was halted at Ωd = 7.33 Hz. At this point, the rotation rate, which had reached Ω ≈ 
6.7 Hz, started to fall while the x and z components of the magnetic feld kept growing for a 
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 5

 0

5 
few more seconds. The same held also for the coil voltage which can be seen in Fig. 2(b) to rise 

from V ≈ 7.7 mV at the velocity maximum to Vmax ≈ 10 mV at t ≈ 82 s. However, this time delay 

between the rotation rate and the other two measured quantities was too short to be determined 

reliably. Namely, it was comparable to the uncertainty in the time synchronization between the 

measurements of these quantities which were recorded using different devices. 

The slowdown means that the electromagnetic braking torque acting on the disc had shot past 

the equilibrium point corresponding to the driving torque produced by the motor. As discussed 

before, this effect can be due to transient eddy currents which, according to the previous estimates, 

decay over the characteristic time ∼1 s. They reduce the magnetic fux through the disc and so the 

associated electromagnetic braking torque when the disc accelerates while the opposite is the case 

when the disc decelerates. Although the decrease in the rotation rate at the fxed driving frequency 

and voltage results in the rise of the current running through the motor (seen in Fig. 2c), it does 

not prevent the slowdown because the maximal torque the motor can develop is lower than the 

electromagnetic braking torque. Actually, the deceleration is escalated further by the relatively 

large difference between the driving and rotation frequencies. When the frequency difference 

becomes too large, the motor breaks down because the output torque, which is described by Eq. 

(4.14), starts dropping with the rotation rate. 

Although, as seen in Fig. (2c), the coil voltage drops together with the rotation frequency, the 

rate of decrease is lower than that at which the voltage increased when the disc accelerated. Both 

the voltage and the magnetic feld are noticeably higher than the respective values at the same 

rotation rate in the acceleration stage. This difference is likely due to the remanent magnetization 

of the iron frame. However, the transient eddy currents, which delay the variation of the magnetic 

fux through the disc as discussed above, can have a similar effect. 
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Attempting to reduce the slip, at t ≈ 126 s, we started to ramp down Ωd to 7 Hz which was 

reached in ≈ 7 s. This, however, just increased the slowdown rate without noticeably reducing 

the slip. The subsequent reduction of Ωd to 6.7 Hz had a similar effect. The slowdown temporarily 

reversed at t ≈ 156 s when Ωd was ramped up to the original level of 7.33 Hz. Acceleration lasted 

only for ≈ 15 s after which Ω resumed falling. When, at t ≈ 192 s, Ωd was ramped down in ≈ 6 s 
to 6.73 Hz, the falling rate of rotation frequency as well as that of the magnetic feld initially 

increased. After ≈ 6 s, when the rotation rate and the y component of the magnetic feld had 

dropped down to Ω ≈ 1.6 Hz and By ≈ 5.6 mT, the slowdown stopped and the disc started to re-

accelerate. Unfortunately, a few seconds later, the liquid metal contacts started to fail due to the 

excessive oxidation caused by the exposure to the air. The failure started with sporadic current 

interruptions which appear as irregular oscillations of the magnetic feld and coil voltage in Figs. 

2(a,b). The electric contact vanished completely in ≈ 8 s and so did the associated electromagnetic 

braking torque. As a result, the disc quickly accelerated to the prescribed VFD frequency, and the 

motor current dropped from ≈ 21 A to 5.7A (see Fig. 2c). The motor was turned off at t ≈ 244 s 
and slowed down by the VFD linearly to a complete stop in ≈ 60 s. The magnetic feld measured 

at this point, B0 ≈−(0.23, 1.0, 0.72) mT, was 26 − 36% higher than at the beginning of the run. ~ 

This difference is obviously due to the remanent magnetization of the iron frame. 

The peak value of By, which was not measured because it exceeded the upper detection limit 

of the low-feld Hall probe, can be estimated by extrapolating its variation with the coil voltage. 

In a quasi-stationary regime, both the voltage and the associated magnetic feld are expected to 

vary linearly with the current. This is confrmed by their mutual dependence plotted in Fig. 4(a). 

Extrapolating the rising part of V and By, which corresponds to the lower branch, we have By ≈ 
22 mT at the maximal coil voltage V ≈ 10 mV. Extrapolating the falling part, which corresponds 

to the upper branch, we respectively have By ≈ 25 mT. The dependence of the magnetic feld on 

its direction of variation is most likely due to the remanent magnetization of the iron frame. 

It is interesting to note that the relation between the coil voltage and the magnetic feld is nearly 

linear except the z component which appears to saturate close to 9 mT,i.e., the upper detection 

limit of the low-feld Hall probe. Also note that both the iron frame and the spiral slits made the 

magnetic feld strongly non-uniform at the inner and outer edges of the coil where the probes 

were placed. As a result, the strength, as well as the direction of the magnetic feld, were found to 

vary noticeably with the location of the Hall sensor which was not fxed and may vary between 

the runs. 

In the second run, the low-feld probe was moved to the outer radius and the medium-feld 

probe was placed near the inner radius of the coil. The driving frequency was ramped up through 

intermediate steps rather than continuously as in the frst run. As seen in Fig. 2(d,e), this resulted 

in the rise of the magnetic feld and the coil voltage at an increasing rate. A particularly steep 

increase was observed when Ωd was ramped up from 7 Hz at t ≈ 194 s to 7.67 Hz at t ≈ 200 s. As 

the rotation rate increased from 6.1 Hz to 6.4 Hz, Byat the inner radius rose steeply from 9.5 mT 

up to 26.5 mT. The magnetic feld at the outer radius can be seen in Fig. 3 to increase in a similar 

way. The coil voltage, which is plotted Fig. 2(e), increased respectively from 2.2 mV to 6.1 mV. 
After that the rotation rate started to fall and so did the magnetic feld along with the coil voltage. 

It indicates that the electromagnetic braking torque had again exceeded the torque that the motor 

can produce at the given parameters. Thus, the motor was not able to sustain the previously 

attained feld strength and went into the breakdown regime. The rotation rate kept falling until 

Ω ≈ 5.6 Hz was reached at t ≈ 255 s. At this point, the slowdown ended and the rotation rate 

started to increase slowly. This increase lasted only for t ≈ 25 s after which the rotation rate 

dropped again reaching Ω ≈ 5.5 Hz at t ≈ 297 s. The subsequent increase in the rotation rate was 

enhanced at t ≈ 304 s by ramping up the driving frequency to 8.47 Hz which was reached in ≈ 6 s. 
As a result, the rotation rate raised forming a plateau at t ≈ 315 s with Ω ≈ 6.3 Hz which lasted 

for ≈ 8 s. The vertical magnetic feld, which is shown in Fig. 2(d), reached By ≈ 30 mT at t ≈ 319 s 
and stayed close to this value for ≈ 6 s. After the plateau, the rotation rate can be seen to increase 

slightly reaching ≈ 6.5 Hz in ≈ 2 s. This caused a steep rise in the magnetic feld which reached a 
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peak of ≈ 38 mT at t ≈ 333 s. As before, the motor could no longer sustain the attained rotation 

rate which, thus, started to fall closely followed by the magnetic feld until reaching Ω ≈ 6.1 Hz 

and By ≈ 32.5 mT at t ≈ 359 s. At this point, we started to ramp down the driving frequency 

thus disrupting the subsequent growth phase. At t ≈ 386 s, when the rotation rate had slowed 

down to Ω ≈ 5.2 Hz, oscillations in the magnetic feld increased abruptly and the feld started to 

fall sharply. The same may be seen in Fig. 2(e) to happen to the coil voltage. This introduces the 

breakdown of electric contact which was completely lost at t ≈ 400 s. At this point, the magnetic 

feld dropped down close to its initial background value. As the electromagnetic braking torque 

vanished, the disc rotation rate increased approaching the VFD driving frequency. Although the 

motor closely followed the driving frequency in this regime, the VFD caused some oscillations in 

the rotation rate around Ω ≈ 7.5 Hz which may be seen in Figs. 2(d-f). 

In the third run, which is documented in Figs. 2(g-j), the driving frequency Ωd was set higher 

and ramped up faster than in the second run. Firstly, the driving frequency was ramped up in 

5.4 s to Ωd ≈ 3 Hz. Secondly, after ≈ 12 s, when the rotation rate had stabilized at Ω ≈ 2.8 Hz, the 

driving frequency was ramped up to Ωd ≈ 8.9 Hz, which was reached nearly linearly via a few 

short intermediate steps at t ≈ 60 s. The motor rotation rate also increased nearly linearly but at 

a slightly lower pace than the driving frequency and only up to Ω ≈ 6.7 Hz which was attained 

at t ≈ 45 s. At this point, Ω ceased to increase further with Ωd. The subsequent results show that 

only the magnetic feld was affected by Ωd while Ω stayed nearly constant. Namely, the magnetic 

feld, which saturated at By ≈ 45 mT when the driving frequency was set to Ωd ≈ 8.9 Hz,can be 

seen in Fig. 2(g) to reach By ≈ 48.6 mT at t ≈ 74 s when the driving frequency was ramped up 

Ωd ≈ 9.7 Hz. Although By fell off subsequently, it remained well above the previous equilibrium 

level until the motor was switched off at t ≈ 92 s. 

4. An extended disc dynamo model 

In this section, we extend our original quasi-stationary disc dynamo model [17] by including 

several effects which are essential for the interpretation and analysis of the experimental results. 

In order to capture the temporal evolution and saturation of the disc dynamo, frst of all, we need 

to take into account two transient inductive effects. The frst is an additional potential difference 

between the inner and outer rim of the coil which is induced by a time-dependent electric current 

I1(t) fowing along the spiral arms of the coil and then connecting radially through the disc. 

Owing to the fxed distribution of I1(t) in the coil, this voltage can be expressed analytically in 

terms of the rate of variation of the associated magnetic fux (Eq. (8) in [17]). The second effect, 

which is neglected in the original disc dynamo model [1], is the eddy current induced in the disc 

by a changing magnetic feld [21]. The linear density of this purely azimuthal current is governed 

by Ohm’s law 

J2(r, t) = σ̄E°, 

where σ̄= σd is the effective electric conductivity of the disc and E° = −∂tA° is the induced 

electric feld which follows from Faraday’s law with A° standing for the azimuthal component of 

the vector potential. Using the Biot-Savart law, the latter can be written as follows 
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ro 2ˇ Z Z ′ ′ (J1(r , t) − ¯ cos φσ∂tA°)rµ0 ′ A°(r, t) = p dφ dr , (4.1) 
4π r2 + r ′2 − 2rr ′ cos φ 

r̃i 0 

which is an integro-differential equation governing the evolution of A° over the radius of the 

system; J1(r, t) = βI1(t)/2πr stands for the azimuthal current distribution in the coil and µ0 = 

4π × 10−7 H/m is the permeability of vacuum. Note that the vertical gap between the disc and 

the coil is supposed to be much smaller than the radial size. Thus, the magnetic fux passing 

through the disc is approximately the same as that passing through the coil [17]. In the following, 

instead of solving Eq. (4.1), which is numerically complicated, we pursue a simplifed approach 
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by assuming that the aforementioned magnetic fux can be written as 
8 

Φ = L1I1 + L2I2 + Φ0, (4.2) 

where the frst two terms on the RHS represent the fuxes generated by the coil and the disc, 

respectively, and Φ0 is a background fux due to external magnetic which may be Earth’s magnetic 

feld as well as to that produced by the magnetized iron frame. This model differs from that of 

Moffatt [21] frst, by taking into account the external feld and, second, by neglecting the leakage 

of the magnetic fux through the gap between the coil and the disc. 

Applying Kirchhoff’s voltage law to the primary dynamo circuit, which carries the current I1, 
and to the disc, which constitutes the secondary circuit, we obtain 

Φ̇ + R1I1 = ΩΦ, (4.3) 

Φ̇ + R2I2 = 0, (4.4) 

where R1 and R2 are the effective ohmic resistances of respective circuits. The system is 

completed by the angular momentum equation: 

IΩ̇ = G − I1Φ − kΩ, (4.5) 

where I is the moment of inertia of the disc, G is the driving torque produced by the motor and 

I1Φ is the electromagnetic braking torque [21]. The last term with the coeffcient k represents a 

hyrodynamic-type friction. It can also model the variation of the driving torque with the rotation 

speed as in asynchronous electric motor controlled by the VFD with a fxed voltage and frequency 

ratio. The system can be reduced to two equations for Φ and Ω as follows. First, substituting 

I2 = − Φ̇/R2 from Eq. (4.4) into Eq. (4.2) we have 

ΦL2/R2)/L1,I1 = (Φ − Φ0 + ˙

Second, substituting this expression for I1 into Eqs. (4.3) and (4.5), after a few rearrangements, we 

obtain: 

˙τ0Φ = Φ(τ1Ω − 1) + Φ0 (4.6) 

IΩ̇ = G − Φ(Φ + τ2Φ̇)/L1 − kΩ, (4.7) 

where τi = Li/Ri are the characteristic electromagnetic decay times (the time constants) for the 

primary (i = 1) and secondary (i = 2) circuits and τ0 = τ1 + τ2. Note that the kinematic dynamo 

problem, which corresponds to a prescribed rotation rate Ω, is posed just by Eq. (4.6). According 

to this equation, a small initial current perturbation grows exponentially with time if Ω >Ωc, 
where 

τ −1Ωc = (4.8) 
1 

is a critical rotation rate defning the dynamo threshold. Scaling rotation rate and time with Ωc 

and τ0, respectively, Eqs. (4.6) and (4.7) can be written in the dimensionless form as follows 

Φ̇ = Φ(Ω − 1) + Φ0, (4.9) 
� � 

Ω̇ = Γ (1 − κΩ) − Φ Φ − Φ0 − λΦ̇ , (4.10) 

were Γ is a dimensionless driving torque, κ is a friction coeffcient defned relative to Γ and 

λ = τ2/(τ1 + τ2) is a parameter defning the relative signifcance of eddy currents in the disc. In 

the following, we assume mechanical friction to be negligible, i.e., κ ≪ Γ, and use κ =0 unless 
˙stated otherwise. Finally, using Eq. (4.9) to eliminate Φ on the RHS of Eq. (4.10), we obtain a 

second-order dynamical system. 

If the disc is segmented by spiral slits like the coil, or by radial insulating strips as suggested 

by Moffatt [21], so that no azimuthal eddy currents can circulate in the disc, we have λ = 0. In this 

case, our model, like that of Moffatt [21], reduces to the original Bullard dynamo model [1]. If the 

disc is solid and well conducting, as in our experiment, so that τ2 ≫ τ1, which will be shown in 

the following, we have λ =1. 
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Figure 5. Temporal evolution of the rotation rate and the magnetic fux � with a small initial value and no background 

magnetic feld (�0 = 0) and no mechanical friction (� = 0) when the disc is driven either by a constant torque � = 

0.1 (a), 0.01 (b) or a constant power � = 0.1 (a), 0.01 (b); � characterizes the effect of eddy currents in the disc which 

is negligible when � =0 and signifcant when � = 1. 

The driving torque Γ can conveniently be defned using the dynamic response time τd, i.e., 

the time required by the motor to spin up the disc to the critical rotation rate (4.8). In the case of 

constant driving torque and dominating inertia, Eq. (4.10) yields Ω = Γ t. Taking into account that 

1, we have Γ = (τd/τ0)
−1 , which is a dimensionless counterpart of τ −1 . Similarly, in the case Ωc = d 

1of a constant power Π = ΩΓ , Eq. (4.10) yields 1 Ω2 = Πt and, thus, we have Γ = (Ωτd/τ0)
−1 .

2 2 
For a disc of radius ro and thickness d ≪ ro, which can be treated as a thin sheet with the 

effective electric conductivity σ̄= σd, the characteristic time over which eddy currents decay 

can be estimated as τ2 ∼ µ0σdro. For our set-up with ro = 10d = 0.3m and σ = 58.5 S/m, the 

electromagnetic time constant of the secondary circuit is τ2 ≈ 0.7 s. 
The time constant of the primary circuit τ1 can be estimated using Eq. (4.8) and the 

corresponding critical magnetic Reynolds number, which can be written as follows 

Rmc = µ0σdroΩc = τ2/τ1. 

Then taking into account that Rmc ≈ 40 [17], we have τ2 = τ1Rmc ≫ τ1 and, thus, λ ≈ 1. 
The characteristic mechanic response time in which the disc attains the expected critical 

rotation frequency fc ≈ 10 Hz when the motor is run at P ≈ 1 kW, i.e. half of its rated power, 

can be estimated as 

1 2 3 4 2τd = IΩc /P ≈ π ρdrofc /P ≈ 7 s,
2 

3where ρ = 8.96 × 103 kg/m is the density of copper. This time being by an order of magnitude 

longer than the electromagnetic response time τ1 corresponds to Γ ∼ 0.1. 
There are two distinct ways how the dynamo can manifest itself. In the classical scenario, the 

background feld is assumed to be absent (Φ0 = 0). In this case, as soon as the rotation rate exceeds 

Ωc =1, the magnetic feld starts to grow exponentially in time at the rate Ω − 1. This scenario, 

which corresponds to an instability of the base state Φ = 0 at Ω > 1, is captured by Eqs. (4.9,4.10) 

with the initial conditions Ω(0) = 0 and Φ(0) = Φ1, where Φ1 is a small initial perturbation. 

The second scenario, which more adequately describes the experiment, involves a non-zero 

background fux Φ0. In this case, Eq. (4.9) for a fxed rotation rate Ω has a stationary solution Φ = 

Φ0/(1 − Ω), which shows that the magnetic fux increases with the rotation rate as ∼ (1 − Ω)−1 

and becomes unbounded when Ω → 1. This is how the dynamo manifests itself in the second 

scenario. 

In reality, the growth of the magnetic feld is limited by the electromagnetic braking torque 

which at a certain point outweighs the driving torque. The stationary solution for the fux defned 
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Figure 6. Temporal evolution of the rotation rate and the magnetic fux � in the presence of a background feld with 

�0 = 0.01� 1/2 , � =1, � = 0, 0.5, 0.75, 1 when the disc is driven by a constant torque � = 0.01 (a), 0.1 (b). 

by Eq. (4.10) is 
q 

Φ̄= Φ0/2 + Φ2/4 + Γ. (4.11) 
0 

¯The respective equilibrium rotation rate following from Eq. (4.9) is Ω = 1 − Φ0/Φ.¯ If the 

background feld is negligible, which is the case when Φ0 ≪ Γ 1/2 , this equilibrium rotation rate 

becomes equal to the threshold value Ωc = 1. It means that in this case, the driving torque changes 

Γ 1/2only the equilibrium magnetic fux Φ̄= but not the disc rotation rate which stays equal to 

Ωc =1 [1]. It is important to note, however, that in the Bullard model, which corresponds to 

a constant driving torque Γ with λ = Φ0 =0, this equilibrium is never reached and the dynamo 

keeps oscillating around the equilibrium state unless it coincides with the initial state [1]. Periodic 

oscillations of the Bullard dynamo are due to an energy-like conserved quantity: 

2 2 2(Ω − 1) + Φ − Γ ln Φ = const, 

which makes Eqs. (4.9, 4.10) integrable. This is no longer the case when the dynamo is driven by a 

constant power Π = ΩΓ, which also acts as a mechanical damping. Namely, for small-amplitude 

oscillations around the equilibrium rotation rate with Ω = 1 + Ω̃ , we have 

Γ = Π/Ω ≈ Π − ΠΩ,˜ 

where the term Π represents the constant part of the driving torque whereas the term −ΠΩ̃ is 

equivalent to the damping with a coeffcient equal to Π . There are two additional electromagnetic 

damping effects in the modifed Bullard dynamo model. They become obvious when Eqs. (4.9, 

4.10) are combined into the following equation for small-amplitude magnetic fux perturbation 

Φ̃= Φ − Φ̄ around the equilibrium fux defned by Eq. (4.11): 

2 2∂t ˜ κ∂t ˜ Φ Φ̄) ˜ 0.Φ + ˜ Φ + (2 ¯ − Φ0 Φ = 

This equation features an effective damping coeffcient 

2κ̃= λΦ̄ + Φ0/Φ̄  (4.12) 

with the two terms on the RHS being due to the eddy currents induced in the disc and the 

background magnetic fux, respectively. 

The temporal evolution of the rotation rate and the magnetic fux when the disc is driven either 

by a constant torque Γ or power Π with no background magnetic feld (Φ0 = 0) and negligible 

friction (κ = 0) is shown in Fig. 5 for the eddy current parameter λ = 0 and λ = 1. 

The effect of a background magnetic feld with Φ0 =0.01Γ 1/2 on the evolution of the 

dynamo driven by a constant torque with various friction coeffcients is illustrated in Fig. 6. 

The characteristic feature of the temporal evolution of disc dynamo, which is present in all cases 
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Figure 7. The magnetic fux � versus the rotation rate from Fig. 6 along with the quasi-stationary solution (4.13) for 

c =1 and � = 0.01 (a), 0.1 (b). The shaded strips show the range of c resulting from the best ft of numerical results 

for various � and � c/2, where the solution is relatively quasi-stationary. 

except the marginal case of κ = 1, is the overshooting of the equilibrium state and the subsequent 

oscillations of the rotation rate and the magnetic fux. These oscillations, which decay unless 

κ = λ = 0 and the dynamo is driven by a constant torque, imply that deviation from the quasi-

stationarity becomes signifcant when the disc rotation rate approaches the dynamo threshold 

Ωc =1. This is because the effective magnetic relaxation time being reciprocal of the growth rate 

diverges as ∼ (Ωc − Ω)−1 when Ω approaches Ωc. As a result, the quasi-stationarity inevitably 

breaks down in the vicinity of the dynamo threshold regardless of how slowly the rotation rate is 

ramped up. Deviation from the quasi-stationary solution of Eq. (4.9): 

Φ0Φ(Ω) = , (4.13) 
Ωc − Ω 

becomes obvious when the magnetic fux is plotted against the rotation rate as in Fig. 7. This 

numerical data can be used to assess the possibility of recovering Ωc from the best ft to the quasi-

stationary solution. Limiting the ft to Ω ≤ Ωc/2, where the solution is relatively quasi-stationary, 

we recover the values of Ωc which slightly vary with κ and lie in the shaded strips Fig. 7. As 

seen, Ωc produced by the best ft is just slightly higher than the true value (Ωc = 1) for Γ =0.01 

whereas the difference is about 20% when Γ =0.1. 
When the dynamo is powered by an induction motor supplied with constant frequency 

and voltage, the developed torque varies non-monotonously with the rotation rate. The torque 

predicted by the basic asynchronous electric motor model [22] can be written as 

(Ωd − Ω)(Ωd − Ωm)
Γ = 2Γmax , (4.14) 

(Ωd − Ω)2 + (Ωd − Ωm)2 

where Ωd and Ω are the synchronous and actual rotation frequencies, Ωm is the frequency at 

which the torque attains its peak value Γmax. When Ω ≈ Ωd, the torque varies approximately 

linearly with Ωd − Ω: 

Ωd − Ω 
Γ ≈ 2Γmax . 

Ωd − Ωm 

When the frequency difference Ωd − Ω becomes suffciently large, the driving torque attains a 

maximum Γmax at the critical frequency Ωm and then drops off asymptotically as 

Ωd − Ωm
Γ ∼ 2Γmax . 

Ωd − Ω 
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Figure 8. Temporal evolution of the rotation rate and the magnetic fux � in the presence of a background feld with 
1/2

�0 = 0.01�max and � = 1 when the disc is driven by an electric motor with synchronous frequency d =1.2 and the 

maximal torque �max = 0.01 (a), 0.1 (b) developed at m = 1, 1.1. 

If the equilibrium rotation frequency Ωc = 1 happens in the latter operating regime, for small 

perturbations of the rotation rate Ω̃= Ω − 1, we have 

� �˜Ωd − Ωm Ω 
Γ ≈ 2Γmax 1 + ,

Ωd − 1 Ωd − 1 

where the second term is analogous to a friction force but with negative coeffcient 

Ωd − Ωm 
−2Γmax . 

(Ωd − 1)2 

When this negative friction outweighs the electromagnetic damping with the coeffcient (4.12), 

the stationary dynamo state becomes unstable giving rise to periodic oscillations as in the original 

Bullard dynamo model. This instability is illustrated in Fig. 8 where the oscillations can be seen 

to cease decaying when the motor is driven by a fxed frequency Ωd = 1.2 and the frequency at 

which the torque attains maximum is increased from Ωm = 1 to 1.1. 

5. Discussion 

The measured coil voltage allows us to assess the electric current and the associated ohmic 

heating. Firstly, using the coil resistance [17] 

1 + β2 ro
Rc = ln ≈ 0.61 µΩ, 

2πdσCu ri 

and the Ohm’s law, we can estimate the current generated by the dynamo at the coil voltage 

V = 10 mV as I = V/Rc ≈ 16 kA. Then the associated power of ohmic heating in the coil and disc 

)−1with the resistivity Rd = Rc(1 + β2 is 

� �V 2 
2 2)−1P = I (Rc + Rd) = 1 + (1 + β ≈ 200 W. (5.1) 

Rc 

This power is signifcant relative to the maximal power the motor is expected to produce when 

operating outside its optimal regime with a large slip. Additional, but presumably insignifcant, 

ohmic as well as viscous power dissipation is expected in the liquid metal contacts. 

On the other hand, using the current estimate above, the average magnetic fux density 

produced by the helical coil can be evaluated as 

¯βµ0Iroφ(r̃i/ro)B̄c = ≈ 4 mT. (5.2) 
4πS 
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Figure 9. Radial distribution of the vertical magnetic feld B(r) along the top surface of the coil computed using a quasi-

stationary current-sheet approximation [17] for the coil voltage V = 10 mV which corresponds to the dynamo current 

I ˇ 16 kA. The two horizontal lines show the average values for the coil and disc, respectively. 

2 2where S = π(ro − r̃i ) is the area of the helical part of the coil, β = tan(58◦) ≈ 1.6 is the helicity 

of the logarithmic spiral arms, r̃i/ro ≈ 1/4 is the ratio of the outer and inner radii of the coil and 

φ̄(1/4) ≈ 1.38 is the respective dimensionless fux [17]. It is interesting to note that this estimate 

is signifcantly lower than the magnetic feld strength measured on the surface of the coil. There 

may be several reasons for this difference. Firstly, the distribution of the magnetic feld along the 

surface of the coil is highly non-uniform. In the current-sheet approximation, the vertical fux 
−1density Bz = r ∂(rA°), which is plotted in Fig. 9 using the analytical solution for the vector 

potential A° obtained in [17], becomes unbounded at the inner and outer radii of the coil, where 

it has logarithmic singularities. Besides that the magnetic fux density can be seen in Fig. 9 to 

change direction close to the outer edge of the coil. As a result, the average fux density is much 

lower than the local feld strength. Nevertheless, the feld strength at the centre of the coil, which 

represents a well-defned characteristic value for this system, is comparable to the feld strength 

measured in the vicinity of the inner radius of the coil. Secondly, regardless of the current-sheet 

approximation, there are logarithmic singularities in the feld strength at the sharp edges of the 

coil which may affect the readings of the Hall sensor when placed directly atop the coil. 

Thirdly, and most importantly, the magnetic feld distribution is strongly affected by the iron 

frame of the set-up, especially by the four crossed arms holding the coil. . As the Hall sensors 

were placed on the coil next to these beams, they could be affected by the feld concentration 

caused by these ferromagnetic elements. The effect of the iron frame is evident in the background 

magnetic feld which was found to be ∼ 1 mT, i.e., more than an order of magnitude stronger than 

Earth’s feld. This fact implies that the iron frame can have a similar magnitude effect also on the 

magnetic feld generated by the coil. 

Given the relative smallness of the coil area covered by the frame, the latter is expected to 

have a comparably small effect on the average magnetic fux density. This is confrmed by the 

effective magnetic fux density through the disc Beff which can be estimated by comparing the 
2 2e.m.f generated by the disc, ΩBeff(r − ri )/2, and the total voltage drop over the disc and coil. o 

The latter can be estimated using the ohmic heating power P (5.1) as P/I, which results in 

1 + (1 + β2)−1 
Beff = 2V . (5.3) 

2 2Ω(ro − ri ) 

As seen in Fig. 10, Beff varies nearly linearly with the coil voltage as predicted by the quasi-

stationary approximation well outside this regime. The best ft of this variation for V < 6 mV 
¯produces an effective fux density of the background magnetic feld B0 = 0.29 ± 0.03 mT, which 

is about a factor of three lower than the strength of the background feld measured under one of 

the four iron beams holding the coil. 
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Figure 10. Effective magnetic fux density Beff (5.3) against the coil voltage V for three runs along with the best linear ft 

Beff = B0 + �V for V < 6 mV which yields B0 = 0.29 ± 0.03 mT. 

On the other hand, the effective magnetic fux density, which reaches Beff ≈ 7 mT at the coil 
¯voltage V = 10 mV, is somewhat higher than Bc defned by Eq. (5.2). This difference may be 

due to the inner radius of the disc ri = 4.5 cm being smaller than the respective radius of the 

helical part of the coil r̃i = 7.5 cm. As a result, the inner part of the disc with r < r̃i is exposed 

to a relatively strong magnetic feld which is generated by the coil in this region (see Fig. 9). On 

the other hand, the respective magnetic fux density averaged over the whole area of the disc, 

B̄d ≈ 6 mT, is relatively close to Beff. 
The critical frequency Ωc can be determined by ftting the quasi-stationary solution (4.13), 

which can be written in terms of the respective quantities as 

V0Ω 
V (Ω) = , (5.4) 

Ωc − Ω 

B0Ωc
B(Ω) = , (5.5) 

Ωc − Ω 

to the variation of the coil voltage and magnetic feld with the rotation rate, which is plotted in 

Fig. 11. Limiting the ft to Ω< 6 Hz, where the variation is expected to be suffciently close to 

quasi-stationary, and using the coil voltage, we fnd Ωc ≈ 7.2, 6.9, 7.2 Hz for the respective run 

(see Fig. 11a). The best ft of the magnetic feld yields Ωc ≈ 7.0, 6.7, 6.9 Hz, which are somewhat 

lower than the respective previous values. The last value is also slightly higher than the apparent 

equilibrium rotation rate in the third run which may be seen in Fig. 2 to reach ≈ 6.8 Hz. 
Alternatively, Ωc can be estimated using the the short equilibrium state which appears in the 

third run between t ≈ 60 s and 70 s, where Ω ≈ 6.8 Hz,B ≈ 45 mT and V ≈ 12.9 mV. Substituting 

these values into equations (5.4) and (5.5) and using B0 ≈ 1.1 mT and V0 ≈ 0.45 mT, which 

follow from the best of B and V for this run, after a few rearrangements, we obtain Ωc = 

Ω/(1 − B0/B) ≈ 6.97 Hz and Ωc = Ω(1 + V0/V ) ≈ 7.0 Hz. As seen both results are practically 

identical and lying between the values obtained from the best ft of quasi-stationary solutions 

for V and B. Note that the theoretical dynamo threshold for our set-up, which is defned for 

negligible contact resistance by the minimal critical magnetic Reynolds number Rm ≈ 35 [17], 

corresponds to Ωc ≈ 8.2 Hz. Although the background magnetic feld makes the equilibrium 

rotation rate somewhat lower than the self-excitation threshold, the difference between the 

theoretical threshold and that extracted from the best ft of experimental results may be due to 

the current sheet approximation used in the theoretical model. 

The effective background magnetic feld B0 can also be estimated using the best-ft parameters 

V0 and Ωc of the coil voltage. Substituting V from Eq. (5.4) into Eq. (5.3) and taking Ω → 0, it is 
¯ easy see that B0 is obtained by replacing V and Ω in Eq. (5.3) with V0 and Ωc. For the respective 

run, this yields B̄ 
0 ≈ 0.33, 0.26, 0.30 mT, which are consistent with the previous estimate obtained 

from the best ft of the effective magnetic fux variation with the coil voltage plotted in Fig. 10. 
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Figure 11. The coil voltage (a) and the vertical component of the magnetic feld at the inner radius of the coil (b) versus 

the rotation rate along with the best fts of the quasi-stationary solution (5.4,5.5) for < 5 Hz. 

The larger scatter in the last estimate is because it is obtained by using low rotation rates only, 

whereas the previous relation holds in a much larger range of Ω which may be seen in Fig. 10 to 

extend well beyond the quasi-stationary regime. 

6. Summary and conclusions 

In this paper, we presented experimental results from three successful runs of a Bullard-type 

homopolar disc dynamo. The realisation of such a dynamo was commonly thought impossible 

because of the prohibitively high rotation rates which are required when sliding electric contacts 

are made of graphite brushes. We overcome this problem by using GaInSn eutectic alloy, which 

is liquid at room temperature, for sliding electric contacts. The set-up consisted of a copper disc 

with a radius of 30 cm and thickness of 3 cm which was placed co-axially beneath a fat, multi-arm 

spiral coil of the same size and connected to it electrically at the centre and along the perimeter 

by GaInSn contacts [17]. The dynamo was effectively axisymmetric but anisotropic because of 

the spiral slits which defected the current in the coil azimuthally so generating an axial magnetic 

feld. 

The use of liquid metal in sliding electrical contacts came with two complications. Firstly, the 

liquid metal was expelled from the peripheral contact by centrifugal force radially inwards over 

the top surface of the coil. This problem was largely mitigated by reducing the annular gap 

between the disc and the coil from 3 mm in the original design [20] to 0.25 mm in this set-up. 

Secondly, as the liquid metal was exposed to air, it quickly oxidized when the device ran. This 

limited the time of the experiment to a few minutes after which the electric contact between the 

disc and the coil usually failed. 

The runs differed mainly by how the motor driving frequency Ωd was varied. In the frst run, 

Ωd was increased at a nearly constant rate and the magnetic feld was measured using only 

the low-feld probe which was placed on the coil in its central part close to the inner radius 

of the spiral slits. When the disc rotation rate reached Ω ≈ 6.5 Hz, the vertical feld component 

was found to exceed 9 mT, which was the upper detection limit of this probe. Although the 

driving frequency was set at Ωd = 7.33 Hz, the rotation rate started to fall after reaching ≈ 6.7 Hz. 
It means that the electromagnetic torque braking the disc had exceeded the breakdown torque 

of the electric motor, which, thus, started to stall. Extrapolation using the voltage drop across 

the coil, which was measured in addition to the magnetic feld, indicated that the vertical feld 

strength in the frst run had reached ≈25 mT. It is important to note that the magnetic feld in the 

vicinity of the inner radius of the coil may be signifcantly higher than the average over the coil 

surface. 
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In the second run, the low-feld probe was moved to the outer radius and the medium-feld 

probe was installed in its place. Besides that, the driving frequency was ramped up through 

intermediate constant steps rather than continuously as in the frst run. We again observed a steep 

increase of the magnetic feld with By at the inner radius reaching 26.5 mT when the rotation rate 

approached 6.4 Hz. At this point, the rotation rate started to fall as in the frst run. However, the 

second run was suffciently long for the disc to start spinning up again. The re-acceleration was 

enhanced by ramping up Ωd to 8.47 Hz. This resulted in Ω reaching ≈ 6.5 Hz and By shooting 

up to ≈ 38 mT. At this point, the motor started to stall again and the experiment was terminated 

because of the loss of electric contact. 

Stalling was not observed in the third run, in which the driving frequency Ωd was set higher 

and initially ramped up faster. With Ωd ≈ 8.9 Hz reached in ≈ 60 s, the rotation rate saturated at 

Ω ≈ 6.6 ± 0.1 Hz after ≈ 45 s. The magnetic feld kept growing as long as Ωd increased saturating 

at ≈ 45 mT. After ≈ 30 s, when Ωd was raised to ≈ 9.7 Hz, By increased to ≈ 48.6 mT without a 

noticeable change in the rotation rate Ω. This is a characteristic behaviour of a fully developed 

disc dynamo. 

We also proposed an extended disc dynamo model which qualitatively reproduces 

experimental results by taking into account the background magnetic feld, transient eddy 

currents in the disc as well as the non-linearity of the electric motor. The background magnetic 

feld, which was found to be an order of magnitude stronger than Earth’s magnetic feld, was 

obviously due to the iron frame of the set-up. At sub-critical rotation rates, i.e., those below the 

kinematic threshold, the dynamo works as a homopolar generator amplifying the background 

magnetic feld. In quasi-stationary approximation, the amplifcation rate increases with the 

rotation frequency and tends to infnity at the dynamo threshold. We used this fact to determine 

the dynamo threshold from the best ft of the magnetic feld and the coil voltage. In this way, 

we found a critical rotation frequency Ωc ≈ 7 ± 0.2 Hz, which is somewhat larger than the actual 

saturation frequency observed in the third run. This is consistent with the numerical results which 

showed that the transient effects result in the best-ft value being somewhat higher than the 

actual dynamo threshold. On the other hand, this experimental result is somewhat lower than 

the theoretical prediction Ωc ≈ 8.2 Hz corresponding to the minimal critical magnetic Reynolds 

number Rm ≈ 35 for a negligible contact resistance [17]. This difference is likely due to the very 

approximate nature of the current sheet model which was used to evaluate the dynamo threshold. 

In particular, due to the strongly uniform radial magnetic fux distribution (see Fig. 9), the total 

magnetic fux through the disc may be larger than theoretically predicted because the effective 

inner radius of the disc is smaller than that of the coil. The critical rotation rate can be reduced 

further by optimizing the inner and outer disc radii which were originally chosen to be the same 

as those of the coil. 
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