
Question-driven Text Summarization with

Extractive-Abstractive Frameworks

Mahsa Abazari Kia

A thesis submitted for the degree of

Doctor of Philosophy

School of Computer Science and Electronic Engineering

University of Essex

September 2022

Abstract

Automatic Text Summarisation (ATS) is becoming increasingly important due to the expo-

nential growth of textual content on the Internet. The primary goal of an ATS system is to

generate a condensed version of the key aspects in the input document while minimizing

redundancy. ATS approaches are extractive, abstractive, or hybrid. The extractive approach

selects the most important sentences in the input document(s) and then concatenates them to

form the summary. The abstractive approach represents the input document(s) in an interme-

diate form and then constructs the summary using different sentences than the originals. The

hybrid approach combines both the extractive and abstractive approaches. The query-based

ATS selects the information that is most relevant to the initial search query. Question-driven

ATS is a technique to produce concise and informative answers to specific questions using a

document collection.

In this thesis, a novel hybrid framework is proposed for question-driven ATS taking ad-

vantage of extractive and abstractive summarisation mechanisms. The framework consists of

complementary modules that work together to generate an effective summary: (1) discov-

ering appropriate non-redundant sentences as plausible answers using a multi-hop question

answering system based on a Convolutional Neural Network (CNN), multi-head attention

mechanism and reasoning process; and (2) a novel paraphrasing Generative Adversarial Net-

work (GAN) model based on transformers rewrites the extracted sentences in an abstractive

setup. In addition, a fusing mechanism is proposed for compressing the sentence pairs se-

lected by a next sentence prediction model in the paraphrased summary. Extensive exper-

iments on various datasets are performed, and the results show the model can outperform

many question-driven and query-based baseline methods. The proposed model is adaptable

to generate summaries for the questions in the closed domain and open domain. An online

summariser demo is designed based on the proposed model for the industry use to process

the technical text.

i

Acknowledgements

This work was supported in part by the Computer Science and Electronic Engineering De-

partment, University of Essex, and in part by BT Group/Openreach. My Ph.D. study at the

University of Essex is wonderful, cheerful, and unforgettable, and I want to thank everyone

who has been with me during this journey. Furthermore, I want to express my appreciation to

those who have been especially helpful. I want to thank my supervisors, Dr. Shoaib Jameel,

Dr. Jon Chamberlain, Aygul Garifullina, Dr. Mathias Kern, and Professor Ansgar Scherp who

have always supported me with their knowledgeable guidance and passionate encourage-

ment. It will always be an honor and fortune for me to be their student. Finally, I thank

everyone at the School of Computer Science and Electronic Engineering at the university of

Essex and BT for providing a friendly work environment and good vibes, and my parents for

all of their support.

ii

Contents

1 Introduction 1

1.1 History of Text Summarisation . 1

1.2 Question-driven Text Summarisation . 3

1.3 Applications for Industry . 5

1.4 Thesis Contribution . 6

1.5 Research Questions . 8

1.6 Publications and Presentations . 11

2 Background and Literature Review 12

2.1 Neural Networks . 12

2.1.1 Recurrent Neural Networks (RNNs) . 12

2.1.2 Bidirectional RNN . 14

2.1.3 Gated Recurrent Neural Networks . 14

2.1.4 CNN . 18

2.1.5 Attention Mechanism . 21

2.1.6 Transformers . 22

2.2 Text Embeddings . 24

2.2.1 ELMO . 25

2.2.2 GPT . 26

2.2.3 BERT . 26

2.2.4 BERT Variants . 27

2.2.5 ELECTRA . 27

2.2.6 T5 . 27

2.2.7 BART . 28

2.3 Text Generation . 28

iii

2.3.1 GANs . 28

2.3.2 Variational Auto-Encoders (VAEs) . 37

2.3.3 Paraphrase Generation . 41

2.4 Automatic Text summarisation (ATS) . 42

2.4.1 Extractive Approaches . 45

2.4.2 Abstractive Approaches . 47

2.4.3 Query-based Approaches . 52

2.4.4 Hybrid Text Summarisation . 53

2.5 Question Answering (QA) Systems . 55

2.5.1 Question Analysis . 56

2.5.2 Machine Reading Comprehension (MRC) 57

2.5.3 Open-domain QA vs Closed-domain QA 59

2.5.4 Multi-hop QA . 63

2.6 Summary . 64

3 A Hybrid Extractive-Abstractive Question-driven Summariser Model 66

3.1 Introduction . 66

3.1.1 Question-driven Extractive Model (Ex-MhopQA) 67

3.1.2 Question-driven Abstractive Model (QParaSum) 69

3.2 Experiment Procedure . 70

3.3 Evaluation Metrics . 71

3.4 Summary . 73

4 Question-driven Extractive Model 74

4.1 Introduction . 74

4.2 Proposed Multi-hop QA Approach . 76

4.2.1 Adaptable Machine Reading Comprehension Method 76

4.2.2 Reasoning Process . 88

4.3 Experiments . 88

4.3.1 Experimental Dataset . 88

4.3.2 Evaluation Metrics . 90

4.3.3 Data Pre-processing and Experimental Settings 90

4.3.4 Sentence-level MRC model . 93

4.3.5 Open-domain multi-hop QA . 101

iv

4.3.6 Question-driven Extractive Text Summarisation 103

4.4 Summary . 105

5 Question-driven Abstractive Model 107

5.1 Introduction . 107

5.2 The Question-driven Abstractive Summariser 108

5.2.1 Paraphrase Generation Model . 108

5.2.2 Singletons and Sentence Pairs Selection 112

5.2.3 Sentence Fusion . 114

5.3 Experiments . 118

5.3.1 Experimental Datasets . 118

5.3.2 Evaluation Metrics . 119

5.3.3 Data Pre-processing and Experimental Settings 119

5.3.4 Paraphrase Generation Results . 120

5.3.5 Sentences Fusion Results . 121

5.3.6 Question-driven Abstractive Text Summarisation Results 123

5.4 Summary . 128

6 An Industrial Case Study 130

6.1 Introduction . 130

6.2 The Model for Openreach Data . 131

6.3 Dataset . 131

6.3.1 Data Characteristics . 133

6.3.2 Training Dataset . 133

6.3.3 Test Dataset . 134

6.3.4 Data Anonymisation . 134

6.4 Experiments . 135

6.4.1 Fine-tuning Process . 135

6.4.2 Baseline Methods . 137

6.4.3 Results and Discussion . 137

6.4.4 Demo Examples . 138

6.5 Summary . 143

v

7 Conclusion and Future Work 145

7.1 A Hybrid Question-driven Text Summarisation Model 145

7.2 Applications . 147

7.3 Future Work . 149

7.4 Future Text Summarisation Research Directions 150

vi

List of Figures

2.1 Sequence-to-sequence Architecture . 13

2.2 LSTM unit architecture [1] . 15

2.3 LSTM unit gates . 16

2.4 The diagram of a GRU cell [2] . 18

2.5 Convolutional Neural Network for NLP [3] . 20

2.6 Attention mechanism for machine translation [4] 21

2.7 Architecture of the standard Transformer [5] 23

2.8 Block Diagram of GANs [3] . 29

2.9 Block diagram of Reinforcement Learning [6] 31

2.10 Block diagram of VAE [3]. 39

2.11 Classification of ATS systems [7]. 42

2.12 Single-document or Multi-document, automatic text summariser 43

2.13 Automatic text summarisation approaches and their associated methods [7]. . 45

2.14 Framework of a QA system [8] . 55

2.15 An illustration of traditional architecture of a QA system [9]. 57

2.16 Aspects of the landscape and types of the QA systems 60

3.1 The proposed hybrid question-driven text summarisation framework. 67

3.2 The experiments for proposed question-driven extractive model 70

3.3 The experiments for proposed question-driven abstractive model 71

4.1 The overall framework of the proposed multi-hop QA system 77

4.2 Identifying the candidate answers for each question category 80

4.3 Multi-head attention structure . 82

4.4 The QE module . 85

4.5 Performance compression with the original Giveme5W1H and the CAI module 101

vii

4.6 Ex-MhopQA performance with multi-head attention and self-attention 104

5.1 The overall framework of the abstractive summarisation model (QParaSum). . 109

5.2 The illustration of the proposed GAN for paraphrasing 110

5.3 The illustration of the Next Sentence Prediction (NSP) 113

5.4 The Pointer-generator model [10]. 114

5.5 QParaSum-Abstractive performance with different question lengths 126

6.1 The online demo based on the A-MRC model 132

6.2 The online demo designed for tracking progress of the orders at Openreach. . 136

6.3 An example of the baseline’s performance for processing order’s notes. 139

6.4 An example of the baseline’s performance for processing order’s notes. 140

viii

List of Tables

1.1 Query-based and question-driven text summarisation example 4

1.2 An extractive question-driven text summarisation example from MEDIQA dataset 9

1.3 An extractive question-driven text summarisation for an order at BT 10

2.1 Comparison of recent GAN models on text generation. 37

2.2 Comparison of recent VAE models on text generation. 41

4.1 Optimal hyperparameters for closed-domain datasets 92

4.2 Performance comparison of A-MRC and baseline models for closed-domain . . 96

4.3 Performance comparison of A-MRC and baseline models for open-domain . . 98

4.4 The effect of CNN and Attention mechanism on the proposed models 99

4.5 The effect of QE component on the proposed models 100

4.6 The count of each question category for closed-domain datasets. 100

4.7 Performance comparison of the A-MRC variants for each question category . . 100

4.8 Performance comparison of Ex-MhopQA and baseline models for open-domain 103

4.9 Results on WikiHow, PubMedQA, and MEDIQA 105

5.1 Experimental results of paraphrase generation on Quora and MSCOCO datasets 121

5.2 Results of the proposed sentence fusion (PG-fusion) model 122

5.3 summarisation results on WikiHow, PubMedQA, and MEDIQA datasets. 125

5.4 An example of the generated extractive and abstractive summaries 127

6.1 An example of three consecutive engineers’ notes generated for an order . . . 133

6.2 The summary of orders’ features selected for test dataset 134

6.3 The performance comparison of the ready-to-use tools and the proposed demo 138

6.4 summarisation example from the baseline and the proposed demo 141

6.5 summarisation example from the baseline and the proposed demo 142

ix

6.6 Question Answering example from the baseline and the proposed demo . . . 143

x

Chapter 1

Introduction

1.1 History of Text Summarisation

Automatic Text summarisation, the reduction of a text to its essential content, is a very com-

plex problem that, despite the progress in the area thus far, poses many challenges to the

scientific community. Given the rapid expansion of textual material online and the require-

ment to swiftly evaluate the contents of text collections, it is also a vital application in today’s

information society [11]. In the late 1950s [12], there was a particular interest in the automa-

tion of summary for the development of abstracts of technical documentation, which attracted

the attention of the scientific community to automatic summarisation. The interest in the area

declined for a few years until Artificial Intelligence started to show interest in the topic [13].

It has long been assumed that summarisation requires comprehension of the source text,

which necessitates calculating a text’s explicit (semantic) representation to recognize its es-

sential content. Therefore, text summarisation has become an appealing application for eval-

uating the intelligence of artificial systems. Due to the complexities of the task, however,

interest in this approach to text summarisation gradually subsided, and text comprehension

developed an open area of research. In the 1990s, there was a resurgence of interest in

summarisation due to the organization of several scientific conferences [14]. This interest

peaked in the year 2000 with the introduction of evaluation programs such as the Document

Understanding Conferences (DUC) [15] and the Text Analysis Conferences (TAC) [16] in the

United States. How to identify the fundamental content of a document and how to compress

the selected content are two fundamental challenges in text summarisation [17, 13]. Text

summarisation research has focused predominantly on the output, the summary, and less on

the cognitive foundations of text comprehension and production of human summarisation. A

1

2 CHAPTER 1. INTRODUCTION

greater comprehension of the cognitive basis of the task might alleviate some of the short-

comings of existing systems. However, formalizing the content of open domain documents is

still a matter of research. Therefore, most systems are based on a selection of sentences from

the set of original documents.

Concerning the transformation of the original text content into a summary, there are two

main types of summaries: an extractive summary, which is a collection of sentences from

the input document, and an abstractive summary (i.e. an abstract), a summary in which

some of its material is not present in the input document [18]. Summaries can also be

characterized as either indicative or informative, depending on whether they are designed

to alert or inform. Early research in summarisation focused on the summarisation of single

documents (i.e. single document summarisation). However, in the modern Web environment,

several systems concentrate on the summarisation of multiple related documents (i.e. multi-

document summarisation). Most summarisation methods currently target the production of

extracts due to the challenges associated with the automatic generation of well-formed texts

in arbitrary domains. It is generally agreed that there are a variety of elements that affect

the content selection from the source document and the type of output to make [19], for

example, factors such as the audience (e.g. expert versus non-expert reader) surely impact

the information to select. Several publications and books [18, 20, 21] provide more overviews

of text summarising systems and methodologies.

Text summarisation has become necessary because of the rise in online publication, in-

ternet users, and the rapid development of electronic government (e-government). Due to

the rapid development of information and communication technologies, a huge number of

electronic documents are available online, making it difficult for users to locate pertinent

information. In addition, the Internet has made available vast amounts of text on a range

of subjects. This accounts for the redundancy in the texts available online. Users get so ex-

hausted reading a large amount of texts that they may skip reading many important and in-

teresting documents. Consequently, a comprehensive text summarisation system is necessary

for this generation. These systems may condense information from a variety of documents

into a concise, readable summary [22, 23]. Huang et al. [24] address four primary objectives:

information coverage, information importance, information redundancy, and text coherence.

Summarisation is a challenging task even for people, and many professionals in the in-

dustry write summaries as part of their job. This challenge arises from the fact that summary

involves a number of complicated Natural Language Understanding (NLU) components, in-

1.2. QUESTION-DRIVEN TEXT SUMMARISATION 3

cluding information selection, assessment, aggregation, and rearrangement, followed by in-

formation compression, generalization, and/or paraphrasing. Additionally, this must happen

at several (potentially abstract) levels, including those of sentences, paragraphs, sections,

and papers. At present time, modern summarisation systems are still far from performing

and speaking fluently as humans do. However, they might still provide useful summaries that

can be time-saving [25]. Due to the subjective nature of this task, where various summaries

might be regarded as appropriate, evaluating the quality of output summaries is a crucial

problem. Summarisation has resulted in a number of practical applications. Early examples

include the summarisation tool in Microsoft Word [26], systems that summarise voicemail

messages for users, to help them determine the priority of a call [27], as well as systems that

can provide a digest of user forums [28].

1.2 Question-driven Text Summarisation

The goal of this research is to summarise the source document with respect to a specific

question. Distilling question-relevant information from a text document reduces reading time

and accelerates the process of research about a specific question. A question-driven sum-

mary needs to satisfy three goals, answerability, understandability, and persuasiveness. The

question-driven summary constitutes one answer sentence and reasoning sentences. The

answer sentence indicates the answer to the question (answerability) and the reasoning sen-

tences provide more information about the detected answer and the question to make the

summary more understandable and persuasive for the reader. The answer sentence will be

justified and explained by the reasoning sentences (understandability and persuasiveness).

There have been several attempts, in recent years, to develop methods for question-driven

automatic text summarisation [29, 30, 31, 32, 33]. A summary based on a question is sup-

posed to contain a reliable answer for that question and some further details that justify and

explain the answer, which is the key challenge in this work. Query-based document summar-

isation aims to produce a compact and fluent summary of a given document that answers or is

relevant to the search query that leads to the document [34]. An example of query-based and

question-based text summarisation is provided in Table 1.1, the bold text shows the relevant

text to the proposed query and question and the gold summary is the abstractive summary

generated by humans. As it is shown in this example the query-based summary has summar-

ised the text given the query “foods for lower blood sugar”, it contains all the information

4 CHAPTER 1. INTRODUCTION

Table 1.1: Query-based and question-driven text summarisation example
Text: ... According to Powers, your eating plan should focus on the type and amount of

carbohydrates you eat throughout the day. Choose low-carb vegetables such as mushrooms,

onions, eggplant, tomatoes, Brussels sprouts, and zucchini, as well as low-carb squashes.

To add flavor and texture to a meal, serve them with low-fat souces, hummus, guacamole,

and salsa, or roasted with herbs and spices like rosemary, cayenne pepper, and garlic. Sweet

potatoes, when combined with other meals, can successfully slow food digestion, increase

satiety, and moderate blood sugar swings. Thus, individuals who are hyperglycemic can have

some sweet potatoes, which will not only not elevate blood sugar but will also aid in blood

sugar control. . . .

Query: foods for lower blood sugar

Query-based Gold Summary: The amount and type of carbs you put in your diet throughout

the day should be seriously considered. Low-carb and tasty veggies, like mushrooms, onions,

eggplant, tomatoes, Brussels sprouts, and low-carb squashes, like zucchini with dips such as low-fat

dressings, hummus, guacamole, and salsa, or roasted with different seasonings such as rosemary,

cayenne pepper, or garlic could be included to the meal for better flavor and texture. Sweet

potatoes can help to slow down food digestion, increase satiety, and stabilise blood sugar levels

which not only do not raise blood sugar but also help to control blood sugar.

Question: How sweet potatoes helps people with hyperglycemic?

Question-driven Gold Summary: Sweet potatoes can help to slow down food digestion, increase

satiety, and stabilise blood sugar levels. As a result, persons with hyperglycemia can eat sweet

potatoes, which not only do not raise blood sugar but also help to control blood sugar.

about the diet for hyperglycemic people, but the question-driven summary is shorter and only

contains specific information, the answer and its explanation, to the question.

Table 1.1 shows an example of query-based and question-driven summaries. Many related

studies focus on query-based summarisation to summarise the query-related content from the

source document [35, 36, 37, 38] . However, these approaches are not suitable for tackling

question-driven summarisation problems in Question Answering (QA) scenarios, whereas the

query-based summarisation process is commonly based on semantic relevance measurement

but for question-driven summarisation, answer detection and the reasoning on the document

regarding the detected answer is needed as it is shown in Table 1.1.

Currently, question-driven text summarisation and answer summarisation are ineffective

due to using recurrent neural networks and perform weakly in answerability and persuasive-

ness. Recurrent neural networks have a number of disadvantages that narrows their ability

to solve more complex problems (e.g. Question-driven text summarization). Vanishing and

exploding gradients, slow training, limited memory, and high data dependency are the draw-

backs in recurrent neural networks causing deficiency in the performance for variant Natural

Language Processing (NLP) tasks.

Besides, compared to extractive summarisation, the content generated by abstractive

1.3. APPLICATIONS FOR INDUSTRY 5

methods often suffers issues such as poor readability, data redundancy, and large semantic

deviations from the source. Most of the recent abstractive summarisation models are based

on sequence-to-sequence (seq2seq) neural networks [39, 40, 41, 42, 43, 44]. They are made

up of encoders to understand input sequence and decoders to generate output sequence.

How- ever, there are four key problems with using seq2seq neural networks to generate

reasonable text: (1) out-of-vocabulary (OOV) problem (2) generating a particular word or

phrase repeatedly which brings in redundancies, (3) exposure bias at test time, and (4) non-

optimized learning for evaluation metrics used by models in fields such as text summarisation

and machine translation. As a result, they cannot generate appropriate abstractive summaries

since they cannot convey the semantics of the document [45, 46]. Abstractive summarisation

needs advanced natural language techniques for interpreting and understanding the text to

reproduce the important material in a new way. While the extractive summaries may contain

repeated words, a high frequency of certain words, and redundancy in some sentences [7].

1.3 Applications for Industry

We are currently witnessing an exponential increase of data that emanates from varied sources

such as different types of records in companies. It is very challenging to process this sparse,

noisy, and domain-specific data. For instance, BT, a technology company in the UK and the

Ph.D. project sponsor, has a significant workforce of field engineers, desk-based agents, and

customer support services who generate, collect and manage large volumes of temporally or-

ganized unstructured and semi-structured information every day. The problem that they face

is tracking the progress of the order and finding out about the problems causing delays.

BT require computational models that could effectively and efficiently distill relevant in-

formation for the technical and non-technical users at BT from various technical order record

documents which are very noisy and follow no structural pattern. To this end, what would

be useful is to automatically summarise and derive meaningful information in the form of

answers to questions from this vast source of distributed occurring data.

The information about orders at BT is in structured and free text format which is captured

by and stored in different internal systems. These are being used by teams handling the

orders. This volume of text about orders is an invaluable source of information that needs to

be summarised in a way containing the information most relevant to:

• Why is the order not complete?

6 CHAPTER 1. INTRODUCTION

• What does the order require?

• Where has the order been passed to?

It will help the desk agents to have a clear picture of the latest status of the order journey

at the point in time t, instead of checking the order information from several places for the

time that a customer calls in to find out about the progress of their order. In other words,

generating summaries at the point in time t would help humans comprehend the text content

effectively and efficiently. BT orders are structured in such a way that there is an update at

regular intervals of time. These updates are required to be input to the summariser as data

over time.

The current question-driven text summarisation approaches utilized WikiHow [47], PubMedQA

[48], and MEDIQA [49] which include a question, an article, and an abstractive answer which

summarises the context corresponding to the question. Only one question and a plain text

document are the inputs to the summarisation system and there is no timestamped attribute

or data over time. Here, an example for BT (Table 1.3) and MEDIQA (Table 1.2) inputs and

the desired summaries are provided.

The different nature of BT orders’ text (notes) and public dataset, lack of training data-

set and gold summaries for BT orders require a model that could be fine-tuned with small

training datasets. Also, the nonexistence of the gold summaries causes the evaluation to be

challenging for the BT domain since a human evaluation method should be proposed for the

generated orders’ progress summaries.

The progress summaries for BT orders should address three questions despite the public

question-driven text summarisation that is based on only one question. Recognizing the Date-

Time attribute in BT orders text documents and finding the appropriate piece of text based on

its DateTime attribute is another challenge for the BT domain which does not exist in public

datasets. For the BT domain, the recent text pieces (regarding their date-time) have priority

over the older text pieces for generating the question-driven text summarisation.

1.4 Thesis Contribution

To overcome the problems and challenges mentioned in the section 1.1 above and obtain a

reliable summary of the text document, a novel two-stage, hybrid extractive and abstractive

summarisation approach has been proposed which combines the advantages of the two meth-

ods. Firstly, the extractive model selects the answer sentence and its supporting sentences,

1.4. THESIS CONTRIBUTION 7

which provide details or explanations for the answer sentence. After obtaining the question-

driven extractive summary, a novel abstractive model transforms the extractive summary into

an abstractive summary. The advantage of doing this is that the extractive phase helps reduce

the amount of redundant information from the data, which helps improve the effectiveness

of the abstractive summariser. A multi-hop QA system based on a Machine Reading Compre-

hension (MRC) model and a reasoning process has been proposed for selecting the answer

sentence and supporting sentences to construct the question-driven extractive summary. The

abstractive model consumes the generated extractive summary and transforms it into an ab-

stractive by utilizing a novel paraphraser model and sentence fusion mechanism. In this work,

a question-driven abstractive summarisation model is proposed and described in detail, and

its main contributions can be summarised as follows:

1. Extractive: A novel multi-hop QA system comprising a hierarchical CNN attention net-

work MRC model and a reasoning process for generating the question-driven extractive

summary.

• The CNN-multi-head attention model captures the relevance between the question

and context sentences at different levels of granularity.

• A candidate answer identifier module and a question expansion modules are com-

plementary components in the MRC model, designed for selecting question-relevant

sentences and question rewriting, respectively.

• The proposed MRC model is compared against state-of-the-art comparative meth-

ods for closed-domains and open-domain QA and MRC tasks.

• A novel reasoning approach is proposed for analysing the document regarding the

detected answer sentence and searching for relevant supporting sentences.

2. Abstractive: A novel paraphrase framework based on GANs, Q-learning, and trans-

formers is proposed to rewrite the generated extractive summary from the previous

stage and then a sentence fusion mechanism is proposed for fusing relevant sentences

and generating an abstractive summary.

• The paraphrase generation model is designed based on transformers architectures

with GAN and Q-stepwise evaluation to regenerate the extractive summary.

• A sentence fusion mechanism is developed based on the next sentence prediction

and the Pointer Generator (PG) network to produce shorter high-quality abstract-

ive summaries.

8 CHAPTER 1. INTRODUCTION

• The next sentence prediction is utilised for detecting the sentence pairs (relevant

sentences) and singletons to be consumed by the PG network.

• The PG network gets a sentence pair and generates a fused sentence.

• After fusing the sentence pairs, the singletons and fused sentences construct the

question-driven abstractive summary.

1.5 Research Questions

The overall research questions of this thesis include:

1. What steps are humans taking for question-driven text summarisation, and what is an

effective way to simulate these steps?

2. How proposing a hybrid extractive and abstractive approach could assist with the effi-

cient automatic generation of question-driven extractive and abstractive summaries?

3. What strategies and techniques can be utilized for transforming extractive summaries

into abstractive in order to reduce the complexity in abstractive summarisation?

4. How will the training procedure’s design affect the summarisation model’s adaptability

to different domains ?

5. How to effectively track the progress of orders at BT with a question-driven text sum-

marization approach?

1.5. RESEARCH QUESTIONS 9

Table 1.2: An extractive question-driven text summarisation example from MEDIQA dataset.
Text: Peppermint Oil Background: The herb peppermint, a natural cross between two types of

mint (water mint and spearmint), grows throughout Europe and North America. Both pepper-

mint leaves and the essential oil from peppermint have been used for health purposes. (Essential

oils are very concentrated oils containing substances that give a plant its characteristic odor or

flavor.) Peppermint is a common flavoring agent in foods, and peppermint oil is used to create

a pleasant fragrance in soaps and cosmetics.Mint has been used for health purposes for several

thousand years. It is mentioned in records from ancient Greece, Rome, and Egypt. However, pep-

permint was not recognized as a distinct kind of mint until the 1700s.Today, peppermint is used as

a dietary supplement for irritable bowel syndrome (IBS), other digestive problems, the common

cold, headaches, and other conditions. Peppermint oil is also used topically (applied to the skin)

for headache, muscle aches, itching, and other problems. Peppermint leaf is available in teas,

capsules, and as a liquid extract. Peppermint oil is available as liquid solutions and in capsules,

including enteric-coated capsules. How Much Do We Know? A small amount of research has been

conducted on peppermint oil, primarily focusing on IBS. Very little research has been done on pep-

permint leaf. What Have We Learned? Peppermint oil has been studied most extensively for IBS.

Results from several studies indicate that peppermint oil in enteric-coated capsules may improve

IBS symptoms.A few studies have indicated that peppermint oil, in combination with caraway oil,

may help relieve indigestion, but this evidence is preliminary and the product that was tested is

not available in the United States.Peppermint oil has been used topically for tension headaches

and a limited amount of evidence suggests that it might be helpful for this purpose.There’s not

enough evidence to allow any conclusions to be reached about whether peppermint oil is helpful

for nausea, the common cold, or other conditions.There’s not enough evidence to show whether

peppermint leaf is helpful for any condition. What Do We Know About Safety? Peppermint oil

appears to be safe when taken orally (by mouth) in the doses commonly used. Excessive doses of

peppermint oil can be toxic.Possible side effects of peppermint oil include allergic reactions and

heartburn. Capsules containing peppermint oil are often enteric-coated to reduce the likelihood

of heartburn. If enteric-coated peppermint oil capsules are taken at the same time as antacids,

the coating can break down too quickly. Like other essential oils, peppermint oil is highly concen-

trated. When the undiluted essential oil is used for health purposes, only a few drops are used.

Side effects of applying peppermint oil to the skin can include skin rashes and irritation. Pepper-

mint oil should not be applied to the face or chest of infants or young children because serious

side effects may occur if they inhale the menthol in the oil.No harmful effects of peppermint leaf

tea have been reported. However, the long-term safety of consuming large amounts of peppermint

leaf is unknown.

Question: Is it safe to add peppermint essential oil in mouth wash?

Question-driven Extractive Summary: Peppermint oil appears to be safe when taken orally (by

mouth) in the doses commonly used. Excessive doses of peppermint oil can be toxic. Possible side

effects of peppermint oil include allergic reactions and heartburn. Capsules containing peppermint

oil are often enteric-coated to reduce the likelihood of heartburn. If enteric-coated peppermint oil

capsules are taken at the same time as antacids, the coating can break down too quickly. Like other

essential oils, peppermint oil is highly concentrated. When the undiluted essential oil is used for

health purposes, only a few drops are used. Side effects of applying peppermint oil to the skin

can include skin rashes and irritation. Peppermint oil should not be applied to the face or chest of

infants or young children because serious side effects may occur if they inhale the menthol in the

oil. No harmful effects of peppermint leaf tea have been reported. However, the long-term safety

of consuming large amounts of peppermint leaf is unknown.

10 CHAPTER 1. INTRODUCTION

Table 1.3: An extractive question-driven text summarisation for an order at BT
Text: 03/10/2019 13:07:00 - <A-Name> Complex planner required. No plant to unit 9a. Nearest

useable DP is approx 120m away.

21/10/2019 11:12:00 - <B-Name> I cannot complete this task because the end customer or their

representative is unaware of the order. Please see additional information On side representative

unaware of order. Premises already has 2 working lines and tagged D side in PCP. Business owner

not present away on holiday. Cp to contact customer next week to see if they want this line.

06/11/2019 16:00:00 - <C-Name> I cannot complete this task because I donot have the skills

required to complete the task and could not obtain assistance on the day. I am passing to an

engineer with track and locate equipment to complete the order. Please see additional information

EU’s property has a buried lead in. No sign of BT socket or a POI in the property. Passing to TandL

to trace lead in.

Questions:Why is the order not complete?, What does the order require?, Where has the order

been passed to?

Question-driven Extractive Summary: The update that our engineer <C-Name> has reported on

06/11/2019 16:00:00 about your order:

I can not complete this task because I donot have the skills required to complete the task and could

not obtain assistance on the day .

I am passing to an engineer with track and locate equipment to complete the order .

planner required . [03/10/2019 13:07:00]

Please Continue to review fault tracker for further updates.

1.6. PUBLICATIONS AND PRESENTATIONS 11

1.6 Publications and Presentations

• “Text summarisation of Customer Order Journey Data” has been presented in Tommy

Flowers Network 2020, a poster indicating a brief overview of this Ph.D. project from

BT’s perspective.

• “Automated Multi-document Text summarisation from Heterogeneous Data Sources” is

published at ECIR 2021 (doctoral consortium), presenting the Ph.D. proposal.

• “Adaptable Closed-Domain Question Answering Using Contextualized CNN-Attention

Models and Question Expansion” is one of the published papers based on the proposed

approach. In this paper, the novel versatile reading comprehension style approach for

closed-domain QA is presented, which is thoroughly described in chapter 4. Paper Link

DOI: 10.1109/ACCESS.2022.3170466

• “Question-Driven Text summarisation Using an Extractive-Abstractive Framework” is

under review in the Computational Intelligence journal. This paper presented the ex-

tractive stage (chapter 4) and paraphrase generation (section 5.2.1) for question-driven

text summarisation.

• The online demo described in chapter 6 is presented to the Openreach people and

deploying team. The evaluation procedure has been discussed and agreed upon, and

now the demo is in the deployment procedure.

• “Using NLP to understand complex technical notes - a telecoms case study” is presented

in AI-2022 Forty-second SGAI International Conference on Artificial Intelligence Cam-

bridge Workshops, England 13-15 December 2022. This speech was based on chapter

6.

https://ieeexplore.ieee.org/document/9762943
10.1109/ACCESS.2022.3170466

Chapter 2

Background and Literature Review

This chapter begins by introducing relevant background concepts in NLP and deep learning.

Following that, the text generation, automatic text summarisation, and Question Answer-

ing related works and approaches and their strengths and weaknesses are presented. In

order to propose an efficient approach for question-driven text summarisation, analysing the

drawbacks of the existing text summarisation and Question Answering approaches could be

beneficial which is discussed in this chapter and chapter 3.

2.1 Neural Networks

An artificial neural network (ANN) is a paradigm for information processing that takes its

principles by how information is processed by biological nervous systems, such as the brain.

Multiple layers of basic processing units known as neurons comprise an ANN. The neuron car-

ries out two tasks: collecting inputs and producing output. The application of ANN provides

an overview of the theory, learning rules, and applications of the most prominent neural

network models, definitions, and computational styles [50].

2.1.1 Recurrent Neural Networks (RNNs)

The design of RNN encoder-decoders is based on the sequence-to-sequence paradigm. The

sequence-to-sequence model translates the input sequence to a similar sequence of charac-

ters, words, or phrases in the neural network. Several NLP applications, such as machine

translation and text summarisation, employ this approach. As indicated in Figure 2.1, the

input sequence for text summarisation is the document to be summarised, and the output

12

2.1. NEURAL NETWORKS 13

Figure 2.1: Sequence-to-sequence; the last hidden state of the encoder is fed as input to the

decoder with the symbol EOS.

sequence is the summary [51, 52]. An RNN is a deep learning model used to sequentially

process data in which the input of one state is dependent on the output of the previous state

[53, 54]. For instance, the meaning of a word in a phrase is tightly tied to the meaning

of the preceding words. An RNN comprises a set of hidden states that the neural network

has learned. An RNN may be composed of several layers of hidden states, where the states

and levels acquire distinct features. The final state of each layer indicates the layer’s total

inputs since it aggregates the values of all preceding stages [1]. For instance, the first layer

and its state can be used for part-of-speech tagging, whilst the second layer learns to con-

struct phrases. In text summarisation, the RNN’s input is the embedding of words, phrases,

or sentences, and its output is the embedding of the summary’s words [1].

At specific hidden states on the encoder side of the RNN encoder-decoder model, the

vector representation of the current input word and the output of all previous hidden states

are merged and sent to the next hidden state. As seen in Figure 2.1, the vector representation

of the word W3 and the outputs of the hidden states he1 and he2 are merged and provided as

input to the hidden state he3. After all the words of the input string have been supplied to the

encoder, the output created from the final hidden state of the encoder is fed to the decoder

as a vector known as the context vector [51]. In addition to the context vector, which is

sent to the decoder’s initial hidden state, the start-of-sequence symbol <SOS> is provided to

construct the first word of the summary from the headline (assume W5, as shown in Figure

2.1). In this instance, W5 is given to the following decoder hidden state as its input. Each

created word is supplied as an input to the next decoder’s hidden state in order to generate

the subsequent summary word. The final produced word is the sequence-ending symbol

14 CHAPTER 2. Background and Literature Review

<EOS>. Each output from the decoder will be transformed into a distributed representation

prior to being delivered to the softmax layer and attention mechanism [51] to build the next

summary.

2.1.2 Bidirectional RNN

Bidirectional RNN comprises of both forward and backward RNNs. After reading the input se-

quence from left to right, forward RNNs create a list of hidden states. After reading the input

sequence from right to left, however, backward RNNs create a sequence of hidden states. The

input sequence is represented by concatenating the forward and backward RNNs [55]. There-

fore, the representation of each word is contingent upon the representation of the preceding

(past) and subsequent (future) words. In this instance, the context will consist of the words

to the left and right of the current word [56]. Using a bidirectional RNN boosts performance

[57]. For example, for the following input text “Sara ate a delicious pizza at dinner tonight”

in this case, assume that the goal is to predict the representation of the word “dinner”, us-

ing bidirectional RNN and the forward neural network represent “Sara ate a delicious pizza

at” while the backward neural network represents “tonight”. Considering the word “tonight”

when representing the word “dinner” provides better results. Using the bidirectional RNN at

the decoder size, on the other hand, reduces the likelihood of an incorrect prediction. This

is because the unidirectional RNN only analyses the prior prediction and only considers the

past when reasoning. Therefore, if there is a mistake in a prior forecast, the error will accrue

in all subsequent predictions, and the bidirectional RNN [58] can tackle this issue.

2.1.3 Gated Recurrent Neural Networks

Gated RNNs are used to alleviate the problem of vanishing gradients that arises while train-

ing an RNN on a long sequence. This problem may be addressed by allowing the gradients to

back-propagate along a linear path with weighted and biased gates. Controlling and modi-

fying the amount of information that passes between hidden states is a function of gates.

During training, the gate weights and biases are modified. The most prevalent gated RNNs

are Long Short-Term Memory (LSTM) [59] and Gated Recurrent Unit (GRU) [60], both of

which are RNN variations.

2.1. NEURAL NETWORKS 15

Figure 2.2: LSTM unit architecture [1]

LSTM

The LSTM architecture’s repeating unit consists of input/read, memory/update, forget, and

output gates [1, 58], although the chaining structure is identical to that of an RNN. Due to

the fact that the four gates communicate information with one another, information can flow

in loops for an extended length of time. The four gates of each LSTM unit are depicted in

Figures 2.2 and 2.3.

• Input Gate: In the first timestep, the input is a vector that is initialised at random, but

in following steps, the input is the current step’s output (memory cell content). In all

circumstances, the input is multiplied element-by-element with the output of the forget

gate. The result of the multiplication is added to the current output of the memory gate.

• Forget Gate: A forget gate is a single-layer neural network with a sigmoid activation

function. The value of the sigmoid function determines whether the previous state’s

information should be forgotten or remembered. If the sigmoid value is 1, the prior

state will be remembered, but if it is 0, it will be forgotten. In language modelling, for

instance, the forget gate remembers the subject’s gender to output the correct pronouns

until it encounters a new subject. The forget gate accepts four inputs: the output of the

previous block, the input vector, the information remembered from the previous block,

and the bias.

16 CHAPTER 2. Background and Literature Review

Figure 2.3: LSTM unit gates [1]: (a) input gate; (b) forget gate; (c) memory gate; (d) output

gate.

2.1. NEURAL NETWORKS 17

• Memory Gate: Memory gate regulates the impact of remembered information on the

new information. There are two neural networks within the memory gate. The first net-

work has the same structure as the forget gate but a different bias, whereas the second

neural network with a tanh activation function is used to produce new information.

The new information is created by combining the old information with the result of

element-wise multiplication of the output of the two memory gate neural networks.

• Output Gate: The output gates determine amount of new information passed to the

subsequent LSTM unit. As inputs, the output gate is a neural network with a sigmoid

activation function that takes into account the input vector, the prior hidden state, the

incoming information, and the bias. The output of the current block is the product of

the output of the sigmoid function multiplied by the tanh of the new information.

The formulations for The LSTM units input gate, forget gate, memory gate, and output gate

are as follow. The hidden state ht given input x′t at time t is computed as follows:

it = σ
(
Wi

[
x′t, ht−1

]
+ bi

)
(2.1)

ft = σ
(
Wf

[
x′t, ht−1

]
+ bf

)
(2.2)

C̃t = tanh
(
Wc

[
x′t, ht−1

]
+ bc

)
(2.3)

Ct = it ∗ C̃t + ft ∗ Ct−1 (2.4)

Ot = σ
(
Wo

[
x′t, ht−1

]
+ b0

)
(2.5)

ht = Ot ∗ tanh (Ct) (2.6)

Among them, ft ; it ; Ot are states of forget gate, input gate and output gate at time t;

respectively. Wf ;Wi; Wo and Wc are weight matrices corresponding to each components,

and bf ; bi; bo and bc are bias vectors corresponding to each components. C̃t is candidate

state value at time t of memory cell and is calculated by tanh function. Ct is memory cell

state at time t. σ is sigmoid function. For BiLSTM, the hidden layer outputs h⃗t and
←−
ht of

forward LSTM unit and backward LSTM unit are calculated by formulas above. Then h⃗t and
←−
ht are spliced together to get hidden layer output ht of BiLSTM at time t. The splicing formula

is shown below:

ht =
[
h⃗t,
←−
ht

]
(2.7)

Finally, the output of BiLSTM is h = {h1, h2, . . . , hn}.

18 CHAPTER 2. Background and Literature Review

Figure 2.4: The diagram of a GRU cell [2]

GRU

A GRU is an LSTM with only two gates, a reset gate and an update gate, and without explicit

memory (Figure 2.4). When all the reset gate elements approach zero, the prior hidden

state information is discarded and only the input vector influences the candidate hidden

state. In this instance, the update gate also serves as the forget gate. LSTM and GRU are

frequently used for abstractive summarisation because LSTM contains a memory unit that

gives additional control; nevertheless, the calculation time of the GRU is decreased [61]. In

addition, whereas LSTM parameters are easier to modify, GRU requires less training time

[52].

2.1.4 CNN

CNNs are one of the most used computer vision methods. These were the driving forces

behind picture categorization and the majority of computer vision systems [62], from Face-

book’s automatic photo tagging to autonomous vehicles. Recent research on CNNs used for

NLP tasks has shown intriguing outcomes [63]. CNN comprises of a convolutional layer and

a pooling layer for text processing that captures significant features. Convolution is the cent-

ral layer of CNN which is made up of a set of convolution kernels (filters). For convolution

2.1. NEURAL NETWORKS 19

computation, the convolution kernel and the local window of input data are employed.

ci = f (F · hi:i+l−1 + b) (2.8)

Among them, F represents convolution kernel. F ∈ Rl×d′; where l is height of convolution

kernel, d′ is width of convolution kernel, and its size is output feature dimension of BiLSTM

unit. b represents bias parameter, f is RELU nonlinear function, hi:i+l−1 represents BiLSTM

hidden layer output vector from i to i + l − 1; . is convolution operation, and ci is result

of convolution calculation. The convolution window slides down with step size of 1 to ob-

tain local feature vector C = (C1, C2, . . . , Cn−l+1). Multiple convolution kernels are used to

perform convolution operations, the number is N ; so N local feature vectors are obtained.

Pooling layer’s goal is to sample the output of convolution, lower the size of the convolution

vector, and prevent overfitting. Maximum pooling and average pooling are two types of the

pooling method which maintain the key information of text. All sampled feature values are

combined into M = (M1,M2, . . . ,MN) as output of the CNN.

Mi = max (Ci) (2.9)

In contrast to computer vision problems, where image pixels are used as input, NLP tasks

employ phrases, words, or often characters, depending on the classification of the problem.

Therefore, each row is a vector representing a word. Typically, word embeddings or one-

hot vectors are used to index a word inside a vocabulary. For 10 sentences utilising 100-

dimensional embedding, the input matrix will be 10 * 100. In computer vision, filters pass

over limited regions of an image; in NLP, filters pass over a whole column of words (matrix).

The width of the input matrix and the width of the filters are same. As an example in Figure

2.5, CNNs are used to classify sentences, which illustrates how CNNs are applied to text. Each

of the three filter regions, which are numbered 2, 3, and 4, has two filters. After performing

the convolution operation on the sentence matrix and obtaining variable-length feature maps,

the max-pooling algorithm is applied to each map, producing the largest number from each

feature map. From these six maps, univariate feature vectors are formed, which are then

concatenated to form a single feature vector for the penultimate layer. Finally, the softmax

layer gets this feature vector as an input, and then sentences are classified, assuming a binary

classification with two potential outputs [64].

20 CHAPTER 2. Background and Literature Review

Figure 2.5: Convolutional Neural Network for NLP [3]

2.1. NEURAL NETWORKS 21

Figure 2.6: Attention mechanism for machine translation [4]

2.1.5 Attention Mechanism

Before being used for NLP applications such as text summarisation [65], the attention mech-

anism [55] was applied for neural machine translation. Figure 2.6 shows an example of how

Attention works in a translation task. The sentence “How was your day” is here to be trans-

lated to the French version - “Comment se passe ta journée”. What the Attention component

of the network will do for each word in the output sentence is map the important and relev-

ant words from the input sentence and assign higher weights to these words, enhancing the

accuracy of the output prediction.

Attention is a mechanism that helps the network remember certain aspects of the input

better, including names and numbers. The attention mechanism is used when outputting each

word in the decoder. For each output word, the attention mechanism computes a weight over

each of the input words that determines how much attention should be paid to that input

word. The weights sum up to 1, and are used to compute a weighted average of the last

hidden layers generated after processing each of the input words. This weighted average,

referred to as the context, is then input into the softmax layer along with the last hidden

layer from the current step of the decoding [51].

22 CHAPTER 2. Background and Literature Review

2.1.6 Transformers

Transformers are multilayered structures comprised of Transformer blocks stacked above one

another. Transformer blocks are distinguished by a system for multi-head self-attention, a

position-wise feed-forward network, layer normalisation [66] modules, and residual connec-

tions. Typically, the input to the Transformer model is a tensor with the form RB × RN ,

where B is the batch size and N is the sequence length. The input initially traverses an

embedding layer that transforms each one-hot token representation into a dmodel dimen-

sional embedding, i.e. RB ×RN ×Rdmodel . The resulting tensor is then constructed additively

using positional encodings and fed through a module with multiple headed self-attention.

Positional encodings can be sinusoidal inputs (as described in [67]) or trainable embeddings.

Multi-headed self-attention module inputs and outputs are connected by residual connections

and a layer normalising layer. The output of the multi-headed self-attention module is then

forwarded to a two-layered feed-forward network with similarly linked inputs/outputs and

layer normalisation. The expression for sub-layer residual connections with layer norm is:

X = LayerNorm (FS(X)) +X (2.10)

where FS is the sub-layer module which is either the multi-headed self-attention or the

position-wise feed-forward layers.

Multi-Head Self-Attention

The Transformer model employs a mechanism for multi-headed self-attention. The key concept

underlying the method is that each token in the series will learn to collect information from

other tokens in the sequence. The procedure for a single head is defined as follows:

Ah = Softmax
(
αQhK

⊤
h

)
Vh (2.11)

where X is a matrix in RN×d, α is a scaling factor commonly set to 1√
d
. NH is the number

of heads, and Wq,Wk,Wv ∈ Rd× d
H are the weight matrices (parameters) for the query, key,

and value projections that project the input X to an output tensor of d dimensions. Softmax

is implemented row-by-row. The outputs of the heads A1 · · · AH are concatenated and sent

to a dense layer. Thus, the output Y may be represented as Y = Wo [A1 · · ·AH], where

Wo is a linear projection of the output. Note that A is often computed in parallel by taking

into account tensors of RB × RN × RH × R
d
H and performing the linear transforms for all

heads in parallel. It is the responsibility of the attention matrix A = QK⊤ to learn alignment

2.1. NEURAL NETWORKS 23

Figure 2.7: Architecture of the standard Transformer [5]

scores between tokens in the sequence. In this formulation, the dot product is calculated

between each element/token in the query (Q) and the key (K). This promotes the process of

self-alignment in self-attention through which tokens learn to gather from one another.

Position-wise Feed-forward Layers

The outputs of the self-attention module are then fed into a two-layered feed-forward network

including ReLU activations. This feed-forward layer acts independently on each position. The

expression is as follows:

F2 (ReLU (F1 (XA))) (2.12)

where F1 and F2 are feed-forward functions of the form Wx + b.

Puting it all together

Each Transformer block can be expressed as:

XA = LayerNorm (MultiheadAttention (X,X)) +X

XB = LayerNorm (PositionFFN (XA)) +XA

(2.13)

24 CHAPTER 2. Background and Literature Review

where X represents the input to the Transformer block and XB represents its output. Note

that the MultiheadAttention() method receives two tensors as arguments, one for the query

and one for the key-values. This is the MultiheadSelfAttention method if the first and second

arguments represent the same input tensor.

Transformer Mode

The variations in how the Transformer blocks are utilised should be taken into considera-

tion. There are three main applications for transformers: (1) encoder-only (for classification,

for example), (2) decoder-only (for language modelling), and (3) encoder-decoder (e.g. for

machine translation). There are often many multi-headed self-attention modules in encoder-

decoder mode, including a conventional self-attention in both the encoder and the decoder

and an encoder-decoder cross-attention that enables the decoder to use information from the

encoder. This affects how the self-attention mechanism is created. There is no requirement

or limitation in the encoder mode that the self-attention mechanism is causal, i.e. entirely re-

liant on the current and past tokens. Since each auto-regressive decoding step in an encoder-

decoder system may only depend on prior tokens, the self-attention employed in the decoder

(i.e. across decoding positions) must be causal. In contrast, the self-attention used in the

encoder need not be causal. For many effective self-attention systems, meeting this condi-

tion might be difficult. A Transformer model’s manner of use often relies on the intended

application. Encoder-Decoder architectures like T5 have been used for classification in recent

research [68]. Generation generally employs decoder-only models that are trained with a lan-

guage modelling purpose (of predicting the next token). Due to the nature of the loss, these

models are frequently more advantageous for open-ended generation [69]. A causal decoder-

only model and an upper triangular mask are required to prevent tokens from peering into

the future.

2.2 Text Embeddings

Modern natural language processing systems typically employ distributional word representa-

tions learned in an unsupervised manner on large-scale corpora [70, 71, 72]. However, these

approaches only obtain a single global representation for each word, ignoring their context.

Contextual embeddings differ from conventional word representations in that each token is

connected with a representation that is a function of the complete input sequence which goes

2.2. TEXT EMBEDDINGS 25

beyond word-level semantics. These context-dependent representations can capture many

syntactic and semantic properties of words under diverse linguistic contexts. Previous works

[73, 74, 68, 75] have shown that contextual embeddings pre-trained on large-scale unlabeled

corpora achieve state-of-the-art performance on a wide range of natural language processing

tasks, such as text classification, question answering, and text summarisation. Further ana-

lyses [76, 77, 78] demonstrate that contextual embeddings are capable of learning useful and

transferable representations across languages.

Pre-training contextual embeddings can be divided into either unsupervised methods (e.g.

language modeling and its variants) or supervised methods (e.g. machine translation and nat-

ural language inference). In this section, only unsupervised methods are described. Language

modeling is the standard method for learning distributed token embeddings. A probability

distribution over a list of tokens is a language model. The probability of a sequence of N

tokens, t1, t2, ..., tN , is factorised by a language model as follows:

p (t1, t2, . . . , tN) =

N∏
i=1

p (ti | t1, t2, . . . , ti−1) (2.14)

Maximum likelihood estimation (MLE), which is often penalised with regularisation terms,

is used in language modelling to estimate model parameters. A left-to-right language model

estimates the conditional probability by taking into consideration the left context of ti, which

includes t1, t2, ..., ti−1. Large unlabeled datasets are typically used to train language models.

The conditional probabilities are most commonly learned using neural networks, and the

learned representations have been proven to be transferable to downstream natural language

understanding tasks [79, 80].

2.2.1 ELMO

In order to generalise conventional word embeddings, the ELMo model [81] extracts context-

dependent representations from a bidirectional language model. The left and right contexts

are encoded using a forward L-layer LSTM and a backward L-layer LSTM, respectively. The

contextualised representations are the left-to-right and right-to-left representations concaten-

ated at each layer j to provide N hidden representations (h1,j , h2,j , ..., hN,j) for a sequence of

length N . To use ELMo in downstream tasks, the (L+1)-layer representations modeling the

global word embedding) for each token k are aggregated as:

ELMOtask
k = γtask

L∑
j=0

stask
j hk,j (2.15)

26 CHAPTER 2. Background and Literature Review

where stask are layer-wise weights normalized by the softmax used to linearly combine the

(L+1)-layer representations of the token k and γtask is a task-specific constant. Given a pre-

trained ELMo, it is straightforward to incorporate it into a task-specific architecture for im-

proving performance. As most supervised models use global word representations xk in their

lowest layers, these representations can be concatenated with their corresponding context-

dependent representations ELMOtask
K , obtaining [xk;ELMOtask

K], before feeding them to

higher layers. The effectiveness of ELMo is evaluated on six NLP problems, including ques-

tion answering, textual entailment and sentiment analysis.

2.2.2 GPT

The two-stage learning approach used by GPT [82] consists of (a) unsupervised pre-training

with a language modelling objective and (b) supervised fine-tuning. Learning universal rep-

resentations that are applicable to a variety of downstream tasks is the purpose. To this end,

GPT trains the language model using the BookCorpus dataset [83], which includes more than

7,000 books from a variety of genres. The language model is implemented using the Trans-

former architecture [67], which has been shown that performs better for capturing global

dependencies from the inputs than its alternatives in a variety of sequence learning tasks,

including machine translation and document generation. During fine-tuning, GPT applies

task-specific input adaptations driven by traversal-style techniques to inputs with multiple

sequences [84].

2.2.3 BERT

ELMo concatenates representations from the forward and backward LSTMs without consider-

ing the interactions between the left and right contexts. GPT [82] uses a left-to-right decoder,

where every token can only attend to its left context. These architectures are sub-optimal

for sentence-level tasks, e.g. named entity recognition and sentiment analysis, as it is crucial

to incorporate contexts from both directions. BERT proposes a masked language modeling

(MLM) objective, where some of the tokens of an input sequence are randomly masked, and

the objective is to predict these masked positions taking the corrupted sequence as input.

BERT applies a Transformer encoder to attend to bi-directional contexts during pre-training.

In addition, BERT uses a next-sentence-prediction (NSP) objective. Given two input sen-

tences, NSP predicts whether the second sentence is the actual next sentence of the first sen-

tence. The NSP objective aims to improve the tasks, such as question answering and natural

2.2. TEXT EMBEDDINGS 27

language inference, which require reasoning over sentence pairs.

2.2.4 BERT Variants

Recent work further studies and improves the objective and architecture of BERT. Instead of

randomly masking tokens, ERNIE [85] incorporates knowledge masking strategies, including

entity-level masking and phrase-level masking. ERNIE 2.0 [86] further incorporates more

pre-training tasks, such as semantic closeness and discourse relations. SpanBERT [87] gen-

eralizes ERNIE to mask random spans, without referring to external knowledge. StructBERT

[88] proposes a word structural objective that randomly permutes the order of 3-grams for

reconstruction and a sentence structural objective that predicts the order of two consecutive

segments.

RoBERTa [89] makes a few changes to the released BERT model and achieves substantial

improvements. The changes include: (1) Training the model longer with larger batches and

more data; (2) Removing the NSP objective (3) Training on longer sequences; (4) Dynamic-

ally changing the masked positions during pre-training.

ALBERT [90] proposes two parameter-reduction techniques (factorized embedding para-

meterization and cross-layer parameter sharing) to lower memory consumption and speed

up training. Furthermore, ALBERT argues that the NSP objective lacks difficulty, as the neg-

ative examples are created by pairing segments from different documents, this mixes topic

prediction and coherence prediction into a single task.

2.2.5 ELECTRA

ELECTRA [91] proposes a more effective pre-training method compared to BERT. Instead

of corrupting some positions of inputs with [MASK], ELECTRA replaces some tokens of the

inputs with their plausible alternatives sampled from a small generator network. ELECTRA

trains a discriminator to predict whether each token in the corrupted input was replaced by

the generator or not. The pre-trained discriminator can then be used in downstream tasks for

fine-tuning, improving upon the pre-trained representation learned by the generator

2.2.6 T5

T5 (Text-to-Text Transfer Transformer) proposed by [68], for unifying natural language un-

derstanding and generation by converting the data into a text-to-text format and applying

28 CHAPTER 2. Background and Literature Review

an encoder-decoder framework. T5 introduces a new pre-training dataset, Colossal Clean

Crawled Corpus by cleaning the web pages from Common Crawl. T5 also systematically

compares previous methods in terms of pre-training objectives, architectures, pre-training

datasets, and transfer approaches. T5 adopts a text infilling objective (where spans of text

are replaced with a single mask token), longer training, multi-task pre-training on GLUE or

SuperGLUE, fine-tuning on each individual GLUE and Super-GLUE tasks, and beam search.

2.2.7 BART

BART model [92] introduces additional noising functions beyond MLM for pre-training sequence-

to-sequence models. First, the input sequence is corrupted using an arbitrary noising function.

Then, the corrupted input is reconstructed by a Transformer network trained using teacher

forcing [93]. BART evaluates a wide variety of noising functions, including token masking,

token deletion, text infilling, document rotation, and sentence shuffling (randomly shuffling

the word order of a sentence). The best performance is achieved by using both sentence

shuffling and text infilling. BART matches the performance of RoBERTa on GLUE and SQuAD

and achieves state-of-the-art performance on a variety of text generation tasks.

2.3 Text Generation

Deep generative models are useful for studying not just how well the model has learnt, but

also for learning the domain of the problem. In the deep learning era, the most common text

generation approaches are GANs [94] and Variational Auto-Encoders (VAEs) [95].

2.3.1 GANs

A GAN provides a technique that overcomes these issues encountered by generative models

[94]. GAN is a popular deep learning method that uses an adversarial strategy, unlike the

typical neural network. Two adversarially trained models are incorporated into GANs. First,

the generator creates the data samples and discriminator that classifies these data samples as

real (training data) or fake (produced by the generator), as seen in Fig. 2.8.

The objective of the generator is to produce samples that closely resemble the genuine

data in order to trick the discriminator, whereas the objective of the discriminator is to prop-

erly distinguish these two types of data samples. The goal function is represented as a com-

ponent of the minimax function, similar to a game-theoretic method. The discriminator D

2.3. TEXT GENERATION 29

Figure 2.8: Block Diagram of GANs [3]

attempts to maximise the objective function, whereas the generator G attempts to reduce it.

Thus, D and G attempt to play the minimax game with value function V (G,D).

min
G

max
D

V (G,D) = Ex−>pdata (x)[logD(x)] + Ez−>pz(z)[log(1−D(G(z)))] (2.16)

Since GANs have demonstrated excellent outcomes for picture creation (Pix2Pix GANs, Con-

ditional GANs, Westerrrian GANs, etc.) but training GANs for text is more complex due to the

indistinguishability of discrete symbols. The initial attempts at creating meaningful sentences

[96] utilised Maximum Likelihood Estimation (MLE) (a technique for determining the para-

meter values that maximise the likelihood of the process outlined by the model). Despite its

success, this training objective has some drawbacks, including shallow, repetitive, and limited

responses. For this reason, clarity is required in several areas, such as which concepts con-

stitute normal communication and approaches and how they might be combined with deep

learning, in order to resolve these challenges. Numerous approaches have suggested physic-

ally characterising a few qualities (acknowledgment, informativeness, and consistency) and

incorporating reinforcement learning frameworks to train and create highly rewarded words

[97, 98]. However, manually constructed reward functions cannot account for all valid in-

formation and may result in low-quality statements. A successful generative model should

produce phrases that are indistinguishable from those produced by humans. The use of GANs

to NLP tasks has not met with equivalent success. Because the text production process is

discrete, it is difficult to trace output errors back to the generator. How GANs may be utilised

30 CHAPTER 2. Background and Literature Review

to improve text generative models and how the associated challenges might be solved is a

concern of ongoing research. In recent years, a proposal entitled Professor Forcing was made

[99] on variable-length inputs and comparison of the distributions of two sequences (Train-

ing Sequence and Generated Sequence). It was demonstrated that the discriminator not only

considers single-step predictions, but also the statistics of the behavior. Providing the discrim-

inator central hidden values of the generator produces a differentiable model and achieves

good results in a variety of NLP tasks, such as sequence creation and sound generation.

Maximizing the likelihood of each word in labelled data, given previously determined

output, is a well-known strategy for addressing NLP challenges. The issue with this strategy

is exposure bias (where the system gets more exposure to ground truth data and fails to gen-

erate meaningful sequences at test time). Bengio et al. presented a solution to this problem

using the notion of schedule sampling (a training approach in which the model is explored

more during the training stage, making it more resilient to errors committed during infer-

ence) [100]. The plan is to partially feed the generative model with synthetic data while

predicting the following word during the learning stage. This methodology was deemed an

inconsistent training method, as errors were not back-propagated through sample decisions,

and no progress was shown in addressing the issue of exposure bias.

Reinforcement learning

Deep generative models employed reinforcement learning to overcome the aforementioned

issues [101, 102]. The use of reinforcement learning to deep generative models has produced

encouraging results. Reinforcement learning is a subfield of deep learning in which a model

learns by interacting with its environment and being rewarded for performing actions. The

algorithms for reinforcement learning may be comprehended utilising the concepts of agents,

environments, states, actions, and rewards:

• Agent:- An agent is someone who takes actions;

• Action:- All possible moves, an agent can make is considered as an action, like in a video

game action can be moving right, moving left, standing still.

• Environment:- The space where an agent learns, where the agent receives its current

state and outputs its reward and its next state. State: It might be a solid spot and

point, an unrestricted design that sets the agent in relation to other important items,

2.3. TEXT GENERATION 31

Figure 2.9: Block diagram of Reinforcement Learning [6]

for example, apparatuses, impediments, enemies, or rewards, the present circumstance

returned by the environment, or any future condition.

• Reward:- A reward is an input used to evaluate the success or failure of an agent’s

actions; for example, in a computer game, when an agent makes contact with the coin,

he receives points. The agent from a random state transmits output in the form of

activities to the environment, which rewards the agent with a new state. The process

through which subsequent actions are determined depending on the existing condition.

As seen in Figure 2.9, it connects states to actions, actions that promise the greatest

reward.

This is the key concept utilised to represent text generation as the reinforcement learning

problem. This topic was initially investigated by [103], who concluded that sequence gen-

eration issues may be phrased as sequential decision-making challenges. Informed by this

and the notion of reinforcement learning, a new training method for generative models was

presented [104]. The extra network “Critic” is trained to produce the predicted task score for

each token. These projected outputs are used to train the “Actor” main sequence prediction

model. Under the assumption that the critic generates accurate output values, the explana-

32 CHAPTER 2. Background and Literature Review

tion used to train the actor is a neutral measure of the predicted task-specific score gradient.

However, the use of reinforcement learning in GANs for text production must address any

concerns like how awards may be produced to control the generator. Methods for answering

this question are an ongoing object of research.

A basic strategy would be to utilise the task-specific score as a reward [104]. However,

such task-specific scores might be difficult to locate at times. The sequence GANs (SeqGAN)

proposed by Yu et al. [105] are guided by the discriminator’s prediction score. The sequence

s − pG is generated by the generator Gθ, and the discriminator predicts whether it is real

(high reward) or not (low reward). The current purpose of the generator model (policy) is to

generate a sequence from the beginning state s0 that maximises the predicted final reward.

RT is the ultimate reward governed by D as indicated by the equation:

Jθ = E [RT | s0, θ] =
∑
y1ϵY

G (y1 | s0) ·QG
D (S0, Y1) (2.17)

Y stands for vocabulary. Now, the expectation of attaining the end reward RT conditioned on

starting state s0 and θ (generator parameter) is the product of all possible reward values and

their occurrence probabilities (Ist term). The second term denotes the action-value function,

which yields the reward value for action Y1 in initial state s0 with policy G. This action-

value function predicted by the discriminator D rewards just the sequence that has been

completed. However, it is vital to assess the suitability of both prior and created terms. In

order to calculate the reward, the current policy is rolled out using the Monte-Carlo search (a

technique used in game theory that begins with random acts and repeatedly iterates until the

final state) [106]. At the end of the sequence, the discriminator D predicts the cumulative

score for each network node. The generator employs the current learnt policy network to roll-

out several times until sentences are finished and the estimated reward is obtained. Training

techniques for the generator and discriminator have a significant impact on the performance

of GANs. SeqGAN’s training technique differs from that of conventional GANs since SeqGAN

involves pre-training of the generator on the target corpus prior to adversarial training.

As discussed previously, it is difficult to back-propagate the gradient in a network when

the output is discrete. To overcome this issue, the generative model is viewed as a stochastic

parameterized approach in which Monte Carlo is utilised to estimate the state value. The

concept utilised to train the policy gradient lowers the difficulty of differentiation in conven-

tional GANS for discrete data. In fact, it has been seen that positive and reliable reward signals

from the discriminator might be difficult to get, even with thorough preparation. MaliGAN

2.3. TEXT GENERATION 33

(Maximum-Likelihood Augmented Discrete Generative Adversarial Networks) was developed

to overcome these challenges [96]. Inspiring by Norouzi et al. [107], the normalised max-

imum likelihood optimization is employed to overcome the challenge of back-propagating

rewards.

Lin et al.[108] presented the novel adversarial training known as RankGans to create

high-quality text descriptions. Instead of categorising the output between 0 and 1, it is ranked

between 0 and 1 according to the output’s diversity. The model learns from this relative rank-

ing of information produced by humans and machines. The adversarial framework precisely

consists of two networks: Generator and Ranker. The ranker is educated to rank machine-

produced sequences lower than human-made sequences, while the generator is trained to

produce phrases that trick the ranker. To address the issue of non-differentiability, the gradi-

ent approach is utilised. Despite its improved BLEU score [109], its practical use is still limited

by a few obstacles.

1. The use of a scaler as a score may not be sufficiently descriptive to instruct the generator,

as it cannot adequately describe the transitional structure of text during creation.

2. Estimating the reward for intermediate sentences tends to be noisy and imprecise, par-

ticularly in long text production where the generator receives reward only after the full

sentence has been completed.

The primary difficulty in creating lengthy text sequences is the sparsity of the binary guided

signal, which is only delivered after the entire sample has been formed. Zhang et al. [110]

recommended that instead of maximising the rewards from the discriminator, the generator G

should be trained to learn the feature representation of the real text and the produced text to

be matched. To address these issues, LeakGAN [111] was developed, which combines feature

matching with hierarchical reinforcement learning [112]. Manager (LSTM which is utilised

as a mediator to receive the feature representation from discriminator D) and Worker (which

uses these features received from discriminator as the guiding signal for generator) make up

the hierarchical generator G. This information from D is preserved internally and is identified

as material that has leaked. A significant outcome of LeakGAN is the ability to examine if

the generator generates data using the leaked information from the discriminator. All of

the aforementioned strategies attempt to extract more information from the discriminator

in order to generate text of higher quality. Using adversarial training to generate realistic-

looking samples is a fast expanding field of study. The concept of reinforcement learning

34 CHAPTER 2. Background and Literature Review

proposed by Yu et al.[105]; Li et al. [97] posits that text production is a sequential decision-

making process. Despite the effectiveness of these strategies, their practical use is limited by

the framework’s two basic flaws.

• Mode-Collapsing: Mode collapse is an analogous and related failure mode of Generat-

ive Adversarial Networks. In mode collapsing, the generator only learns one mode in

a multi-modal distribution and chooses to always use that mode to exploit the discrim-

inator. For instance, if the training set contains both dogs and cats, the generator will

attempt to generate wild cats but no dogs in order to trick the discriminator. This sort

of issue is known as mode collapse [113].

• Vanishing-Gradient: The issue comes when training the two models in an adversarial

manner, as the discriminator quickly converges and the generator ends up learning

nothing, a phenomenon known as vanishing gradient [114].

Inspired by the approach of hierarchical feature representation [115], Zhang et al. [110]

created the TextGAN model, which employs LSTM as the generator and CNN as the dis-

criminator. Utilizing kernel-based moment-matching (a technique for matching the moments

of two distributions), the produced and genuine sentences are forced to have identical mo-

ments. The generator was taught to generate data that fits the empirical distributions of real

data in the feature space by reducing Maximum Mean Discrepancy (MMD), also known as

minimising the moments of two distributions. This method improves the model’s ability to

acquire features that are both instructional of initial sentences (using the autoencoder) and

discriminative with respect to produced sentences (through the discriminator). To facilitate

the training of generative adversarial networks, initialization strategies (weights of LSTM

generator were initialised from a pre-trained CNN-LSTM Auto-Encoder) were also presented.

This method mitigates the mode-collapsing problem inherent to conventional GAN training.

As previously stated, RNNs are the most common generating model for text and many NLP

applications. The issue of using GANs for discrete data is a highly active field of research.

Mask-GANs [116], a version of GAN in which the model is trained on a sequence infilling

task, was introduced in order to lessen the effect of the issues observed in standard GANs

when used for NLP tasks. The purpose of the model is to insert the sequence’s missing words

when a few words have been deleted or altered. This model’s purpose is to fill in the missing

words of the sequence such that it can be distinguished from the original sequence. While

infilling this missing part of sequence, the model works auto regressively over the words it has

2.3. TEXT GENERATION 35

so far filled in, as in traditional language modelling constrained by actual context knowledge.

If the entire sequence is altered, language modelling is the only remaining option.

Due to the fact that deep learning models are trained on enormous datasets, the data cre-

ated by generative models is the main mechanism of addressing this issue. The produced text

is a potential technique for data augmentation, as demonstrated by [117, 118], which used

GANs to create text and reached state-of-the-art results. To address the challenge of small

datasets and to train stronger models, the generated data must be categorical (labelled). For

the production of labelled sentences, CS-GAN [119] was developed, where RNNs are em-

ployed as a generator and the generator behaves as an agent that predicts the next character

based on the current character, similar to the process of reinforcement learning. Thus, the

combination of RNNS and reinforcement learning specifically addressed two difficulties.

1. They generate realistic sentences with GANs given the discrete nature of the text.

2. Incorporating category information into GANs in order to produce labelled synthetic

data.

Recently, a new method was proposed by Shi et al.[102] to address the main two challenges

(Mode Collapse and Reward Sparsity) in GANs for text generation. This method uses the

concept of Inverse Reinforcement Learning (IRL) [120] to treat text generation as an IRL

problem, where the reward function learns to explain the expert behaviour and the generated

policy is learned to maximize the expected total rewards. The objective of the reward function

is to raise the payouts for the genuine texts in the training set while decreasing the rewards

for the created texts. Intuitively, the reward function in SeqGAN serves a similar purpose as

the discriminator. Unlike SeqGAN, the reward function provides more dense reward signals

by rewarding each step and action immediately. The generating policy samples one word at

a time to build a text sequence. The optimal policy is learned by the “entropy regularised”

policy gradient [121], which inherently results in a more diverse text generator. The similarity

between two summaries (system summary and reference summary) is determined to evaluate

the performance of generative models. Numerous measures for measuring the performance of

deep generative models have been presented ROUGE (Recall-Oriented Understudy for Gisting

Evaluation) [122], BLEU (BiLingual Evaluation Understudy) [109] , etc). The issue with the

assessment measure BLEU is that if the same sentence is repeatedly generated, the BLEU

score will be perfect.

GANs were viewed as a promising strategy for text creation. In order to evaluate the

36 CHAPTER 2. Background and Literature Review

potential of GANs for text production, however, a precise assessment criteria was required.

Some text evaluation methods include:

1. ROUGE is used to evaluate the resemblance between the reference summary (Golden

Summary) and the system-generated summary. The Rouge is a collection of summary

evaluation metrics [122]. Using a comparison between the golden summary and the

system summary. Rouge Recall:- It means how much of the golden summary this system

summary captures. It is calculated as:

Recall =
Similar − Tokens

total − Tokens − in − Training − Summary
(2.18)

Rouge Precision: It actually gives us the system summary which is relevant or needed

and is calculated as:

Precision =
Similar − Tokens

total - Tokens − in - Generated − Summary
(2.19)

2. BLEU is the measure that compares the produced sentence to the reference sentence.

BLEU [109] was initially used for machine translation systems and operates by assessing

the similarity between machine-translated text and reference material, where unigram

or 1-gram is viewed as a single word and Bi gram as a word pair. It operates by compar-

ing Ngrams of machine translation with reference material and counting the number of

matches. Consequently, more matches result in an improved machine translation.

In addition to the above-mentioned text evaluation techniques, several evaluation approaches

have been offered [123, 124, 125]. However, new research has shown that existing ap-

proaches have a low correlation with human judgement. Evaluation of text creation systems

is an open area of research. Since there was no evaluation metric for GAN-based text pro-

duction and the metrics stated above, which are based on N-gram overlapping, are deemed

to have low correlation and low robustness, there was no evaluation metre for GAN-based

text generation [126]. Tevet et al. [127] provided a technique for evaluating Generative

Adversarial Networks with standard probability-based evaluation metrics, where the predic-

tion of the generative model is viewed as language modelling (LM) and a basic Monte-Carlo

approach is used to approximate it. The estimated probability distribution is then assessed

using LM measures like as Perplexity (the evaluation of how accurately a model predicts a

sample) or Bits Per Character (BPC) (average number of bits needed to encode on a char-

acter). A major worry for the text generation strategies discussed in this study is whether

2.3. TEXT GENERATION 37

Table 2.1: Comparison of recent GAN models on text generation.

BLEU2 BLEU3 BLEU4 BLEU5

SeqGAN [105] 0.724 0.416 0.178 0.086

MaliGAN [96] 0.755 0.436 0.168 0.077

RankGAN [108] 0.686 0.387 0.178 0.086

MaskGAN [116] 0.265 0.165 0.094 0.057

TextGAN [110] 0.205 0.173 0.153 0.133

MLE [96] 0.205 0.173 0.153 0.133

LeakGAN [111] 0.835 0.648 0.437 0.271

the model suffers from mode-collapse in addition to text quality (lack diversity). Counting

unique n-grams is a modern method for calculating text diversity. As explained in MaskGAN,

improving such an n-gram measure does not inevitably increase variety. The subject of the

variety of text creation has received less attention in recent literature, but some relatively

recent research is begun to investigate it [3].

The new evaluation procedure [128] proposes to use the sweep of temperatures for each

model to compute the temperature curves in quality-diversity space, which provides research-

ers with information regarding which model should be used for generating samples with high

quality-diversity. The notion of temperature sweep might be considered a cross-validation

technique (which means early stop once the best curve has been achieved). However, the

assessment criteria stated in the preceding paragraph produce mistakes since they are are

based on N-gram overlapping that have low correlation and low robustness [126]. Table 2.1

displays the BLEU score of the GAN-based generating models described before. Except for

MaskGAN, all the models suffer from mode collapse.

2.3.2 Variational Auto-Encoders (VAEs)

Most deep learning models rely on well labelled data to function effectively. Since the major-

ity of data is unlabeled or unstructured, training popular deep learning models is impossible

since they require vast amounts of structured data. Labeling the unstructured data takes

a great deal of time. Using unsupervised techniques to train on data without labels is one

strategy for addressing this issue. Variational Auto-Encoders [129] is one of the most effect-

ive unlabeled deep generative models. It includes an encoder that encodes data into latent

variables, followed by a decoder that decodes these latent variables in order to reconstruct

38 CHAPTER 2. Background and Literature Review

the encoded data. The encoder accepts input x and generates output latent space pϕ(z | x),

where ϕ represents the encoding operation’s parameters, whereas the decoder performs the

exact reverse. It determines the probability distribution qθ(x | z) of data on a specified latent

distribution, where θ indicates the decoding operation’s parameters. Additionally, ϕ and θ can

be considered weights for encoding and decoding operations. The loss function that compels

the model to acquire a rich representation of latent space may be stated roughly as the sum

of two terms: LossFunction = Reconstructionloss + Regularisationterm. Reconstruction

term is the squared mean error between input and output data. However, the regularisation

term reduces the gap between the latent distribution pϕ(z | x) and a previous distribution

p(z). With the use of latent space, VAEs learn the probability distribution of data, which

makes it suited for producing new data. Kullback–Leibler (dkl) divergence is utilised to assess

the divergence between the encoder’s distribution p(z | x and posterior distribution p(z). The

mathematical expression for the loss function is:

Li(θ, ϕ) = −Ez−>qθ (z | xi)
)
[log pϕ (xi | z)] +DKL (pϕ (z | xi) ||p(z)) (2.20)

Li(θ, ϕ) defines the reconstruction loss at data point i, −Ez−>qθ (z | χi)
)

measures the ex-

pectation of encoder’s distribution over representation DKL (pϕ (z | xi) ||p(z)) describes the

divergence, (pϕ (z | xi) and p(z)).

The block diagram of Variational Auto-Encoders is seen in Figure 2.10. The input data x is

sampled in latent space as the standard deviation σ and the mean µ, and then the stochastic

sample of z is predicted based on this distribution. Finally, the sample z is decoded in order to

create the output x′. VAEs have become one of the most prevalent methods for unsupervised

learning of complicated distributions. There are few uses for VAEs in the creation of discrete

data (text). The primary issue with utilising VAEs for text creation is KL collapse (when

the decoder becomes more strong than the training objective, the problem can be handled

with a false strategy), which occurs when the decoder outputs output regardless of latent

space. If the KL term is zero, then the posterior probability is independent of the input data

[130]. Bowman et al. [131] suggested a text generating model for VAEs that use recurrent

neural networks to capture the universal characteristics of sentences (e.g. subject, style) as

continuous variables. The problem of the collapse of the posterior was also seen. Bowman

et al. offer the notion of KL-annealing (the complete phrase is included into distributed

latent space) and word dropout (removal of some information during learning) as potential

solutions to this problem [131]. This factorization helps to represent sentence attributes such

as style and high-level semantic characteristics. In particular, the weights of the network

2.3. TEXT GENERATION 39

Figure 2.10: Block diagram of VAE [3].

are raised during the training phase, and the random replacement of word tokens causes

the decoder to rely on the global representation z rather than the learnt language model.

However, this methodology was insufficient in resolving the KL collapse issue; hence, several

efforts were made to identify more effective methods. Text generation models frequently

employ the xt approach to produce text from previously generated tokens.

This method’s output could not accommodate the diversity (subject, style, semantics, etc.)

of created sentences. The most current solution for text creation and resolving the KL collapse

was provided by Yang et al. [132], which substitutes the RNN decoder with a dilated CNN

[133] and simplifies the management of contextual capacity by varying dilation. Specifically,

earlier text generation algorithms were dependent on modelling the joint probability p(x) dir-

ectly. This work proposes that the marginal distribution be modelled as p(x). They produce

continuous latent space z initially based on the previous distribution p(z) (multivariate Gaus-

sian). Decoder then parameterized the creation of sequence x from a conditional distribution

pθ
(
x
z

)
. This helps to incorporate the latent variable to balance the development of the entire

discourse and makes it easier to get high-level characteristics of data variance. Due to the

recurring nature of RNNs, they are regarded as a beneficial text creation method. However,

a different method is required to address the underlying issue of relieving posterior collapse.

Semeniuta et al. [118] introduced the new model called Hybrid VAE, where Conv and De-

40 CHAPTER 2. Background and Literature Review

Conv neural networks were utilised in place of LSTMs as encoder and decoder, respectively.

The auxiliary loss Jaux represented as:

Jaux = −αEq(z|x) log pϕ(x | z) (2.21)

Jaux forces the decoding process to depend on latent representation z for the optimization

of ELBO (Evidence Lower Bound). α controls the penalty of auxiliary loss, ϕ represents

weights used in decoding process. It was shown that hybrid VAE converges faster and more

effectively than LSTM VAE. However, the model was able to handle the issue of latent loss,

although this technique had trouble creating lengthy text sequences. Training deep learning

models is always complex, and training VAEs is no exception. Nevertheless, several attempts

have been made to mitigate this issue. Kim et al.[134] presented the Variational Inference

(VI), a technique for controlling network computation. Traditional VI techniques involved

iterating through observed data and updating model parameters in closed form. However, this

approach of parameter updating needs conjugate models. The implementation of this strategy

for non-conjugate models was very difficult. Stochastic Variational Inference (SVI) [135]

and Amortized Variational Inference (AVI) [136] are two recently suggested approaches for

parameter selection that are scalable to massive training sets and non-conjugate models. This

method of predicting model parameters is beneficial to VAEs when used as generative models.

In the case of SVI, however, locating the local optimum was simple, whereas optimising

individual data point is challenging. On the other hand, AVI’s inference is too rapid, but

the structure of input data as a parametric function makes it too restrictive; AVI’s learning

was designed so that the parameter update could be performed on sub-optimal variational

parameters. Semi-Amortized Variational Auto-encoders are a recent development in the field

of text production that utilises both AVI and SVI [134]. The inference network was used to

choose the initial variational parameters, and then SVI was used to refine them. This method,

however, exceeds existing autoregressive generating models, although no improvement was

shown in resolving KL Collapse the primary issue in the field of text production. Even for

humans, producing complicated prose from scratch in a single pass is challenging. Inspired

by this strategy, Guu et al. [137] suggested Prototype then modify model, a second way for

text generation. It first samples a random model sentence from the training corpus, then

conjures a neural editor that generates a random edit vector and generates a new sentence

by applying the model to the edit vector. However, the created samples were competitive,

but this strategy made no contribution to the problem of "posterior collapse." The solution to

the problem of KL collapse is still a subject of current research. Kim et al. [134] introduced

2.3. TEXT GENERATION 41

Table 2.2: Comparison of recent VAE models on text generation.

Perpelexity
Negative log

likelihood
KL

VAE [131] 60.1 380 15

Improved- VAE [132] 63.9 332.1 10

Hybrid- VAE [118] * * 12.5

Semi Amortized-VAE [134] 60.4 327.1 7.19

Neural Editor-VAE [137] 26.78 * *

Skip-VAE [138] 60.55 * 22.54

a new method for initialising the parameters of a variational auto-encoder using amortised

inference and subsequently refined it using stochastic inference. Dieng et al. [138] created

skip connections between latent variable z and decoder that reinforce the link between latent

variables and reconstruction loss. Due to the fact that trials validated the superiority of both

approaches over their predecessors, it can be concluded that both methods are superior to

their predecessors. Guu et al. [137] have presented an intriguing new development in which

Von Mises-Fisher distribution [139] is employed instead of the Gaussian distribution. Xu et al.

[140] investigated this technique further. Variational Auto-Encoders with this integration are

referred to as Hybrid VAE, and they may regulate KL term by hyperparameter k, so addressing

KL collapse. Table 2.2 displays a comparison of several text generation models based on VAEs.

The table illustrates enhancements made to VAE for text production jobs in which its

mechanism has been significantly enhanced. These models’ parameters consist of perplexity,

negative log-likelihood, and the highlighted KL term in this table. Comparing the performance

metrics of different models makes it difficult to pick one. Therefore, research on VAE for text

creation problems remains active.

2.3.3 Paraphrase Generation

The task of paraphrase generation refers to rewriting a given sentence to a new paraphrase

sentence, which requires new text generation. The paraphrase generation approaches are

analysed in this section for the idea of transforming an extractive summary into an abstract-

ive described in section 1.4. The paraphrasing task requires that the generated sentence and

input sentence be different in expression form, but have the same expressed meaning [141].

Li et al., [142] proposed DNPG to dissect a sentence into sentence-level pattern and phrase-

42 CHAPTER 2. Background and Literature Review

Figure 2.11: Classification of ATS systems [7].

level pattern to make neural paraphrase generation more understandable and controllable,

and they discovered DNPG can be adopted into unsupervised domain adaptation method for

paraphrase generation. Fu et al. [143] proposed a new paraphrase model based on latent bag

of words. Siddique et al., [144] proposed an unsupervised paraphrase model with deep rein-

forcement learning framework variational autoencoder. Liu et al., [145] regarded paraphrase

generation as an optimization problem and designed a sophisticated objective function. All

methods above focus on the generic quality of paraphrase and do not care about the diversity

of paraphrase. Yang et al., [146], Cao et al., [147], Vizcarra et al., [148], and Tuan et al.,

[149] proposed paraphrase generation models based on GAN are considered as the baseline

methods and are discussed in detail in section 5.3.4.

2.4 Automatic Text summarisation (ATS)

There are many classifications for Automatic Text summarisation (ATS) systems as illustrated

in Fig.2.11. ATS systems can be classified based on any of the criteria below.

2.4. AUTOMATIC TEXT SUMMARISATION (ATS) 43

Figure 2.12: Single-document or Multi-document, automatic text summariser [7]

Classification based on the input size: Single-document or Multi-document. Input size

refers to the number of source documents taken to build the target summary. As seen in Fig.

2.12, Single-Document summarisation (SDS) employs a single text document to construct a

summary, with the goal of condensing the source document while preserving its essential con-

tent [150]. Multi-Document summarisation (MDS) generates a summary based on a series of

input documents, with the goal of removing repeated information from the input documents

[150]. MDS is more complicated than SDS and is plagued by challenges like as redundancy,

coverage, temporal relatedness, compression ratio, etc [151].

Classification based on the text summarisation approach: Extractive, Abstractive, or

Hybrid. The extractive text summarisation method selects the most significant sentences from

the input document(s) and composes the output summary by concatenating the chosen sen-

tences. The abstractive text summarisation approach provides an intermediate representation

of the input document(s), from which the output summary is created. In contrast to extractive

summaries, abstractive summaries consist of sentences that differ from those in the original

source. In other words, sentences in the abstractive summary convey the same content but in

a different form than their original sentences in the document. The hybrid text summarisation

approach combines the extractive and abstractive methods.

Classification based on nature of the output summary: Generic, Query-Based or Question-

Based. A query-based summarisation indicates that the multi-document summariser works

with a collection of similar documents extracted from a big corpus in response to a query

[152]. The resulting summary then contains items linked to the query. A query-based sum-

mary provides the information most pertinent to the initial search query, whereas a general

summary provides an overview of the document’s content [153]. The query-based summary

is also known as a query-focused, topic-focused, or user-focused summary [154]. Question-

44 CHAPTER 2. Background and Literature Review

driven summarisation approaches answer a question and also provide additional informative

content to that answer from the source document(s) to make it more understandable and

convincing [29].

Classification based on the summary language: Monolingual, Multilingual, or Cross-

Lingual. A summarisation system is monolingual if the language of the source and destination

documents are identical. A summarisation system is multilingual if the original content is pro-

duced in many languages (such as English, Arabic, and French) and the summary is likewise

created in these languages. A summarisation system is cross-lingual when the original content

is provided in one language (for example, English) and the summary is created in another

language (Arabic or French) [154].

Classification based on the summarisation algorithm: Supervised, or Unsupervised.

An annotated training set of data is necessary for the supervised algorithm’s training phase.

The training data must be manually annotated, which makes it difficult and expensive to

produce. The unsupervised method, on the other hand, does not need a training phase or

training data [155].

Classification based on the summary content: Indicative or Informative. A summary

that is indicative includes just the essential ideas or information from the source text [156].

In order to inform the user about the original source, it is utilised to determine what the input

text is about (i.e. what topics are discussed) [157]. The objective of an indicative summary

is to inform readers about the breadth of the input content in order to assist them in deciding

whether to read the original text. On the other hand, an informative summary incorporates

the essential facts and concepts from the original text [156] to cover all topics of the text

[158]. The objective of an instructive summary is to convey, without going into detail, the

essential points of the original text [157].

Classification based on the summary type: Headline, Sentence-Level, Highlights, or

Full Summary. Depending on the ATS system’s objectives, the length of the produced sum-

maries varies. The headline created via headline creation is often less than a sentence [159].

A sentence-level summary creates one sentence, often an abstract one, from the supplied ma-

terial [159]. A highlights summary generates a telegraphic-style, intensely condensed sum-

mary that is often presented as bullet points [160]. The highlights summary gives the reader

a quick rundown of the key details in the source document(s) [160]. Lastly, the development

of a full summary is typically directed by the needed summary length or a compression ratio.

Classification based on the summarisation domain: General, or Domain-Specific. The

2.4. AUTOMATIC TEXT SUMMARISATION (ATS) 45

Figure 2.13: Automatic text summarisation approaches and their associated methods [7].

general or domain-independent ATS system provides summaries of documents from several

domains. In contrast, the domain-specific ATS is designed to summarise documents from a

given domain (e.g. medical documents or legal documents).

There are three main text summarisation approaches: extractive, abstractive, or hybrid.

Each approach is applied using different methods as shown in Fig. 2.13. The following

sections will provide a detailed overview about machine learning and deep learning-based

extractive approaches, deep learning-based abstractive approaches and hybrid approaches.

2.4.1 Extractive Approaches

Cao et al. [161], among the supervised deep learning extractive approaches, suggested a

recursive neural network for rating significant sentences in multi-document summarisation.

They generated summary prior features for extractive text summarisation using improved

CNNs. Denil et al. [162] provided a ConvNet model for documents with an architecture de-

signed to facilitate document structural introspection. Furthermore, they have demonstrated

that the visualization approach may be used to locate and extract task-specific relevant sen-

tences from documents. Cheng et al. [163] approach consists of a hierarchical document

reader or encoder based on neural networks and an attention-based content extractor. The

reader is responsible for deriving the document’s meaning from its sentences and their con-

stituent words. To extract sentences or words, their algorithms use a type of neural attention.

Nallapati et al. [164] proposed a highly interpretable neural sequence model that provides

46 CHAPTER 2. Background and Literature Review

intuitive visualization for extractive document summarisation. In addition, they suggested

a unique abstractive training process to eliminate the necessity for extractive labels during

training, yet this strategy is still a few ROUGE points below their extractive training on the

majority of datasets. Wu et al. [165] proposed an approach with two stages. In the first stage,

they suggested a neural coherence model that uses the distributed representation of sentences

rather than sparse, manually crafted features. The proposed neural coherence model is com-

pletely independent of entity recognition systems and may be trained from scratch. Multiple

layers of convolution and max-pooling enable the neural coherence model to capture cross-

sentence entity transitions and discourse relations. Second, they created a unique Reinforced

Neural Extractive summarisation (RNES) model that combines reinforcement learning with

neural extractive summarisation and coherence. During the training of RNES, the output of

the neural coherence model is utilized as immediate rewards so that it can learn to extract

coherent summaries. Narayan et al. [166] stated in their study that cross-entropy training

is not ideal for extractive summarisation. Models trained in this manner are prone to produ-

cing overly verbose summaries with excessively long words and redundant information. They

proposed a model for overcoming these challenges by globally optimizing the ROUGE eval-

uation measure and learning to rank sentences for summary creation using a reinforcement

learning objective. Liu et al. [73] produced Wikipedia articles by presenting the challenge as

a multi-document summarisation task and used decoder-only networks for summarising. The

suggested model by Mehta et al. [167] is comprised of four primary blocks: an LSTM-based

sentence encoder, a topic modelling-based context encoder, an attention module, and a binary

classifier. Overall, they seek to find the probability p(y | s, d), where p(y) is the likelihood that

sentence s in document d is summary-worthy. Using a sentence encoder, they represented s

as an embedding vector of fixed dimensions. Next, they represented each document by the

topic extracted by LDA and used those topics to generate an embedding context. The atten-

tion model then utilises the sentence and context embeddings to learn how to give weights to

various sentence segments. The classifier then utilises the attention module’s output and the

original context embeddings to determine whether a sentence is summary-worthy or not.

Kobayashi et al. [168] proposed a summarisation method based on embeddings and

document-level similarity (i.e. distributed representations of words). A word’s embedding

represents its meaning. A document is a bag of sentences, whereas a sentence is a bag of

words. The task is described as the challenge of optimizing a submodular function defined by

the negative sum of the distances between nearest neighbors on embedding distributions (i.e.

2.4. AUTOMATIC TEXT SUMMARISATION (ATS) 47

a set of word embeddings in a document). They concluded that document-level similarity

can determine interpretations that are more complicated than sentence-level similarity. Chen

et al. [169] present an ATS system for the summary of a single document based on a re-

inforcement learning algorithm and a RNN sequence model with encoder-extractor network

architecture. Using a sentence-level selective encoding approach, the summary sentences are

retrieved once the significant characteristics have been identified. For the machine-learning-

based summariser, the summary problem is transformed into a sentence-level supervised clas-

sification problem. Using a training set of documents, the system learns by example to cat-

egorise each sentence in the test document as summary or non-summary (i.e. a collection

of documents and their respective human-generated summaries). Moratanch et al. proposed

a machine learning-based summariser with the following sentence scoring steps [170]: 1)

extracting features from the preprocessed document (i.e. based on multiple features of sen-

tences and words); and 2) feeding the extracted features to a neural network that generates

a single output score.

2.4.2 Abstractive Approaches

Deep linguistic analysis was employed by Baralis et al. [171] to generate abstract summar-

ies by analysing semantic graphs utilising neural networks. Minimal Recursion Semantics

(MRS) was utilised for the semantic modelling of grammars. Using the maximum entropy

model, they accomplished disambiguation. This model was created to address the align-

ment issue of AMR graphs. MRS may be used for both parsing and generating text. Niu et

al. [172] suggested an abstractive summarisation method for multiple documents utilising

chunk graphs and neural networks. They utilised a Recurrent Neural Network Language

Model to evaluate the linguistic quality of each sentence, which aided in the production of

understandable abstract summaries. The input sequence is mapped to the output sequence

via a simple sequence-to-sequence model. Jobson et al. [61] created the summaries using

encoder-decoder RNN and LSTM. They employed word-embedding for training and the atten-

tion function to generate the context vector at every time step. The attention model and RNN

were utilised by Nallapati et al. [173] to model keywords and capture the hierarchical struc-

ture between the sentence and word. They utilised a bidirectional encoder with GRU-RNN

(GRU, which is used to address vanishing and exploding gradient issues) and a unidirectional

decoder using GRU-RNN. They used the attention model to the source’s hidden states and

the softmax layer to the target. Rush et al. [65] designed a feed-forward neural network

48 CHAPTER 2. Background and Literature Review

which worked on sentence-level text summarisation. For sentence-level summarisation, the

attention-based encoder and beam-search-based decoder were utilised. Similar to Rush et al.,

Chopra et al. [174] employed the encoder-decoder model and the conditional RNN to ad-

dress the problem. Rossiello et al. [175] created grammatically valid abstractive summaries

using neural networks, RNN, and probabilistic models. They utilised both prior knowledge

and neural networks to analyse the problem. Liy et al. [176] generated abstract summaries

using the sequence-to-sequence encoder-decoder paradigm. They examined the text’s latent

structured information to enhance the quality of summaries. The summary was generated us-

ing the recurrent generative decoder to transform the source code into hidden states and then

back to original word-sequences. Song et al. [52] introduced a deep learning-based method

called the Long Short-Term Memory encoder-decoder model, in which phrases were utilised

as input to generate abstract summaries rather than words. Using a sequence-to-sequence

encoder-decoder based Convolutional Neural Networks model, Fan et al. [177] developed a

customised controlled abstractive summarisation approach. They constructed the summary

based on the user’s selections, such as the entity whose information they desire, the size of

the summary, and the portion of text whose summary they desire. Even though deep learn-

ing has been effectively deployed and has emerged as one of the most promising methods

for creating abstract summaries, the availability of large, high-quality corpora for training

purposes remains a difficulty. In addition, the majority of corpora are old and lack modern

morphological, semantic, and syntactic properties. In addition to this, the majority of corpora

are only available in English. Modaresi et al. [178] have developed a method for creating

a single document corpus in response to the aforementioned issues. Lin et al. [179] em-

ployed the Seq2Seq model in conjunction with the attention mechanism to address the issue

of repetitions using Seq2Seq models. Abstractive summarisation was performed using con-

volutional gated units together with global encoding on the encoder side and unidirectional

LSTM on the decoder side. In [10], an approach of abstractive summarisation was presented;

it addressed sentence repetition and incorrect information. The model suggested by See et

al. is comprised of a single-layer bidirectional LSTM encoder, a single-layer unidirectional

LSTM decoder, and the sequence-to-sequence attention model presented by [173]. The See

et al. approach creates a long text summary as opposed to one or two-sentence headlines.

In addition, the attention mechanism was utilised, and the attention distribution aided in

the generation of the next word in the summary by informing the decoder where to explore

in the source words. This approach created the weighted sum of the encoder’s hidden state

2.4. AUTOMATIC TEXT SUMMARISATION (ATS) 49

to assist the production of the context vector, which is a representation of the input with a

defined size. The decoder’s generated probability (Pvocab) was used to build the final predic-

tion utilising the context vector and the decoder’s last step. In addition, the value of Pvocab

for Out Of Vocabulary (OOV) words was equal to zero. In [180], RL was used to abstract-

ively summarise text. RL is combined with supervised word prediction which consisted of a

bidirectional LSTM-RNN encoder and a single LSTM decoder. In [58] LSTM-RNNs were used

to construct abstract summaries. Using a bidirectional RNN, incorporated past and future

context while on the decoder side making predictions and solving the summary imbalance

issue is considered. Two LSTMs comprise the bidirectional decoder: the forward decoder and

the reverse decoder. The forward decoder decodes information from left to right, whereas

the reverse decoder does the opposite. The beginning input of the backward decoder is the

final hidden state of the forward decoder, and vice versa. In addition, a method is presented

for bidirectional beam-search that creates summaries from the proposed bidirectional model.

Bidirectional beam search combines previous and future information to provide a more ac-

curate summary. Consequently, the output summary was well-balanced by incorporating both

past and future information and a bidirectional attention mechanism. In addition, the input

sequence was read in reverse based on the conclusion [181, 182] that LSTM learns better

when reading the source in reverse order while remembering the target’s order. The output

of the decoder was used as input for a softmax layer on the decoder side to determine the

likelihood of each target word in the summary over the vocabulary distribution. The decoder

output is dependent on the internal representation of the encoder, i.e. the context vector,

the current hidden state of the decoder, and the previously created summary words by the

decoder’s hidden states. Training is intended to increase the likelihood of alignment between

the sentence and summary in both directions. During training, the forward decoder receives

the preceding reference summary token as input.

Liu et al., [183] proposed an adversarial framework that the generator, bi-directional

LSTM encoder and attention-based LSTM decoder, takes the original text as input and gen-

erate the summary. They used RL (i.e. policy gradient) to optimize the generator and imple-

mented the discriminator as a text classifier that is trained to label the generated summaries

as machine or human-generated. Scialom et al., [184] introduced an approach using Dis-

criminative Adversarial Search (DAS), their method differs from GANs in that the generator

parameters are not updated at training time and the discriminator is based on a seq2seq ar-

chitecture that is trained to distinguish human-generated texts from machine-generated ones.

50 CHAPTER 2. Background and Literature Review

The discriminator is integrated into a beam search that obtains a label at each generation step

to refine the probabilities and select the top candidate sequences. They utilized the Unified

Language Model for natural language understanding and generation (UniLM) proposed by

[185] based on BERT for generator. Rekabdar et al., [186] applied generative adversarial

networks with an attention mechanism for abstractive text summarisation task. The data

generator is modelled as a stochastic policy in RL. The generator is based on LSTM encoder-

decoder with attention mechanism and the discriminator is based on CNN aims to distinguish

that a summary came from the training data rather than the generator. Hence the generator

model is updated by employing a policy gradient and Monto Carlo search based on the dis-

criminator’s expected end reward. Dang et al., [187] presented a custom-built GAN model

which contains one generator and two discriminators. The generator consists of an encoder

and a decoder based on LSTM that is responsible for encoding the input sentences in shorter

lengths. Whereas, out of the two discriminators, one is the similarity discriminator which is a

four-class (Similar class, Incomplete class, Redundant class, Irrelevant class) CNN based text

classifier. The other one is Readability Discriminator, a CNN-based model that tells whether

the summary is generated by the generator or human.

Sentence Fusion and Compression Techniques

Sentence compression [188] and sentence fusion are the two most often utilised abstraction

approaches [189]. Sentence compression is the process of reducing the length of a sentence

by eliminating or omitting irrelevant components. In contrast, sentence fusion is a text-to-

text generation approach that fuses sentence fragments from numerous sentences to gener-

ate a sentence that is more informative than the individual sentences under consideration.

Multiple-Sentence Compression (MSC) is another name for sentence fusion [190].

Sentence Fusion Approaches For aligning and condensing numerous sentences into one,

discourse structure and dependency graphs have been proven to be beneficial [189, 191,

192]. Mehdad et al. [193] build an entailment graph over sentences for sentence selection

to combine. Success in sentence fusion has also been demonstrated via graph-based repres-

entations and abstract meaning representation [194, 190]. By concentrating on discourse

connectives, Geva et al. [195] employ a Transformer to combine sentences in pairs.

The importance of remaining faithful to the source text has been highlighted for sen-

tence fusion in recent summarisation studies. Seq-to-seq models are used by Cao et al. [45]

2.4. AUTOMATIC TEXT SUMMARISATION (ATS) 51

to rewrite templates that are prone to include irrelevant details. It has been successful to

include more information, such as entailment and dependence structure, into a seq-to-seq

model [196, 197]. The study by Falke et al. [198] appears to be the most similar to the

human judgement, they discover that the PG model, while having a lower ROUGE, is more

accurate than Fast-Abs-RL and Bottom-Up. They demonstrate that 25% of the results from

these cutting-edge summarisation methods do not accurately reflect the source text. Sim-

ilar research by Cao et al. [199] reveals that 27% of the summaries produced by a neural

sequence-to-sequence model include errors.

Sentence Compression Approaches A line of research for sentence compression has fo-

cused on neural network methods due to the advances in computational power and data

amount. These techniques utilise labelled data to automatically extract characteristics, provid-

ing promising results. Filippova et al. [200] used sequence-to-sequence learning to apply

LSTMs to sentence compression for the first time. They created nearly two million sentence-

compression pairings, with promising outcomes. Andor et al. [201] presented a neural

network architecture for deletion-based sentence compression utilising over 2.3 million in-

stances, similar to [200]; they represented words with word embedding, dependency labels,

and part of speech tags, and slid a window left-to-right to make decisions based on the local

context. However, neither of their large deletion-based sentence compression datasets are

publicly available. In the same year, however, Klerke et al. [202] used eye-movement inform-

ation as external knowledge in a multi-task learning manner to attain equivalent performance.

In the case of small training datasets, their research suggests that external information often

promotes sentence compression.

Using auto encoders and reconstruction objectives is a commonly suggested unsupervised

framework for sentence compression [203, 204, 205]. These techniques are predicated on the

premise that a good sentence compression may be inferred from the original text. Wang et al.

[206] is an example of prior work on unsupervised sentence compression using reinforcement

learning. They employ a Deep Q-Network to maximize a reward that incorporates probability

from an n-gram language model and grammatical restrictions. This model deletes a token

repeatedly until it terminates. Zhao et al. [207] employ RL to maximize the score of a

syntax-focused language model and it is initialized by a supervised sentence compression

model.

52 CHAPTER 2. Background and Literature Review

2.4.3 Query-based Approaches

Much research has been conducted on query-based summarisation. A variety of conventional

non-neural network-based approaches with query dependent features are proposed for query-

based summarisation, including tf-idf cosine similarity [208], WordNet similarity [209], word

matching [210], word co-occurrence [211], etc. Since a deep-learning-based approach is pro-

posed in this thesis, recent approaches based on neural networks are described. Nema et al.,

[37] introduced a typical encode-attend-decode model (based on LSTM) for query-based ab-

stractive summarisation which first computes a vectorial representation for the document and

the query, and then the decoder produces a contextual summary one word at a time. Each

word is produced by feeding a new context vector to the decoder at each time step by attend-

ing to different parts of the document and query. Li et al., [212] designed a neural network

architecture that consists of a sentence encoder, a query filter and a document encoder. A

bi-GRU sentence-level encoder is proposed to encode a sentence in a document and then a

query filter component attention model upon the sentence encoder is designed to inject such

information into sentence encoding and computing the new sentence encoding including the

query information. In the end, a feed-forward neural network is applied to compute a sali-

ence score for each sentence. Cao et al., [213] used CNNs to project the sentences and queries

onto the embeddings and pooling layer with the attention mechanism are applied to combine

the sentence embeddings and form the document embedding in the same latent space. In the

end, Ranking Layer Rank a sentence according to the similarity between its embedding and

the embedding of the document cluster. They proposed two bi-directional LSTM encoders

for generating vectors, one for query and another for source document, and an LSTM de-

coder that outputs the summary. Ishigaki ei al., [38] introduced three copying mechanisms

designed for query-based abstractive summarisers: copying from the source, copying the over-

lapping words, and copying the overlapping words and their surroundings. In the copying

mechanism, two different probabilities for every word in the vocabulary are considered, the

generation probability and the copying probability. Zhao et al., [214] have designed a dataset

for Chinese query-based document summarisation and also implemented three solutions for

the task of query-based document summarisation, which are 1) relevance-based summarisa-

tion that selects the 6 text pieces and then the top 3 text pieces of the document according to

the query are selected. 2) ranking with dual attention that first prepares the representations

of the query and the document with pre-trained word embeddings then calculates five various

feature scores with respect to different aspects of the samples. 3) a simple BERT-based en-

2.4. AUTOMATIC TEXT SUMMARISATION (ATS) 53

coder and a text-pair classification are used to determine whether each text piece belongs to

the summary which performed better than the other two methods. For query-oriented multi-

document summarisation, Zhong et al. [215] suggested an unsupervised deep architecture

based on Restricted Boltzmann Machines. Yousefi-Azar et al. [216] suggested an unsuper-

vised query-oriented extractive text summarisation technique employing deep autoencoders

and term-frequency (TF) characteristics. Additionally, they developed an ensemble of noisy

auto-encoders that adds noise to the input vectors and picks the highest-ranked phrases from

an ensemble of noisy runs. Using a Relevance Sensitive Attention-based model, Baumel et al.

[217] produced multi-document query-specific abstractive summaries.

Recent query-based text summarisation approaches have been studied in this section to

examine their ability for being used for question-driven text summarisation. The main goal

in query-based text summarisation approaches is to summarise the retrieved relevant inform-

ation to the query but in the question-driven text summarisation, answer detection and ex-

plaining that answer in a summarised form is desired. Accordingly, the query-based text

summarisation approaches are not adaptable for a question-driven summarisation problem.

A number of question-driven summarisation techniques have been proposed recently which

are described in chapter 4 and chapter 5.

2.4.4 Hybrid Text Summarisation

The hybrid approaches combine both the abstractive and extractive approaches and their

advantages [7]. Wang et al., [218] proposed a hybrid system for long text summarisation

“EA-LTS”. Their system consists of two phases: 1) the extraction phase for selecting the key

sentences using a graph model, and 2) the abstraction phase is a RNN based encoder-decoder

in addition to a pointer and attention mechanisms to generate summaries. Bhat et al., [156]

proposed a single-document hybrid ATS system called “SumItUp” consisting of two phases

as follows: 1) Extractive Sentence Selection: uses some statistical features, 2) Abstractive

Summary Generation: the extracted sentences are fed to a language generator (i.e. a com-

bination of WordNet, Lesk algorithm and part-of-speech tagger) to convert the extractive

summary to the abstractive summary. Subramanian et al., [219] designed a method to pro-

duce abstractive summaries for long documents. They designed a simple extractive step using

a hierarchical bidirectional LSTM seq2seq sentence pointer before generating the summary.

This step reduces the amount of context for a subsequent abstractive step before utilizing a

single trained transformer language model for formulating abstractive summarisation. Chen

54 CHAPTER 2. Background and Literature Review

et al., [220] presented a novel multi-task learning-based abstractive summarisation approach

that incorporates extractive summarisation as a supplementary task. Their framework is com-

posed of five components: : (1) Word-level bidirectional GRU encoder for encoding the sen-

tences word-by-word, (2) Sentence-level bidirectional GRU encoder encodes the document

sentences, (3) Sentence extractor for labeling each sentence, (4) Hierarchical attention fa-

cilitates generating the sentence-level and word-level context vectors to be consumed in the

decoding steps, (5) GRU-based decoder for decoding the output word sequence with a beam

search algorithm.

Jin et al., [221] proposed a multi-granularity hierarchical structure for their hybrid text

summarisation model. They unified extractive and abstractive summarisation into one ar-

chitecture. Extractive summarisation works on sentence granularity and directly conducts

the sentence representations while abstractive summarisation is designed for operating on

word granularity and their representations. They exploited the attention mechanism to en-

code the connections between the same semantic granularity and hierarchical relationships

for the different semantic granularity. The decoding part comprises a sentence extractor and a

summary generator. The guided generation approach put forward by [222] used a mix of ab-

stractive and extractive strategies. In order to represent important information, the extractive

technique creates keywords that are then encoded via a key information guidance network

(KIGN). The suggested technique also used a prediction guidance mechanism to predict the

ultimate summary of the long-term value [223]. A feedforward single-layer neural network

that anticipates the essential details of the final summary during testing is referred to as a

prediction guidance mechanism. The suggested model’s basic encoder-decoder architecture

is comparable to that given out by Nallapati et al. [173], who used both the bidirectional

LSTM encoder and the unidirectional LSTM decoder. The attention mechanism and softmax

layer were used in both models. Additionally, by suggesting KIGN, which takes the keywords

retrieved using the TextRank algorithm as input, the process of producing the summary was

enhanced. The final forward hidden state and the first backward hidden state are joined

to represent critical information in KIGN. The attention system and pointer mechanism are

used by KIGN. The output of KIGN will be sent to the attention mechanism in order to detect

keywords because, in general, the attention mechanism hardly ever recognises the keywords.

As a result, the keywords will have a significant impact on the attention mechanism. The

encoder context vector and hidden state of the decoder will be sent to the pointer network,

and the output will be used to compute the soft switch, in order to allow the pointer network

2.5. QUESTION ANSWERING (QA) SYSTEMS 55

Figure 2.14: Framework of a QA system [8]

to detect the keywords, which are the output of KIGN. The soft switch controls whether to

generate the target from the target’s vocabulary or copy it from the original text.

2.5 Question Answering (QA) Systems

Question Answering (QA) aims to provide answers to questions formulated in natural lan-

guage. Question Answering Systems provide an automated method for acquiring answers to

questions posed in natural language. Numerous QA studies have categorised Question An-

swering systems based on many criteria, including user-entered questions, data base charac-

teristics, the type of generated replies, and question answering methodologies and strategies.

Question Answering systems typically adhere to a pipeline architecture with three key mod-

ules: Question Analysis, Passage Retrieval, and Answer Extraction [8]. Flow of the QA frame-

work is depicted in Fig 2.14.

Question Analysis Module This module’s activities consist of parsing, question classifica-

tion, and query reformulation [224, 225]. This means that the query is analysed for repres-

entation of the main information required to answer the user’s query; the question is classified

according to the keyword or taxonomy used in the query, which leads to the expected answer

type; additionally, the query is reformulated for improving question phrasing and the query is

transformed into semantically equivalent ones, which aid in the information retrieval process.

Paragraph Retrieval Module A conventional search engine can be used to extract a set of

significant candidate passages or sentences from a knowledge base while doing passage re-

56 CHAPTER 2. Background and Literature Review

trieval. This step utilises the queries generated by the question analysis module and searches

information sources for appropriate answers to the submitted questions. Candidate answers

from dynamic sources such as the Internet and online databases can also be included. Text

retrieval structures divide the retrieval process into three stages: retrieval, processing, and

ranking [226].

Answer Extraction Module Answer extraction is a crucial component of a Question An-

swering system. It generates the answer from the retrieved passages. It accomplishes this by

first generating a collection of candidate answers from the produced passages, followed by a

ranking of those answers using scoring functions.

2.5.1 Question Analysis

The Question Analysis phase has dual objectives. On the one hand, it tries to simplify the re-

trieval of question-relevant documents, for which a Query Formulation module is frequently

used to build search queries. On the other hand, it is anticipated that using a Question Classi-

fication module to forecast the type of the provided question, which results in a collection of

expected answer types, would improve the performance of the Answer Extraction step. Query

Formulation often use linguistic techniques such as POS tagging, stemming, parsing, and stop

word removal, to extract retrieval keywords. However, the phrases used in questions are fre-

quently different from those in the documents containing the correct answers. This problem,

known as “term mismatch”, is a long-standing and crucial issue in Information Retrieval (IR)

[9]. A simple illustration of this stage is given in the leftmost grey box of Fig 2.15.

Question/Query Expansion

To address the “term mismatch” problem, query expansion [227] and paraphrasing tech-

niques [228, 229, 230, 231], are often designed to produce additional search words or

phrases so as to retrieve more relevant documents. This subsection explains recent ques-

tion expansion (reformulation) approaches proposed for QA systems. According to GOLDEN

Retriever [232], the query reformulation task can be recast as an MRC task because they both

take a question and some context documents as inputs and aim to generate natural language

strings as outputs. The query expansion module in GAR [233] is built using a pre-trained

Seq2Seq model BART [92] to take the original query as input and generate new queries. The

model is trained with various generation targets: the answer, the sentence containing the

2.5. QUESTION ANSWERING (QA) SYSTEMS 57

Figure 2.15: An illustration of traditional architecture of a QA system [9].

answer, and the passage title. Some other works generate dense representations to be used

for searching in a latent space. For example, Multi-step Reasoner [234] employed a GRU

[60], taking token-level hidden representations from MRC and the question as input to gen-

erate a new query vector. The new query vector is then trained using Reinforcement Learning

(RL) by comparing the extracted answer to the ground-truth. Xiong et al. [235] uses a pre-

trained masked language model (such as RoBERTa [89]) as its encoder, which concatenates

all previous passages and the question representation to encode a dense query.

2.5.2 Machine Reading Comprehension (MRC)

Machine reading comprehension (MRC) is a fundamental task of textual question answering

(QA), in which each question is given a related context from which to infer the answer [236]

(step 3 in Fig. 2.14). The purpose of MRC is to extract the correct response from a given con-

text or construct a more comprehensive answer based on the environment. MRC provides the

potential to bridge the gap between human and computer interpretation of natural language.

The breakthrough of the sentence encoder, from the basic LSTM to the pre-trained transformer-

based model [237], which has significantly improved the performance of all MRC models, is

essential to the advancement of MRC research. Moreover, the attention mechanisms between

the context and the question might result in improved performance for neural network-based

models [238]. Moreover, approaches such as answer verification [239], multi-hop reasoning

[240], and synthetic data augmentation might be useful.

Traditional reading comprehension question answering systems rely on a pipeline of NLP

58 CHAPTER 2. Background and Literature Review

models that heavily employ language annotation, structured world knowledge, semantic pars-

ing, and other NLP pipeline outputs [241]. The availability of large-scale benchmark datasets

and the capacity to train large-scale end-to-end neural network models have contributed sig-

nificantly to the recent advancements in machine reading comprehension. Children’s Book

Test [242] and CNN/Daily Mail [241] are the first large-scale datasets for reading compre-

hension tasks. These datasets, however, are cloze-style, where the objective is to anticipate

the missing word (typically a named entity) in a text. In addition, Chen et al. demonstrated

that these cloze-style datasets need less reasoning than was previously believed [243]. The

SQuAD benchmark dataset is more difficult than previous benchmark datasets, with the goal

to extract an arbitrary answer span from the original text.

The key to the MRC task is incorporating the question context into the paragraph, in which

attention mechanism is most widely used. Despite a variety of model structures and attention

types [244, 245, 238, 246, 247], a typical attention-based neural network model for MRC

encodes the symbolic representation of the question and passage in embedding space, then

identifies answers with specific attention functions in that space. Regarding question and

passage attention or matching approach, these attention-based models are classified into two

main groups: one-way and two-way attention. Hermann et al. are the first to use attention-

based neural network approaches to the MRC problem and to introduce an attentive reader

and an impatient reader by utilizing a two-layer LSTM network [241]. Chen et al. [243]

construct a bilinear attention function based on the attentive reader that demonstrates higher

performance on the CNN/Daily Mail dataset. However, a portion of the information may be

lost while summarising the question, and it is more appropriate to focus on the question and

passage terms with more precision.

The two-way attention model therefore decomposes both the question and the passage

into their respective word embeddings and computes the attention in a two-dimensional mat-

rix. The majority of top-ranked SQuAD approaches are based on this attention mechanism

[246, 248, 249]. Cui et al. [244] and Xiong et al. [249] introduce the co-attention method

to improve the coupling between the question and document representations. Seo et al. pro-

pose a bi-directional attention flow network to capture relevance at various granularity levels

[238]. Further, Wang et al. [246] provide the self-attention method to modify the repres-

entation by comparing the passage against itself in order to better capture the global passage

information. Huang et al. provide a fully-aware attention mechanism with a unique idea of

word history [248]. Wang et al.[250] propose a hierarchical attention network that leverages

2.5. QUESTION ANSWERING (QA) SYSTEMS 59

both co-attention and self-attention mechanisms in different layers to capture the relevance

between the question and passage at various granularities. In contrast to the aforementioned

techniques, they developed a fusion function that combines the aligned representation with

the original representation from the preceding layer inside each attention.

With the use of BERT Reader, Dense Passage Retrieval [251] estimates the likelihood that

a passage contains the answer and the probability that the token is the beginning and end

of an answer span. It then selects the most probable answer based on what it calculates.

Readers are often developed as graph-based systems to extract answer spans from passages

[252, 253]. For example, in Graph Reader [253], the graph is used as input, and Graph

Convolution Networks [254] are primarily used to learn the passage representation before

pulling the answers from the most probable span. In DrQA [255], various features, such as

POS, named entities (NE), and term frequencies (TF), are extracted from the context. The

multilayer Bi-LSTM then predicts the span of the answer based upon the inputs, the question,

and the paragraphs. As part of this process, argmax is applied across all answer spans to

get a final average of answer scores across paragraphs using an un-normalized exponential

function. BERTserini [146] provides a reader that works on BERT by removing the softmax

layer, which allows for comparison and aggregation across different paragraphs. A Shared

Normalization mechanism modifies the objective function and normalizes the start and end

scores across all paragraphs to achieve consistent performance gains [256]. This mechanism

eliminates the problem of unnormalized scores (e.g. exponential scores or logit scores) for all

answer spans.

2.5.3 Open-domain QA vs Closed-domain QA

The QA system can be categorized based on the domain of knowledge that they have, the

Question types that they answer, or the input knowledge sourced type Fig 2.16. In this section

the QA systems are studied based on their domain of knowledge (open-domain and closed-

domain). In closed-domain QA, the focus is on a particular domain of interest where the goal

is to retrieve answers to questions within that domain. Instead the term Open-domain refers

to systems whose purpose is to answer questions about “anything” [257].

History of Open-domain Textual QA START became the first knowledge-based question-

answering system on the Web in 1993 [258], and since then responded to millions of ques-

tions from Web users across the world. In 1999, the QA track was added to the 8th TREC

60 CHAPTER 2. Background and Literature Review

Figure 2.16: Aspects of the landscape and types of the QA systems: (1) Domain of Knowledge

(2) Type of Question (3) Type of Knowledge Source

events [259]. At the 38th ACL conference, the following year, a specific discussion subject

entitled “Open-domain Question Answering” was introduced. Since then, the open-domain

QA system has become a popular topic of discussion in the research world. With the intro-

duction of structured KBs such as Freebase [260], several works, such as WebQuestions [261]

and SimpleQuestions [262], have advocated constructing QA systems with KBs. The breadth

of these techniques is restricted to the ontology of the KBs; nonetheless, they often achieve

high accuracy and almost complete the task for simple questions [263]. In addition, there are

pipelined QA strategies that utilise a multitude of data resources, including as unstructured

text collections and structured KBs. ASKMSR [264], DEEPQA [265], and YODAQA [266] are

the landmark methods. The triumph of IBM Watson [265], who won the Jeopardy! game

show in 2011, represents a milestone in this field. This complex system utilised a hybrid

design that included technology from IR, NLP, and KB. Recent years have seen the emergence

of NLP-based QA systems that can directly perform end-to-end processing of unstructured text

sequences at the semantic level using a neural network model [267]. This is made possible by

the advent of deep learning. DrQA [255] was the first neural network-based model for open-

domain textual QA. On the basis of this paradigm, many end-to-end textual QA models, such

as R3 [268], DS-QA [256], DocumentQA [247], and RE3QA [269], have been presented.

2.5. QUESTION ANSWERING (QA) SYSTEMS 61

Why Deep Learning for Open-domain Textual QA Understanding the motivation behind

these techniques for open-domain textual QA is advantageous. Why must we employ deep

learning techniques to develop open-domain textual QA systems? What are the benefits of

architectures based on neural networks? In this part, the aforementioned questions will ad-

dressed in order to demonstrate the following strengths of deep learning-based QA models:

• Automatically learn complex representation: There are two benefits to using neural

networks to learn representations: (1) It decreases the amount of labor required to

hand-craft feature designs. Deep learning provides autonomous feature learning from

uncontrolled or supervised raw data [270]; while, feature engineering is a labor-intensive

process. (2) Unlike linear models, neural networks can describe non-linearity in data

using activation functions like Relu, Sigmoid, Tanh, etc. This characteristic enables the

capturing of complicated and sophisticated user-item interaction patterns [270].

• End-to-end processing: Many QA systems in the early years depended significantly on

the question and answer templates, which were largely manually produced and time-

consuming. Later, the majority of QA research embraced a pipeline of conventional NLP

approaches, such as semantic parsing, part-of-speech tagging, and co-reference resol-

ution. This might result in the error propagating across the entire process. Neural

networks, on the other hand, offer the benefit that several building blocks may be com-

bined into a single (huge) differentiable function and trained end-to-end. In addition,

models at various phases can share learned representations and benefit from multitask

learning [271].

• Data-driven paradigm: Deep learning is fundamentally a statistical discipline, and

one of its inherent properties is that it follows a data-driven paradigm. In other words,

neural networks can learn statistical distributions of features from vast amounts of data,

and the model’s performance may be continuously enhanced as additional data are

employed [272]. This is crucial for open-domain textual QA, as it often covers a wide

variety of domains and a large text corpus.

Open-domain Deep Learning Approaches Lin et al. [256] developed a distantly super-

vised open-domain QA model that utilises an information retrieval-based paragraph selector

to filter out noisy paragraphs and a paragraph reader to extract the correct answer using a

multi-layer long short-term memory network. Yang et al. [146] demonstrated an end-to-end

62 CHAPTER 2. Background and Literature Review

question answering system that integrates a BERT-based reader with the open-source Anserini

information retrieval (IR) toolkit to identify answers from a large corpus of Wikipedia articles

in an end-to-end fashion. Karpukhin et al. [251] focused on establishing the optimal training

procedure utilising a sparse set of question and passage pairs. They designed retrieval solely

through dense representations, with embeddings learnt from a modest number of questions

and passages using a simple dual-encoder system. Seo et al. [273] introduced Dense-Sparse

Phrase Index (DENSPI), an indexable query-agnostic phrase representation model for real-

time open-domain QA on SQuAD. In their model, phrase representation combines dense and

sparse vectors based on BERT and term-frequency-based encoding, respectively. Qu et al.

[274] proposed an open-retrieval conversational QA (ORConvQA) containing a retriever,

reranker, and a reader that are all based on fine-tuned BERT and ALBERT based encoders

and decoders. They evaluated their model on the OR-QuAC dataset they created for conver-

sational QA. Soni et al. [275] evaluated the performance of various Transformer language

models when pre-trained and fine-tuned on different combinations of open-domain, biomed-

ical, and clinical corpora on two clinical QA datasets. They conducted experiments and found

that an initial fine-tuning clinical BERT on an open-domain dataset, SQuAD, improves the

clinical QA performance.

Closed-domain Approaches Fu et al.[276] introduced a QA system for music using the

database ontology knowledge and proposed two approaches to retrieve an answer, the FAQ

module, and ontology knowledge. If the answer for the question could not be found in the

FAQ module, the system will scan the ontology knowledge base for the appropriate answer by

the following steps: question classification, question analysis, and answer extraction. Bhoir

et al. [277], proposed a closed-domain QA system for the “Tourism” domain. After pre-

processing, sentences containing any number followed by “km”, “miles” will be considered as

ace sentences and if the question is related to the distance then an accurate answer will be

given. Lende and Raghuwanshi [278] proposed a system for closed-domain QA for user quer-

ies related to education. An index term dictionary was created for the keywords extracted

from a corpus created for the education domain. To obtain the relevant answer, they apply

Part-of-speech (POS) tagging to all the filtered documents to find the suitable answer, which

contains the same sense as the query. Sarkar et al. [279] developed a knowledge-based QA

system, which only understands predefined insurance-related queries. In the first step, the

Apache OpenNLP tool is used to detect the query’s subject-to-predicate triplets, and then rel-

evant content was retrieved and ranked using matching criteria (query sentence similarity,

2.5. QUESTION ANSWERING (QA) SYSTEMS 63

sentence length, relative word importance, etc.). Badugu and Manivannan [280] created a

closed-domain question answering framework for “Hyderabad Tourism” based on rule-based

classification and similarity measures. The corpus is preprocessed, divided into sentences,

and then grouped into various inquiry types such as What, Where, Who, and When. Sentence

retrieval is conducted, based on the question category, and their vectors are generated based

on the term frequency and the inverse document frequency of the term. The Jaccard sim-

ilarity score determines the final answer for each question. A BERT-based clinical question

answering system was proposed by Rawat et al. [281], using fine-tuned BERT on medical

corpora. Entity-level clinical concepts were integrated into the BERT architecture using the

Enhanced Language Representation with Informative Entities (ERNIE) framework. ERNIE

extracts contextualized token embeddings using BERT and generates entity embeddings us-

ing a multi-head attention model. Godavarthi and Sowjanya [282] built a closed-domain QA

system that answers queries from the COVID-19 open research data set (CORD-19). They

fine-tuned a BERT model for self-supervised learning of language representations (ALBERT)

[90] for retrieving all COVID relevant information to the query. Cai et al. [283] proposed an

integrated framework for answering Chinese questions in restricted domains by modeling the

question pair, comparing the input question to the existing question, and then identifying the

answer output.

2.5.4 Multi-hop QA

Multi-hop question answering requires models to gather information from different parts

of a text to answer a question. Most current approaches learn to address this task in an

end-to-end way with neural networks, without maintaining an explicit representation of the

reasoning process [284]. Rapid progress has been made on multi-hop QA systems with regard

to standard evaluation metrics, including EM and F1 [285]. The multi-hop recent works

can be divided into two categories, the approaches based on graph Neural Network and

hierarchical Coarse-to-Fine modeling approaches.

Graph Neural Network Recent research on multi-hop QA builds graphs based on entities

and uses graph neural networks to reason over the generated graph [286, 287]. MHQA-GRN

[288] and Coref-GRN [289] built an entity graph via co-reference resolution or sliding win-

dows. Entity-GCN [290] considered three distinct types of edges that connect entity graph

entities. HDE-Graph [291] extended the entity graph with document nodes and interactions

64 CHAPTER 2. Background and Literature Review

between documents, entities, and answer candidates by adding document nodes. Cognitive

Graph QA [292] used an MRC model to predict answer spans and likely next-hop spans be-

fore organising them in a cognitive graph. DFGN [293] built a dynamic entity graph in which

irrelevant entities are softly masked away after each reasoning step and a fusion module is

intended to improve the interaction between the entity graph and documents. SAE [294] pro-

posed three types of edges in the sentence graph depending on the named entities and noun

phrases present in the query and sentences. C2F Reader [295] employed graph attention or

self-attention on an entity graph and claimed that this graph is not always required for multi-

hop reasoning. Asai et al. [252] presented a new information retrieval-focused graph-based

recurrent technique for identifying evidence documents as reasoning paths. Fang et al. [296]

presented a method that generates a hierarchical network, probing interactions on multiple

granularities and utilizing distinct nodes to conduct distinct tasks.

Hierarchical Coarse-to-Fine Modeling Prior work on hierarchical modelling for question

answering relied mostly on a coarse-to-fine structure. Choi et al. [297] suggested using

reinforcement learning to first identify relevant sentences and then generate answers based

on these sentences. Min et al. [298] explored the minimal context necessary to answer a

question and find that the vast majority of questions can be answered with a small number

of sentences. Swayamdipta et al. [299] built lightweight models and merged them into a

cascade structure to derive the answer. Zhong et al. [300] suggested utilizing hierarchies

of co-attention and self-attention to aggregate information from evidence across multiple

documents.

2.6 Summary

The NLP and deep learning concepts related to the problem scenario in this thesis have been

presented in this chapter. The approach and related works in text generation using GAN and

VAN, different automatic text summarisation approaches, and various QA systems have been

described in detail. In text generation, a key barrier is a language’s inherent characteristics,

such as syntax, grammar, and semantic aspects. The model must learn the correct connection

between words and characters to generate a viable text, commonly accomplished through

various memories and situations (prior knowledge). Such issues can be addressed in a more

robust pre-learning step, in which pre-trained embedding models BERT [237], A lite bert

for self-supervised learning of language representations (ALBERT) [90], ELECTRA [91], or

2.6. SUMMARY 65

GPT-2 are combined with transformer-based seq2seq architectures to be capable of generat-

ing plausible “natural” language text. Transformer-based GANs incorporating contextualized

pre-trained language models and stepwise evaluation are blank spots that still need to be

appropriately addressed for text generation, which has been presented in this thesis. In this

chapter, recent query-based text summarisation approaches have been studied to examine

their ability to be used for question-driven text summarisation. The main goal in query-based

text summarisation approaches is to summarise the retrieved relevant information to the

query, but in the question-driven text summarisation, answer detection and explaining that

answer in a summarised form is desired. Furthermore, the query-based text summarisation

approaches are not adaptable for the question-driven summarisation problem.

Chapter 3

A Hybrid Extractive-Abstractive

Question-driven Summariser Model

3.1 Introduction

An overview of the proposed hybrid text summarisation approach for generating question-

driven extractive-abstractive summaries is presented in this chapter. The inputs are a text

document and a question as depicted in Fig. 3.1. A high-level introduction to the proposed

model is presented in this chapter and more details are provided in chapter 4 and chapter 5.

An open-domain multi-hop QA system is developed to select the answer sentence and

extract the supporting sentences for the answer sentence and generates the question-driven

extractive summary. To generate high-quality summaries for human consumption, a novel

paraphrase generation and sentence fusion model is proposed to rewrite the sentences of the

extractive summary and construct a question-driven abstractive summary. In a nutshell, in

the proposed novel framework, the advantages of both extractive and abstractive models are

exploited. The novel extractive model automatically selects the most appropriate sentences

from the document that conveys non-redundant and important information to the question.

Subsequently, the novel paraphrasing model based on GAN and transformers followed by a

fusion method generates high-quality abstractive summaries so that the resulting summaries

are coherent and readable.

As mentioned above, a key advantage of the model is that the extractive phase helps

remove redundant information which not only helps improve the quality of the summary

generated by the abstractive summariser but also makes it efficient because the abstractive

66

3.1. INTRODUCTION 67

Figure 3.1: The proposed hybrid question-driven text summarisation framework.

phase does not have to deal with a large amount of data. In the subsections below, the

overall proposed models for extractive and abstractive question-driven text summarisation

are described.

3.1.1 Question-driven Extractive Model (Ex-MhopQA)

A question-driven extractive summariser has been proposed based on an open-domain multi-

hop QA system with the name Ex-MhopQA comprising a sentence-level MRC method and

reasoning process. The MRC and reasoning components are named A-MRC and LCSS which

have been explained below. Candidate Answer Identifier, CNN and multi-head attention-

based answer selector and Question Expansion module are MRC components in the multi-

hop QA. The Candidate Answer Identifier module is introduced with six functions based on

linguistic and syntactic features and patterns for reducing the document to sentences (can-

didate answer sentences) that could answer the given question. A joint CNN and multi-head

attention neural network is designed to analyse and assign a score to each candidate answer

sentence based on its relevance to the question. The CNN-attention layer calculates the relev-

ance score based on the correlation of the semantic features extracted from the question and

68 CHAPTER 3. Methodology

the candidate answer sentence. If the selected answer sentence score calculated by MRC com-

ponent is less than Θ, the question expansion module generates paraphrased questions until a

candidate answer achieves a score greater than Θ. A lightweight hybrid question expansion is

designed based on contextualized embedding and lexical resources (WordNet) that replaces

some question keywords with domain-related synonyms to generate paraphrased questions.

After selecting the answer sentence, an unsupervised reasoning process (LCCS reasoning pro-

cess) based on Lexical Coverage and Contextualized Similarity is proposed for selecting sup-

porting sentences (justification sentences). All the sentences in the document are considered

as the candidate justifications sentences, and those candidates that are closest to the question,

answer sentence, and selected justification sentences in the embedding space are selected. A

pre-trained BERT and cosine similarity are utilized for measuring the semantic similarity of

the candidate justification sentences, the answer sentence, and the question. Also, the lexical

coverage of each candidate justification sentence with the answer and the question is cal-

culated and included in the overall score for finding the correct justification sentences. The

LCSS reasoning process helps to select appropriate, relevant sentences explaining the answer

sentence and then constructs the final extractive summary. The overall framework of de-

signed extractive Ex-MhopQA model is shown in Fig. 3.1. The proposed model is designed to

require minimum supervision with the capability of being fine-tuned utilising a small training

dataset and being adaptable to different domains. The training procedure for A-MRC model

and Para-GAN is designed in two stages. The model will be pre-trained using a large dataset

once and be ready to be fine-tuned with small and specialised domain datasets in the second

stage.

The justification sentences and answer sentence are rearranged according to their ori-

ginal indexes in the given document to bring coherence in the selected sequence of sentences

and generate the question-driven extractive summary. The Ex-MhopQA question-driven ex-

tractive model is different with extractive query-based summarisaton models described in the

chapter 2. The main goal in query-based text summarisation approaches is to summarise the

retrieved relevant information to the query, but in the question-driven text summarisation,

answer detection and explaining that answer in a summarised form is desired which the Ex-

MhopQA is designed based on this strategy. Furthermore, the query-based text summarisation

approaches are not adaptable for the question-driven summarisation problem.

3.1. INTRODUCTION 69

3.1.2 Question-driven Abstractive Model (QParaSum)

The proposed question-driven abstractive model based on paraphrasing is named QParaSum.

A paraphrase and sentence fusion framework are proposed to transform the generated ex-

tractive summary to an abstractive summary. The proposed paraphraser and sentence fusion

framework are named Para-GAN and PG-fusion respectively. The input to this novel model is

the extractive summary that is obtained in the previous stage. The details of this framework

are presented in the chapter 5. The trained Para-GAN model is used for regenerating the

extractive summary and then the paraphrased sentences are analysed to detect the singletons

and pairs of sentences to be used in the fusion step.

For rewriting the extractive summary and generating summaries close to human-generated

ones, it has been found that GANs are suitable to handle this task because of their ability to

generate new samples. The Para-GAN model is based on GAN, transformers, and Q-leaning

which evaluates the generated sub-sequence in every step by calculating a score. After regen-

erating the extractive summary and producing the paraphrases, the next sentence prediction

task is utilized to detect the sentence pairs and singleton sentences to find out which sentences

could be merged. The PG-fusion fusion model based on Pointer Generator networks [10]

consumes the sentence pairs and merges these sentences to improve the generated summary

while singleton sentences remained in their paraphrased form. Pointer generator networks

are applied to solve various combinatorial optimization and combinatorial search problems.

Pointer networks can be said to be derived from the attention mechanism and its potential has

been utilized for sentence fusion in the model. In the last step, a question-driven abstractive

summary comprising the compressed paraphrased sentences originating from the generated

extractive summary is produced. As a result of designing a hybrid question-driven text sum-

marisation model, both question-driven extractive and abstractive summaries are generated

as outputs.

The existent abstractive approaches described in chapter 2 are mostly based on RNN and

LSTM are not efficient due to using recurrent units and those approaches based on a beam

search may not result in an optimal goal and may not even reach a goal at all. The abstract-

ive approaches based on policy gradient have a major disadvantage. A lot of the time, they

converge on a local maximum rather than on the global optimum. In comparison to the deep

Q-learning, which always tries to reach the maximum, policy gradients converge slower, step

by step and they can take longer to train. Regarding the mentioned reasons and drawbacks

in the existing approaches, a transformer-based GAN with Q-stepwise evaluation for the ab-

70 CHAPTER 3. Methodology

Figure 3.2: The experiments for proposed question-driven extractive model

stractive part is designed, which regenerates and rewrites the generated extractive summaries

and produces reliable abstractive summaries. Using transformers architectures with GAN and

applying stepwise evaluation for generating text is an unexplored architecture which has been

studied in this thesis.

3.2 Experiment Procedure

In this section the detailed experiment procedure designed for extractive and abstractive

stages is described. The generated extractive and abstractive summaries are evaluated based

on comparison with reference summaries (human-generated summaries) and results of the

baseline methods. Ablation studies are designed to investigate the performance of the Ex-

MhopQA and QParaSum models by removing certain components to understand the contri-

bution of the component to the overall system. For the extractive Ex-MhopQA model, not only

the overall model performance for the generated summaries are evaluated but also the gen-

erated answers by the multi-hop QA are compared with strong comparative models, shown

in Fig. 3.2 . The A-MRC method is evaluated separately with and without certain compon-

ents for both open-domain and closed-domain sentence-level QA. The A-MRC and Candidate

3.3. EVALUATION METRICS 71

Figure 3.3: The experiments for proposed question-driven abstractive model

Answer Identifier performance for different question categories are examined and reported

in chapter 4.

The abstractive QParaSum model is evaluated by comparing the generated abstractive

summaries to the reference summaries and different strong baseline methods, depicted in

Fig. 3.3. The paraphraser Para-GAN and PG-fusion fusion model are evaluated separately to

validate their performance and effectiveness in the framework as well as the unified question-

driven abstractive QParaSum summariser.

3.3 Evaluation Metrics

In this section, the evaluation metrics used for evaluating the model and its components are

described.

MRC evaluation metrics

Two metrics are adopted including Exact Match (EM) and F1 scores to evaluate the MRC

model. The EM score determines the percentage of predictions that perfectly match the

ground truth answer, and the F1 score demonstrates the average overlap between the pre-

diction and the ground truth answer.

72 CHAPTER 3. Methodology

Multi-hop evaluation metrics

F1m, F1a, and EM evaluation metrics introduced in [301] are used for evaluating the open-

domain multi-hop QA.

Paraphrase generation evaluation metrics

Some automatic metrics are used to evaluate the paraphraser model (Para-GAN) framework

and compare it with other methods.

• BLEU4 [109] is the most widely used evaluation metric in paraphrase generation. This

approach works by counting matching n-grams in the generated sentence and the ref-

erence sentence.

• METEOR [302] metric is based on the harmonic mean of unigram precision and re-

call, with recall taking precedence over precision. Along with the basic precise word

matching, it also offers other features which are not found in other measures, such

as stemming and synonym matching. METEOR was designed to address some of the

flaws in the BLEU metric while also producing a high level of correlation with human

judgement at the segment or sentence level.

Sentence fusion evaluation metrics

For sentence fusion evaluation, the BLEU4, METEOR (described above), are used and addi-

tionally, the mean Compression Ratio (CR) of the generated sentence fusions is also reported.

It is a measure of how concise the generated sentence fusions are with respect to the input

sentences. For a given set of input sentences {S1, S2, ..., Sn}, let S be a generated sentence

fusion, then CR(S) is defined:

CR(S) =
Count(deletedtokens)

Count(inputtokens)
(3.1)

Question-driven text summarisation evaluation metrics

The proposed extractive framework is evaluated by ROUGE metric [122], it compares an auto-

matically generated summary with a set of human-produced summaries. ROUGE-N meas-

ures unigrams, bigrams, trigrams, and higher-order n-grams overlap. ROUGE-L utilizes the

Longest Common Subsequence method (LCS) to determine the longest matching sequence of

3.4. SUMMARY 73

words. A predefined n-gram length is not required since it automatically contains the longest

in-sequence common n-grams.

3.4 Summary

In this chapter, an overview of the proposed extractive (Ex-MhopQA) and abstractive (QPara-

Sum) summarisers, experiment procedures, datasets, and evaluation metrics are described.

The extractive Ex-MhopQA summariser is a multi-hop QA that comprises an MRC (A-MRC)

model and a reasoning process (LCSS). The A-MRC model contains three components, the

Candidate Answer Identifier, answer sentence selector, and Question Expansion compon-

ent. The QParaSum summariser contains a paraphraser (Para-GAN) and a fusion model

(PG-fusion). Compared to the existing hybrid text summarisation methods, the proposed

model is significantly different in several ways. It consists of two main components, an ex-

tractive summariser and an abstractive summariser. First, an extractive summary is gener-

ated using the proposed Ex-MhopQA by filtering the irrelevant information and feeding the

pruned information to the abstractive component. Then, the Para-GAN paraphraser and PG-

fusion fusion model are designed to transform the extractive summary into an abstractive.

A transformer-based GAN with Q-stepwise evaluation is designed for the abstractive part,

which regenerates and rewrites the generated extractive summaries and produces reliable

abstractive summaries. The performance of the components is evaluated by conducting ab-

lation studies to understand the component’s contribution to the overall system and their

performance independently.

Chapter 4

Question-driven Extractive Model

4.1 Introduction

A question-driven summary must satisfy three goals: answerability, understandability, and

persuasiveness. For question-driven summarisation, answer detection and the reasoning on

the detected answer are needed. The extractive model selects the answer sentence and its

supporting sentences, which provide details or explanations for the answer sentence.

A novel open-domain multi-hop QA model based on a CNN and multi-head attention

mechanism is designed to comprehend the document and question for constructing the question-

driven extractive summary. The multi-hop QA comprises a sentence-level Machine reading

comprehension (MRC) method and reasoning process. MRC is the core task for textual QA,

which aims to infer the answer to a question given the related context [303]. The answers

could be sentences or paragraphs, or even n-grams. In practice, sentences are a good size

to present a user with a detailed answer. For instance, given the question “Why is the Pf-

izer vaccine better than Sinovac?”, one would expect the answer in one or two sentences

rather than a single phrase. The task is more challenging compared to others in informa-

tion retrieval (IR) [304], where the goal is to retrieve a ranked list of relevant documents.

Candidate Answer Identifier (CAI), CNN and multi-head attention-based answer selector, and

Question Expansion (QE) module are MRC components in the multi-hop QA. The answer se-

lector module measures the semantic dependencies between the local features extracted from

the document’s sentences and question to select the answer sentence.

The goal of proposing the sentence-level MRC method is to have an MRC style adapt-

able QA model that could be used for both open-domain and closed-domain QA. The closed-

domain QA is as important as open-domain QA since many problems could be addressed by

74

4.1. INTRODUCTION 75

building domain-specific QA systems.

For example, technology companies building systems for their call agents to answer user

queries would benefit from a system that uses their internal call records so their call agents

could efficiently get an answer to the questions of their clients. In a further example, students

studying a particular subject would benefit from closed-domain QA systems to help them

answer questions surrounding their syllabus, rather than using a general open-domain QA

system that might retrieve irrelevant answers due to the diversity of topics covered.

Designing an adaptable QA system is challenging because there are a variety of domains,

each with its vocabulary, language syntax, and semantics. Ideally, the same computational

model would be applied in different domains with minimal human supervision to avoid need-

ing tailor-made models for every domain, which would be time-consuming and expensive.

There are systems in both open and closed-domain QA that have used popular pre-trained

neural contextual language encoders such Bidirectional Encoder Representations from Trans-

formers (BERT) [237] and other variants [238, 305]. The language models have achieved

near-human, or even better performance, on popular open-domain QA tasks such as SQuAD

[306]. Despite this progress in open-domain QA, existing models for closed-domain QA

[281, 280, 278, 279, 307] are comparatively less effective and open-domain QA models do

not perform as expected for domain-specific questions. The goal in this chapter is to develop a

Multi-hop QA system that can be easily adapted to open domain and different closed domains.

Closed-domain QA does not typically have large-scale datasets that could help develop a

statistical model and, as a result, many strong open-domain QA models will struggle in closed

domains. Applying statistical learning models on small datasets also introduces the problem

of reliable generalization thus, the fine-tuning process is divided into two steps: 1) transfer to

the task (open-domain training); and 2) adapt to the target domain (closed-domain training).

The first fine-tuning step only needs to be done once, but the second step is required each

time adapting the model to a new domain. To enable the model to focus on question-relevant

sentences, an unsupervised filtering technique is applied to remove those sentences which do

not contain an answer to the question. The model also attempts to rewrite some questions

(determined by a tuned parameter) to make them less ambiguous.

A novel reasoning approach is proposed for analysing the document regarding the detec-

ted answer sentence and searching for relevant supporting sentences based on lexical cover-

age and contextual semantic similarity.

76 CHAPTER 4. Extractive Model

4.2 Proposed Multi-hop QA Approach

The Fig. 4.1 shows the overall framework of the multi-hop QA which generates the question-

driven Extractive summaries.

4.2.1 Adaptable Machine Reading Comprehension Method

In this section, the novel reading comprehension model for sentence-level QA is presented

that can be utilized for open-domain and tuned with a small training dataset for various

closed domains. CAI module is based on syntactic and linguistic rules has been introduced

to reduce the context to the sentences that could contain the answer for the given question

(candidate answer sentences). A neural network based on CNN and multi-head attention

mechanism is designed to analyse and score the candidate answer sentences. The novelty

lies in obtaining different levels of contextual understanding of context sentences and the

question by extracting important semantic features and their correlations. The CNN-attention

layer assigns a relevance score for each candidate answer sentence selected by the CAI. Also,

a QE module is introduced for rewriting ambiguous questions shown in Fig. 4.4, which in

spirit, is close to the query expansion technique in Information Retrieval. The key advantage

of this module is that it rewrites the question and produces paraphrased versions to help

the system select the answer sentence with more confidence. The proposed adaptable MRC

method based on CNN and multi-head attention mechanism is called A-MRC.

CAI

Unlike previous approaches, the irrelevant content from context P is filtered out to improve

the results. The co-reference resolution is not applied prior to filtering in this component, the

linguistic features for each sentence are analysed to determine its capability for answering

different question categories (When, Where, Who, What, Why, How). A strategy is developed

to classify the context sentences into question categories to facilitate the answer selection.

To this end, a popular tool called Giveme5W1H [308] is used, an open-source system that

uses syntactic rules to automatically extract the relevant phrases from English news articles

for answering the 5W1H questions. The advantage of this tool is that it can be customized

towards one’s needs. Since the main goal is identifying candidate answers for each question

category, different components in Giveme5W1H functions have been customized. New meth-

ods and rules are designed to improve and adapt the Giveme5W1H for candidate answer

4.2. PROPOSED MULTI-HOP QA APPROACH 77

Figure 4.1: The overall framework of the proposed multi-hop QA system for an example

“What” question.

78 CHAPTER 4. Extractive Model

selection since the Giveme5W1H does not cover all the syntactic rules for “Why”, “What”,

and “Where”. The methods and rules indicated in this section are based on the Giveme5W1H

methods which have been evolved by the cognitive process of answering wh-questions stud-

ied from different sources [309, 310, 311, 312, 313, 314]. A new parser function is used for

finding all types of date-time named entities (NEs) for “When”. Additional methods are added

to Giveme5W1H to support all types of “How” questions such as “How many”, “How much”

and “How”. Six independent identification functions are performed to retrieve the candid-

ate answers for the six (5W1H) categories. The candidate answer identifier module uses the

Giveme5W1H preprocessing steps, gets the context as input, and splits it into sentences to

process them separately. After checking all the rules and methods for each sentence, it will

be added to correspondent categories, and in the end, a list of candidate answers for each

question category will be prepared. More details on different rules and how they have been

incorporated into the candidate answer identifier module are mentioned below and depicted

in Fig. 4.2.

• When: For detecting all types of temporal NEs including all formats of DateTime, dura-

tion, etc the dateparser1 python package have been added, as well as using SUTime[315]

which is used in Giveme5W1H.

• Where: Giveme5w1H only looks for sentences containing tokens classified as NEs of the

type Location. A new method searching for movement verbs like “go”, “move”, “run”,

“jump”, “bolt”, and others, following by a preposition (“to”, “toward”, etc.) is used to

point to a location.

• Who: In Giveme5W1H, the sentences that have the subject are considered as “who”

candidate answers. The first noun phrase (NP) that is a direct child to the sentence

in the parse tree and has a verb phrase (VP) as its next right sibling is the sentence

subject. The sentences containing Person or Organization NEs are considered as “who”

candidate answers which are missed in the original Giveme5w1H.

• What: In Giveme5W1H, the “who” candidates that a VP is the next right sibling in

their parse tree are considered as “what” candidates. This function has been extended

because the original function does not reliably work on many “what” candidate answers.

An extra function is added to select sentences as the candidate answers for “what”;

1https://github.com/scrapinghub/dateparser

https://github.com/scrapinghub/dateparser

4.2. PROPOSED MULTI-HOP QA APPROACH 79

however, the order of tags is not important. The pattern that needs to be looking for is

(Noun+V erb∗Preposition∗Adjective∗).

• Why: In Giveme5W1H, sentences containing causal conjunctions (“due to”, “result of”,

“because” and “effect of”), causative adverbs (“therefore”, “hence”, and “thus”), causat-

ive verbs (“activate”, “implicate”, “make to”, etc.) are considered as “why” candidates.

Two syntactical rules are added for covering all “why” candidate answers. The sen-

tences containing the following sequence(s) are “why” candidate answers. The patterns

that should be looking for are:2

(“to+ V B + IN∗ +NN/NNS/NNPS/NNP/PRP”)

(“for + V BG+ IN∗ +NN/NNS/NNPS/NNP/PRP”).

• How: Giveme5W1H proposed a combined method consisting of two subtasks, one analysing

copulative conjunctions, the other looking for adjectives and adverbs of manner for the “How”

category. An extra method is added to search for Money NEs, Percent NEs, or numbers as the

candidate answers for “How many” and “How much”.

The candidate answer sentences list for questions that do not belong to the 5W1H categories

contains all the context sentences.

CNN-Attention based Answer Selector

Given the question q, represented as a sentence, there are K possible candidate answers

CA1, CA2, · · · , CAk which are present in the accompanying context P associated with the q.

Question q with m tokens (q = q1, q2, · · · , qm) and candidate answer sentence CAi with n

tokens (CAi = c1, c2, · · · , cn) are combined together into a single sequence, separated by a

special token [SEP] as the input of the CNN attention layer. The output of BERT is taken only

for the first token [CLS], which is used as the aggregate representation of the sequence. The

semantic representation of q and CAi is derived by using a pre-trained contextual language

model such as BERT or ALBERT for the embedding layer. The advantage is that high-quality

representations are derived, which cannot be obtained using methods such as static word

embeddings [72, 316]. The goal is to obtain a reliable or most plausible answer CAj to the

question q in P . BERT uses a multi-layer bidirectional transformer [67] network to encode

contextualized language representations. Similar to BERT, the ALBERT model introduces

two parameter-reduction techniques to lower memory consumption and increase the training
2VB, VBG, NN, NNS, NNP, NNPS, PRP, and IN stand for base form verb, present participle verb, singular noun,

plural noun, singular proper noun, plural proper noun, personal pronoun, and Preposition or subordinating

conjunction respectively.

80 CHAPTER 4. Extractive Model

Figure 4.2: Processing the context and identifying the candidate answers for each question

category based on linguistic and syntactic patterns and features.

speed of BERT. To calculate the scores for candidate answer sentences, the BERT and ALBERT

pre-trained model are fine-tuned with untrained layers of CNN, pooling, and attention. The

CNN and multi-head attention mechanism focus the model on the most important features

and their correlations when constructing the question and sentence representation.

Convolutional Neural Network

The CNN extracts salient n-gram features from the input sentence to create an informative

latent semantic representation of the sentence for downstream tasks [317]. By using the

convolution-max pooling operation, local contextual information at the word n-gram level is

modeled first. Then, salient local features in a word sequence are combined to form a global

feature vector. Finally, the high-level semantic information of the word sequence is extracted

to form a global vector representation. Finally, the high-level semantic information of the

word sequence is extracted to form a global vector representation.

For each sentence, let ei ∈ Rd represent the word embedding for the ith word in the

sentence, where d is the dimension of the word embedding, and the given sentence has n

words. Convolution is then performed on this input embedding layer. It produces a new

feature by applying a filter K ∈ Rhd of size h on a window of h words. For example, a feature

4.2. PROPOSED MULTI-HOP QA APPROACH 81

ci is generated using the window of words ei:i+h−1 by (4.1).

ci = f(ei:i+h−1.K
T + b) (4.1)

Here, f is a non-linear activation function, for example, the hyperbolic tangent, and b ∈ R is

the bias term. The filter (also called kernel) K is applied to all possible windows (slide over

the entire sentence embedding matrix) using the same weights to create the feature map. The

sentence with length n is divided into {e1:h, e2:h+1, · · · , ei:i+h−1, · · · , en−h+1:n} and perform

the filter on each component. The feature map obtained by filter is shown in (4.2).

c = [c1, c2, ..., ci, ..., cn−h+1] (4.2)

A convolution layer is usually followed by a pooling strategy on each filter to provide

a fixed-length output and reduce the output’s dimension while retaining the most salient

features. The maximum pooling method on each feature map is applied, which gives low

dimensions dominant features, as shown in (4.3).

ĉ = max{c} (4.3)

The ĉ is obtained by one convolution filter along with maximum pooling layer, and a

feature sequence obtained with t convolution filters is shown in (4.4).

Ĉ = [ĉ1, ĉ2, · · · , ĉt] (4.4)

In this stage, important n-gram features of the candidate answer sentence and question

are extracted by CNN, and the generated feature vectors should be concatenated to form the

new global feature vector matrix Y as the input to the attention layer.

Multi-head Attention Layer

The self-attention mechanism primarily focuses on the internal dependence of input [318].

In the A-MRC model, the attention layer calculates the semantic association between the ex-

tracted features from the question and candidate answer sentence to determine the candidate

answer’s relevance score. In each self-attention mechanism, there is a query matrix (Q), a key

matrix (K) and a value matrix (V). The output of the CNN layer, matrix Y , is the the initial

value of query matrix (Q), key matrix (K) and value matrix (V), as shown in (4.5).

Q = K = V = Y (4.5)

82 CHAPTER 4. Extractive Model

Figure 4.3: Multi-head attention structure

Scaled Dot-product Attention (SDA) is the main concept of the self-attention mechanism. It

first computes the similarity by solving the dot product of Q and K, then divides by
√
dk (dk

is the dimension of matrix K) to avoid the dot product result from being too large. The result

is then normalized using the Softmax function before being multiplied by the matrix V to

obtain the expression of attention. SDA operation is depicted in (4.6).

SDA(Q,K, V) = Softmax(
QKT

√
dk

)V (4.6)

The conventional attention mechanism is confined to acquiring attention information from

a single level. Multiple linear transformations are performed to the input feature matrix in the

multi-head attention mechanism to learn the attention representation of the text for obtaining

more comprehensive semantic information [67]. A multi-head attention comprising multiple

self-attention mechanism is employed (shown in Fig. 4.3) to assess the semantic connection

between the key features of the question and candidate answer sentence for determining the

relevance score. Using different parameters Wi
Q, Wi

K , Wi
V to perform linear transformation

is the core idea of the multi-head attention mechanism. Applying the SDA on the linear

transformation results is demonstrated by headi, as shown in (4.9).

headi = SDA(QWi
Q,KWi

K , V Wi
V) (4.7)

Concatenating the computed results head1 to headh creates a matrix that is multiplied by

the parameter W to complete the final linear transformation. H is the attention value of

4.2. PROPOSED MULTI-HOP QA APPROACH 83

the entire sentence, depicted in (4.10), where h is the number of heads in the multi-head

attention mechanism.

H = MultiHead(Q,K, V) = Concat(head1, · · · , headh)W (4.8)

An average pooling is performed on the output matrix of the multi-head attention layer

to obtain the feature vector f for integrated CAi and q. The f is the input through the

fully connected layer to the final softmax layer. In the answer selection task, there are two

classifier labels (similar = 1, dissimilar = 0). The final layer is modified to get the predicted

Score(CAi) for the similar label, as shown in (4.9) and (4.10).

Score(CAi) = P (C = 1|CAi, q) (4.9)

P (C|CAi, q) = softmax(wcf + bc) (4.10)

where wc is the weight matrix, bc is the bias and C is label. All the candidate answer sentences

are ranked based on the obtained scores, and the candidate answer sentence with the highest

score is selected as the answer sentence for the question q. Having more than one sentence

with label 1 is prevented with this method.

Question Expansion

Some questions are more ambiguous or convey less domain-related information than others

[319]. Inspired by research in Information Retrieval, where query terms are expanded with

relevant keywords from the vocabulary, a strategy is developed to use more appropriate terms

if the question does not convey much information to the model. A parameter θ is introduced

where 0 < θ < 1, which is automatically tuned from the data and helps to assess whether

question expansion is needed. If the selected answer sentence score is less than θ, the question

expansion module generates paraphrased versions of the question until a candidate answer

achieves a score greater than θ. A lightweight hybrid question expansion is designed based

on contextualized embedding and lexical resources (WordNet) that replaces some question

keywords with domain-related synonyms. The WordNet is utilised for extracting the expan-

sion terms to minimize the supervision in this component (question expansion) and generate

paraphrased versions of the question with less computational cost. The question keywords

are extracted by POS tagging the question and removing the symbols, stopwords, and NEs to

keep the words most important to the question.

84 CHAPTER 4. Extractive Model

After selecting the keywords, expansion terms are extracted from WordNet considering

the keyword’s role in the question (for example, if the keyword is an adjective, adjective

synonyms are selected accordingly). Thereafter ranking and filtering functions are applied to

choose the most appropriate expansion terms for each keyword.

Question−Keywords = [K1,K2, · · · ,Km] (4.11)

expansion− list = [(K1 : et1, · · · , etw)

, · · · ,

(Km : et1, · · · , etz)]

(4.12)

The domain vocabulary is generated based on the available corpora for the domain and

the expansion terms that do not exist in the domain vocabulary are eliminated from the list,

and the remaining ones are considered for calculating their relevance to the question. The

pre-trained BERT model is trained using the domain-specific corpora to generate domain-

specific embedding vectors for expansion terms and question. The semantic similarity between

question and expansion terms embedding vectors is calculated to keep those terms that are

semantically more related to the question. The expansion terms are ranked regarding their

relatedness to the whole question, and those more semantically related to the question are

retained.

After finalizing the expansion list, each expansion term is transformed to the appropri-

ate form to get the same POS tag as the keyword (for example, if the keyword is plural

Noun(NNS), its expansion term should be the same). Then, each keyword is replaced with

one of the expansion terms to form a paraphrased version of the question that conveys the

same context. The generated paraphrased versions have the same structure as the original

question since only some keywords are replaced with their synonyms. As a result, there is no

need to do grammar checking for the generated versions.

For example, “What are main steps for mitigating the COVID -19 transmission during trans-

port of suspected and confirmed patients?” is a question from the COVID-QA dataset that needs

expansion because its answer sentence score is less than θ. The first step is keyword selection,

{“main”, “steps”, “mitigating”, “transmission”, “transport”, “suspected”, “confirmed”, “patients”}

are the question keywords and their expansion terms are extracted by using WordNet (syn-

onyms with the same role as the keyword are selected for each keyword).

After the first step of domain vocabulary filtering, the list of question keywords and

their domain-related expansion terms are { main(adj): major, primary, principal – transmis-

4.2. PROPOSED MULTI-HOP QA APPROACH 85

Figure 4.4: The overall steps of the QE module for rewriting ambiguous questions.

86 CHAPTER 4. Extractive Model

sion(noun): infection, contagion – transport(noun): transfer – confirmed(verb): corroborate,

affirm, substantiate}.

The second step of the filtering is to measure the expansion terms’ semantic relevance to

the question. The terms with lower relevance (lower semantic similarity) to the question are

filtered for keywords with more than one synonym. The average of the semantic relevance

to the question is calculated for all the keyword synonyms and those obtaining the semantic

relevance more than the average value (α) will remain for the keyword. After this step, the

final list of expansion terms with higher semantic relevance to the question remains {main:

major, primary - transmission: infection - transport: transfer - confirmed: corroborated, affirmed

}. The synonyms are automatically transformed to their appropriate form to get the same POS

tag as the keyword, “confirmed” has the “VBN: present participle” POS tag so its synonyms

are converted to present participle form.

The paraphrased versions for the question are generated by replacing the keywords with

their synonyms. One of the expanded versions of the example question is “What are ma-

jor steps for mitigating the COVID -19 infection during transfer of suspected and corroborated

patients?”.

Replacing the keywords (one adjective, two nouns, and one verb for this example) with

domain-relevant and question-related synonyms generates other versions of the question with

the same meaning. The candidate answers are analysed for the generated paraphrased ver-

sion of the question to find the answer sentence more accurately. The final selected answer

sentence is “HCWs who handle the transport of COVID-19 patients must consider the following

principles: firstly, early recognition of the deteriorating patient; secondly, HCW safety; thirdly,

bystander safety; fourthly, contingency plans for medical emergencies during transport; fifthly,

post-transport decontamination.” with the score 0.72. If the scores for the selected answers

by the paraphrased versions are lower than θ, the answer sentence with the highest score

(among all the selected answers) will be chosen. The question expansion module described

in Algorithm 1 takes a question as input and generates the paraphrased version of the ques-

tion in four steps: 1) keyword detection; 2) expansion terms (synonyms) extraction; 3) filter-

ing inappropriate synonyms; and 4) preparing expansion terms and replacing keywords with

their corresponded synonyms to generate various synonyms of the question.

4.2. PROPOSED MULTI-HOP QA APPROACH 87

Algorithm 1: Question Expansion
Input: Question (q)

Output: Paraphrased versions of Question

question-keywords=Removing stopwords, symbols and NEs(q)

for keyword in question-keywords do

expansion-list.Add(find-synonyms(keyword, WordNet(keyword)))

end for

for term in expansion-list do

if term is not in Vocabulary then

expansion-list.Remove(term)

end if

end for

for keyword in question-keywords do

α=AVG(CosineSimilarity(Emb(q),Emb(keyword.expansion-term(i))) {i in range

Size(keyword.expansion-list)}

{Emb(x) stands for Embedding vector for x}

{With the α, the synonyms which are more semantically related to the question will be selected for each

keyword.}

for term in keyword.expansion-list do

if CosineSimilarity(Emb(q), Emb(term)) < α then

expansion-list.Remove(term)

end if

end for

end for

for expansion-term in expansion-list do

{Preparing the expansion terms} expansion-term=NodeBox English(expansion-term, keyword.POStag)

end for

for expansion-term in expansion-list do

paraphrased-version=Question.Replace(expansion-term, correspondent-keyword)

Question-paraphrased-list.Add(paraphrased-version)

end for

return Question-paraphrased-list

88 CHAPTER 4. Extractive Model

4.2.2 Reasoning Process

To tackle question-driven extractive summarisation, the content selection process should not

be limited to selecting the answer sentence to the given question. It also necessitates human-

like reasoning for considering the content interrelationships thoroughly and meticulously

across the whole document text. In other words, if the focus is only on the answer sentence

for the given question, the resulting summary will likely miss vital information. A reasoning

process based on Lexical Coverage and Contextualized Similarity is proposed for selecting

justification sentences (LCCS reasoning process). All the sentences in the document (D)

are considered as the candidate justifications sentences(JCi), and those candidates that are

closest to the question (q), answer sentence (AS), and selected justification sentences (JSi)

in the embedding space are selected. Pre-trained BERT is utilized for generating the contextu-

alized embedding for the candidate sentences, question, and AS, then the cosine similarity is

calculated to generate a contextualized similarity score. Also, the lexical coverage of the can-

didates with the q, AS, and JSi keywords (unique terms) in 4.13 (X = q,X = AS,X = JSi)

is measured.

C(X, JCi) =
| t(X) ∩ t(JCi) |

max(| t(X) |, | t(JCi) |
(4.13)

| t(X)∩ t(JCi) | is the size of common terms in X and JCi and | t(X) |, | t(JCi) | are the size

of unique terms of X and JCi.

4.3 Experiments

4.3.1 Experimental Dataset

MRC datasets

The MRC method is evaluated for both open-domain and closed-domain QA. The popular

SQuAD [306] dataset is used for open-domain QA experiments. Four closed-domain datasets

are used to verify the performance of the proposed model. Three datasets were derived from

SQuAD collection due to the limited number of closed-domain QA datasets that are publicly

available. The datasets are from three domains with different concepts and different sizes:

Tesla (person); California (region); and European-Union-law (system) referred to as EU-law

in the results. COVID-QA [320], a SQuAD style Question Answering dataset, was added as the

fourth closed-domain dataset for the experiments. The datasets consist of Context-Answer-

Question triples. The Tesla, California, EU-law, and COVID-QA consist of 565, 746, 315, and

4.3. EXPERIMENTS 89

Algorithm 2: Reasoning Process
Input: Question (q), Document (D), Answer Sentence (AS), size of justification set

(J-num)

Output: Set of justification sentences (JS-list) with size J-num

k=1

while (k <=J-num) do

for sentence(JC) in D do

ASq-score=C(AS,JC)+C(q,JC)+CosSimilarity(AS,JC)+CosSimilarity(q,JC)

if (k > 1) then

JS-score=
∑|JS−list|

i=1 C(JSi, JC) + CosSimilarity(JSi, JC)

else

JS-score=0

end if

Score(JC)=ASq-score+JS-score

end for

return JS=(JC with highest score)

JS-list.Add(JS)

end while

return JS-list

90 CHAPTER 4. Extractive Model

2019 questions, respectively, along with annotated answers and context (see Table 4.6).

Multi-hop QA datasets

MultiRC dataset is used for evaluating the proposed open-domain multi-hop QA model. Multi-

sentence reading comprehension (MultiRC) is a reading comprehension dataset administered

via a multiple-choice QA task [301]. Each question is based on a paragraph that comprises

the question’s gold justification sentences.

Question-driven text summarisation datasets

The proposed extractive model is evaluated on three large-scale summarisation datasets, Wi-

kiHow [47], PubMedQA [48], and MEDIQA dataset [49].

• WikiHow is an abstractive summarisation dataset accumulated from the WikiHow community-

based QA website, with each sample consisting of a lengthy article, a non-factoid ques-

tion, and the associated summary as the answer to the question.

• PubMedQA is a biomedical QA dataset derived from PubMed2 abstracts. Each sample

includes a question, an article, and an abstractive answer which summarises the context

corresponding to the question.

• MEDIQA is a dataset comprising 156 consumer-submitted health questions, correspond-

ing articles to these questions, and expert-written summaries of the answers.

4.3.2 Evaluation Metrics

Two metrics including Exact Match (EM) and F1 scores are adopted to evaluate the MRC

model. F1m, F1a, and EM evaluation metrics are used for evaluating the multi-hop QA.

ROUGE-N and ROUGE-L are utilized for evaluating the proposed extractive framework.

4.3.3 Data Pre-processing and Experimental Settings

Since the CAI module is based on Giveme5W1H, pre-processing steps are implemented the

same as Giveme5W1H. The Stanford CoreNLP is used [321] for sentence splitting, tokeniza-

tion, full parsing, POS-tagging, preprocessing, and preparing the context in the CAI module

for candidate answers selection. A two-step training is used for the contextualized CNN-

attention answer selector model: 1) transfer to the task (open-domain training); and 2)

4.3. EXPERIMENTS 91

adaptation to the target domain. Performing a single fine-tuning for closed-domain requires

a large dataset, which is impractical due to the difficulty and cost of collecting training data

specific to that domain. Thus, the first step transfers the model to the target task and prepares

the model for open-domain QA, and the second step can adapt the model to the target closed-

domain with a small training dataset. The Natural Questions (NQ) dataset is utilized [322]

consisting of 300,000 naturally occurring questions, along with human-annotated answers

from Wikipedia pages, to be used for the first step of training. This dataset provides a whole

Wikipedia page for each question which is significantly longer compared to MRC datasets

(e.g. SQuAD). Following Liu et al. [323], multiple document spans are generated by split-

ting the Wikipedia page using a sliding window with the size and stride 512 and 192 tokens

respectively to generate the negative (i.e. no answer) and positive (i.e. has answers) spans.

Then, the positive spans are only preserved (the span containing the annotated short answer)

as the context, and the negative ones were discarded. For both the first and second steps of

training, the question sentence pairs were generated by CAI. For the open-domain QA, only

the first step of training is applicable. After generating the candidate answer sentences for

question categories with CAI, the candidate answer sentence and question pairs were gener-

ated for training the CNN attention-based answer selector. The candidate answer sentence

which contains the annotated answer gets the label 1, and other candidate sentences get label

0. The first fine-tuning step is done only once, and the second step is performed each time

adapting the model to a new domain. The pre-trained BERT base and ALBERT base model

are used for token embeddings, consisting of 12 Transformer blocks with 12 self-attention

heads and the hidden size of 768. There is no analytical formula to calculate an appropriate

value of the hyperparameters to obtain the optimal model parameter. Therefore, tools are

used to automatically tune the model hyperparameters. Hyperparameter optimization is per-

formed using Ray Tune Python library3 with Hyperopt algorithm [324]. Filter size, number

of filters, learning rate, batch size, and theta (QE threshold) hyperparameters were optimized

for each domain shown in Table 4.1. The search spaces are (0,1), {2, 3, 4, 5}, {10, 20, 30,

50 , 100}, {1e-5 , 2e-5, 1e-6, 1e-7, 2e-7, 1e-8, 2e-8, 5e-8}, {4, 8, 16, 32, 64} for θ, filter

size, number of filters, learning rate, and batch size respectively. The optimal combination

of hyperparameters values that maximize the model performance is discovered by the Hyper-

opt algorithm for each time tuning the model for a new domain. The Hyperopt algorithm

utilizes a form of Bayesian optimization and requires the search space, the loss function, the

3https://docs.ray.io/en/latest/tune/index.html

https://docs.ray.io/en/latest/tune/index.html

92 CHAPTER 4. Extractive Model

Table 4.1: Optimal hyperparameters for closed-domain datasets (Tesla, California, EU-law,

and COVID-QA) and open-domain datasets (SQuAD). The search spaces are (0, 1), {2, 3, 4, 5},

{10, 20, 30, 50, 100} {1e− 5,2e− 5,1e− 6,1e− 7,2e− 7,1e− 8,2e− 8,5e− 8}, {4, 8, 16, 32, 64}

for θ, filter size, number of filters, learning rate, and batch size respectively.

Hyperparameters Tesla California EU-law COVID-QA

θ 0.76 0.74 0.71 0.67

learning rate 1e-8 2e-8 1e-8 5e-8

filter size 2,3,4 2,3,4 2,3,4 2,3,4

filter number 20 20 20 30

batch size 8 8 4 16

optimization algorithm, and a database for recording hyperparameter tuning history (score,

configuration). The maximum sequence length is set to 128 tokens for BERT and ALBERT.

The Adam optimization algorithm [325] is utilized for the parameter update. The cross en-

tropy loss function is used to calculate the loss. The optimal values for filter size, number

of filters, learning rate, and batch size for the first step of training are calculated as follows:

{2, 3, 4}, 100, 2e-5, 64. Early stopping is applied on the development set for both training

stages on the loss value. The max number of epochs is set to 9 and 3 for transfer and adapt

steps, respectively. For the closed-domain QE, domain-specific corpora is used (concatenation

of contexts for one domain) for tuning the pre-trained BERT for generating domain-specific

embeddings. The domain-specific corpus is prepared automatically for “masked Language

Model” and “next sentence prediction” to generate the data for pre-training on each domain.

For the open-domain QE, the pre-trained BERT is utilized for the embedding generation. The

NodeBox English library is utilized, which has been succeeded by the Pattern Python library4,

for analysing the keyword’s role and expansion term transformation. The pre-trained BERT

basic model have been utilized for generating the sentence embedding for calculating the

cosine similarity in the reasoning process.

4https://github.com/clips/pattern

4.3. EXPERIMENTS 93

4.3.4 Sentence-level MRC model

Closed-domain Comparative Methods

To demonstrate the effectiveness of the proposed MRC model for closed-domain QA, a com-

parison against several other comparative approaches is conducted. The approaches with

publicly available codes are selected to be tuned for sentence-level MRC:

• KPOS-QA [278] is a closed-domain QA system (their dataset is not publicly available).

Their approach is simulated for sentence-level QA regarding the details provided in

their paper (ranking and selecting the answer based on extracted keywords and POS

tags for query and context).

• R-TFIDF [280] is another closed-domain QA system (their dataset is also not publicly

available). Their approach is simulated for sentence-level QA regarding the details

provided in their paper (a rule-based sentence classification and measuring cosine sim-

ilarity on TF-IDF vectors for question and sentences).

• AttReader [326] presented BiLSTM networks based on an attention mechanism and the

GLoVe language model for reading comprehension in QA.

• QANET [327], is an MRC model for open-domain QA based on convolutions, global

self-attention, and the GLoVe language model.

• cdQA is an end-to-end closed domain QA system built on top of the pre-trained BERT 5.

• Retro-reader [328] is an “open-domain” MRC model and ranks 5th in the SQuAD2.0

leaderboard.6 An approach with two reading modules (sketchy reading module and

intensive reading module) is proposed to find answer span and detect unanswerable

questions. In the intensive reading module, two question-aware matching mechanisms

based on the transformer and multi-head attention are introduced for predicting the

answer.

• ZCovid-QA [329], employed RoBERTa fine-tuned on the SQuAD and QuAC datasets for

zero-shot evaluation on the COVID-QA dataset for Covid-19 QA.

5https://github.com/cdqa-suite/cdQA
6I did not find openly available source codes of other top-ranking models even after contacting their authors.

As a result, I compare my method with the model whose code I could obtain.

https://github.com/cdqa-suite/cdQA

94 CHAPTER 4. Extractive Model

• EtoE-Covid-QA [330] fine-tuned RoBERTa-large on SQuAD2.0, NQ, and proposed both

language modeling on the CORD-19 collection and example generation model for the

MRC training for Covid-19 QA.

• OCovid-QA [331] utilized a variant of BioBERT fine-tuned on the SQuAD2.0 and COVID-

QA datasets for Covid-19 QA.

Closed-domain Results and Discussion

The results obtained by the A-MRC model and others are presented on the development set

in Table 4.2. The results are presented for two variants of the proposed model (A-MRC):

1) pre-trained BERT; and 2) pre-trained ALBERT. For AttReader, QANET, cdQA, Retro-Albert,

their public code is used to apply their model to the datasets and generate results for closed-

domain sentence-level QA. The same pre-trained language models are used as reported in

their respective papers and fine-tuned the models with two stages of training as mentioned in

4.3.3. ZCovid-QA, EtoE-Covid-QA, and OCovid-QA baselines are only designed for Covid-19

QA and the results for these models are reported in their respective papers. The comparative

models are categorized into two groups: 1) based on conventional language models (KPOS-

QA, R-TFIDF, AttReader, QANET); and 2) contextualized language models (cdQA, RetroR-

eader, ZCovid-QA, EtoE-Covid-QA, OCovid-QA). The results show that KPOS-QA, which is

based on context and question keyword extraction using POS tags, achieves the worst results.

Hence, the results display that there is a strong need for high-quality vectors representing

context and question. In R-TDIDF, an improvement of 3%-11% of the F1 score is obtained

by applying traditional TF-IDF vectors and sentence classification. The QANET and AttReader

outperformed the KPOS and R-TFIDF, whereas the pre-trained GLoVE language model en-

codes context and question. The QANET outperformed AttReader because it’s not relying on

the recurrent structure, unlike the AttReader, which is based on BiLSTM. cdQA outperformed

QANET and AttReader and improved the EM due to its reader architecture based on BERT.

RetroReader outperformed the other baseline methods for all datasets since it employed a

pre-trained transformer-based language model and attention mechanism for reading compre-

hension. Evaluating RetroReader for closed-domain reading comprehension shows its per-

formance has degraded slightly (its performance in open-domain QA is 91.3 for F1 score and

88.8 for EM). The A-MRC model outperforms all baseline models for all datasets because the

association between the extracted features from the question and candidate answer sentences

is explored by applying CNN and multi-head attention on the joint representation of question

4.3. EXPERIMENTS 95

and candidate answer sentences. Also, the CAI and QE module’s effect on selecting appro-

priate sentences from context and rewriting the vague questions should not be disregarded.

The performance of all baseline methods is worse on the COVID-QA dataset since Biomedical

QA (BQA) is more challenging than other domains, and more reasoning is needed for the

question and biomedical text compared to other domains. Another challenge is clinical term

ambiguity due to the variation of clinical terminology and the frequent use of abbreviations

and esoteric medical terminology. BQA evaluation is also challenging because most evalu-

ation metrics do not consider the rich biomedical synonym relationships. Since biomedicine

is a highly specialized domain, understanding complex biomedical knowledge is required, and

using contextualized language models pre-trained on open-domain corpora is inefficient. The

A-MRC approach utilizing the pre-trained BERT on the biomedical domain is also evaluated

as shown in Table 4.2. SciBERT [332] is trained on a large corpus of scientific text, including

text from the biomedical domain, and BioBERT [333] is the first domain-specific BERT-based

model pre-trained on biomedical corpora. DeepSet7 has made available a BERT-base model

pre-trained on CORD-19 [334], and it is evident that pre-training BERT with CORD-19 corpus

improves the A-MRC model performance since this model is certainly more “in-domain” than

BioBERT-base or SciBERT-base for COVID-19 QA. OCovid-QA outperformed EtoE-Covid-QA

and ZCovid-QA since it is based on BioBERT, which is more appropriate for Covid-19 QA than

RoBERTa used in EtoE-Covid-QA and ZCovid-QA.

Open-domain Comparative Methods

To demonstrate the effectiveness of the A-MRC model for open-domain QA, it has been com-

pared against several other comparative approaches (their publicly available codes are used

to tune them for sentence-level MRC):

• AttReader [326] presented BiLSTM networks based on an attention mechanism and the

GLoVe language model for reading comprehension in QA.

• QANET [327], is an MRC model for open-domain QA based on convolutions, global

self-attention, and the GLoVe language model.

• cdQA is an end-to-end closed domain QA system built on top of the pre-trained BERT 8.

7https://huggingface.co/deepset
8https://github.com/cdqa-suite/cdQA

https://huggingface.co/deepset
https://github.com/cdqa-suite/cdQA

96 CHAPTER 4. Extractive Model

Table 4.2: Performance comparison of A-MRC models for closed-domain QA against other

baselines.

Model

Tesla California EU-law COVID-QA

EM / F EM / F EM / F EM / F

KPOS-QA 53.2 / 61.1 52.0 / 60.3 48.4 / 57.2 0 / 9.1

R-TFIDF 63.1 / 70.8 63.4 / 70.9 60.1 / 68.8 0 / 12.3

AttReader 71.3 / 79.5 70.8 / 79.8 68.9 / 78.7 11.2 / 41.4

QANET 75.2 / 83.3 75.3 / 83.1 73.8 / 82.2 12.4 / 43.6

cdQA 80.0 / 84.2 80.3 / 84.8 78.2 / 83.0 33.5 / 65.9

RetroReader 87.4 / 90.1 86.9 / 90.3 86.5 / 89.9 52.4 / 74.0

ZCovid-QA [329] 25.9 / 59.5

EtoE-Covid-QA [330] 38.6 / 62.8

OCovid-QA [331] 39.1 / 72.0

A-MRC

(BERT)
89.8 / 93.2 89.5 / 92.8 88.0 / 92.2 55.6 / 76.4

A-MRC

(ALBERT)
92.6 / 95.5 92.3 / 95.3 91.2 / 95.4 57.5 / 78.8

A-MRC

(SciBERT)
68.8 / 80.6

A-MRC

(BioBERT)
73.2 / 83.8

A-MRC

(CORD-19)
80.6 / 87.9

4.3. EXPERIMENTS 97

• Retro-reader [328] is an “open-domain” MRC model and ranks 5th in the SQuAD2.0

leaderboard.9 An approach with two reading modules (sketchy reading module and

intensive reading module) is proposed to find answer span and detect unanswerable

questions. In the intensive reading module, two question-aware matching mechanisms

based on the transformer and multi-head attention are introduced for predicting the

answer.

• SPARC-QA [335] considered the open-domain QA as a phrase retrieval problem and

proposed a technique for learning a Contextualized Sparse Representation (SPARC)

for each phrase, demonstrated the efficiency of SPARC for encoding phrases with rich

lexical information in open-domain QA.

• End-to-End-QA [336] proposed a system which different retrievers can be plugged in

directly and a neural reader outputs the answer to the question. The reader assigns a

passage selection score to top-k retrieved passages. They indicated that the retrieval

can be implemented using dense representations alone while utilising a simple dual-

encoder architecture to learn the embeddings from a limited number of questions and

passages.

• Lev-Gen-QA [337] presented a two-step method that first fetches supporting passages

using sparse or dense representations. The answer is then generated using a seq2seq

model that takes the retrieved passages as well as the question as input.

Open-domain Results and Discussion

The results obtained by the A-MRC model and others on the development set are presented

in Table 4.3. The results are presented for two variants of the A-MRC model: 1) pre-trained

BERT; and 2) pre-trained ALBERT. The QANET and AttReader have the worst due to using the

pre-trained GLoVE language model that encodes context and question. Same as the closed-

domain results, the QANET outperformed AttReader because it’s not relying on the recurrent

structure, unlike the AttReader, which is based on BiLSTM. RetroReader outperformed the

AttReader and QANET since it employed a pre-trained transformer-based language model

and attention mechanism for reading comprehension. It is evident that SPARC-QA and Lev-

Gen-QA gained higher F1 and EM scores in comparison to other baseline methods because of

9I did not find openly available source codes of other top-ranking models even after contacting their authors.

As a result, I compare my method with the model whose code I could obtain.

98 CHAPTER 4. Extractive Model

Table 4.3: Performance comparison of A-MRC models against other baselines for open-

domain MRC style QA.

Model
SQuAD

EM / F

AttReader 71.4 / 80.1

QANET 76.2 / 84.6

RetroReader 88.8 / 91.3

End-to-End-QA 86.7 / 90.3

SPARC-QA 87.3 / 91.3

Lev-Gen-QA 88.4 / 91.4

A-MRC (BERT) 89.1 / 92.8

A-MRC(ABLERT) 91.5 / 94.2

utilizing contextualized representations. End-to-End-QA outperformed RetroReader because

of the learned dense representations by a dual-encoder framework. The A-MRC outperforms

all baseline methods, F1 and EM are improved by approximately 2% and 1% for SQuAD.

The performance of the open-domain version of A-MRC (as an sentence-level MRC style QA

system) is elevated due to the dense contextualized representations generated by the CNN

and multi-head attention for the question and candidate answer sentences which are com-

bined with complementary components (candidate answer identifier and question expansion

module).

Ablation Study

The effect of the question expansion component and CNN Attention layer are investigated

individually to understand the overall role they play in the A-MRC model. In Table 4.4, the

results are presented without the CNN attention module in the A-MRC model. Fine-tuning

the QA pipeline without the CNN-Attention layer with pre-trained BERT and ALBERT reduced

the performance significantly. Utilizing the CNN-Attention layer captures the semantic con-

nections between the sentence and question features which boosts the model performance

7%-11% for EM and and F1 score. The quantitative results are depicted in Table 4.5, where

the model’s performance with and without the QE component is shown. Additionally, the

BART and T5 pre-trained question paraphrasers are examined for rewriting the vague ques-

tions. T5 caused a slight performance degradation compared to the “A-MRC(ALBERT) without

4.3. EXPERIMENTS 99

Table 4.4: The effect of CNN and Attention mechanism on the proposed models on all data-

sets.
Closed-domain Datasets Open-domain Dataset

Model
Tesla California EU-Law COVID-QA SQuAD

EM / F EM / F EM / F EM / F EM / F

A-MRC(BERT)

without CNN-Attention
82.3 / 85.0 81.1 / 84.7 80.0 / 84.2 45.0 / 66.4 81.2 / 84.5

A-MRC(BERT) 89.8 / 93.2 89.5 / 92.8 88.0 / 92.2 55.6 / 76.4 89.1 / 92.8

A-MRC(ALBERT)

without CNN-Attention
84.0 / 87.5 83.2 / 86.9 83.0 / 86.7 46.8 / 67.9 83.7 / 88.4

A-MRC(ALBERT) 92.6 / 95.5 92.3 / 95.3 91.2 / 95.4 57.5 / 78.8 91.5 / 94.2

QE” since it is not tuned with any domain-specific training data for question paraphrasing.

BART paraphraser outperformed T5, although it couldn’t elevate the model performance sig-

nificantly. T5 and BART need fine-tuning on a domain-specific paraphrase dataset for a better

performance which is not feasible for every domain.

It can be concluded that rewriting the question without considering the domain termino-

logy in the closed-domain QA misleads the model by generating domain irrelevant questions.

Therefore, for generating in-domain question paraphrases (paraphrased questions) without

the need for training data for every domain, the proposed QE module operated well, and it

improved the EM and F1 score by 1%-2% for all closed-domains. Also, selecting the most

appropriate expansion terms by considering their semantic correlation to the question is the

key for outperforming in open-domain.

Additional experiments are conducted to study the role played by each question type, i.e.

“ What”, “Where”, “When”, “Why”, “Who”, “How”. Besides that, the goal is also to portray

that the new customizations that have been made to Giveme5W1H are useful to the frame-

work. This will help for understanding the role that each question type plays in the study.

The F1 score is calculated for each question type individually for analysing the A-MRC model

performance on different question categories (see Table 4.7). The number of instances in

each question category on four datasets is reported in Table 4.6. One observation is that the

performance is not impacted by the number of instances in the category because the proposed

framework does not heavily rely on statistical information, which makes it reliable even under

low-resource situations. The number of questions that do not belong to the 5W1H categor-

ies is 15, 76, 59, 200, 6770 for Tesla, California, EU-law, COVID-QA, and SQuAD datasets.

100 CHAPTER 4. Extractive Model

Table 4.5: The effect of QE component on the proposed models on all datasets.
Closed-domain Datasets Open-domain Dataset

Model
Tesla California EU-law COVID-QA SQuAD

EM / F EM / F EM / F EM / F EM / F

A-MRC(BERT)

without QE
88.4 / 91.3 88.2 / 90.4 88.1 / 91.0 54.0 / 75.5 88.2 / 90.4

A-MRC(BERT) 89.8 / 93.2 89.5 / 92.8 88.0 / 92.2 55.6 / 76.4 89.0 / 92.3

A-MRC(ALBERT)

without QE
90.9 / 93.5 91.1 / 93.0 90.8 / 94.6 57.2 / 77.6 88.7 / 92.2

A-MRC(ALBERT)

+ T5
90.5 / 93.3 90.8 / 92.8 90.3 / 93.8 57.0 / 77.2 89.3 / 92.4

A-MRC(ALBERT)

+ BART
91.2 / 94.0 91.1 / 93.6 91.0 / 94.8 57.2 / 77.7 90.5 / 93.0

A-MRC(ALBERT) 92.6 / 95.5 92.3 / 95.3 91.2 / 95.4 57.5 / 78.8 91.3 / 94.0

Table 4.6: The count of each question category for closed-domain datasets.

Dataset What Where When Why Who How

Tesla 268 76 54 25 71 56

California 323 96 80 52 59 60

EU-law 136 17 23 23 39 18

COVID-QA 1335 53 53 80 22 272

SQuAD 41598 5558 7938 2295 8535 14126

Table 4.7: Performance comparison (F1) of the A-MRC variants for each question category

with the proposed candidate answer identifier (customized Giveme5W1H) and Giveme5W1H

candidate answer identifier.

Proposed CAI (customized Giveme5W1H) Giveme5W1H Candidate Answer Identifier

Model Dataset What Where When Why Who How What Where When Why Who How

A-MRC(BERT)

Tesla 93.5 93.3 93.0 92.5 93.6 93.5 87.8 91.6 89.1 88.5 91.5 89.6

California 92.7 92.1 93.0 91.5 93.5 94.2 87.9 89.2 88.7 87.4 91.4 90.0

EU-law 92.8 92.1 92.5 91.2 92.8 92.0 89.0 91.3 88.2 88.4 90.0 90.7

COVID-QA 75.3 76.7 76.9 74.9 76.6 77.7 72.3 74.5 71.8 70.9 74.2 75.5

SQuAD 93.6 92.4 93.7 92.0 92.3 92.8 89.3 90.1 88.5 88.8 90.2 88.7

A-MRC(ALBERT)

Tesla 96.5 96.4 96.6 94.5 94.3 94.5 92.0 94.6 92.8 90.6 92.2 90.4

California 96.6 95.9 95.0 94.3 94.2 95.6 92.1 92.8 90.6 90.2 92.8 91.3

EU-law 95.9 95.7 95.6 94.4 95.8 95.0 92.4 93.3 91.7 92.2 93.1 93.8

COVID-QA 78.9 78.6 79.7 77.2 78.5 79.9 75.0 75.7 74.6 73.1 76.3 77.0

SQuAD 94.9 95.1 94.0 93.3 93.6 94.3 90.6 93.6 90.1 89.8 91.5 90.2

4.3. EXPERIMENTS 101

W
ha

t

W
he

re

W
he

n

W
hy

W
ho

H
ow

80

82

84

86

88

90

92

F1
sc

or
e

A-MRC(BERT)+G5W1H
A-MRC(BERT)+CAI
A-MRC(ALBERT)+G5W1H
A-MRC(ALBERT)+CAI

Figure 4.5: The average F1 score across all datasets for the model, A-MRC (ALBERT), with

the original Giveme5W1H and the proposed CAI on each question category.

Furthermore, the candidate answer identifier helps automatically select the appropriate sen-

tences in each question category based on the linguistic rules in 4.2.1. An advantage that A-

MRC model gets by the CAI component is reducing the number of candidate answers, which

significantly impacts the model’s effectiveness for long contexts by excluding the question-

irrelevant sentences. Fig. 4.5 displays the average F1 score across all datasets for the model

with the original Giveme5W1H and the proposed CAI on each question category. The model

performance for each question category is improved by adding linguistic rules and functions

to Giveme5W1H, and the “What”, “Why”, and “When” categories improved the most.

4.3.5 Open-domain multi-hop QA

Four baseline methods are considered for the multi-hop QA evaluation stage which are de-

scribed below.

WAIR [338] utilizes the alignment IR approach [339] to retrieve justification sentences

and a RoBERTa binary classifier for answer selection. The WAIR technique, in two iterations,

reduces the weights of question terms that have already been addressed by previously re-

trieved sentences and increases the weights of reformulated question terms that have not yet

been covered. The second iteration reranks the clusters of evidence sentences using a regres-

102 CHAPTER 4. Extractive Model

sion task, with each sentence cluster allocated an F1 score generated from the gold annotated

evidence sentences.

AIR [340] discovers justification sentences by an unsupervised strategy based on GloVe

embeddings and an alignment model. To choose answers, a RoBERTa binary classifier is util-

ized. The question and candidate answer text are used to initiate the query. AIR adjusts its

query after each repetition to focus on the missing information in the current set of justific-

ations. The alignment approach computes the cosine similarity between each token’s word

embeddings in the query and the provided text sentence, resulting in a matrix of cosine sim-

ilarity scores.

ROCC [341] presented an unsupervised technique for maximising the relevance of selec-

ted sentences, minimising the overlap between selected facts, and maximising both question

and answer coverage. The relevance, coverage, and overlap scores of candidate justification

sets are calculated. They used BERT as a binary classifier to choose answers.

Multee [342] presented models of entailment for multi-hop QA composing a relevance

module and multi-layer aggregation module. Both modules make use of ESIM [343], a re-

cently developed sentence-level entailment model that has been trained on the SNLI and

MultiNLI datasets.

The results are reported in Table 4.8 for the baseline methods from their paper. It is

evident that WAIR outperformed other baselines since it introduced several attention and

embedding-based analyses. It demonstrates that by combining retrieval and reranking tech-

niques, it is possible to acquire the compositional knowledge necessary for multi-hop reason-

ing. AIR is the second-best baseline and outperformed ROCC and Multee due to the iterative

method used to reformulate queries and focus on words not covered by existing justifications.

AIR is an unsupervised alignment technique that uses only GloVe embeddings to soft-align

questions and answers with justification sentences. ROCC outperformed Multee because it

is an unsupervised strategy that utilizes a BERT answer classifier and three scoring functions

to rank candidate reason sets. In compared to Multee’s entailment technique, the ranking

functions improve ROCC performance by increasing the relevance of the selected sentences

and decreasing lexical overlap between the selected facts. The Ex-MhopQA model outper-

formed all baselines since it investigates the the semantic correlations between the features

extracted from the question and relevant sentences in document. The semantic correlations

between features are obtained by applying CNN and multi-head attention to the combined

representation of the question and candidate answer sentences. Also, the reasoning process

4.3. EXPERIMENTS 103

Table 4.8: F1m, F1a, and EM score for the proposed method (Ex-MhopQA) and open-

domain Multi-hop QA baseline methods on MultiRC dataset.

Model
MultiRC dataset

F1m F1a EM

WAIR [338] 79.5 76.5 35.4

AIR [340] 79.0 76.4 36.3

ROCC [341] 73.8 70.6 26.1

Multee [342] 71.7 68.3 -

Ex-MhopQA 82.2 79.8 40.3

Ex-MhopQA (with self-attention) 80.7 77.9 37.6

based on lexical coverage and BERT embedding is a complement to answer selector module

for selecting justification sentences. The results of the proposed model with self-attention

are compared to the performance with multi-head attention. As it is shown, the multi-head

attention variant performs better due to the less number of layers and training stability in

comparison to self-attention variant. Fig. 4.6 shows the Ex-MhopQA performance on each

question category for MultiRC dataset. The multi-head attention variant outperformed the

self-attention variant on all question categories since multi-level attention information is ac-

quired.

4.3.6 Question-driven Extractive Text Summarisation

In the third stage, the generated extractive summaries are evaluated by comparing them to

the reference summaries and results of the baseline methods, which have been described

below.

HSCM [31] presented an approach for extractive answer summarisation consisting of

three components. In the first and second components (Word-level and Sentence-level Compare-

Aggregate), an attention operation is used to align the word-level and sentence-level inform-

ation between the answer sentence and question. In the third component, Question-aware

Sequential Extractor, a RNN decoder is designed to label each sentence consecutively and

construct the answer summary for the target question.

MSG [29] proposed Multi-hop Selective Generator (MSG), a question-driven abstractive

summarisation approach that integrates multi-hop reasoning to identify the key content for

assisting the answer generation. In addition to the multi-view pointer network, they in-

104 CHAPTER 4. Extractive Model

Figure 4.6: Ex-MhopQA multi-head attention and self-attention variants’ performance on each

question category for the MultiRC dataset.

troduced a multi-view coverage technique to overcome the duplication issue and generate

informative and precise answers.

QPGN [32] presented a question-driven pointer-generator network that utilizes the correl-

ation information between question-answer pairs to add substantial information when gener-

ating abstractive answer summaries. Their framework consists of four components: Bi-LSTM

Encoder, seq2seq Model with Question-aware Attention, Question-Answer Alignment with

Summary Representations, Question-driven Pointer-generator Network.

Trans [33] has studied the capability of three state-of-the-art transformers for question-

driven text summarisation: BART, T5, and PEGASUS in both zero-shot and few-shot learning

settings for question-driven abstractive text summarisation on MEDIQA dataset. T5 outper-

formed the others thus it has been considered as a baseline method.

Table 4.9 shows the experimental results for one extractive (HSCM) and three abstractive

(MSG, QPGN, Tran(T5)) question-driven summarisation approaches on WikiHow, PubMedQA,

MEDIQA datasets. All of the results for the baseline methods are reported from their paper.

ROUGE-1 (R1), ROUGE-2 (R2), and ROUGE (RL) are considered to evaluate the quality of

the extractive summaries. HSCM generated extractive answer summaries and as it is shown

in Table 4.9 the R1, R2, and RL for the generated extractive summaries and other abstractive

baseline methods are superior to HSCM. Employing Glove language model and relying on

a recurrent structure decoder for generating extractive answer summaries caused this inef-

4.4. SUMMARY 105

Table 4.9: Results on WikiHow, PubMedQA, and MEDIQA

Model
WikiHow PubMedQA MEDIQA

R1 R2 RL R1 R2 RL R1 R2 RL

HSCM 27.84 7.75 25.85 32.34 10.07 25.98 - - -

MSG 30.5 10.5 29.3 37.2 14.8 30.2 - - -

QPGN 28.8 9.7 27.7 34.2 12.8 28.7 - - -

Trans(T5) - - - - - - 38.56 18.52 26.00

Ex-MhopQA Extractive 31.71 11.23 30.09 38.89 14.81 30.76 40.94 20.11 27.46

ficiency and poor performance in HSCM. MSG achieves relatively better performance than

QPGN because of incorporating multi-hop reasoning for abstractive summarisation. MSG and

QPGN have used the pre-trained Glove model [72] which is not a very efficient model because

of the co-occurrence matrix of words that consumes a considerable amount of memory. Be-

sides using an inefficient language model, having multi-stages of training is another problem

of these baseline methods. In Trans each language generation model (BART, T5, PEGASUS) is

pre-trained with different strategies which is unclear whether these strategies are the optimal

ones.

Favorably the Ex-MhopQA model obtains the state-of-the-art results for all three datasets

with the generated extractive summaries. The results indicate that the generated extractive

summary covers the essential information for satisfying answerability, understandability, and

persuasiveness measures by finding the AS and its supporting sentences using the proposed

MRC model and the reasoning process.

4.4 Summary

The proposed multi-hop QA, Ex-MhopQA, contains an adaptable MRC model that improves

upon state-of-the-art models across different closed-domain datasets: Tesla (person); Califor-

nia (region); EU-law (system); COVID-QA (biomedical) datasets and open-domain dataset

(SQuAD). A novel approach is presented by exploiting CNN and the multi-head attention

mechanism to solve the generalization problem by training on small datasets. The A-MRC

model calculates the semantic association between the extracted local features from context

sentences and the question by employing CNN and the multi-head attention mechanism. Fur-

thermore, components such as the candidate answers identifier and question expansion assist

the model by limiting the choice to relevant sentences for each question category and remov-

106 CHAPTER 4. Extractive Model

ing ambiguity in questions by replacing some keywords. Experimental results and ablation

studies illustrate that the proposed model outperforms different models on closed-domains

and open-domain without any knowledge base. The reasoning process based on contextu-

alized semantic similarity and lexical coverage is a compliment to the MRC model that ex-

plores the document for finding the answer’s supporting sentences. The Ex-MhopQA model

is evaluated in three stages to examine the effectiveness of the different components. The

A-MRC and Ex-MhopQA are sentence level MRC model and multi-hop QA system which are

adaptable to both open-domain and closed-domains. The comparative baseline methods and

closed-domains are used to evaluate the adaptability and flexibility of the proposed model.

The proposed mutli-hop QA generates the question-driven extractive summary which covers

all the required information showing by results compared to other question-driven baseline

methods.

In this chapter, the MRC and Multi-hop QA are designed in a way that could be capable

of overcoming some of the problems associated with QA systems. Ojokoh et al. [8] noted

many problems associated with QA systems. The proposed model attempted to provide solu-

tions for Question Processing, Question Classes, Answer Extraction, Answer Formulation, and

Advanced reasoning for QA.

Chapter 5

Question-driven Abstractive Model

5.1 Introduction

In the previous chapter, the extractive summariser discovers appropriate non-redundant sen-

tences as plausible answers to the question using a multi-hop QA system containing an adapt-

able MRC and a reasoning process. Separating the two tasks of content selection (extractive

summarisation) and abstractive summary generation allows to closely examine every com-

ponent (paraphrase, compressing, and fusing mechanisms) of an abstractive summariser.

Most of the recent abstractive summarisation models are based on sequence-to-sequence

(seq2seq) neural networks [39, 40, 41, 42, 43, 44]. They are made up of encoders to com-

prehend input sequence and decoders to generate output sequence. However, there are four

key problems with using seq2seq neural networks to generate reasonable text: (1) out-of-

vocabulary (OOV) problem (2) generating a particular word or phrase repeatedly which

brings in redundancies, (3) test-time exposure bias, and (4) non-optimized learning for eval-

uation metrics used by models in fields such as text summarisation and machine translation.

As a result, they cannot generate appropriate abstractive summaries since they cannot con-

vey the semantics of the document [45, 46]. To recreate the key content in a fresh way,

abstractive summarisation requires advanced natural language techniques for reading and

understanding the text. As described in Chapter 2 GANs are algorithmic architectures that

use two neural networks, pitting one against the other (thus the “adversarial”) in order to

generate new, synthetic instances of data that can pass for real data. Transformers leverage

the concept of self-attention to develop simpler models. A transformer is based solely on the

concept of attention and it eliminates the need for recurrent connections. Integrating GAN

and transformers is an architecture which is not yet been explored for text generation and in

107

108 CHAPTER 5. Question-driven Abstractive Model

this chapter, an abstractive summarisation model based on this novel architecture has been

proposed and presented.

A novel paraphrasing GAN model based on transformers and Q-learning is proposed to

rewrite the extracted sentences in the abstractive setup. In addition, a fusing mechanism is

proposed for compressing the sentence pairs in the paraphrased summary selected by a BERT

next sentence prediction model. The Pointer Generator network [10] has been utilized for

fusing and compression, which has been pre-trained and fine-tuned for being used in the

abstractive stage. Pointer generator networks solve various combinatorial optimization and

combinatorial search problems. Pointer networks are derived from the attention mechanism

by [344] comprising an attention-based model seq-to-seq model, pointer generator network,

and coverage mechanism.

The experiments show that this setup results in a more reliable abstractive summary than

competing methods. Two fine-tuning setups have been considered for the fusing mechanisms,

and both outperformed the extractive summaries generated by the multi-hop QA.

5.2 The Question-driven Abstractive Summariser

The Fig. 5.1 shows the overall framework of the abstractive summarisation model (QPara-

Sum) which generates the question-driven abstractive summaries.

5.2.1 Paraphrase Generation Model

It can be started by defining two sequences of tokens X1:n = {x1, ..., xn} and Y1:T = {y1, ..., yT },

where the sequence X represents an input sequence and Y represents a paraphrase. A GAN

model is designed, depicted in Fig. 5.2, for generating paraphrases. To this end, there are

Gθ and Dϕ to be a θ parameterized generator and a ϕ parameterized discriminator. The Gθ

is trained to generate a sequence of tokens Ŷ1:T = {ŷ1, ..., ŷt} that is similar to Y for the

given X. The Dϕ is trained to discriminate between Y and Ŷ for input X. In the following

sections, X, Y , and Ŷ are called as input sentence, target sentence, and generated sentence,

respectively.

Generator: Generator is an encoder-decoder model based on transformers. It consists of

an encoder and a decoder that are both stacks of residual attention blocks. The transformer-

based encoder-decoder models process the input sequence X1:n of variable length n with

residual attention blocks without performing a recurrent structure, which is their main ad-

5.2. THE QUESTION-DRIVEN ABSTRACTIVE SUMMARISER 109

Figure 5.1: The overall framework of the abstractive summarisation model (QParaSum).

110 CHAPTER 5. Question-driven Abstractive Model

Figure 5.2: The illustration of the proposed GAN for paraphrasing

vantage and innovation. Transformer-based encoder-decoders are extremely parallelizable

since they don’t depend on a recurrent structure, which makes them more computation-

ally efficient on modern hardware compared to RNN-based encoder-decoder models. The

transformer-based encoder encodes the input sequence X1:n to a sequence of hidden states

and the transformer-based decoder models the conditional probability distribution of the Ŷ

sequence given the sequence of encoded hidden states from the encoder.

Discriminator: The architecture of discriminator is similar to the generator, a transformer-

based encoder-decoder model that accepts X as encoder inputs, and Y (either Ŷ or Y) as

decoder input. Rather of computing a scalar as the ultimate discriminator score D(X, Ŷ), a

stepwise evaluation [149] is employed. After reading the input sentence X and a portion of

the output sequence Ŷ1:t, the discriminator creates a scalar Rt. The ultimate discriminator

score for the entire created sentence is the sum of all the scalars R1:T throughout the length

T of the generated sequence.

D(X, Ŷ) =
1

T

T∑
t=1

Rt (5.1)

5.2. THE QUESTION-DRIVEN ABSTRACTIVE SUMMARISER 111

Training At each generation step, the discriminator is customized to automatically allocate

scores measuring the quality of each subsequence. Stepwise evaluation has substantially

lower computational costs than MCTS, and the discriminator estimates instantaneous rewards

by leveraging the idea of Q-learning and calculating state-action values without conducting

tree search.

Q(st, ŷt) = E
z∼PG(.|x,ŷ1:t)

[D(x, ŷ1:t, z)] (5.2)

Rt = Q(st, ŷt) (5.3)

The current generator creates word sequence z with input X and generated prefix Ŷ1:t.Thus,

the anticipated return value of all the responses with the same prefix ŷ1:t is the state-action

value Q(st, ŷt). st = (X, y1:t−1) and yt are discrete tokens which are the inputs of the Q-

function. A Kronecker delta function (or a sharp distribution) can be used for PG in which all

probabilities are zero except for the chosen sample. By this stepwise method a step dependent

value, Rt, is calculated for each generation step which is called Q-stepwise reward.

Algorithm 3: Training the paraphrasing model
Result: Trained Gθ

Pre-train Gθ

Generate samples using Gθ

Pre-train Dϕ with fake and real pairs

for n rounds do

for i = 1 to G-iteration do

Sample X from real data

Generate a sequence Ŷ using Gθ

Calculate R for each sequence step

Update Gθ using equation 5.5

end for

for j = 1 to D-iteration do

Sample (X,Y) from real data

Sample (X, Ŷ) using Gθ

Update Dϕ using equation 5.4

end for

end for

112 CHAPTER 5. Question-driven Abstractive Model

An approach for estimating Rt value is designed for generator while training the discrim-

inator. For predicting the expected value V (st), a value network V with the same structure

as discriminator is trained. The value network is trained to approximate the predicted Rt for

every previous states st. As a result, the discriminator Dϕ receives a pair of sentences and

generates a score for each step. Dϕ acquires knowledge using the following function:

J(ϕ) = −logDϕ(X,Y)− log(1−Dϕ(X,Y)) (5.4)

The G is trained with a stepwise evaluation technique, the objective function J(Gθ) of Gθ is:

J(θ) =

T∑
t=1

Rt∇logPG(yt | x, y1:t−1) (5.5)

As the first step, real data is used to pre-train Gθ using the maximum likelihood. Also,

supervised learning is applied to pre-train Dϕ using pairs composed of real and created data.

Then several rounds of adversarial training are begun. First, real samples are used to train

Gθ using (5.5). Gθ is used to output a generated sample for each input sentence once the

settings are updated. As a result, Dϕ is fed a well-balanced set of real and fake (created)

pairs. Finally, 5.4 is used to train Dϕ.

5.2.2 Singletons and Sentence Pairs Selection

The Next Sentence Prediction (NSP) is utilized for detecting the sentences pairs and singletones

(Fig. 5.3). A sequence can be a single sentence or singleton (A) or pair of sentences (A+B).

Devlin et al. [345] proposed the Bidirectional Encoder Representation from Transformers

(BERT), which is designed to pre-train a deep bidirectional representation by jointly condi-

tioning on both left and right contexts. BERT is trained using two novel unsupervised predic-

tion tasks: Masked Language Modeling and Next Sentence Prediction (NSP). The NSP task

has been formulated as a binary classification task: the model is trained to distinguish the

original following sentence from a randomly chosen sentence from the corpus, and it showed

great helps in multiple NLP tasks. NSP consists of giving BERT two sentences, sentence A

and sentence B. First, the two sentences are merged with a [SEP] token, a separator token,

in between both sentences. Finally, the loss is calculated by processing the inputs and labels

(NotNextSentence, IsNextSentence) through the model. All the sentences in the paraphrased

summary will be analysed for singletons and pair sentences selection (any of two sentences

detected as a pair will not be paired with any other sentences).

5.2. THE QUESTION-DRIVEN ABSTRACTIVE SUMMARISER 113

Figure 5.3: The illustration of the Next Sentence Prediction (NSP) for selecting sentences

pairs [237].

114 CHAPTER 5. Question-driven Abstractive Model

5.2.3 Sentence Fusion

To generate shorter high-quality abstractive summaries, a sentence fusion component is de-

signed to consume the paraphrased summary sentence-by-sentence produced in the previous

step 5.2.1. For sentence pairs, the representations are expected to further encode sentential

semantic compatibility. In this stage, the pairs are merged (i.e. fused), and singletons are

remained unchanged.

The pointer generator (PG) network [10] is used to fuse the pair sentences into one sum-

mary sentence. PG is a sequence-to-sequence model that has achieved state-of-the-art per-

formance in abstractive summarisation by copying tokens from the document and generating

new tokens from the vocabulary (Fig. 5.4). PG addresses three issues: incorrect reproduction

of factual facts, failure to handle out-of-vocabulary (OOV) words, and repetition. The PG

network is used to summarise the sentence pairs while avoiding OOV and repetition. The

sequence-to-sequence attentional model, the Pointer-generator Network, and the coverage

mechanism are the three components of the PG network.

Figure 5.4: The Pointer-generator model [10].

5.2. THE QUESTION-DRIVEN ABSTRACTIVE SUMMARISER 115

Sequence-to-sequence attentional model

The tokens of the sentence pair wi are input sequentially into the encoder (a single-layer

bidirectional LSTM), which produces a series of encoder hidden states hi. On each step t,

the decoder (a single-layer unidirectional LSTM) gets the word embedding of the previous

word (during training, this is the previous word in the reference summary; during testing,

this is the previous word output by the decoder) and has state st. Calculating the attention

distribution at:

eti = vT tanh(Whhi +Wsst + battn) (5.6)

at = softmax(et) (5.7)

where v, Wh, Ws and battn are parameters that can be learned. Attention distribution may

be considered as a probability distribution across the source words that guides the decoder

where to search for the next word. Next, the attention distribution is utilised to generate the

context vector h∗t :

h∗t =
∑
i

atihi (5.8)

The context vector, which can be considered as a fixed-size representation of what has been

read from the source for this step, is concatenated with the decoder state st and passed to

two linear layers to generate the vocabulary distribution Pvocab:

Pvocab = softmax(V
′
(V [st, h

∗
t] + b) + b

′
) (5.9)

where V , V
′
, b and b

′
are learnable parameters. Pvocab is a probability distribution over all

words in the vocabulary, and provides the final distribution from which to predict words w:

P (w) = Pvocab(w) (5.10)

During training, the loss of time step t is the negative log-likelihood of the target word wt
t for

that time step:

losst = −logP (w∗
t) (5.11)

and the overall loss for the whole sequence is:

loss =
1

T

T∑
t=1

losst (5.12)

116 CHAPTER 5. Question-driven Abstractive Model

Pointer-generator network

PG network allows both copying words via pointing, and generating words from a fixed vocab-

ulary. In the pointer-generator model (depicted in Fig. 5.4) the attention distribution at

and context vector h∗t are calculated as in 5.7, 5.8. In addition, the generation probability

pgen ∈ [0, 1] for time step t is calculated from the context vector h∗t , the decoder state st and

the decoder input xt:

pgen = σ(wT
h∗h∗t + wT

s st + wT
x xt + bptr) (5.13)

where vectors wh∗ , ws, wx and scalar bptr are learnable parameters and σ is the sigmoid

function. Next, pgen is employed as a soft switch to select between generating a word from

the vocabulary by sampling from Pvocab and copying a word from the input sequence by

sampling from the attention distribution at. The extended vocabulary for each document

represent the union of the vocabulary and all terms appearing in the source document. The

following probability distribution is obtained for the extended vocabulary:

P (w) = pgenPvocab(w) + (1− pgen)
∑

i:wi=w

ati (5.14)

Note that if w is an out-of-vocabulary (OOV) word, Pvocab(w) is zero; similarly,
∑

i:wi=w ati is

also 0 if w does not occur in the source document. One of the key benefits of pointer-generator

models is their capacity to construct OOV terms; in contrast, the baseline models are limited

to their predefined vocabulary. The loss function is as defined by equations 5.11 and 5.12,

but with regard to the modified probability distribution P (w) as specified by equation 5.14.

Coverage mechanism

In the coverage model, a coverage vector ct is maintained, which is the sum of attention

distributions over all previous decoder time steps:

ct =

t−1∑
t′=0

at
′

(5.15)

Intuitively, ct is a (non-normalized) distribution over the source document words that indic-

ates the degree of coverage that those words have received from the attention mechanism

thus far. Note that c0 is a zero vector since none of the source document has been covered

during the initial timestep. The coverage vector is utilised as an additional input to the atten-

tion mechanism, modifying the equation 5.6 to:

eti = vT tanh(Whhi +Wsst + wcc
t
i + battn) (5.16)

5.2. THE QUESTION-DRIVEN ABSTRACTIVE SUMMARISER 117

where wc is a learnable parameter vector of same length as v. This ensures that the attention

mechanism’s current decision (choosing where to attend next) is informed by a reminder

of its previous decisions (summarised in ct). This should make it simpler for the attention

mechanism to avoid constantly attending to the same locations, hence preventing repetitive

text from being generated. A coverage loss is defined in order to punish repeated attending

to the same locations:

covlosst =
∑
i

min(ati, c
t
i) (5.17)

Note that the coverage loss is bounded; in particular covlosst ≤
∑

i a
t
i = 1. Finally, the

coverage loss, reweighted by some hyperparameter λ, is added to the primary loss function

to yield a new composite loss function:

losst = −logP (w∗
t) + λ

∑
i

min(ati, c
t
i) (5.18)

Training

The PG network is pre-trained on the DISCOFUSE and then fine-tuned on a smaller data-

set from a different distribution. A transfer learning setting in which model performance

improves when pre-trained with DISCOFUSE because of existing fusion datasets are small.

McKeown et al. [346] introduced a human-generated corpus of 3,000 examples. Elsner et

al. [347] extracted around 300 fusion examples from pre- and post editing news articles.

Thadani et al. [348] constructed 1,858 examples from summarisation tasks. Such datasets

are too small to train modern data-hungry neural models.

For each domain, it is required to link each summary sentence sn with a subset of the

document sentences D̂ ⊂ D, i.e. the sentences that are merged to produce sn. The tech-

nique selects many sentences that work together to capture the most overlap with summary

sentence sn, as follows.

The average ROUGE-1, -2, and -L scores are utilized [122] to reflect sentence similarity.

The source sentence most similar to sn is selected; referred to it as d̂1. Then, all shared words

are deleted from sn to generate s
′
n, effectively removing all information already captured by

d̂1. A second source sentence d̂2 most similar to the remaining summary sentence s
′
n is picked,

and shared terms are again deleted from s
′
n to form s

′′
n.

This process of sentence selection and overlap removal is repeated until no remaining sen-

tences have at least two overlapping content words (words that are non-stopwords or punctu-

ation) with sn. The result is referred to as a ground-truth set (sn; D̂) where D̂ ={d̂1,d̂2,. . . ,d̂j},

118 CHAPTER 5. Question-driven Abstractive Model

j = ˆ|D|. To train the models, D̂ is limited to one or two sentences because it captures the

large majority of cases. All empty ground-truth sets are eliminated, and for all ground-truth

sets containing more than two sentences, just the first two sentences are selected. In a limited

number of summary sentences, the ground-truth sets are empty.

5.3 Experiments

5.3.1 Experimental Datasets

Paraphrase generation datasets

The two most widely used datasets, Quora1 and MSCOCO [349] are chosen for paraphrase

generation experiments.

• Quora dataset consists of over 400K candidate question paraphrase pairs with manually

annotated labels. Two questions are paraphrasing each other only when the question

pair’s label is Two different training sizes (100K and 150K) from Quora are used to have

the same setting with baseline methods and show how the size of the dataset can affect

the results of paraphrase generation.

• MSCOCO is a benchmark for the task of image captioning which contains over 82K

training and 42K validation images, and at most five human-labeled caption are provided

for each image. Similar to the previous works on paraphrase generation, different cap-

tions of the same image are considered as paraphrases.

Sentence fusion datasets

To assess the efficacy of the proposed sentence fusion model the datasets below are utilized

for pre-training and fine tuning.

• DISCOFUSE a dataset of 60 million sentence fusion examples from two different cor-

pora.

• McKeown contains 300 pairs of sentences retrieved from newswire2 articles. Each pair

of sentences in the dataset is accompanied by five manually written sentence fusions.

The fusions are created by using workers through Amazon’s Mechanical Turk service 3.
1https://www.quora.com/share/First-Quora-Dataset-Release-Question-Pairs
2http://www.cs.Columbia.edu/nlp/newsblaster.
3https://www.mturk.com.

5.3. EXPERIMENTS 119

Question-driven text summarisation datasets

The proposed abstractive QParaSum model is evaluated on three large-scale summarisation

datasets, WikiHow [47], PubMedQA [48], and MEDIQA dataset [49].

• WikiHow is an abstractive summarisation dataset accumulated from the WikiHow community-

based QA website, with each sample consisting of a lengthy article, a non-factoid ques-

tion, and the associated summary as the answer to the question.

• PubMedQA is a biomedical QA dataset derived from PubMed2 abstracts. Each sample

includes a question, an article, and an abstractive answer which summarises the context

corresponding to the question.

• MEDIQA is a dataset comprising 156 consumer-submitted health questions, correspond-

ing articles to these questions, and expert-written summaries of the answers.

5.3.2 Evaluation Metrics

BLEU4 and METEOR are used for evaluating the Para-GAN and PG-fusion model plus the

mean Compression Ratio (CR) which is used as an additional metric for PG-fusion fusion

model. ROUGE-N and ROUGE-L are utilized for evaluating the generated abstractive sum-

maries.

5.3.3 Data Pre-processing and Experimental Settings

The input representation for the paraphrase model is the pre-trained wordpiece embeddings

from ALBERT. For training the parapharse model, the model is trained for 10 epochs by Q-

stepwise evaluation method after pre-training the generator by MLE. The discriminator is

pre-trained on the generated samples from the pre-trained generator and real data. Adam

optimization algorithm is used to pre-train the generator and train the discriminator. The

optimal learning rates for Gθ, Dϕ are 2e−6, 5e−6 calculated by Hyperopt algorithm. Hyperopt

determines the optimal batch size 32 and 64 for Quora (100K, 150K) and MSCOCO [349]

datasets to feed the generator and discriminator, and 20 rounds of adversarial training is

performed.

The Pointer-Generator model is re-implemented as described by [10]. To have a compar-

able number of parameters to previous work, an encoder with 256 hidden states are used for

both directions in the one-layer LSTM, and 512 for the one-layer decoder. The embedding

120 CHAPTER 5. Question-driven Abstractive Model

size is set to 128. The model is trained with the same Adagrad configuration as the content

selector. Additionally, the learning rate halves after each epoch once the validation perplexity

does not decrease after an epoch. Dropout is not utilized and gradient-clipping with a max-

imum norm of 2 has been used. All inference parameters are tuned on a 200 example subset

of the validation set. Length penalty parameter α and copy mask ϵ differ across models, with

α ranging from 0.6 to 1.4, and ϵ ranging from 0.1 to 0.2. The coverage penalty parameter β

is set to 10, and the copy attention normalization parameter λ to 2 for both approaches.

5.3.4 Paraphrase Generation Results

At the first stage of the experiments, the paraphrase generation model (Para-GAN) is evalu-

ated independently to assess its capability for paraphrasing extractive summaries.

Four recent paraphrase generation approaches based on GANs are employed as baseline

methods, which are described in detail below.

EndtoEnd-GAN [146] regarded the generator (two stacked LSTMs encoder and decoder)

as the stochastic policy and the output of discriminator (one LSTM) as its reward. In this

way, they propagated the gradients from the discriminator to both the generator models and

encoder models.

Div-GAN [147] proposed a conditional GAN-based framework consisting a GRU-based

generator and a CNN-based discriminator. They adopted the policy gradient and early feed-

back techniques described in [105] for training.

Pen-GAN [148] utilized a Convolutional seq2seq model for both generator and discrimin-

ator. They engage the discriminator output as penalization rather than using policy gradients,

and they avoid the Monte-Carlo search by proposing a global discriminator.

SE-GAN [149] proposed the stepwise evaluation for chit-chat dialogue generation using

GRU encoder decoder for both generator and discriminator and estimated state-action values

for each generation step by modifying the architecture of the discriminator.

Table 5.1 summarises the experimental results for paraphrasing on Quora (with 2 training

sizes, 100K and 150K) and MSCOCO datasets. The results are reported for EndtoEnd-GAN,

Div-GAN, and Pen-GAN from their paper. SE-GAN outperformed on all datasets compared to

other baseline methods due to employing stepwise evaluation. Div-GAN has the worst per-

formance on Quora-150K and MSCOCO datasets because of using policy gradient. EndtoEnd-

GAN and Pen-GAN are in the second and third places respectively regarding their BLEU scores;

however, Pen-GAN has a better METEOR score on Quora-100K dataset. EndtoEnd-GAN out-

5.3. EXPERIMENTS 121

Table 5.1: Experimental results of paraphrase generation on Quora (with 100K and 150K

training set size) and MSCOCO datasets. The results for EndtoEnd-GAN, Div-GAN, and Pen-

GAN are reported from their paper.

Method
Quora-100K Quora-150K MSCOCO

BLEU4 METEOR BLEU4 METEOR BLEU4 METEOR

EndtoEnd-GAN[146] 41.33 28.46 43.31 28.25 42.53 32.77

Div-GAN[147] - - 28.49 - 20.63 -

Pen-GAN[148] 29.07 31.27 - - - -

SE-GAN[149] 41.96 30.36 43.62 31.04 42.70 32.89

Para-GAN 43.79 32.41 44.71 33.23 45.03 33.97

perfromed Pen-GAN because of proposing a generator based on stacked LSTMs and applying

stochastic policy. The Para-GAN model improved the BLEU and METEOR scores compared to

all these baseline methods because of using transformers and Q-stepwise rewarding jointly in

the discriminator. In detail, stacks of residual attention blocks in transformer, not relying on

a recurrent structure, and reward calculation based on Q-learning for each generation step

are the reasons for better performance in Para-GAN.

5.3.5 Sentences Fusion Results

At the second stage of the experiments, the sentence fusion model (PG-fusion) is implemented

and evaluated independently to assess its capability for compressing the sentence pairs. Four

sentence fusion approaches are employed as baseline methods, which are described in detail

below.

ILP [123] used the word graphs along with the Integer Linear Programming(ILP) to cre-

ate the multi-document abstractive summaries. They first identified the most important doc-

uments among the documents to be summarised with the help of LexRank, cosine similarity

score and overall document collection similarity score. Then, they created clusters of sim-

ilar sentences among the important documents. Shortest paths are obtained by creating the

word-graphs and ILP model is applied to find the sentences with maximum information and

readability. ILP helps minimize the redundancy in the summary.

KeyRank [350] presents an N-best reranking method based on keyphrase extraction. Com-

pression candidates generated by a word graph-based Multi-Sentence Compression (MSC)

122 CHAPTER 5. Question-driven Abstractive Model

Table 5.2: Results of the proposed sentence fusion (PG-fusion) model pre-trained on DISCO-

FUSE and fine-tuned on McKeown dataset. The results for baseline methods are reported

from their papers.

Model METEOR BLEU CR

ILP [123] 34.3 42.30 44.90

KeyRank [350] 35.12 44.64 37.95

Paraphrastic-Fusion [190] 43.7 42.5 41.95

Align-Fuse [351] 36.06 62.54 57.15

PG-fusion 37.01 63.32 55.12

approach are reranked according to the number and relevance of keyphrases they contain.

Paraphrastic-Fusion [190] designed a paraphrastic sentence fusion model which jointly

performs sentence fusion and paraphrasing using skip-gram word embedding model at the

sentence level. Their model improves the information coverage and at the same time ab-

stractiveness of the generated sentences.

Align-Fuse [351] proposed a technique for sentence fusion using Word Graph based rep-

resentation of an input text. A Word Graph is a directed graph comprising of a set of vertices

representing the words along with a set of directed edges depicting the adjacency between

corresponding words. The main advantage of their approach is using a graph representation

Which generates new sentences by traversing the graph between a pair of fixed nodes.

Table 5.2 summarises the experimental results for sentence fusion on McKeown data-

set. Align-Fuse outperformed (regarding BLEU metric) all the baseline methods due using

BERT language model and word graph representation. The KeyRank model outperformed

Paraphrastic-Fusion because of re-ranking based on the extracted keyphrases and proposing

a word-graph compression method. The Paraphrastic-Fusion designed a paraphrasing and

compression model based on skip-gram word embedding which outperformed ILP which is

based on integer linear programming. The PG-fusion model outperformed all baseline meth-

ods due to using PG network which solves the repetition, OOV, and low coverage problems.

In addition, pre-training the PG network by DISCOFUSE dataset and fine-tuning on McKeown

dataset empower the PG network ability for sentence fusion.

5.3. EXPERIMENTS 123

5.3.6 Question-driven Abstractive Text Summarisation Results

At the final phase of the experiments, four recent question-driven text summarisation and

three query-based4 baseline methods are considered for evaluating the proposed model (QPara-

Sum).

HSCM [31] presented an approach for extractive answer summarisation consisting of

three components. In the first and second components (Word-level and Sentence-level Compare-

Aggregate), an attention operation is used to align the word-level and sentence-level inform-

ation between the answer sentence and question. In the third component, Question-aware

Sequential Extractor, a RNN decoder is designed to label each sentence consecutively and

construct the answer summary for the target question.

MSG [29] proposed Multi-hop Selective Generator (MSG), a question-driven abstractive

summarisation approach that integrates multi-hop reasoning to identify the key content for

assisting the answer generation. In addition to the multi-view pointer network, they in-

troduced a multi-view coverage technique to overcome the duplication issue and generate

informative and precise answers.

QPGN [32] presented a question-driven pointer-generator network that utilizes the correl-

ation information between question-answer pairs to add substantial information when gener-

ating abstractive answer summaries. Their framework consists of four components: Bi-LSTM

Encoder, seq2seq Model joint with question-aware attention, question-answer alignment with

summary representations, question-driven Pointer-generator Network.

Trans [33] has studied the capability of three state-of-the-art transformers for question-

driven text summarisation: BART, T5, and PEGASUS in both zero-shot and few-shot learning

settings for question-driven abstractive text summarisation on MEDIQA dataset. T5 outper-

formed the others thus it has been considered as a baseline method.

Div-qsum [37] introduced a typical encode-attend-decode model (based on LSTM) for

query-based abstractive summarisation, which first computes a vectorial representation for

the document and the query, and then the decoder produces a contextual summary one word

at a time.

PGRU-qsum [352] is a pointer-generator model based on GRU encoder-decoder with at-

tention and a pointer mechanism, for generating query-based summaries.

SummerTime [353] is a comprehensive text summarising toolkit that interfaces with lib-

raries built for NLP researchers and provides simple-to-use APIs to users. For query-based

4Their public code is used to apply their model to the datasets and generate question-driven summaries

124 CHAPTER 5. Question-driven Abstractive Model

summarisation, the top-k query-relevant phrases are retrieved using TF-IDF and BM25.

Table 5.3 shows the experimental results for one extractive (HSCM), three abstractive

question-driven summarisation approaches (MSG, QPGN, Tran(T5)), and three query-based

summarisation approaches (Div-qsum, PGRU-qsum, SummerTime) on WikiHow, PubMedQA,

MEDIQA datasets. The results for HSCM, MSG, QPGN, Tran(T5) are reported from their

papers, and the results for query-based baselines are generated by using their public code

for the datasets. The evaluation for the question-driven extractive summary is also included

to assess the impact of the paraphrasing and fusing process for generating abstractive sum-

maries. HSCM generated extractive answer summaries and as it is shown in Table 5.3 the

R1, R2, and RL for the generated extractive summaries and other abstractive baseline meth-

ods are superior to HSCM. Employing the GloVe language model and relying on a recurrent

structure decoder for generating extractive answer summaries caused this inefficiency and

poor performance in HSCM. MSG achieves relatively better performance than QPGN because

of incorporating multi-hop reasoning for abstractive summarisation. MSG and QPGN have

used the pre-trained GloVe model [72] which is not a very efficient model because of the

co-occurrence matrix of words that consumes a considerable amount of memory. Besides

using an inefficient language model, having multi-stages of training is another problem of

these baseline methods. In Trans, each language generation model (BART, T5, PEGASUS) is

pre-trained with different strategies which are unclear whether these strategies are the op-

timal ones. The query-based baselines have poor performances compared to question-driven

baselines since answer selection and reasoning are not considered in query-based summar-

isation. PGRU-qsum outperformed Div-qsum and SummerTime because of utilizing attention

and pointer mechanism. Div-qsum outperformed SummerTime due to using an attention

mechanism for encoding documents and queries.

Favorably QParaSum model obtains the state-of-the-art results for all three datasets with

the generated extractive and abstractive summaries. The results indicate that the generated

extractive summary covers the essential information for satisfying answerability, understand-

ability, and persuasiveness measures by finding the AS and its supporting sentences using

the proposed multi-hop QA system. Also, the extractive stage prunes the text (the input) for

the abstractive stage by removing the irrelevant and redundant information regarding the

question. It was shown that the idea of exploiting an appropriate paraphrasing and fusing

model for transforming the extractive summaries to abstractive is feasible since for all the

three datasets the abstractive summaries obtain higher R1, R2, and RL. The paraphrase and

5.3. EXPERIMENTS 125

Table 5.3: Results on WikiHow, PubMedQA, and MEDIQA. The results for HSCM, QPGN,

MSG, and Trans(T5) are reported from their paper.

Model

WikiHow PubMedQA MEDIQA

R1 R2 RL R1 R2 RL R1 R2 RL

HSCM 27.84 7.75 25.85 32.34 10.07 25.98 - - -

QPGN 28.8 9.7 27.7 34.2 12.8 28.7 - - -

MSG 30.5 10.5 29.3 37.2 14.8 30.2 - - -

Trans(T5) - - - - - - 38.56 18.52 26.00

PGRU-qsum 19.82 6.41 17.96 24.58 8.13 17.67 25.32 8.98 18.42

Div-qsum 18.56 5.10 15.81 22.67 7.55 16.80 23.56 7.08 17.67

SuumerTime 15.43 4.67 13.78 19.67 5.98 14.60 20.42 6.31 15.66

QParaSum-Extractive 31.71 11.23 30.09 38.89 14.81 30.76 40.94 20.11 27.46

QParaSum-Abstractive(pre-trained fusion) 33.69 12.05 31.79 41.00 16.42 32.93 44.32 23.02 29.81

QParaSum-Abstractive(fine-tuned fusion) 33.88 12.43 31.92 41.30 16.87 33.21 44.89 23.61 30.11

fusing models make the hybrid summariser capable to generate high-quality abstractive sum-

maries that are closer to the human-generated ones. The QParaSum-Abstractive(pre-trained

fusion) is the model with pre-trained fusion(PG) on DISCOFUSE dataset and QparaSum-

Abstractive(fine-tuned fusion) comprises the the PG which is pre-trained in the first step and

then fine-tuned with small set of training instances in the second step. The methodology for

preparing the fusion fine-tuning dataset is explained in 5.2.3. The results show that fine-

tuning the sentence fusion model on each dataset can empower the abtractive summariser.

However, the QParaSum-Abstractive(pre-trained fusion) with pre-trained fusion model is cap-

able of generating quality abstractive summaries when fusion fine-tuning is not possible for

small datasets.

In Table 5.4, a practical example of the framework outputs has been shown for an instance

from the MEDIQA dataset. At first stage, the AS is selected by the proposed answer selector

module based on CNN and multi-head attention and then IS1 is detected by the proposed

LCCS reasoning method as the most semantically relevant sentence to AS. IS2 and IS3 are

selected as the next supporting sentences for IS1 and AS. Since the IS1 contains general

and important information about the AS (it contains the symptoms, medication and surgery

as the treatment for hernia), finding sentences explaining and extending this information is

needed. The extractive summary is constructed by concatenating AS, IS1, IS2, and IS3 with

the same order that they have in the article. At the second stage, the trained paraphrase model

(the generator) is used for rewriting the sentences of the extractive summary to improve it

and make it more similar to the human-generated summary. The fusing mechanism based

126 CHAPTER 5. Question-driven Abstractive Model

Figure 5.5: QParaSum-Abstractive performance (average R1, R2, RL across all datasets) with

different question lengths.

on PG networks is applied to the paraphrased sentences and generated the final question-

driven abstractive summary. IS1 and IS3 are selected as a pair of sentences and merged

together while AS and IS2 are singleton sentences and their paraphrased form are used in the

abstractive summary.

After generating the extractive summary, it is evident that the model tried to simulate the

human action for text summarisation, regenerating and rewriting the sentences using a para-

phraser and fusing mechanism. To evaluate the generated abstractive summary and compare

its quality to the extractive summary, the human generated summary (gold summary) and

R1, R2, RL metrics are used to demonstrate whether the generated abstractive summary is

similar to the gold summary. The generated abstractive summary obtained higher R1, R2, and

RL, and it shows that the generated abstractive summary has more in common sequences of

words with the gold summary in comparison to the extractive and paraphrased summary. The

paraphrasing and sentence fusion in QParaSum-Abstractive transform the extractive summary

to abstractive which shows the proposed model could simulate the human skill for question-

driven abstractive summarisation.

Fig. 5.5 shows the average of R1, R2, and RL scores for QParaSum-Abstractive(pre-trained

fusion) model across all datasets with different question lengths. It is evident that the model

performance is not impacted by the length of the input question since an insignificant per-

formance degradation (R1, R2, RL) is observed when the question length increases.

5.3. EXPERIMENTS 127

Table 5.4: An example from MEDIQA dataset for extractive and abstractive summaries gen-

erated by the framework that are evaluated by the gold summary.
Question: I have an hernia I would love to take care of it ASAP I was wondering if you guys could

help and tell me what should I do?

Article: Hiatal hernia (Treatment): The majority of patients who have a hiatal hernia will exhibit

no signs or symptoms and will not require treatment. If you have persistent heartburn or acid

reflux, you may require medication or surgery. If you suffer from heartburn or acid reflux, your

doctor may prescribe the following medications:- Antacids that act as a buffer for stomach acid.

Anti-acid medications such as Mylanta, Rolaids, and Tums may give immediate relief. Certain ant-

acids may have adverse effects such as diarrhoea or kidney problems if used in excess.-Medications

that inhibit acid production. Cimetidine (Tagamet), famotidine (Pepcid), nizatidine (Axid), and

ranitidine are all H-2 receptor antagonists (Zantac). Prescriptions are required for stronger ver-

sions. - Anti-acid medications that aid in the healing of the esophagus. Proton pump inhibitors

are more effective acid blockers than H-2 receptor antagonists, and they allow a longer time for

injured esophageal tissue to repair. Lansoprazole (Prevacid 24HR) and omeprazole are two proton

pump inhibitors available over-the-counter (Prilosec, Zegerid). Surgery is normally reserved for

those who are unable to control their heartburn or acid reflux with medicines or who have prob-

lems such as significant inflammation or esophageal constriction. Surgery to repair a hiatal ...

Question-driven Extractive Summary: (Answer Sentence) Hiatal hernia (Treatment): The ma-

jority of patients who have a hiatal hernia will exhibit no signs or symptoms and will not require

treatment. (IS1) If you have persistent heartburn or acid reflux, you may require medication or

surgery. (IS2) If you suffer from heartburn or acid reflux, your doctor may prescribe the following

medications:- Antacids that act as a buffer for stomach acid. (IS3) Surgery is normally reserved

for those who are unable to control their heartburn or acid reflux with medicines or who have

problems such as significant inflammation or esophageal constriction.

Paraphrased Summary: Hiatal hernia (Treatment): Most individuals with a hiatal hernia don’t

have any signs or symptoms and will not require treatment. If you have signs like repetitive acid re-

flux and heartburn, you may require medication or surgery. Your doctor may recommend Antiacids

to neutralize stomach acid if you experience acid reflux and heartburn. Surgery is recommended if

the medications do not help the individual to soothe acid reflux and heartburn, or have complex-

ities like serious inflammation or narrowing of the esophagus.

Question-driven Abstractive Summary:Hiatal hernia (Treatment): Most individuals with a hiatal

hernia don’t have any signs or symptoms and will not require treatment. Your doctor may recom-

mend Antiacids to neutralize stomach acid if you experience acid reflux and heartburn. If you

have signs like repetitive acid reflux and heartburn, you may require medication or surgery, if have

complexities like serious inflammation or narrowing of the esophagus.

Gold Summary: If a hiatal hernia does not have any symptoms, it won’t require treatment. If the

hernia causes heartburn and acid reflux, your doctor may recommend antacids. If the medications

do not help or hiatal hernia causes inflammation, narrowing of the esophagus or continuous heart-

burn or acid reflux, your doctor might recommend surgery.

Extractive Summary Evaluation:{R1:0.367, R2: 0.147, RL: 0.220}

Paraphrased Summary Evaluation:{R1: 0.530, R2: 0.275, RL: 0.346}

Abstractive Summary Evaluation:{R1: 0.536, R2: 0.276, RL: 0.348}

128 CHAPTER 5. Question-driven Abstractive Model

5.4 Summary

This chapter presented the abstractive framework from the hybrid text summarisation model.

The question-driven extractive summaries that are generated by the extractive framework

(previous chapter) are consumed by the abstractive framework. A key barrier for generat-

ing new text is a language’s inherent characteristics, such as syntax, grammar, and semantic

aspects. The model must learn the correct connection between words and characters to gen-

erate a viable text, commonly accomplished through various memories and situations (prior

knowledge). Such issues can be addressed in a more robust pre-learning step, in which pre-

trained embedding models BERT [237], A lite bert for self-supervised learning of language

representations (ALBERT) [90], ELECTRA [91], or GPT-2 are combined with transformer-

based seq2seq architectures to be capable of generating plausible “natural” language text.

Transformer-based GANs incorporating contextualized pre-trained language models and step-

wise evaluation are blank spots that still need to be appropriately addressed for text genera-

tion, which we have presented in this chapter.

The sentences in the extractive summary are paraphrased by the paraphrase model based

on GANs and transformers with Q-learning stepwise evaluation. After paraphrasing the ex-

tractive summary sentence-by-sentence, a sentence fusion mechanism based on the Pointer

Generator network is designed for compressing the sentences which are labeled as pair sen-

tences in the Next Sentence Prediction (NSP) task. The results show that the generated

abstractive summary is closer to the gold summary compared to the generated extractive

summary. The reason for this quality improvement in the abstractive summary is empower-

ing the GAN with transformers and Q-learning stepwise evaluation for paraphrase generation

which is complemented with a sentence fusion model.

The previous question-driven text summarisation approaches’ shortcomings have been ex-

plored and considered while proposing the model. HSCM [31], MSG [29], and QPGN [32]

have used the pre-trained Glove model which is not efficient because of the co-occurrence

matrix of words that takes a lot of memory for storage. Besides, having multiple steps of train-

ing is another problem in these approaches. In Trans [33] each language generation model

(BART, T5, PEGASUS) is pre-trained with different strategies which are unclear whether these

strategies are the optimal ones. Recent query-based text summarisation approaches have bee

studied in this chapter to examine their ability to be used for question-driven text summar-

isation. The main goal in query-based text summarisation approaches is to summarise the

retrieved relevant information to the query, but in the question-driven text summarisation,

5.4. SUMMARY 129

answer detection and explaining that answer in a summarised form is desired. Therefore,

the query-based text summarisation approaches are not adaptable for the question-driven

summarisation problem.

The results are evaluated on WikiHow, PubMedQA, and MEDIQA datasets which are ap-

propriate for the question-driven summarisation problems. The results are compared to sev-

eral baseline methods. It can be concluded that the abstractive QParaSum framework im-

proved the quality of the summaries, and the generated abstractive summaries are more

similar to the reference summaries (human-generated summaries).

Chapter 6

An Industrial Case Study

6.1 Introduction

In this chapter an industrial case is studied and the proposed model described in chapter 4

and 5 is used for processing real industry data. The industrial case and its challenges are intro-

duced first and the dataset, experiments, and results have been demonstrated subsequently.

Openreach 1 Limited runs the UK’s digital network. It’s a wholly owned subsidiary of BT

Group and its customers are the 688 communications providers who sell phone, broadband

and Ethernet services to homes and businesses. Openreach have 37,000 people who tackle

complicated engineering problems – from coordinating works with councils, highways agen-

cies, energy suppliers and landowners, to installing and maintaining the complex kit that

provides fibre broadband services.

Large volumes of information about orders are captured by and stored in different internal

systems at Openreach, which are being used by teams handling the orders (for example, plan-

ners/surveyors, field engineers, customer centre agents, etc.) Having an automated system

for processing this information and generating summaries based on three main questions

“When is the next action on the order, What is the current stage of the order, Why is it in this

stage” is crucial for having a clear picture of the latest status of the order and find out about

the progress of the order easily.

Openreach orders are structured in such a way that there is an update over time. The

orders’ information is in structured and free text format. Every time that an action has been

done for an order an update (note) will be created by an engineer or a system. These updates

1https://www.openreach.com/

130

6.2. THE MODEL FOR OPENREACH DATA 131

are required to be issued to the summariser as data over time, which means that summaries

at time t are required to contain an update to the previous summary at time t− 1.

6.2 The Model for Openreach Data

Therefore, an online demo was designed for tracking the orders’ progress at Openreach, gen-

erating progress summaries, and answering the user’s (customer desk agent, planners, etc.)

questions regarding the recent notes about the order. The online demo was based on the pro-

posed adaptable MRC method based on CNN and multi-head attention mechanism, A-MRC

Figure 6.1 that has been introduced in chapter 4. The demo contains two parts, QA and

question-driven extractive summariser. The first part is a sentence-level QA model and the

second part is an extractive summariser which generates progress summaries based on the

three fixed questions mentioned above. The A-MRC model has been fine-tuned and experi-

ments conducted to evaluate the model performance for Openreach orders’ information. In

the chapter 4 and 5 I have introduced a reasoning process and the abstractive stage which

are not applied for the telecom domain due to some special characteristics of orders’ notes.

The reasoning process is not utilized since the extractive summary is based on three questions

and their answers form the ideal summary for tracking the order’s progress and also notes are

quite short. In this example of telecom domain, the abstractive stage is not utilized since it

has been decided to only have extractive summaries and use the exact pieces from the notes

in the summary without any abstraction. The datasets, fine-tuning settings, experiments,

baseline models, results, and demo examples are described in this chapter.

6.3 Dataset

The Openreach dataset contains the 4696 completed orders with start date from one-year

period. Each order has 34 numerical, categorical, and unstructured text features and the

most important features are mentioned below which I consider for sampling training and test

datasets.

• Received-date (the date of receiving the order)

• Comp-date (the date of the order completion)

• ORDER-TYPE

132 CHAPTER 6.An Industrial Case Study

Figure 6.1: The online demo is based on the MRC model, A-MRC that has been introduced in

chapter 4.

6.3. DATASET 133

• Geographical region (such as East Anglia)

• CSP-Name (Name of Communication Service Provider)

There are 19 categories for notes which could be generated by the systems or people

(engineers, planners, etc.) working on the orders,e.g. warning, notes about potential hazards,

engineering notes, and etc.

6.3.1 Data Characteristics

The engineers’ notes are selected as the most informative notes for processing and generating

the progress summaries. Engineers’ notes contain the notes generated by engineers and the

systems during the order completion period. Following is an example of three consecutive

engineers’ notes generated for an order.

Table 6.1: An example of three consecutive engineers’ notes generated for an order
16/10/2019 11:43:00 - <Name A> Associated A55 with this job. <link> Please follow this link

to access A55 details. I cannot complete this task because further work is required by the Dig

and Aux control team for a maintenance dig, An A55 has been submitted. The A55 reference is

<reference-id>.

28/10/2019 09:27:00 - <Name B> Photographic evidence available I cannot complete this task

because the end customer or their representative was not present at the premises. Jumper work is

completed at the cabinet. Please see additional information New DLI lead in needs full fit.

29/10/2019 18:14:00 - <Name C> I cannot complete this task because I have run out of time

within my scheduled hours. The end customer cannot use the service. The work outstanding is

Install completed. Tested dis 20m from bt66.

As it is evident the notes contain technical terms, links, reference numbers and etc. For

understanding the meaning of notes knowing the meaning of the technical terms is essen-

tial(e.g. A55 is Excavation Drawing, Information required by contractors before they can

start work and DLI is an equipment).

6.3.2 Training Dataset

I have prepared a training dataset for fine-tuning the A-MRC to Openreach dataset and to

verify the performance of the proposed model. A SQuAD style Question Answering training

dataset is prepared by using engineering notes and 5 different questions:

• Why is the order not complete?

• Where is the order passed to?

<link>

134 CHAPTER 6.An Industrial Case Study

Table 6.2: The summary of orders’ features selected for test dataset
Order-ID RECEIVED-DATE COMP-DATE ORDER-TYPE Geographical region CSP-NAME

000000001 27-Mar-2019 06-Dec-2019 TYPE1 Northern England CSP1

000000002 15-Aug-2019 28-Nov-2019 TYPE1 London and South East CSP1

000000003 04-Nov-2019 04-Dec-2019 TYPE1 Wales and Midlands CSP3

000000004 22-Nov-2019 25-Nov-2019 TYPE1 Wessex CSP1

000000005 25-Sep-2019 25-Nov-2019 TYPE1 Wales and Midlands CSP3

000000006 08-Oct-2019 26-Nov-2019 TYPE1 Wales and Midlands CSP1

000000007 02-Sep-2019 26-Nov-2019 TYPE1 East Anglia CSP3

000000008 28-May-2019 26-Nov-2019 TYPE2 Northern England CSP2

000000009 11-Jul-2019 28-Nov-2019 TYPE2 Wales and Midlands CSP4

000000010 12-Nov-2019 28-Nov-2019 TYPE2 Wales and Midlands CSP2

• What has been done for the order so far?

• What does the order require?

• What is the next step for the order?

The datasets consist of 400 Note-Answer-Question triples. I sampled the notes from dif-

ferent orders considering the distribution of different orders in the main dataset to prepare a

training dataset with diverse types of orders and notes.

6.3.3 Test Dataset

The test dataset contains 10 orders selected with different features, the main distribution of

the Openreach dataset is considered while selecting the sample data. For example, if the

66% of the dataset is orders with “ORDER-TYPE TYPE1”, same portion has been considered

for sample selection. Due to the manual anonymization, data preparation, etc. only a few

indicated examples are used since it’s not possible to self-evaluate the answers and it needs

to be done with support of knowledge domain experts, e.g. potential users. The summary of

the selected orders for testing the fine-tuned model is provided in Table 6.2.

6.3.4 Data Anonymisation

Due to nature of the dataset it might contain personally identifiable information (PII) or con-

fidential information like people’s names, address parts or location references, phone num-

bers, unique order references, etc. The model and dataset is not intended for releasing extern-

6.4. EXPERIMENTS 135

ally or publishing and it was not required to do anonymisation while training. However, any

examples of notes in this document were anonymised for privacy purposes. The name of the

engineers, reference numbers, links, addresses, and numbers are anonymised by replacing

them with a token with named entity type, such as <Name X>, <reference-id>, <link>,

<Address/street name>, <number>.

6.4 Experiments

6.4.1 Fine-tuning Process

I have utilized the same setting explained in chapter 4, the Natural Questions(NQ) dataset

is used for pre-training the A-MRC. For both the pre-training and fine-tuning, the question

sentence pairs were generated by CAI. After generating the candidate answer sentences for

question categories with CAI, the candidate answer sentence and question pairs were gen-

erated for training the A-MRC model. The candidate answer sentence which contains the

answer gets the label 1, and other candidate sentences get the label 0.

I used the pre-trained ALBERT base model for token embeddings, consisting of 12 Trans-

former blocks with 12 self-attention heads and the hidden size of 768. There is no analytical

formula to calculate an appropriate value of the hyperparameters to obtain the optimal model

parameter. I have utilized Ray Tune Python library with Hyperopt algorithm as explained in

chapter 4. Filter size, number of filters, learning rate, and batch size hyperparameters were

optimized for telecom domain. The search spaces are {2, 3, 4, 5}, {10, 20, 30}, {1e-7, 2e-

7,1e-8, 2e-8, 5e-8}, {4, 8, 16} for filter size, number of filters, learning rate, and batch size

respectively. The optimal combination of hyperparameters values that maximize the model

performance are {2,3,4}, 10, 2e-8, and 4 for filter size, number of filters, learning rate, and

batch size respectively. The optimal values for filter size, number of filters, learning rate, and

batch size for the pre-training are calculated as follows: {2, 3, 4}, 100, 2e-5, 64. I applied

early stopping on the development set for both training stages on the loss value. I set the

max number of epochs to 9 and 3 for transfer and adapt steps, respectively. I set the max-

imum sequence length for BERT and ALBERT to 128 tokens. I utilized the Adam optimization

algorithm for the parameter update. The cross-entropy loss function is used to calculate the

loss. Figure 6.2 demonstrates the online demo based on the fine-tuned model. In window 1,

up to 3 notes with Date-time Name of Engineer content format should be entered. The input

for window 2 is optional (it can be blank), you can enter a list of questions separated with ‘,’.

136 CHAPTER 6.An Industrial Case Study

Figure 6.2: The online demo designed for tracking progress of the orders at Openreach.

Then by entering “Generate Summary” button, you will see results after a few seconds.

The demo processes three engineering notes at a time and the model starts finding the

answers to the questions in the most recent notes (the notes are sorted based on their Date-

Time attribute). The demo will go to the older notes if the answer to the question couldn’t be

found in the most recent note. If the user enters the question(s), the QA system will extract

the answer sentences along with their DateTime attribute and scores calculated by the A-MRC

model.

The summarisation part will generate extractive summaries based on three fixed questions

“Why is the order not complete?, What does the order require?, Where is the order passed

to?”. The fine-tuned model extracts the answer sentences for the above questions and the

answers form the question-driven summary for the order to show the progress of the order

and the reason for any delays. The description for technical words and abbreviations will be

provided at the end of the summary. The redundant sentences will be removed since maybe

one sentence could contain the answer to two questions. If any answer is not from the most

recent note the DateTime of the answer will be printed showing that the sentence has been

selected from an older note. Section 6.4.4 illustrates some example inputs and the generated

outputs for the both QA and summarisation part.

6.4. EXPERIMENTS 137

6.4.2 Baseline Methods

To demonstrate the effectiveness of the proposed model after fine-tuning, I compare against

several ready-to-use QA and extractive summarisation tools:

• Facebook’s BART summariser: This Transformer-based model is very complex and takes

time to return on a CPU, even for small pieces of text. It is compatible with many

languages thanks to the multi-language add-on.

• T5 summariser: T5 is an extremely large new neural network model that is trained on

a mixture of unlabeled text and labeled data from popular natural language processing

tasks. The most obvious new idea behind T5 is that it is a text-to-text model and during

the training, the model is asked to produce new text as an output.

• Roberta’s QA: The Roberta Transformer-based model is accurate and fairly fast. Roberta’s

QA within context is about sending a piece of text, and asking a question that the model

answers thanks to your piece of text.

6.4.3 Results and Discussion

The results are generated for the test dataset by baseline methods and the proposed demo

which are evaluated by humans since reference summaries (gold summaries) are not available

for Openreach orders. A 5-point scale (very good “5”, good “4”, moderate “3”, bad “2”, very

bad “1”) is considered for the performance evaluation [354]. For each question either in the

QA or the summarisation part if the extracted answer is correct and selected from the right

note the rate will be very good(5), but if the answer is correct but selected from an old note

while the recent note contains an answer the rate will be moderate (3). If the extracted

answer is not correct the rate will be very bad (1).

For the summarisation section, the overall quality of the generated summaries is also rated

based on the coherency and readability which are the results of the pre-processing step and

removing the redundancy in the methods. The mean rates of the three fixed questions and

the overall quality score is the final rating for the generated summary.

The baseline methods get the same input as the online demo (up to 3 notes). The baseline

models are designed for generic summarisation and the DateTime attribute is not defined

and recognized by these models. The results show that BART summariser outperformed the

T5 summariser. The proposed model outperformed the baseline methods for both QA and

138 CHAPTER 6.An Industrial Case Study

Table 6.3: The mean scores for ready-to-use summarisation and QA tools and the proposed

demo on the test dataset orders’ notes.
Model summarisation score QA score

Facebook’s BART summariser 2.6 ___

T5 summariser 1.4 ___

Roberta’s QA ___ 2.8

Online demo 3.8 4.0

summarisation task as shown in Table 6.3. The result for each model is the mean of the

summaries’ and answers’ scores generated for the orders’ notes in the test dataset.

If the sequence of the notes changes (not the notes’ content) the baseline models generate

different summaries since the position of the sentences is important in the input text not the

DateTime attribute(example1 in Figure. 6.3). The example2 in the Figure. 6.4 shows that by

changing the date and time of the notes, the BART generates the same summary because the

generic summarisation tools are not designed for processing time-stamped text documents.

The designed demo recognized this change, sort the notes based on their DateTime and starts

processing the most recent note first.

The baseline tool for the QA part, Roberta QA, cannot detect the most recent note and the

first answer found in the document even from an older note is selected (all the notes together

are considered as a single text document, examples are shown in 6.4.4).

6.4.4 Demo Examples

In this section, some examples of the notes in the test dataset are shown to compare the

baselines’ outputs and the demo output. In Table 6.4 T5 and BART summariser generated

generic summaries for the notes regardless of their DateTime attribute. BART outperformed

T5 due to using both BERT (bidirectional encoder) and GPT (left to the right decoder) archi-

tecture with seq2seq translation and achieves the state of the art results in the summarisation

task.

The summaries generated by the proposed demo contains the name of the engineer who

has been involved lately. Every update in the summary comes with its DateTime attribute

to show the progress of the order regarding the three fixed questions at different times. A

definition for the technical terms and abbreviations in the summary is provided at the end to

make it more understandable for non technical users. Also, the equipment’s name used in the

6.4. EXPERIMENTS 139

Figure 6.3: An example of the baseline’s performance for processing order’s notes.

140 CHAPTER 6.An Industrial Case Study

Figure 6.4: An example of the baseline’s performance for processing order’s notes.

6.4. EXPERIMENTS 141

Table 6.4: An example for summarisation outputs of the T5, BART and the proposed demo.
16/10/2019 11:43:00 - <Name A> Associated A55 with this job. Please follow this link to access

A55 details. <link> I cannot complete this task because further work is required by the Dig

and Aux control team for a maintenance dig, An A55 has been submitted. The A55 reference is

<reference-id>.(No manually entered closure notes)

28/10/2019 09:27:00 - <Name B> Photographic evidence available I cannot complete this task

because the end customer or their representative was not present at the premises. Jumper work is

completed at the cabinet.Please see additional information New DLI lead in needs full fit .

29/10/2019 18:14:00 - <Name C> I cannot complete this task because I have run out of time

within my scheduled hours. The end customer cannot use the service. The work outstanding is

Install completed. Tested dis 20m from bt66.(No manually entered closure notes)

BART Summary:

I cannot complete this task because further work is required by the Dig and Aux control team for

a maintenance dig, An A55 has been submitted. The A55 reference is <reference-id>. The work

outstanding is Install completed. The end customer cannot use the service. New DLI lead in needs

full fit.

T5 Summary:

the end customer or their representative was not present at the premises. the work outstanding is

Install completed. Tested dis 20m from bt66.(No manually entered closure notes)

Demo Summary:

The update that our engineer <Name C> has reported on 29/10/2019 18:14:00 about your order:

I can not complete this task because I have run out of time within my scheduled hours.

The work outstanding is Install completed.

Please follow this link to access A55 details. <link> I can not complete this task because further

work is required by the Dig and Aux control team for a maintenance dig , An A55 has been

submitted. [16/10/2019 11:43:00]

Please Continue to review fault tracker for further updates.

List of technical terms:

A55: Excavation Drawing - Information required by contractors before they can start work.

summary are clarified by adding “(the equipment)” after the corresponding word (Example

in Table 6.5).

The Table 6.6 shows the outputs of the Roberta QA and the proposed demo for the QA

part. The Roberta outputs the first piece of the text that answers the question regardless

of it DateTime attribute. So, for getting the most up-to-date answer, the last note should

be placed at the beginning of the input text. The proposed demo sorts the notes based on

their DateTime attribute and starts searching for the answer from the most recent note, if it

couldn’t be found the second recent note will be processed. Also, the answers from the demo

are in sentence-level which provide enough information to the user. The name of the engineer

<link>
<link>

142 CHAPTER 6.An Industrial Case Study

Table 6.5: An example for summarisation outputs of the T5, BART and the proposed demo.
11/08/2019 12:09:00 - <Name A> I cannot complete this task because I was unable to access

Openreach line plant located within Openreach network. Work not commenced.Please see addi-

tional information Still waiting new duct .

26/08/2019 19:54:00 - <Name B> I cannot complete this task because I have run out of time

within my scheduled hours. The end customer cannot use the service. The work outstanding is

Need to chase up maint dig on this job but triage are shut raitining for tomorrow advised Eu I will

let him know what’s happening as it’s been going on since <date>.(No manually entered closure

notes)

27/08/2019 11:27:00 - <Name C> Photographic evidence available I cannot complete this task

because the end customer or their representative was not present at the premises. Line ok at jf4

o/s <Address> nte5 detected to the customer and cable tracks towards house access required .(No

manually entered closure notes)

BART Summary:

I cannot complete this task because I have run out of time within my scheduled hours. The end

customer cannot use the service. The work outstanding is Need to chase up maint dig on this job

but triage are shut raitining for tomorrow. Still waiting new duct.

T5 Summary:

the work outstanding is Need to chase up maint dig but triage are shut raitining for tomorrow

advised Eu I will let him know what’s happening as it’s been going on since <date>.

Demo Summary:

The update that our engineer <Name C> has reported on 27/08/2019 11:27:00 about your order:

evidence available I can not complete this task because the end customer or their representative

was not present at the premises .

Line ok at jf4(the equipment) o/s <Address> nte detected to the customer and cable tracks to-

wards house access required .

Please Continue to review fault tracker for further updates.

List of technical terms:

nte: Network Terminating Equipment

and the DateTime of the answer sentence is provided to show when and who was involved in

that particular stage of the order. The “Model confident score” shows the score of the selected

answer explained in 4.2.1 and the model’s confidence about that answer. These are certain

features of the proposed demo for providing comprehensive answers and summaries for the

orders.

6.5. SUMMARY 143

Table 6.6: An example for Question Answering outputs of the Roberta and the proposed

demo.
31/10/2019 14:51:00 - <Name A> I cannot complete this task because further work is required

by the Dig and Aux control team for a maintenance dig, An A55 has not been submitted because

Associated/common jobs with this task. second stage onsite and dealing. needs putting into hold

delay. associated job numbers are <number> and <number> faults at <number>, <number>

and <number> <street name>.(No manually entered closure notes)

01/11/2019 08:59:00 - <Name B> Task complete. Still outstanding work to be done by tails

advised to to com off by <Name C> at CER to stop it keep coming out

09/11/2019 13:05:00 - <Name D> I cannot complete this task because further work is required

by the Dig and Aux control team for a maintenance dig, An A55 has not been submitted because

Needs track and locate . Two digs been done on this job and they have now exposed a joint and

the line is good to that joint. The has been an armoured cable put in from the customer to another

dig and it’s just left in the dig with no cable to joint it to. They exposed a power cable that is not

ours so we have no cable in the same dig point that we can joint it to. We need to expose our cable

and if we can’t we need to but a duct in to the next dig down so we can link it to the joint exposed

in the other dig location.

Roberta QA:

Why is the order not complete?

Associated/common jobs with this task

What does the order require?

further work

What has been done for this order so far?

Two digs

Demo Answers:

Why is the order not complete?

Model confident score: 0.9733

09/11/2019 13:05:00 <Name D>

cannot complete this task because further work is required by the Dig and Aux control team for a

maintenance dig An A55 has not been submitted because Needs track and locate .

What does the order require?

Model confident score: 0.8456

09/11/2019 13:05:00 <Name D>

We need to expose our cable and if we can’t we need to but a duct in to the next dig down so we

can link it to the joint exposed in the other dig location.

What has been done for this order so far?

Model confident score: 0.9140

09/11/2019 13:05:00 <Name D>

Two digs been done on this job and they have now exposed a joint and the line is good to that

joint.

6.5 Summary

In this chapter, I presented the online demo designed for telecom domain based on the pro-

posed MRC model explained in chapter 4. I have utilized the A-MRC model for generating

144 CHAPTER 6.An Industrial Case Study

question-driven extractive summaries and answering questions to show the orders’ progress

at Openreach. First I fine-tuned the A-MRC model to the telecom domain by using the small

training dataset based on the past completed orders. The Openreach dataset and its features

are described in 6.3 which shows special settings are required for fine-tuning the proposed

model and designing the demo. Then, a test dataset is designed for evaluating ready-to-use

QA and summarisation tools and the proposed demo. A human evaluation is designed since

there are no gold summaries available for this telecom domain, which has been described in

6.4.3. There are other telecom datasets available, some of them might have gold summaries

but for this specific dataset (Openreach dataset) from telecom domain, a human evaluation

process is required. The results show the proposed demo outperformed both QA and summar-

isation tools due to the fine-tuning process and its design for processing timestamped text.

Although, the performance of the adaptable A-MRC model has been evaluated for various do-

mains in chapter 4, adding some features for understanding the structure of orders’ notes and

DateTime attribute complement its capability for processing the Openreach data. Finding the

answer sentences for the three main questions “Why is the order not complete?, What does

the order require?, Where is the order passed to?” helps to generate an extractive summary

showing the progress of the order which will help teams (for example, planners/surveyors,

field engineers, customer centre agents, etc.) at Openreach having a clear picture of the latest

status of the order. Furthermore, the A-MRC is utilized for a sentence-level QA system which

help Openreach users to ask any questions about the orders and get the answers instantly

along with the corresponding DateTime and engineer’s name who was involved with that

particular stage. The answer provided for each question has a score that shows how confid-

ent the model is for the extracted answer. Different examples for QA and summarisation parts

in the demo are provided in 6.4.4.

Chapter 7

Conclusion and Future Work

7.1 A Hybrid Question-driven Text Summarisation Model

A hybrid adaptable approach has been proposed for generating extractive and abstractive

question-driven summaries, which can be easily adapted to different domains with specialized

vocabulary by utilizing a small training dataset. The proposed hybrid approach takes the

benefits of both extractive and abstractive techniques and generates an extractive summary

based on the question in the first stage. Then, the generated extractive summary is rewritten

and shortened to produce the abstractive summary.

The question-driven extractive stage is based on an open-domain multi-hop QA system

comprising a sentence-level MRC method and reasoning process. CAI, CNN and multi-head

attention-based answer selector, and QE module are MRC components in the multi-hop QA.

The CAI module with six functions based on linguistic and syntactic features and patterns

has been introduced for reducing the document to sentences (candidate answer sentences)

that could answer the given question. A joint CNN and multi-head attention neural network

has been designed to analyse and assign a score to each candidate answer sentence based on

its relevance to the question. The CNN-attention layer calculates the relevance score based

on the correlation of the semantic features extracted from the question and the candidate

answer sentence. If the selected answer sentence score calculated by MRC component is less

than Θ, the question expansion module generates paraphrased questions until a candidate

answer achieves a score greater than Θ. A lightweight hybrid question expansion based on

contextualized embedding and lexical resources (WordNet) is designed that replaces some

question keywords with domain-related synonyms to generate paraphrased questions. After

selecting the answer sentence, an unsupervised reasoning process (it is called LCCS reasoning

145

146 CHAPTER 7. Conclusion and Future Work

process) based on Lexical Coverage and Contextualized Similarity is proposed for selecting

supporting sentences (justification sentences). All the sentences in the document are con-

sidered as the candidate justifications sentences, and those candidates that are closest to the

question, answer sentence, and selected justification sentences in the embedding space are

selected. A pre-trained BERT and cosine similarity are utilized for measuring the semantic

similarity combined with the lexical coverage for calculating the justification score of each

sentence in the document.

The reasoning process helps us select appropriate, relevant sentences explaining the an-

swer sentence and then constructs the final extractive summary. The justification sentences

and answer sentence are rearranged according to their original indexes in the given document

to bring coherence in the selected sequence of sentences and generate the question-driven ex-

tractive summary. Experiments are conducted to evaluate the proposed MRC model and its

components to make sure they perform efficiently. The results show the MRC model outper-

forms all the baseline models for MRC-style sentence-level QA in closed-domain and open-

domain. Then, the proposed multi-hop QA model results are evaluated for both multi-hop

Question Answering and question-driven extractive summarisation (chapter 4). The results

show the model performs well in comparison to the multi-hop QA and question-driven text

summarisation baseline methods.

An abstractive stage based on a paraphrase framework and sentence fusion mechanism

has been designed. The paraphrase generation model is designed with GANs containing

transformers encoders and decoders and Q-stepwise evaluation for regenerating the extract-

ive summaries produced in stage one. The regenerated summary is then consumed with the

proposed fusion mechanism based on the next sentence prediction and the PG network to

produce shorter high-quality abstractive summaries. The next sentence prediction is utilized

for detecting the sentence pairs and singletons to choose the relevant sentences from the

paraphrased summary generated by the GAN model. The sentence pairs are provided to the

sentence fusion mechanism, which aims to create shorter abstractive sentences. The PG net-

work gets a sentence pair and generates a fused sentence. After fusing the sentence pairs, the

singletons and fused sentences construct the question-driven abstractive summary. Several

experiments are implemented to evaluate the proposed paraphrase generation model, and

fusion mechanism independently, and then the whole abstractive framework is evaluated on

the question-driven datasets.

The experimental results for stages one and two, extractive and abstractive question-

7.2. APPLICATIONS 147

driven text summarisation, show that the hybrid approach generates quality question-driven

abstractive summaries in different domains. Selecting the question-relevant information (an-

swer sentence and its supporting sentences) reduces the input document and helps the ab-

stractive summariser to process and abstract the question-relevant information only. The

results are compared to baseline methods which are available for question-driven text sum-

marisation, query-based text summarisation, paraphrase generation, sentence fusion, MRC

models, and multi-hop QA. The model is capable to be adapted to different domains by the

training strategies described in section 4.3.3 and 5.3.3.

The proposed model in chapter 4 and 5 simulated the humans steps for generating a

question-driven abstractive summary. Selecting pieces of information answering the target

question, rewriting and shortening them are steps which are simulated by the proposed

model. This simulation is performed by employing an designing an extractive and an abstract-

ive methods described above. The presented hybrid question-driven text summariser gener-

ates efficient question-driven extractive and abstractive summaries. The generated summaries

satisfied the answerability, understandability, and persuasiveness, as they not only provide the

answer sentence, they also provide the complementary information to the answer sentence.

7.2 Applications

We are now observing an exponential surge of data originating from many sources, such as

various forms of company records. The processing of this sparse, noisy, and domain-specific

data is extremely difficult. BT, a UK-based technology corporation and the Ph.D. project’s

sponsor, has a huge number of field engineers, desk-based agents, and customer support ser-

vices who produce, collect, and handle daily vast volumes of temporally organized unstruc-

tured and semi-structured data. The challenge they encounter is effectively and efficiently

managing the order’s progress and identifying the causes of delays.

The objective of this Ph.D. project is to provide computational models that can effectively

and efficiently extract useful information for technical and non-technical users at BT from di-

verse technical order record documents that are extremely noisy and lack a structural pattern.

To this purpose, it would be advantageous to automatically summarise and derive relevant

information in the form of answers to questions from this huge collection of distributed oc-

curring data.

BT’s order information is collected and stored in structured and unstructured text formats

148 CHAPTER 7. Conclusion and Future Work

by many internal systems. These are utilized by order processing teams. This amount of text

about orders is an excellent source of information that must be properly summarised in a

manner that includes the most pertinent information for:

• why is the order not complete?

• What does the order require?

• where has the order been passed to?

Consequently, the purpose of this study is to summarise the source text in relation to a specific

question(s). A question-driven summary must attain three objectives: answerability, readab-

ility, and persuasion. In recent years, there have been several attempts to create algorithms

for question-driven automated text summarisation. A summary based on a question should

include a credible answer as well as information that support and explain that answer. The

query-based document summarisation methods are not ideal for this problem scenario since

they try to provide a fluent summary of a given document that answers or is related to the

search query. The public question-driven datasets contain a question, text document, and an

abstractive human-generated summary based on the question. In contrast, the ideal summary

for a BT order should cover information about the three questions mentioned above while the

input text has a Datetime attribute described in chapter 6.

The question-driven summary will enable the desk agents to have a clear picture of the

latest status of the order journey at time t, rather of having to review order information

from several systems and databases when a client contacts to inquire about the status of

their order. In other words, the goal is to create summaries at time t that assist humans in

comprehending the text material rapidly and effectively. The structure of BT orders is such

that they are updated at regular intervals. These changes must be supplied as data over time

into the summariser. It indicates that summaries at time t must include an update to the prior

summary at time t − 1. The summary S will contain the most recent and vital information

regarding an order, depending on the WH questions indicated above for reporting the order’s

status. The BT orders’ data characteristics require a different fine-tuning procedure compared

to general question-driven text summarisation.

The online demo designed for the BT domain is presented in chapter 6 based on the

proposed MRC model for generating question-driven extractive summaries and answering

questions to show the orders’ progress at BT. First, the A-MRC model is fine-tuned to the

BT domain by using the small training dataset based on the past completed orders. The BT

7.3. FUTURE WORK 149

dataset and its features are described in 6.3 which shows special settings are required for

fine-tuning the proposed model and designing the demo. Then, a test dataset is designed

for evaluating ready-to-use QA and summarisation tools and the proposed demo. A human

evaluation is designed since there are no gold summaries available for the BT domain. The

results show the demo outperformed both QA and summarisation tools due to the fine-tuning

process and its design for processing timestamped text. Although, the performance of the

adaptable A-MRC model has been evaluated for various domains in 4, adding some features

for understanding the structure of orders’ notes and the DateTime attribute complement its

capability for processing the BT data.

7.3 Future Work

The proposed paraphrase framework for rewriting the extractive sentences is based on GAN

containing transformer encoder and decoder and Q-learning for evaluating the generated sub-

sequences. VAE and GAN learn by different loss functions. VAE uses the probabilistic graph

model and learns by finding good posterior p(z | x) and likelihood p(x | z). To generate

new instances, VAE first chooses a prior distribution p(z) according to the expected x, and

then samples a hidden state from p(z) and feeds it into the decoder [355]. GAN directly

tries to find a suitable generator by the “min-max two-player game.” Utilizing VAEs based on

transformers for converting extractive summaries into abstractive could be a variant of the

proposed model which will be evaluated in the future.

In the proposed abstractive summariser, the singletons have remained unchanged and

only sentence pairs are merged. Designing and proposing a sentence compression technique

complements the sentence fusion mechanism for compressing the singletons in the abstract-

ive summary, which is listed as one of the future works. Regarding the publicly available

training datasets for sentence compression, proposing a sequence-to-sequence model could

be beneficial for generating shorter abstractive summaries.

The proposed reasoning process is based on contextualized similarity and lexical coverage,

which shows promising performance in joint with the CNN-attention-based MRC model. A

graph-based model for selecting the supporting sentences and reasoning on the text document

is the potential future work for the extractive approach. A self-attention on the sentences’

graphs depending on the named entities, verb phrases, and noun phrases is the future idea

for the supporting sentence selection.

150 CHAPTER 7. Conclusion and Future Work

The CAI component designed for filtering irrelevant content to the question from the

context is based on linguistic and syntactic features and it could be modified by adding more

methods for applying co-reference resolution. The QE module designed for paraphrasing the

questions could be evolved by back-translation for rewriting ambiguous questions.

Also, the summaries generated by the extractive summariser in stage one comprise four

sentences, the answer sentence, and three supporting sentences. Calculating the optimum

length of the summary is the future work for question-driven text summarisation. The num-

ber of supporting sentences required for each answer sentence and the optimal size of the

summary could be calculated based on the text document, question, and the selected answer

sentence.

7.4 Future Text Summarisation Research Directions

The future text summarisation research directions are briefly explained below:

• Contributing to complex issues in multi-document text summarisation like redundancy,

temporal dimension, co-reference, and sentence reordering [154].

• Proposing ATS systems in which the input can be in the form of meetings, videos,

sounds, etc., and the output in a format other than text. For example, the input might

be in the form of text, and the output can be represented as tables, statistics, graphics,

visual rating scales, etc. ATS systems that allow visualization of the summaries will help

users to get the required content in less time [154].

• Designing ATS systems that achieve high accuracy and efficiency for both long and short

text summarisation [7].

• Proposing multi-lingual ATS systems since most ATS systems focus on the English lan-

guage content. The quality of the current ATS systems needs to be improved for many

other languages. Developing and improving NLP tools to generate summaries for non-

English languages is required [356].

• Building ATS systems using a small amount of training data through traditional NLP

techniques such as syntactic analysis, grammar analysis, semantic analysis, etc [7].

• Proposing new metrics and approaches for the automatic evaluation of the computer-

generated summaries. It is very hard to find out what an ideal (or even correct) sum-

7.4. FUTURE TEXT SUMMARISATION RESEARCH DIRECTIONS 151

mary is because the ATS systems can generate good summaries that are different from

human-generated summaries [170]. It is very subjective to identify a good summary.

Therefore, manual evaluations may not be suitable for all types of summaries [357].

Bibliography

[1] S Syed. Abstractive summarization of social media posts: A case study using deep

learning. Weimar: Bauhaus University, 2017.

[2] Yuanhang Su and C-C Jay Kuo. On extended long short-term memory and dependent

bidirectional recurrent neural network. Neurocomputing, 356:151–161, 2019.

[3] Touseef Iqbal and Shaima Qureshi. The survey: Text generation models in deep learn-

ing. Journal of King Saud University-Computer and Information Sciences, 2020.

[4] Haifeng Wang, Hua Wu, Zhongjun He, Liang Huang, and Kenneth Ward Church. Pro-

gress in machine translation. Engineering, 2021.

[5] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A

survey. ACM Computing Surveys (CSUR), 2020.

[6] Mohammad Shehab, Ahamad Tajudin Khader, and Mohammad A. Alia. Enhancing

cuckoo search algorithm by using reinforcement learning for constrained engineering

optimization problems. In 2019 IEEE Jordan International Joint Conference on Electrical

Engineering and Information Technology (JEEIT), pages 812–816, 2019.

[7] Wafaa S El-Kassas, Cherif R Salama, Ahmed A Rafea, and Hoda K Mohamed. Auto-

matic text summarization: A comprehensive survey. Expert Systems with Applications,

165:113679, 2021.

[8] Bolanle Ojokoh and Emmanuel Adebisi. A review of question answering systems.

Journal of Web Engineering, 17(8):717–758, 2018.

[9] Fengbin Zhu, Wenqiang Lei, Chao Wang, Jianming Zheng, Soujanya Poria, and Tat-

Seng Chua. Retrieving and reading: A comprehensive survey on open-domain question

answering. arXiv preprint arXiv:2101.00774, 2021.

152

BIBLIOGRAPHY 153

[10] Abigail See, Peter J Liu, and Christopher D Manning. Get to the point: Summarization

with pointer-generator networks. In Proceedings of the 55th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), pages 1073–1083,

2017.

[11] Horacio Saggion and Thierry Poibeau. Automatic text summarization: Past, present

and future. In Multi-source, multilingual information extraction and summarization,

pages 3–21. Springer, 2013.

[12] Hans Peter Luhn. The automatic creation of literature abstracts. IBM Journal of research

and development, 2(2):159–165, 1958.

[13] Gerald DeJong. An overview of the frump system. Strategies for natural language

processing, 113:149–176, 1982.

[14] Karen Sparck Jones and Brigitte Endres-Niggemeyer. Automatic summarizing, 1995.

[15] Paul Over, Hoa Dang, and Donna Harman. Duc in context. Information Processing &

Management, 43(6):1506–1520, 2007.

[16] Heng Ji, Ralph Grishman, Hoa Trang Dang, Kira Griffitt, and Joe Ellis. Overview of

the tac 2010 knowledge base population track. In Third text analysis conference (TAC

2010), volume 3, pages 3–3, 2010.

[17] Karen Sparck Jones. What might be in a summary? Information retrieval, 93(1):9–26,

1993.

[18] Inderjeet Mani. Automatic summarization, volume 3. John Benjamins Publishing,

2001.

[19] Karen Sparck Jones. Automatic summarizing: factors immarizing: factors and direc-

tions. Advances in automatic text summarization, page 1, 1999.

[20] Karen Spärck Jones. Automatic summarising: The state of the art. Information Pro-

cessing & Management, 43(6):1449–1481, 2007.

[21] Elena Lloret and Manuel Palomar. Text summarisation in progress: a literature review.

Artificial Intelligence Review, 37(1):1–41, 2012.

154 BIBLIOGRAPHY

[22] Christopher C Yang and Fu Lee Wang. Hierarchical summarization of large documents.

Journal of the American Society for Information Science and Technology, 59(6):887–902,

2008.

[23] Sanda Harabagiu and Finley Lacatusu. Using topic themes for multi-document sum-

marization. ACM Transactions on Information Systems (TOIS), 28(3):1–47, 2010.

[24] Lei Huang, Yanxiang He, Furu Wei, and Wenjie Li. Modeling document summarization

as multi-objective optimization. In 2010 Third International Symposium on Intelligent

Information Technology and Security Informatics, pages 382–386. IEEE, 2010.

[25] Ani Nenkova, Sameer Maskey, and Yang Liu. Automatic summarization. In Proceedings

of the 49th Annual Meeting of the Association for Computational Linguistics: Tutorial

Abstracts of ACL 2011, HLT ’11, USA, 2011. Association for Computational Linguistics.

[26] Wen-tau Yih, Joshua T Goodman, Lucretia H Vanderwende, and Hisami Suzuki. Doc-

ument summarization by maximizing informative content words, April 20 2010. US

Patent 7,702,680.

[27] Konstantinos Koumpis and Steve Renals. Automatic summarization of voicemail mes-

sages using lexical and prosodic features. ACM Transactions on Speech and Language

Processing (TSLP), 2(1):1–es, 2005.

[28] Mohammad Reza Fani Sani, Ahmad A. Kardan, and Arman Cohan. A supporting tool in

online learning forums based on multi-documents summarization. In 4th International

Conference on e-Learning and e-Teaching (ICELET 2013), pages 30–35, 2013.

[29] Yang Deng, Wenxuan Zhang, and Wai Lam. Multi-hop inference for question-driven

summarization. Proceedings of the 2020 Conference on Empirical Methods in Natural

Language Processing (EMNLP), pages 6734–6744, 2020.

[30] Hongya Song, Zhaochun Ren, Shangsong Liang, Piji Li, Jun Ma, and Maarten de Rijke.

Summarizing answers in non-factoid community question-answering. Proceedings of

the Tenth ACM International Conference on Web Search and Data Mining, pages 405–

414, 2017.

[31] Yang Deng, Wenxuan Zhang, Yaliang Li, Min Yang, Wai Lam, and Ying Shen. Bridging

hierarchical and sequential context modeling for question-driven extractive answer

BIBLIOGRAPHY 155

summarization. Proceedings of the 43rd International ACM SIGIR Conference on Re-

search and Development in Information Retrieval, pages 1693–1696, 2020.

[32] Yang Deng, Wai Lam, Yuexiang Xie, Daoyuan Chen, Yaliang Li, Min Yang, and Ying

Shen. Joint learning of answer selection and answer summary generation in com-

munity question answering. Proceedings of the AAAI Conference on Artificial Intelli-

gence, pages 7651–7658, 2020.

[33] Travis R Goodwin, Max E Savery, and Dina Demner-Fushman. Flight of the pegasus?

comparing transformers on few-shot and zero-shot multi-document abstractive sum-

marization. Proceedings of COLING. International Conference on Computational Lin-

guistics, page 5640. NIH Public Access, 2020.

[34] Nazreena Rahman and Bhogeswar Borah. A survey on existing extractive techniques

for query-based text summarization. In 2015 International Symposium on Advanced

Computing and Communication (ISACC), pages 98–102. IEEE, 2015.

[35] Mahsa Afsharizadeh, Hossein Ebrahimpour-Komleh, and Ayoub Bagheri. Query-

oriented text summarization using sentence extraction technique. 2018 4th interna-

tional conference on web research (ICWR), pages 128–132. IEEE, 2018.

[36] Hadrien Van Lierde and Tommy WS Chow. Query-oriented text summarization based

on hypergraph transversals. Information Processing & Management, 56(4):1317–1338,

2019.

[37] Preksha Nema, Mitesh M Khapra, Anirban Laha, and Balaraman Ravindran. Diversity

driven attention model for query-based abstractive summarization. Proceedings of

the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), pages 1063–1072, 2017.

[38] Tatsuya Ishigaki, Hen-Hsen Huang, Hiroya Takamura, Hsin-Hsi Chen, and Manabu

Okumura. Neural query-biased abstractive summarization using copying mechanism.

Advances in Information Retrieval, 12036:174, 2020.

[39] DMITRII AKSENOV. Abstractive text summarization with neural sequence-to-sequence

models. Master’s thesis, 2020.

156 BIBLIOGRAPHY

[40] Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter Liu. Pegasus: Pre-training

with extracted gap-sentences for abstractive summarization. International Conference

on Machine Learning, pages 11328–11339. PMLR, 2020.

[41] Li Wang, Junlin Yao, Yunzhe Tao, Li Zhong, Wei Liu, and Qiang Du. A reinforced topic-

aware convolutional sequence-to-sequence model for abstractive text summarization.

Proceedings of the 27th International Joint Conference on Artificial Intelligence, pages

4453–4460, 2018.

[42] Kaiqiang Song, Bingqing Wang, Zhe Feng, Ren Liu, and Fei Liu. Controlling the amount

of verbatim copying in abstractive summarization. Proceedings of the AAAI Conference

on Artificial Intelligence, pages 8902–8909, 2020.

[43] Tian Shi, Yaser Keneshloo, Naren Ramakrishnan, and Chandan K Reddy. Neural ab-

stractive text summarization with sequence-to-sequence models. ACM Transactions on

Data Science, 2(1):1–37, 2021.

[44] Panagiotis Kouris, Georgios Alexandridis, and Andreas Stafylopatis. Abstractive text

summarization: enhancing sequence to sequence models using word sense disambig-

uation and semantic content generalization. Computational Linguistics, pages 1–41,

2021.

[45] Ziqiang Cao, Wenjie Li, Furu Wei, Sujian Li, et al. Retrieve, rerank and rewrite:

Soft template based neural summarization. Association for Computational Linguist-

ics (ACL), 2018.

[46] Min Yang, Qiang Qu, Wenting Tu, Ying Shen, Zhou Zhao, and Xiaojun Chen. Exploring

human-like reading strategy for abstractive text summarization. Proceedings of the

AAAI Conference on Artificial Intelligence, pages 7362–7369, 2019.

[47] Mahnaz Koupaee and William Yang Wang. Wikihow: A large scale text summarization

dataset. arXiv preprint arXiv:1810.09305, 2018.

[48] Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William Cohen, and Xinghua Lu.

Pubmedqa: A dataset for biomedical research question answering. Proceedings of

the 2019 Conference on Empirical Methods in Natural Language Processing and the

9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),

pages 2567–2577, 2019.

BIBLIOGRAPHY 157

[49] Max Savery, Asma Ben Abacha, Soumya Gayen, and Dina Demner-Fushman. Question-

driven summarization of answers to consumer health questions. Scientific Data,

7(1):1–9, 2020.

[50] AD Dongare, RR Kharde, Amit D Kachare, et al. Introduction to artificial neural

network. International Journal of Engineering and Innovative Technology (IJEIT),

2(1):189–194, 2012.

[51] Konstantin Lopyrev. Generating news headlines with recurrent neural networks. arXiv

preprint arXiv:1512.01712, 2015.

[52] Shengli Song, Haitao Huang, and Tongxiao Ruan. Abstractive text summarization

using lstm-cnn based deep learning. Multimedia Tools and Applications, 78(1):857–

875, 2019.

[53] C Lee Giles, Gary M Kuhn, and Ronald J Williams. Dynamic recurrent neural networks:

Theory and applications. IEEE Transactions on Neural Networks, 5(2):153–156, 1994.

[54] Anthony J Robinson. An application of recurrent nets to phone probability estimation.

IEEE transactions on Neural Networks, 5(2):298–305, 1994.

[55] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation

by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[56] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE

transactions on Signal Processing, 45(11):2673–2681, 1997.

[57] Pattreeya Tanisaro and Gunther Heidemann. An empirical study on bidirectional recur-

rent neural networks for human motion recognition. In 25th International Symposium

on Temporal Representation and Reasoning (TIME 2018). Schloss Dagstuhl-Leibniz-

Zentrum fuer Informatik, 2018.

[58] Kamal Al-Sabahi, Zhang Zuping, and Yang Kang. Bidirectional attentional encoder-

decoder model and bidirectional beam search for abstractive summarization. arXiv

preprint arXiv:1809.06662, 2018.

[59] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computa-

tion, 9(8):1735–1780, 1997.

158 BIBLIOGRAPHY

[60] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using

rnn encoder-decoder for statistical machine translation. In EMNLP, 2014.

[61] Elliott Jobson and Abiel Gutiérrez. Abstractive text summarization using attentive

sequence-to-sequence rnns, 2016.

[62] Qicai Wang, Peiyu Liu, Zhenfang Zhu, Hongxia Yin, Qiuyue Zhang, and Lindong Zhang.

A text abstraction summary model based on bert word embedding and reinforcement

learning. Applied Sciences, 9(21):4701, 2019.

[63] Elozino Egonmwan and Yllias Chali. Transformer-based model for single documents

neural summarization. In Proceedings of the 3rd Workshop on Neural Generation and

Translation, pages 70–79, 2019.

[64] Ye Zhang and Byron C Wallace. A sensitivity analysis of (and practitioners’ guide to)

convolutional neural networks for sentence classification.

[65] Alexander M Rush, Sumit Chopra, and Jason Weston. A neural attention model for

abstractive sentence summarization. In Proceedings of the 2015 Conference on Empirical

Methods in Natural Language Processing, pages 379–389, 2015.

[66] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv

preprint arXiv:1607.06450, 2016.

[67] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in

neural information processing systems, 30, 2017.

[68] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael

Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learn-

ing with a unified text-to-text transformer. The Journal of Machine Learning Research,

21(1):5485–5551, 2020.

[69] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla

Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.

Language models are few-shot learners. Advances in neural information processing

systems, 33:1877–1901, 2020.

BIBLIOGRAPHY 159

[70] Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representations: a simple and

general method for semi-supervised learning. In Proceedings of the 48th annual meeting

of the association for computational linguistics, pages 384–394, 2010.

[71] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of

word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[72] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors

for word representation. In Proceedings of the 2014 conference on empirical methods in

natural language processing (EMNLP), pages 1532–1543, 2014.

[73] Peter J Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser,

and Noam Shazeer. Generating wikipedia by summarizing long sequences. arXiv pre-

print arXiv:1801.10198, 2018.

[74] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and

Quoc V Le. Xlnet: Generalized autoregressive pretraining for language understanding.

Advances in neural information processing systems, 32, 2019.

[75] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training

of deep bidirectional transformers for language understanding.

[76] Nelson F Liu, Matt Gardner, Yonatan Belinkov, Matthew E Peters, and Noah A Smith.

Linguistic knowledge and transferability of contextual representations. In Proceedings

of the 2019 Conference of the North American Chapter of the Association for Computa-

tional Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),

pages 1073–1094, 2019.

[77] John Hewitt and Percy Liang. Designing and interpreting probes with control tasks. In

Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing

and the 9th International Joint Conference on Natural Language Processing (EMNLP-

IJCNLP), pages 2733–2743, 2019.

[78] John Hewitt and Christopher D Manning. A structural probe for finding syntax in word

representations. In Proceedings of the 2019 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies, Volume

1 (Long and Short Papers), pages 4129–4138, 2019.

160 BIBLIOGRAPHY

[79] Andrew M Dai and Quoc V Le. Semi-supervised sequence learning. Advances in neural

information processing systems, 28, 2015.

[80] Prajit Ramachandran, Peter J Liu, and Quoc Le. Unsupervised pretraining for sequence

to sequence learning. In Proceedings of the 2017 Conference on Empirical Methods in

Natural Language Processing, pages 383–391, 2017.

[81] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,

Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. arXiv

preprint arXiv:1802.05365, 2018.

[82] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,

et al. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9,

2019.

[83] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Anto-

nio Torralba, and Sanja Fidler. Aligning books and movies: Towards story-like visual

explanations by watching movies and reading books. In Proceedings of the IEEE inter-

national conference on computer vision, pages 19–27, 2015.

[84] Tim Rocktäschel, Edward Grefenstette, Karl Moritz Hermann, Tomáš Kočiskỳ, and

Phil Blunsom. Reasoning about entailment with neural attention. arXiv preprint

arXiv:1509.06664, 2015.

[85] Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian,

Danxiang Zhu, Hao Tian, and Hua Wu. Ernie: Enhanced representation through know-

ledge integration. arXiv preprint arXiv:1904.09223, 2019.

[86] Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao Tian, Hua Wu, and Haifeng

Wang. Ernie 2.0: A continual pre-training framework for language understanding. In

Proceedings of the AAAI conference on artificial intelligence, volume 34, pages 8968–

8975, 2020.

[87] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and Omer

Levy. Spanbert: Improving pre-training by representing and predicting spans. Trans-

actions of the Association for Computational Linguistics, 8:64–77, 2020.

BIBLIOGRAPHY 161

[88] Wei Wang, Bin Bi, Ming Yan, Chen Wu, Zuyi Bao, Jiangnan Xia, Liwei Peng, and Luo

Si. Structbert: Incorporating language structures into pre-training for deep language

understanding. arXiv preprint arXiv:1908.04577, 2019.

[89] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,

Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized

bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[90] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma,

and Radu Soricut. Albert: A lite bert for self-supervised learning of language repres-

entations. arXiv preprint arXiv:1909.11942, 2019.

[91] Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. Electra:

Pre-training text encoders as discriminators rather than generators. arXiv preprint

arXiv:2003.10555, 2020.

[92] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mo-

hamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-

to-sequence pre-training for natural language generation, translation, and comprehen-

sion. In Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics, pages 7871–7880, 2020.

[93] Ronald J Williams and David Zipser. A learning algorithm for continually running fully

recurrent neural networks. Neural computation, 1(2):270–280, 1989.

[94] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Ad-

vances in neural information processing systems, 27, 2014.

[95] Diederik P Kingma, Max Welling, et al. An introduction to variational autoencoders.

Foundations and Trends® in Machine Learning, 12(4):307–392, 2019.

[96] Tong Che, Yanran Li, Ruixiang Zhang, R Devon Hjelm, Wenjie Li, Yangqiu Song, and

Yoshua Bengio. Maximum-likelihood augmented discrete generative adversarial net-

works. arXiv preprint arXiv:1702.07983, 2017.

[97] Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean, Alan Ritter, and Dan Jurafsky. Ad-

versarial learning for neural dialogue generation. In Proceedings of the 2017 Conference

on Empirical Methods in Natural Language Processing, pages 2157–2169, 2017.

162 BIBLIOGRAPHY

[98] Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, and Dan Jurafsky. Deep

reinforcement learning for dialogue generation.

[99] Alex M Lamb, Anirudh Goyal Alias Parth Goyal, Ying Zhang, Saizheng Zhang, Aaron C

Courville, and Yoshua Bengio. Professor forcing: A new algorithm for training recur-

rent networks. In Advances in neural information processing systems, pages 4601–4609,

2016.

[100] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling

for sequence prediction with recurrent neural networks. In Proceedings of the 28th In-

ternational Conference on Neural Information Processing Systems-Volume 1, pages 1171–

1179, 2015.

[101] Zichao Li, Xin Jiang, Lifeng Shang, and Hang Li. Paraphrase generation with deep

reinforcement learning. In Proceedings of the 2018 Conference on Empirical Methods in

Natural Language Processing, pages 3865–3878, 2018.

[102] Zhan Shi, Xinchi Chen, Xipeng Qiu, and Xuanjing Huang. Toward diverse text genera-

tion with inverse reinforcement learning. In Proceedings of the 27th International Joint

Conference on Artificial Intelligence, pages 4361–4367, 2018.

[103] Philip Bachman and Doina Precup. Data generation as sequential decision making.

Advances in Neural Information Processing Systems, 28:3249–3257, 2015.

[104] Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Ryan Lowe, Joelle Pineau, Aaron

Courville, and Yoshua Bengio. An actor-critic algorithm for sequence prediction.

[105] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative

adversarial nets with policy gradient. In Proceedings of the AAAI conference on artificial

intelligence, volume 31, 2017.

[106] Arnaud Doucet, Nando De Freitas, Neil James Gordon, et al. Sequential Monte Carlo

methods in practice, volume 1. Springer, 2001.

[107] Mohammad Norouzi, Samy Bengio, Navdeep Jaitly, Mike Schuster, Yonghui Wu, Dale

Schuurmans, et al. Reward augmented maximum likelihood for neural structured

prediction. Advances In Neural Information Processing Systems, 29, 2016.

BIBLIOGRAPHY 163

[108] Kevin Lin, Dianqi Li, Xiaodong He, Zhengyou Zhang, and Ming-Ting Sun. Adversarial

ranking for language generation. Advances in neural information processing systems,

30, 2017.

[109] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for

automatic evaluation of machine translation. In Proceedings of the 40th annual meeting

of the Association for Computational Linguistics, pages 311–318, 2002.

[110] Yizhe Zhang, Zhe Gan, Kai Fan, Zhi Chen, Ricardo Henao, Dinghan Shen, and

Lawrence Carin. Adversarial feature matching for text generation. In International

Conference on Machine Learning, pages 4006–4015. PMLR, 2017.

[111] Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong Yu, and Jun Wang. Long text

generation via adversarial training with leaked information. In Proceedings of the AAAI

conference on artificial intelligence, volume 32, 2018.

[112] Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jader-

berg, David Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforce-

ment learning. In International Conference on Machine Learning, pages 3540–3549.

PMLR, 2017.

[113] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled generative

adversarial networks. arXiv preprint arXiv:1611.02163, 2016.

[114] Martin Arjovsky and Léon Bottou. Towards principled methods for training generative

adversarial networks. arXiv preprint arXiv:1701.04862, 2017.

[115] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and

Xi Chen. Improved techniques for training gans. Advances in neural information pro-

cessing systems, 29, 2016.

[116] William Fedus, Ian Goodfellow, and Andrew M Dai. Maskgan: better text generation

via filling in the_. arXiv preprint arXiv:1801.07736, 2018.

[117] Yizhe Zhang, Zhe Gan, and Lawrence Carin. Generating text via adversarial training.

In NIPS workshop on Adversarial Training, volume 21, pages 21–32, 2016.

[118] Stanislau Semeniuta, Aliaksei Severyn, and Erhardt Barth. A hybrid convolutional

variational autoencoder for text generation. In Proceedings of the 2017 Conference on

Empirical Methods in Natural Language Processing, pages 627–637, 2017.

164 BIBLIOGRAPHY

[119] Yang Li, Quan Pan, Suhang Wang, Tao Yang, and Erik Cambria. A generative model

for category text generation. Information Sciences, 450:301–315, 2018.

[120] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum

entropy inverse reinforcement learning. In Aaai, volume 8, pages 1433–1438. Chicago,

IL, USA, 2008.

[121] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training

of deep visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–

1373, 2016.

[122] Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. Text sum-

marization branches out, pages 74–81, 2004.

[123] Siddhartha Banerjee, Prasenjit Mitra, and Kazunari Sugiyama. Multi-document ab-

stractive summarization using ilp based multi-sentence compression. In Twenty-Fourth

International Joint Conference on Artificial Intelligence, 2015.

[124] Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. Cider: Consensus-based

image description evaluation. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 4566–4575, 2015.

[125] Peter Anderson, Basura Fernando, Mark Johnson, and Stephen Gould. Spice: Semantic

propositional image caption evaluation. In European conference on computer vision,

pages 382–398. Springer, 2016.

[126] Stanislau Semeniuta, Aliaksei Severyn, and Sylvain Gelly. On accurate evaluation of

gans for language generation. arXiv preprint arXiv:1806.04936, 2018.

[127] Guy Tevet, Gavriel Habib, Vered Shwartz, and Jonathan Berant. Evaluating text gans as

language models. In Proceedings of the 2019 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies, Volume

1 (Long and Short Papers), pages 2241–2247, 2019.

[128] Massimo Caccia, Lucas Caccia, William Fedus, Hugo Larochelle, Joelle Pineau, and

Laurent Charlin. Language gans falling short. arXiv preprint arXiv:1811.02549, 2018.

[129] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114, 2013.

BIBLIOGRAPHY 165

[130] James Lucas, George Tucker, Roger Grosse, and Mohammad Norouzi. Understanding

posterior collapse in generative latent variable models. 2019.

[131] Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and

Samy Bengio. Generating sentences from a continuous space.

[132] Zichao Yang, Zhiting Hu, Ruslan Salakhutdinov, and Taylor Berg-Kirkpatrick. Improved

variational autoencoders for text modeling using dilated convolutions. In International

conference on machine learning, pages 3881–3890. PMLR, 2017.

[133] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions.

arXiv preprint arXiv:1511.07122, 2015.

[134] Yoon Kim, Sam Wiseman, Andrew Miller, David Sontag, and Alexander Rush. Semi-

amortized variational autoencoders. In International Conference on Machine Learning,

pages 2678–2687. PMLR, 2018.

[135] Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic vari-

ational inference. Journal of Machine Learning Research, 2013.

[136] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows.

In International conference on machine learning, pages 1530–1538. PMLR, 2015.

[137] Kelvin Guu, Tatsunori B Hashimoto, Yonatan Oren, and Percy Liang. Generating sen-

tences by editing prototypes. Transactions of the Association for Computational Linguist-

ics, 6:437–450, 2018.

[138] Adji B Dieng, Yoon Kim, Alexander M Rush, and David M Blei. Avoiding latent variable

collapse with generative skip models. In The 22nd International Conference on Artificial

Intelligence and Statistics, pages 2397–2405. PMLR, 2019.

[139] Suguru Yasutomi and Toshihisa Tanaka. Parameter estimation for von mises-fisher mix-

ture model via gaussian distribution. In Signal and Information Processing Association

Annual Summit and Conference (APSIPA), 2014 Asia-Pacific, pages 1–5. IEEE, 2014.

[140] Jiacheng Xu and Greg Durrett. Spherical latent spaces for stable variational autoen-

coders. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language

Processing, pages 4503–4513, 2018.

166 BIBLIOGRAPHY

[141] Ankush Gupta, Arvind Agarwal, Prawaan Singh, and Piyush Rai. A deep generative

framework for paraphrase generation. Proceedings of the AAAI Conference on Artifi-

cial Intelligence, 2018.

[142] Zichao Li, Xin Jiang, Lifeng Shang, and Qun Liu. Decomposable neural paraphrase

generation. Proceedings of the 57th Annual Meeting of the Association for Computa-

tional Linguistics, pages 3403–3414, 2019.

[143] Yao Fu, Yansong Feng, and John P Cunningham. Paraphrase generation with latent

bag of words. Advances in Neural Information Processing Systems, 32:13645–13656,

2019.

[144] AB Siddique, Samet Oymak, and Vagelis Hristidis. Unsupervised paraphrasing via

deep reinforcement learning. Proceedings of the 26th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, pages 1800–1809, 2020.

[145] Xianggen Liu, Lili Mou, Fandong Meng, Hao Zhou, Jie Zhou, and Sen Song. Unsuper-

vised paraphrasing by simulated annealing. Proceedings of the 58th Annual Meeting

of the Association for Computational Linguistics, pages 302–312, 2020.

[146] Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen Tan, Kun Xiong, Ming Li, and

Jimmy Lin. End-to-end open-domain question answering with bertserini. In Proceed-

ings of the 2019 Conference of the North American Chapter of the Association for Com-

putational Linguistics (Demonstrations), pages 72–77, 2019.

[147] Yue Cao and Xiaojun Wan. Divgan: Towards diverse paraphrase generation via diversi-

fied generative adversarial network. Proceedings of the 2020 Conference on Empirical

Methods in Natural Language Processing: Findings, pages 2411–2421, 2020.

[148] Gerson Vizcarra and Jose Ochoa-Luna. Paraphrase generation via adversarial penal-

izations. Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT

2020), pages 249–259, 2020.

[149] Yi-Lin Tuan and Hung-Yi Lee. Improving conditional sequence generative adversarial

networks by stepwise evaluation. IEEE/ACM Transactions on Audio, Speech, and Lan-

guage Processing, 27(4):788–798, 2019.

BIBLIOGRAPHY 167

[150] Monika Joshi, Hui Wang, and Sally McClean. Dense semantic graph and its application

in single document summarisation. In Emerging Ideas on Information Filtering and

Retrieval, pages 55–67. Springer, 2018.

[151] Virendra Kumar Gupta and Tanveer J Siddiqui. Multi-document summarization using

sentence clustering. In 2012 4th International Conference on Intelligent Human Com-

puter Interaction (IHCI), pages 1–5. IEEE, 2012.

[152] Deepak Sahoo, Ashutosh Bhoi, and Rakesh Chandra Balabantaray. Hybrid approach to

abstractive summarization. Procedia computer science, 132:1228–1237, 2018.

[153] M Jishma Mohan, C Sunitha, Amal Ganesh, and A Jaya. A study on ontology based

abstractive summarization. Procedia Computer Science, 87:32–37, 2016.

[154] Parul Agarwal and Shikha Mehta. Empirical analysis of five nature-inspired algorithms

on real parameter optimization problems. Artificial Intelligence Review, 50(3):383–439,

2018.

[155] Mudasir Mohd, Rafiya Jan, and Muzaffar Shah. Text document summarization using

word embedding. Expert Systems with Applications, 143:112958, 2020.

[156] Iram Khurshid Bhat, Mudasir Mohd, and Rana Hashmy. Sumitup: A hybrid single-

document text summarizer. Soft computing: Theories and applications, pages 619–

634. Springer, 2018.

[157] Kazuhiro Takeuchi. A study on operations used in text summarization. 2002.

[158] Vishal Gupta and Gurpreet Singh Lehal. A survey of text summarization extractive

techniques. Journal of emerging technologies in web intelligence, 2(3):258–268, 2010.

[159] Franck Dernoncourt, Mohammad Ghassemi, and Walter Chang. A repository of cor-

pora for summarization. In Proceedings of the Eleventh International Conference on

Language Resources and Evaluation (LREC 2018), 2018.

[160] Kristian Woodsend and Mirella Lapata. Automatic generation of story highlights. In

Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics,

pages 565–574, 2010.

[161] Ziqiang Cao, Furu Wei, Sujian Li, Wenjie Li, Ming Zhou, and Houfeng Wang. Learning

summary prior representation for extractive summarization. In Proceedings of the 53rd

168 BIBLIOGRAPHY

Annual Meeting of the Association for Computational Linguistics and the 7th Interna-

tional Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages

829–833, 2015.

[162] Misha Denil, Alban Demiraj, and Nando De Freitas. Extraction of salient sentences

from labelled documents. arXiv preprint arXiv:1412.6815, 2014.

[163] Jianpeng Cheng and Mirella Lapata. Neural summarization by extracting sentences

and words. In Proceedings of the 54th Annual Meeting of the Association for Computa-

tional Linguistics (Volume 1: Long Papers), pages 484–494, 2016.

[164] Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. Summarunner: A recurrent neural

network based sequence model for extractive summarization of documents. In Thirty-

first AAAI conference on artificial intelligence, 2017.

[165] Yuxiang Wu and Baotian Hu. Learning to extract coherent summary via deep rein-

forcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 32, 2018.

[166] Shashi Narayan, Shay B Cohen, and Mirella Lapata. Ranking sentences for extractive

summarization with reinforcement learning. In Proceedings of the 2018 Conference of

the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long Papers), pages 1747–1759, 2018.

[167] Parth Mehta, Gaurav Arora, and Prasenjit Majumder. Attention based sen-

tence extraction from scientific articles using pseudo-labeled data. arXiv preprint

arXiv:1802.04675, 2018.

[168] Hayato Kobayashi, Masaki Noguchi, and Taichi Yatsuka. Summarization based on

embedding distributions. In Proceedings of the 2015 conference on empirical methods in

natural language processing, pages 1984–1989, 2015.

[169] Laifu Chen and Minh Le Nguyen. Sentence selective neural extractive summarization

with reinforcement learning. In 2019 11th International Conference on Knowledge and

Systems Engineering (KSE), pages 1–5. IEEE, 2019.

[170] N Moratanch and S Chitrakala. A survey on extractive text summarization. In 2017

international conference on computer, communication and signal processing (ICCCSP),

pages 1–6. IEEE, 2017.

BIBLIOGRAPHY 169

[171] Elena Baralis, Luca Cagliero, Saima Jabeen, Alessandro Fiori, and Sajid Shah. Multi-

document summarization based on the yago ontology. Expert Systems with Applications,

40(17):6976–6984, 2013.

[172] Jianwei Niu, Huan Chen, Qingjuan Zhao, Limin Su, and Mohammed Atiquzzaman.

Multi-document abstractive summarization using chunk-graph and recurrent neural

network. In 2017 IEEE International Conference on Communications (ICC), pages 1–6.

IEEE, 2017.

[173] Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, Çağlar Gulçehre, and Bing Xiang.

Abstractive text summarization using sequence-to-sequence rnns and beyond. In Pro-

ceedings of The 20th SIGNLL Conference on Computational Natural Language Learning,

pages 280–290, 2016.

[174] Sumit Chopra, Michael Auli, and Alexander M Rush. Abstractive sentence summariz-

ation with attentive recurrent neural networks. In Proceedings of the 2016 conference

of the North American chapter of the association for computational linguistics: human

language technologies, pages 93–98, 2016.

[175] Gaetano Rossiello, Pierpaolo Basile, Giovanni Semeraro, MD Ciano, and Gaetano

Grasso. Improving neural abstractive text summarization with prior knowledge. UR-

ANIA, 16, 2016.

[176] Piji Li, Wai Lam, Lidong Bing, and Zihao Wang. Deep recurrent generative decoder

for abstractive text summarization. In Proceedings of the 2017 Conference on Empirical

Methods in Natural Language Processing, pages 2091–2100, 2017.

[177] Angela Fan, David Grangier, and Michael Auli. Controllable abstractive summarization.

In Proceedings of the 2nd Workshop on Neural Machine Translation and Generation,

pages 45–54, 2018.

[178] Pashutan Modaresi and Stefan Conrad. Simurg: An extendable multilingual corpus for

abstractive single document summarization. In Proceedings of the 8th annual meeting

of the Forum on Information Retrieval Evaluation, pages 24–27, 2016.

[179] Junyang Lin, Xu Sun, Shuming Ma, and Qi Su. Global encoding for abstractive sum-

marization. In Proceedings of the 56th Annual Meeting of the Association for Computa-

170 BIBLIOGRAPHY

tional Linguistics (Volume 2: Short Papers), pages 163–169, Melbourne, Australia, July

2018. Association for Computational Linguistics.

[180] Romain Paulus, Caiming Xiong, and Richard Socher. A deep reinforced model for

abstractive summarization. arXiv preprint arXiv:1705.04304, 2017.

[181] Patrick Doetsch, Albert Zeyer, and Hermann Ney. Bidirectional decoder networks for

attention-based end-to-end offline handwriting recognition. In 2016 15th Interna-

tional Conference on Frontiers in Handwriting Recognition (ICFHR), pages 361–366.

IEEE, 2016.

[182] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with

neural networks. Advances in neural information processing systems, 27, 2014.

[183] Linqing Liu, Yao Lu, Min Yang, Qiang Qu, Jia Zhu, and Hongyan Li. Generative ad-

versarial network for abstractive text summarization. Thirty-second AAAI conference

on artificial intelligence, 2018.

[184] Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier, Benjamin Piwowarski, and Jac-

opo Staiano. Discriminative adversarial search for abstractive summarization. Inter-

national Conference on Machine Learning, pages 8555–8564. PMLR, 2020.

[185] Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng Gao,

Ming Zhou, and Hsiao-Wuen Hon. Unified language model pre-training for natural

language understanding and generation. Proceedings of the 33rd International Con-

ference on Neural Information Processing Systems, pages 13063–13075, 2019.

[186] Banafsheh Rekabdar, Christos Mousas, and Bidyut Gupta. Generative adversarial net-

work with policy gradient for text summarization. 2019 IEEE 13th international con-

ference on semantic computing (ICSC), pages 204–207. IEEE, 2019.

[187] Nobel Dang, Ashish Khanna, and Viswanatha Reddy Allugunti. Ts-gan with policy

gradient for text summarization. Data Analytics and Management, pages 843–851.

Springer, 2021.

[188] Kevin Knight and Daniel Marcu. Summarization beyond sentence extraction: A prob-

abilistic approach to sentence compression. Artificial Intelligence, 139(1):91–107,

2002.

BIBLIOGRAPHY 171

[189] Regina Barzilay and Kathleen R McKeown. Sentence fusion for multidocument news

summarization. Computational Linguistics, 31(3):297–328, 2005.

[190] Mir Tafseer Nayeem, Tanvir Ahmed Fuad, and Yllias Chali. Abstractive unsupervised

multi-document summarization using paraphrastic sentence fusion. In Proceedings

of the 27th International Conference on Computational Linguistics, pages 1191–1204,

2018.

[191] Jackie Chi Kit Cheung and Gerald Penn. Unsupervised sentence enhancement for auto-

matic summarization. In EMNLP, pages 775–786, 2014.

[192] Shima Gerani, Yashar Mehdad, Giuseppe Carenini, Raymond Ng, and Bita Nejat. Ab-

stractive summarization of product reviews using discourse structure. In Proceedings

of the 2014 conference on empirical methods in natural language processing (EMNLP),

pages 1602–1613, 2014.

[193] Yashar Mehdad, Giuseppe Carenini, Frank Tompa, and Raymond Ng. Abstractive meet-

ing summarization with entailment and fusion. In Proceedings of the 14th European

Workshop on Natural Language Generation, pages 136–146, 2013.

[194] Fei Liu, Jeffrey Flanigan, Sam Thomson, Norman Sadeh, and Noah A. Smith. Toward

abstractive summarization using semantic representations. In Proceedings of the 2015

Conference of the North American Chapter of the Association for Computational Linguist-

ics: Human Language Technologies, pages 1077–1086, Denver, Colorado, May–June

2015. Association for Computational Linguistics.

[195] Mor Geva, Eric Malmi, Idan Szpektor, and Jonathan Berant. Discofuse: A large-scale

dataset for discourse-based sentence fusion. In Proceedings of the 2019 Conference of

the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long and Short Papers), pages 3443–3455, 2019.

[196] Haoran Li, Junnan Zhu, Jiajun Zhang, and Chengqing Zong. Ensure the correctness of

the summary: Incorporate entailment knowledge into abstractive sentence summariz-

ation. In Proceedings of the 27th International Conference on Computational Linguistics,

pages 1430–1441, 2018.

[197] Kaiqiang Song, Lin Zhao, and Fei Liu. Structure-infused copy mechanisms for abstract-

172 BIBLIOGRAPHY

ive summarization. In Proceedings of the 27th International Conference on Computa-

tional Linguistics, pages 1717–1729, 2018.

[198] Tobias Falke, Leonardo FR Ribeiro, Prasetya Ajie Utama, Ido Dagan, and Iryna

Gurevych. Ranking generated summaries by correctness: An interesting but chal-

lenging application for natural language inference. In Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics, pages 2214–2220, 2019.

[199] Ziqiang Cao, Furu Wei, Wenjie Li, and Sujian Li. Faithful to the original: Fact aware

neural abstractive summarization. In thirty-second AAAI conference on artificial intelli-

gence, 2018.

[200] Katja Filippova, Enrique Alfonseca, Carlos A. Colmenares, Lukasz Kaiser, and Oriol

Vinyals. Sentence compression by deletion with LSTMs. In Proceedings of the 2015

Conference on Empirical Methods in Natural Language Processing, pages 360–368, Lis-

bon, Portugal, September 2015. Association for Computational Linguistics.

[201] Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuz-

man Ganchev, Slav Petrov, and Michael Collins. Globally normalized transition-based

neural networks. In Proceedings of the 54th Annual Meeting of the Association for Com-

putational Linguistics (Volume 1: Long Papers), pages 2442–2452, 2016.

[202] Sigrid Klerke, Yoav Goldberg, and Anders Søgaard. Improving sentence compression

by learning to predict gaze. In Proceedings of the 2016 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies,

pages 1528–1533, San Diego, California, June 2016. Association for Computational

Linguistics.

[203] Yishu Miao and Phil Blunsom. Language as a latent variable: Discrete generative

models for sentence compression. In Proceedings of the 2016 Conference on Empirical

Methods in Natural Language Processing, pages 319–328, 2016.

[204] Thibault Févry and Jason Phang. Unsupervised sentence compression using denois-

ing auto-encoders. In Proceedings of the 22nd Conference on Computational Natural

Language Learning, pages 413–422, 2018.

[205] Chanakya Malireddy, Tirth Maniar, and Manish Shrivastava. Scar: sentence compres-

sion using autoencoders for reconstruction. In Proceedings of the 58th Annual Meeting

BIBLIOGRAPHY 173

of the Association for Computational Linguistics: Student Research Workshop, pages 88–

94, 2020.

[206] Liangguo Wang, Jing Jiang, and Lejian Liao. Sentence compression with reinforcement

learning. In International Conference on Knowledge Science, Engineering and Manage-

ment, pages 3–15. Springer, 2018.

[207] Yang Zhao, Zhiyuan Luo, and Akiko Aizawa. A language model based evaluator for

sentence compression. In Proceedings of the 56th Annual Meeting of the Association for

Computational Linguistics (Volume 2: Short Papers), pages 170–175, 2018.

[208] Xiaojun Wan and Jianguo Xiao. Graph-based multi-modality learning for topic-focused

multi-document summarization. Twenty-First International Joint Conference on Arti-

ficial Intelligence, 2009.

[209] You Ouyang, Wenjie Li, Sujian Li, and Qin Lu. Applying regression models to

query-focused multi-document summarization. Information Processing & Management,

47(2):227–237, 2011.

[210] Nazreena Rahman and Bhogeswar Borah. A method for semantic relatedness based

query focused text summarization. International Conference on Pattern Recognition

and Machine Intelligence, pages 387–393. Springer, 2017.

[211] Hajime Morita, Tetsuya Sakai, and Manabu Okumura. Query snowball: a co-

occurrence-based approach to multi-document summarization for question answering.

Information and Media Technologies, 7(3):1124–1129, 2012.

[212] Weikang Li, Xingxing Zhang, Yunfang Wu, Furu Wei, and Ming Zhou. Document-

based question answering improves query-focused multi-document summarization.

CCF International Conference on Natural Language Processing and Chinese Comput-

ing, pages 41–52. Springer, 2019.

[213] Ziqiang Cao, Wenjie Li, Sujian Li, Furu Wei, and Yanran Li. Attsum: Joint learning of

focusing and summarization with neural attention. arXiv preprint arXiv:1604.00125,

2016.

[214] Mingjun Zhao, Shengli Yan, Bang Liu, Xinwang Zhong, Qian Hao, Haolan Chen,

Di Niu, Bowei Long, and Weidong Guo. Qbsum: A large-scale query-based document

174 BIBLIOGRAPHY

summarization dataset from real-world applications. Computer Speech & Language,

66:101166, 2021.

[215] Sheng-hua Zhong, Yan Liu, Bin Li, and Jing Long. Query-oriented unsupervised multi-

document summarization via deep learning model. Expert systems with applications,

42(21):8146–8155, 2015.

[216] Mahmood Yousefi-Azar and Len Hamey. Text summarization using unsupervised deep

learning. Expert Systems with Applications, 68:93–105, 2017.

[217] Tal Baumel, Matan Eyal, and Michael Elhadad. Query focused abstractive summariz-

ation: Incorporating query relevance, multi-document coverage, and summary length

constraints into seq2seq models. arXiv preprint arXiv:1801.07704, 2018.

[218] Shuai Wang, Xiang Zhao, Bo Li, Bin Ge, and Daquan Tang. Integrating extractive and

abstractive models for long text summarization. 2017 IEEE International Congress on

Big Data (BigData Congress), pages 305–312. IEEE, 2017.

[219] Sandeep Subramanian, Raymond Li, Jonathan Pilault, and Christopher Pal. On ex-

tractive and abstractive neural document summarization with transformer language

models. arXiv preprint arXiv:1909.03186, 2019.

[220] Yangbin Chen, Yun Ma, Xudong Mao, and Qing Li. Multi-task learning for abstractive

and extractive summarization. Data Science and Engineering, 4(1):14–23, 2019.

[221] Hanqi Jin, Tianming Wang, and Xiaojun Wan. Multi-granularity interaction network

for extractive and abstractive multi-document summarization. Proceedings of the 58th

Annual Meeting of the Association for Computational Linguistics, pages 6244–6254,

2020.

[222] Chenliang Li, Weiran Xu, Si Li, and Sheng Gao. Guiding generation for abstractive text

summarization based on key information guide network. In Proceedings of the 2018

Conference of the North American Chapter of the Association for Computational Linguist-

ics: Human Language Technologies, Volume 2 (Short Papers), pages 55–60, 2018.

[223] Di He, Hanqing Lu, Yingce Xia, Tao Qin, Liwei Wang, and Tie-Yan Liu. Decoding

with value networks for neural machine translation. Advances in Neural Information

Processing Systems, 30, 2017.

BIBLIOGRAPHY 175

[224] Sanjay K Dwivedi and Vaishali Singh. Research and reviews in question answering

system. Procedia Technology, 10:417–424, 2013.

[225] Anjali Saini and PK Yadav. A survey on question answering system. International

Journal of Engineering and Computer Science, 6(3), 2017.

[226] Konrad Höffner, Sebastian Walter, Edgard Marx, Ricardo Usbeck, Jens Lehmann, and

Axel-Cyrille Ngonga Ngomo. Survey on challenges of question answering in the se-

mantic web. Semantic Web, 8(6):895–920, 2017.

[227] Claudio Carpineto and Giovanni Romano. A survey of automatic query expansion in

information retrieval. Acm Computing Surveys (CSUR), 44(1):1–50, 2012.

[228] Chris Quirk, Chris Brockett, and Bill Dolan. Monolingual machine translation for para-

phrase generation. 2004.

[229] Colin Bannard and Chris Callison-Burch. Paraphrasing with bilingual parallel corpora.

In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguist-

ics (ACL’05), pages 597–604, 2005.

[230] Shiqi Zhao, Cheng Niu, Ming Zhou, Ting Liu, and Sheng Li. Combining multiple

resources to improve smt-based paraphrasing model. In Proceedings of acl-08: Hlt,

pages 1021–1029, 2008.

[231] Sander Wubben, Antal Van Den Bosch, and Emiel Krahmer. Paraphrase generation as

monolingual translation: Data and evaluation. In Proceedings of the 6th International

Natural Language Generation Conference, 2010.

[232] Peng Qi, Xiaowen Lin, Leo Mehr, Zijian Wang, and Christopher D Manning. Answering

complex open-domain questions through iterative query generation. In Proceedings of

the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th

International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages

2590–2602, 2019.

[233] Yuning Mao, Pengcheng He, Xiaodong Liu, Yelong Shen, Jianfeng Gao, Jiawei Han,

and Weizhu Chen. Generation-augmented retrieval for open-domain question answer-

ing. In Proceedings of the 59th Annual Meeting of the Association for Computational

Linguistics and the 11th International Joint Conference on Natural Language Processing

(Volume 1: Long Papers), pages 4089–4100, 2021.

176 BIBLIOGRAPHY

[234] Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, and Andrew McCallum. Multi-step

retriever-reader interaction for scalable open-domain question answering. In Interna-

tional Conference on Learning Representations, 2018.

[235] Wenhan Xiong, Xiang Lorraine Li, Srinivasan Iyer, Jingfei Du, Patrick Lewis, Wil-

liam Yang Wang, Yashar Mehdad, Wen-tau Yih, Sebastian Riedel, Douwe Kiela, and

Barlas Oğuz. Answering complex open-domain questions with multi-hop dense re-

trieval. International Conference on Learning Representations, 2021.

[236] Shanshan Liu, Xin Zhang, Sheng Zhang, Hui Wang, and Weiming Zhang. Neural ma-

chine reading comprehension: Methods and trends. Applied Sciences, 9(18):3698,

2019.

[237] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-

training of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018.

[238] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirec-

tional attention flow for machine comprehension. arXiv preprint arXiv:1611.01603,

2016.

[239] Minghao Hu, Furu Wei, Yuxing Peng, Zhen Huang, Nan Yang, and Dongsheng Li.

Read+ verify: Machine reading comprehension with unanswerable questions. In Pro-

ceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 6529–6537,

2019.

[240] Yunxuan Xiao, Yanru Qu, Lin Qiu, Hao Zhou, Lei Li, Weinan Zhang, and Yong

Yu. Dynamically fused graph network for multi-hop reasoning. arXiv preprint

arXiv:1905.06933, 2019.

[241] Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay,

Mustafa Suleyman, and Phil Blunsom. Teaching machines to read and comprehend.

Advances in neural information processing systems, 28, 2015.

[242] Felix Hill, Antoine Bordes, Sumit Chopra, and Jason Weston. The goldilocks principle:

Reading children’s books with explicit memory representations. In 4th International

Conference on Learning Representations, ICLR 2016, 2016.

BIBLIOGRAPHY 177

[243] Danqi Chen, Jason Bolton, and Christopher D Manning. A thorough examination of

the cnn/daily mail reading comprehension task. In Proceedings of the 54th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages

2358–2367, 2016.

[244] Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang, Ting Liu, and Guoping Hu. Attention-

over-attention neural networks for reading comprehension. In Proceedings of the 55th

Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-

pers), pages 593–602, 2017.

[245] Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention networks for

question answering. arXiv preprint arXiv:1611.01604, 2016.

[246] Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang, and Ming Zhou. Gated self-

matching networks for reading comprehension and question answering. In Proceedings

of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), pages 189–198, 2017.

[247] Christopher Clark and Matt Gardner. Simple and effective multi-paragraph reading

comprehension. In Proceedings of the 56th Annual Meeting of the Association for Com-

putational Linguistics (Volume 1: Long Papers), pages 845–855, 2018.

[248] Hsin-Yuan Huang, Chenguang Zhu, Yelong Shen, and Weizhu Chen. Fusionnet: Fusing

via fully-aware attention with application to machine comprehension. In International

Conference on Learning Representations, 2018.

[249] Caiming Xiong, Victor Zhong, and Richard Socher. Dcn+: Mixed objective and deep

residual coattention for question answering. arXiv preprint arXiv:1711.00106, 2017.

[250] Wei Wang, Ming Yan, and Chen Wu. Multi-granularity hierarchical attention fusion

networks for reading comprehension and question answering. In Proceedings of the

56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers), pages 1705–1714, 2018.

[251] Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey

Edunov, Danqi Chen, and Wen-tau Yih. Dense passage retrieval for open-domain ques-

tion answering. arXiv preprint arXiv:2004.04906, 2020.

178 BIBLIOGRAPHY

[252] Akari Asai, Kazuma Hashimoto, Hannaneh Hajishirzi, Richard Socher, and Caiming

Xiong. Learning to retrieve reasoning paths over wikipedia graph for question answer-

ing. arXiv preprint arXiv:1911.10470, 2019.

[253] Sewon Min, Danqi Chen, Luke Zettlemoyer, and Hannaneh Hajishirzi. Knowledge

guided text retrieval and reading for open domain question answering. arXiv preprint

arXiv:1911.03868, 2019.

[254] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolu-

tional networks. arXiv preprint arXiv:1609.02907, 2016.

[255] Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to

answer open-domain questions. In Proceedings of the 55th Annual Meeting of the Asso-

ciation for Computational Linguistics (Volume 1: Long Papers), pages 1870–1879, 2017.

[256] Yankai Lin, Haozhe Ji, Zhiyuan Liu, and Maosong Sun. Denoising distantly supervised

open-domain question answering. In Proceedings of the 56th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), pages 1736–1745,

2018.

[257] Eleftherios Dimitrakis, Konstantinos Sgontzos, and Yannis Tzitzikas. A survey on ques-

tion answering systems over linked data and documents. Journal of intelligent inform-

ation systems, 55(2):233–259, 2020.

[258] Boris Katz, Sue Felshin, Jimmy Lin, and Gregory Marton. Viewing the web as a virtual

database for question answering. In New Directions in Question Answering, pages 215–

226, 2004.

[259] Ellen M Voorhees et al. The trec-8 question answering track report. In Trec, volume 99,

pages 77–82, 1999.

[260] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase:

a collaboratively created graph database for structuring human knowledge. In Proceed-

ings of the 2008 ACM SIGMOD international conference on Management of data, pages

1247–1250, 2008.

[261] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on

freebase from question-answer pairs. In Proceedings of the 2013 conference on empirical

methods in natural language processing, pages 1533–1544, 2013.

BIBLIOGRAPHY 179

[262] Antoine Bordes, Nicolas Usunier, Sumit Chopra, and Jason Weston. Large-scale simple

question answering with memory networks. arXiv preprint arXiv:1506.02075, 2015.

[263] Michael Petrochuk and Luke Zettlemoyer. Simplequestions nearly solved: A new up-

perbound and baseline approach. In Proceedings of the 2018 Conference on Empirical

Methods in Natural Language Processing, pages 554–558, 2018.

[264] Eric Brill, Susan Dumais, and Michele Banko. An analysis of the askmsr question-

answering system. In Proceedings of the 2002 Conference on Empirical Methods in Nat-

ural Language Processing (EMNLP 2002), pages 257–264, 2002.

[265] David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James Fan, David Gondek, Aditya A

Kalyanpur, Adam Lally, J William Murdock, Eric Nyberg, John Prager, et al. Building

watson: An overview of the deepqa project. AI magazine, 31(3):59–79, 2010.

[266] Petr Baudiš. Yodaqa: a modular question answering system pipeline. In POSTER

2015-19th International Student Conference on Electrical Engineering, pages 1156–

1165, 2015.

[267] Jianpeng Cheng, Li Dong, and Mirella Lapata. Long short-term memory-networks for

machine reading. In Proceedings of the 2016 Conference on Empirical Methods in Natural

Language Processing, pages 551–561, 2016.

[268] Shuohang Wang, Mo Yu, Xiaoxiao Guo, Zhiguo Wang, Tim Klinger, Wei Zhang, Shiyu

Chang, Gerry Tesauro, Bowen Zhou, and Jing Jiang. R 3: Reinforced ranker-reader

for open-domain question answering. In Thirty-Second AAAI Conference on Artificial

Intelligence, 2018.

[269] Minghao Hu, Yuxing Peng, Zhen Huang, and Dongsheng Li. Retrieve, read, rerank:

Towards end-to-end multi-document reading comprehension. In Proceedings of the

57th Annual Meeting of the Association for Computational Linguistics, pages 2285–2295,

2019.

[270] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. Deep learning based recommender

system: A survey and new perspectives. ACM Computing Surveys (CSUR), 52(1):1–38,

2019.

180 BIBLIOGRAPHY

[271] Junkun Chen, Xipeng Qiu, Pengfei Liu, and Xuanjing Huang. Meta multi-task learning

for sequence modeling. Proceedings of the AAAI Conference on Artificial Intelligence,

32(1), Apr. 2018.

[272] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting un-

reasonable effectiveness of data in deep learning era. In Proceedings of the IEEE inter-

national conference on computer vision, pages 843–852, 2017.

[273] Minjoon Seo, Jinhyuk Lee, Tom Kwiatkowski, Ankur P Parikh, Ali Farhadi, and Han-

naneh Hajishirzi. Real-time open-domain question answering with dense-sparse phrase

index. arXiv preprint arXiv:1906.05807, 2019.

[274] Chen Qu, Liu Yang, Cen Chen, Minghui Qiu, W Bruce Croft, and Mohit Iyyer. Open-

retrieval conversational question answering. In Proceedings of the 43rd International

ACM SIGIR conference on research and development in Information Retrieval, pages 539–

548, 2020.

[275] Sarvesh Soni and Kirk Roberts. Evaluation of dataset selection for pre-training and fine-

tuning transformer language models for clinical question answering. In Proceedings of

The 12th Language Resources and Evaluation Conference, pages 5532–5538, 2020.

[276] Jibin Fu, Jinzhong Xu, and Keliang Jia. Domain ontology based automatic question

answering. In 2009 international conference on computer engineering and technology,

volume 2, pages 346–349. IEEE, 2009.

[277] Varsha Bhoir and MA Potey. Question answering system: A heuristic approach. In The

fifth international conference on the applications of digital information and web techno-

logies (ICADIWT 2014), pages 165–170. IEEE, 2014.

[278] Sweta P Lende and MM Raghuwanshi. Question answering system on education acts

using nlp techniques. In 2016 world conference on futuristic trends in research and

innovation for social welfare (Startup Conclave), pages 1–6. IEEE, 2016.

[279] Sanglap Sarkar, Venkateshwar Rao, SM Baala Mithra, and Subrahmanya VRK Rao. Nlp

algorithm based question and answering system. In Seventh International Conference

on Computational Intelligence, Modeling and Simulation, 2015.

[280] Srinivasu Badugu and R Manivannan. A study on different closed domain question

answering approaches. International Journal of Speech Technology, pages 1–11, 2020.

BIBLIOGRAPHY 181

[281] Bhanu Pratap Singh Rawat, Wei-Hung Weng, Preethi Raghavan, and Peter Szo-

lovits. Entity-enriched neural models for clinical question answering. arXiv preprint

arXiv:2005.06587, 2020.

[282] Deepthi Godavarthi and A. M. Sowjanya. Queries related to covid-19: a more effect-

ive retrieval through finetuned albert with bm25l question answering system. World

Journal of Engineering, 2021.

[283] Lin-Qin Cai, Min Wei, Si-Tong Zhou, and Xun Yan. Intelligent question answering

in restricted domains using deep learning and question pair matching. Ieee Access,

8:32922–32934, 2020.

[284] Jifan Chen, Shih-ting Lin, and Greg Durrett. Multi-hop question answering via reason-

ing chains. arXiv preprint arXiv:1910.02610, 2019.

[285] Yixuan Tang, Hwee Tou Ng, and Anthony Tung. Do multi-hop question answering

systems know how to answer the single-hop sub-questions? In Proceedings of the 16th

Conference of the European Chapter of the Association for Computational Linguistics:

Main Volume, pages 3244–3249, 2021.

[286] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolu-

tional networks. 2017. ArXiv abs/1609.02907, 2017.

[287] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and

Yoshua Bengio. Graph attention networks. stat, 1050:20, 2017.

[288] Linfeng Song, Zhiguo Wang, Mo Yu, Yue Zhang, Radu Florian, and Daniel Gildea. Ex-

ploring graph-structured passage representation for multi-hop reading comprehension

with graph neural networks. arXiv preprint arXiv:1809.02040, 2018.

[289] Bhuwan Dhingra, Qiao Jin, Zhilin Yang, William Cohen, and Ruslan Salakhutdinov.

Neural models for reasoning over multiple mentions using coreference. In Proceed-

ings of the 2018 Conference of the North American Chapter of the Association for Com-

putational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages

42–48, 2018.

[290] Nicola De Cao, Wilker Aziz, and Ivan Titov. Question answering by reasoning across

documents with graph convolutional networks. In Proceedings of NAACL-HLT, pages

2306–2317, 2019.

182 BIBLIOGRAPHY

[291] Ming Tu, Guangtao Wang, Jing Huang, Yun Tang, Xiaodong He, and Bowen Zhou.

Multi-hop reading comprehension across multiple documents by reasoning over het-

erogeneous graphs. In Proceedings of the 57th Annual Meeting of the Association for

Computational Linguistics, pages 2704–2713, 2019.

[292] Ming Ding, Chang Zhou, Qibin Chen, Hongxia Yang, and Jie Tang. Cognitive graph for

multi-hop reading comprehension at scale. In Proceedings of the 57th Annual Meeting

of the Association for Computational Linguistics, pages 2694–2703, 2019.

[293] Lin Qiu, Yunxuan Xiao, Yanru Qu, Hao Zhou, Lei Li, Weinan Zhang, and Yong Yu. Dy-

namically fused graph network for multi-hop reasoning. In Proceedings of the 57th An-

nual Meeting of the Association for Computational Linguistics, pages 6140–6150, 2019.

[294] Ming Tu, Kevin Huang, Guangtao Wang, Jing Huang, Xiaodong He, and Bowen Zhou.

Select, answer and explain: Interpretable multi-hop reading comprehension over

multiple documents. In Proceedings of the AAAI conference on artificial intelligence,

volume 34, pages 9073–9080, 2020.

[295] Nan Shao, Yiming Cui, Ting Liu, Shijin Wang, and Guoping Hu. Is graph structure

necessary for multi-hop question answering? In Proceedings of the 2020 Conference on

Empirical Methods in Natural Language Processing (EMNLP), pages 7187–7192, 2020.

[296] Yuwei Fang, Siqi Sun, Zhe Gan, Rohit Pillai, Shuohang Wang, and Jingjing Liu. Hier-

archical graph network for multi-hop question answering. In Proceedings of the 2020

Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 8823–

8838, 2020.

[297] Eunsol Choi, Daniel Hewlett, Jakob Uszkoreit, Illia Polosukhin, Alexandre Lacoste, and

Jonathan Berant. Coarse-to-fine question answering for long documents. In Proceed-

ings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), pages 209–220, 2017.

[298] Sewon Min, Victor Zhong, Richard Socher, and Caiming Xiong. Efficient and robust

question answering from minimal context over documents. In Proceedings of the 56th

Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-

pers), pages 1725–1735, 2018.

BIBLIOGRAPHY 183

[299] Swabha Swayamdipta, Ankur P Parikh, and Tom Kwiatkowski. Multi-mention learning

for reading comprehension with neural cascades. arXiv preprint arXiv:1711.00894,

2017.

[300] Victor Zhong, Caiming Xiong, Nitish Shirish Keskar, and Richard Socher. Coarse-grain

fine-grain coattention network for multi-evidence question answering. arXiv preprint

arXiv:1901.00603, 2019.

[301] Daniel Khashabi, Snigdha Chaturvedi, Michael Roth, Shyam Upadhyay, and Dan Roth.

Looking beyond the surface: A challenge set for reading comprehension over multiple

sentences. Proceedings of the 2018 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, Volume 1

(Long Papers), pages 252–262, 2018.

[302] Alon Lavie and Abhaya Agarwal. Meteor: An automatic metric for mt evaluation with

high levels of correlation with human judgments. Proceedings of the second workshop

on statistical machine translation, pages 228–231, 2007.

[303] Shanshan Liu, Xin Zhang, Sheng Zhang, Hui Wang, and Weiming Zhang. Neural ma-

chine reading comprehension: Methods and trends. Applied Sciences, 9(18), 2019.

[304] G Salton. The SMART system. Retrieval Results and Future Plans, 1971.

[305] Zhuosheng Zhang, Yuwei Wu, Junru Zhou, Sufeng Duan, Hai Zhao, and Rui Wang.

Sg-net: Syntax-guided machine reading comprehension. In AAAI, pages 9636–9643,

2020.

[306] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+

questions for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

[307] Jafar A Alzubi, Rachna Jain, Anubhav Singh, Pritee Parwekar, and Meenu Gupta.

Cobert: Covid-19 question answering system using bert. Arabian Journal for Science

and Engineering, pages 1–11, 2021.

[308] Felix Hamborg, Corinna Breitinger, and Bela Gipp. Giveme5w1h: A universal system

for extracting main events from news articles. arXiv preprint arXiv:1909.02766, 2019.

[309] Murray Singer. Answering wh-questions about sentences and text. Journal of Memory

and Language, 25(2):238–254, 1986.

184 BIBLIOGRAPHY

[310] Vasin Punyakanok, Dan Roth, and Wen-tau Yih. The importance of syntactic parsing

and inference in semantic role labeling. Computational Linguistics, 34(2):257–287,

2008.

[311] Suzan Verberne. Developing an approach for why-question answering. In Student

Research Workshop, pages 39–46, 2006.

[312] Sameer Pradhan, Kadri Hacioglu, Wayne Ward, James H Martin, and Dan Jurafsky.

Semantic role chunking combining complementary syntactic views. In Proceedings

of the Ninth Conference on Computational Natural Language Learning (CoNLL-2005),

pages 217–220, 2005.

[313] Daniel Gildea and Julia Hockenmaier. Identifying semantic roles using combinatory

categorial grammar. In Proceedings of the 2003 conference on Empirical methods in

natural language processing, pages 57–64, 2003.

[314] Frederik Hogenboom, Flavius Frasincar, Uzay Kaymak, and Franciska De Jong. An

overview of event extraction from text. DeRiVE@ ISWC, pages 48–57, 2011.

[315] Angel X Chang and Christopher D Manning. Sutime: A library for recognizing and

normalizing time expressions. In Lrec, volume 2012, pages 3735–3740, 2012.

[316] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed

representations of words and phrases and their compositionality. In Advances in neural

information processing systems, pages 3111–3119, 2013.

[317] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. Recent trends

in deep learning based natural language processing. ieee Computational intelligenCe

magazine, 13(3):55–75, 2018.

[318] Andrea Galassi, Marco Lippi, and Paolo Torroni. Attention in natural language pro-

cessing. IEEE Transactions on Neural Networks and Learning Systems, 32(10):4291–

4308, 2020.

[319] Leon Derczynski, Jun Wang, Robert Gaizauskas, and Mark A Greenwood. A data driven

approach to query expansion in question answering. arXiv preprint arXiv:1203.5084,

2012.

BIBLIOGRAPHY 185

[320] Timo Möller, Anthony Reina, Raghavan Jayakumar, and Malte Pietsch. Covid-qa: A

question answering dataset for covid-19. In Proceedings of the 1st Workshop on NLP for

COVID-19 at ACL 2020, 2020.

[321] Christopher D Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel, Steven Beth-

ard, and David McClosky. The stanford corenlp natural language processing toolkit.

In Proceedings of 52nd annual meeting of the association for computational linguistics:

system demonstrations, pages 55–60, 2014.

[322] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur

Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al.

Natural questions: a benchmark for question answering research. Transactions of the

Association for Computational Linguistics, 7:453–466, 2019.

[323] Dayiheng Liu, Yeyun Gong, Jie Fu, Yu Yan, Jiusheng Chen, Daxin Jiang, Jiancheng Lv,

and Nan Duan. Rikinet: Reading wikipedia pages for natural question answering. In

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,

pages 6762–6771, 2020.

[324] James Bergstra, Dan Yamins, David D Cox, et al. Hyperopt: A python library for

optimizing the hyperparameters of machine learning algorithms. Citeseer, 2013.

[325] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

[326] Linlong Xiao, Nanzhi Wang, and Guocai Yang. A reading comprehension style question

answering model based on attention mechanism. In 2018 IEEE 29th International

Conference on Application-specific Systems, Architectures and Processors (ASAP), pages

1–4. IEEE, 2018.

[327] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad

Norouzi, and Quoc V Le. Qanet: Combining local convolution with global self-attention

for reading comprehension. arXiv preprint arXiv:1804.09541, 2018.

[328] Zhuosheng Zhang, Junjie Yang, and Hai Zhao. Retrospective reader for machine read-

ing comprehension. arXiv preprint arXiv:2001.09694, 2020.

[329] Arantxa Otegi, Jon Ander Campos, Gorka Azkune, Aitor Soroa, and Eneko Agirre.

Automatic evaluation vs. user preference in neural textual questionanswering over

186 BIBLIOGRAPHY

covid-19 scientific literature. In Proceedings of the 1st Workshop on NLP for COVID-19

(Part 2) at EMNLP 2020, 2020.

[330] Revanth Gangi Reddy, Bhavani Iyer, Md Arafat Sultan, Rong Zhang, Avi Sil, Vittorio

Castelli, Radu Florian, and Salim Roukos. End-to-end qa on covid-19: domain adapt-

ation with synthetic training. arXiv preprint arXiv:2012.01414, 2020.

[331] Sharon Levy, Kevin Mo, Wenhan Xiong, and William Yang Wang. Open-domain

question-answering for covid-19 and other emergent domains. In Proceedings of the

2021 Conference on Empirical Methods in Natural Language Processing: System Demon-

strations, pages 259–266, 2021.

[332] Iz Beltagy, Kyle Lo, and Arman Cohan. Scibert: A pretrained language model for

scientific text. In Proceedings of the 2019 Conference on Empirical Methods in Natural

Language Processing and the 9th International Joint Conference on Natural Language

Processing (EMNLP-IJCNLP), pages 3615–3620, 2019.

[333] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So,

and Jaewoo Kang. Biobert: A pre-trained biomedical language representation model

for biomedical text mining. Bioinformatics, 36(4):1234–1240, 2020.

[334] Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar, Russell Reas, Jiangjiang Yang, Doug

Burdick, Darrin Eide, Kathryn Funk, Yannis Katsis, Rodney Michael Kinney, et al. Cord-

19: The covid-19 open research dataset. In Proceedings of the 1st Workshop on NLP for

COVID-19 at ACL 2020, 2020.

[335] Jinhyuk Lee, Minjoon Seo, Hannaneh Hajishirzi, and Jaewoo Kang. Contextualized

sparse representations for real-time open-domain question answering. Proceedings

of the 58th Annual Meeting of the Association for Computational Linguistics, pages

912–919, 2020.

[336] Devendra Singh Sachan, Mostofa Patwary, Mohammad Shoeybi, Neel Kant, Wei Ping,

William L. Hamilton, and Bryan Catanzaro. End-to-end training of neural retrievers

for open-domain question answering. Proceedings of the 59th Annual Meeting of the

Association for Computational Linguistics and the 11th International Joint Conference

on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual

Event, August 1-6, 2021, pages 6648–6662. Association for Computational Linguistics,

2021.

BIBLIOGRAPHY 187

[337] Gautier Izacard and Édouard Grave. Leveraging passage retrieval with generative mod-

els for open domain question answering. Proceedings of the 16th Conference of the

European Chapter of the Association for Computational Linguistics: Main Volume,

pages 874–880, 2021.

[338] Vikas Yadav, Steven Bethard, and Mihai Surdeanu. If you want to go far go together:

Unsupervised joint candidate evidence retrieval for multi-hop question answering. Pro-

ceedings of the 2021 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, pages 4571–4581, 2021.

[339] Vikas Yadav, Steven Bethard, and Mihai Surdeanu. Alignment over heterogeneous

embeddings for question answering. Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long and Short Papers), pages 2681–2691, 2019.

[340] Vikas Yadav, Steven Bethard, and Mihai Surdeanu. Unsupervised alignment-based

iterative evidence retrieval for multi-hop question answering. Proceedings of the 58th

Annual Meeting of the Association for Computational Linguistics, pages 4514–4525,

2020.

[341] Vikas Yadav, Steven Bethard, and Mihai Surdeanu. Quick and (not so) dirty: Unsuper-

vised selection of justification sentences for multi-hop question answering. Proceedings

of the 2019 Conference on Empirical Methods in Natural Language Processing and the

9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),

pages 2578–2589, 2019.

[342] Harsh Trivedi, Heeyoung Kwon, Tushar Khot, Ashish Sabharwal, and Niranjan Balas-

ubramanian. Repurposing entailment for multi-hop question answering tasks. Pro-

ceedings of the 2019 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short

Papers), pages 2948–2958, 2019.

[343] Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui Jiang, and Diana Inkpen. En-

hanced lstm for natural language inference. Proceedings of the 55th Annual Meeting of

the Association for Computational Linguistics (Volume 1: Long Papers), pages 1657–

1668, 2017.

188 BIBLIOGRAPHY

[344] Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and Yoshua

Bengio. Attention-based models for speech recognition. Advances in neural information

processing systems, 28, 2015.

[345] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of

deep bidirectional transformers for language understanding. In Proceedings of NAACL-

HLT, pages 4171–4186, 2019.

[346] Kathleen McKeown, Sara Rosenthal, Kapil Thadani, and Coleman Moore. Time-

efficient creation of an accurate sentence fusion corpus. In Human Language Tech-

nologies: The 2010 Annual Conference of the North American Chapter of the Association

for Computational Linguistics, pages 317–320, 2010.

[347] Micha Elsner and Deepak Santhanam. Learning to fuse disparate sentences. In Pro-

ceedings of the Workshop on Monolingual Text-To-Text Generation, pages 54–63, 2011.

[348] Kapil Thadani and Kathleen McKeown. Supervised sentence fusion with single-stage

inference. In Proceedings of the Sixth International Joint Conference on Natural Lan-

guage Processing, pages 1410–1418, 2013.

[349] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects

in context. European conference on computer vision, pages 740–755. Springer, 2014.

[350] Florian Boudin and Emmanuel Morin. Keyphrase extraction for n-best reranking in

multi-sentence compression. In Proceedings of the 2013 Conference of the North Amer-

ican Chapter of the Association for Computational Linguistics: Human Language Techno-

logies, pages 298–305, 2013.

[351] Raksha Agarwal and Niladri Chatterjee. Improvements in multi-document abstractive

summarization using multi sentence compression with word graph and node align-

ment. Expert Systems with Applications, 190:116154, 2022.

[352] Johan Hasselqvist and Niklas Helmertz. Query-based abstractive summarization using

neural networks. Master’s thesis, 2017.

[353] Ansong Ni, Zhangir Azerbayev, Mutethia Mutuma, Troy Feng, Yusen Zhang, Tao Yu,

Ahmed Hassan, and Dragomir Radev. Summertime: Text summarization toolkit for

BIBLIOGRAPHY 189

non-experts. Proceedings of the 2021 Conference on Empirical Methods in Natural

Language Processing: System Demonstrations, pages 329–338, 2021.

[354] Neslihan Iskender, Tim Polzehl, and Sebastian Möller. Reliability of human evaluation

for text summarization: Lessons learned and challenges ahead. In Proceedings of the

Workshop on Human Evaluation of NLP Systems (HumEval), pages 86–96, 2021.

[355] Divya Saxena and Jiannong Cao. Generative adversarial networks (gans): Challenges,

solutions, and future directions. ACM Comput. Surv., 54(3), may 2021.

[356] Riadh Belkebir and Ahmed Guessoum. Talaa-atsf: a global operation-based arabic

text summarization framework. In Intelligent Natural Language Processing: Trends and

Applications, pages 435–459. Springer, 2018.

[357] Elena Lloret, Laura Plaza, and Ahmet Aker. The challenging task of summary evalu-

ation: an overview. Language Resources and Evaluation, 52(1):101–148, 2018.

	Introduction
	History of Text Summarisation
	Question-driven Text Summarisation
	Applications for Industry
	Thesis Contribution
	Research Questions
	Publications and Presentations

	Background and Literature Review
	Neural Networks
	Recurrent Neural Networks (RNNs)
	Bidirectional RNN
	Gated Recurrent Neural Networks
	CNN
	Attention Mechanism
	Transformers

	Text Embeddings
	ELMO
	GPT
	BERT
	BERT Variants
	ELECTRA
	T5
	BART

	Text Generation
	GANs
	Variational Auto-Encoders (VAEs)
	Paraphrase Generation

	Automatic Text summarisation (ATS)
	Extractive Approaches
	Abstractive Approaches
	Query-based Approaches
	Hybrid Text Summarisation

	Question Answering (QA) Systems
	Question Analysis
	Machine Reading Comprehension (MRC)
	Open-domain QA vs Closed-domain QA
	Multi-hop QA

	Summary

	A Hybrid Extractive-Abstractive Question-driven Summariser Model
	Introduction
	Question-driven Extractive Model (Ex-MhopQA)
	Question-driven Abstractive Model (QParaSum)

	Experiment Procedure
	Evaluation Metrics
	Summary

	Question-driven Extractive Model
	Introduction
	Proposed Multi-hop QA Approach
	Adaptable Machine Reading Comprehension Method
	Reasoning Process

	Experiments
	Experimental Dataset
	Evaluation Metrics
	Data Pre-processing and Experimental Settings
	Sentence-level MRC model
	Open-domain multi-hop QA
	Question-driven Extractive Text Summarisation

	Summary

	Question-driven Abstractive Model
	Introduction
	The Question-driven Abstractive Summariser
	Paraphrase Generation Model
	Singletons and Sentence Pairs Selection
	Sentence Fusion

	Experiments
	Experimental Datasets
	Evaluation Metrics
	Data Pre-processing and Experimental Settings
	Paraphrase Generation Results
	Sentences Fusion Results
	Question-driven Abstractive Text Summarisation Results

	Summary

	An Industrial Case Study
	Introduction
	The Model for Openreach Data
	Dataset
	Data Characteristics
	Training Dataset
	Test Dataset
	Data Anonymisation

	Experiments
	Fine-tuning Process
	Baseline Methods
	Results and Discussion
	Demo Examples

	Summary

	Conclusion and Future Work
	A Hybrid Question-driven Text Summarisation Model
	Applications
	Future Work
	Future Text Summarisation Research Directions

