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Abstract

Classification problems are an important subclass of problems in algebraic geometry that

are mainly considered for projective varieties. One modern approach for such classification

problems is the minimal model programme (MMP), which (conjecturally) classifies varieties

into certain building blocks. One of those fundamental building blocks are Fano varieties,

which although aren’t minimal in the sense of the MMP, appear as fibres of Fano fibrations,

which are relatively minimal. A natural next step in such classifications is to add all build-

ing blocks in a moduli space; moduli spaces are quite sophisticated mathematical objects,

which parametrise all objects of a given kind (usually projective varieties with well-defined

algebrogeometric conditions). The advantage they bring into classification problems, is that

they capture information on the degenerations of the objects that are added to them. As

such, much of the recent focus of classification problems has shifted to finding and describing

explicitly these moduli spaces.

The construction of such moduli spaces, although highly beneficial, can be quite chal-

lenging. Thankfully, at least in the case of smooth Fano varieties, the notion of K-stability

has demonstrated such a construction. K-stability serves as a bridge between algebraic and

differential geometry; it was initially developed to answer which smooth Fano varieties

admit a Kähler-Einstein metric. The answer to this question was achieved as a joint effort

by many mathematicians, including the key development by Chen-Donaldson-Sun, and

showed that a Fano variety admits such a metric if and only if it is K-polystable. In recent

developments, it was demonstrated that K-polystable Fano varieties form a moduli space

named the K-moduli space. The added benefit of this construction is due to the advantageous

properties the moduli space has, which have been generalised through several iterations,

including key developments by Odaka and Xu and his collaborators. However, since this

construction is not explicit, the explicit description of this moduli space for specific Fano

families can prove quite challenging, with insofar only a handful of known examples due
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to Odaka–Spotti–Sun and Liu–Xu. In this thesis, we provide an explicit example for one of

the 105 families of Fano threefolds in the Iskovskikh–Mori–Mukai classification, in particular

we describe the K-moduli space of the family 2.25, which can be described as the blow up of

P3 along an elliptic curve. In achieving this we make use of the ‘reverse moduli continuity

method’, which is a modification of the original ‘moduli continuity method’ introduced by

Odaka–Spotti–Sun.

The added advantage of K-stability is that the above theories also expand to log pairs,

formed by varieties and divisors. In this particular case, the construction is not rigid, which

allows for certain flexibility by introducing ‘stability conditions’. These stability conditions

depend on a continuous parameter, which determines what objects should and shouldn’t be

added in the moduli space as it varies. The end result is an array of moduli spaces depending

on this parameter, which give rise to wall-crossing phenomena. Wall-crossing refers to the

fact that there are finite intervals of stability where moduli spaces remain the same. While

the theory of K-stability has been developed for log Fano pairs, including a recent proof of

the existence of K-moduli for log Fano pairs by Ascher–DeVleming–Liu, higher dimensional

examples of such wall crossings are lacking in the literature. The only explicit examples of

such wall-crossings exist in lower dimensions, which are also due to Ascher–DeVleming–Liu.

In this thesis, we present the first such higher dimensional examples of wall-crossing for the

K-moduli of del Pezzo surfaces of degree 4 and their anticanonical divisors. In achieving the

above, we make use of the ‘moduli continuity method’, introduced by Odaka–Spotti–Sun

and later generalised to log pairs by Gallardo–Martinez-Garcia–Spotti.

To complete the two main aims and examples presented above, we use Geometric In-

variant Theory (GIT). GIT was developed by Mumford in the 1960s and studies quotients

of projective varieties by algebraic groups. It is one of the first stability theories, which has

inspired the construction of K-stability, and can construct geometric quotients which are

similar to moduli spaces. In this thesis, we particularly make use of computational GIT

relying on the Hilbert-Mumford numerical criterion. In the process of doing so, we have

developed computational material, including the development of theory, algorithms and

code to study GIT quotients parametrising the moduli of log pairs formed by complete

intersections and hyperplane sections. This computational approach to the GIT of log pairs of

complete intersections generalises the work of Gallardo–Martinez-Garcia for hypersurfaces.

Our expectation is that the computational techniques developed in this thesis will have
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applications beyond those explored in this thesis.
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1
Introduction

1.1 Overview

Classification problems form a large part of the study of modern mathematics, and especially

so in algebraic geometry. Out of theories developed recently, and most particularly the Mini-

mal Model Program (MMP), Fano varieties have emerged as a particular type of projective

variety which are essential in the study of modern algebraic geometry, as they are conjectured

to be fundamental building blocks for other varieties, in some sense.

A smooth Fano variety X has an ample anti-canonical line bundle −KX [IP99], and

equivalently, it has positive Ricci curvature. Fano varieties are bounded in any given dimen-

sion if their singularities are somehow bounded (e.g. if they are epsilon-log canonical) by

a renowned theorem of Birkar [Bir21] and that as a result, once epsilon is fixed, they can

theoretically be classified into a finite number of families. The simplest case is the smooth

one. The only Fano curve is the sphere, while smooth Fano surfaces were classified in the

19th century by Pasquale del Pezzo [Pez85; Pez87], and are known as del Pezzo surfaces.

There are 10 deformation families overall, eight given as the blow up of P2 along 1 ≤ n ≤ 8

points (with (−KX)
2 = 9− n) along with P1 × P1 and P2.

For Fano threefolds, Iskovskikh [Isk80], Mori and Mukai classified smooth Fano threefolds

[MM03] into 105 distinct families. The subject of classification of Fano varieties in higher

dimensions remains an active area of research. The overall number of families of Fano

n-folds is unknown, but a result of Kollár–Miyaoka–Mori [KMM92] shows that this number
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is bounded in the smooth case.

An important aim of many algebraic geometers is to compactify these families into com-

pact moduli spaces. A moduli space is a modern mathematical tool, an algebraic object

whose points represent all algebro-geometric objects with some fixed topological invariants,

or isomorphism classes of such objects. For us, the moduli spaces of interest will parametrise

Fano varieties in the same family, modulo some algebro-geometric conditions. The attempts

of the mathematical community at such classifications are ongoing. In particular, the clas-

sification of del Pezzo surfaces into a compact moduli space was recently completed by

Odaka–Spotti–Sun in the 2000s [OSS16]. For Fano threefolds, only a few number of families

have been compactified into a moduli space. Liu–Xu [LX19] compactified families of cubic

threefolds, while Spotti–Sun [SS17] compactified families of complete intersections of two

quadrics in Pn where n ≥ 5. Meanwhile, Liu [Liu22] compactified families of cubic fourfolds.

In this thesis, we will compactify the moduli space of the family 2.25 in the Mori- Mukai

classification, which can be presented as blow-ups of P3 along a complete intersection of two

quadrics.

Recent attempts at classification have used the theories K-stability and Geometric Invariant

Theory (GIT). Geometric invariant theory (GIT), pioneered by Mumford [MFK94], based

on Hilbert’s classical invariant theory, is an effective method to study the construction of

quotients by group actions in algebraic geometry, which can often be used to construct moduli

spaces. K-stability, on the other hand, is an algebro-geometric theory which was initially

developed to answer which smooth Fano manifolds admit a Kähler-Einstein metric. By

Chen–Donaldson-Sun these are K-polystable manifolds [CDS13]. Recent results (e.g. [CP21;

LWX19; BX19; AHH19; XZ20]) show that the space parametrising these K-polystable objects

gives a compact moduli space which satisfies the criteria of classification we mentioned

above. This space is often called a K-moduli space. However, explicit descriptions of these

moduli spaces are hard to achieve, as the construction varies with each particular family one

wishes to compactify. An interesting observation [ADL19; GMS21], is that a similar K-moduli

construction holds for log Fano pairs (X, (1−β)D), and that in fact these moduli constructions

depend on the parameter β. The different moduli spaces one obtains are given by a finite

number of walls and chambers related by a series of explicit birational transformations. The

variety and the divisor are deformed before and after each wall in each moduli space.

The aim of this thesis is to compactify the K-moduli space for family 2.25 of Fano three-
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folds, in the Mori-Mukai classification, and to ultimately study the K-moduli compactifica-

tions of log pairs formed by a Fano complete intersection of hypersurfaces of fixed degree

and a hyperplane. Specifically, we aim to provide the first higher dimensional example

of wall crossing for the K-moduli of log pairs, where both the variety and divisor admit

deformations in the K-moduli both before and after the wall crossing. We aim to introduce a

compactification for the moduli space of log Fano pairs of complete intersections and hyper-

plane sections. We achieve the above by providing a computational setting to characterise all

polarizations which give rise to different GIT quotients, in the particular cases of tuples of

complete intersection of hypersurfaces of fixed degree and hyperplanes.

Computational approaches to GIT quotients are not a novelty, but what makes this

approach novel is that we create the first methods to study GIT quotients computationally

where the ambient scheme is the Grassmanian times the projective space. In this setting, the

GIT construction depends on the choice of the linearisation, as analysed in great generality

by the theory of variations of GIT quotients of Thaddeus [Tha96] and Dolgachev-Hu [DH98].

Essentially, one obtains a division of the space of linearisations into a finite number of chambers

and walls, giving rise to only a finite number of different GIT quotients, related by a series

of explicit birational transformations. We specialise these general results to our particular

situation, tuples (X,H1, . . . , Hm) where X is a complete intersection of the same degree

hypersurfaces and the Hi are distinct hyperplanes. Since these methods are very general

and depend abstractly only on the dimension, number and degree of polynomials in the

complete intersections, they provide a concrete, comprehensive setting to study such GIT

problems computationally. To achieve the computational GIT results, we expand the setting

of Gallardo–Martinez-Garcia–Zhang [GM18; GMZ18], which in turn comes as a continuation

from ideas in Laza [Laz09a]. With emphasis to the case of pairs (S,H) our first main result is

the following:

Theorem 1.1 (see Theorem 3.14). Every point in the above GIT quotient parametrises a closed orbit

associated to a pair (S,D) with D := S ∩H in the cases where S is a Calabi-Yau or a Fano complete

intersection of k hypersurfaces of degree d > 1. Furthermore, if S is Fano, and (S,D) is semistable,

then S does not contain a hyperplane in the support of at least one of the hypersurfaces in the complete

intersection.

We also demonstrate an algorithmical method to find all unstable and non-stable tuples.
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Theorem 1.2 (see Theorem 3.17). A tuple (S,H1, . . . , Hm) is not t⃗-stable (⃗t-unstable, respectively),

if and only if there exists g ∈ G and one-parameter subgroup λ in a finite set Pn,d,k,m, such that the

set of monomials associated to (g · S, g ·H1, . . . , g ·Hm) is contained in a pair of sets N⊖
t⃗
(λ) (N−

t⃗
(λ),

respectively).

In the computational GIT setting, we also extend the results of [Zan22] for general com-

plete intersections. In this setting, we show the following:

Corollary 1.2.1 (see Corollary 3.28.1). If a tuple T = {
∑k

i=1 αifi = 0|(α1 : · · · : αk) ∈ Pk−1} is

such that lct(Pn, F ) ≥ n+1
d

(respectively, > n+1
d

) for any hypersurface F = {f = 0} in T, then T is

GIT semistable (respectively, stable).

In addition, we will demonstrate this algorithmic approach by classifying in detail the

GIT compactification for all elements of a complete intersection of two quadrics in dimension

1, i.e. an intersection of two quadrics in P3, and dimension 2, i.e. a del Pezzo surface of

degree 4, with a hyperplane section. For the specific GIT classification results, we make

use of classifications of intersections of quadrics found in Sommerville [Som59, §XIII] and

Dolgachev [Dol12, §8.6]. We expand these results along with ideas presented in [MM90] in

order to obtain a complete classification of such intersections and their hyperplane sections

based on singularities.

We will use these specific classifications, alongside with the moduli continuity method

which first appeared in [OSS16], and was expanded for log pairs in [GMS21], along with

a generalisation of this method for our particular study which we will term reverse moduli

continuity method. While the original continuity method constructed a map from the K-

moduli to the GIT quotient and then proved it was injective and surjective, the reverse

moduli continuity method will construct a map from the GIT quotient to the K-moduli and

prove it is an isomorphism. The tools required in each case are very different. In addition to

the above methods, a detailed computation of the CM line bundle for the K-moduli allows us

to explicitly compactify the K-moduli of the family 2.25 and provide the first explicit example

of a K-moduli wall-crossing.

The main conclusion of this thesis is that the computational techniques that are developed

to describe GIT problems explicitly can assist in describing K-moduli spaces both in cases

of varieties and log Fano pairs. We will have to mention that the connection of GIT and

K-stability is not new, and has been known since Odaka–Spotti–Sun used it to compactify the
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K-moduli of del Pezzo surfaces [OSS16]. This was further demonstrated when Li–Wang–Xu

[LWX19] constructed K-moduli spaces by using GIT charts. This connection was further

expanded by Liu–Xu [LX19] and Liu [Liu22] to describe the K-moduli of cubic threefolds

and fourfolds respectively. Our first result regarding K-moduli is the following connection

between the K-moduli of Fano threefold family 2.25 and the GIT quotient compactifying

complete intersections of two quadrics in P3. We have:

Theorem 1.3 (see Theorem 6.3). The K-moduli component of family 2.25 is isomorphic as a scheme

to the GIT compactification of complete intersections of two quadrics in P3.

The connection between K-moduli and GIT also found application in [GMS21], where

the K-moduli of log pairs (S, (1 − β)D) for S a del Pezzo surface of degree 3 and D an

anticanonical divisor are studied, and then in Ascher–DeVlemming–Liu [ADL19], where

wall crossings in the K-moduli of log pairs (Pn, cD) were studied, with a particular emphasis

on the two-dimensional case. In this thesis, we will study log pairs (S, (1− β)D) for S a del

Pezzo surface of degree 4, which are smooth complete intersections of 2 quadrics in P4 and

D an anticanonical divisor, which is a hyperplane section, and we will establish a similar

link between log K-stability and VGIT. For this particular example, we prove a direct link

between log K-stability and VGIT:

Theorem 1.4 (see Theorem 8.6). Suppose (S, (1− β)D) is log K-(semi/poly)stable. Then, (S,D) is

GITt(β)-(semi/poly)stable, with slope t(β) = 6(1−β)
6−β .

This in turn allows us to produce the first example of higher dimensional wall crossing

for K-moduli:

Theorem 1.5 (see Theorem 9.2). Let β > 3
4
. Then the K-moduli component of log pairs (S, (1−β)D)

is isomorphic as a scheme to the VGIT compactification of pairs (S,D) complete intersections of two

quadrics in P4, and an anticanonical divisor.

This Theorem in particular allows us to show where the first wall crossing occurs. Our

description of the VGIT quotient then gives an explicit description of this wall crossing:

Corollary 1.5.1 (see Corollary 9.2.1). The first wall crossing occurs at t(β) = 1
6
, β = 6

7
. In

particular, a log Fano pair (S, 1
7
D) is log strictly K-polystable if S is a complete intersection of two

quadrics with at worse A2 singularities, where D is two lines and a double line tangent at two points,

or if S and D have 4 or 2A1 singularities.
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One has to note that the GIT descriptions for the examples in [ADL19] were already

known, and in most cases relied on computational GIT results; in particular, in one of the

cases, [GMS21], the GIT description [GM19] was constructed for K-stability purposes. In

addition, one must note, that as of completion of this thesis, the above examples constitute

the only known examples of K-moduli compactifications either for Fano families or log

Fano pairs, which have been expanded by Theorems 1.3 and 1.5. As such, although the link

between GIT and K-stability is well-known, it is still quite hard to establish concretely in

specific cases, which is the main focus of this thesis.

In conclusion, this thesis demonstrates how such computational results from the GIT

side can give rise to explicit descriptions of K-moduli, especially in the cases of explicit

wall-crossings where both variety and divisor are deformed.

1.2 Background

As we mentioned before, constructing moduli spaces for varieties is a persistent aim of mod-

ern algebraic geometry. In addition, we mentioned how GIT and K-stability play important

roles in such descriptions. In this segment, we provide an introduction of these concepts,

for the convenience of the reader. This is an introduction to Chapter 2 which will go into

much greater detail in explaining these concepts. We direct the reader to Chapter 2 for a more

detailed treatment of these concepts, and, in particular, to [MFK94; Muk03; Xu21; Ols16].

1.2.1 Geometric Invariant Theory

GIT studies how we can construct quotients of actions of algebraic groups on algebraic

varieties.

Consider a projective variety X over a field k and let G be a reductive group acting

on X . Considering an ample line bundle L on X , i.e. a line bundle inducing projective

embedding X ⊆ Pn; the action of G on X extends to an action on Pn given by a representation

ρ : G→ GL(n+ 1). Then there exists an induced action of G on the homogeneous coordinate

ring:

k[X] : =
⊕
m≥0

H0(X,L⊗m).



16 Introduction

We define

k[X]G : =
⊕
m≥0

H0(X,L⊗m)G

to be all the invariant elements of k[X] under the action of G, which for reductive groups is

finitely generated by a result of Hilbert [Hil90]. Furthermore, since k[X]G ⊆ k[X] we obtain

an induced rational map

X = Proj(k[X]) X �G := Proj(k[X]G)
ϕ

which is constant in orbits, but which is not a morphism as there are some points of X such

that for all f ∈ k[X]G, f(x) = 0.

To overcome this, we define the set of semi-stable points, Xss, which consists of all points

x ∈ X such that there exists some m and invariant section s ∈ H0(X,L⊗m) such that s(x) ̸= 0.

Under this definition we have the following.

Theorem 1.6 (Mumford, [MFK94, Theorem 1.10]). Xss is an open subset of X and the map ϕ

restricts to a well-defined categorical quotient

ϕ : Xss −→ X �G.

Extending this type of thinking, we define a set of stable points Xs as the set of x ∈ Xss,

with the orbit G · x closed, and finite stabiliser Stab(x). Under this definition, we have the

following

Theorem 1.7 (Mumford, [MFK94, Converse 1.12]). Xs is an open subset ofX withXs ⊆ Xss ⊆ X

and the map ϕ restricts to a well-defined geometric quotient

ϕ : Xs → X/G.

One of the main tasks when considering GIT quotients is to describe the good loci

Xs, Xss, Xps that allow us to describe quotients of group actions that are varieties, where:

1. Xs ≡ closed orbits of the action with finite stabilisers;

2. Xss ≡ all semistable orbits;

3. Xps ≡ all semistable closed orbits.
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The above description is a difficult task without the introduction of a numerical criterion

(the Hilbert-Mumford numerical criterion) [MFK94]. The Hilbert-Mumford numerical crite-

rion can reduce the question to checking stability for one-parameter subgroups of G which in

turn permits to turn it into a discrete, in fact finite, computation.

This method is the best tool for recognising stable (Case 1), semi-stable (Case 2) and

polystable (Case 3) points. We do have to note that although extremely useful, the Hilbert-

Mumford numerical criterion can be hard to verify in a number of cases. As such, it is

beneficial to develop computational techniques in order to describe these three loci explicitly.

This algorithmical technique was studied in [Laz09a] and expanded upon in [GM18; GMZ18].

The study of semi-stable and polystable points is especially significant for a number of

reasons. For us, the most important is that the categorical quotient X � G defines a well-

defined moduli-space M
GIT

X of closed semistable orbits, as well as a moduli stack MGIT
X .

When we are referring to a moduli problem, we are essentially seeking a classification of

geometric, algebraic or topological objects based on a specific property they hold, up to

some equivalence. One of the important consequences of GIT is that such a classification is

achievable through the GIT quotient construction.

An important consequence of the GIT construction is that the choice of linearisation affects

the GIT quotient. If PicG(X) = Z the linearisation is independent of the quotient, but as

Dolgachev-Hu [DH98] and Thaddeus [Tha96] noticed independently, if dim(PicG(X)) = 2

then the dependence on L can be replaced by a single rational parameter t ∈ Q≥0, which

we call the slope of L. Thus, we obtain different quotients X �t G and a number of moduli

spaces MGIT
X (t), depending on each choice of t. Moreover, it is known, by the general results

of Thaddeus [Tha96] and Dolgachev-Hu [DH98], that there exists only a finite number of

non-isomorphic quotients. These are a finite number of critical slopes called walls, such that

X �tG ∼= X �t′ G for all t, t′ ∈ (ti, ti+1), but X �tG ̸∼= X �ti G ̸∼= X �ti+1
G. The open intervals

(ti, ti+1) are called chambers.

One also observes that if dim(PicG(X)) = m > 2 then each quotient depends on a

vector (t1, . . . , tm−1) where similar properties hold. This dependence on linearisations on GIT

quotient is termed Variational GIT or VGIT for short. The computational study of (V)GIT

has had plenty of advances as of late, particularly aided by the emergence of mathematical

computer software. Gallardo– Martinez-Garcia [GM18] have studied a pair (Z,H) of Z a

degree d hypersurface, i.e. a hypersurface given as the solution of a degree d homogeneous
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polynomial in n+ 2 variables Z = {fd = 0}with H a hyperplane in Pn+1, acted upon by an

algebraic group G (where in their case G = SL(n+ 2)). In their case, they wanted to study

the map

X = Y × Pn+1 → PN ,

where here Y is the parametrising space of degree d hypersurfaces, and Pn+1 the parametrising

space of hyperplanes in Pn+1. In more detail, Y = P(H0(Pn+1,OPn+1(d))). Notice that as the

Picard rank of X is 2, the relevant discussion on Section 1.2.1 applies here, giving a number

of distinct compactifications M̄τi . Gallardo and Martinez-Garcia managed to produce an

algorithm to find the τi, the number of 1-PS λ and, as such, they produced strong results

regarding the (semi)-stability of specific points and the corresponding GIT quotients. This

idea was further expanded in [GMZ18], where the case of tuples (Z,H1, H2, . . . , Hm) is

analysed.

1.2.2 K-stability

K−stability is a modern theory developed initially by Yau–Tian–Donaldson [Tia97], using

methods from analytical geometry to describe which varieties admit a Kähler - Einstein metric.

Their work came as a solution to the Yau-Tian-Donaldson conjecture, and via the introduction

of notions such as the Donaldson-Futaki invariant and test configurations (which generalise

one-parameter subgroups) they established which varieties admit such a metric.

In more detail, for a pair (X,L) where X is a projective variety and L is an ample line bun-

dle, a test configuration is a pair (X,L) such that X is a C∗-scheme with a flat C∗-equivariant

morphism π : X → C and L is a relatively ample line bundle on X such that for all t ̸= 0

there exists an isomorphism (Xt,Lt) ≃ (X,L). The simplest test configuration to define is the

trivial test configuration, where X = X × C∗. Test configurations that are non isomorphic to

the trivial one are called non-trivial test configurations. The Donaldson-Futaki invariant for the

test configuration is a numerical invariant

DF(X,L) : =
b0a1 − a0b1

a20
,

where the ai are the first coefficients of the Hilbert polynomial for the central fiber of the test

configuration, and the bi are the coefficients of the weight function w(k) of the C∗-action on

L∗|X0 , which is a polynomial for k ≫ 0. Yau [Yau96], Tian [Tia97] and Donaldson [Don02]

defined:
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1. X is K-semistable if DF(X,L) ≥ 0 for all non-trivial test configurations;

2. X is K-polystable if it is K-semistable and DF(X,L) = 0 only for trivial test configura-

tions.

One of the main results of K-stability is the following theorem.

Theorem 1.8 (Chen–Donaldson–Sun [CDS13]). Let X be a smooth Fano manifold. Then X admits

a Kähler-Einstein metric if and only if it is K-polystable.

This is particularly important since the emergence of the study of K-moduli spaces.

Similarly to the GIT constructions and results, the spaceM
K

which parametrises K-polystable

varieties is a good moduli space in the sense of Alper [Alp+20]. In addition, recent research

shows that this K-moduli space satisfies a number of desirable properties, which make it an

ideal candidate for the compactification of the moduli spaces of Fano varieties. In [Alp+20],

it is shown that this moduli space must be separated. Another property is that the moduli

space is projective. Projectivity arises from [CP21; XZ20] which observed that a natural line

bundle, called the CM line bundle, on the K-moduli, must be ample.

In [LXZ22], the authors solved the Higher Rank Finite Generation Conjecture, which also

showed that the moduli space is proper.

These results rely on tremendous expansions of the theories of moduli spaces, which

unfortunately is impossible to detail in this section. They, however, make the explicit descrip-

tions of K-moduli spaces even more desirable. When we compactify the moduli spaces, the

difficulty arises from ‘adding’ limit elements (obtained either as limits of degenerations or

as Gromov-Hausdorff limits) that can be singular. Although we do know their singularities

have to be at worse klt, since they are limits of K-polystable elements, knowing exactly what

their singularities are might be difficult. As such, we need to study the singularities of the

limit points that could potentially compactify the moduli spaces. In addition, we can use

GIT to provide explicit compactifications. GIT quotients are much better understood than

K-stability, so there are plenty of benefits of this approach.

Trying to relate K-stability with GIT is not something new. This idea was explored

even before most of these results on K-moduli were known, when Mabuchi–Mukai [MM90]

studied the moduli space MKE of complete intersections of two quadrics in P4 that admit a

Kähler-Einstein metric, and they showed that it had to be isomorphic to the GIT quotient of
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the Grassmanian parametrising the intersection of these quadrics under the action of PGL(5).

In short, they showed:

Theorem 1.9 (Mabuchi–Mukai). There exists a homeomorphism between MKE and MGIT .

Here, M
GIT

= Gr(2, 15) � PGL(5). After the Yau–Tian–Donaldson conjecture was solved,

the space was shown to be equivalent to the K-moduli space.

Odaka–Spotti–Sun [OSS16] expanded upon this idea and used the moduli continuity method

to show that similar homeomorphisms exist for other families of del Pezzo surfaces that

admit K-polystable members. As an example

Theorem 1.10 (Odaka–Spotti–Sun). There exists a homeomorphism between MK and MGIT , where

M
K parametrises K-polystable cubic surfaces and MGIT

= P
(
H0(P3),O(3))

)
� PGL(4).

The moduli continuity method is a powerful technique that uses properties of the moduli

spaces (such as properness) to show that if one can define a map from the K-moduli to the

GIT quotient, it is going to be injective due to the uniqueness of Kähler-Einstein metrics, and

that it is surjective upon dependence on the GIT compactification, due to the properties of

the moduli spaces in the analytic and Euclidean topologies. In order to show this, they use

the Gromov-Hausdorff compactification which is known to be canonically homeomorphic to

the K-moduli space.

Spotti–Sun [SS17] expanded Mabuchi–Mukai’s result to general dimension. Furthermore,

Liu–Xu [LX19] showed how one can get such explicit isomorphisms on level of stacks in

the case of cubic threefolds. In addition, they provided details of how such isomorphisms

may be constructed. After these results, Gallardo–Martinez-Garcia–Spotti [GMS21] extended

the moduli continuity method to log Fano pairs and showed that similar homeomorphisms

exist in the case of pairs (S,D) where S is a cubic surface and D is a hyperplane section,

but they failed to provide such a homeomorphism on the wall crossings. In a further step,

Ascher–DeVlemming–Liu [ADL19] extended these isomorphisms to the case of pairs, of a

fixed variety and a varying divisor, by introducing a condition on the walls.

1.3 Organization and results

This thesis is organised in three main parts, in addition to a preliminaries section where we

survey some of the tools used throughout the thesis (Chapter 2). The first part (Chapter 3)
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deals with constructing a computational framework to describe GIT quotients of the moduli

of polarisations of tuples (S,H1, . . . , Hm) of a complete intersection of k hypersurfaces of

fixed degree d in projective space Pn, S, and hyperplanes Hi, with an emphasis on pairs

(S,H). In particular, in this Chapter we prove Theorems 1.1 and 1.2.

The second part (Chapters 4, 5, 7) deals with the explicit description of GIT quotients of

intersections of two quadrics in P2, P3 and P4, with a hyperplane section. This includes a

detailed classification of pairs of such complete intersections and their hyperplane sections

given their singularities. The third part (Chapters 6, 8, 9) focuses on the relation of K-moduli

with GIT quotients. In this part, we prove Theorem 1.3. Using similar methods, we obtain

our wall crossing example, Theorem 1.5 and Corollary 1.5.1, for log pairs (S,D) of a complete

intersection of two quadrics in P4, S, and the hyperplane section D.

In more detail, Chapter 3 focuses on GIT quotients of tuples (X,H1, . . . , Hm) of a complete

intersection of k hypersurfaces of fixed degree d in projective space Pn, X , and hyperplanes

Hi, with an exceptional emphasis on pairs (X,H).

For the case of pairs, the keen reader will notice that dimPicG(R) = 2 and as such, we

are in the VGIT situation we described in Section 1.2.1, where we have a finite number of

walls {t0 = 0, t1, . . . , tmax} that determine the GIT quotient. We formulate a computationally

explicit form of the Hilbert-Mumford numerical criterion for this particular case of interest.

Using this, we show that there is a finite set of one-parameter subgroups, denoted by Pn,k,d,

that depends only on n, k, d, such that if a pair is unstable or non-stable with respect to

some wall/chamber t, there exists a one-parameter subgroup λ ∈ Pn,k,d such that the Hilbert-

Mumford numerical criterion fails for that λ. We also provide a computational way to find

this set. We denote the GIT moduli space (GIT quotient) by MGIT
n,k,d.

To expand further on the computational setting, we introduce a criterion (Centroid Crite-

rion) which will allow us to determine whether a pair is stable or strictly semistable. This

criterion depends on the combinatorial nature of the theory, and is polyhedral in nature. Here,

we prove Theorem 1.1. We characterise all unstable pairs by providing a family to which they

must belong, in terms of equations, and how to obtain it computationally (Theorem 1.2).

We finish the Chapter, by extending some results found in [Zan22], relating log canonical

thresholds and the VGIT quotients we have studied. The results of this thesis have appeared

in a number of talks and in two separate papers by the author, (c.f. [Gar+21; Pap22b; Pap22a]).

In Chapter 4, we go over some results for the singularities of complete intersections of two
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quadrics in a general Pn, and we provide the GIT classification of the complete intersection of

two conics in P2 as a toy example for the next chapters to follow. In particular, we show that

in this GIT problem, the stable and semistable locus coincide, and are comprised by smooth

complete intersections (i.e. pencils whose base locus is 4 distinct points).

In Chapter 5, we completely solve the VGIT problem of the complete intersection of

two quadrics in P3 with a hyperplane section, which describes compactifications of the

moduli of log pairs (C,D) of an elliptic curve C with an ample divisor D, by classifying

the GIT stable and polystable elements for each wall. This also includes the wall t = 0

which corresponds to the GIT problem without the hyperplane section. We achieve this by

first obtaining a full classification based on singularities of pairs (S,D = S ∩H). We then

apply our VGIT algorithm, which is detailed in Chapter 3 and has been implemented in

the computer software SageMath [Pap22c]. This gives us all walls and their corresponding

non-stable and strictly polystable elements. We then proceed to use our classification results

to solve the VGIT problem. In the case of t = 0, we see that a complete intersection will be

GIT stable if and only if it is smooth, and will be strictly polystable if and only if it is the

unique curve S̃ = {x0x1 = x2x3 = 0}, which has 4 ordinary double points (A1 singularities).

In our classification, we notice that each wall corresponds to a particular singularity type of

S. As t increases, the singularities of S become worse, from at worse A1 at t = 0, to at worse

D4 at the final chamber. Conversely, the singularities of D in a polystable pair get better as

t increases. At the first chamber, D can be a quadruple point at worse, while at the final

chamber D can only be smooth (4 distinct points).

Chapter 6 is dedicated to proving Theorem 1.3. The smooth elements of family 2.25

are known to be K-stable (see e.g. [Ara+21, Corollary 4.3.16]). We show, that a singular

element of this family, obtained by blowing up along the curve C̃ = {x0x1 = x2x3 = 0} is

also K-polystable. Using results from [Ara+21, §4.3] and adapting the moduli continuity

method of Odaka–Spotti–Sun [OSS16] to the new reverse continuity method, we prove the

desired isomorphism of Theorem 1.3.

In Chapter 7 we completely solve the VGIT problem of the complete intersection of

two quadrics in P4 with a hyperplane section, by classifying the GIT stable and polystable

elements for each wall. This also includes the wall t = 0 which corresponds to the GIT

problem without the hyperplane section, and verifies the results found in [MM90] and [AL00].

For t = 0, we see that a complete intersection will be GIT stable if and only if it is smooth, and
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will be strictly polystable if and only if it has 2 or 4A1 singularities. We achieve this by first

obtaining a full classification based on singularities of pairs (S,D = S ∩H). We then apply

our VGIT algorithm, which gives us all walls and their corresponding non-stable and strictly

polystable elements. We then proceed to use our classification results to solve the VGIT

problem. Here, each wall corresponds to a particular singularity type of S, i.e. polystable

elements of each wall have at worse a particular type of singularity. As t increases, the

singularities of S become worse, from at worse A1 at t = 0 to D5 at the final wall. Conversely,

the singularities of D in a polystable pair get ‘better’ as t increases.

In Chapter 8 we introduce a compactification for the moduli space of log Fano pairs

of complete intersections and hyperplane sections. We achieve this by studying the CM

line bundle for the K-moduli space of log Fano pairs (X, (1− βD)), where X is a complete

intersection of hypersurfaces of fixed degree and D = X ∩H is a hyperplane section. The CM

line bundle, originally introduced by Paul and Tian in the absolute case [PT09] and extended

for log Fano pairs by Gallardo–Martinez-Garcia–Spotti [GMS21], is an invariant which plays

an important role to the link between K-stability and GIT-stability. We make such an explicit

link by proving Theorem 1.4. This allows us to get an explicit relation between t and β.

In Chapter 9 we prove the main Theorem of this thesis, Theorem 1.5. We restrict ourselves

to consider log Fano pairs (S, (1− β)D) where S is a complete intersection of two quadrics in

P4 and D = S ∩H is a hyperplane section. The existence of the desired isomorphism is not

obvious at first, but it comes from the combination of the previous results in Chapters 7, 8.

We use our VGIT classification from Chapter 7 and results by Liu [Liu18] and Kollár [KS88]

to show that the singular limits of degenerations of log pairs (S, (1− β)D) up to a specific

wall are complete intersections of quadrics and hyperplane sections. This result, along with

Theorem 1.4 and the moduli continuity method for log Fano pairs [GMS21] allows us to

prove Theorem 1.5. Theorem 1.5 along with our results in Chapter 7 allows us to obtain a full

description of the wall crossing, in Corollary 1.5.1.
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2
Preliminaries

2.1 Geometric Invariant Theory

Geometric invariant theory (GIT), pioneered by Mumford [MFK94], based on Hilbert’s

classical invariant theory, is an effective method to study the construction of quotients by

group actions in algebraic geometry, which can often be used to construct moduli spaces.

More explicitly, GIT studies how we can construct quotients of actions of algebraic groups

on algebraic varieties. The study of GIT has played an integral part in the recent effort of

the classification of Fano manifolds, in particular in the compactification of moduli spaces

of families of Fano varieties. Odaka–Spotti–Sun used GIT to compactify moduli spaces of

Fano surfaces (del Pezzo surfaces) [OSS16], while Spotti–Sun [SS17], Liu–Xu [LX19] and Liu

[Liu22] compactified families of complete intersections of two quadrics, cubic threefolds and

fourfolds respectively, using explicit descriptions of GIT quotients.

In this section, we provide the preliminaries of algebraic group actions on varieties and

how these group actions can be described using representation theory. We then provide a

detailed account on how GIT quotients are constructed. In particular, we define geometric

and categorical quotients, and we construct projective GIT quotients on actions of reductive

algebraic groups. We show that these quotients are geometric and categorical in each case,

and we give a description of Variational GIT (VGIT). We then move to describe the Hilbert-

Mumford numerical criterion, which is essential in obtaining explicit examples of such

quotients. We end this Section with a detailed exposition to the theory of moduli spaces. We
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introduce moduli problems and why these are studied, and then we proceed to introduce

stacks and their relationship to moduli problems. We end the Section by showing that the

GIT quotients we have constructed provide good moduli spaces and moduli stacks.

2.1.1 Algebraic Group Actions

2.1.1.1 Definitions and Constructions

To begin our discussion on GIT we first need to give a short introduction to algebraic groups,

their representations and how they act on varieties. We will follow the treaty and notation in

Mukai [Muk03]. In this section, we let k to be an algebraically closed field.

Definition 2.1. Let A be a finitely generated k-algebra. G = SpecA is an affine algebraic group

if there exist k-algebra homomorphisms

µ : A→ A⊗k A (coproduct),

ϵ : A→ k (coidentity),

ι : A→ A (coinverse),

which satisfy the following three conditions:

1. The diagram

A A⊗k A

A⊗k A A⊗k A⊗k A

µ

µ

1A⊗kµ

µ⊗k1A

commutes;

2. both of the compositions

k ⊗k A

A A⊗k A A

A⊗k k

p

µ

ϵ⊗k1A

1A⊗kϵ p

where p is the projection, are equal to the identity;
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3. the composition, with m the algebra multiplication

A
µ−→ A⊗k A

1A⊗kι−−−→ A⊗k A.
m−→ A

coincide with ϵ.

Remark 2.1.1. One should realise that after taking Spec, the maps µ, ϵ, ι become by abuse

of notation µ : G × G → G, ϵ : Spec k → G and ι : G → G representing the group product,

identity element and group inversion respectively. In fact, the three conditions in Definition

2.1 guarantee that G is a group with multiplication µ, identity ϵ(Spec k) and inverse ι.

A categorical way of thinking of algebraic groups is the following. An algebraic group G

is an algebraic scheme where, along with the definitions of µ, ϵ, ι the functor

G : {algebras over k} → {sets},

takes values in the category of groups.

Example 2.1.1. Consider the Laurent polynomials A = k[t, t−1]. The algebraic scheme G =

SpecA becomes an affine algebraic group by defining the coproduct, coidentity, and coinverse

as follows. Let µ(t) = t⊗ t, ϵ(t) = 1, ι(t) = t−1. Then

(µ⊗k 1A)(µ(t)) = t⊗k t⊗k t

= (1A ⊗k µ)(µ(t)),

p
(
(ϵ⊗k 1A)(µ(t))

)
= p
(
(ϵ⊗k 1A)(t⊗ t)

)
= p(1⊗k t)

= t,

p
(
(1A ⊗k ϵ)(µ(t))

)
= p
(
(1A ⊗k ϵ)(t⊗ t)

)
= p(t⊗k 1)

= t.

Hence, the compositions are equivalent to the identity. Also,

(
1A ⊗k ι(µ(t))

)
= m

(
(1A ⊗k ι)(t⊗ t)

)
= m

(
t⊗ t−1

)
= 1,
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and hence the composition is equivalent to ϵ. This group G = SpecA is denoted by Gm and is

called the multiplicative group. It also admits a natural embedding to A1 via taking Spec to the

map

k[t] ↪→ k[t, t−1].

Any algebraic torus is isomorphic to GN
m and as such is an affine algebraic group.

Example 2.1.2. The matrix groups GLn, SLn and PGLn are algebraic groups. To see this, first

consider the ring A = k[xi,j, (det(x))
−1], where here x = [xi,j], i.e. the polynomial ring with

n2 variables xi,j where 1 ≤ i, j ≤ n, and the inverse of the determinant added as a generator

modulo the obvious relations. Then G = SpecA ↪→ An2 becomes an algebraic group if we

define

µ(xi,j) =
n∑
l=1

xi,l ⊗ xl,j ϵ(xi,j) = δi,j ι(xi,j) = (det x)−1(adjx)i,j.

Checking the conditions of Definition 2.1 is a bit more challenging than in Example 2.1.1, but

not hard to see.

Here,

(µ⊗k 1A)(µ(xi,j)) = (µ⊗k 1A)
( n∑
l=1

xi,l ⊗ xl,j
)

=
n∑
l=1

( n∑
m=1

xi,m ⊗ xm,l ⊗ xl,j
)

= (1A ⊗k µ)(µ(xi,j)),

p
(
(ϵ⊗k 1A)(µ(xi,j))

)
= p
(
(ϵ⊗k 1A)(

n∑
l=1

xi,l ⊗ xl,j)
)

= p(1⊗ xi,j)

= 1,

p
(
(1A ⊗k ϵ)(µ(xi,j))

)
= p
(
(1A ⊗k ϵ)(

n∑
l=1

xi,l ⊗ xl,j)
)

= p(xi,j ⊗ 1)

= 1.
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Hence, the compositions are equivalent to the identity. Also,

m
(
(1A ⊗k ι)(µ(xi,j))

)
= m

(
(1A ⊗k ι)(

n∑
l=1

xi,l ⊗ xl,j)
)

= m
( n∑
l=1

xi,l ⊗ (detx)−1(adjx)l,j
)

= (detx)−1 detx

= 1.

Thus, G = SpecA is an algebraic group. In fact G = GL(n). One way to see this is that

one can interpret A as the localization of k[xi,j] at the polynomial p = (det(x))−1. Then,

G = SpecA, is the localization of Spec k[xi,j] = An2 away from p = 0. In particular, G is an

open subscheme of An2 which contains all n× n matrices where (det(x))−1 ̸= 0.

We also define B = k[xi,j]/(detx − 1), which is a quotient of A with the ideal I =

(detx − 1) ⊂ A. In particular, I ⊆ ker ϵ, and hence we can define maps µ, ϵ, ι on B by

restriction (and some abuse of notation) which make S = SpecB an affine algebraic group.

As one would expect, S = SL(n).

For PGL(n), notice that PGL(n) = GL(n)/Z where Z := {aIn|a ∈ k×} is the centre. In

particular Z is a subgroup of GL(n) and hence PGL(n) is an affine algebraic group, since it is

the quotient of two affine algebraic groups.

Definition 2.2. A homomorphism of algebraic groups G and H is a morphism of varieties

f : G→ H such that the diagram

G×G G

H ×H H

f×f

µG

f

µH

commutes.

2.1.1.2 Representation Theory and Algebraic Group Actions

An integral part needed to define algebraic group actions on varieties is the representation

theory of algebraic groups. See [FH91; CR06] for more information. Below are two different

definitions of representations of algebraic groups.

Definition 2.3. A representation of an (algebraic) group G on a finite dimensional vector space

V over a field k is a group homomorphism ρ : G → GL(V ) such that ρ(xy) = ρ(x)ρ(y). A

representation is called faithful, if the group homomorphism ρ is injective.
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Two representations ρ : G → GL(V ) and π : G → GL(W ) are equivalent or isomorphic if

there exists a vector space isomorphism ζ : V → W such that for all x ∈ G, ζ ◦ρ(x)◦ζ−1 = π(x).

For algebraic groups specifically, one can use the following definition:

Definition 2.4. An algebraic representation of the affine algebraic group SpecA is a pair consist-

ing of a vector space V over a field k and a linear map µV : V → V ⊗k A such that:

1. The composition

V
µV−→ V ⊗k A

1⊗ϵ−−→ V ⊗ k ∼= V

is the identity;

2. the diagram

V V ⊗k A

V ⊗k A V ⊗k A⊗k A

µV

µV

µV ⊗k1A

1V ⊗kµA

commutes.

Lemma 2.5. Definitions 2.3 and 2.4 are equivalent for affine algebraic groups.

Proof. Let G = SpecA be an affine algebraic group and ρ : G → GL(V ) ∼= GL(n) be a

representation, where n = dimV . Then as in Example 2.1.2, we have B = k[xi,j, (det(x))
−1],

GL(n) = SpecB and we can define a number of pullbacks of the xi,j along ρ (at the ring

level), i.e. fi,j := ρ∗xi,j which are functions on G. By taking a basis {ek} of V , we can define

µV : ei →
∑

k ek ⊗ fk,i. Under this definition,

(1⊗ ϵ) ◦ µV (ei) = (1⊗ ϵ)(
∑
k

ek ⊗ fk,i) = ei ⊗ 1 = ei

since ϵ(fk,i) = ρ∗(ϵ(xi,j)) = ρ∗(δi,j).

Also,

(1V ⊗ µA) ◦ µV (ei) = (1V ⊗ µA)(
∑
k

ek ⊗ fk,i) =
∑
k

(∑
j

ek ⊗ fk,j ⊗ fj,i
)
= (µV ⊗ 1A) ◦ µV (ei),

since µA(fk,i) = ρ∗(µB(xk,i)) = ρ∗(
∑

j xk,j ⊗ xj,i) =
∑

j fk,j ⊗ fj,i.

For the converse, see [Muk03, Remark 4.3].
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Example 2.5.1. For Gm, where m ∈ Z one can find particularly easy representations. For a

vector space V over k, one can define

µV : V → V ⊗ k[t, t−1], v → v ⊗ tm.

Verifying that this definition satisfies the conditions of Definition 2.4 is an easy exercise.

An important consequence is that every such representation ρ : Gm → GL(V ) has a weight

decomposition with respect to the above representations V ∼=
⊕

Vm where here Vm := {v ∈

V |µ(v) = v ⊗ tm}.

We are now in a position to define algebraic group actions on (affine) varieties.

Definition 2.6. Let X be a scheme and G = SpecA an affine algebraic group. An action of G

on X is a morphism of schemes σ : G×X → X such that the following diagrams

Spec k ×X G×X

X

ϵ×idX

∼= σ

and

G×G×X G×X

G×X X

µG×idX

idG ×σ

σ

σ

commute. Here, µG and ϵ are the coproduct and coidentity of G after taking Spec.

One easily notices the similarity between Definitions 2.4 and 2.6. This is not by chance; in

fact, our knowledge of representation theory for algebraic groups is integral for investigating

how to study such actions. In fact, in the case of affine schemes, the representation induces

the group action.

Remark 2.6.1. Notice that this definition is compatible with the usual classical definition of

group actions. To see this, note that the first commutative diagram shows that the composition

X → X ×G→ X is given by x→ (e, x)→ e · x is the identity (i.e. that e · x = x).

Similarly, the second commutative diagram guarantees that g · (h · x) = (g · h) · x.

These are the axioms of the classical (left) group action. In most examples we will use this

notation to give describe specific instances of group actions.
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Definition 2.7. Let G be an algebraic group and X a scheme. Given an algebraic group action

σ : G×X → X and x a point of X

1. The orbit G · x of the point x is defined to be the set theoretic image of the morphism

σx := σ(−, x) : G(k)→ X(k) which is given by g → g · x;

2. The stabiliser Stab(x) or Gx of x is defined to be the fibre product of the morphism

σx : G→ X and x : Spec k → X . Furthermore, it is a closed subscheme of G, which is

closed under multiplication, and hence is a subgroup of G.

3. If all orbits of the action are Zariski-closed, then the action is called closed.

Example 2.7.1. Consider the action of Gm on An via scalar multiplication, i.e. t · (x1, . . . , xn) =

(tx1, . . . , txn). This is a group action easily verifiable from Definition 2.6 and Remark 2.6.1,

and it has only two possible orbits: the origin, and lines through the origin minus the origin.

Now consider the action of Gm on A2 by t · (x1, x2) = (tx1, t
−1x2). As before, the origin is

one of the orbits of this action, as well as each of the two axes minus the origin. The other

orbit occurs at points where x1x2 = c, where c is non-zero, i.e. at conics
{
(x1, x2)|x1x2 = c, x ∈

A1 \ {0}
}

. The origin and conics are both closed orbits, while the axes minus the origin are

not closed, as they contain the origin in their closure.

Notice, that the theoretical framework we have set up does not allow us to separate the

orbit that corresponds to the origin and the orbits of the axes minus the origin topologically,

which would be necessary in constructing a topological quotient [Muk03, page 159, Example

5.1]. Hence, the quotient space of A2/Gm cannot be an algebraic scheme, as it cannot be

separated. Thus, in order to construct a topological quotient, we have to remove the orbit

corresponding to the origin {0, 0}, as this is the orbit that breaks separation in the quotient.

This will allow us to obtain a quotient scheme, (A2\{0, 0})/Gm. In this example, the bad locus

(the origin) needed to be removed in order to obtain a quotient scheme is easy to identify, but

in many cases it is much more complex to identify what the bad locus is. In fact, a big part of

GIT focuses on identifying limits of orbits and removing them in order to obtain well-defined

algebraic quotients.

Theorem 2.8. Let G be an affine algebraic group acting on a scheme X . Then, the dimension of

the stabiliser subgroup (respectively, orbit) viewed as a function X → N is upper semi-continuous

(respectively, lower-semi-continuous); that is, for every n, the sets {x ∈ X| dimGx ≥ n} and

{x ∈ X| dimGx ≤ n} are closed in X .
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Proof. Consider the graph of the action

Γ = (prX , σ) : G×X → X ×X

and the fibre product P

P X

G×X X ×X

ϕ

∆

Γ

where ∆: X → X ×X is the diagonal. The k-points of the fibre product P consist of pairs

(g, x) such that g ∈ Gx. The function on P which sends p = (g, x) ∈ P to the dimension of

Pϕ(p) := ϕ−1(ϕ(p)) is upper semi-continuous by [Gro66, p. 13.1.3] or by [Har77, p. III 12.8]. By

restricting to the closed subscheme X ∼= {(e, x)|x ∈ X} ⊂ P the result follows.

An important definition we will require when talking about quotients, is the invariant

elements of the action.

Definition 2.9. Given a representation µ : V → V ⊗A of the affine algebraic groupG = SpecA,

a vector v ∈ V is G-invariant if µ(v) = v ⊗ 1. The subspace of invariant vectors is denoted by

V G := {v ∈ V |µ(v) = v ⊗ 1}.

Definition 2.10. Let G = SpecA be an affine algebraic group. A 1-dimensional character χ is a

function χ ∈ A such that µ(χ) = χ⊗ χ and ι(χ)χ = 1.

2.1.2 GIT Construction

2.1.2.1 Geometric and Categorical Quotients

Before we begin to discuss group quotients, it is beneficial to discuss what constitutes a good

quotient in our framework. This important distinction is necessary, because the typical orbit

space X/G = {G · x|x ∈ X}may not always admit the structure of a scheme. This was seen

in Example 2.7.1.

Definition 2.11. Let X be a scheme. A categorical quotient of X by the action of G is a G-

equivariant morphism ψ : X → Y , where Y is a G-scheme which is G-invariant with respect

to the action (i.e. ψ is constant on G-orbits, and every point y ∈ Y is G-invariant), and is

universal, i.e. any G-invariant morphism δ : X → A factors as δ = χ◦ψ for unique χ : Y → A.
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Definition 2.12. Let X be a scheme. A geometric quotient of X by an algebraic G group is a

categorical quotient ϕ : X → Y which is affine, such that the fibres ϕ−1(y) are preorbits for

each y ∈ Y (i.e. they are G-orbits for each y ∈ Y ) with additional properties [DK07]:

1. if U ⊆ Y is an open subset, the morphism OY (U) → OX(ϕ
−1(U)) is an isomorphism

onto the G-invariant functions;

2. for W1,W2 disjoint, closed G-invariant subschemes of X , ϕ(W1), ϕ(W2) are disjoint,

closed subschemes of Y .

Definition 2.13. A morphism of schemes X and Y , ϕ : X → Y is a good quotient for the action

of G on X if

1. ϕ is affine, G-invariant (i.e. ϕ is constant on orbits) and surjective;

2. if U ⊂ Y is an open subset, the morphism OY (U) → OX(ϕ
−1(U)) is an isomorphism

onto the G-invariant functions OX(ϕ
−1(U))G;

3. if W ⊂ X is a G-invariant closed subset of X , its image ϕ(W ) is closed in Y ;

4. if W1 and W2 are disjoint G-invariant closed subsets, then ϕ(W1) and ϕ(W2) are disjoint.

In fact, every good quotient is categorical.

Theorem 2.14. Let G be an algebraic group acting on a scheme X and let ϕ : X → Y be a good

quotient. Then ϕ is a categorical quotient.

Proof. See [MFK94, Chapter 0.2, Remark 6].

The reverse statement is not true. However, counterexamples are hard to produce; we

refer the reader to [AH99; AH00] for counterexamples. The below example demonstrates

that a good quotient need not be geometric.

Example 2.14.1. Let G = Gm act on Cn by t · (x1, . . . , xn) = (tx1, . . . , txn). The map Cn → pt =

Spec(Cn) is a good quotient for this action, but not a geometric quotient, as the preimage of

pt consists of multiple orbits.

Remark 2.14.1. The definitions of good and geometric quotients are local in the target; this

implies that if ϕ : X → Y is G-invariant and there exists a cover of Y by open subsets Ui such

that the maps ϕ|Ui
: ϕ−1(Ui)→ Ui are all good (respectively, geometric) quotients, then so is

ϕ : X → Y . This follows directly from the properties in Definitions 2.12 and 2.13.
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After our discussion in Example 2.7.1 it becomes more apparent why we seek such

quotients. Namely, we aim to find geometric and categorical quotients because these allow us

to distinguish between the orbits of the action and carry a universal property. In particular, for

geometric and good quotients we also obtain ‘nice’ properties between the rings of invariants

of the action, and we can guarantee that disjoint sets are disjoint in the action.

In attempting to find a quotient scheme by an algebraic group action, the below method

was first developed by Hilbert [Hil90]. Consider a (quasi-)projective algebraic scheme X

embedded into some projective space, Pn, i.e. X ⊂ Pn, acted upon by a group G. Hilbert’s

initial approach was to find enough invariant homogeneous polynomials f0, . . . , fN , where

deg(fi) = ki that would generate the invariant ring of sections of X by the G-action. Here,

invariance implies that for any g ∈ G, we have fi(gx) = fi(x). Having obtained the N + 1

invariant polynomials, we can define a rational map

X PN

p (f0(p) : . . . : fN(p)).

π

Since the fi are invariant under the action, the preimage of a point in the image of π,

Im(π), is an orbit of the action, hence π is a categorical quotient. Although this approach has

its merits, we quickly run into a few problems:

1. If the ring of invariant sections is not finitely generated, N will not be finite, and as such

the rational map will not be defined. This is why, as we will show later, one is required

to consider reductive groups, which have a finitely generated ring of global G-invariant

sections [Hil90];

2. another issue that arises, is that we require the image of π to be a closed algebraic

scheme, i.e. for the closure of the image of π to be equal to the image of π. This approach

certainly does not guarantee such a condition, and even for the reductive case it is a

hard condition to check [BJK17];

3. we still have to remove the bad locus in order to construct the quotient, as the map π is

not everywhere defined (specifically for points where f0 = · · · = fN = 0);

4. invariant polynomials such as the fi presented above are extremely difficult to find in

most, if not every, case.
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It is apparent that one has to take different routes in order to describe good or categorical

quotients of such actions.

2.1.2.2 Reductive Groups

Mumford [MFK94] achieved the construction of a quotient scheme by considering reductive

groups. Before we introduce these, we have to introduce some notation.

Definition 2.15. Let G = SpecA be an affine algebraic group. An element g ∈ G is called

unipotent if there exists a faithful linear representation ρ : G → GL(n) such that ρ(g) is

unipotent. Furthermore, G is unipotent if every non-trivial linear representation ρ : V → V ⊗A

has a non-zero G-invariant vector v.

Alternatively, one can think of unipotent groups as groups whose elements are unipotent.

Definition 2.16. An affine algebraic subgroup H = SpecA0 of G = SpecA is called normal if

the conjugation action H × G → G of H on G given by (h, g) → ghg−1 factors through the

inclusion H ↪→ G.

Definition 2.17. An affine algebraic groupG = SpecA is reductive if it is non-singular (smooth)

and every smooth unipotent normal algebraic subgroup of G is trivial.

Definition 2.18 ([Muk03], Definition 4.36). An affine algebraic group G = SpecA is linearly

reductive if for any epimorphism ϕ : V → W of G-representations, the induced map on

G-invariant vectors ϕG : V G → WG is surjective.

Theorem 2.19. The affine algebraic groupG is linearly reductive if and only if every finite dimensional

representation ρ : G → GL(V ) is completely reducible, i.e. V factors as a direct sum of irreducible

subrepresentations.

Proof. Let ρ : G → GL(V ) be a finite dimensional representation and V ′ ⊂ V a G-invariant

subspace. The vector spaces Hom(V, V ′) and Hom(V ′, V ′) are both representations, and the

natural map

ϕ : Hom(V, V ′)→ Hom(V ′, V ′)

is an epimorphism of G-representations. Since G is linearly reductive, the induced map ϕG is

surjective. Hence, the identity map 1V ′ lifts to a G-equivariant morphism f : V → V ′, with a

complement V ′′ = ker f and a decomposition V = V ′ ⊕ V ′′. One can repeat this procedure as
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long as there is a non-trivial G-invariant subspace. Since every time dim(V ′) < dim(V ) and

dim(V ′′) < dim(V )) <∞ eventually this process stops.

For the reverse statement, let ϕ : V → W be an epimorphism of G-representations and

define V ′ := kerϕ. By the assumption, there exists V ′′ such that V = V ′ ⊕ V ′′. In particular,

since ϕ is an epimorphism, we have V ′′ ∼= W . Notice that both V ′ and V ′′ are G-invariant,

hence V G = (V ′)G ⊕ (V ′′)G, which implies that the induced map ϕG : V G = (V ′)G ⊕ (V ′′)G →

WG ∼= (V ′′)G is surjective.

Corollary 2.19.1. Every finite algebraic group G is linearly reductive.

Proof. If one applies the techniques in the proof of [FH91, Proposition 1.5] to Theorem 2.19,

one obtains the required statement.

Example 2.19.1. We have seen already in Example 2.5.1 that the representations of the group

Gm are completely reducible, hence Gm is linearly reductive.

Definition 2.20. An affine algebraic group G = SpecA is geometrically reductive if for every

finite dimensional representation ρ : G → GL(V ) and every non-zero G-invariant vector

v ∈ V there exists a G-invariant non-constant homogeneous polynomial f ∈ O(V ) such that

f(v) ̸= 0.

Theorem 2.21. If an affine algebraic group G = SpecA is linearly reductive, then it is geometrically

reductive.

Proof. Let ρ : G → GL(V ) be a finite dimensional linear G-representation and v ∈ V G be a

non-zero G-invariant vector. Then v determines a G-invariant linear form f : V ∗ → k, where

f is the dual of v. By letting G act trivially on the field k, k becomes a representation of G

and f can be seen as an epimorphism of G-representations. Since G is linearly reductive,

the induced map fG is surjective, and hence for the fixed point 1 ∈ k = kG, there exists a

non-zero vector v ∈ V G such that f(v) = 1 ̸= 0.

The following is an important result by Weyl, Nagata, Mumford, Haboush:

Theorem 2.22 ([MFK94; Nag64; Hab75]). An affine algebraic group G is a reductive group if and

only if it is geometrically reductive. A linearly reductive affine algebraic group G is reductive (but

the converse is not always true). In particular, in characteristic zero, an affine algebraic group G is a

reductive group if and only if it is linearly reductive.
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The above result is particularly useful for us, as in the rest of the thesis we will always

work in characteristic zero, and in particular over C. In fact, from now one we will only refer

to reductive groups, instead of linearly reductive groups. The following result is arguably

the most important component for formulating Mumford’s GIT.

Definition 2.23. A G-action on a k-algebra A is rational if every element of A is contained in a

finite dimensional G-invariant linear subspace of A.

Remark 2.23.1. Let G be an affine algebraic group acting on X . The induced action of G on

A = O(X) is rational.

Theorem 2.24 ([Hil90]). LetG be a (linearly) reductive group acting rationally on a finitely generated

k-algebra A. Then AG is finitely generated.

Example 2.24.1. Although we will not prove so, many of the matrix groups are reductive (in

characteristic 0, see [Nag62]). These include the groups GL(n), SL(n) and PGL(n).

2.1.2.3 Construction of Projective GIT Quotients

The above discussion allows us to progress to the details on how to construct projective

quotients via algebraic group actions following Mumford’s approach. Since we will be

working with projective varieties/schemes, we will only define the projective GIT quotient;

the construction for the affine GIT quotient follows a similar, and somewhat simpler rationale.

Consider a projective scheme X over a field k and let G be a reductive group acting on X .

It is useful to recall that there is a projective embedding X ↪→ Pn induced by an ample line

bundle L ∈ Pic(X) of X . We will first study how if there exists a linearisation, we can extend

the G-action to these line bundles. Considering an ample line bundle L on X , if the action of

G on X extends to an action on Pn, this is induced by a representation ρ : G→ GL(n+ 1).

Definition 2.25. Let X be a projective scheme with an action of an affine algebraic group

G. A linear G-equivariant projective embedding f : X ↪→ Pn is an embedding which a choice of

group homomorphism G→ GL(n+ 1) making f G-equivariant. We say that the G-action on

X ↪→ Pn is linear when we have a linear G-equivariant projective embedding of X as above.

The line bundle L inducing the above embedding is called a G-linearised line bundle.

More formally, in the above setting the action of G on the projective space Pn lifts to an

action on the affine space An+1 and there is an induced G-action on the affine cone X̃ ⊂ An+1
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over X . Here:

k[An+1] = k[x0, . . . , xn] =
⊕
m≥0

H0(Pn,O(m)).

Similarly, we define

k[X] :=
⊕
m≥0

H0(X,L⊗m)

the homogeneous coordinate ring of X , which inherits an induced action of G. Notice that in

both cases, the G-invariant elements of the coordinate rings

k[An+1]G = k[x0, . . . , xn] =
⊕
m≥0

H0(Pn,O(m))G

and

k[X]G :=
⊕
m≥0

H0(X,L⊗m)G

are well-defined as all the invariant elements of k[A] and k[X] under the action of G respec-

tively. By Theorem 2.24 both of these rings are finitely generated as G is reductive. We also

define k[X]G+ to be the positive degree part of the invariant ring.

Furthermore, since k[X]G ⊆ k[X] we obtain an induced rational map

X = Proj(k[X]) X �G := Proj(k[X]G).
ϕ

Definition 2.26. For a linear action of G on a projective scheme X ⊂ Pn we define the set of

semi-stable points Xss as follows:

Xss := {x ∈ X|∃m ∈ Z>0, s ∈ H0(X,L⊗m)G such that s(x) ̸= 0}.

The restriction of the map ϕ

ϕ : Xss −→ X �G

is called the GIT quotient of this action.

From the above discussion and since k[X]G is finitely generated, by [Har77, II, Corollary

5.16] it follows that X �G is in fact a projective scheme. Set-theoretically, X �G is the quotient

of Xss by the equivalence relation for which x, y ∈ Xss are equivalent if and only if the

closures G · x and G · y of the G-orbits of x and y meet in Xss. As such, it becomes apparent

that this definition will allow us to overcome the problems detailed in Example 2.7.1. In fact,

the map ϕ is a categorical quotient, which follows directly from its definition. Thus, we have:
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Theorem 2.27. For a linear action of a reductive group G on a projective scheme X ⊂ Pn, the GIT

quotient ϕ : Xss → X�G is a categorical quotient of theG-action on the open subsetXss of semistable

points in X . Furthermore, X �G is a projective scheme.

The question that remains is whether we can define a geometric quotient of the action.

This is achieved by the following construction:

Definition 2.28. For a linear action of G on a projective scheme X ⊂ Pn we define the set of

stable points Xs as follows:

Xs := {x ∈ Xss|G · x is closed in Xss and dimGx = 0}.

We also define the set of polystable points Xps as the set:

Xps := {x ∈ Xss|G · x is closed}.

The set X \Xss is the set of unstable points.

By the orbit-stabiliser theorem, the condition dimGx = 0 is equivalent to dimGx = dimG,

i.e. stable points are polystable points with maximal orbits. Notice also that, by the above

Definition, we have

Xs ⊆ Xps ⊆ Xss.

Lemma 2.29. The sets Xss and Xs are open in X .

Proof. By construction, the set of semistable points is defined as the complement X \ Null(X)

where

Null(X) := {x ∈ X|∃m ∈ Z,∀s ∈ H0(X,L⊗m)G such that s(x) = 0}

is by definition a closed set as G is reductive.

For the set of stable points, consider the set X ′ = ∪Xf where here Xf := {x ∈ X|f(x) ̸= 0}

is affine, f ∈ k[X]G+ and the union is taken over k[X]G+ such that the action of G on Xf is

closed in Xss, and hence each Xf is open in X , and X is also open in X .

In particular, by Theorem 2.8, the function x 7→ dimGx is an upper semi-continuous

function on X , since it is the dimension function of the stabiliser subgroup of an affine group

action, and so the subset of X ′ consisting of points with zero dimensional stabiliser is open in

X . Hence, we have open inclusions Xs ⊆ X ′ ⊆ X
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Theorem 2.30. For a linear action of a reductive group G on a projective scheme X ⊂ Pn, the

restriction of the map ϕ, ϕ : Xs → Xs/G is a geometric quotient of the G-action on the open subset

Xs of stable points in X . Note that, by abuse of notation, we will denote Xs/G by X/G.

Proof. We will first prove the result locally. Let f ∈ k[X]G+ be an invariant section, and

let Xf = {x ∈ X|f(x) ̸= 0}. As in the proof of Theorem 2.29 each Xf is affine, and let

X ′ = ∪fXf be the union over all the Xf ; the G-action is closed in Xss. For X/G we define

(X/G)f = ϕ(Xf ) and Y ′ = ϕ(X ′). For each f we have maps ϕf : Xf → (X/G)f which glue to

give a map ϕ : X ′ → Y ′. Notice that by definition each ϕf is a good quotient, and since the

action of G on each Xf is closed it is also a geometric quotient. As discussed in Remark 2.14.1,

the ϕf glue to give a geometric quotient ϕ : X ′ → Y ′.

Since Xs ⊂ X ′ and X/GY ′ are open subsets of X ′ and Y ′ respectively, the restriction on

ϕ is the map ϕ : Xs → X/G which is also a geometric quotient, due to the local structure of

geometric quotients.

We will later study how the map

ϕ : Xs → X/G

defines a coarse moduli space of stable orbits. One of the main tasks when considering GIT

quotients is to describe the good loci Xs, Xss, Xps that allow us to describe quotients of group

actions that are projective varieties/schemes.

2.1.3 The Hilbert-Mumford Numerical Criterion

The explicit description of GIT quotients is a difficult task without the introduction of a

numerical criterion (the Hilbert-Mumford numerical criterion) [MFK94] which we will now

briefly describe.

Definition 2.31. Let G be a linear algebraic group. A 1-parameter subgroup (1-PS) is a group

homomorphism λ : Gm → G. The action of G on X induces an action of Gm on X via the

1-PS, i.e. x 7→ λ(t) · x, t ∈ Gm.

Definition 2.32. Let X be a projective k-scheme acted upon by an affine algebraic group

G induced by a G-linearisation L, and let x ∈ X and λ : Gm → G be a 1-PS. We define the
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Hilbert-Mumford weight µL(x, λ) to be the negative of the weight of the induced action of Gm

on the fibre Lx0 where x0 = limt→0 λ(t) · x. The Hilbert-Mumford function, is defined as:

µL(−, λ) : X → Z.

Theorem 2.33 ([MFK94, Theorem 2.1]). Let L be an ampleG-linearised line bundle on a projective k-

scheme X . Then x ∈ X is stable (respectively, semistable) with respect to L if and only if µL(x, λ) > 0

(respectively, µL(x, λ) ≥ 0) for all non-trivial 1-PS λ of G.

Example 2.33.1 ([Muk03, Example 7.12]). We will study the (semi-)stability of plane cubics,

i.e. cubic curves in P2 under the action of SL(3). In this case, the numerical criterion takes

the following form: we can pick a maximal torus T in SL(3), such that all 1-PS belong to that

torus. Since all maximal tori in SL(3) are conjugate, given a 1-PS λ, we can choose a maximal

torus T such that λ is diagonal. We can use the Hilbert-Mumford numerical criterion on

diagonal 1-PS to prove that a specific hypersurface is unstable or strictly semistable, but

unfortunately not stable.

As such, we can think of the 1-PS as diagonal elements λ(t) = Diag(sa0 , sa1 , sa2) ∈ SL(3),

so it is customary to think of them as vectors r = (a0, a1, a2) where
∑
ai = 0. Each cubic

curve consists of a linear span of monomials of the form xi11 x
i2
2 x

i3
3 which can be represented

as points on the set

Ξ3 := {(i1, i2, i3) ∈ Z3|i1 + i2 + i3 = 3},

and non-zero coefficients ci. For a cubic curve f we define its support as Supp(f) := {I ∈

Ξ3|f =
∑
cIx

I , cI ̸= 0}. The 1-PS are points in the dual space of monomials, and as such we

have a pairing ⟨I, λ⟩ =
∑
iiai where the I ∈ Ξ3 represents a monomial. The action of the one

parameter subgroups can be described via this pairing.

Notice that for all diagonal 1-PS, we have ⟨(1, 1, 1), λ⟩ =
∑3

i=1 ai = 0. Hence, if we arrange

the 10 possible monomials in a triangle, the centroid is the monomial x0x1x2 and every λ has

to pass through this monomial. If we pick 1-PS r = (2,−1,−1), the monomials with negative

or zero pairing are x31, x0x21, x0x22, x0x1x2, x1x22, x2x21, x32, which is the condition that the cubic

curve has a singular point at (1 : 0 : 0).

Choosing r = (1,−2, 1) the monomials with negative or zero pairing are x31, x0x21, x20x1,

x0x1x2, x1x22, x2x21. This is equivalent to the cubic curve having a line x1 = 0 (see Figure 2.1).

By a projective change of coordinates, we can assume that if f contains a line, this is the line

x1 = 0. In particular, if we consider the symmetry of the triangle the above two choices are
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Figure 2.1: Monomials of cubics and action of one-parameter subgroups

the only possibilities as the line r rotates about the centroid. As such, the strictly semistable

cubic curves are cubics with only ordinary double points as singularities. Similarly, one can

show that a cubic curve is stable if and only if it is smooth.

Although the numerical criterion is the only concrete tool for checking (semi-)stability crite-

ria, the above example is one of the few simple cases. In reality, applying the Hilbert-Mumford

numerical criterion can be a challenge, especially for problems in higher codimension.

2.1.3.1 Variations of GIT Quotients

An interesting phenomenon occurs when the Picard rank of the projective G-scheme is bigger

than one. In this case, the choice of very ample linearisation L affects how the GIT quotients

are constructed. In this Section we will cover a general enough case which will be relevant

to this thesis, but we will not cover the most general one. If the reader is interested, we

prompt them to [DH98] and [Tha96], where the authors study the existence of variations of

GIT quotients for arbitrary reductive G-action on an arbitrary scheme X . In our case we will

deal with schemes X = X1 × . . . Xm with dim(Pic(Xi)) = 1. In our setting, we have:

Lemma 2.34. Let G be an algebraic group such that Pic(G) = {1} and let X be a normal projective

k-scheme such that X = X1× . . . Xm with dim(Pic)(Xi) = 1, such that the action of G on X extends

to an action of G on each Xi. Let also every line bundle of X have at most one linearisation class. Then

the set of G-linearisable line bundles PicG(X) is isomorphic to Zm. A line bundle L ∈ PicG(X) is

ample if and only if

L = O(a1, . . . , am) := π∗
1OX1(a1)⊗ π∗

mOXm(am),

where the pi are the natural projections on Xi, and ai > 0, and we denote by OXi
(ai) an ample

generator (over Z) of the Picard group.
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Proof. The proof follows [GMZ18, Section 2.1] which comes as a generalisation of [GM18,

Lemma 2.1].

Let pi be the projections. Since the action of G on X extends to an action of G on each Xi,

the pi are morphisms of G-varieties. Recall there is an exact sequence (see [Dol03, Theorem

7.2])

0 X(G) PicG(X) Pic(X) Pic(G)

where X(G) is the kernel of the forgetful morphism PicG(X) → Pic(X). By assumption

X(G) = {1}, hence we have an isomorphism PicG(X) ∼= Pic(X). Moreover, given that

PicG(X) ⊆ Pic(X)G ⊆ Pic(X), where Pic(X)G is the group of G-invariant line bundles, there

result follows from

PicG(X) ∼= Pic(X)G ∼= p∗1(Pic(X1))⊗ · · · ⊗ p∗m(Pic(Xm)) ∼= Zm.

Remark 2.34.1. The condition that the algebraic group G has a trivial Picard group, i.e.

Pic(G) = {1}, in the above Lemma may seem restrictive, but for this thesis, where G =

SL(n+ 1), this condition will always be satisfied (see [Dol03, Chapter 7.2]).

If dimPic(X) = 1 the choice of linearisation does not affect the construction of X �G. This

is because in our construction picking L or Lk for some k ∈ Z does not change the stability

conditions as

⊕
m≥0

H0(X, (Lk)⊗m)G ∼=
⊕
m′≥0

H0(X,L⊗m′
)G = k[X]G.

Consider now a projective scheme X satisfying the hypotheses of Lemma 2.34, where

dimPic(X) = m > 1. In this case, L ∼= O(a1, . . . , am) and the construction of the projective

scheme X � G is affected by the choice. The quotient is denoted by X �L G to specify the

choice of G-linearisation. We refer to this situation, i.e. the variation of the line bundles

and the understanding of how the quotient changes, as variations of GIT quotients (VGIT).

In more detail, given the choice of linearisation L ∼= O(a1, . . . , am), the Hilbert-Mumford

function decomposes as (see [Laz09a; GM18; GMZ18]) follows:

Lemma 2.35. Let L ∼= O(a1, . . . , am) ∈ PicG(X) be ample. Then

µL(X,λ) =
m∑
i=1

aiµ(Xi, λ).



44 Preliminaries

Proof. By the properties of the Hilbert-Mumford function [MFK94, Definition 2.2], we have

that µL(−, λ)→ Z is a group homomorphism, and that given any G-equivariant morphism

of G-varieties f : X → Y and ample M ∈ PicG(Y ) , we have that µf∗M(X,λ) = µM(f(X), λ).

Hence, we have:

µO(a1,...,am)(X,λ) = µπ
∗
1OX1

(a1)⊗π∗
mOXm (am)(X,λ)

=
m∑
i=1

µπ
∗
i OXi

(ai)(Xi, λ)

=
m∑
i=1

aiµ(Xi, λ).

Since ai > 0 for all i, we may pick one aj (usually and without loss of generality this will

be chosen as a1) and divide through. Then, each quotient depends on a vector t⃗ = (t1, . . . , tm)

where ti = ai
aj

(and t̂j), and is denoted by X �t⃗ G. By a result of Dolgachev–Hu [DH98, 0.2.3

Theorem] and independently Thaddeus [Tha96, (2.4) Theorem] the number of non-isomorphic

compactifications is finite.

2.1.4 Moduli Spaces

The study of semistable and polystable points, in GIT, is especially significant for a number of

reasons. The categorical quotient X �G defines a well-defined moduli-stack MGIT
X of closed

orbits, which is beneficial for the study of the classification of varieties.

2.1.4.1 Moduli Problems

When we are referring to a moduli problem, essentially we are seeking a classification of

geometric, algebraic or topological objects based on a specific property they hold, up to some

equivalence. More formally (see [New78, Chapter 1], [Hos16]):

Definition 2.36 ([Hos16, Definition 2.8]). A naive moduli problem (in algebraic geometry) is a

collection A of objects in a category (in algebraic geometry) and an equivalence relation ∼ on

A.

Example 2.36.1. The primary example to illustrate the above is P1. If we think of P1 =

k2 \ {0}/ ∼ where (x0, x2) ∼ (y0, y1) if and only if (x0, x1) = c(y0, y1) for some c ∈ k∗ we
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see that P1 is the collection of all 1-dimensional linear subspaces of k2 (i.e. lines) under the

equivalence ∼, i.e. the moduli problem of linear 1-dimensional subspaces of k2 under the

equivalence ∼.

We can extend this rationale for the Grassmanian Gr(m,n) which is the moduli problem

for linearm-dimensional subspaces in some n-dimensional space under the same equivalence.

In order to be able to derive more properties out of more complex moduli problems, we

need to use category theory to make the above more formal. In particular, we want to find a

scheme M which encodes how the parametrised objects deform in families. Essentially, we

aim to find moduli functors, which will be representable by a scheme whose k-points will be

in bijection with the set of equivalence classes of A/ ∼. Hence, we are looking for a functor

from the category of schemes Sch to the category of sets Set.

Definition 2.37 ([Ols16, Definition 2.2.1]). Contravariant functors from the category of

schemes Sch to the category of sets Set are called presheaves on Sch and form a category,

denoted by Psh(Sch). The morphisms of this category are given by natural transformations.

More generally, contravariant functors from a category S to the category of sets Set are

called presheaves on S.

The categorical language allows us to use a vast number of useful pre-existing results (e.g.

Yoneda’s lemma) and tap into the very rich theory of stacks, which will be discussed later

on. Re-formulating our moduli problem in categorical language, we obtain the following

definition.

Definition 2.38 ([Hos16, Definition 2.10]). An extended moduli problem or for simplicity a

moduli problem, based on a moduli problem (A,∼), is given by the following data:

(a) For any scheme S, sets AS of families of objects in A and an equivalence relation ∼S for

objects of each AS ;

(b) for each morphism f : T → S of schemes, a pullback map f ∗ : AS → AT ,

satisfying the following conditions:

1. (ASpec k,∼Spec k)= (A,∼);

2. for the identity Id : S → S and any family F/S, we have Id∗ F = F;
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3. for a morphism f : T → S and equivalent families F ∼S G over S, we have f ∗F ∼T f ∗G;

4. for morphisms f : T → S and g : S → R, and a family F/R, we have an equivalence

(g ◦ f)∗F ∼T f ∗g∗F.

The extra conditions we have imposed here serve as a guarantee that the moduli functor

will take into account the deformations of families over a scheme S. The second condition

guarantees that identity maps preserve families, while the third condition ensures that

equivalent families over one scheme give rise to equivalent families in another scheme under

some map f . The fourth condition, ensures that composition maps preserve families. The

above definition allows us to construct the moduli functor M as seen below:

Lemma 2.39 ([Hos16, Lemma 2.11]). A moduli problem (A,∼) defines a presheaf M ∈ Psh(Sch)

which is given by

M(S) := {families over S}/ ∼S M(f : T → S) := f ∗ : M(S)→M(T ).

It is customary when discussing moduli problems to only consider the moduli functor

M. If the moduli functor M is representable by a scheme M , we call the latter its fine moduli

space. The family U in M(M) which corresponds to the identity morphism of M is called the

universal family.

2.1.4.2 An Introduction to Stacks

Definition 2.40 (Sites). A Grothendieck topology on a category S consists of the following data:

for each object X ∈ S, there is a set Cov(X) consisting of coverings of X , i.e. collections of

morphisms {Xi → X} in S. We require that:

1. (identity) If X ′ → X is an isomorphism, then (X ′ → X) ∈ Cov(X).

2. (restriction) If {Xi → X}i∈I ∈ Cov(X) and Y → X is any morphism, then the fibre

products Xi ×X Y exist in S and the collection {Xi ×X Y → Y } ∈ Cov(Y ).

3. (composition) If {Xi → X}i∈I ∈ Cov(X) and {Xij → Xi}j∈Ji ∈ Cov(Xi) for each i ∈ I ,

then {Xij → Xi → X}i∈I,j∈Ji ∈ Cov(X).

A site is a category S with a Grothendieck topology.
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Example 2.40.1. The big étale site SchEt on the category Sch is a site where a covering of a

scheme X is a collection of étale morphisms {Xi → X} such that
∐

iXi → X is surjective.

Definition 2.41 ([Ols16, Definition 2.2.2]). A sheaf on a site S on the category Sch is a presheaf

F : S→ Sets such that for every object S of S and covering {Si → S} ∈ Cov(S), the sequence

F (S)
∏

i F (Si)
∏

i,j F (Si ×S Sj)

is exact, where the two maps F (Si) → F (Si ×S Sj) are induced by the two projections

Si ×S Sj → Si and Si ×S Sj → Sj .

Let p : X→ S be a functor of categories, visualised as:

X a b

S S T

p

α

f

where a, b are objects in X, and S, T are objects in S respectively. We say that the morphism

α : a→ b is over f : S → T if in addition p(α) = f , and that a is over S.

Definition 2.42 ([Alp22, Definition 2.3.1]). A functor p : X→ S of categories is a prestack over

a category S if

1. For each diagram of solid arrows

a b

S T

there exists a morphism α : a→ b over f : S → T ;

2. for each diagram

a b c

R S T

there exists a unique arrow a → b over R → S which fills the diagram making it

commute, where commutativity means that the composition a 99K b → c equals the

morphism a→ c given by the top arrow;
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3. for all coverings {Si → S}, objects a and b in X over S, objects a|Si
in X over Si and

morphisms ϕi : a|Si
→ b such that ϕi|Sij

:= ϕi|a|Sij
= ϕj|a|Sij

=: ϕj|Sij
as presented in the

diagram

a|Si
Si

a|Sij
a b over Sij S

a|Sj
Sj

ϕi

ϕj

there exists a unique morphism ϕ : a→ b such that ϕa|Si
= ϕi.

The first condition in the previous definition ensures that a pullback from S to X exists,

the second one provides a universal property, and the third one guarantees that morphisms

glue.

Definition 2.43 ([Alp22, Definition 2.4.1]). A prestack p : X→ S is a stack if the following stack

axiom holds: for covering {Si → S} and objects ai over Si and isomorphisms αij : ai|Sij
→

aj|Sij
with cocycle condition αij|Sijk

◦αjk|Sijk
= αik|Sijk

over Sijk, as presented in the following

diagram

ai Si

ai|Sij
aj|Sij

a over Sij S

aj Sj

αij

then there exists an object a over S and isomorphisms ϕi : a|Si
→ ai such that αij ◦ ϕi|Sij

=

ϕj|Sij
.

This condition guarantees that the objects inside the stack glue. A reader might notice

similarities between the above definitions and the classical definitions of presheaves and

sheaves. In fact, for the readers who are more comfortable in that language there is an

equivalent definition [Ols16, Definition 4.6.1], where the stack axiom (i.e. the condition in

Definition 2.43) corresponds to the exactness of the following diagram (similar to Definition

2.41)
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X(S)
∏

iX(Si)
∏

i,j X(Si ×S Sj)
∏

i,j,k X(Si ×S Sj ×S Sk),

where here, for a prestack X over S, X(S) is called the fibre category of S ∈ S. This is the

category of objects in X over S with morphisms over idS . The two and three maps to the

right are induced by the two and three corresponding projections. Here, the exactness of the

sequence implies that the map X(S)→
∏

iX(Si) identifies X(S) with the equalizer of the two

maps
∏

iX(Si) ⇒
∏

i,j X(Si ×S Sj), and so on. We will often refer to a stack just by X and

omitting the target category S, which will be explicit in most cases.

Remark 2.43.1. We have to emphasise that our terminology is not standard. Prestacks are

usually referred to as categories fibred in groupoids. In the literature (c.f. [Fan+05, Part 1],

[Ols16]) a prestack is sometimes defined as a category fibred in groupoids together with the

gluing axiom of morphisms of stacks. In this section, we follow the terminology presented in

[Alp22].

Definition 2.44 ([Alp22, Definition C.3.1]). Let G→ S be a flat group scheme locally of finite

presentation. A principal G-bundle or G-torsor over an S-scheme X is a flat morphism P → X

locally of finite presentation with an action of G via σ : G ×S P → P such that P → X is

G-invariant and

(σ, p2) : G×S P → P ×X P, (g, p)→ (g · p, p)

is an isomorphism.

The following is the main example of quotient stacks that will also demonstrate that the

GIT quotient induces a moduli stack. We will explore this more in Theorem 2.46.

Example 2.44.1. Let G → S be an algebraic group scheme acting on a k-scheme X → S as

defined in Section 2.1.1.1. The quotient stack [X/G] is defined as a category over Sch /S (i.e.

the category of schemes over S). The objects of [X/G] over an S-scheme T are diagrams

P X

T

f

where P → T is a G-torsor (i.e. a principal G-bundle) and f is G-equivariant. A morphism of

objects a := (P ′ → T ′, P ′ f ′−→ X), b := (P → T, P
f−→ X), a→ b, consists of map g : T ′ → T and

G-equivariant map ϕ : P ′ → P of schemes such that the diagram
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P ′ P X

T ′ T

ϕ

□

f ′

f

g

is commutative, and the left square is a fibre product. We will show that the quotient stack is

indeed a stack over SchEt /S. The first step, is to show that [X/G] is a prestack. Notice that

this will be a functor p that sends object a = (P ′ → T ′, P ′ f ′−→ X) to T ′, i.e. p(a) = T ′, and

morphism a → b to g : T ′ → T , i.e. p(a → b) = g : T ′ → T . The first axiom of prestacks is

verified as follows:

Let T, T ′ ∈ Obj(Sch /S) and b = (P → T, P
f−→ X) be an object of the quotient stack. Let

g : T ′ → T . Then we can define P ′ := P ×T T ′ to be the fiber product such that we have a

Cartesian diagram

P ′ P X

T ′ T.

p1

p2 □

f ′

f

g

Defining a := (P ′ → T ′, P ′ f ′−→ X), we see that there exists a morphism a→ b constructed as

above. This shows axiom 1 is satisfied.

For axiom 2, further suppose that c = (P ′′ → T ′′, P ′′ f ′′−→ X) and that we have a diagram

a b c

T ′ T T ′′g g′

where g : T ′ → T and g′ : T → T ′′. From the map a→ c, we have a Cartesian diagram

P ′′ ×T ′′ T ′ P ′′

T ′ T ′′

p1

p2

g′◦g

and maps P ′ → T ′ and P ′ → P ′′. Hence, by the uniqueness of the fibre product, we have

a unique map P ′ → P ′′ ×T ′′ T ′. Since these are G-torsors over the same base, they must be

isomorphic, i.e. P ′ ∼= P ′′ ×T ′′ T ′. Using a similar argument, one can show that P ∼= P ′′ ×T ′′ T .

Notice that we also have a map P ′ → T given by g ◦ p2. Hence, since P is a fibre product,

there exists a unique map P ′ ϕ−→ P . Hence, we obtain the following diagram
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P ′ P P ′′ X

T ′ T T ′′

ϕ

□

f ′

□

ϕ′

f

f ′′

g g′

and since both diagrams are fibre products the morphism a→ b is unique.

For axiom 3 for the prestacks and the stack axiom, we will use the theorems of descent for

morphism of schemes (see [Gro63, SGA I.8] or [Vis05] or [Alp22, Proposition B.2.1]) and G-

torsors (see [Alp22, Proposition C.3.11]) respectively. In fact, axiom 3 follows directly from the

descent for morphisms of schemes. For the stack axiom, consider {Ti → T} an étale covering

and objects (Pi → Ti, Pi → X) over Ti with isomorphisms on the restrictions satisfying the

cocycle condition. The existence of a G-torsor P → T follows from the descent for G-torsors

and the existence of a map P → X follows again from the descent for morphisms of schemes

(see [Alp22, Proposition B.2.1]).

2.1.4.3 Algebraic Stacks and Moduli Spaces

The two most important type of stacks are the Deligne-Mumford stacks and the algebraic

(Artin) stacks defined in [DM69]. Here, we follow the notation of [Alp22].

Definition 2.45 ([Alp22, Definitions 3.1.2, 3.1.4, 3.1.6], ). An algebraic space is a sheaf X on

SchEt such that there exist a scheme U and a surjective étale morphism U → X representable

by schemes. The map U → X is called an étale presentation.

An algebraic stack is a stack X over SchEt such that there exist a scheme X and a surjective,

smooth and representable morphism X → X. The morphism X → X is called a smooth

presentation.

An algebraic stack X/S is called Deligne-Mumford (DM) if there exists a scheme X and a

surjective, étale and representable morphism X → X.

Based on this definition, the reader may be interested to know how the above notions are

connected. The following is the ‘hierarchy’ of the above.

schemes ⊂ algebraic spaces ⊂ Deligne-Mumford stacks ⊂ algebraic stacks



52 Preliminaries

Theorem 2.46 ([Alp22]). If G/S is a smooth, affine group scheme acting on a scheme X/S, the

quotient stack [X/G] is an algebraic stack over S such thatX → [X/G], is aG-torsor and in particular

surjective, smooth and affine.

Remark 2.46.1. There exists an object of [X/G] over X given by

X ×G X

X

σ

p2

where σ is the map defining the action of G on X . This object is the one that defines the map

X → [X/G], by the 2-Yoneda Lemma (see [Vis05, p. 3.6.2]).

Properties of morphisms of schemes also extend to morphism of stacks.

Definition 2.47 ([Alp22, Definition 2.2.1]). Let P be a property of morphisms of schemes.

1. If P is stable under composition and base change and is étale-local (resp. smooth-local)

on the source and target, a morphism X→ Y of Deligne-Mumford stacks (resp. algebraic

stacks) has property P if for all étale (resp. smooth) presentations (equivalently there

exists presentations) V → Y and U → V ×Y X,in the diagram

U V ×Y X V

X Y,

p1

p2 □

the composition U → V has the property P.

2. A morphism X→ Y of algebraic stacks representable by schemes has property P if for

every morphism T → Y from a scheme, the base change T ×Y X has P.

3. A morphism X → Y of algebraic stacks is an open immersion, closed immersion, locally

closed immersion, affine, or quasi-affine if it is representable by schemes and has the

corresponding property in the sense of 2.

Definition 2.48 ([Alp22, Definition 2.4.15(2)]). A representable morphism X→ Y of algebraic

stacks is separated if the morphism X→ X×YX, which is representable by schemes, is proper.

We are now in a position to define good and coarse moduli spaces.
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Definition 2.49 ([Alp22, Definition 4.3.1]). A morphism π : X→ X from an algebraic stack to

an algebraic space is a coarse moduli space if

1. for any algebraically closed field k, the induced map X(k)/→̃X(k), from the set of

isomorphism classes of objects of X over k, is bijective,

2. π is universal for maps to algebraic spaces, i.e. any other map from X → Y factors

uniquely as

X

X Y.

π

If in addition X = [U/G] is a quotient stack, we often write the coarse moduli space as U/G

and call it the geometric quotient of U by G.

Definition 2.50 ([Alp13, Definition 4.1]). A morphism π : X→ X from an algebraic stack to

an algebraic space is a good moduli space if

1. π is cohomollogically affine,

2. the natural map OX

∼=−→ π∗OX is an isomorphism.

As one notices, the above Definitions closely resemble Definitions 2.11 and 2.12. This is

not a coincidence; the above theory was developed after GIT, and the authors attempted to

emulate the GIT methods that ensured one obtains good/coarse moduli spaces. As such, and

based on our discussion in Section 2.1.2.1, we have the following:

Theorem 2.51 ([Alp13, Theorem 13.6], [MFK94, Theorem 1.10]). Following our notation, the

map [Xss/G]→ X �G is a coarse moduli space. The map [Xs/G]→ X/G is a good moduli space.

Remark 2.51.1. Throughout this thesis, we will use a somewhat different notation. The main

moduli space we will deal with will be M
GIT

which is thought as the closure of the quotient

of stable orbits, i.e. roughly

M
GIT

:= {stable and polystable orbits}.

In a similar notation we will denote the stack MGIT = [Xss/G].
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Definition 2.52. Let π : X→ X be a coarse moduli space. We say that X is proper if π induces

a bijection between the isomorphism classes of k-points of X and the k-points of X .

Remark 2.52.1. One of the most important results of Mumford, is that the moduli stack of

smooth curves Mg is a proper DM-stack, which admits a coarse moduli space M g. Although

we haven’t covered this, the reader is prompted to [DM69] for more information.

Remark 2.52.2. This is but a short introduction to a very vast, fascinating and wealthy part

of modern algebraic geometry. If the reader is interested more on GIT, we prompt them to

[MFK94; Muk03; BJK17], and for stacks [Ols16; Knu71; LM00; Alp22].
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2.2 K-stability

K-stability is a modern theory developed initially by Yau [Yau96] and Tian [Tia97] in a

differential geometric setting and extended later by Donaldson [Don02], using methods from

analytical geometry to describe which toric surfaces admit a constant scalar curvature Kähler

(cscK metric). The definitions for K-stability and K-polystability were modified by Li–Xu

[LX14] and were placed in a more algebro-geometric setting. A renowned achievement in K-

stability has been the work of Chen–Donaldson–Sun [CDS13] which came as a solution to the

Yau-Tian-Donaldson conjecture and has been one of the most important recent contributions

to algebraic geometry. In particular, this remarkable result shows that Fano manifolds admit

a Kähler-Einstein (KE) metric if they are K-polystable.

K-stability has continued to evolve, and recent developments have placed it within a

stronger algebro-geometric setting. Furthermore, valuative criteria have been developed in

order to determine when a Fano variety is K-(poly/semi)stable [Fuj21].

2.2.1 K-stability Definitions

Throughout this thesis, a variety is a separated integral scheme of finite type over the field

k = C. Throughout the rest of this thesis, we will work with Fano varieties [IP99] over

the complex numbers C. Unless stated otherwise, these are going to be Q-Gorenstein Fano

varieties, i.e. varieties X where there will exist some r ∈ Q>0 such that −rKX is an ample

Cartier divisor.

2.2.1.1 Fano Varieties and Test Configurations

Definition 2.53. Let X be a projective variety. X is a Fano variety if the anticanonical line

bundle −KX is ample.

An equivalent way to think of smooth Fano varieties, is as varieties with positive Ricci

curvature. The only smooth Fano curve is the sphere, while smooth Fano surfaces were

classified in the 19th century by Pasquale del Pezzo [Pez85; Pez87] and their classification into

a compact moduli space was completed by Odaka–Spotti–Sun in 2016 [OSS16] building on the

work of Mabuchi–Mukai [MM90]. The Del Pezzo surfaces are classified into 10 deformation

families [Bea03]. The subject of classification of Fano varieties in higher dimensions, such as
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Fano threefolds, remains an active area of research, following the works of Iskovskih [Isk80],

Mori and Mukai, who classified smooth Fano threefolds [MM03] into 105 deformation

families. In higher dimensions, such classifications are not known, although we know of

explicit examples of such Fano varieties.

Before introducing the main notions of K-stability, we have to first introduce polarised

pairs and test configurations (which generalise one-parameter subgroups).

Definition 2.54. A pair (X,L) where X is a projective variety and L is an ample line bundle

is called a polarised pair.

The motivation for the definition of test configurations arises from the fact that stability

is usually defined by a numerical criterion on degenerations of the objects in question. In

our situation, we consider polarised varieties (X,L) where a multiple of L induces the

embedding X ↪→ Pn to some projective space via its sections [Har77]. The test configurations

are essentially the data encoding these degenerations [Don02]. Our notation follows [RT07]

and [Oda13b].

Definition 2.55. Let (X,L) be a polarised variety. A test configuration of this polarised variety

is a pair (X,L) such that X is a scheme and L is an invertible sheaf of X with

1. a Gm-action on (X,L),

2. a proper flat morphism α : X→ A1

such that α is Gm-equivariant under the usual Gm-action, L is relatively ample, and the re-

striction (X,L|α−1(A1\{0})) is Gm-equivariantly isomorphic via the map ϕ : (X,L|α−1(A1\{0}))→

(X,L⊗r)× (A1 \ {0}) for some r ∈ N called the exponent.

Since we are talking about Gm-actions it is reasonable to ask ourselves whether test

configurations arise naturally from one-parameter subgroups. In fact, we have:

Theorem 2.56. A one-parameter subgroup of GL(H0(X,L⊗r)) is equivalent to the data of a test

configuration (X,L) of (X,L) with the polarization M very ample (over A1) and of exponent r for

r ≫ 0.

Proof. We will construct a test-configuration from a 1-PS. Let G = GL(H0(X,L⊗r)) and let

λ : Gm → G be a 1-PS. Let ρ be the natural multiplication Gm-action on A1. Then we have a
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natural action λ× ρ of Gm on G× A1. The closure of the orbit X := Gm · (X × {1}) defines a

test configuration with the natural polarisation O(1)|X and the restriction of the natural action

on (P(H0(X,L⊗r))× A1,O(1)).

Example 2.56.1. Let (X,L) be a polarised variety. Then the pair (X = X × C,L = p∗1(−KX)),

where p1 is the projection on the first factor, is a test configuration with Gm-action given by

t · (x, a)→ (t(x), t · a). This is called a product test configuration.

The test configuration (X = X × C,L = p∗1(−KX)), where X is isomorphic to X × C with

the trivial action, is called a trivial test configuration.

Remark 2.56.1. Notice that in Definition 2.55 we can consider the exponent r to be 1. The

reason for this is, that if r ̸= 1 we can consider the polarised pair (X,L⊗r) instead of (X,L).

LetG be a reductive subgroup of Aut(X). A given test configuration (X,L) isG-equivariant

if the product G×Gm acts on (X,L) such that

1. {1} ×Gm acting on (X,L) is the original Gm-action,

2. the Gm-equivariant isomorphism

(X,L|α−1(A1\{0})) ∼= (X,L⊗r)× (A1 \ {0})

is G×Gm-equivariant.

The first invariant for K-stability is the Donaldson-Futaki invariant [Oda12], which is

based on the original Futaki invariant [Don02]. Let X be a projective variety, with dimX = n

and L an ample line bundle, and let (X,L) be a test configuration for (X,L). For each k ∈ Z+

we have vector spaces H0(X,Lk); denoting by d(k) := dimH0(X,Lk) the dimension of each

vector space, we notice by the Riemann-Roch theorem that, since L is ample, for large k,

d(k) is given by a Hilbert polynomial of degree n. Since the Gm- action on (X,L) fixes the

central fibre (X0,L|X0), Gm acts also on the vector spaceH0(X0,L|X0). We define w(k) to be the

weight of this action on the highest exterior power of H0(X0,L
k|X0). By the Riemann-Roch

theorem, Mumford’s droll Lemma [Mum77, Lemma 2.14] and by [Oda13a, Lemma 3.3],

w(k) is a polynomial of degree n + 1. Here, the total weight of an action of Gm on some
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finite-dimensional vector space is defined as the sum of all weights, where the weights mean

the exponents of eigenvalues which should be powers of t ∈ A1. Hence, we have that

d(k) = a0 + a1k + . . . ,

w(k) = b0 + b1k + . . .

and
d(k)

kw(k)
= F0 + k−1F1 + . . .

The Futaki invariant is defined to be the coefficient F0. The Donaldson-Futaki invariant is defined

as

DF(X;L) :=
b0a1 − a0b1

a20
.

Having defined the above, we are in a position to define K-stability.

Definition 2.57. We say that the polarised pair (X,L) is K-stable (resp. K-semistable) if and only

if DF(X;L) > 0 (respectively, DF(X,L) ≥ 0) for any non-trivial test configuration (X,L) of

(X,L). We say that the polarised pair (X,L) is K-polystable if DF(X;L) ≥ 0 for any non-trivial

test configuration (X,L) of (X,L), and DF(X;L) = 0 only if a test configuration (X,L) is a

product test configuration.

As one can notice from the above definitions, K-stability implies K-polystability and

K-polystability implies K-semistability.

Remark 2.57.1. When we are studying anti-canonically polarised pairs (X,−KX) we will

omit the anticanonical line bundle −KX and say that X is K-(semi/poly)stable.

Similarly, we can define G-equivariant K-stability.

Definition 2.58. The Fano variety X is said to be G-equivariantly K-polystable if for every

G-equivariant test configuration (X,L) one has DF (X;L) ≥ 0, and DF (X;L) = 0 if only if

(X,L) is of the product type. The Fano variety X is said to be G-equivariantly K-semistable

(respectivelyG-equivariantly K-stable) if for every (non-trivial)G-equivariant test configuration

(X,L) one has DF (X;L) ≥ 0 (respectively > 0).

From the definition we see that if X is K-polystable it is G-equivariantly K-polystable. In

fact, there is a remarkable implication that the opposite holds true.
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Theorem 2.59 ([DS16; LWX19; LZ22; Zhu21]). Let X be a smooth Fano variety, and L = −KX .

Suppose that X is G-equivariantly K-polystable. Then X is K-polystable.

Donaldson’s [Don02] and Tian’s [Tia97] initial definition was based on the Futaki invariant.

It is more beneficial, when in an algebro-geometric setting, to refer to Definition 2.57. This

is because there exist algebro-geometric formulae for computing the Donaldson-Futaki

invariant [Wan12].

Theorem 2.60 ([Wan12], [Oda13a, Theorem 3.2]). For a normal test configuration (X,L) of the

polarised pair (X,L) of dimension n, and r > 0, we can glue the test configuration with (X × (P1 \

{0}, pr∗1(−rL)) to get a proper family (X,L) over P1. Furthermore, we have

DF(X,L)) =
1

2(n+ 1)(−Kn
X)

(
n

(
1

r
L

)n+1

+ (n+ 1)KX/P1 ·
(
1

r
L

)n)
.

Here, pr1 is the projection to the first factor, and we are gluing (X,L) to (X,L) by the Gm-equivariant

isomorphism ϕ from Definition 2.55 along A1 \ {0}.

Although Theorem 2.60 provides us with a formula for computing the Donaldson-Futaki

invariant, in reality detecting K-stability explicitly using just this is a complicated and hard

process, as finding all possible test configurations is a hard task. For this, new methods have

been introduced that allow us to detect K-stability. These will be covered later on in this

chapter.

The following two theorems provide striking results on the nature of the automorphism

groups of K-(poly)stable Fano varieties.

Theorem 2.61 ([Alp+20, Theorem 1.3],[Mat57]). If X is Fano and K-polystable, then Aut(X) is

reductive.

Theorem 2.62 ([BX19, Corollary 1.3]). If X is Fano and K-stable, then Aut(X) is finite.

In particular, the above two theorems can help us to rule out if a Fano variety is K-

(poly)/stable. If we know that Aut(X) is not reductive, then we can surmise that it is not

K-polystable without having to check the Donaldson-Futaki invariant. Similarly, if we know

that Aut(X) is not finite, then we can deduce that it is not K-stable.
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2.2.1.2 The Case of Pairs (X,D)

A natural extension of the above notions is to the setting of log Fano pairs (X,D), where X is

a variety and D is a divisor on this variety. More specifically we let (X,D =
∑k

i=1 aiDi) be

a projective log pair and L an ample line bundle on X . If L = −KX we have the following

definition.

Definition 2.63. Let X be a normal variety and D a Q-effective divisor. A pair (X,D) is called

a log Fano pair if −KX −D is ample and Q-Cartier.

Below is the natural extension to test configurations for log Fano pairs.

Definition 2.64. Let (X,D =
∑k

i=1 aiDi) be a projective log pair and L an ample line bundle

on X , where ai ≥ 0 and ai ∈ Q. A test configuration (X,D;L) of this log pair is a tuple such

that

1. (X;L) is a test configuration of (X;L);

2. the formal sum D =
∑k

i=1 aiDi of codimension one closed integral subschemes Di of X

is such that Di is the Zariski closure of Di × (A1 \ {0}) under the isomorphism between

X \ X0 and X × (A1 \ {0}).

Notice, that, under the above conditions, (Di,L|Di
) is a test configuration of (Di, L|Di

).

Similar to our discussion in the previous section, we can define a Donaldson-Futaki invariant,

and we can generalise Definition 2.57. In particular, for the log pairs (D,L|D) of (D,L|D) we

can define Hilbert and weight polynomials as we did before, denoted respectively by

d̃(k) = ã0 + ã1k + . . .

w̃(k) = b̃0 + b̃1k + . . . .

Definition 2.65. We define the log Donaldson-Futaki invariant of test configuration (X,D;L) of

(X,D;L) to be

DF(X,D;L) :=
b0a1 − a0b1

a20
+
a0b̃0 − b0ã0

2a0
.

We define the log Donaldson-Futaki invariant with angle β, with 0 ≤ β ≤ 1, of test configuration

(X,D;L) of (X,D;L) to be

DF(X,D;L) :=
b0a1 − a0b1

a20
+ (1− β)a0b̃0 − b0ã0

2a0
.
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Example 2.65.1. Let (X,D) be a projective log pair and L be an ample line bundle. Then the

tuple (X = X × C,D = D × C;L = p∗1(−KX − D)), where p1 is the projection on the first

factor, is a test configuration with Gm-action given by t · (x, a)→ (t(x), t · a). This is called a

product test configuration.

The test configuration (X = X×C,D = D×C;L = p∗1(−KX−D)), where X is isomorphic

toX×C, and D is isomorphic toD×C with the trivial action, is called a trivial test configuration.

Definition 2.66. We say that the log Fano pair (X,D) is K-stable (resp. K-semistable) if and

only if DF(X,D;L) > 0 (respectively, DF(X,D;L) ≥ 0) for any non-trivial test configuration.

We say that the log Fano pair (X,D) is K-polystable if DF(X,D;L) ≥ 0 for any non-trivial

test configuration, and DF(X,D;L) = 0 only if a test configuration (X,D;L) is a product test

configuration.

As before, K-stability implies K-polystability and K-polystability implies K-semistability.

The formula in Theorem 2.60 can also be extended for the case of pairs.

Theorem 2.67 ([Oda13a]). For a normal test configuration (X,D;L) of the log Fano pair (X,D;L),

we can glue the test configuration to get a proper family (X,D;L). Furthermore, we have

DF(X,D;L)) =
1

2(n+ 1)(−KX −D)n

(
n

(
1

r
L

)n+1

+ (n+ 1)(KX/P1 +D) ·
(
1

r
L

)n)
.

Here, pr1 is the projection to the first factor, and we are gluing by the Gm-equivariant isomorphism ϕ

along A1 \ {0}.

An interesting point of study is the case of log Fano pairs (X, (1−β)D) with β ∈ (0, 1)∩Q.

A historical reason to study the K-stability of log Fano pairs of this form can be found

in [CDS13], where such pairs were studied in order to answer the Yau-Tian-Donaldson

Conjecture. A great part of this thesis will be devoted to studying specific examples of such

log Fano pairs, that will arise as complete intersections of the same degree polynomials and

their hyperplane sections.

2.2.2 K-moduli

In Section 2.1.4 we discussed that obtaining a moduli stack with a compact good moduli space

is an important step in the classification of algebraic varieties. It turns out that K-stability is
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in many cases the ‘right’ theory for the construction of this good moduli space, especially for

the case of Fano varieties. This is both quite remarkable and somewhat expected by experts.

K-stability was initially developed to answer questions that arise from differential geometry,

in particular, which manifolds admit a Kähler-Einstein metric. The fact that this theory is

algebro-geometric in nature displays an interesting interplay between mathematical fields,

which is on its own a particularly fascinating part of modern mathematics. Further, the fact

that this theory can be used in classification problems in algebraic geometry is a remarkable

consequence, and a tool which is sure to be used extensively in the future.

On the other hand, K-stability is a stability theory. We have already seen in Section 2.2.1

that the definitions of K-stability follow GIT-like constructions. As such, the expectation that

such a stability theory can give rise to moduli spaces may be natural. In this section, we will

give an overview of the construction of moduli stacks and spaces using K-stability, which

we will refer to as K-moduli from now on. We will demonstrate that the K-moduli space is a

good moduli space, and we will give specific examples of its compactification.

2.2.2.1 Brief Review of Minimal Model Programme techniques

Throughout this subsection, we will go over some tools we require from the Minimal Model

Programme (MMP) which will allow us to show specific properties of K-moduli. Let X, Y

be normal projective varieties. The following are some basic notions of the MMP [KM98],

[LLX20].

Definition 2.68. Let X be a reduced, irreducible variety defined over C. A real valuation of its

function field K(X) is a non-constant map v : K(X)× → R, satisfying:

1. v(fg) = v(f) + v(g);

2. v(f + g) ≥ min{v(f), v(g)};

3. v(C∗) = {0}.

We set v(0) = +∞. A valuation v gives rise to a local valuation ring Ov := {f ∈ K(X)| v(f) ≥

0}. We say a real valuation v is centred at a scheme-theoretic point ξ := cX(v) ∈ X if we have a

local inclusion Oξ,X → Ov of local rings. The point ξ is called a centre of the valuation. Notice

that the centre of a valuation, if it exists, is unique since X is separated, by the valuative

criterion of separatedness. We denote by ValX the set of real valuations of K(X) that admit
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a centre. For a closed point x ∈ X , we denote by ValX,x the set of real valuations of K(X)

centred at x.

Definition 2.69. Let X be a normal projective variety. Assume that mKX is Cartier for some

m > 0. Let µ : Y → X be a birational morphism, and E ⊂ Y be an irreducible exceptional

Cartier divisor, D ⊂ Y and irreducible Cartier divisor. In particular, D is called a divisor over

X , which we will usually denote by D/X . The closure of f(D) ⊂ X is called the centre of D

on X , denoted by centreX(D) or cX(D).

If we further assume that KY is Q-Cartier (e.g. if Y is smooth) then we have

KY ∼Q µ
∗(KX) +

∑
i

a(Ei, X)Ei

where Ei are all the exceptional divisors of the morphism f and the number a(Ei, X) is the

discrepancy of divisor Ei with respect to X . The quantity AX(E) := a(E,X) + 1 is the log

discrepancy of divisor E with respect to X .

Example 2.69.1. Take a proper birational morphism µ : Y → X , with Y a normal variety, and

a Cartier divisor E over X . We will define a valuation ordE ∈ ValX as follows:

For each f ∈ K(X)× = K(Y )×, we define ordE(f) to be the order of vanishing of f along

E. Then, the centre cX(ordE) is the generic point of µ(E). We say that v ∈ ValX is a divisorial

valuation if there exists E as above and λ ∈ R>0 such that v = λ · ordE .

Example 2.69.2. Let µ : Y → X be a proper birational morphism between two normal varieties

Y , X and let η ∈ Y be a point such that Y is regular at η. Given a local system of coordinates

y1, . . . , yr ∈ OY,η at η and α = (α1, . . . , αr) ∈ Rr
≥0 \ {0}, we define a valuation vα as follows.

For f ∈ OY,η we can write f as f =
∑

β∈Zr
≥0
cβyβ with cβ ∈ ÔY,η either zero or a unit. We set

vα(f) := min{⟨α, β⟩|cβ ̸= 0}.

Every valuation that can be written in this form is called a quasi-monomial valuation.

Notice that the discrepancy does not depend on µ but depends on each Ei. The reason

for this is the following. Take another birational morphism µ′ : Y ′ → X with irreducible

divisor E ′/X , such that ordE = ordE′ . Then, a(E,X) = ordE(KY − µ∗(KX)) = ordE′(KY −

(µ′)∗(KX)) = a(E ′, X), i.e. we have that a(E,X) = a(E ′, X) and hence, a(E,X) depends only

on the valuation ordE .

The above notions also extend to the case of pairs (X,∆).
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Definition 2.70. Let (X,∆) be a log pair where X is a normal variety and ∆ =
∑

i aiDi is

a sum of distinct prime divisors, with ai ≥ 0 for all i. Assume that m(KX + ∆) is Cartier

for some m > 0. Let µ : Y → X be a birational morphism from a normal variety Y , with

exceptional locus E ⊂ Y and irreducible exceptional Cartier divisors Ei ⊂ E. Let also

µ−1
∗ ∆ :=

∑
i aiµ

−1
∗ Di be the proper transform of ∆. If we further assume that KY is Q-Cartier

(e.g. if Y is smooth) then we have

KY + µ−1
∗ ∆ ∼Q µ

∗(KX +∆) +
∑
i

a(Ei, X,∆)Ei.

By definition a(Di, X,∆) = −ai and a(D,X,∆) = 0 for any divisor D ⊂ X which is different

from the Di. a(E,X,∆) is called the discrepancy of E with respect to (X,∆). We frequently

write a(E) if no confusion is likely. Similarly, we define A(X,∆)(E) := a(E,X,∆) + 1 to be the

log discrepancy of divisor E with respect to (X,∆).

The discrepancy of (X,∆) is given by

discrep(X,∆) := inf
E/X
{a(E,X,∆)| E exceptional}.

Usually, we build such birational morphisms by blowing up along singularities or subvari-

eties of X . An important distinction to the types of singularities comes from the classification

below.

Definition 2.71 ([KM98, Definition 2.34]). We say that (X,∆) is

1. terminal if discrep(X,∆) > 0. If ∆ = 0, this is the smallest class that is necessary to run

the minimal model program for smooth varieties;

2. canonical if discrep(X,∆) ≥ 0. If ∆ = 0 these are precisely the singularities that appear

on the canonical models of varieties of general type;

3. klt (Kawamata log terminal) if discrep(X,∆) > −1 and ⌊∆⌋ ≥ 0, where ⌊∆⌋ =
∑
⌊ai⌋Di.

The proofs of the vanishing theorems seem to run naturally in this class;

4. plt (purely log terminal) if discrep(X,∆) > −1. If ∆ = 0 then klt =plt;

5. lc (log canonical) if discrep(X,∆) ≥ −1. This is where the discrepancy of a pair is

bounded.
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From here on out we will focus our discussion on the case of log pairs (X,∆) as most

of the results can be generalised from X in the case where ∆ = 0. One more invariant we

need to introduce is the log canonical threshold of a log pair. This is a numerical invariant

depending on our log pair and is an indicator of how ‘bad’ the singularities are.

Definition 2.72. Let X be a normal variety.

1. The log canonical threshold of the log pair (X,∆) is

lct(X,∆) = max{λ| (X,λ∆) is log canonical};

2. the local log canonical threshold of the log pair (X,∆) at p ∈ X is

lctp(X,∆) = max{λ| (X,λ∆) is log canonical at p}

Here:

lct(X,∆) = min
p∈X

lctp(X,∆).

Example 2.72.1. We will demonstrate the above notions by studying the discrepancies and

log canonical thresholds of the pair (S,C), where S is the smooth affine plane and C is the

affine curve C = {y2 − x3 = 0} ⊂ S = A2. Take p = (0, 0) and consider the minimal log

resolution of (S,C), µ : Y → S, where µ is the composition of three blow-ups. This morphism

has 3 exceptional divisors E1, E2, E3. Then by the pullback formula, we have

µ∗(KX + C) + a(E1, S, C)E1 + a(E2, S, C)E2 + a(E3, S, C)E3 ∼ KY + CY ,

where CY is the strict transform of C. Notice that after the first blow-up we obtain a smooth

curve C̃ and the exceptional divisor E1 tangent at C̃ at p. Similarly, the second blow up

gives a line C̄, and the exceptional divisor E2, which cuts E1 and C̄ at p. The third blow-up

gives the line CY and the exceptional divisor E3 which intersects CY , E1 and E2. From

this geometric image we see that a(E1, S, C) = 1 − 2 = −1, a(E2, S, C) = 2 − 3 = −1 and

a(E3, S, C) = 4− 6 = −2. Since a(E3, S, C) = −2, we see that (S,C) is not log canonical.

If we study the same resolution of singularities of (S, λC) we obtain

µ∗(KX + λC) + a(E1, S, λC)E1 + a(E2, S, λC)E2 + a(E3, S, λC)E3 ∼ KY + λCY

and a(E1, S, λC) = 1− 2λ, a(E2, S, λC) = 2− 3λ and a(E3, S, λC) = 4− 6λ. This implies that

a(E1, S, λC) ≥ −1 and a(E2, S, λC) ≥ −1 for λ ≤ 1 and a(E3, S, λC) = 4− 6λ ≥ −1 for λ ≤ 5
6
,

i.e. lctp(S,C) = 5
6
.
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Let us briefly return to Fano varieties.

Definition 2.73. Let X be a projective variety. We say that X is a Q-Fano variety if X is klt and

−KX is Q-Cartier.

The following theorem provides us with the first instance of a connection between K-

stability and the MMP. It shows that K-stability imposes a bound on the singularities of

varieties, which comes directly from the MMP.

Theorem 2.74 ([Oda13b]). Let X be an n-dimensional normal Q-Gorenstein Fano variety. If X is

K-semistable, then X has (at worst) klt singularities, i.e., X is a Q-Fano variety.

Definition 2.75. Let X be a Q-Fano variety. Let D ∼Q −KX be an effective Q-divisor on

X . We say that (X,D) is K-semistable if (X,D;L) is K-semistable for some Cartier divisor

L ∼Q −lKX and some l ∈ Z>0.

Remark 2.75.1. From Theorem 2.74 and [Oda13b] we see that if (X,D) is K-semistable, then

it (at worst) log canonical.

For toric Fano varieties, it turns out that one can verify if they are K-polystable by studying

their polytopes.

Theorem 2.76 ([Bat81], [Fuj16, Theorem 1.2], [Ber16, Corollary 1.2.]). Let X be a normal toric

Fano variety, and let P be its associated anticanonical polytope in M ⊗Z R, where M be the character

lattice of the torus. Then X is K-polystable if and only if the barycentre of P is the origin.

2.2.2.2 Deformations, Families and K-moduli

The theory of K-moduli has been developed mainly in the last decade, with the results

presented here achieved by Alper, Hacon, McKernan, Blum, Halpern-Leistner, Liu, Xu, Wang

and Zhuang, in a series of papers ([LWX21; BX19; Alp+20; Xu20; BLX22; XZ20; XZ21; LXZ22]),

moving away from previous analytically-inspired work in the Q-Gorenstein smoothable case

by Odaka [Oda15], Spotti-Sun-Yao [SSY16] and Li–Wang–Xu [LWX19], as well as work in

projectivity of the K-moduli space by Codogni–Patakfalvi [CP21].

From our discussion of moduli problems and moduli spaces in Section 2.1.4 we understand

that we need an appropriate definition of families of Fano varieties, if we are to define a

moduli stack that admits a good moduli space. We need this definition over a general base to
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determine the scheme structure of the moduli space. From our discussion so far, since we

are aiming to parametrise families of K-semistable Fano varieties, it is natural to consider

families over Q-Fano varieties. This is truly beneficial for us, since a great deal of the relevant

theory has already been surveyed [Kol09].

Definition 2.77 ([Xu21, Definition 6.1]). A Q-Gorenstein family of Q-Fano varieties f : X→ B

over a normal base B, is a flat proper morphism such that:

1. f has normal, connected fibres, which implies that X is also normal,

2. −KX/B is an f -ample Q-Cartier divisor,

3. the fibres Xt are klt for all t ∈ B.

If in addition each fibre Xt is K-semistable we call f a Q-Gorenstein family of K-semistable

Q-Fano varieties.

We will define the K-moduli functor as follows:

Definition 2.78 ([BX19, §1]). The K-moduli functor MK
n,V is a functor that sends a scheme S ∈

Sch to

MK
n,V (S) :=


flat proper morphisms f : X→ S, with fibres Xt that are

n-dimensional K-semistable Q-Fano varieties with volume V

satisfying Kollár’s condition (see, [Kol09, p. 24])

 .

We will usually omit n, V from our notation, as in most cases the choice will be explicit.

Showing that this functor is an algebraic stack is in fact a difficult process. In addition,

demonstrating that it admits a good moduli space MK is also an arduous process that

involves some groundbreaking results in moduli theory, and many results from the MMP. We

will not go over these in great detail, but we will make a summary of the results. In particular,

in order to obtain the good moduli space from K-stability which also holds ‘nice’ properties,

we need to go over the steps below (see, [Xu21, §6, 7, 8] and [Wan19, Chapter 4]):

1. Prove that Q-Gorenstein K-semistable Q-Fano varieties belong to a finite number of

families in any given dimension (boundedness condition);

2. show that K-semistable varieties form a Zariski open set in families;
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3. show that, for special kinds of pointed surfaces 0 ∈ S, a family of K-semistable Fano

varieties over the punctured surface S \ {0} can be uniquely extended to a family over

the entire surface S ([AHH19]);

4. show that any Q-Gorenstein family of K-semistable Fano varieties over a punctured

curveC◦ = C\{0} can be can be filled in over 0 to a Q-Gorenstein family of K-semistable

Fano varieties over C;

5. show that there exists a natural ample Q-line bundle on MK .

Steps 1 and 2 guarantee that MK is in fact an algebraic stack of finite type. The bounded-

ness condition would imply that there exists a positive integer N such that −NKX is a very

ample Cartier divisor for any n-dimensional K-semistable Q-Fano varietyX . This implies that

the linear system |−NKX | defines an embedding |−NKX | : X → Pm for some uniform m. In

turn, this implies that there exists a Hilbert scheme Hilb(X;Pm), where any such embedding

gives a point in Hilb(X;Pm). Hence, there exists a locally closed subscheme W ⊂ Hilb(X;Pm)

such that a map B → W factors through W if and only if the pullback family UnivB (the

universal family) is a Q-Gorenstein family of Q-Fano varieties and O(−NKUnivB /B) ∼B O(1).

The openness condition would further imply that we could find an open subscheme U ⊂ W ,

such that MK = [U/PGL(m+ 1)], which is an algebraic stack.

Step 3 is used to verify that in fact there exists a good moduli space MK . The first step,

is to show that if MK exists it must be separated. The existence of a good moduli space, is

a subtle condition and, in general, one that is hard to show, but one that contains strong

implications regarding the orbit geometry with respect to PGL(m+ 1). The difficulty here

arises from the fact that a family of Q-Fano varieties X◦ over a punctured curve C◦ = C \ {0}

could admit many possible fillings to give a family of Q-Fano varieties X over C. Hence, we

need to be careful and only consider the fillings which are K-semistable up to an equivalence

condition. Moreover, since a K-polystable Q-Fano could have an infinite automorphism

group in general, we can not expect that the extension family is unique. Hence, we need to

rely on the separatedness of MK and define carefully a notion of equivalence for different

fillings. Step 4 is used to show that MK is proper, and step 5 is used to show that it is

projective. For the convenience of the reader, there exists a fantastic survey of the above

results and discussion [Xu21], which includes a more in-depth analysis than the one we will

present here.
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Before we move on to discuss steps 1− 5 in more detail, we will end this part with the

following picture, which can motivate the reader to understand the above construction in

more depth. For more information, one is prompted to [Ser06; Man09]. For a Fano variety X

recall that DefX is the infinitesimal deformation functor of X . For an Artinian local C-algebra A

with residue field C, DefX(A) consists of isomorphism classes of commutative diagrams:

X XS

{0} = Spec(C) S = Spec(A)

where {XS → S} ∈ DefX(A) is a deformation family of X over S. If we further assume that X

is K-polystable, this implies that G = Aut(X) is reductive by Theorem 2.61. G acts on A and

we have a good quotient [S/G]→ SG. If we take it for granted that MK is an algebraic stack

which admits a good moduli space MK , the Luna étale slice theorem for algebraic stacks

[AHR20, Theorem 1.1] gives a fibre product

[S/G] MK

SG MK

□

which allows us to get a better understanding of the structure of MK .

2.2.2.3 Boundedness and Openness

Boundedness is the first result one can establish for K-stability. This was accomplished in

[Jia20] using modern algebro-geometric techniques developed in [HMX14; Bir21; Bir19].

Before we discuss these, we will introduce some notation.

For a closed point x ∈ X , a valuation v ∈ ValX,x and an integer m we can define the

valuation ideal am(v) := {f ∈ Ox,X | v(f) ≥ m}. Verifying that this indeed is an ideal is not

hard; for f, g ∈ am(v) we have v(f + g) ≥ min{v(f), v(g)} ≥ m, i.e. f + g ∈ am(v), and for

h ∈ Ox,X v(fh) = v(f) + v(h) ≥ m + v(h) ≥ m, i.e. fh ∈ am(v). In fact, this ideal is an

mx-primary ideal for all m > 0. This discussion allows us to define the volume of a valuation

v as in [ELS03].

Definition 2.79. Let X be an n-dimensional normal variety. Let x ∈ X be a closed point. We

define the volume of a valuation v ∈ ValX,x as

volX,x(v) := lim sup
m→∞

l(Ox,X/am(v))
mn

n!
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where l denotes the length of the Artinian module.

For a log pair (X,∆) we can extend the definition of the log discrepancy from divisors to

valuations [LLX20]. This allows us to define a log discrepancy function A(X,∆) : ValX → (0,∞].

This is done in three successive steps:

1. for a divisor E/X we set A(X,∆)(ordE) := A(X,∆)(E);

2. For a quasi-monomial valuation vα (see Example 2.69.2) where α ∈ Rr
≥0 \ {0}, let

(Y,E =
∑N

i=1Ei) be a log smooth model for X and η be the generic point of a connected

component of Ei1 ∩ Ei2 ∩ · · · ∩ Eir of codimension r. Let (y1, . . . , yr) be a system of

parameters of the local ring OY,η such that Eij = (yj = 0). Then for any tuple α =

(α1, . . . , αr) ∈ Rr \ {0}we define A(X,∆)(vα) as

A(X,∆)(vα) :=
r∑
j=1

αjA(X,∆)(ordEij
);

3. let (Y,E) be a log smooth model for X . Keeping the notation from step 2, we let

QMη(Y,E) be the set of all quasi-monomial valuations v that can be described at the point η

as above. We put QM(Y,E) :=
⋃
ηQMη(Y,E) where the union runs over generic points

of all irreducible components of intersections of some of the divisorsEi. By [JM12], there

exists a topology on ValX and QM(Y,E) and a retraction map rY,E : ValX → QM(Y,E)

which induces a homeomorphism ValX → lim←−(Y,E)
QM(Y,E). This allows us to define

A(X,∆) for all real valuations v as follows:

A(X,∆)(v) := sup
(Y,E)

A(X,∆)(r(Y,E)(v)).

Here, the supremum ranges over all log smooth models (Y,E) of X.

Philosophically, steps 1-3 should make sense to the reader. Step 2 is reminiscent of a

local definition of A(X,∆) chosen over a resolution of singularities for X , and step 3 uses the

results in [JM12; Bou+15] to extend the local definition to all real valuations by considering

all possible such resolutions of singularities.

Definition 2.80 ([Li18, Chapter 2]). Let (X,∆) be an n-dimensional klt log pair, x ∈ X be a

closed point. The normalised volume function of valuations v̂ol(X,∆),x : ValX,x → (0,∞] is defined

as:

v̂ol(X,∆),x(v) :=

A(X,∆)(v)
n volX,x(v), if A(X,∆)(v) < +∞

+∞, if A(X,∆)(v) = +∞.
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The volume of the singularity (x ∈ (X,∆)) is defined as

v̂ol(x, (X,∆)) := inf
v∈ValX,x

v̂ol(X,∆),x(v).

We can think of this volume as a measure of how ‘bad’ the singularity is. It is the local

analogue of the volume of the anticanonical divisor −KX . In recent years, it has been found

that this volume is in fact bounded. We will use this result to show the boundedness of

K-semistable varieties. This is different to the results presented in [Jia20] and more akin to

the treatment in [LLX20]. Restricting to the case ∆ = 0 we have the following result.

Theorem 2.81. [Fuj18; Liu18; BJ20] Let X be a Q-Fano variety. For any x ∈ X we have

v̂ol(x,X)

(
n+ 1

n

)n
≥ (−KX)

n · δ(X)n.

Here, δ(X,∆) is the delta invariant, defined as δ(X,∆) := infE/X
A(X,∆)(E)

S(X,∆)(E)
, where

S(X,∆)(E) :=
1

(−KX −∆)n

∫ ∞

0

(vol(−KX −∆− xE)dx.

This Theorem implies that if we bound (−KX)
n and δ(X) from below we obtain a lower

bound for v̂ol(x,X). Using the above, we obtain the following:

Theorem 2.82 ([Jia20], [Xu21, Theorem 6.5] (Boundedness)). Fix n ∈ N and V > 0. All

n-dimensional K-semistable Q-Fano varieties with volume at least V are contained in a bounded

family.

Proof. Let X be a K-semistable Q-Fano variety. Take a finite cover f : (y ∈ Y )→ (x ∈ X) étale

in codimension 1. Then by [XZ21, Theorem 1.3] and [XZ21, Theorem 4.22 (2)]

v̂ol(y, Y ) = deg(f) · v̂ol(x,X).

This implies that−KY is Q-Cartier, and the local Cartier index is deg(f). We apply this locally

to the index-1 cover of−KX , and by [LX19, Theorem 1.6] we have v̂ol(y, Y ) ≤ nn. This implies

that the Cartier index of any point x ∈ X is bounded from above by nn

v̂ol(x,X)
. Note, that since

Xis K-semistable, x is at worse a klt singularity, and by [Li18, Theorem 3.1 and Theorem 4.1]

we know that v̂ol(x,X) is always positive. Thus, the Cartier index of X is bounded from

above, and by [HMX14, Theorem 1.8] we know that it belongs in a bounded family.

For the openness result, we will omit the proof. We will note that one can obtain stronger

results, as in the following theorem.
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Theorem 2.83 ([Xu21, Theorem 6.9]). Let X→ B be a Q-Gorenstein family of Q-Fano varieties,

and let s ∈ B be a point. We have the following:

1. The function

(s ∈ B)→ min{δ(Xs̄), 1}

is a constructible, lower-semicontinous function,

2. if the family is a family of klt singularities, the function

(s ∈ B)→ v̂ol(s,Xs)

is a constructible, lower-semicontinous function.

Both of these results imply the following

Corollary 2.83.1 ([Xu20; BLX22]). Let X→ B be a Q-Gorenstein family of Q-Fano varieties, then

the locus where the fibre is K-semistable is an open set.

Our discussion in Section 2.2.2.2 thus shows that MK
n,V = [U/PGL(m+ 1)] for some open

scheme U . Hence, since it is a quotient stack, it is in fact a moduli functor which is represented

by an algebraic stack of finite type by Theorem 2.46 and Example 2.44.1.

2.2.2.4 Existence of Good Moduli Space

As we mentioned before, we have to establish that the Artin stack MK does in fact admit a

good moduli space MK . We will make a brief account of the results presented in [LWX21;

BX19; Alp+20] which in turn rely on the abstract results on moduli theory presented in

[AHH19]. We will not give a very deep account of the above theories, but we invite the reader

to consult [Xu21] for more information.

From our previous discussion, it should be apparent that we need to study fillings to

punctured families. For this, we introduce the notions below:

Definition 2.84. A test configuration (X,L) of (X,−rKX) is called a special test configuration if

L ∼Q −rKX and the special fibre X0 is a Q-Fano variety. By inversion of adjunction, this is

equivalent to saying X is Q-Gorenstein and −KX is ample and (X,X0) is plt.

The usefulness of considering special test configurations arises from the fact that it is

enough to consider only special test configurations in determining K-stability [LX14].
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Definition 2.85. Two K-semistable Q-Fano varieties X and X ′ are S-equivalent if they degen-

erate to a common K-semistable variety via special test configurations.

The notion of S-equivalence seems to be the ‘right’ notion in our attempt to go over step 3

in Section 2.2.2.2. This is bolstered by the following result.

Theorem 2.86 ([BX19, Theorem 1.1]). Let f : X → C and f ′ : X ′ → C be Q-Gorenstein families of

Fano varieties over a smooth pointed curve 0 ∈ C. Assume there exists an isomorphism

ϕ : X ×C C◦ → X ′ ×C C◦

over C◦ := C \ {0}. If X0 and X ′
0 are K-semistable, then they are S-equivalent.

Remark 2.86.1. The above Theorem also generalises to the case of log Fano pairs (see [BX19]).

Roughly, Theorem 2.86 says that if there exist two different K-semistable fillings of some

families of Q-Fano varieties, then these should be S-equivalent, and we should focus on

studying S-equivalence in order to cover step 3. To formalise the above, we need to introduce

some notation. Let R be a DVR with fraction field K, and let η = Spec(K) be the generic

point. Let Θ := [A1/Gm] with the natural multiplicative action, and set ΘR = Θ × Spec(R).

We also set 0 ∈ ΘR to be the unique closed point.

Definition 2.87 ([AHH19, Definition 3.10]). We say that an algebraic stack Y is Θ-reductive if a

morphism ΘR \ 0→ Y can be uniquely extended to a morphism ΘR → Y.

Fix an uniformiser π of R. As in [Hei17, Chapter 2.B] define the quotient stack

ST(R) := [Spec(R[s, t]/(st− π))/Gm]

where the action is (s, t)→ (µ · s, µ−1 · t). Let 0 = [(0, 0)/Gm], then ST(R) \ 0 is isomorphic to

the curve with two origins Spec(R) ∪Spec(K) Spec(R).

Definition 2.88 ([AHH19, Definition 3.37]). A stack Y is S-complete if any morphism

π◦ : ST(R) \ 0→ Y can be uniquely extended to a morphism π : ST(R)→ Y.

The notions of Θ-reductivity and S-completeness are particularly important due to the

next theorem.

Theorem 2.89 ([AHH19, Theorem A]). Let Y be an algebraic stack of finite type. Y admits a good

moduli space if it is S-complete and Θ-reductive.
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We will omit the proof of this Theorem, but we prompt the reader to [Alp+20; Xu21]

for more details. From Theorem 2.89 we can show that MK admits a good moduli space

if we show that MK is Θ-reductive and S-complete. The following result is equivalent to

establishing Θ-reductivity for MK .

Theorem 2.90 ([Alp+20, Thoerem 5.2]). Let R be a DVR of essentially finite type and η the generic

point of Spec(R). For any Q-Gorenstein family of K-semistable Fano varieties XR over R, any special

K-semistable degeneration Xη/A1
η of the generic fibre Xη can be extended to a family of K-semistable

degenerations XR/A1
R of XR.

For S-equivalence, Definition 2.88 may seem complicated, but a keen reader will notice

that for our case, Theorem 2.86 gives us the S-completeness of MK . Let f : X → Spec(R) and

f ′ : X ′ → Spec(R) be two families of Q-Fano varieties, such that we have an isomorphism

ϕ : X×Spec(R)Spec(K) ∼= X ′×Spec(R)Spec(K). Then, we can define a family π◦ : X◦ → ST(R)\0.

Our aim is to define an appropriate X such that this family extends to X → ST(R), which

is precisely the claim of S-completeness for the functor of K-semistable Fano varieties with

fixed numerical invariants. Let L := −rKX , L′ := −rKX′ where r is a positive integer so that

L and L′ are Cartier. We also define

Rm := H0(X,OX(mL)) R′
m := H0(X ′,OX′(mL′))

Rm := H0(X0,OX0(mL0)) R′
m := H0(X ′

0,OX′
0
(mL′

0)).

We fix a common log resolution X̂ of X and X ′, such that we have diagram

X̂

X X ′.

ψ′

ψ
ϕ

We write X̂0 and X̂ ′
0 for the birational transforms of X0 and X ′

0 respectively, where X̂0 ̸∼= X̂ ′
0,

since ϕ does not extend to an isomorphism over the 0-fibers. Then, both X̂0 and X̂ ′
0 are

divisors over X and X ′, and as such we can define valuations u := ordX̂0
and u′ := ordX̂′

0
.

The existence of these valuations allows us to define filtrations F and F′ as follows. For

each p ∈ Z and m ∈ N, set FpRm := {s ∈ Rm|u′(s) ≥ p}, and F′pR′
m := {s ∈ R′

m|u(s) ≥ p}.

In particular, we can extend these definitions to filtrations on Rm and R′
m as follows. We

set FpRm := im(FpRm → Rm), F′pR′
m := im(F′pR′

m → R′
m), where the maps are given by

restrictions of sections. Note that a section s ∈ Rm lies in FpRm if and only if there exists an
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extension s̃ ∈ Rm of s such that s̃ ∈ FpRm. Notice that these filtrations are related, and in fact

we have an isomorphism of graded rings

⊕
m∈N

⊕
p∈Z

grpF Rm
∼=
⊕
m∈N

⊕
p∈Z

grpF′ R
′
m.

We denote by ι : ST(R) \ 0 ↪→ ST(R) the open inclusion of stacks. Notice, that the

pushforward π◦
∗(−rmKX◦) is a vector bundle on ST(R)\0. Also, the point 0 is of codimension

2 in ST(R), and as such the pushforward ι∗(π
◦
∗(−rmKX◦)) is also a vector bundle of ST(R).

In particular, in [Alp+20, Proposition 3.7], it is shown that for any m

ι∗(π
◦
∗(−rmKX◦)) ∼=

⊕
p∈Z

grpF Rm.

We then define X as

X := Proj
(⊕

m

ι∗(π
◦
∗(−rmKX◦))

)
.

The remaining part of the proof is to show that the graded ring
⊕

m ι∗(π
◦
∗(−rmKX◦)) is

finitely generated and via restriction to R yields normal test configurations, via filtrations, for

X ′
0 and X0. Then, by [LWX21] this will imply that X0 is a K-semistable Q-Fano variety. Hence,

the two families X → Spec(R) and X ′ → Spec(R) which define a family π◦ : ST(R) \ 0 will

extend to a family X→ ST(R), with K-semistable fibers, and as such the valuative criterion

of S-completeness will be satisfied. These results mainly follow from [BX19] and the proof of

Theorem 2.86 which gives finite generation of the graded ring and ensures that it provides

normal test configurations (see, [BX19]).

The discussion in this section, in addition with [LWX21, Theorem 1.3], which shows the

separatedness of the K-moduli space MK , allows us to show the following:

Theorem 2.91 ([Alp+20, Corollary 1.2]). The finite type algebraic stack MK admits a separated

good moduli space ϕ : MK →MK .

In the next section, we will focus on the properties of this good moduli space.

2.2.2.5 Projectivity and Properness of the K-moduli Space

The good moduli space MK admits a natural Q-line bundle, called the Chow-Mumford or

more typically CM line bundle. This has been known analytically since the early days of

the study of K-stability [Tia87; FS90; Tia97], and analytical results had already shown that
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this canonical line bundle is big and nef on the locus of smooth K-polystable Fano varieties

[LWX19]. Projectivity of the K-moduli space is shown by showing this line bundle is ample.

This has been established using results from [CP21] and [XZ20]. In this section, we will sketch

the methods needed to establish these results. We will define the CM line bundle, but we will

do so for the case of log pairs, as that will be of particular importance to us in Chapter 9.

Definition 2.92 (See [PT09; GMS21]). Let f : X→ T be a proper flat morphism of varieties

of relative dimension n such that the general fibre is normal, and L an f -ample Q-line

bundle on X. Let D ⊆ X be an effective Weil Q-divisor of X such that D|t is equidimensional

of dimension n − 1 for all t ∈ T. By the Knudsen-Mumford theorem [KM76], there exist

functorially defined line bundles on T, λj := λj(X,T,L), and λ̃j := λj(D,T,L|D) where

1 ≤ j ≤ n+ 1, such that

det(f !∗(L
r)) =

n+1⊗
i=1

λ
(ri)
i

det
(
f !∗((L|D)r)

)
=

n+1⊗
i=1

λ̃
(ri)
i .

Since f is flat, the Hilbert polynomial is constant along fibres t ∈ T. Let p(k) and p̃(k) be

the Hilbert polynomials of Lt and Lt|D on fibres Xt and Dt, respectively. For k sufficiently

large, we have p(k) = a0k
n + a1k

n−1+ . . . and p̃(k) = ã0k
n + ã1k

n−1 + . . . .

For tuple (X,D,T,Lr) we define the log CM line bundle with angle β ∈ Q>0 on T to be

ΛCM,β(X,D,L) := λ
n(n+1)+

2a1−(1−β)ã0
a0

n+1 ⊗ λ−2(n+1)
n ⊗ λ̃(1−β)(n+1)

Notice, that if β = 1, we recover the original definition of Paul–Tian [PT09] for varieties.

We also the following theorem which lets us classify the CM line bundle.

Theorem 2.93 ([GMS21, Theorem 2.7]). Let (X,D,L) be the restriction of a family (X,D,L) where

Grothendieck- Riemann- Roch applies (e.g. if the fibres have mild singularities, for instance if they

are locally complete intersections) to a general b ∈ B and assume that X is Q-factorial. Moreover, if

L = −KX/B and D|Xb
∈ | −KXb

| for all b ∈ B, we have

deg(ΛCM,β) = π∗

(
c1(−KX/B)

n−1
)
·

(
− c1(−KX/B) + (1− β)

(
nD− (n− 1)c1(−KX/B)

))
This construction is natural in our setting, since we can set T = MK and take the universal

family X→MK . In this case, λCM is a Q-line bundle on MK . In fact, this descends to a line

bundle (here denoted by ΛCM ) on the good moduli space MK .
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Theorem 2.94 ((Projectivity) [CP21; XZ20]). The restriction of ΛCM to any proper subspace of MK

whose points parametrise reduced uniformly K-stable Fano varieties, is ample. In particular, ΛCM |MK

is ample.

Properness is arguably the most difficult of the properties of the good moduli space to

show. Properness here would imply that any family of K-semistable Fano varieties over

a punctured curve C◦ = C \ {0}, after a possible finite base change, can be filled in over

0 to a family of K-semistable Fano varieties over C. In [Blu+21], a specific strategy was

proposed in order to show properness of the K-moduli space. This is sometimes called

Langton’s algorithm, after Langton [Lan75], who proved the valuative criterion of properness

for the moduli space of polystable sheaves on a smooth projective variety X of arbitrary

dimension. As before, let R be a DVR and K be its fraction field. For a semistable sheaf FK

on X × Spec(K), Langton’s approach shows that Fκ of FK on X × Spec(κ), where κ is the

residue field of R, with a sequence of uniquely determined elementary transformations, so

that the ‘instability’ of Fκ decreases. Moreover, he showed that after finitely many steps this

process terminates with the degeneration becoming semistable. This method was abstracted

in [AHH19], where it is shown that Langton’s algorithm can be carried out on an Artin stack

as long as it admits a Θ-Stratification. The introduction of the Θ-Stratification is based on three

key observations:

1. for a point x in a stack X, the stability of x is determined by considering maps

f : [A1/Gm]→ X such that f(1) = x,

2. if x is unstable, then there should be a unique optimal destabilising map,

3. these optimal destabilisations should satisfy certain properties in families and can be

used to stratify the unstable locus of the stack.

These observations are not in vacuum; they arise from the study of the Harder-Narasimhan

stratification of the moduli of coherent sheaves on a projective scheme as well as the Kempf-

Ness stratification in GIT.

We will not define the notion of Θ-Stratification here, or go into terrible detail, but we

should note that in [Blu+21], the authors showed that the notion of Θ-Stratification for MK , is

equivalent to the existence of optimal destabilisations. This stems from the observation that

maps f : [A1/Gm]→MK such that f(1) = [X] are equivalent to special test configurations of
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X , which further to the observation that in order to attain properness one must identify a

unique optimal destabilizing test configuration for each K-unstable Fano variety X . Hence,

the existence of optimal destabilisations show that there exists a Θ-Stratification for MK ,

which in turn, in combination with the theory established in [AHH19], shows properness of

K-moduli spaces.

The Optimal Destabilisation Conjecture, along with other results, was recently established

in [LXZ22] using results from [Alp+20] and [XZ20]. We should note that the results in [LXZ22]

are proven for the K-moduli of log Fano pairs (X,∆), which is a more extensive setting.

Although we have not introduced these already, their definitions occur as a natural extension

to the definitions in our discussion in Section 2.2.2.2. Although results on boundedness

(Theorem 2.82) and openness (Corollary 2.83.1) extend to the log Fano setting very naturally,

the results on projectivity do not. This is due to the nature of deformations of the divisor ∆.

The result in [LXZ22] establishing properness is the following:

Theorem 2.95 ([LXZ22], Optimal Destabilization Conjecture [Blu+21, Conjecture 1.1]). Let

(X,∆) be a log Fano pair of dimension n and let r > 0 be an integer such that r(KX +∆) is Cartier.

Assume that δ(X,∆) < n+1
n

. Then δ(X,∆) ∈ Q and there exists a divisorial valuation v = ordE , for

divisor E/X , such that

δ(X,∆) =
AX,∆(E)

SX,∆(E)
.

In particular, if δ(X,∆) ≤ 1, then there exists a non-trivial special test configuration (X,∆X) with a

central fiber (X0,∆0) such that δ(X,∆) = δ(X0,∆0) and δ(X0,∆0) is computed by the Gm-action

induced by the test configuration structure. Here, δ(X,∆) is the delta invariant for log pairs (see

[FO18, Definition 0.2], [BJ20, §4.2]).

In the notation of this Theorem, the delta invariant has been extended to valuations. The

above result, combined with [Blu+21, Theorem 1.1] shows that there exists a Θ-Stratification

for MK , which in turn, combined with the general results on good moduli spaces in [AHH19],

yields properness of the K-moduli space MK . As a final result on the properties of the

K-moduli space, we present the following, which gives a bound on the singularity type of

the moduli space.

Theorem 2.96 ([Bra+21, Theorem 4]). Let MK
n,V be the good moduli space of K-polystable Fano

manifolds of dimension n and volume V . Then, there exists an effective divisor Bn,V on MK
n,V so that

the pair (MK
n,V , Bn,V ) has Kawamata log terminal singularities.
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Remark 2.96.1. An interesting phenomenon occurs when we consider log Fano pairs (X, (1−

β)D) where β ∈ (0, 1) ∩ Q. In this case, there exists a wall-chamber decomposition of the

K-moduli spaces, similar to the situation of VGIT we discussed in Section 2.1.3.1 (see e.g.

[GMS21; ADL19]). Explicit results for these compactifications are very hard to come by, and

are usually fixing the variety before and after the wall. Later on in this thesis will examine a

specific example where both variety and divisor are deformed before and after the wall, and

we will obtain explicit results on the wall-crossing.

2.2.2.6 Examples and Compactifications

So far, we have seen that the moduli stack MK admits a moduli space, MK which is sepa-

rated, projective and proper, and whose closed points are in bijection with n-dimensional

K-polystable Q-Fano varieties of volume V . Hence, we can ask ourselves whether these

compact K-moduli can be described explicitly. This means that we are both interested in

explicitly describing which varieties are in the compactification, or describing what the com-

pactification is as a scheme. The answer is (thankfully) yes to this question, but at the same

time, results are scarce and the method for obtaining such explicit compactifications is very

highly dependent on the specific example of a Fano family we wish to compactify.

To give perspective to the above statement, there are 1, 10 [Pez85; Pez87] and 105 families

of (smooth) Fano curves, surfaces and threefolds respectively. Smooth Fano threefolds were

classified initially in Picard rank 1 by Iskovskih [Isk77; Isk78; Isk79], and later on in the

remaining cases by Mori–Mukai [MM82; MM03] using results by Shokurov [Šok79]. For Fano

surfaces, or del Pezzo surfaces, 4 of these admit moduli, and their K-moduli compactification

was recently achieved by Odaka–Spotti–Sun [OSS16], using known results from Mabuchi–

Mukai [MM90] and Ding–Tian [DT92]. For the families of Fano threefolds, only two have been

compactified into moduli spaces by [SS17] (who show a more general result in compactifying

the K-moduli of del Pezzo varieties of degree 4, i.e. a complete intersection of two quadrics,

in any dimension), and [LX19]. For Fano fourfolds, only cubic 4-folds have been compactified

recently [Liu22]. It is important to note that all the above compactifications have been

achieved by relating the K-moduli to GIT quotients in some way or another. However, we

should note that these compactifications would not have been achieved if not for previous

work on finding which deformations have K-polystable elements (see [Tia90; Che08; Mar14]).

Later on in this thesis, we will compactify another family of Fano threefolds, using similar
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methods.

When we describe the K-moduli components of smooth Fano varieties, the difficulty

arises because we are ‘adding’ limit elements (obtained as limits of degenerations) that can be

singular. Although we do know their singularities have to be at worse klt, since they are limits

of K-polystable elements, knowing exactly what their singularities are might be difficult. As

such, we need to study the singularities of the limit points that could potentially compactify

the moduli spaces. In addition, we can use GIT to provide explicit compactifications. GIT

quotients are much better understood than K-stability, so there are plenty of benefits in this

approach. Trying to relate K-stability to GIT is not something new.

Theorem 2.97 ([PT09], [OSS16, Theorem 3.4]). Let G be a reductive algebraic group without

non-trivial characters. Let π : (X,L) → S be a G-equivariant polarised projective flat family of

equidimensional varieties over a projective scheme. Here, “polarised” means that L is a relatively

ample line bundle on X, and “equidimensional” means that all the irreducible components have the

same dimension. Suppose that

1. the Picard rank ρ(S) is one;

2. there is at least one K-polystable (Xt,Lt) which degenerates in S to (X0,L0) ̸= (Xt,Lt) via a

one parameter subgroup λ in G, i.e. the corresponding test configuration is not of product type.

Then a point s ∈ S is GIT (poly/ semi)stable if (Xs,Ls) is K-(poly/ semi)stable.

In studying the singularities of the limit of a degeneration family, one effective method

is to study the normalised volume. In lower dimensions, alongside with a classification of

singularities of the relevant deformation family, this becomes effective. The theorems below

provide us with a very powerful tool in determining the singularities of limits of degeneration

families.

Theorem 2.98 ([LL19, Proposition 4.6]). Let (X,∆) be a K-semistable log Fano pair of dimension

n. Then for any closed point x ∈ X , we have

(−KX −∆)n ≤

(
n+ 1

n

)n

v̂ol(x,X,∆).

Theorem 2.99 ([Liu18, Theorem 3]). Let X be K-polystable Q-Fano variety of dimension n. Let

p ∈ X be a closed point. Suppose (X, p) is a quotient singularity with local analytic model Cn/G

where G ⊂ GL(n,C) acts freely in codimension 1. Then
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v̂ol(p,X) =
nn

|G|

with equality if and only if |G ∩Gm| = 1 and X ∼= Pn/G, where Gm is the diagonal in GL(n,C).

Let us consider an example, which first appeared in [DT92] and later expanded upon in

[OSS16, Chapter 4]. Consider del Pezzo surfaces of degree 3, which (in the smooth case) are

smooth cubic surfaces X in P3, with volume (−KX)
2 = 3. If we consider a K-polystable limit

W of a degeneration family X of smooth K-polystable del Pezzo cubics of degree 3 and a

singular point x ∈ W we have by continuity of volumes that (−KW )2 = (−KXt)
2 = 3, and

thus Theorem 2.98 (with ∆ = 0) implies that

v̂ol(x,W ) ≥ 4

3
.

In addition, since W is at worse klt, W must have only isolated quotient singularities locally

analytically isomorphic to C2/G, whereG is a finite subgroup of U(2) acting freely on S3. This

is implied by the fact that klt surface singularities are precisely quotient singularities [CKM88,

Proposition 6.11], and that normal surfaces have only isolated singularities. Moreover, by

Theorem 2.99 the local normalised volume for quotient singularities is given by v̂ol(x,W ) =

4
|G| , which implies that |G| ≤ 3.

Recall that the order of orbifold group at an Ak singularity is k + 1, a Dk singularity is

4(k − 2), an E6 singularity is 24, an E7 singularity is 48, and an E8 singularity is 120. Hence,

since |G| = 1, 2, 3, we see that x is an A1 or A2 singularity (or W is smooth). The above

discussion implies that if a del Pezzo surface of degree 3 is K-polystable, then it must be

either smooth or have at worse A1 or A2 singularities. In addition, by [KS88] such a sungular

del Pezzo surface of degree 3 is a cubic surface with at worse A1 or A2 singularities. Thus, all

the elements of the K-moduli are cubic surfaces.

We now consider the GIT quotient of cubic surfaces, acted by PGL(4). In this case,

the parameter scheme is P(H0(P3,O3)) = P19, and the GIT quotient we want to study is

MGIT := P19 � PGL(4). Thankfully, this quotient is one of the first GIT quotients which was

explicitly described, by Hilbert using his Invariant Theory, even before GIT was developed.

This was studied by Hilbert in [Hil93] but has also been reformulated by [MFK94] in a more

modern language.

Theorem 2.100 ([Hil93], [Muk03, §7]). A cubic surface X ⊂ P3 is
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1. GIT stable if and only if it has at worst A1 singularities,

2. strictly GIT polystable if and only if X is isomorphic to S = {x1x2x3 − x30 = 0}, which has 3

A2 singularities,

3. GIT semistable if and only if it has at worst A1 or A2 singularities.

Defining the universal family of cubics π : X→ P19, where

X =
{
(x0 : · · · : x3)× aI ∈ P3 × P19

∣∣∣ ∑ aIx
I = 0

}
we can apply Theorem 2.97 to see that a cubicX is GIT-(poly/semi)stable if it is K-(poly/semi)stable.

This is because the universal family is flat and proper and ρ(P19) = 1.

We can now apply the moduli continuity method as it appeared in [OSS16] to show that the

two moduli stacks are isomorphic.

Let X be the Hilbert polynomial of smooth elements of the family of cubic surfaces,

pluri-anticanonically embedded by −mKX in PN , and let HX;N :− HilbX(PN). Given a closed

subscheme X ⊂ PN with Hilbert polynomial X(X,OPN (k)|X) = X(k), let Hilb(X) ∈ HX;N

denote its Hilbert point. Let

Ẑm :=

Hilb(X) ∈ HX;N

∣∣∣∣∣∣∣∣∣∣
X is a Fano manifold of the family of cubic surfaces,

OPN (1)|X ∼ OX(−mKX),

and H0(PN ,OPN (1)
∼=−→ H0(X,OX(−mKX)


which is a locally closed subscheme of HX;N . Let Zm be its Zariski closure in HX;N and Zm be

the subset of Ẑm consisting of K-semistable varieties.

Since by [Tia90; TY87] smooth cubic surfaces in P3 are K-stable and by [Oda15], the

smooth K-stable loci is a Zariski open set of MK , in the definition of moduli stack of MK =

[Zm/PGL(Nm + 1)] for appropriate m > 0 and in fact MGIT ∼= [Zm/PGL(Nm + 1)].

Thus, by the above discussion we have an open immersion of representable morphism of

stacks:

ϕ : MK −→MGIT

which descends to a map on the moduli spaces:

ϕ : MK −→MGIT .
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Note that representability follows once we prove that the base-change of a scheme map-

ping to the K-moduli stack is itself a scheme. Such a scheme mapping to the K-moduli

stack is the same as a PGL-torsor over Zm, which produces a PGL-torsor over Zm after a

PGL-equivariant base change. This PGL-torsor over Zm shows the desired pullback is a

scheme. By [The22, Lemma 06MY], since ϕ is an open immersion of stacks, ϕ is separated

and, since it is injective, it is also quasi-finite. In particular ϕ is also injective.

Now, by [Alp13, Prop 6.4], since ϕ is representable, quasi-finite and separated, ϕ is finite

and ϕ maps closed points to closed points, we obtain that ϕ is finite. Thus, by Zariski’s

Main Theorem, as ϕ is a birational morphism with finite fibers to a normal variety, ϕ is an

isomorphism to an open subset, but it is also an open immersion, thus it is an isomorphism.

Moreover, by [Sal65] we know that MGIT ∼= MK is isomorphic to P(1, 2, 3, 4, 5).

The proofs for similar explicit descriptions of K-moduli use the moduli continuity method

in one way or another. [LX19] use a variation of this method, taking into account that they

need different methods to determine the singularities of limit varieties or deformations in

the compact K-moduli. Later in this thesis, we will explore a variation of this method for

compactifying the K-moduli of the family of Fano threefolds 2− 25.
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3
Variations of GIT Quotients

In this section, we will study how to generalise results in [Laz09b; GM18; GMZ18], in

order to obtain a computational toolkit that will allow us to study specific GIT problems

algorithmically. In more detail, we will consider GIT quotients of tuples (X,H1, . . . , Hm)

where X is the complete intersection of k hypersurfaces of degree d in Pn, and the Hi are

hyperplanes. We will explain what makes these types of quotients variational, and we will

explain how one can define a Hilbert-Mumford numerical criterion in order to study these

quotients.

We will then proceed to construct the computational setting necessary for our analysis. We

will introduce a finite fundamental set of one-parameter subgroups, which, roughly, determines

which of these tuples are not-stable/unstable with respect to a specific polarisation. Using this,

we will demonstrate, with extra care in the case of pairs (X,H) how one can computationally

obtain the walls and chambers of this VGIT problem.

We will also use a polyhedral criterion, the Centroid Criterion, following [GM18], which will

allow us to distinguish between stable, and strictly semistable tuples. We will demonstrate

how this, in addition with the extra condition that X is Fano, shows that in the case of pairs,

the GIT quotient parametrises log pairs (X,D = S ∩H). We also compute the dimension of

the VGIT quotient.

We conclude the computational side of VGIT by introducing the concept of semi-destab-

ilising families, following [GM18], which can roughly be thought as sets of weights which

in turn will define the polynomials in the support of the pair of complete intersection and
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hyperplane such that these are unstable/non-stable for a specific parameter t. We will show

that these families are maximal, in the sense that a pair (X,H) which is unstable/non-stable

for some t must have their weights in these families.

3.1 Preliminaries

Throughout this Section, we will work over an algebraically closed field k. Let G := SL(n+1).

Consider a variety S which is the complete intersection of k hypersurfaces of degree d in

Pn, i.e, S = {f1 = f2 = · · · = fk = 0}, where each fi(x) =
∑
fIix

Ii with Ii = {di,0, . . . , di,n},∑n
j=0 di,j = d for all i. Here, xIi = x

di,0
0 x

di,1
1 . . . x

di,n
n . Also consider H1, . . . , Hm, m distinct

hyperplanes with defining polynomials hi(x) =
∑
hi,jxj . Let Ξd be the set of monomials

of degree d in variables x0, . . . , xn, written in the vector notation Ii = (di,0, . . . , di,n). As in

Gallardo –Martinez-Garcia [GM18; GMZ18] we define the associated set of monomials

Supp(fi) = {xIi ∈ Ξd|fIi ̸= 0}, Supp(hi) = {xj ∈ Ξ1|hi,j ̸= 0}.

Let V := H0(Pn,OPn(1)) and W := H0(Pn,OPn(d)) ≃ Symd V be the vector space of degree

d forms. For an embedded variety S = (f1, . . . , fk) ⊆ Pn we associate its Hilbert point

[S] = [f1 ∧ · · · ∧ fk] ∈ Gr(k,W ) ⊂ P
k∧
W.

Note that Gr(k,W ) is embedded in P
∧kW via the Plücker embedding (w1, . . . , wr)→ [w1 ∧

· · · ∧ wr], where the wr are the basis vectors of W . We denote by [S] := f1 ∧ · · · ∧ fk some lift

in
∧kW . We will consider the natural G action, given by A · f(x) = f(Ax) for A ∈ G.

For simplicity, we will denote Gr(k,W ) by Rn,d,k, and we let Rm := Rn,d,k ×
(
Rn,1,1

)m
be

the parameter scheme of tuples (f1, . . . fk, h1, . . . , hm), under the identification (f1, . . . fk) =

c(f1, . . . fk) and hi = cihi for c, ci ∈ Gm, where:

Rm
∼= Gr

(
k,

(
n+ d

d

))
×
(
P(H0(Pn,OPn(1)))

)m
↪→ P

k∧
W × (Pn)m.

In the case where m = 1, we will just write R = R1. There is a natural G action on V and W

given by the action of G on Pn. This action induces an action of G on Rn,d,k via the natural

maps, and by the inclusion map to the Plücker embedding P
∧kW . By extension, we also

obtain an induced action of G to R. We aim to study the GIT quotients Rm �G.
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Let C := P(W ). We will begin our analysis by first studying the GIT quotients C � G.

C parametrises hypersurfaces X = {f = 0} of degree d in Pn, where f =
∑
fIx

I is a

polynomial of degree d. As we saw in Section 2.1.3 we must study the Hilbert-Mumford

numerical criterion in order to study this quotient. In order to do so, we fix a maximal torus

T ∼= (Gm)
n ⊂ G which in turn induces lattices of characters M = HomZ(T,Gm) ∼= Zn+1 and

one-parameter subgroups N = HomZ(Gm, T ) ∼= Zn+1 with natural pairing

⟨−,−⟩ : M ×N → HomZ(Gm,Gm) ∼= Z

given by the composition (χ, λ) 7→ χ ◦ λ. We also choose projective coordinates (x0 : . . . : xn)

such that the maximal torus T is diagonal in G. Given a one-parameter subgroup λ : Gm →

T ⊂ SL(n+ 1) we say λ is normalised if

λ(s) = Diag(sµ0 , . . . , sµn)

where µ0 ≥ · · · ≥ µn with
∑
µi = 0 (implying µ0 > 0, µn < 0 if λ is not trivial).

From Lemma 2.34 with m = 1, we can choose an ample G-linearisation L = OC(1). Hence,

the set of characters, with respect to this G-linearisation corresponds to degree d polynomials

f , as sections s ∈ H0(C,OC(1)) are polynomials of degree d. In particular, for a monomial

xI of degree d and a normalised one-parameter subgroup λ as above, the natural pairing

is given by ⟨xI , λ⟩ =
∑n

i=0 diµi. Note, that in many cases we will abuse the notation and

write ⟨I, λ⟩ instead of ⟨xI , λ⟩. Then, the G-action induced by λ on a monomial xI is given by

λ(s) · xI = s⟨I,λ⟩xI . Naturally, the G-action induced by λ on the polynomial f is given by

λ(s) · f =
∑

I∈Supp(f)

s⟨I,λ⟩fIx
I .

In addition, notice that the action of λ on a fiber is equivalent to the action of λ on the

polynomial f , and by the above discussion, we have that weight(f, λ) = minxI∈Supp(f){⟨I, λ⟩}.

Thus the Hilbert-Mumford function reads

µ(f, λ) = − min
xI∈Supp(f)

{⟨I, λ⟩},

and the Hilbert-Mumford numerical criterion (following Theorem 2.33) is:

Lemma 3.1. With respect to a maximal torus T :

1. X = {f = 0} is semi-stable if and only if µ(f, λ) ≥ 0, i.e. if minxI∈Supp(f){⟨I, λ⟩} ≤ 0, for

all non-trivial one-parameter subgroups λ of T .
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2. X = {f = 0} is stable if and only if µ(f, λ) > 0, i.e. if minxI∈Supp(f){⟨I, λ⟩} < 0, for all

non-trivial one-parameter subgroups λ of T .

Remark 3.1.1. Fix a torus T , coordinates (x0 : . . . : xn) such that the torus is diagonal, and a

normalised one-parameter subgroup λ(s) = Diag(sµ0 , . . . , sµn). Let f be a degree d polyno-

mial, and assume that for some I = (d0, . . . , dn), for xI ∈ Supp(f), ⟨I, λ⟩ is minimal, i.e.

µ(f, λ) = −⟨I, λ⟩ = −
n∑
i=0

diµi.

Notice that λ(s) = Diag(s−µn , . . . , s−µ0) defines another normalised one-parameter subgroup,

since
∑n

j=0(−µn−j) = −
∑n

i=0 µi = 0, and −µn−i ≥ −µn−i−1 since µn−i−1 ≥ µn−i. Let also

I = (dn, dn−1, . . . , d0) be another monomial vector. Then, we have ⟨I, λ⟩ = −⟨I, λ⟩. We can

think of obtaining this new vector I by making the change of coordinates xn−i ↔ xi; this is a

projective change of coordinates, such that f is projectively equivalent and isomorphic to f ,

where f =
∑
fIx

I . We define

µ(f, λ) := max
xJ∈Supp(f)

{⟨J, λ⟩}

and we will show that µ(f, λ) = ⟨I, λ⟩, i.e. that ⟨I, λ⟩ is maximal for xI ∈ Supp(f). Suppose it

is not. Then, there exists I
′
= (dn

′, dn−1
′, . . . , d0

′), with xI′ ∈ Supp(f), such that ⟨I, λ⟩ < ⟨I ′, λ⟩.

But, this in turn would imply that ⟨I ′, λ⟩ < ⟨I, λ⟩, where I ′ = (d′0, . . . , d
′
n), and xI

′ ∈ Supp(f)

since f ∼= f . This contradicts the original assumption that ⟨I, λ⟩ is minimal. Thus, we have

shown that

µ(f, λ) = µ(f, λ).

The implication of the above is that we may reformulate Lemma 3.1 as follows:

Lemma 3.2. With respect to a maximal torus T :

1. X = {f = 0} is semi-stable if and only if maxxI∈Supp(f){⟨I, λ⟩} ≥ 0, for all non-trivial

one-parameter subgroups λ of T .

2. X = {f = 0} is stable if and only if maxxI∈Supp(f){⟨I, λ⟩} > 0, for all non-trivial one-

parameter subgroups λ of T .

Remark 3.2.1. Throughout Sections 3.1, 3.2 and 3.3, as well as Chapters 4, 5 and 7 we will

use the description of the Hilbert-Mumford numerical criterion in Lemma 3.2 (adapted for
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our VGIT problem of complete intersections and hyperplanes). Throughout these sections, to

ease notation, we will denote the Hilbert-Mumford function by µ and not µ. In Section 3.6,

in order to aide the reader, we will use the convention of Lemma 3.1 (adapted for our VGIT

problem of complete intersections and hyperplanes), in keeping with the convention of the

notation in [Zan22].

It is also noteworthy to point out that we would have obtained an identical Hilbert-

Mumford function if we considered the conjugate action A · f(x) = f(A−1x) for A ∈ G, as in

[FS13; AL00]. This should not be a surprise, as the actions are conjugate to each other. We are

choosing the natural G-action to be consistent with the moduli descriptions we are looking

for.

We will proceed to analyse the GIT quotient Rn,d,k � G. We will keep the notation as

before, and we will fix a maximal torus T , with coordinates (x0 : . . . : xn), such that T is

diagonal. Recall that Ii = (di,0, . . . , di,n) is a monomial vector such that xIi ∈ Supp(fi).

Let λ be a normalised one-parameter subgroup. In this case, the natural pairing gives us

⟨Ii, λ⟩ =
∑n

j=0 di,jµj , and more specifically λ(s) · xIi = s⟨Ii,λ⟩xIi . Similarly, the action of λ on a

Plücker coordinate
∧k
i=1 x

Ii is induced as:

λ(s) ·
k∧
i=1

xIi = s
∑k

i=1⟨Ii,λ⟩
k∧
i=1

xIi ,

hence the λ-action on [S] :=
∧k
i=1 fi =

∧k
i=1

∑
fIix

Ii is:

λ(s) · [S] =
∑
xIi∈Ξd

s
∑k

i=1⟨Ii,λ⟩
k∧
i=1

fIix
Ii

for λ a normalised one-parameter subgroup.

From our discussion above, we have that

µ(f1∧ · · ·∧ fk, λ) := max

{
k∑
i=1

⟨Ii, λ⟩
∣∣∣(I1, . . . , Ik) ∈ (Ξd)

k, Ii ̸= Ij if i ̸= j and xIi ∈ Supp(fi)

}
.

Lemma 3.3. With respect to a maximal torus T :

1. [f1∧· · ·∧fk] ∈ Gr(k,W ) is semi-stable if and only if µ(f1∧· · ·∧fk, λ) ≥ 0 for all non-trivial

one-parameter subgroups λ of T .

2. [f1 ∧ · · · ∧ fk] ∈ Gr(k,W ) is stable if and only if µ(f1 ∧ · · · ∧ fk, λ) > 0 for all non-trivial

one-parameter subgroups λ of T .
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Proof. From the above discussion, and Theorem 2.33, we are left to show that

sign(µ(f1 ∧ · · · ∧ fk, λ)) = sign(µ([f1 ∧ · · · ∧ fk], λ)). A general element of [f1 ∧ · · · ∧ fk] is of

the form

α
k∧
i=1

fi,

and hence we have:

sign(µ([f1 ∧ · · · ∧ fk], λ)) =

sign

(
max

{ k∑
i=1

⟨Ii, λ⟩
∣∣∣(I1, . . . , Ik) ∈ (Ξd)

k, Ii ̸= Ij if i ̸= j, xIi ∈ Supp(fi)

})
= sign(µ(f1 ∧ · · · ∧ fk, λ)).

Remark 3.3.1. If the choice of the fi is clear, we will write µ(S, λ) instead of µ(f1 ∧ · · · ∧ fk, λ)

Remark 3.3.2. The complete intersection S induces an element of the Grassmanian

Φ :=
{∑

αifi|(ai : · · · : ak) ∈ Pk−1
}

, which is a linear system of dimension k − 1, whose base

locus is S. As in [MM90], when Φ is (semi-)stable we will also say that S is (semi-)stable.

Extending to the VGIT case, i.e to the quotient Rm �G, as in [GM18; GMZ18] we have the

following Lemma.

Lemma 3.4. The set of G-linearisable line bundles PicG(Rm) is isomorphic to Zm+1. A line bundle

L ∈ PicG(Rm), is ample if and only if

L = O(a, b1, . . . , bm) := O(a, b⃗) := π∗
1OGr(a)⊗ π∗

21
OPn(b)⊗ · · · ⊗ π∗

2mOPn(bm)

where π1 and π2i are the natural projections and a, bi > 0.

Proof. The proof follows the argument the proof of [GM18, Lemma 3.2], and Lemma 2.34,

noting that all the assumptions of Lemma 2.34 are satisfied.

For ample L = O(a, b⃗) the GIT quotient R �G is

M
GIT

n,d,k,m,⃗t :=M
GIT

(⃗t)n,d,k,m := Proj
⊕
j

H0(R,L⊗j)G,

where t⃗ = (t1, . . . , tm) with ti = bi
a
∈ Q>0. By Lemma 2.35, for L as above, and by the functori-

ality of the Hilbert-Mumford function, we have µL((S,H1, . . . , Hm), λ) = aµt⃗(S,H1, . . . , Hm, λ)
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where

µt⃗(S,H1, . . . , Hm, λ) := µt⃗(f1 ∧ · · · ∧ fk, h1, . . . , hm, λ)

:= µ(f1 ∧ · · · ∧ fk, λ) +
m∑
p=1

tpµ(Hp, λ)

= max

{
k∑
i=1

⟨Ii, λ⟩
∣∣∣(I1, . . . , Ik) ∈ (Ξd)

k, Ii ̸= Ij if i ̸= j, xIi ∈ Supp(fi)

}

+
m∑
p=1

tpmax{rj|hj,p ̸= 0, hj,p ∈ Supp(hp)}.

Definition 3.5. Let t⃗ be such that all ti ∈ Q>0. The tuple (f1, . . . , fk, h1, . . . , hm) is t⃗-stable (resp.

t⃗-semistable) if µt⃗(f1∧· · ·∧fk, h1, . . . , hm, λ) > 0 (respectively, µt⃗(f1∧· · ·∧fk, h1, . . . , hm, λ) ≥ 0)

for all non-trivial normalised one-parameter subgroups λ of G. A tuple (f1, . . . , fk, h1, . . . , hm)

is t⃗-unstable if it is not t⃗-semistable. A tuple (f1, . . . , fk, h1, . . . , hm) is strictly t⃗-semistable if it is

t⃗-semistable but not t⃗-stable.

Remark 3.5.1. We will often write (S,H1, . . . , Hm) instead of the tuple (f1, . . . , fk, h1, . . . , hm)

for ease of notation.

3.2 Stability Conditions

As before, we fix a maximal torus T ⊂ G and coordinates such that T is diagonal. We define

a partial order on Ξd (following Mukai [Muk03, §7]): given v, v′ ∈ Ξd we have

v ≤ v′ if and only if ⟨v, λ⟩ ≤ ⟨v′, λ⟩

for all normalised one-parameter subgroups λ : Gm → T ⊂ G. It is also useful to note

there exists a lexicographic order <lex, e.g. x0x1 <lex x
2
0 in Ξd, which is a total order [Har05,

Theorem 1.8], i.e. it is antisymmetric, transitive, and equipped with a connex relation, where

if x ̸= y we have either x <lex y or y <lex x. This gives rise to the order ≤λ for a normalised

one-parameter subgroup λ which we call the λ-order: v ≤λ v′ if and only if:

1. ⟨v, λ⟩ < ⟨v′, λ⟩ or

2. ⟨v, λ⟩ = ⟨v′, λ⟩ and v ≤lex v′.

Lemma 3.6. The λ-order is a total order .
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Proof. This follows, since the lexicographic order is a total order, [Har05, Theorem 1.8].

The λ-order is necessary in introducing an order on Ξd. This is particularly beneficial as,

as in [Muk03, §7], we will later define maximal unstable sets that contain elements of Ξd.

The maximality of these sets is guaranteed by the λ-order, and these sets will allow us to

computationally find the monomials in Ξd necessary to define unstable elements.

As in Gallardo–Martinez- Garcia [GM18, Section 5] we define a fundamental set of one-

parameter subgroups λ ∈ T .

Definition 3.7. The fundamental set of one-parameter subgroups λ ∈ T for k hypersurfaces of de-

gree d andm hyperplanes, Pn,k,d,m consists of all non-trivial elements λ(s) = Diag(sµ0 , . . . , sµn)

where

(µ0, . . . , µn) = c(γ0, . . . , γn) ∈ Zn+1

satisfying the following:

1. γi = ai
bi
∈ Q such that gcd(ai, bi) = 1 for all i = 0, . . . n and c = lcm(b0, . . . , bn),

2. 1 = γ0 ≥ γ1 ≥ · · · ≥ γn = −1−
∑n−1

i=1 γi,

3. (γ0, . . . , γn) is the unique solution of a consistent linear system given by n− 1 equations

chosen from the union of the following sets:

Eq(n− 1, k, d) := {γi − γi+1 = 0}∪

{ n∑
j=0

[ k∑
i=1

di,j −
k∑
i=1

di,j
]
γj = 0 | di,j, di,j ∈ Z≥0,∀i, j,

n∑
j=0

di,j =
n∑
j=0

di,j = d

}
.

Since there is a finite number of monomials in Ξd and equations in Eq(n − 1, k, d), the set

Pn,k,d,m is finite.

Lemma 3.8. A tuple (S,H1, . . . , Hm) is not t⃗-stable (respectively not t⃗-semistable) if and only if there

is g ∈ G such that

µt⃗(S,H1, . . . , Hm) := max
λ∈Pn,d,k,m

{µt(g · S, g ·H1, . . . , g ·Hm, λ)} ≤ 0 (respectively < 0)

where µt⃗ is the Hilbert-Mumford function defined above and Pn,d,k,m is the fundamental set of

Definition 3.7.
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Proof. The proof follows the argument in the proof of [GM18, Lemma 3.2]. Let Rn
m,T be the

non-stable loci of Rm with respect to a maximal torus T < G; and let Rn
m be the non-stable

loci of Rm. By Mumford [MFK94, p.137], the following holds

Rn
m =

⋃
Ti⊂G, maximal

Rn
m,Ti

.

Let (f ′
1, . . . , f

′
k, h1, . . . , hm) be a tuple which is not t⃗-stable. Then, µt⃗(f

′
1∧· · ·∧f ′

k, h
′
1, . . . , h

′
m, ρ) ≤

0 for some ρ ∈ T ′ in a maximal torus T ′. All the maximal tori are conjugate to each other in G,

and by [MFK94, Definition 2.2] the following holds:

µt⃗(f
′
1 ∧ · · · ∧ f ′

k, h
′
1, . . . , h

′
m, ρ) = µt⃗(g · (f ′

1 ∧ · · · ∧ f ′
k, h

′
1, . . . , h

′
m), gρg

−1).

Then, there is g0 ∈ G such that λ := g0ρg0
−1 is normalised with respect to a torus T whose

generators define the variables for the monomials of fi and hj and (f1, . . . , fk, h1, . . . , hm) :=

g0 · (f ′
1, . . . , f

′
k, h

′
1, . . . , h

′
m) has coordinates in the coordinate system which diagonalises λ such

that µt⃗(f1 ∧ · · · ∧ fk, h1, . . . , hm, λ) ≤ 0. In this coordinate system normalised one-parameter

subgroups λ = Diag(sµ0 , . . . , sµn), with fixed µ0 > 0 form a closed convex polyhedral subset ∆

of dimension n inN⊗Q ∼= Qn+1 (in fact ∆ is a standard simplex). Indeed, this is the case since

for any normalised one-parameter subgroup, λ(s) = Diag(sµ0 , . . . , sµn) where µ0 ≥ · · · ≥ µn

with
∑
µi = 0 and we may assume without loss of generality that µ0 = 1.

For any fixed f1, . . . , fk, h1, . . . , hm, the function µt⃗(f1∧· · ·∧fk, h1, . . . , hm,−) : N⊗Q→ Q

is piecewise linear, as for a fixed maximal torus T and normalised one-parameter sub-

group λ the function is the maximum of a finite number of linear forms. The critical points

of µt⃗ (i.e. the points where µt⃗ fails to be linear) correspond to those points in N ⊗ Q

where
∑k

i=1⟨Ii, λ⟩ +
∑m

p=1 tp⟨xlp , λ⟩ =
∑k

i=1⟨I i, λ⟩ +
∑m

p=1 tp⟨xlp , λ⟩, for Ii = (di,0, . . . , di,n),

I i = (di,0, . . . , di,n) representing monomials of degree d, with Ii ̸= Ij for all i ̸= j, where

fi =
∑
fIix

Ii , and xlp are monomials of degree 1, such that xlp := max Supp(hp). Notice that

xlp is unique for each of the Hp = {hp = 0}, hence
∑m

p=1 tp⟨xlp , λ⟩ =
∑m

p=1 tp⟨xlp , λ⟩ implies

that xlp = xlp for each p. Hence the
∑m

i=1 tixji component is always linear, and as such the

critical points of µt⃗ correspond to those points in N ⊗ Q where
∑k

i=1⟨Ii, λ⟩ =
∑k

i=1⟨I i, λ⟩.

Since ⟨−,−⟩ is bilinear, that is equivalent to say that
〈∑k

i=1

(
Ii − I i

)
, λ
〉
= 0. These points

define a hyperplane in N ⊗ Q and the intersection of this hyperplane with ∆ is a simplex

∆(Ii,Ii)
of dimension n− 1.

The function µt⃗(f1 ∧ · · · ∧ fk, h1, . . . , hm,−) is linear on the complement of the union of

hyperplanes defined by
〈∑k

i=1

(
Ii − I i

)
, λ
〉
= 0. Hence, its maximum is achieved on the
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boundary, i.e. either on ∂∆ or on ∆(Ii,Ii)
which are all convex polytopes of dimension n− 1.

We can repeat this reasoning by finite inverse induction on the dimension until we conclude

that the maximum of µt⃗(f1 ∧ · · · ∧ fk, h1, . . . , hm,−) is achieved at one of the vertices of ∆ or

∆(Ii,Ii)
. Notice that these correspond precisely, up to multiplication by a constant, to the finite

set of one-parameter subgroups in Pn,k,d,m.

Corollary 3.8.1. Let (S,H) ∈ R and

a = min{t ∈ Q>0|µt(g · S, g ·H, λ) ≥ 0, ∀λ ∈ Pn,d,k,1, g ∈ G},

b = max{t ∈ Q>0|µt(g · S, g ·H,λ) ≥ 0, ∀λ ∈ Pn,d,k,1, g ∈ G}.

If (S,H) is t-semistable for some t, then

1. (S,H) is t-semistable if and only if t ∈ [a, b] ∩Q>0,

2. if (S,H) is t-stable for some t ∈ (a, b), then (S,H) is t-stable for all t ∈ (a, b) ∩Q>0.

The interval [a, b] is called the interval of stability of the pair. If [a, b] = ∅ then the pair is t-unstable

for all t.

Proof. The proof follows the argument of the proof of [GM18, Corollary 3.3].

We can also extend the above for the case of tuples.

Definition 3.9 (see [GMZ18, Definition 2.4 ]). The space of stability conditions is

Stab(n, d, k,m) :=
{
t⃗ ∈ (Q≥0)

m| there exists a t⃗-semistable tuple (S,H1, . . . , Hm)
}
.

Lemma 3.8 determines the t⃗-stability for all tuples (S,H1, . . . , Hm) as the fundamental set

does not depend on t. In more detail, in checking the stability conditions for such tuples,

Lemma 3.8 shows that we may only consider a finite set of one-parameter subgroups Pn,d,k,m,

to check which tuples are not t⃗-semistable, In particular, this Lemma allows us to determine

the space of stability conditions, which is compact by [DH98]. This verifies the prediction

in [KW06] that there should be a finite set of one-parameter subgroups that determines the

stability of tuples.
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3.3 The Centroid Criterion

We will state a centroid criterion, which will allow us to computationally deduce whether a

point is stable or strictly semistable. This is known to be always possible by [DH98, Theorem

9.2], and is a well-known direct application of the Hilbert-Mumford numerical criterion. The

contribution of this thesis in this application, is the very explicit description of the proof in

the notation we have introduced for Section 3.1.

We define a map A : (Ξd)
k × (Ξ1)

m → Qn+1 as follows: Given distinct monomials

xI1 , . . . , xIk ∈ Ξd, and distinct monomials xl1 , . . . , xlm ∈ Ξ1, let

A

(
(xI1 , . . . , xIk), xl1 , . . . , xlm

)
=
( k∑
i=0

di,0, . . . ,
k∑
i=0

di,l1 + t1, . . . ,

k∑
i=0

di,lm + tm, . . . ,

k∑
i=0

di,n

)
where we add the tp at the position of monomial xlp , i.e. at position lp, e.g. if we have

monomials xl1 = x0, xl2 = x3 and m = 2 we have

A

(
(xI1 , . . . , xIk), x0, x3

)
=

(
k∑
i=0

di,0 + t1,
k∑
i=0

di,1,
k∑
i=0

di,2,
k∑
i=0

di,3 + t2,
k∑
i=0

di,4, . . . ,
k∑
i=0

di,n

)
.

Since:

n∑
j=0

( k∑
i=1

(di,j)
)
+

m∑
p=1

tp = kd+
m∑
p=1

tp

the image of A is contained on the first quadrant of the hyperplane

Hn,k,d,m,⃗t :=

{
(z0, . . . , zn) ∈ Qn+1

∣∣∣ n∑
i=0

zi = kd+
m∑
p=1

tp

}
.

Then, for S, a complete intersection of k hypersurfaces of degree d, S = {f1 = · · · = fk =

0}, as before and H1, . . . , Hm distinct hyperplanes embedded in Pn, where Hi = {hi = 0}, we

define their convex hull Conv(S,H1, . . . , Hm) as the convex hull of{
A((xI1 , . . . , xIk), xl1 , . . . , xlm)

∣∣ xIi ∈ Supp(fi) for all i, Ii ̸= Ij, xlp = max(Supp(hp))
}
,

where max is given with respect to the λ order and is unique since the λ-order is a total

order. Then Conv(S,H1, . . . , Hm) is a convex polytope in Hn,k,d,m,⃗t. Note that in particular, for

A
(
(f1, . . . , fk), h1, . . . , hm

)
:= A

((∑
fI1x

I1 , . . . ,
∑
fIkx

Ik
)
, xl1 , . . . , xlm

)
we have

A
(
(f1, . . . , fk), h1, . . . , hm

)
∈ Conv(S,H1, . . . , Hm).
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We also define the t⃗-centroid of S,H1, . . . , Hm as

Cn,d,k,m,⃗t =

(
kd+

∑m
p=1 tp

n+ 1
, . . . ,

kd+
∑m

p=1 tp

n+ 1

)
∈ Hn,k,d,m,⃗t ⊂ Qn+1.

Theorem 3.10. A tuple (S,H1, . . . , Hm) is t⃗-semistable (respectively, t⃗-stable) if and only if Cn,d,k,m,⃗t ∈

Conv(S,H1, . . . , Hm) (respectively, Cn,d,k,m,⃗t ∈ Int(S,H1, . . . , Hm), where Int(S,H1, . . . , Hm) is the

interior of Conv(S,H1, . . . , Hm)).

Proof. The proof follows the argument of the proof of [GM18, Lemma 1.5]. Let xlp =

maxSupp(hp), for p = 1, . . . ,m. First, note that since

µt⃗(S,H1, . . . , Hm, λ) = µ(S, λ) +
m∑
p=1

tp max
xz∈Supp(Hp)

⟨xz, λ⟩

= µ(S, λ) +
m∑
p=1

tp⟨xlp , λ⟩

= µt⃗(S, S ∩ {xl1 = 0} ∩ · · · ∩ {xlm = 0}, λ).

We first show that if (S,H1, . . . , Hm) = ((f1, . . . , fk), H1, . . . , Hm) is t⃗-semistable then the

condition holds. Suppose Cn,d,k,⃗t /∈ Conv(S,H1, . . . , Hm), then, there exists an affine map

ψ : Rn+1 → R with ψ(Cn,d,k,⃗t) = 0 and ψ|Conv(S,H1,...,Hm) > 0. We can write

ψ(z0, . . . , zn) =
n∑
i=0

αjzj + q

where αi are integers, since the convex hull has vertices with rational coefficients. Thus, for

xIi ∈ Supp(fi):

ψ(A(xI1 , . . . , xIk , xl1 , . . . , xlm)) =
n∑
j=0

αj

( k∑
i=1

di,j

)
+

m∑
p=1

tpαlp + q > 0.

0 = ψ(Cn,d,k,⃗t) =
kd+

∑m
p=1 tp

n+ 1

n∑
i=0

αi + q.

Let δ := − q
kd+

∑m
p=1 tp

∈ Q. Then (n + 1)δ =
∑n

i=0 αi, and we can choose some r ∈ Z≤0 such

that rδ ∈ Z. Then we can define one-parameter subgroup:

λ(s) := Diag(sr(α0−δ), . . . , sr(αn−δ)).
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Using this one-parameter subgroup we have:

µt⃗(S,H1, . . . , Hm, λ) = max
xIi∈Supp(fi)

{
k∑
i=1

⟨Ii, λ⟩| for all i, Ii ̸= Ij for all i, j

}
+

m∑
p=1

tp⟨xlp , λ⟩

= max
xIi∈Supp(fi)

{
n∑
j=0

r(αj − δ)
k∑
i=1

di,j

}
+

m∑
p=1

tpr(αlp − δ)

= r

(
max

xIi∈Supp(fi)

{
n∑
j=0

αj

k∑
i=1

di,j +
m∑
p=1

tpαlp

}
− (kd+

m∑
p=1

tp)δ

)

= r max
xIi∈Supp(fi)

{
ψ(A((xI1 , . . . , xIk), xl1 , . . . , xlm)

}
≤ r max

v∈Conv(S,H1,...,Hm)
ψ(v) < 0

hence (S,H1, . . . , Hm) is not t⃗-semistable. This shows that if (S,H1, . . . , Hm) is t⃗-semistable

then Cn,d,k,m,⃗t ∈ Conv(S,H1, . . . , Hm).

Conversely, let (S,H1, . . . , Hm) be not t⃗-semistable. As such, there exists a normalised

one-parameter subgroup λ(s) := Diag(sα0 , . . . , sαn) with
∑n

j=0 αj = 0 and

0 > µt⃗(S,H1, . . . , Hm, λ) = max
Ii∈Supp(fi)

{
n∑
j=0

αi

k∑
i=1

di,j

}
+

m∑
p=1

tpalp .

We define the affine transformation ψ : Rn+1 → R as ψ(z0, . . . , zn) =
∑n

i=0 αizi, such that

ψ|Conv(S,H1,...,Hm) < 0 (by convexity), and

ψ(Cn,d,k,m,⃗t) =
kd+

∑m
p=1 tp

n+ 1

n∑
j=0

αj = 0.

Hence Cn,d,k,m,⃗t /∈ Conv(S,H1, . . . , Hm).

A similar argument shows the result for stable orbits, where the > and < are replaced

accordingly by ≥ and ≤ respectively.

We can also find the dimension of the moduli space.

Theorem 3.11. Assume that the ground field is algebraically closed with characteristic 0 and that the

locus of stable points is not empty and d > 2. Then

dimM
GIT

n,d,k,m(⃗t) = k(n+ 1)

(
(n+ 2) . . . (n+ d)

d!
− (n+ 1)

)
− n(n+m− 2)− k2.
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Proof. Let p = (S,H1, . . . , Hm) ∈ Rm be a tuple. Then, we have

0 ≤ dim(Gp) ≤ dim(GS ∩GH1 ∩ · · · ∩GHm) ≤ dim(GS) ≤ dim(Aut(S)) = 0,

where the last inequality follows from [JL17, Lemma 2.13]. We obtain the result using the

following identity from [Dol03, Corollary 6.2]:

dimM
GIT

n,d,k,⃗t = dim(Rm)− dim(G) + min
S∈Rm

GS =

= k
((n+ d

d

)
− k
)
+mn−

(
(n+ 1)2 − 1

)
= k(n+ 1)

(
(n+ 2) . . . (n+ d)

d!
− (n+ 1)

)
− n(n+m− 2)− k2.

For the rest of this section, we will restrict ourselves to the case m = 1. The following

Lemma is a generalization of [GM18, Lemma 4.1].

Lemma 3.12. Let (S,H) ∈ R, with non-empty interval of stability [a, b]. Then

1. a = 0 if and only if S is a GIT semistable variety which is the complete intersection of k degree

d hypersurfaces.

2. b ≤ tn,d,k =
kd
n

.

3. (S,H) is tn,k,d semistable if and only if D = S ∩H is a GIT semistable complete intersection of

k hypersurfaces of degree d in H ∼= Pn−1.

Proof. For 1, notice that if t = a
b
= 0 if and only if a = 0, then µt(S,H, λ) = µ(S, λ) ≥ 0 and

thus this reduces to a GIT problem for complete intersections of k degree d hypersurfaces,

since the natural projection R→ Gr(k,W ) is G-invariant.

For 2, assume that t > tn,d,k. Without loss of generality, we may assume that S =

f1(x0, . . . , xn) ∩ · · · ∩ fk(x0, . . . , xn) and that H = {xn = 0}. Then, for the normalised one-

parameter subgroup λ(s) = Diag(s, s . . . , s, s−n) we have

µt(S,H, λ) ≤ kd− tn < kd− kdn

n
= 0,

hence (S,H) is unstable, and thus b ≤ tn,d,k.

For 3, first assume that D = S ∩H is unstable, where we can find a coordinate system

(x0 : . . . : xn) such that H = {xn = 0}, D = {f ′
1(x0, . . . , xn−1) = · · · = f ′

k(x0, . . . , xn−1)}. Notice
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that under the λ-order, the monomial xd−1
0 xn is the maximal monomial of degree d containing

xn as for any normalised one-parameter subgroup λ, where λ(t) = Diag(tλ0 , . . . , tλn), we

have:

⟨xa00 . . . xann , λ⟩ =
n−1∑
i=0

λiai + λnan

≤ λ0

n−1∑
i=0

ai + λnan (since λi ≥ λj for i ≤ j)

≤ λ0(d− 1) + λnan (since
n∑
i=1

ai = d)

≤ λ0(d− 1) + λn

= ⟨xd−1
0 xn, λ⟩.

Note that we do not have to consider the case an = 0, as then the monomial will not contain

xn. Hence, S := {f ′
1(x0, . . . , xn−1) + xd−1

0 xn = · · · = f ′
k(x0, . . . , xn−1) + xd−1

0 xn} is the complete

intersection of k hypersurfaces of degree d which is maximal with respect to the Hilbert-

Mumford function such that S ∩H = D, i.e. µ(S, λ) = max{µ(D,λ)|S ∩H = D}. This further

implies that if µtn,d,k
(S,H, λ) < 0 then for all pairs (S,H) such that S ∩ H = D, the pair

is tn,k,d-unstable. Returning to the original assumption that D is unstable, we have by the

centroid criterion (Theorem 3.10), that{kd
n
, . . . ,

kd

n
, 0
}
/∈ Conv(f ′

1(x0, . . . , xn−1) + xd−1
0 xn, . . . , f

′
k(x0, . . . , xn−1) + xd−1

0 xn).

Notice that,

A := {A((xI1 , . . . , xIk), xn)|xIi ∈ Supp(f ′
i + xd−1

0 xn) for all i, Ii ̸= Ij} ⊂M := {yn = tn,d,k}

and p =
{
kd − 1, 0 . . . , 0, 1 + tn,d,k

}
/∈ M . Then, since Conv(S,H) = ConvexHull(A), it is

a pyramid with base M and vertex p. Thus Cn,d,k,tn,d,k
/∈ Conv(S,H) and thus (S,H) is

tn,k,d-unstable by the centroid criterion (Theorem 3.10).

Now, suppose (S,H) is tn,k,d-unstable, i.e. Cn,d,k, kd
n
/∈ Convtn,d,k

(S,H). Without loss of

generality, we can assume that H = {xi = 0}, and let

p =
{kd
n
, . . . ,

kd

n
, 0,

kd

n
, . . . ,

kd

n

}
with 0 in the i-th position. In particular p /∈ Conv(f1, . . . , fk, xi). The monomials of D = S ∩H

are monomials of the form Ij = (d0,j, . . . , di−1,j, 0, di+1,j, . . . , dn,j), which correspond to faces
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F ∈ Convtn,d,k
(S,H). The projection FM of each face F to hyperplane M = {yi = 0} shows

p /∈ FM . Notice that p = Cn,d,k and FM ⊆ Conv(f1, . . . , fk, h), and hence D is unstable by the

centroid criterion (Theorem 3.10).

The following theorem generalises [GM18, Theorem 1.1].

Theorem 3.13. All GIT walls {t0, . . . , tn,d,k} correspond to a subset of the finite set{
−
∑k

i=1⟨Ii, λ⟩
⟨xi, λ⟩

∣∣∣Ii ̸= Ii, for all i ̸= j, Ii ∈ Ξd, 0 ≤ i ≤ n, λ ∈ Pn,d,k
}

and they are contained in the interval [0, tn,d,k]. Every pair (S,H) has an interval of stability [a, b]

with a, b ∈ {t0, . . . , tn,d,k}. (S,H) is t-semistable if and only if t ∈ [ti, tj] for some walls ti, tj . If

(S,H) is t-stable for some t then (S,H) is t-stable if and only if t ∈ (ti, tj).

Proof. Since Ξd is finite for each d, P(Ξd)k × P(Ξ1), where P here denotes the power set, is

finite, as by the Hilbert-Mumford numerical criterion stability only depends on the support of

the polynomials involved and the combination of possible supports is thus finite. In addition,

by Corollary 3.8.1 there is a finite number of intervals of stability [ai, bi]. Hence, tj ∈ ∪i{ai, bi}

with bi ≤ tn,d,k by Lemma 3.12. For any wall ti there is at least a pair (S,H) such that

µt(S,H) := max
λ∈Pn,d,k

{µt(S,H, λ)} ≥ 0

for all t ≤ ti and µt(S,H) < 0 for all t > ti. By the continuity of µt(S,H), µti(S,H) = 0 and

hence

ti = −
∑k

i=1⟨Ii, λ⟩
⟨xi, λ⟩

.

Remark 3.13.1. In the general case, one can find a superset of the stability walls t⃗ by solving

the simultaneous equations

k∑
i=1

⟨Ii, λ⟩+
m∑
j=1

tj⟨xij , λ⟩ = 0

for Ii ∈ Ξd, Ii ̸= Ik for all i ̸= k, xij ∈ Ξ1 and λ ∈ Pn,d,k,m. The complexity of computations

increases as m increases, and in addition the walls are not 0-dimensional, which implies that

we need to treat them in a stratified way. In addition, we don’t have a simple one-directional

way of exploring the set of stability conditions to find all walls.
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Theorem 3.14. Every point in the GIT quotient MGIT

n,d,k,t := M
GIT

n,d,k(t) parametrises a closed orbit

associated to a pair (S,D) with D := S ∩H in the cases where S is a Calabi-Yau or a Fano complete

intersection of k hypersurfaces of degree d > 1. Furthermore, if S is Fano, t ≤ tn,d,k and (S,D) is

t-semistable, then S does not contain a hyperplane in the support of at least one of the hypersurfaces in

the complete intersection.

Proof. Suppose that n + 1 ≥ kd (i.e. S is Fano or Calabi-Yau) and (S,H) is a pair such

that Supp(H) ⊂ Supp(fi) for some i. Then, it suffices to show (S,H) is t-unstable for all

t ≥ 0. Without loss of generality, we take H = {xn = 0} and S = {xnf1(x0, . . . , xn) =

0}∩{f2(x0, . . . , xn) = 0} · · ·∩{fk(x0, . . . , xn) = 0}. Then for the λ-order, the monomial xd−1
0 xn

is maximal in Supp(f1) ∪ {xd−1
0 xn} and the monomial xd0 is maximal in Supp(fi) ∪ {xd0} for all

i > 1. For any normalised one-parameter subgroup λ = Diag(sr0 . . . , srn) we have:

µt(S,H, λ) ≤ (k − 1)dr0 + (d− 1)r0 + rn + trn.

Specifically, for the normalised 1-ps λ = Diag(sr) with r = (n,− nkd
n−1

, . . . ,− nkd
n−1

,−n(kd− 1))

we have

µt(S,H, λ) ≤ (k − 1)dn+ (d− 1)n− n(kd− 1)− tn(kd− 1) = −tn(kd− 1) < 0,

and hence (S,H) is unstable for all t > 0.

Let S be a Fano complete intersection, i.e. kd ≤ n and we assume that S =

{xnfd−1
1 (x0, . . . , xn) = 0} ∩ · · · ∩ {xnfk(x0, . . . , xn) = 0} and H ̸= {xn = 0} by the previous

step. Further, assume that Supp(f1) contains a hyperplane in its support.

Then for the normalised one-parameter subgroup λ = Diag(s, s, . . . , s, s−n) we have,

noting that t ≤ tn,d,k ≤ 1, since kd ≤ n:

µt(S,D, λ) ≤ k((d− 1)− n) + t

= kd− k − kn+ t

≤ n− k − kn+ 1

= (n+ 1)(1− k)

< 0.

Hence, the pair (S,D) is t-unstable, so S cannot contain a a hyperplane in the support of at

least one of the hypersurfaces in the complete intersection.



3.4 Semi-destabilizing Families 101

3.4 Semi-destabilizing Families

Definition 3.15. We fix t⃗ ∈ Stab(n, d, k,m) and let λ be a normalised one-parameter subgroup.

A non-empty k +m-tuple of sets A1 × · · · × Ak × B1 × · · · × Bm ⊆ (Ξd)
k × (Ξ1)

m is maximal

t⃗-(semi-) destabilised with respect to λ, if:

1. Each k + m-tuple (v1, . . . , vk, a1, . . . , am) ∈ A1 × · · · × Ak × B1 × · · · × Bm satisfies∑k
i=1⟨vi, λ⟩+

∑m
j=1 tj⟨aj, λ⟩ < 0 (≤ 0, respectively).

2. If there is another k+m-tuple of setsA1×· · ·×Ak×B1×· · ·×Bm ⊆ (Ξd)
k×(Ξ1)

m such that

Ai ⊆ Ai,Bi ⊆ Bi for all i, and for all (v1, . . . , vk, a1, . . . , am) ∈ Ā1×· · ·×Ak×B1×· · ·×Bm

the inequality
∑k

i=1⟨vi, λ⟩ +
∑m

j=1 tj⟨aj, λ⟩ < 0 (≤ 0, respectively) holds, then Ai = Ai

and Bj = Bj for all i, j.

We can characterise the semi-destabilizing sets as follows, generalizing [GM18, §5].

Lemma 3.16. Given one-parameter subgroup λ, any maximal t⃗-destabilised Cartesian product of sets

and t⃗-semi-destabilised Cartesian product of sets as in Definition 3.15 with respect to λ can be written

as:

N−
t⃗
(λ, xJ1 , . . . , xJk−1 , xj1 , . . . , xjm) :=

V −
t⃗
(λ, xJ1 , . . . , xJk−1 , xj1 , . . . , xjm)×

k−1∏
i=1

B−(λ, xJi)×
m∏
p=1

B−(λ, xjp),

N⊖
t⃗
(λ, xJ1 , . . . , xJk−1 , xj1 , . . . , xjm) :=

V ⊖
t⃗
(λ, xJ1 , . . . , xJk−1 , xj1 , . . . , xjm)×

k−1∏
i=1

B⊖(λ, xJi)×
m∏
p=1

B⊖(λ, xjp),

where xJi ∈ Ξd are support monomials with Jr ̸= Js for all r, s, xjp ∈ Ξ1 are arbitrary support

monomials and

V −
t⃗
(λ, xJ1 , . . . , xJk−1 , xj1 , . . . , xjm) := {xI ∈ Ξd|⟨I, λ⟩+

k−1∑
i=1

⟨Ji, λ⟩+
m∑
p=1

tp⟨xjp , λ⟩ < 0},

B−(λ, xJi) := {xJ ∈ Ξd|xJ ≤λ xJi},

V ⊖
t⃗
(λ, xJ1 , . . . , xJk−1 , xj1 , . . . , xjm) := {xI ∈ Ξd|⟨I, λ⟩+

k−1∑
i=1

⟨Ji, λ⟩+
m∑
p=1

tp⟨xjp , λ⟩ ≤ 0},

B⊖(λ, xJi) := {xJ ∈ Ξd|xJ ≤λ xJi},

B−(λ, xjp) := {xi ∈ Ξ1|xi ≤ xjp}, B⊖(λ, xjp) := {xi ∈ Ξ1|xi ≤ xjp}.
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Proof. Let ∆ := (A1, . . . , Ak, B1, . . . , Bm) be a maximal t⃗-(semi-)destabilised k +m-tuple with

respect to λ. Let xJi−1 = max (Ai), for 2 ≤ i ≤ k be the maximal element of Ai with respect to

the λ-order and xjp = max(Bp), for 1 ≤ p ≤ m. By the λ-order we have

k−1∑
i=1

⟨I1, λ⟩+
m∑
p=1

tp⟨xlp , λ⟩ ≤ ⟨I1, λ⟩+
k−1∑
i=1

⟨Ji, λ⟩+
m∑
p=1

tp⟨xjp , λ⟩ < 0 (≤ respectively)

for all (xI0 , . . . , . . . xIk , xl1 . . . , xlm) ∈ ∆. This implies that

∆ ⊆ N−
t⃗
(λ, xJ1 , . . . , xJk−1 , xj1 , . . . , xjm)

(∆ ⊆ N⊖
t⃗
(λ, xJ1 , . . . , xJk−1 , xj1 , . . . , xjm), respectively)

and the maximality condition of Definition 3.15 implies the equality.

Theorem 3.17. Let t⃗ ∈ Stab(n, d, k,m). A tuple (S,H1, . . . , Hm) is not t⃗-stable (⃗t-unstable, respec-

tively), if and only if there exists g ∈ G, λ ∈ Pn,d,k,m, such that the set of monomials associated to

(g · S, g ·H1, . . . , g ·Hm) is contained in a pair of sets N⊖
t⃗
(λ, xJ1 , . . . , xJk−1 , xj1 . . . , xjm)

(N−
t⃗
(λ, xJ1 , . . . , xJk−1 , xj1 . . . , xjm), respectively) defined in Lemma 3.8. Furthermore, the sets

N⊖
t⃗
(λ, xJ1 , . . . , xJk−1 , xj1 . . . , xjm) and N−

t⃗
(λ, xJ1 , . . . , xJk−1 , xj1 . . . , xjm) which are maximal with

respect to the containment order of sets define families of non-⃗t-stable tuples (⃗t-unstable tuples, respec-

tively) in Rn,d,k,m. Any not t⃗-stable (respectively t⃗-unstable) tuple (g · S, g ·H1, . . . , g ·Hm) belongs

to one of these families for some group element g.

Proof. Let (S,H1, . . . , Hm) be t⃗-unstable (⃗t-non stable respectively). Then by Lemma 3.8 there

is g ∈ G and λ ∈ Pn,d,k,m such that

µt⃗(g · (S,H1, . . . , Hm), λ) < 0 (≤ 0, respectively.)

Then, every (xI1 , . . . , xIk , xj1 , . . . , xjm) ∈ g · (Supp(f1), . . . , Supp(fk), Supp(h1), . . . , Supp(hm))

satisfies
k∑
i=1

⟨Ii, λ⟩+
m∑
p=1

tp⟨xjp , λ⟩ < 0 (≤ 0, respectively).

By Definition 3.15 and Lemma 3.8, g · Supp(f1) ⊆ V −
t⃗
(λ, xJ1 , . . . , xJi−1) and g · Supp(fi) ⊆

B−(λ, xJi−1), g · Supp(Hi) ⊆ B−(λ, xji) hold for some λ ∈ Pn,d,k,m, xJi ∈ Ξd, and xji ∈ Ξ1 (g ·

Supp(f1) ⊆ V ⊖
t⃗
(λ, xJ1 , . . . , xJi−1) and g · Supp(fi) ⊆ B⊖(λ, xJi−1), g · Supp(Hi) ⊆ B⊖(λ, xji), re-

spectively). Choosing the maximal Cartesian products of setsN−
t (λ, x

J1 , . . . , xJk−1 , xj1 . . . , xjm),
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(N⊖
t (λ, x

J1 , . . . , xJk−1 , xj1 . . . , xjm) respectively) under the containment order where λ ∈ Pn,d,k,m,

xJi ∈ Ξd, and xjp ∈ Ξ1 we obtain families of Cartesian products of sets whose coefficients

belong to maximal t⃗-(semi-)destabilised k +m-tuples. For the opposite direction, note that if

the monomials associated to (g · S, g ·H1, . . . , g ·Hm) are contained in N−
t⃗

(N⊖
t⃗

, respectively),

then

µt⃗(g · (S,H1, . . . , Hm), λ) < 0 (≤ 0, respectively)

and (S,H1, . . . , Hm) is t⃗-unstable (⃗t-non stable respectively).

We can also define the annihilator as in [GM18, §5]:

Proposition 3.18. For t⃗ ∈ Int
(
Stab(n, d, k,m)

)
and normalised one-parameter subgroup λ the

annihilator of λ with respect to xJ1 , . . . , xJk−1 , xj1 , . . . , xjm is the set

Annt⃗(λ, x
J1 , . . . , xJk−1 , xj1 , . . . , xjm) :=

{
(xI , xI1 , . . . xIk−1 , xi1 , . . . , xim) ∈

N⊖
t⃗
(λ, xJ1 , . . . , xJk−1 , xj1 , . . . , xjm)

∣∣∣⟨I, λ⟩+ k−1∑
i=1

⟨Ii, λ⟩+
m∑
p=1

tp⟨xip , λ⟩ = 0
}
.

If this is not empty, it is equal to the Cartesian product

V 0
t⃗
(λ, xJ1 , . . . , xJk−1 , xj1 , . . . , xjm)×

k−1∏
i=1

B0(λ, xJi)×
m∏
p=1

B0(λ, xjp),

where

V 0
t⃗
(λ, xJ1 , . . . , xJk−1 , xj1 , . . . , xjm) :=

= {xI ∈ V ⊖
t⃗
(λ, xJ1 , . . . , xJk−1 , xj1 , . . . , xjm)|∃xJ

′
i ∈ B⊖(xJi), xip ∈ B⊖(λ, xjp),

such that ⟨I, λ⟩+
∑k−1

i=1 ⟨J ′
i , λ⟩+

∑m
p=1 tp⟨xip , λ⟩ = 0},

B0(λ, xJi) := {xJ ∈ B⊖(λ, xJi)|xJ ≤λ xJ for all xJ ∈ B⊖(λ, xJi)},

B0(λ, xjp) := {xi ∈ B⊖(λ, xjp)|⟨xk, λ⟩ ≤ ⟨xi, λ⟩ for all xk ∈ B⊖(λ, xjp)}.

Proof. For one direction, let (xI1 , . . . , xIk , xi1 , . . . , xim) ∈ Annt⃗(λ, x
J1 , . . . , xJk−1 , xj1 , . . . , xjm).

This implies that xI1 ∈ V 0
t⃗
(λ, xJ1 , . . . , xJk−1 , xj1 , . . . , xjm). Suppose that there exist xIi , for

2 ≤ i ≤ k such that xIi <λ x
Ii and xlp such that xip <λ xlp . Without loss of generality we can

take i = 2 such that there exists xI2 ∈ B⊖(λ, xJ2) such that xI2 <λ x
I2 . Then either

0 =
k∑
i=1

⟨Ii, λ⟩+
m∑
p=1

tp⟨xip , λ⟩ < ⟨I1, λ⟩+ ⟨I2, λ⟩+
k∑
i=2

⟨Ii, λ⟩+
m∑
p=1

tp⟨xip , λ⟩,
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or

0 =
k∑
i=1

⟨Ii, λ⟩+
m∑
p=1

tp⟨xip , λ⟩ <
k∑
i=1

⟨Ii, λ⟩+
m∑
p=1

tp⟨xlp , λ⟩.

In both cases this would imply that

(xI1 , xI2 , . . . , xIk , xi1 , . . . , xim) /∈ N⊖
t⃗
(λ, xJ1 , . . . , xJk−1 , xj1 , . . . , xjm),

which is a contradiction.

Now let

(xI1 , . . . , xIk , xi1 , . . . , xim) ∈ V 0
t⃗
(λ, xJ1 , . . . , xJk−1 , xj1 , . . . , xjm)×

k−1∏
i=1

B0(λ, xJi−1)×
m∏
p=1

B0(λ, xjp).

Then, there exist xI′i ∈ B⊖(λ, xJi−1) for 2 ≤ i ≤ k and xi′p ∈ B⊖(λ, xjp) such that

⟨I1, λ⟩+
k∑
i=2

⟨I ′i, λ⟩+
m∑
p=1

tp⟨xi′p , λ⟩ = 0.

Also, because xIi ∈ B0(λ, xJi), xI′i ≤ xIi , and xip ∈ B0(λ, xjp), xi′p ≤ xip we obtain:

0 = ⟨I1, λ⟩+
k∑
i=2

⟨I ′i, λ⟩+
m∑
p=1

tp⟨xi′p , λ⟩ ≤
k∑
i=1

⟨Ii, λ⟩+
m∑
p=1

tp⟨xip , λ⟩ ≤ 0

since (xI1 , . . . , xIk , xi1 , . . . , xim) ∈ N⊖
t⃗
(λ, xJ1 , . . . , xJk−1 , xj1 , . . . , xjm). Hence

(xI1 , . . . , xIk , xi1 , . . . , xim) ∈ Annt⃗(λ, x
J1 , . . . , xJk−1 , xj1 , . . . , xjm)

and the result follows.

Theorem 3.19. If the tuple (S,H1, . . . , Hm) belongs to a closed strictly t⃗-semistable orbit, there is

g ∈ SL(n + 1), λ ∈ Pn,k,d,m and support monomials xJ1 , . . . , xJk−1 ∈ Ξd, xj1 , . . . , xjm ∈ Ξ1 such

that the set of monomials associated to g ·
(
(Supp(f1)× · · · × Supp(fk)), Supp(h1), . . . , Supp(hm)

)
corresponds to those in the k-product of sets

V 0
t⃗
(λ, xJ1 , . . . , xJk−1 , xj1 , . . . , xjm)×

i∏
i=1

B0(λ, xJk−1)×
m∏
p=1

B0(λ, xjp).

Proof. Let M = (S,H1, . . . , Hm). By [Dol03, Remark 8.1 (5)], since M is strictly t⃗-semistable

and represents a closed orbit, the stabilizer subgroup GM ⊂ G is infinite. Hence, there exists

one parameter subgroup λ ∈ GM where lims→0 λ(s) ·M = M , i.e. µt⃗(S,H1, . . . , Hm, λ) = 0.
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By choosing an appropriate coordinate system and applying Lemma 3.8, we may assume

that λ ∈ Pn,d,k,m and

g·
(
(Supp(f1), . . . , Supp(fk)), Supp(h1), . . . , Supp(hm)

)
= Annt⃗(λ, x

J1 , . . . , xJk−1 , xj1 , . . . , xjm)

= V 0
t⃗
(λ, xJ1 , . . . , xJk−1 , xj1 , . . . , xjm)×

k−1∏
i=1

B0(λ, xJi)×
m∏
p=1

B0(λ, xjp)

by Proposition 3.18.

Remark 3.19.1. Note, that the converse statement is not true in principle.

Remark 3.19.2. Both characterisations of the annihilator are necessary. The original definition

given in Proposition 3.18 is mostly beneficial for proofs, while the ‘product’ definition is

mostly beneficial for algorithms and their implementations in generating all unstable sets.

3.5 How to Study VGIT Quotients Computationally

We will describe how the above sections give us a toolkit to study VGIT quotients (in the case

m = 1) computationally. This follows the methodology in Gallardo–Martinez-Garcia [GM18;

GMZ18; Laz09b].

• By Theorem 3.13, we know that the stability conditions of (S,H) are determined by a

finite set of one-parameter subgroups Pn,d,k which can be determined using Definition

3.7 computationally in computer programs such as Python and Sage.

• Using this set one can find a superset of the GIT stability walls through solving the

equations
k∑
i=1

⟨Ii, λ⟩+ t⟨xi, λ⟩ = 0

for Ii ∈ Ξd, Ii ̸= Ik for all i ̸= k, xi ∈ Ξ1 and λ ∈ Pn,d,k.

• Knowing the above, for each t, either a potential stability interval or equal to a potential

stability wall, as determined by the superset previously introduced, one can compute

the N⊖
t (λ) and N−

t (λ) for each λ ∈ Pn,d,k from their definitions in Lemma 3.16 and find

the maximal ones among them. For elements of N⊖
t which parametrise non-t-stable

pairs by Theorem 3.17 the centroid criterion distinguishes which families are strictly

t−semistable.
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• For each of these of the strictly t-semistable families one can compute the annihilator

N0
t (λ) := Ann(λ), using Proposition 3.18, which correspond to potentially strictly t-

polystable orbits.

• For each wall t, we compare the different sets N⊖
t (λ) and N−

t (λ) obtained between

the wall and the previous chamber, and in the cases where these are identical or the

maximal families of the chamber are contained in the wall, we remove the wall as a

false wall. Although this does reduce the steps to follow, it does not give a complete

characterisation of the VGIT quotient.

• The above have been implemented in a computational package written in Sage (and

in Python) which can be used for arbitrary initial parameters n, k, d. [Pap22c]. This in

turn generalises a computational package [GM17], which deals with VGIT quotients of

hypersurfaces, based on [GM18].

• For a geometric characterisation of VGIT quotients, one needs to study the singularities

of pairs (S,H) for each stability condition, which are dependent only on n, d, k. In the

following sections, we will do so for the case of a complete intersection of two quadrics

in P2,P3 and P4 and a single hyperplane section, which we obtained using our computer

program.

• A precise characterisation of each VGIT quotient allows us to remove excess walls, but

the algorithm alone cannot guarantee this at the moment. This is due to the fact that we

don’t have a method to prove that two non-isomorphic maximally destabilised families,

which are not isomorphic via transformations by the specific maximal torus used which

normalises the one-parameter subgroups, are not isomorphic via a different element of

G.

The above computational methodology could potentially be extended to the general case

of tuples (S,H1, . . . , Hm) as well. This has, however, not yet been implemented in Sage. The

reason for this, is the added algorithmical complexity needed in calculating the stability walls

t⃗, and thereafter the maximal (semi-)destabilised sets.
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3.6 Stability of k-tuples of Hypersurfaces and Log Canonical

Thresholds

In this Section we will study how we can use the Hilbert-Mumford numerical criterion,

introduced in Section 3.1, to study a connection between GIT and log canonical thresholds.

We will also, study the above through the scope of VGIT. It serves as a generalization of the

results presented in Zanardini [Zan22], where the link between log canonical thresholds and

the GIT stability of pencils of hypersurfaces are studies, with an emphasis on the pencils of

curves. Here, we generalise this setting, considering complete intersections of k hypersurfaces

of degree d in Pn, and hence, elements T ∈ Gr
(
k,
(
n+d
d

))
= Rn,d,k.

3.6.1 GIT and log Canonical Thresholds

As in Section 3.1, we are interested in studying the GIT quotient

R �G := Gr
(
k,

(
n+ d

d

))
� SL(n+ 1).

Recall that we let the embedded variety S be defined as the zero locus of k degree d polyno-

mials fi, where:

fi =
∑

(fi)Iix
Ii .

As before, we fix a maximal torus T of G, and a coordinate system such that T is diagonal.

In Section 3.1, we demonstrated that the Hilbert-Mumford function is given by

µ(f1∧· · ·∧fk, λ) := −min

{
k∑
i=1

⟨Ii, λ⟩
∣∣∣(I1, . . . , Ik) ∈ (Ξd)

k, Ii ̸= Ij if i ̸= j and xIi ∈ Supp(fi)

}
,

where λ is a normalised one-parameter subgroup.

Let Ii = (di,0, . . . , di,n) with i = 1, . . . , k,
∑n

j=0 di,j = d be distinct monomials with Ii ∈

Supp(fi). For any normalised one-parameter subgroup λ(s) = Diag(sa0 , . . . , san) and since

di,n = d−
∑n−1

j=0 di,j and an = −
∑n−1

k=0 ak we have:
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µ(f1 ∧ · · · ∧ fk, λ) = − min
xIi∈Supp(fi)

{ k∑
i=1

⟨Ii, λ⟩
∣∣∣∣(1)}

= − min
xIi∈Supp(fi)

{ k∑
i=1

( n∑
j=0

di,jaj

)∣∣∣∣(1)}

= − min
xIi∈Supp(fi)

{ n∑
j=0

( k∑
i=1

di,jaj

)∣∣∣∣(1)}

= − min
xIi∈Supp(fi)

{ n−1∑
j=0

( k∑
i=1

di,jaj

)
−
(
kd−

k∑
i=1

n−1∑
j=0

di,j

)
an

∣∣∣∣(1)}

= − min
xIi∈Supp(fi)

{ n−1∑
j=0

( k∑
i=1

di,j(aj − an)
)
− kdan

∣∣∣∣(1)}

= − min
xIi∈Supp(fi)

{ n−1∑
j=0

( k∑
i=1

di,j(aj − an)
∣∣∣∣(1))}+

kd

n+ 1

( n−1∑
k=0

ak − nan
)

where condition (1) refers to the condition (I1, . . . , Ik) ∈ (Ξd)
k, Ii ̸= Ij if i ̸= j and xIi ∈

Supp(fi). Throughout, we will denote by T an element of the Grassmanian Gr(k,W ). Recall,

that R parametrises the space of tuples {
∑k

i=1 zifi|(z1 : . . . : zk) ∈ Pk−1} of k hypersurfaces,

and as such, we can write T = {
∑k

i=1 zifi|(z1 : . . . : zk) ∈ Pk−1}. We define the following.

Definition 3.20. Fix a maximal torus T . For any k-tuple T ∈ Rn,d,k and normalised one-

parameter subgroup λ we define the affine weight of T as

ω(T, λ) := min
xIi∈Supp(fi)

{ n−1∑
j=0

( k∑
i=1

di,j(aj − an)
)}

.

With this definition and the above discussion, we can reformulate the Hilbert-Mumford

numerical criterion (Theorem 2.33):

Lemma 3.21. With respect to a maximal torus T , T is unstable (respectively, non-stable) if for some

normalised one-parameter subgroup λ

ω(T, λ) >
kd

n+ 1

( n−1∑
k=0

ak − nan
)

(resp. ≥).

Similarly, T is (semi-)stable if for all normalized one-parameter subgroups λ

ω(T, λ) <
kd

n+ 1

( n−1∑
k=0

ak − nan
)

(resp. ≤).
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We can also define the affine weight of a hypersurface f , by following the same discussion

for the case k = 1.

Definition 3.22 ([Zan22, Definition 3.3]). Fix a maximal torus T . For a hypersurface f of

degree d and normalised one-parameter subgroup λ we define its affine weight as

ω(f, λ) := min

{ n−1∑
i=0

di(aj − an)
∣∣∣I = (d1, . . . , dn) ∈ Supp(fi)

}
.

This definition allows us to rewrite Lemma 3.1 as follows.

Proposition 3.23. With respect to a maximal torus T , f is unstable (respectively, non-stable) if for

some normalised one-parameter subgroup λ

ω(f, λ) >
d

n+ 1

( n−1∑
k=0

ak − nan
)

(resp. ≥).

Proposition 3.24 (Analogue of [Zan22, Proposition 3.5]). Given a k-tuple T ∈ Rn,d,k and k

distinct hypersurfaces g1, . . . , gk ∈ T we have

ω(gi, λ) ≤
k∑
i=1

ω(gi, λ) ≤ ω(T, λ)

for all one-parameter subgroups λ.

Proof. Notice that ω(f, λ) ≥ 0 for all hypersurfaces f and all normalised one-parameter

subgroups λ, since ai ≥ an for all i < n. This gives the left-hand side of the inequality. For the

right-hand side of the inequality notice that

ω(T, λ) =
n−1∑
j=0

( k∑
i=1

di,j(aj − an)
)

=
n−1∑
j=0

(
d1,j(aj − an)

)
+

n−1∑
j=0

(
d2,j(aj − an)

)
+ · · ·+

n−1∑
j=0

(
dk,j(aj − an)

)
≥ ω(g1, λ) + · · ·+ ω(gk, λ)

since the gi are distinct.

Proposition 3.25. Let F = {f = 0} ∈ T be a hypersurface of degree d, and λ a normalised

one-parameter subgroup. Then there exist k − 1 hypersurfaces g1, . . . , gk−1 ∈ T such that

ω(T, λ) = ω(f, λ) +
k−1∑
i=1

ω(gi, λ).



110 Variations of GIT Quotients

Proof. Let T be generated by k hypersurfaces of degree d, fi. Since F = {f = 0} ∈ T, f is

a linear combination of the fi that generate T, i.e. f =
∑k

i=1 ξifi for some (ξ1 : · · · : ξk) ∈

Pk−1. Then, for a fixed normalised one-parameter subgroup λ, with respect to the λ-order

introduced before, the minimum monomial I = min{Supp(f)} = min{Supp(fl)}, where

without loss of generality we can assume that fl = f1 (if not we can rearrange the generators

such that fl = f1). Hence, let I = (d1,0, . . . , d1,n) Then, by taking gi ∈ T recursively such that

min{Supp(gi)} = min

{
Supp(fi+1) \

(⋃
k≤i

Supp(fk)
)}

the result follows, as we obtain k − 1 distinct monomials Ii = (di,0, . . . , di,n), 2 ≤ i ≤ k such

that

ω(T, λ) :=
n−1∑
j=0

( k∑
i=1

di,j(aj − an)
)

= ω(f, λ) +
k−1∑
i=1

ω(gi, λ).

Corollary 3.25.1. Let F = {f = 0} ∈ T be a hypersurface of degree d, and λ a one-parameter

subgroup. Then there exist k − 1 hypersurfaces g1, . . . , gk−1 ∈ T such that

ω(T, λ) ≤ kmax

{
ω(f, λ), ω(g1, λ), . . . , ω(gk−1, λ)

}
.

Corollary 3.25.2. If a k-tuple T ∈ Rn,d,k has only semistable (respectively, stable) members, then T is

semistable (respectively stable).

Proof. Let f, g1, . . . , gk−1 ∈ T be k semistable hypersurfaces as in Corollary 3.25.1. Then by

Proposition 3.23 for all λ and i

ω(f, λ)(∑n−1
k=0 ak − nan

) ≤ d

n+ 1
,

ω(gi, λ)(∑n−1
k=0 ak − nan

) ≤ d

n+ 1
,

and by Corollary 3.25.1

ω(T, λ)(∑n−1
k=0 ak − nan

) ≤ kmax

{
ω(f, λ), ω(g1, λ), . . . , ω(gk−1, λ)

}

≤ kd

n+ 1
.
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The results of [Zan22] can also be extended as follows:

Theorem 3.26 (Analogue of [Zan22, Theorem 3.14]). If T ∈ Rn,d,k contains at worst one strictly

semistable hypersurface (and all other hypersurfaces in T are stable), then T is stable.

Proof. Let f ∈ T be strictly semistable, i.e. by Proposition 3.23 since f is strictly semi-stable,

for some normalised λ, we have

ω(f, λ) =
d

n+ 1

( n−1∑
k=0

ak − nan
)
.

By Proposition 3.25 there exist g1, . . . , gk−1 ∈ T which are stable and

ω(T, λ)(∑n−1
k=0 ak − nan

) =
ω(f, λ) +

∑k−1
i=1 ω(gi, λ)(∑n−1

k=0 ak − nan
)

≤ d

n+ 1
+

k−1∑
i=1

d

n+ 1

=
kd

n+ 1
.

Proposition 3.27 (Analogue of [Zan22, Proposition 4.6]). For a k-tuple T ∈ Rn,d,k and any base

point p of T, there exists a one-parameter subgroup λ such that for any hypersurface F = (f = 0) in T

∑n−1
i=0 (ai)− nan
ω(T, λ)

≤ lctp(Pn, F ).

Proof. The proof follows the idea of proof of [Zan22, Proposition 4.1]. Without loss of

generality, we choose coordinates (x0 : · · · : xn) in Pn such that p = (0 : · · · : 0 : 1). Let λ be a

normalized one-parameter subgroup with

λ = Diag(s, sa1 , . . . , san−1 , s−1−
∑n−1

i=1 ai).

Notice then that

n−1∑
i=0

(ai − an) = 2 +
n−1∑
i=0

ai +
n−1∑
j=0

(
1 +

n−1∑
i=0

ai + aj
)

= (n+ 1) + (n+ 1)
n−1∑
i=0

ai

= (n+ 1)
(
1 +

n−1∑
i=0

ai
)
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and

ω(T, λ) =
n−1∑
j=0

( k∑
i=1

di,j(aj − an)
)

≥
2∑
i=1

( n−1∑
j=0

di,j(aj − an)
)

≥
[
(n+ 1) + (n+ 1)

n−1∑
i=0

ai

]
by [Zan22, Proposition 4.1], hence∑n−1

i=0 (ai − an)
ω(T, λ)

=
(n+ 1)

(
1 +

∑n−1
i=0 ai

)
∑n−1

j=0

(∑k
i=1 di,j(1 + aj +

∑n−1
i=0 ai)

) ≤ 1.

For contradiction, assume that there exists F = {f = 0} ∈ T such that

lctp(Pn, F ) <
∑n−1

i=0 (ai − an)
ω(T, λ)

.

Then, let F̃ (u1, . . . , un) = f(x0 : · · · : xn−1 : 1), where ui =
xi−1

xn
defined in a neighbourhood

around p, which is enough to compute lctp since it is a local invariant. Also, assign weights

ω(u1) = a0 − an, ω(ui) = ai−1 − an, ω(un) = an−1 − an. Consider the finite morphism

ϕ : Cn → Cn where (u1, . . . , un) 7→ (u
ω(u1)
1 , . . . , u

ω(un)
n ). Then, let Hui = {ui = 0} and

∆ :=
n∑
i=1

(1− ω(ui))Hui + cF̃ (u
ω(u1)
1 , . . . , uω(un)n )

for some c ∈ Q ∩ [0, 1]. Then,

ϕ∗(KCn + cF̃ (u1, . . . , un)) = KCn +∆.

We also know that the pair (Cn, F̃ ) is log canonical at the origin if and only if the pair (Cn,∆)

is log canonical at the origin. Let

c =

∑n
i=1 ω(ui)

ω(T, λ)

where c > lctp(Pn, F ) = lct0⃗(Cn, F̃ ) by the assumption. Blowing up Cn at the origin, we then

have that for the log discrepancy of ∆ with respect to the exceptional divisor E of the blow

up

a(E;Cn,∆) = −1−
n∑
i=1

ω(ui)− cω(f, λ) < −1
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which in turn would imply that ω(f, λ) > ω(T, λ) which contradicts Proposition 3.24.

Corollary 3.27.1 (Analogue of [Zan22, Theorem 4.8]). If T is (semi-)stable, then for any hypersur-

face F = {f = 0} ∈ T and any base point p of T

n+ 1

kd
< lctp(Pn, F ) (respectively ≤).

Proof. Since T is (semi-)stable, for all normalized one-parameter subgroups λ we have∑n−1
i=0 (ai − an)
ω(T, λ)

≥ n+ 1

kd

by Lemma 3.21.

Proposition 3.28. Given a tuple T ∈ Rn,d,k we have that for any one-parameter subgroup λ there

exists F = {f = 0} ∈ T such that

ω(T, λ)(∑n−1
k=0 ak − nan

) ≤ k

lct(Pn, F )
.

Proof. By [Kol97, Proposition 8.13] we have that

ω(f, λ)(∑n−1
k=0 ak − nan

) ≤ 1

lct(Pn, F )
,

and we obtain the result by Corollary 3.25.1.

Corollary 3.28.1. If a tuple T ∈ Rn,d,k is such that lct(Pn, F ) ≥ n+1
d

(respectively, > n+1
d

) for any

hypersurface F = {f = 0} in T, then T is semistable (respectively, stable).

Proof. Let f ∈ T a hypersurface with lct(Pn, F ) ≥ n+1
d

(respectively > n+1
d

). Then, for any

normalized one-parameter subgroup λ,

ω(T, λ)(∑n−1
k=0 ak − nan

) ≤ k

lct(Pn, F )

≤ kd

n+ 1
(<

kd

n+ 1
resp.).
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3.6.2 VGIT and log Canonical Thresholds

Consider now the GIT quotient Rm�Gwhich parametrizes tuples (T, H1, . . . , Hm) of complete

intersections and m hyperplanes in Pn.

From our discussion in Sections 3.1 and 3.6.1, along with Lemma 3.21 and Definition 3.5

we obtain the following:

Lemma 3.29. With respect to a maximal torus T , the tuple (T, H1, . . . , Hm) is t⃗−unstable (respec-

tively, t⃗−non-stable) if for some λ

ω(T, λ) +
m∑
i=1

tiω(Hi, λ) >
kd+

∑m
i=1 ti

n+ 1

( n−1∑
k=0

ak − nan
)

(resp. ≥).

Proof. From Lemma 2.35, we have that µt⃗(T, H1, . . . , Hm, λ) = µ(T, λ) +
∑m

i=0 tiµ(Hi, λ). The

result then follows from the discussion in Section 3.6.1.

We expand Proposition 3.25 as follows:

Proposition 3.30. Let F = {f = 0} ∈ T be a hypersurface of degree d, and λ a one-parameter

subgroup. Then there exist k − 1 hypersurfaces g1, . . . , gk−1 ∈ T such that

ω(T, λ) +
m∑
i=1

tiω(Hi, λ) = ω(f, λ) +
k−1∑
i=1

ω(gi, λ) +
m∑
i=1

tiω(Hi, λ).

By Fujita [Fuj21], the log-canonical threshold lct(Pn, Hi) = 1 for all hyperplanes Hi, and

hence
ω(Hi, λ)(∑n−1
k=0 ak − nan

) ≤ 1,

so in combination with Proposition 3.28 we obtain the following.

Proposition 3.31. Given a tuple (T, H1 . . . , Hm) ∈ Rm we have that for any one-parameter subgroup

λ there exists F = {f = 0} ∈ T such that

ω(T, λ) +
∑m

i=1 tiω(Hi, λ)(∑n−1
k=0 ak − nan

) ≤ k

lct(Pn, F )
+

m∑
i=1

ti.

Corollary 3.31.1. If a tuple (T, H1 . . . , Hm) ∈ Rm is such that lct(Pn, F ) ≥ k(n+1)
kd−n

∑m
i=1 ti

(respectively,

> k(n+1)
kd−n

∑m
i=1 ti

) for any hypersurface f in T, then (T, H1 . . . , Hm) ∈ Rm is t⃗−semistable (respectively,

t⃗−stable).
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Proof. From Proposition 3.27, let f ∈ T be such that lct(Pn, F ) ≥ k(n+1)
kd−n

∑m
i=1 ti

(respectively,

> k(n+1)
kd−n

∑m
i=1 ti

). Then for all λ,

ω(T, λ) +
∑m

i=1 tiω(Hi, λ)(∑n−1
k=0 ak − nan

) ≤ k

lct(Pn, F )
+

m∑
i=1

ti

≤ kd− n
∑m

i=1 ti
n+ 1

+
m∑
i=1

ti (respectively, <)

≤ kd+
∑m

i=1 ti
n+ 1

(respectively, <).
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4
Complete Intersection of Conics in P2

In this chapter, we will work over C and we will study the GIT quotients of complete

intersections of conics in P2, under an SL(3)-action, computationally. This can be thought

of as a "toy example" to demonstrate how the computational methods of Chapter 3 can be

applied. In order to do so, we will first introduce some notation and theorems for general

results on the singularities of complete intersections of quadrics in arbitrary n. This will be of

benefit in later chapters as well.

4.1 Some Results on the Singularities of Pencils of Quadrics

For a quadric q in Pn we can write q(x) = xQxT , for Q a (n+ 1)× (n+ 1) symmetric matrix

with entries in C. We denote by Φ(f, g) ∈ Gr(2, (n+2)(n+1)
2

) the element of the Grassmanian

naturally representing two quadrics f , g, in Pn, i.e. Φ(f, g) := {λf + µg|(λ, µ) ∈ P1}. This

pencil can also be written in terms of the symmetric matrices F and G of f and g, respectively,

i.e. Φ(f, g) = {λF + µG|(λ, µ) ∈ P1} (see [Rei72, §1]). The notion of the stability of pencils

is defined in Section 3.1, where, following from our previous discussion, we now define

k = d = 2. Note that for a complete intersection of quadrics, S = {f = 0} ∩ {g = 0},

S = Bs(Φ(f, g)) is the base-locus of a pencil with no fixed part (see [Som59, §XIII], or [HP94,

§XIII]).

Note here, that a quadric q is smooth (nondegenerate) if and only if the corresponding

symmetric matrix Q is non-degenerate, i.e. if det(Q) ̸= 0 (see for example Reid [Rei72, §1]).
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For a pencil Φ(f, g) of two quadrics in Pn with f smooth, (i.e. the rank of the corresponding

symmetric matrix F is n+ 1) we consider the polynomial det(λF +G) of degree n+ 1 with

distinct roots α1, . . . , αr.

The Lemma below proves quite useful for detecting singular complete intersections of

quadrics in Pn.

Lemma 4.1. Let f , q be two quadrics in Pn. Their complete intersection S = f ∩ q is singular if and

only if up to an action of SL(n+ 1) the quadrics can be written either as

f(x0, . . . , xn) = q1(x1, . . . , xn)

q(x0, . . . , xn) = x0(b1x1 + · · ·+ bnxn) + q2(x1, . . . , xn)

or

f(x0, . . . , xn) = a0x0xn + q1(x1, . . . , xn)

q(x0, . . . , xn) = bnx0xn + q2(x1, . . . , xn)

or a degeneration of the above.

Proof. Without loss of generality, we assume that the singular point is P = (1 : 0 : · · · : 0).

Then since P ∈ f ∩ q we have:

f(x0, . . . , xn) = x0l1(x1, . . . , xn) + q1(x1, . . . , xn)

q(x0, . . . , xn) = x0l2(x1, . . . , xn) + q2(x1, . . . , xn),

where the li are linear and the qi are quadratic forms.

We can choose a coordinate transformation fixing P such that xn = l1(x1, . . . , xn) and then

f(x0, . . . , xn) = a0x0xn + q1(x1, . . . , xn)

q(x0, . . . , xn) = x0(b1x1 + · · ·+ bnxn) + q2(x1, . . . , xn).

Recall that a point P is singular on the intersection if and only if the matrix

J =

 ∂f
∂xi

∂q
∂xi


at P has rank < 2. Then since

Jp =

0 0 . . . 0 a0

0 b1 . . . bn−1 bn


we see that rank Jp < 2 if either a0 = 0 or b1 = b2 = · · · = bn−1 = 0, and the result follows.
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Corollary 4.1.1. Let f, q be two quadrics in Pn. Their complete intersection S = f ∩ q is smooth if

and only if the determinant polynomial det(λf + q) has only simple roots.

Proof. We assume without loss of generality that P = (1 : 0 : · · · : 0) ∈ q ∩ r, hence we can

write

q(x0, . . . , xn) = a0x0xn + q1(x1, . . . , xn)

r(x0, . . . , xn) = x0(b1x1 + · · ·+ bnxn) + q2(x1, . . . , xn)

and since S is smooth, α0 ̸= 0 ̸= bi, for i = 1, . . . , n. The determinant polynomial det(λq + r)

thus has n+ 1 distinct roots.

4.1.1 Segre Symbols

Let αi be a root of the determinant polynomial of multiplicity ei. Assume further that αi is

not only a zero of det(G+ λF ), but also of all its subdeterminants of size n− hi + 2, where

n+ 1 ≥ hi ≥ 2, and hi is the maximal number such that for each root αi, αi is a solution of all

the non-trivial subdeterminants of size n− hi − 2 of G+ λF . If hi = 1, this implies that the

solution is not a solution of any of the subdeterminants.

We then define lij to be the minimum multiplicity of the root αi for the set of subdetermi-

nants of size n+ 1− j, for j = 0, 1, . . . , hi − 1. We have lij ≥ lij+1, and we define eij = lij − lij+1.

Thus, we obtain a factorisation

det(G+ λF ) =

hi−1∏
j=0

(λ− αi)e
i
jfi(λ)

where fi(αi) ̸= 0 (see [HP94, §XIII] or [Som59, §13.86]).

Definition 4.2. The Segre symbol of the pencil is [(e00, . . . e0h0−1), . . . , ((e
r
0, . . . e

r
hr−1))].

Note, that if we only have a 1-tuple, we omit the brackets around the tuple.

Theorem 4.3 (Weierstrass, Segre, [Wei13]). Consider two pencils Φ1 and Φ2 of quadric hypersur-

faces in Pn. Then their base loci are projectively equivalent if and only if they have the same Segre

symbol and there exists an automorphism of P1 taking each root (1 : αi) to the corresponding root

(1 : βi), where αi and βi are the roots of the determinant polynomials of Φ1 and Φ2 respectively.

We will present the following example to illustrate how one obtains Segre symbols.
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Example 4.3.1. Let f and q be two quadrics in P2, given by the following equations.

f(x0, x1, x2) =x0x1 + x2l(x0, x1, x2)

g(x0, x1, x2) =x
2
2

where l(x0, x1, x2) = a0x0 + a1x1 + a2x2 is a linear form. Then

F =
1

2


0 1 a0

1 0 a1

a0 a1 2a2


and

G =


0 0 0

0 0 0

0 0 1


and

λF +G =


0 λ λa0

λ 0 λa1

λa0 λa1 2λa2 + 1


with det(λF +G) = λ2

2
(−2λa2 − 1 + 2λa0a1).

The determinant polynomial has two solutions, λ = 0 with multiplicity 2, and λ = 1
2a0a1−2a2

with multiplicity 1. Notice that λ = 0 is a solution for all the subdeterminants of λF +G with

size 2 + 1− 1 = 2 (i.e. all 2× 2 minors). Thus, we have, for root α0 = 0: l00 = 2, l01 = 1, l02 = 0,

and hence e00 = 1, e01 = 1. On the other hand, since the multiplicity of the root α1 =
−1+2a0a1

a2
is

1, there is no such decomposition. Hence, the Segre symbol is [(1, 1), 1].

4.1.2 Preliminaries of Singularity Theory

We will give some brief preliminaries on singularity theory, which will be used throughout

the later chapters.

Definition 4.4 ([Arn76, p.88]). A class of singularities T2 is adjacent to a class T1, and one

writes T1 ← T2 if every germ of f ∈ T2 can be locally deformed into a germ in T1 by an

arbitrary small deformation. We say that the singularity T2 is worse than T1, or that T2 is a

degeneration of T1.
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A1 A2 A3 A4 A5

D4 D5

Figure 4.1: Degeneration of germs of isolated singularities appearing in complete intersections

of two quadrics in P3 and P3

The degenerations of the isolated singularities that appear in a complete intersection of

two quadrics in P3 and P4 (or in their anticanonical divisors, which are complete intersection

of two quadrics in P2 and P3 respectively) are described in Figure 4.1 (for details see [Arn76,

p.88] and [Arn75, §13]. The above theory considers only local deformations of singularities.

When we study degenerations in the GIT quotient, we are interested in global deformations.

Thankfully, due to [HP10, Proposition 3.1], in the particular cases of complete intersections

of two quadrics in P4, any local deformation of isolated singularities is induced by a global

deformation.

Definition 4.5 ([BW79]). A polynomial F in n+ 1 variables is semi-quasihomogeneous (SQH)

with respect to the weights (w1, w2, . . . , wn) if all the monomials of F have weight larger or

equal than 1 and those monomials of weight 1 define a function with an isolated singularity.

In particular, the weights associated to the ADE singularities Ak and Dk are:(1
2
, . . . ,

1

2
,

1

k + 1

)
,

(1
2
, . . . ,

1

2
,
k − 2

2(k − 1)

1

k − 1

)
.

4.2 GIT of Complete Intersections of Conics

From [HP94, §XIII] the following table summarizes the results for the Segre symbols of

pencils of conics and their base loci.

Segre symbol of pencil Base locus

[3] A triple point and another point

[(2, 1)] A quadruple point

[2, 1] A double point and two other points

[(1, 1), 1] Two double points

[1, 1, 1] Four distinct points (smooth)

Table 4.1: Segre symbols of pencils of quadrics in P2 and classification.
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In particular, due to Theorem 4.3, we see that any two pencils with the same Segre symbol

must be projectively equivalent.

We will study the GIT quotient R2,2,2 � SL(3). The following families have been generated

using the computational package [Pap22c], based on the discussion on Chapter 3.

In particular, P2,2,2 = [(4, 1,−5), (1, 0,−1), (5,−1,−4), (2,−1,−1), (1, 1,−2)] and the com-

puter package gives us:

λ xJ V −(λ, xJ) B−(λ, xJ)

(4, 1,−5) x22 {x0, x1, x2}2 x22

(1, 0,−1) x0x2 {x1, x2}2, x0x2 {x1, x2}2, x0x2
(2,−1,−1) x0x1 {x1, x2}2, x0{x1, x2} {x1, x2}2.

.

Table 4.2: Outputs of the computational package [Pap22c] for destabilized families of complete

intersections of two quadrics in P2

λ xJ V ⊖(λ, xJ) B⊖(λ, xJ)

(4, 1,−5) x22 {x0, x1, x2}2 x22

(1, 0,−1) x0x2 {x1, x2}2, x0x2 {x1, x2}2, x0x2
(2,−1,−1) x0x1 {x1, x2}2, x0{x1, x2} {x1, x2}2.

.

Table 4.3: Outputs of the computational package [Pap22c] for semi-destabilized families of

complete intersections of two quadrics in P2

Theorem 4.6. The following are equivalent:

1. A pencil of two quadrics Φ(f, g) in P2 is unstable;

2. a pencil of two quadrics Φ(f, g) in P2 is non-stable;

3. the pencil is generated by one of the following three families, or a degeneration of these families:

Family 1:

f(x0, x1, x2) =q1(x0, x1, x2)

g(x0, x1, x2) =x
2
2
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an irreducible conic f (i.e. det(Q1) ̸= 0) and a double line intersecting at two separate double

points, Bs(f, g) = 2P + 2Q;

Family 2:

f(x0, x1, x2) =x2l1(x0, x1, x2) + x21

g(x0, x1, x2) =x2l2(x0, x1, x2) + x21

two irreducible conics f and g intersecting at a double point and two separate simple points,

Bs(f, g) = 2P +Q+R, where not all 3 points lie on the same line L;

Family 3:

f(x0, x1, x2) =x2l3(x0, x1, x2) + x1l4(x0, x1)

g(x0, x1, x2) =q2(x1, x2)

an irreducible conic f and a two intersecting lines g intersecting at a double point and two

separate simple points, Bs(f, g) = 2P +Q+R, where not all 3 points lie on the same line L.

Here, the li are lines in P2 and the qi are quadratic forms, which are all maximal in their support,

i.e. there are no zero coefficients.

4. The base locus of the pencil is singular, i.e. it is not a union of 4 distinct points.

Proof. The equivalence of 1 and 3 and 2 and 3 follows from the computational program

[Pap22c] we detailed in Chapter 3 and the centroid criterion (Theorem 3.10), where the above

families are maximal destabilising families as in the sense of Definition 3.15. In particular, we

first obtain a finite set of one-parameter subgroups P2,2,2 = [(4, 1,−5), (1, 0,−1), (5,−1,−4),

(2,−1,−1), (1, 1,−2)], that determine stability, as detailed in Definition 3.7 and Lemma 3.8.

Then for each λ ∈ P2,2,2 we compute the corresponding N−(λ, xJ) and N⊖(λ, xJ) for various

support monomials xJ , and we determine which of those are maximal with respect to

Definition 3.15. The corresponding sets are presented in Tables 4.2 and 4.3.

We will now show that 1 and 2 are equivalent. We have that family 1 is given by

N−(λ, xJ) = N⊖(λ, xJ) for λ = (4, 1,−5) and xJ = x22, Family 2 is given by N−(λ, xJ) for

λ = (1, 0,−1) and xJ = x0x2 and Family 3 is given by N−(λ, xJ) for λ = (2,−1,−1) and

xJ = x0x1. Since we have N−(λ, xJ) = N⊖(λ, xJ) for all λ and xJ , i.e. the sets of all desta-

bilised and semi-destabilised families are the same, we deduce that there are no polystable

elements, and that all unstable and non-stable maximal families are the same. In particular,

this demonstrates the equivalence of 1, 2 and 3.
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We will now show that 3 and 4 are equivalent. For Family 1 notice that the double line

x2 = 0 intersects the smooth conic f(x0, x1, x2) at the points (1 : l : 0), (1 : k : 0) where l, k are

the solutions of q1(1, x1, 0). The Segre symbol of this case is [(1, 1), 1] and the base locus is the

two double points. In particular, the degeneration

f(x0, x1, x2) =x0x2 + x21

g(x0, x1, x2) =x
2
2

gives us the complete intersection which is the quadruple point (1 : 0 : 0).

For Family 2, we first make the standard change of coordinates q(x1, x2) = x1x2 and we

obtain

f(x0, x1, x2) =x2l1(x0, x1, x2) + x21

g(x0, x1, x2) =x2l2(x0, x1, x2)

Since all the qi and li are maximal in their support, we further make the change of coordinates

x′0 = l2(x0, x1, x2), x′1 = x1, x′2 = x2, and we obtain f(x′0, x
′
1, x

′
2) = x′2l

′
1(x

′
0, x

′
1, x

′
2) + α(x′1)

2,

g(x′0, x
′
1, x

′
2) = x′0x

′
2. The intersection is then given as follows: For x′2 = 0, f(x′0, x′1, 0) = α(x′1)

2

and the point of intersection is the double point P = (1 : 0 : 0). For x′0 = 0, f(0, x′1, x′2) =

q(x′1, x
′
2) and there are two points Q,R, which correspond to the intersection. The Segre

symbol of this case is [2, 1] and by [HP94, §XIII] the base locus is a double point and two other

points. Furthermore, the degeneration

f(x0, x1, x2) = x2x0 + x21

g(x0, x1, x2) = x2x1

is the intersection with triple point P = (1 : 0 : 0), and point Q = (0 : 0 : 1).

For Family 3, using a similar change of variables as in Family 2, we can write g(x0, x1, x2) =

x1x2, f(x′0, x′1, x′2) = αx2l
′
3(x0, x1, x2) + x1l

′
4(x0, x1). For x1 = 0, we obtain two points of

intersection P = (1 : 0 : 0), Q = (1 : 0 : l) and for x2 = 0, we obtain two points of intersection

P = (1 : 0 : 0), R = (1 : k : 0), where l is the solution of l′3(1, 0, x2) and k is the solution of

l′4(1, x1). The Segre symbol of the pencil is [2, 1] and the base locus is a double point and two

other points, where P is the double point.

Thus, the above 3 families and their degenerations are all possible singular complete

intersections of conics (with one or two double points, a triple or a quadruple point). Hence,

3 and 4 are equivalent.



124 Complete Intersection of Conics in P2

Corollary 4.6.1. The GIT quotient of complete intersections of two plane conics is the one point

scheme representing the unique stable orbit of two quadrics intersecting at 4 points.

Proof. Let f, g such that Bs(f, g) = P1 + P2 + P3 + P4. By Theorem 4.6 this intersection is not

non-stable, hence it is a stable complete intersection.

Let f, g such that Bs(f, g) is stable. By Bezout’s theorem, Bs(f, g) consists of at most 4

distinct points. Notice that a 1 point intersection (i.e. a quadruple point) corresponds to

a degeneration of Family 1, a 2 point intersection corresponds to Family 1, 2 or 3, and a 3

point intersection corresponds to a degeneration of Family 2 or 3, which are all unstable by

Theorem 4.6.
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5
VGIT of a complete intersection of Quadrics in P3

and a Hyperplane

In this chapter, we will study VGIT quotients of complete intersections of quadrics in P3 and

a hyperplane, using the computational methods presented in Chapter 3. We will first provide

some general results on the singularities of such complete intersections, and then we will

provide a full GIT classification (in the absence of a hyperplane). We will then proceed to

classify all possible singularities of pairs (S,D = S∩H) and provide a full VGIT classification

using our computational method. The GIT classification will be of use when in later chapters

we will compactify the K-moduli space of the Fano threefold family 2− 25.

5.1 General Results

For two quadratic polynomials f, g ∈ P3, let Φ(f, g) be their pencil, with general element

λf + µg, and let S be its base locus, such that S = {f = g = 0}. Throughout this section

we will make use of the classification of the base loci of such pencils found in Sommerville

[Som59, §XIII]. We summarise these results in the following table.
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Segre symbol of pencil Base locus

[4] Twisted cubic and tangent line

[(3, 1)] A conic and two lines intersecting in one point

[(2, 2)] A double line and two lines in general position

[(2, 1, 1)] Two tangent lines

[3, 1] Cuspidal curve

[(2, 1), 1] Two tangent conics

[(1, 1, 1), 1] Double conic

[2, 2] Twisted cubic and bisecant

[2, (1, 1)] A conic and two lines in a triangle

[(1, 1), (1, 1)] A quadrangle

[2, 1, 1] Nodal curve

[(1, 1), 1, 1] Two conics in general position

[1, 1, 1, 1] Elliptic curve (smooth)

Table 5.1: Segre symbols of pencils of quadrics in P3 and classification of the base loci.

The Segre symbols can be computed for any pencil by a simple Python script, that solves

the determinant equation and finds the multiplicities of the solutions. In the case where

the multiplicity is greater than 1 one can compute the determinant minors to distinguish

the different cases with similar multiplicity. In many cases, we will refer to a complete

intersection S having a particular Segre symbol (and not the pencil whose base locus S is)

to avoid confusion. Notice that by the above table and by the definition of the base locus

description, if S has Segre symbol [2, 1, 1] it has 1A1 singularity, if it has Segre symbol [2, 2]

it has 2 A1 singularities while if it has Segre symbol [(1, 1), (1, 1)] it has 4 A1 singularities.

If S has Segre symbol [3, 1] it has 1 A2 singularity, and if it has Segre symbol [4] it has an

A3 singularity. Finally, if S has Segre symbol [(2, 1, 1)] or [(1, 1, 1), 1] it has non-isolated

singularities.

The Lemmas below give us a geometric description of the singularities of a pencil with

respect to its determinant polynomial.

Lemma 5.1. Let S be complete intersection with Segre symbol [(2, 1), 1]. Then S has 1A3 singularity.

Proof. Since the Segre symbol of S = {f = 0} ∩ {g = 0} is [(2, 1), 1], S is two conics tangent

at a point P . We may assume, without loss of generality, that f is smooth and g is singular.
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Notice that f = P1 × P1 and each conic C1, C2 is a (1, 1) divisor of f as they are obtained via

H ∩ f , where H is a hyperplane. The Ci meet only at P , hence C1 · C2 = 2. We blow up f

at a point Q such that Q /∈ Ci, and Q lies on the intersection of two lines G1, G2. We obtain

π : BlQ f → f and we then blow down twice at the proper transforms of Gi, G′
i to points Q1,

Q2, to obtain ϵ : BlQ1,Q2 P2 → P2. This allows us to obtain the usual birational map f
ϕ−→ P2.

We have Y := BlQ f = BlQ1,Q2 P2. The ramification formula reads

KY = π∗Kf + E = ϵ∗KP2 +G′
1 +G′

2

where the E, G′
i are the corresponding exceptional divisors.

Notice that for the anticanonical divisor, −Kf = −KP3 + f |f = Of (2), by the adjunction

formula, which in turn implies that −Kf · Ci = 4. Notice also that for the proper transforms

of π of the Ci, denoted by C ′
i we have C ′

i = π∗(Ci), G′
i = π∗(Gi) − E, and for the proper

transforms of the C ′
i, denoted by Ci, of ϵ we have ϵ∗(Ci) = C ′

i + G′
1 + G′

2, and C1 · C2 = 4.

Hence,

−KP2 · Ci =ϵ
∗(−KP2) · ϵ∗(Ci)

=−KY · C ′
i + 2

=π∗(Kf ) · π∗(Ci) + 2

=−Kf · Ci + 2

=6

This implies that the proper transforms Ci are also conics which intersect tangentially at

P and normally at Q1, Q2. We take f, g conics in P2 such that q ∩ r = 2p + r + s. Two such

conics can be given by q = x0lx1+x
2
1+x

2
2, r = x0x2+x

2
1+x

2
2 with double point of intersection

at p = (1 : 0 : 0). Localising at p, f |loc = x1 + x21 + x22, g|loc = x2 + x21 + x22, and hence p is

an A3 singularity. Since the morphism ϕ is a locally analytic homomorphism around p, the

singularity is the same in P in f .

Lemma 5.2. Let S be complete intersection with Segre symbol [(3, 1)]. Then S has 1D4 singularity.

Proof. Since the Segre symbol of S = {f = 0} ∩ {g = 0} is [(3, 1)], S is a conic and two lines

intersecting at one point P . We may assume, without loss of generality that f is smooth and

g is singular.
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Let C1 be the conic, and C2 = L1 + L2 the two lines; the Ci are (1, 1) divisors in f =

P1 × P1 and C1 · C2 = 2. As in the proof of Lemma 5.1, we blow up f at point P ′, where

P ′ /∈ Ci, π : BlP ′ f → f and then blow down twice at the proper transforms, to points Q1,

Q2, ϵ : BlQ1,Q2 P2 → P2 to obtain the usual birational map f ϕ−→ P2. As in the proof of Lemma

5.1, the strict transform C1 of C1 is a conic and the strict transform of C2, C2, is two lines.

C1 and C2 = L1 + L2 meet at Q1, Q2 and P normally, where P = L1 ∩ L2 ∩ C1. Hence, P is

a D4 singularity. Since the morphism ϕ is a locally analytic homomorphism around P , the

singularity is the same in f .

Lemma 5.3. Let S be complete intersection with Segre symbol [(2, 2)]. Then S has non-isolated

singularities.

Proof. Let S be a complete intersection with Segre symbol [(2, 2)]. Then S can be given, up to

projective equivalence, by S = {f = 0} ∩ {g = 0}where

f = q1(x2, x3) + x0x3 + x1l1(x2, x3)

g = q2(x2, x3).

Then, the Jacobian matrix

J =

 ∂f
∂xi

∂q
∂xi


is given by

J =

x3 ax2 + x3 2a0x2 + a1x3 2a2x3 + a1x2 + x0 + bx1

0 0 2a0x2 + a1x3 2b2x3 + b1x2


and for any point P = (p0 : p1 : 0 : 0) ∈ S we have

JP =

0 0 0 p0 + bp1

0 0 0 0


and rank(Jp) = 1 < 2. Hence, P is singular, and since every point in S can be written in the

form of P , S has only non-isolated singularities.

Lemma 5.4. Let S be complete intersection with Segre symbol [(1, 1), 1, 1]. Then S has 2 A1

singularities.

Proof. Since the Segre symbol of S = f ∩ g is [(1, 1), 1, 1], S is two conics C1, C2 in general

position, intersecting at points P,Q, C1 · C2 = 2. Without loss of generality, we assume that f

is smooth.
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As in the proof of Lemma 5.1, we blow up f at P ′, such that P ′ ̸∈ Ci, π : BlP ′ f → f and

then blow down twice at the proper transforms, to points Q1, Q2, ϵ : BlQ1,Q2 P2 → P2 to obtain

the usual birational map f
ϕ−→ P2. We have Y := BlP f = BlQ1,Q2 P2. The strict transforms

Ci of Ci are conics intersecting at 4 points, namely P,Q, and the points of the blow down

Q1, Q2. The singularities at P andQ are A1 singularities, and since the morphism ϕ is a locally

analytic homomorphism around P , the singularity is the same in f .

Lemma 5.5. Let S be complete intersection with Segre symbol [2, (1, 1)]. Then S has 2 A1 singulari-

ties.

Proof. Since the Segre symbol of S = f∩g is [2, (1, 1)], S is a conicC1 and two linesC2 = L1+L2

in a triangle, intersecting at points P,Q, C1 · C2 = 2. Without loss of generality, we assume

that f is smooth.

As in the proof of Lemma 5.1, we blow up f at P ′, such that P ′ ̸∈ Ci, π : BlP ′ f → f and

then blow down twice at the proper transforms, to points Q1, Q2, ϵ : BlQ1,Q2 P2 → P2 to obtain

the usual birational map f
ϕ−→ P2. We have Y := BlP f = BlQ1,Q2 P2. The strict transforms

Ci of Ci are conics intersecting at 4 points, namely P,Q, and the points of the blow down

Q1, Q2. The singularities at P andQ are A1 singularities, and since the morphism ϕ is a locally

analytic homomorphism around P , the singularity is the same in f .

Remark 5.5.1. In order to check the type of (isolated) hypersurface singularities, one can

employ the following MAGMA script, adjusted accordingly for each different case.

Q:=RationalField();

PP<x0,x1,x2,x3>:=ProjectiveSpace(Q,3);

f1:=x0*x1;

f2:=x2*x3;

X:=Scheme(PP,[f1,f2]);

IsNonsingular(X);

p := X![1,0,0,0];

_,f,_,fdat := IsHypersurfaceSingularity(p,2);

R<a,b> := Parent(f);

f;

NormalFormOfHypersurfaceSingularity(f);

boo,f0,typ := NormalFormOfHypersurfaceSingularity(f :
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fData := [*fdat,3*]);

boo; f0; typ;

Here, f1 and f2 are the generating polynomials, and

IsNonsingular(X);

verifies that X = f1 ∩ f2 is singular. The point p = [1, 0, 0, 0] refers to a specific singular point,

whose type of singularity we want to check, which is given by the last command. Note, that

this code also works for higher dimensional complete intersections.

Lemma 5.6. Let Φ(f, g) be a pencil of two quadrics f, g ∈ P3, where we assume that f is smooth. The

base locus of the pencil has only A1 singularities if and only if the determinant polynomial det(λf +g)

has roots of multiplicity 2.

Proof. Assume that the base locus S has only A1 singularities. Then, by Table 5.1, Theorem

4.3 and Lemmas 5.1, 5.2, 5.4, and 5.5 that can only occur if S is either

1. a nodal curve, with Segre symbol [2, 1, 1], with one A1 singularity,

2. or a twisted cubic and a bisecant, with two A1 singularities and Segre symbol [2, 2],

3. or two conics in general position with Segre symbol [(1, 1), 1, 1], with two A1 singulari-

ties,

4. or a conic and two lines in a triangle, with Segre symbol [2, (1, 1)], with two A1 singu-

larities,

5. or a quadrangle, with Segre symbol [(1, 1), (1, 1)] with four A1 singularities.

Notice that all of the above cases have determinant polynomial with a root of multiplicity

2.

Given the analysis in this section, we present the following table, which lists the possible

complete intersections of two quadrics in P3, up to projective equivalence, and their singulari-

ties. The list of polynomials can be also found in [Som59, §XIII] (up to projective equivalence).

One can also generate the polynomials f , g via the Segre symbols.
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Segre symbol Generating polynomials Singularities

[4]
f = q1(x2, x3) + x3l1(x0, x1) + x2l2(x0, x1)

g = q2(x2, x3) + x3l3(x0, x1) + x2l4(x0, x1)
A3

[(3, 1)]
f = q1(x1, x2, x3) + x0x3

g = x3l1(x1, x2, x3)
D4

[(2, 2)]
f = q1(x2, x3) + x0x3 + x1l1(x2, x3)

g = q2(x2, x3)
non-

isolated

[3, 1]
f = q1(x1, x2, x3) + x0x3

g = q2(x2, x3) + x1x3

A2

[(2, 1), 1]
f = q1(x1, x2, x3) + x0l1(x1, x2, x3) + x1l1(x2, x3)

g = q2(x2, x3) + x0x3 + x1l2(x2, x3)
A3

[(1, 1, 1), 1]
f = q1(x0, x1, x2, x3)

g = x23

non-

isolated

[2, 2]
f = q1(x2, x3) + x0l1(x2, x3) + x1l2(x2, x3)

g = q2(x2, x3) + x0l3(x2, x3) + x1l4(x2, x3)
2A1

[2, (1, 1)]
f = q1(x2, x3) + x0x3

g = x3l3(x0, x1, x2, x3)
2A1

[(1, 1), (1, 1)]
f = q1(x2, x3)

g = q2(x0, x1)
4A1
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[2, 1, 1]
f = q1(x1, x2, x3) + x0x3

g = q2(x1, x2, x3)
A1

[(1, 1), 1, 1]
f = q1(x0, x1, x2, x3)

g = q2(x2, x3)
2A1

[1, 1, 1, 1]
f = q1(x0, x1, x2, x3)

g = q2(x0, x1, x2, x3)
None

Table 5.2: Segre symbols, equations up to projective

equivalence, and singularities of complete intersections

of quadrics in P3.

Remark 5.6.1. Note, that for all singular complete intersections, by Theorem 4.3, and since

any two sets of 3 points in P1 are isomorphic, the above description is unique, since any two

singular complete intersections of quadrics in P3 with the same Segre symbol are progressively

equivalent.

5.2 GIT Classification

In this Section we will study the VGIT quotient R3,2,2,1 � SL(4). For wall t = 0, i.e. in the

absence of a hyperplane, this is equivalent to the GIT quotient R3,2,2 � SL(4). The following

families have been generated using the computational package [Pap22c], based on the

discussion on Chapter 3. In particular, they are maximal destabilising families, in the sense of

Definition 3.15. The computational package gives us that P3,2,2 = [(5, 4, -3, -6), (25, 9, -15, -19),

(7, 3, -1, -9), (19, 15, -9, -25), (11, 3, -1, -13), (7, 3, -5, -5), (3, 0, -1, -2), (9, 3, -5, -7), (13, 1, -3, -11),

(9, 7, -5, -11), (13, 1, -5, -9), (15, 3, -5, -13), (9, 5, -1, -13), (5, 2, -3, -4), (19, 3, -5, -17), (11, 5, -7, -9),

(3, 1, 0, -4), (5, 1, -3, -3), (5, 1, -2, -4), (15, 11, -1, -25), (9, -1, -3, -5), (19, -1, -5, -13), (11, 7, -1, -17),

(4, 1, -2, -3), (11, 3, -5, -9), (4, 2, -1, -5), (5, 3, 1, -9), (11, 7, -5, -13), (5, 0, -1, -4), (25, 1, -11, -15), (6,

3, -4, -5), (2, 0, -1, -1), (23, 3, -5, -21), (15, 1, -7, -9), (1, 1, -1, -1), (7, 5, 1, -13), (13, 5, -7, -11), (15, 7,
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3, -25), (13, 5, 1, -19), (9, 5, 1, -15), (1, 1, 0, -2), (13, 9, -7, -15), (5, 5, -3, -7), (7, -1, -2, -4), (17, 9, -7,

-19), (13, 9, 1, -23), (25, -3, -7, -15), (5, 1, -1, -5), (3, 2, 0, -5), (2, 1, 0, -3), (7, 1, -3, -5), (9, 1, -3, -7),

(3, 1, -1, -3), (15, 7, -9, -13), (7, 3, 1, -11), (17, 5, -3, -19), (21, 5, -3, -23), (9, 5, -3, -11), (9, 7, -1, -15),

(23, -1, -9, -13), (15, 11, -9, -17), (5, 3, -3, -5), (15, -1, -5, -9), (1, 1, 1, -3), (1, 0, 0, -1), (5, 0, -2, -3),

(17, 1, -7, -11), (4, 3, -2, -5), (11, -1, -3, -7), (13, -1, -5, -7), (3, 3, -1, -5), (3, -1, -1, -1), (5, -1, -1, -3),

(7, 5, -3, -9), (11, 5, -3, -13), (11, 1, -5, -7), (7, -1, -1, -5), (19, 7, -9, -17), (4, 0, -1, -3), (13, 5, -3, -15),

(5, 1, 1, -7), (7, 5, -1, -11), (17, 9, -11, -15), (4, 2, 1, -7), (3, 2, -1, -4), (2, 1, -1, -2), (3, 1, 1, -5), (4, 1,

0, -5), (13, 3, -5, -11), (5, 3, -1, -7)]. In addition, we get:

λ xJ V −(λ, xJ) B−(λ, xJ)

(1, 1,−1,−1) x22 {x0, x1, x2, x3}2 {x2, x3}2

(1, 1,−1,−1) x0x2 {x2, x3}2, {x0, x1}{x2, x3} {x2, x3}2, {x0, x1}{x2, x3}

(1, 1, 1,−3) x0x3 {x0, x1, x2, x3}2 x3{x0, x1, x2, x3}

(1, 0, 0,−1) x0x3 {x1, x2, x3}2, x0x3 {x1, x2, x3}2, x0x3
(3,−1,−1,−1) x21 {x1, x2, x3}2, x0{x1, x2, x3} {x1, x2, x3}2

Table 5.3: Outputs of the computational package [Pap22c] for destabilized families of complete

intersections of two quadrics in P3

λ xJ V ⊖(λ, xJ) B⊖(λ, xJ)

(5, 4,−3,−6) x23 {x0, x1, x2, x3}2 x23

(5, 4,−3,−6) x0x3 {x2, x3}2, x3{x0, x1} {x2, x3}2, x3{x0, x1}

(25, 9,−15,−19) x22 {x1, x2, x3}2, x0{x2, x3} {x2, x3}2

(3, 0,−1,−2) x1x3 {x1, x2, x3}2, x0x3 {x2, x3}2, x1x3
(9,−1,−3,−5) x21 {x1, x2, x3}2 {x1, x2, x3}2.

Table 5.4: Outputs of the computational package [Pap22c] for semi-destabilized families of

complete intersections of two quadrics in P3



134 VGIT of a complete intersection of Quadrics in P3 and a Hyperplane

λ xJ V 0(λ, xJ) B0(λ, xJ)

(1, 1,−1,−1) x22 {x0, x1}2 {x2, x3}2

(1, 1,−1,−1) x1x3 {x0, x1}{x2, x3} {x0, x1}{x2, x3}

(1, 1, 1,−3) x0x3 {x0, x1, x2}2 x3{x0, x1, x2}2

(1, 0, 0,−1) x0x3 {x1, x2}2, x0x3 {x1, x2}2, x0x3
(3,−1,−1,−1) x21 x0{x1, x2, x3} {x1, x2, x3}2.

Table 5.5: Outputs of the computational package [Pap22c] for potentially closed orbits of

complete intersections of two quadrics in P3

Theorem 5.7. The following are equivalent:

1. A pencil of two quadrics Φ(f, g) in P3 is unstable;

2. the base locus of the pencil Bs(f, g), has singularities worse than A1;

3. the pencil is generated by one of the following families, or a degeneration:

Family 1:

f(x0, x1, x2, x3) =q0(x1, x2, x3) + x0l1(x2, x3)

g(x0, x1, x2, x3) =q1(x2, x3)

an irreducible smooth quadric f and two intersecting planes g intersecting at two conic curves

tangent at one point (1 : 0 : 0 : 0), with isolated A3 singularity at (1 : 0 : 0, 0);

Family 2:

f(x0, x1, x2, x3) =q2(x1, x2, x3)

g(x0, x1, x2, x3) =q3(x1, x2, x3)

two irreducible singular quadrics f, g such that Bs(f, g) is 4 intersecting lines at a point

P = (1 : 0 : 0 : 0), with non-hypersurface singularity at P ;

Family 3:

f(x0, x1, x2, x3) =q4(x0, x1, x2, x3)

g(x0, x1, x2, x3) =x
2
3

an irreducible smooth quadric f and a double plane g intersecting at a double conic, with non

isolated singularities at (1 : k : l : 0) where k, l are the solutions of q4(1, x1, x2, 0) = 0;
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Family 4:

f(x0, x1, x2, x3) =x3x0 + q5(x1, x2, x3)

g(x0, x1, x2, x3) =q6(x2, x3) + x1x3

an irreducible smooth quadric f and a two intersecting planes g intersecting at a conic and two

lines tangent at a point P = (1 : 0 : 0 : 0), with isolated A2 singularity at (1 : 0 : 0 : 0);

Family 5:

f(x0, x1, x2, x3) =q5(x2, x3) + x3l3(x0, x1)

g(x0, x1, x2, x3) =q6(x2, x3) + x3l4(x0, x1)

two irreducible singular quadrics f, g intersecting at two double lines, with non-isolated singu-

larities at (1 : λ : 0 : 0).

Here, the li are linear forms in P3 and the qi are quadratic forms, which are maximal in their support.

Proof. The equivalence of 1 and 3 follows from the computational program [Pap22c] we

detailed in Chapter 3 and the centroid criterion (Theorem 3.10), where the above families are

maximal semi-destabilising families as in the sense of Definition 3.15, i.e. each family equals

N−(λ, xJ , xp) for some λ ∈ P3,2,2 and xJ , xp support monomials, from Table 5.4.

For Family 1, the Segre symbol of the pencil is [(2, 1), 1] so by the classification of pencils

of quadrics in P3, the base locus is two conics tangent at a point P = (1 : 0 : 0 : 0), which is an

A3 singularity by Lemma 5.1.

For Family 2, f, g are two cones with common vertex P = (1 : 0 : 0 : 0). We write the

equations f, g in normal form: f = x21 + x22 + x23, g = λ1x
2
1 + λ2x

2
2 + λ3x

2
3, where the λi are

distinct. Solving for x1, we have x1 = ±
√
−x22 − x23, hence x22(λ2 − λ1) + x23(λ3 − λ1) = 0. This

in turn implies that x2 = ±Ax3, with A =
√

λ1−λ3
λ2−λ1 , and x1 = ±Bx3, with B =

√
A2 − 1. Hence,

the base locus consists of 4 lines intersecting at P = (1 : 0 : 0 : 0), the common vertex of the

two cones. The MAGMA analysis for singularities seen in Remark 5.5.1 shows that P is not a

hypersurface singularity.

For Family 3, notice that the base locus of the intersection is a conic q4(x0, x2, x3, 0), which

is in fact a double conic. Furthermore, using Lemma 4.1 the intersection is singular for all

points on the conic, hence there are no isolated singularities.

For Family 4, the Segre symbol of the pencil is [3, 1], hence due to the classification, the

base locus is a cuspidal curve with A2 singularity at point P = (1 : 0 : 0 : 0).
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For Family 5, f, g are two cones with different vertices. The points (1 : λ : 0 : 0) are

singular points of the intersection, and they are non-isolated singularities.

Notice also that a particular degeneration of Family 1 with f = q1(x1, x2, x3) + αx0x3,

g = ax22+bx
2
3, has a singular point at P = (1 : 0 : 0 : 0). Furthermore, it has Segre symbol [3, 1],

and using the classification its base locus is a cuspidal curve, hence P is an A2 singularity.

To conclude the proof, note that by Lemma 5.6 the base locus of the pencil has A1 singu-

larities if and only if the determinant polynomial det(λf + g) has roots of multiplicity 2. The

above Families and their degenerations represent all possible pencils of quadrics where the

determinant polynomial has roots of multiplicity > 2, as families 1, 3 and 4 give the only

possible complete intersections where the determinant polynomial has a root of multiplicity 3,

and the rest of the families are either non-normal or do not have du Val singularities. Hence,

2 and 3 are equivalent.

Theorem 5.8. The following are equivalent:

1. A pencil of two quadrics Φ(f, g) in P3 is non-stable;

2. the base locus of the pencil Bs(f, g), is singular;

3. the pencil is generated by one of the following families, or a degeneration:

Family 1:

f(x0, x1, x2, x3) =x3l1(x0, x1, x2, x3) + x2l2(x0, x1, x2) + x1l3(x0, x1)

g(x0, x1, x2, x3) =q1(x1, x2, x3)

an irreducible smooth quadric f and an irreducible singular quadric g intersecting at a nodal

curve, with A1 singularity at (1 : 0 : 0, 0);

Family 2:

f(x0, x1, x2, x3) =q2(x0, x1, x2, x3)

g(x0, x1, x2, x3) =q3(x2, x3)

an irreducible smooth quadric f and a pair of intersecting planes g such that Bs(f, g) is a pair of

conics in general position, with A1 singularities (up to a change of coordinates) at (1 : i : 0 : 0),

(1 : −i : 0 : 0);
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Family 3:

f(x0, x1, x2, x3) =x3l4(x0, x1, x2, x3) + x2l5(x0, x1, x2)

g(x0, x1, x2, x3) =x3l6(x0, x1, x2, x3) + x2l7(x0, x1, x2)

two irreducible non-singular quadrics f, g intersecting at a twisted cubic and a bisecant, with

A1-singularities at (1 : 0 : 0 : 0) and (0 : 1 : 0 : 0);

Family 4:

f(x0, x1, x2, x3) =x3l8(x0, x1, x2, x3) + q4(x1, x2)

g(x0, x1, x2, x3) =x3l9(x0, x1, x2, x3) + q5(x1, x2)

two irreducible smooth quadrics f, g intersecting at a nodal curve, with an A1-singularity at

(1 : 0 : 0 : 0),

or a degeneration of the above. Here, the li are linear forms in P3 and the qi are quadratic forms.

In particular, the above 4 families are strictly semistable, and families 1 and 4 are projectively

equivalent.

Proof. The equivalence of 1 and 3 follows from the computational program [Pap22c] we

detailed in Chapter 3 and the centroid criterion (Theorem 3.10), where the above families

are maximal destabilising families as in the sense of Definition 3.15, i.e. each family equals

N−(λ, xJ , xp) for some λ ∈ P3,2,2 and xJ , xp support monomials, from Table 5.3. The de-

scription of the above families with respect to singularities follows from Sections 5.1 and

5.3.

For the equivalence of 2 and 3 we have the following analysis. For the first Family, notice

that the base locus is singular, with singularity P = (1 : 0 : 0 : 0). Furthermore, the Segre

symbol of the pencil is [2, 1, 1], and by the classification, the base locus is a nodal curve, hence

P is an A1 singularity.

For Family 2, notice that the Segre symbol of the pencil is [(1, 1), 1, 1] and hence that

the base locus is two conics C1, C2 in general position, intersecting at points P,Q, with A1

singularities by Table 5.1.

For Family 3, the Segre symbol of the pencil is [2, 2]. By the classification, the base locus

of the pencil is a twisted cubic and a bisecant intersecting the cubic at P = (1 : 0 : 0 : 0) and

Q = (0 : 1 : 0 : 0)) which are A1 singularities.
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For Family 4, the base locus is singular, with singularity P = (1 : 0 : 0 : 0). Furthermore,

the Segre symbol of the pencil is [2, 1, 1], and by the classification, the base locus is a nodal

curve, hence P is an A1 singularity. In particular, since families 1 and 4 have the same Segre

symbol, they are projectively equivalent by Theorem 4.3.

In addition, notice that a degeneration of family 3 is

f(x0, x1, x2, x3) = x0x3

g(x0, x1, x2, x3) = x1x2

which is the quadrangle with Segre symbol [(1, 1), (1, 1)] and 4A1 singularities.

In addition, notice that a degeneration of family 4 is

f(x0, x1, x2, x3) = q(x2, x3) + x0x3

g(x0, x1, x2, x3) = x3l(x0, x1, x2, x3)

which is the complete intersection with Segre symbol [2, (1, 1)] and 2A1 singularities.

Hence, from the above discussion, and from Lemma 4.1 we notice that if a pencil has

singular base locus, then it belongs to one of the above Families (or its degenerations).

Corollary 5.8.1. A pencil Φ(f, g) of quadrics in P3 is stable if and only if it is smooth.

Proof. Let Φ be a pencil which has smooth base locus. By Theorem 5.8 it is not non-stable, i.e.

it is stable.

Theorem 5.9.

A pencil of two quadrics Φ(f, g) in P3 is strictly polystable if and only if it is generated by:

f(x0, x1, x2, x3) =q2(x0, x1)

g(x0, x1, x2, x3) =q3(x2, x3)

two reducible singular quadrics f, g intersecting at a quadrangle, with A1-singularities at (up to

change of basis) (1 : 0 : 0 : 0), (0 : 1 : 0 : 0), (0 : 0 : 1 : 0), (0 : 0 : 0 : 1),

Here, the li are linear forms in P3 and the qi are quadratic forms, which are maximal in their

support.
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Proof. First notice that by Lemma 4.1 the above families are singular, and hence by Theorem

5.8 they are non-stable. The above families have all determinant polynomials with roots of

multiplicity 2, hence by Lemma 5.6 they have A1 singularities. This, alongside with Theorem

5.7 implies that the above families are semistable.

In more detail, the above family has Segre symbol [(1, 1), (1, 1)] and hence its base locus is

a quadrangle, with 4A1 singularities.

Note that f ∧ g = x0x1 ∧ x2x3; for any one parameter subgroup λ : Gm → SL(4), with

λ(s) = Diag(sa0 , . . . , sa3), with
∑
ai = 0, we have lims→0 λ(s) · f ∧ g = s

∑
aix0x1 ∧ x2x3 =

x0x1 ∧ x2x3 = f ∧ g. Hence, dimStab(f ∧ g) = dim(SL(4)) is maximal and thus the orbit of

f ∧ g is closed, i.e. the pencil is polystable in both cases.

By Theorem 3.19 a complete intersection S, defined by S = {f = g = 0}, that belongs

to a closed strictly semistable orbit is generated by monomials in the set N0(λ, xJ1), for

some (λ, xJ1). The above family corresponds to the only such N0(λ, xJ1) (up to projective

equivalence), presented in Table 5.5. In particular, these are obtained by verifying which

N−(λ, xJ) give strictly semistable families, for various support monomials xJ , and then

computing N0(λ, xJ1) by the description in Lemma 3.18.

5.3 Classifying the Singularities of Pairs (S,D = S ∩H)

Following the discussion of Chapter 3, we take S = C1 ∩ C2, and D = S ∩H , where Ci are

quadrics in P3 and H is a hyperplane. The lemmas below serve as to help with the geometric

classification of such pairs, based on the singularities of S and D. Notice, that D will be a

complete intersection of two quadrics in H ∼= P2, which has been analysed in Chapter 4.

Lemma 5.10. Let S be a smooth complete intersection of two quadrics and H a general hyperplane.

Then D can have at worse a quadruple point.

Proof. Let S be the complete intersection of f and g and H a hyperplane, where

f(x0, x1, x2, x3) =q1(x1, x2, x3) + x0l1(x2, x3)

g(x0, x1, x2, x3) =q2(x2, x3) + x3l2(x0, x1)

H(x0, x1, x2, x3) =x3

Then S = {f = 0} ∩ {g = 0} is smooth and D is generated by equations



140 VGIT of a complete intersection of Quadrics in P3 and a Hyperplane

f ′(x0, x1, x2) =q3(x1, x2) + x0x2

g′(x0, x1, x2) =x
2
2.

The only point on the intersection is the point (1 : 0 : 0) which is a quadruple point.

Remark 5.10.1. In fact, if S is smooth, D can also have a triple point, two or one double

points, and it can be smooth. To see this, let S = {f = 0} ∩ {g = 0}, D = S ∩H where

f(x0, x1, x2, x3) =q1(x1, x2, x3) + x0l1(x2, x3)

g(x0, x1, x2, x3) =q2(x2, x3) + x1l2(x2, x3) + x0x3

H(x0, x1, x2, x3) =x3.

Then, S is a smooth complete intersection (it has Segre symbol [1, 1, 1, 1]), but D is given by

f(x0, x1, x2) =q1(x1, x2) + x0x2

g(x0, x1, x2) =x
2
2 + x1x2

which has a triple point at (1 : 0 : 0).

Similarly, if S and H are given by

f(x0, x1, x2, x3) =q1(x0, x1, x2, x3)

g(x0, x1, x2, x3) =q2(x2, x3) + x3l1(x0, x1)

H(x0, x1, x2, x3) =x3

then, S is a smooth complete intersection (it has Segre symbol [1, 1, 1, 1]), but D is given by

f(x0, x1, x2) =q1(x0, x1, x2)

g(x0, x1, x2, x3) =x
2
2

which has two double points (up to projective equivalence) at (1 : 0 : 0), (0 : 1 : 0). Finally, if

S and H are given by

f(x0, x1, x2, x3) =q1(x1, x2, x3) + x0l1(x1, x2, x3)

g(x0, x1, x2, x3) =q2(x1, x2, x3) + x0x3

H(x0, x1, x2, x3) =x3,
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then, S is a smooth complete intersection (it has Segre symbol [1, 1, 1, 1]), but D is given by

f(x0, x1, x2) =q1(x1, x2) + x0l1(x1, x2)

g(x0, x1, x2) =q2(x1, x2)

which has one double point (up to projective equivalence) at (1 : 0 : 0).

Lemma 5.11. Let S be the complete intersection of two quadrics f, g which is given by two conics in

general position. Then S has 2A1 singularities. Let H be a hyperplane. Then, the hyperplane section

D = S ∩H has up to an SL(4)-action:

1. one double point at one of the A1 singularities if and only if H = {l(x1, x2, x3) = 0};

2. two double points at the A1 singularities if and only if H = {l(x2, x3) = 0} or H = {x3 = 0}.

Proof. From Sections 4.2 and 5.1 and Table 5.2 we know that S is given, up to projective

equivalence, by

f = q1(x0, x1, x2, x3)

g = q2(x2, x3)

Let H = {l(x1, x2, x3) = 0}; using a suitable change of coordinates we have (by abuse of

notation):

f = q1(x0, x1, x2, l(x1, x2, x3))

g = q2(x2, x3, l(x1, x2, x3))

H = x3

and hence D will be given by:

f ′ = q1(x0, x1, x2)

g′ = q2(x1, x2)

which is a singular complete intersection of conics with a double point (up to SL(3)-action) at

(1 : 0 : 0).

Similarly, let H = {l(x2, x3) = 0} or H = {x3 = 0}; using a similar suitable change of

coordinates we have (by abuse of notation):

f = q1(x0, x1, x2, x3)

g = q2(x2, x3)

H = x3
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and hence D will be given by:

f ′ = q1(x0, x1, x2)

g′ = x22

which is a singular complete intersection of conics with two double points (up to SL(3)-action)

(1 : 0 : 0) and (0 : 1 : 0).

Lemma 5.12. Let S be the complete intersection of two quadrics f, g which is a nodal curve. Then S

has one A1 singularity. Let H be a hyperplane. Then, the hyperplane section D = S ∩H has up to an

SL(4)-action:

1. one double point at the A1 singularity if and only if H = {l(x1, x2, x3) = 0};

2. a triple point at the A1 singularity if and only if H = {l(x2, x3) = 0};

3. a quadruple point at the A1 singularity if and only if H = {x3 = 0}.

Proof. From Sections 4.2 and 5.1 and Table 5.2 we know that S is given, up to projective

equivalence, by

f = q1(x1, x2, x3) + x0x3

g = q2(x1, x2, x3)

Let H = {l(x1, x2, x3) = 0}; using a similar suitable change of coordinates we have (by

abuse of notation):

f = q1(x1, x2, x3) + x0l(x1, x2, x3)

g = q2(x1, x2, l(x1, x2, x3))

H = x3

and hence D will be given by:

f ′ = q1(x1, x2) + x0l(x1, x2)

g′ = q2(x1, x2)

which is a singular complete intersection of conics with a double point (up to SL(3)-action)

(1 : 0 : 0).
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Similarly, let H = {l(x2, x3) = 0}; using a similar suitable change of coordinates we have

(by abuse of notation):

f = q1(x1, x2, x3) + x0l(x2, x3)

g = q2(x1, x2, l(x2, x3))

H = x3

and hence D will be given by:

f ′ = q1(x1, x2) + x0x2

g′ = q2(x1, x2)

which is a singular complete intersection of conics with a triple point (up to SL(3)-action) at

(1 : 0 : 0).

Now, let H = {x3 = 0}; then D will be given by:

f ′ = q1(x1, x2)

g′ = q2(x1, x2)

which is a singular complete intersection of conics with a quadruple point (up to SL(3)-action)

at (1 : 0 : 0).

Lemma 5.13. Let S be the complete intersection of two quadrics f, g which is a quadrangle. Then S

has 4A1 singularities. Let H be a hyperplane. Then, the hyperplane section D = S ∩H has up to an

SL(4)-action:

1. one double point at one of the A1 singularity if and only if H = {l(x1, x2, x3) = 0};

2. two double points at two of the A1 singularities if and only if H = {l(x2, x3) = 0} or

H = {x3 = 0}.

Proof. From Sections 4.2 and 5.1 and Table 5.2 we know that S is given, up to projective

equivalence, by

f = q1(x2, x3)

g = q2(x0, x1)
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Let H = {l(x1, x2, x3) = 0}; using a suitable change of coordinates we have (by abuse of

notation):

f = q1(x1, x2, x3)

g = q2(x0, x1)

H = x3

and hence D will be given by:

f ′ = q1(x1, x2)

g′ = q2(x0, x1)

which is a singular complete intersection of conics with one double point.

Similarly, let H = {l(x2, x3) = 0} or H = {x3 = 0}; using a similar suitable change of

coordinates we have in both cases (by abuse of notation):

f = q1(x2, x3)

g = q2(x0, x1)

H = x3

and hence D will be given by:

f ′ = x22

g′ = q2(x0, x1)

which is a singular complete intersection of conics with a two double points (up to SL(3)-

action) at (1 : 0 : 0) and (0 : 1 : 0).

Lemma 5.14. Let S be the complete intersection of two quadrics f, g which is a conic and two lines

in triangle. Then S has 2 A1 singularities. Let H be a hyperplane. Then, the hyperplane section

D = S ∩H has/is up to an SL(4)-action:

1. one double point at one of the A1 singularities if and only if H = {l(x1, x2, x3) = 0} or

H = {l(x2, x3) = 0};

2. not a complete intersection if and only if H = {x3 = 0}.
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Proof. From Sections 4.2 and 5.1 and Table 5.2 we know that S is given, up to projective

equivalence, by

f = q1(x1, x2, x3) + x0x3

g = x3l1(x0, x1, x2, x3)

Now, let H = {l(x1, x2, x3) = 0}; using a suitable change of coordinates we have (by abuse

of notation):

f = q1(x1, x2, x3) + x0l(x1, x2, x3)

g = q2(x1, x2, x3) + x0l(x1, x2, x3)

H = x3

and hence D will be given by:

f ′ = q1(x1, x2) + x0l(x1, x2)

g′ = q2(x1, x2) + x0l(x1, x2)

which is a singular complete intersection of two conics in P2, with a double point at (1 : 0 : 0).

Let H = {l(x2, x3) = 0}; using a similar suitable change of coordinates we have (by abuse

of notation):

f = q1(x1, x2, x3) + x0l(x2, x3)

g = l(x2, x3)l1(x0, x1, x2, x3)

H = x3

and hence D will be given by:

f ′ = q1(x1, x2) + x0x2

g′ = x2l1(x0, x1, x2)

which is a singular complete intersection of conics with a double point (up to SL(3)-action)

(1 : 0 : 0).

Now, let H = {x3 = 0}; then we have:

f = q1(x1, x2, x3) + x0x3

g = x3l1(x1, x2, x3)

H = x3
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and hence D will be given by:

f ′ = q1(x1, x2)

g′ = 0

which is a smooth curve, hence not a complete intersection of conics.

Lemma 5.15. Let S be the complete intersection of two quadrics f, g which is a twisted cubic and

bisecant. Then S has 2 A1 singularities. Let H be a hyperplane. Then, the hyperplane section

D = S ∩H has/is up to an SL(4)-action:

1. one double point at one of the A1 singularities if and only if H = {l(x1, x2, x3) = 0};

2. two double H = {l(x2, x3) = 0} or H = {x3 = 0}.

Proof. From Sections 4.2 and 5.1 and Table 5.2 we know that S is given, up to projective

equivalence, by

f = q1(x2, x3) + x0l1(x2, x3) + x1l2(x2, x3)

g = q3(x2, x3) + x0l3(x2, x3) + x1l4(x2, x3)

Let H = {l(x1, x2, x3) = 0}; using a suitable change of coordinates we have (by abuse of

notation):

f = q1(x1, x2, x3) + x0l(x1, x2, x3)

g = q2(x1, x2, x3) + x0l(x1, x2, x3)

H = x3

and hence D will be given by:

f ′ = q1(x1, x2) + x0l(x1, x2)

g′ = q2(x1, x2) + x0l(x1, x2)

which is a singular complete intersection of two conics in P2, with a double point at (1 : 0 : 0).

Let H = {l(x2, x3) = 0} or H = {x3 = 0}; using a similar suitable change of coordinates

we have (by abuse of notation):

f = q1(x2, x3) + x0l1(x2, x3) + x1l2(x2, x3)

g = q3(x2, x3) + x0l3(x2, x3) + x1l4(x2, x3)

H = x3
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and hence D will be given by:

f ′ = x22 + ax0x2 + bx1x2

g′ = x22 + a′x0x2 + b′x1x2

which is a line and two points on the line, hence not a complete intersection of conics.

Lemma 5.16. Let S be the complete intersection of two quadrics f, g which is a double conic. Then S

has non-isolated singularities. Let H be a hyperplane. Then, the hyperplane section D = S ∩H has/is

up to an SL(4)-action:

1. two double points at the non-isolated singularities of S if and only if H = {l(x1, x2, x3) = 0}

or H = {l(x2, x3) = 0};

2. not a complete intersection if and only if H = {x3 = 0}.

Proof. From Sections 4.2 and 5.1 and Table 5.2 we know that S is given, up to projective

equivalence, by

f = q1(x0, x1, x2, x3)

g = x23

Let H = {l(x1, x2, x3) = 0}; using a suitable change of coordinates we have (by abuse of

notation):

f = q1(x0x1, x2, l)

g = l(x1, x2, x3)
2

H = x3

and hence D will be given by:

f = q1(x0, x1, x2)

g = l(x1, x2)
2

which is a singular complete intersection of conics, with two double points.
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Similarly, let H = {l(x2, x3) = 0}; using a suitable change of coordinates we have (by

abuse of notation):

f = q1(x0x1, x2, l)

g = l(x2, x3)
2

H = x3

and hence D will be given by:

f = q1(x0, x1, x2)

g = x22

which is a singular complete intersection of conics, with two double points.

Now, let H = {x3 = 0}. Then D will be given by:

f = q1(x0, x1, x2)

g = 0

which is a smooth curve, hence not a complete intersection of conics.

Lemma 5.17. Let S be the complete intersection of two quadrics f, g which is two tangent conics.

Then S has 1A3 singularity. Let H be a hyperplane. Then, the hyperplane section D = S ∩H has/is

up to an SL(4)-action:

1. a double point at the A3 singularity if and only if H = {l(x1, x2, x3) = 0} ;

2. a quadruple point at the A3 singularity if and only if H = {l(x2, x3) = 0} or H = {x3 = 0};

two double points if and only if S is given by

f = q(x0, x1)

g = x22 + x3l(x0, x1)

and H = {x3 = 0}.

Proof. From Sections 4.2 and 5.1 and Table 5.2 we know that S is given, up to projective

equivalence, by

f = q1(x1, x2, x3) + x0l1(x2, x3)

g = q2(x2, x3)



5.3 Classifying the Singularities of Pairs (S,D = S ∩H) 149

Let H = {l(x1, x2, x3) = 0}; using a suitable change of coordinates we have (by abuse of

notation):

f = q1(x1, x2, l) + x0l1(x2, l)

g = q2(x2, l)

H = x3

and hence D will be given by:

f = q1(x1, x2) + x0l(x1, x2)

g = q2(x1, x2)

which is a singular complete intersection of conics, with a double point, at (1 : 0 : 0).

Similarly, let H = {l(x2, x3) = 0}; using a suitable change of coordinates we have (by

abuse of notation):

f = q1(x1, x2, x3) + x0l1(x2, x3)

g = q2(x2, x3)

H = x3

and hence D will be given by:

f = q1(x1, x2) + x0x2

g = x22

which is a singular complete intersection of conics, with a quadruple point, at (1 : 0 : 0).

Now, let H = {x3 = 0}. Then D will be given by:

f = q1(x1, x2) + x0x2

g = x22

which is a singular complete intersection of conics, with a quadruple point, at (1 : 0 : 0).

Lemma 5.18. Let S be the complete intersection of two quadrics f, g which is a cuspidal curve. Then

S has 1A2 singularity. Let H be a hyperplane. Then, the hyperplane section D = S ∩H has/is up to

an SL(4)-action:
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1. a double point at the A2 singularity if and only if H = {l(x1, x2, x3) = 0} ;

2. a quadruple point at the A2 singularity if and only if H = {l(x2, x3) = 0} or H = {x3 = 0}.

Proof. From Sections 4.2 and 5.1 and Table 5.2 we know that S is given, up to projective

equivalence, by

f = q1(x1, x2, x3) + x0x3

g = q2(x2, x3) + x1x3

Let H = {l(x1, x2, x3) = 0}; using a suitable change of coordinates we have (by abuse of

notation):

f = q1(x1, x2, l) + x0l

g = q2(x2, l) + x1l

H = x3

and hence D will be given by:

f = q1(x1, x2) + x0l(x1, x2)

g = q2(x1, x2)

which is a singular complete intersection of conics, with a double point, at (1 : 0 : 0).

Similarly, let H = {l(x2, x3) = 0}; using a suitable change of coordinates we have (by

abuse of notation):

f = q1(x1, x2, l) + x0l

g = q2(x2, l) + x1l

H = x3

and hence D will be given by:

f = q1(x1, x2) + x0x2

g = x22

which is a singular complete intersection of conics, with a quadruple point, at (1 : 0 : 0).

Now, let H = {x3 = 0}. Then D will be given by:
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f = q1(x1, x2) + x0x2

g = x22

which is a singular complete intersection of conics, with a quadruple point, at (1 : 0 : 0).

Lemma 5.19. Let S be the complete intersection of two quadrics f, g which is a double line and two

lines in general position. Then S has non-isolated singularities. Let H be a hyperplane. Then, the

hyperplane section D = S ∩H has/is up to an SL(4)-action:

1. a double point if and only if H = {l(x1, x2, x3) = 0} ;

2. not a complete intersection if and only if H = {l(x2, x3) = 0} or H = {x3 = 0}.

Proof. From Sections 4.2 and 5.1 and Table 5.2 we know that S is given, up to projective

equivalence, by

f = q1(x2, x3) + x0x3 + x1l1(x2, x3)

g = q2(x2, x3)

Let H = {l(x1, x2, x3) = 0}; using a suitable change of coordinates we have (by abuse of

notation):

f = q1(x2, l) + x0l + x1l1(x2, l)

g = q2(x2, l)

H = x3

and hence D will be given by:

f = q1(x1, x2) + x0l(x1, x2)

g = q2(x1, x2)

which is a singular complete intersection of conics, with a double point, at (1 : 0 : 0).

Similarly, let H = {l(x2, x3) = 0}; using a suitable change of coordinates we have (by

abuse of notation):

f = q1(x2, l) + x0l + x1l1(x2, l)

g = q2(x2, l)

H = x3
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and hence D will be given by:

f = x22 + ax1x2 + bx0x2

g = x22

which is the union of two lines, i.e., not a complete intersection of conics.

Now, let H = {x3 = 0}; then, D will be given by:

f = x22 + ax1x2

g = x22 + bx1x2

which is a line and a point on the line, and hence not a complete intersection.

Lemma 5.20. Let S be the complete intersection of two quadrics f, g which is a conic and two lines

intersecting in one point. Then S has 1D4 singularity. Let H be a hyperplane. Then, the hyperplane

section D = S ∩H has/is up to an SL(4)-action:

1. a double point at the D4 singularity if and only if H = {l(x1, x2, x3) = 0} or if H = {x3 = 0};

2. a triple point at the D4 singularity if and only if H = {l(x2, x3) = 0}.

Proof. From Sections 4.2 and 5.1 and Table 5.2 we know that S is given, up to projective

equivalence, by

f = q1(x1, x2, x3) + x0x3

g = x3l1(x1, x2, x3)

Let H = {l(x1, x2, x3) = 0}; using a suitable change of coordinates we have (by abuse of

notation):

f = q1(x1, x2, l) + x0l

g = l · l1(x1, x2, l)

H = x3

and hence D will be given by:

f = q1(x1, x2) + x0l(x1, x2)

g = q2(x1, x2)
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which is a singular complete intersection of conics, with a double point, at (1 : 0 : 0).

Similarly, let H = {l(x2, x3) = 0}; using a suitable change of coordinates we have (by

abuse of notation):

f = q1(x1, x2, l) + x0l

g = l · l1(x1, x2, l)

H = x3

and hence D will be given by:

f = q1(x1, x2) + x0x2

g = x2l1(x1, x2)

which is a complete intersection of conics with a triple point (1 : 0 : 0).

Now, let H = {x3 = 0}, and let f , g be given by

f = x1x2 + ax0x3

g = x0x1 + bx0x2

such that D is given by

f = x1x2

g = x0x1 + bx0x2

which has a double point at (1 : 0 : 0)

Lemma 5.21. Let S be the complete intersection of two quadrics f, g which is a a twisted cubic and

tangent line. Then S has 1 A3 singularity. Let H be a hyperplane. Then, the hyperplane section

D = S ∩H has/is up to an SL(4)-action:

1. a double point at the A3 singularity if and only if H = {l(x1, x2, x3) = 0} ;

2. a triple point at the A3 singularity if and only if H = {l(x2, x3) = 0} or H = {x3 = 0}.

Proof. From Sections 4.2 and 5.1 and Table 5.2 we know that S is given, up to projective

equivalence, by

f = q1(x2, x3) + x3l1(x0, x1) + x2l2(x0, x1)

g = q2(x2, x3) + x3l3(x0, x1) + x2l4(x0, x1)
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Let H = {l(x1, x2, x3) = 0}; using a suitable change of coordinates we have (by abuse of

notation):

f = q1(x2, l) + l · l1(x0, x1) + x2l2(x0, x1)

g = q2(x2, l) + l · l3(x0, x1) + x2l4(x0, x1)

H = x3

and hence D will be given by:

f = q1(x1, x2) + x0l1(x1, x2)

g = q2(x1, x2) + x0l2(x1, x2)

which is a singular complete intersection of conics, with a double point, at (1 : 0 : 0).

Similarly, let H = {l(x2, x3) = 0} or H = {x3 = 0}; using a suitable change of coordinates

we have (by abuse of notation):

f = q1(x2, l) + l · l1(x0, x1) + x2l2(x0, x1)

g = q2(x2, l) + l · l3(x0, x1) + x2l4(x0, x1)

H = x3

and hence D will be given by:

f = x22 + x2l1(x0, x1)

g = x22 + x2l2(x0, x1)

which has a triple point (1 : 0 : 0).

As a direct result from the above Lemmas (Lemmas 5.10-5.21), we have the following

Lemma:

Lemma 5.22. Let (S,D) be a pair that is invariant under a non-trivial Gm-action. Suppose the

singularities of S and the type of D are given as in the first and second entries in one of the rows

of Table 5.6, respectively. Then (S,D) is projectively equivalent to (f = g = 0, f = g = H = 0) for

f , g as in Table 7.2 corresponding to the Segre symbol of row 3 of Table 5.6, and H as in the fourth

entries in the same row of Table 5.6, respectively. In particular, any such pair (S,D) is unique up to
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projective equivalence. Conversely, if (S,D) is given by Segre symbols and equations as in the third

and fourth entries in a given row of Table 5.6, then (S,D) has singularities and type as in the first and

second entries in the same row of Table and (S,D) is Gm-invariant. Furthermore, the one-parameter

subgroup λ(s) ∈ SL(5), given in the entry of the corresponding row of Table 7.5 is a generator of the

Gm-action.

Sing(S) Type of D Segre Symbol H λ(s)

A2 at P quadruple point P [3, 1] x3 Diag(s, s, s−1, s−1)

A3 at P

twisted cubic and tangent line
3P +Q [4] x3 Diag(s, s, s−1, s−1)

A3 at P

two tangent conics
2P + 2R [(2, 1), 1] x3 Diag(s, s, s−1, s−1)

D4 at P 2P +Q+R [(3, 1)] x3 Diag(s, 1, 1, s−1)

Table 5.6: Some pairs (S,D) invariant under a Gm-action.

5.4 VGIT Classification

For the VGIT of a complete intersection of two quadrics in P3 and a hyperplane H we have

the following walls and chambers, obtained via the computational package [Pap22c] based

on the discussion in Chapter 3.

t0 t1 t2 t3 t4 t5

Walls 0 4
9

2
3

4
5

1 4
3

Chambers 74
171

37
57

31
40

33
34

74
57

We thus obtain 9 non-isomorphic quotients MGIT
3,2,2(ti), which are characterised by the

following Theorems.

Theorem 5.23. Let (S,D) be a pair where S is a complete intersection of two quadrics in P3 and

D = S ∩H is a hyperplane section.

1. t ∈ (0, 4
9
): The pair (S,D) is t-stable if and only S has at worse 1 A1 singularity with D

general, or 2A1 singularities, with D having a double point at one of the A1 singularities, or if

S is smooth and D has at worse a quadruple point.
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2. t = 4
9
: The pair (S,D) is t-stable if and only S has at worse finitely many A1 singularities and

D is general, or if S is smooth and D has at worse a triple point.

3. t ∈ (4
9
, 2
3
): The pair (S,D) is t-stable if and only S has at worse finitely many A2 singularities

and D is general, or if S is smooth and D has at worse a triple point.

4. t = 2
3
: The pair (S,D) is t-stable if and only S has at worse finitely many A2 singularities and

D is general, or if S is smooth and D has at worse two double points.

5. t ∈ (2
3
, 4
5
): The pair (S,D) is t-stable if and only S has at worse finitely many A3 singularities

and D is general, or if S is smooth and D has at worse two double points.

6. t = 4
5
: The pair (S,D) is t-stable if and only S has at worse finitely many A3 singularities and

D is general, or if S is smooth and D has at worse one double point.

7. t ∈ (4
5
, 1): he pair (S,D) is t-stable if and only S has at worse finitely many A3 singularities

and D is general, or if S is smooth and D has at worse one double point.

8. t = 1: the pair (S,D) is t-stable if and only S has at worse finitely many A3 singularities and

D is general, or if S is smooth and D is smooth.

9. t ∈ (1, 4
3
): the pair (S,D) is t-stable if and only S has at worse finitely many D4 singularities

and D is general, or if S is smooth and D is smooth.

In addition, for all t ∈ (0, 4
3
), a t-stable pair (S,D) is also t-semistable, i.e. there are no strictly

t-polystable pairs.

Theorem 5.24. Let t ∈ (0, 4/3). If t is a chamber, then M(t) = M(t), and the stable loci M(t)

is compact as all stable orbits are also semistable. If t = ti, for i = 1, 2, 3, 4, then M(ti) is the

compactification of the stable loci M(ti) by the closed SL(4)-orbits in M(t) \M(t) represented by the

Gm-invariant pair (Si, Di) uniquely defined as follows:

1. the complete intersection S1 of two quadrics with Segre symbol [3, 1] with an A2 singularity P ,

and the divisor D1 ∈ | −KS1|, where D1 = 4P ;

2. the complete intersection S2 of two quadrics with Segre symbol [4] with an A3 singularity P ,

and the divisor D2 ∈ | −KS2|, where D2 = 3P +R;
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3. the complete intersection S3 of two quadrics with Segre symbol [(2, 1), 1] with 1A3 singularity

P , and the divisor D3 ∈ | −KS3|, where D3 = 2P + 2Q;

4. the complete intersection S4 of two quadrics with Segre symbol [(3, 1)] with 1D4 singularity P ,

and the divisor D4 ∈ | −KS4|, where D4 = 2P +Q+R.

In order to prove these theorems, we need to consider all destabilising families and classify

the t-stable members for each wall using their singularities. The families presented in the

following sections are maximal destabilising families, in the sense of Definition 3.15 and

Lemma 3.16, and have been produced via the algorithm described in Chapter 3, via the

computational package [Pap22c]. Specifically, for each chamber, they are all t-unstable with

respect to the respective t via the centroid criterion (Theorem 3.10).

5.4.1 Chamber t = 74
171

For chamber t = 74
171
∈ (0, 4

9
) we have the following:

Lemma 5.25. 1. The pair (S,H) is non-t-stable if and only if the pair is generated by one of the

following families or a degeneration of those families:

Family 1:

f(x0, x1, x2, x3) =q1(x1, x2, x3) + x0l1(x2, x3)

g(x0, x1, x2, x3) =q2(x2, x3)

H(x0, x1, x2, x3) =l(x0, x1, x2, x3)

an irreducible smooth quadric f and an reducible quadric g (the union of two hyperplanes)

with Segre symbol [(2, 1), 1], intersecting at two tangent conics with an A3 singularity, with

D = S ∩H a general hyperplane section;

Family 2:

f(x0, x1, x2, x3) =q3(x0, x1, x2, x3)

g(x0, x1, x2, x3) =x
2
3

H(x0, x1, x2, x3) =l(x0, x1, x2, x3)

an irreducible smooth quadric f and an reducible quadric g (double plane) intersecting at a

double conic, with non-isolated singularities, with D = S ∩H a general hyperplane section;
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Family 3:

f(x0, x1, x2, x3) =q4(x1, x2, x3)

g(x0, x1, x2, x3) =q5(x1, x2, x3)

H(x0, x1, x2, x3) =l(x0, x1, x2, x3)

two singular quadrics f, g intersecting at a singular curve with a non-hypersurface singularity

at (1 : 0 : 0 : 0), with D = S ∩H a general hyperplane section;

Family 4:

f(x0, x1, x2, x3) =q6(x1, x2, x3) + x0x3

g(x0, x1, x2, x3) =q7(x2, x3) + x1x3

H(x0, x1, x2, x3) =l(x0, x1, x2, x3)

an irreducible smooth quadric f and an irreducible quadric g intersecting at a cuspidal curve

with an A1 singularity at (1 : 0 : 0 : 0), with D = S ∩H a general hyperplane section;

Family 5:

f(x0, x1, x2, x3) =q8(x0, x1, x2, x3)

g(x0, x1, x2, x3) =x3l1(x0, x1, x2, x3)

H(x0, x1, x2, x3) =x3

an irreducible smooth quadric f and a reducible quadric g (the union of two hyperplanes)

intersecting at two conics in general position, with 2 A1 singularities, with D = S ∩ H a

smooth curve, and not a complete intersection;

Family 6:

f(x0, x1, x2, x3) =q9(x1, x2, x3) + x0l2(x1, x2, x3)

g(x0, x1, x2, x3) =q10(x1, x2, x3)

H(x0, x1, x2, x3) =l(x1, x2, x3)

an irreducible smooth quadric f and an irreducible quadric g intersecting at a nodal curve, with

A1 singularity at (1 : 0 : 0, 0), with D = S ∩H a hyperplane section with a double point at the

A1 singularity;
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Family 7:

f(x0, x1, x2, x3) =q11(x0, x1, x2, x3)

g(x0, x1, x2, x3) =q12(x2, x3)

H(x0, x1, x2, x3) =l(x2, x3)

an irreducible smooth quadric f and a pair of intersecting planes g such that Bs(f, g) is a pair

of conics in general position, with A1 singularities at (1 : m : 0 : 0), (1 : k : 0 : 0), where m, k

is the solution of q2(1, x1, 0, 0), with D = S ∩H a hyperplane section with two double points at

the A1 singularities;

Family 8:

f(x0, x1, x2, x3) =q13(x2, x3) + x3l3(x0, x1) + +x2l4(x0, x1)

g(x0, x1, x2, x3) =q14(x2, x3) + x3l5(x0, x1) + +x2l6(x0, x1)

H(x0, x1, x2, x3) =l(x2, x3)

two irreducible non-singular quadrics f, g intersecting at a twisted cubic and a bisecant, with

A1-singularities at (1 : 0 : 0 : 0) and (0 : 1 : 0 : 0), withD = S∩H not a complete intersection;

Family 9:

f(x0, x1, x2, x3) =q15(x1, x2, x3) + x0x3

g(x0, x1, x2, x3) =q16(x1, x2, x3) + x0x3

H(x0, x1, x2, x3) =l(x1, x2, x3)

two irreducible smooth quadrics f, g intersecting at a nodal curve, with an A1-singularity at

(1 : 0 : 0 : 0), with D = S ∩H a hyperplane section with a double point at the A1 singularity;

Family 10:

f(x0, x1, x2, x3) =q17(x2, x3) + x3l8(x0, x1)

g(x0, x1, x2, x3) =q18(x2, x3) + x3l9(x0, x1)

H(x0, x1, x2, x3) =l(x0, x1, x2, x3)

two irreducible singular quadrics f, g intersecting at a non-normal curve, with D = S ∩H a

general hyperplane section.

Here, the li are linear forms in P3 and the qi are quadratic forms, which are maximal in their

support, i.e. they have non-zero coefficients;
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2. for t ∈ (0, 4
9
), the only t-stable pairs (S,D = S ∩H) occur when S is smooth, in which case

D is a general hyperplane section with at worse a quadruple point, or S has at worse 1 A1

singularity with D general, or 2 A1 singularities, with D having a double point at one of the

A1 singularities.

Proof. Part 1 follows from the computational program [Pap22c] we detailed in Chapter 3 and

the centroid criterion (Theorem 3.10), where the above families are maximal destabilising

families as in the sense of Definition 3.15, i.e. each family equals N−(λ, xJ , xp) for some

λ ∈ P3,2,2 and xJ , xp support monomials. The description of the above families with respect

to singularities follows from Sections 5.1 and 5.3. In particular, Family 10 has non-isolated

singularities, and from Serre’s criterion, it is non-normal.

For 2, let S be stable. Then, by part 1 and Section 5.3, S cannot have A2 or worse

singularities. From families 6 and 9 we see that S can have 1 A1 singularity and D can be

general. In addition, from families 5, 7 and 8 and Lemmas 5.11 and 5.15 we see that S can

have 2 A1 singularities and D can have a double point in one of the A1 singularities. In

addition, we see that S can be smooth, and D can have a quadruple point from Lemma

5.10.

5.4.2 Wall t = 4
9

For wall t = 4
9
:

Lemma 5.26. 1. The pair (S,H) is non-t-stable if and only if it is generated by the non-stable

families of chamber t = 74/171 and in addition by the following family, or a degeneration:

Family 1:

f(x0, x1, x2, x3) =q1(x1, x2, x3) + x0l1(x2, x3)

g(x0, x1, x2, x3) =q2(x2, x3) + x3l2(x0, x1)

H(x0, x1, x2, x3) =x3

an irreducible smooth quadric f and an irreducible quadric g intersecting at smooth elliptic

curve, with D = S ∩H a singular complete intersection of two conics which is a quadruple

point.

Here, the li are linear forms in P3 and the qi are quadratic forms, maximal in their support.
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2. for wall t = 4
9
, the only t-stable pairs (S,D = S ∩ H) occur when S is smooth, in which

case D is a hyperplane section which can have at worse a triple point, or S has at worse 1 A1

singularity with D general, or 2 A1 singularities, with D having a double point at one of the

A1 singularities

Proof. Part 1 follows from the computational program [Pap22c] we detailed in Chapter 3

and the centroid criterion (Theorem 3.10), where the above family is a maximal destabilising

family as in the sense of Definition 3.15, i.e. each family equals N−(λ, xJ , xp) for some

λ ∈ P3,2,2 and xJ , xp support monomials, i.e. each family equals N−(λ, xJ , xp) for some

λ ∈ P3,2,2 and xJ , xp support monomials. The description of the above family with respect to

singularities follows from Remark 5.10.1.

For part 2, let S be t-stable. From Remark 5.10.1 we see that S can be smooth if D does

not have a quadruple point. Furthermore, from Theorem 5.25, we see that S can have 1A1

singularity, if D is general, or 2A1 singularities if D has at worse a double point at one of the

singularities. Hence, the proof is completed by Lemma 5.25.

We also obtain:

Lemma 5.27. For t = 4
9

the pair (S,H) is strictly t-polystable if and only if it is generated by the

following family:

f(x0, x1, x2, x3) =x
2
1 + ax0x2

g(x0, x1, x2, x3) =x
2
2 + bx0x3

H(x0, x1, x2, x3) =x3

with S a singular complete intersection with Segre symbol [3, 1] and an A2 singularity at point P ,

and D = S ∩H = 4P .

Proof. Suppose (S,D) is a pair, where S is a complete intersection defined by polynomials

f and g, and D = S ∩ H is defined by a polynomial H , which belongs to a closed strictly

t-semistable orbit. By Theorem 3.19, they are generated by monomials in N0
t (λ, x

J1 , xi) for

some (λ, xJ1 , xi) such that N0
t (λ, x

J1 , xi) is maximal with respect to the containment of order

of sets. As detailed in Chapter 3, these can be generated algorithmically [Pap22c], and the

above family represent the only maximal N0
t (λ, x

J1 , xi) for t = 4
9
.
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Let (S,D) be strictly t-semistable, as in family 1, then, notice that up tp projective equiva-

lence we can write

f(x0, x1, x2, x3) =x
2
1 + x0x2

g(x0, x1, x2, x3) =x
2
2 + x0x3

H(x0, x1, x2, x3) =x3.

The proof follows from Lemma 5.22.

5.4.3 Chamber t = 37
57

For chamber t = 37
57
∈ (4

9
, 2
3
) we have the following:

Lemma 5.28. 1. The pair (S,H) is non-t-stable if and only if it is generated by the non-stable

families of wall t = 4
9

(minus family 9 from chamber t = 74
171

) and in addition by the following

families, or a degeneration:

Family 1:

f(x0, x1, x2, x3) =q1(x2, x3) + x1l1(x2, x3) + x0x3

g(x0, x1, x2, x3) =q2(x2, x3) + x1x3

H(x0, x1, x2, x3) =l(x0, x1, x2, x3)

an irreducible smooth quadric f and an irreducible quadric g intersecting at a twisted cubic and

a tangent line with an A3 singularity, with D = S ∩H a general hyperplane section;

Family 2:

f(x0, x1, x2, x3) =q1(x1, x2, x3) + x0x3

g(x0, x1, x2, x3) =x3l1(x1, x2, x3)

H(x0, x1, x2, x3) =l(x0, x1, x2, x3)

an irreducible smooth quadric f and an two intersecting hyperplanes g intersecting at a conic

and two lines intersecting at a point, with a D4 singularity, with D = S ∩ H a general

hyperplane section.

Here, the li are linear forms in P3 and the qi are quadratic forms, maximal in their support.
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2. For chamber t = 37
57
∈ (4

9
, 2
3
), the only t-stable pairs (S,D = S ∩H) occur when S is smooth,

in which case D is a hyperplane section with at worse a triple point, or S has at worse A2

singularities with D general.

Proof. Part 1 follows from the computational program [Pap22c] we detailed in Chapter 3 and

the centroid criterion (Theorem 3.10), where the above families are maximal destabilising

families as in the sense of Definition 3.15, i.e. each family equals N−(λ, xJ , xp) for some

λ ∈ P3,2,2 and xJ , xp support monomials.

For part 2, let S be t-stable. From part 1 and Section 5.3 we see that S cannot have A3 or

worse singularities. From the above family, we see that the case where S and H are given by

f(x0, x1, x2, x3) =q1(x1, x2, x3)x0x3

g(x0, x1, x2, x3) =q2(x2, x3) + x1x3

H(x0, x1, x2, x3) =l(x0, x1, x2, x3)

is stable, and from the classification S has an A2 singularity and D is general. From Lemma

5.26 we also know that S can be smooth, in which case D cannot have a quadruple point.

5.4.4 Wall t = 2
3

For wall t = 2
3

we have the following:

Lemma 5.29. 1. The pair (S,H) is non-t-stable if and only if it is generated by the non-stable

families of chamber t = 37
57

(minus the family of wall t = 4
9
) and in addition by the following

family, or a degeneration:

Family 1:

f(x0, x1, x2, x3) =q1(x1, x2, x3) + x0l1(x2, x3)

g(x0, x1, x2, x3) =q2(x2, x3) + x1l2(x2, x3) + x0x3

H(x0, x1, x2, x3) =x3

an irreducible smooth quadric f and an irreducible smooth quadric g intersecting at a smooth

elliptic curve, with D = S ∩H a singular complete intersection of two conics with a triple point

(1 : 0 : 0).

Here, the li are linear forms in P3 and the qi are quadratic forms, maximal in their support;
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2. for wall t = 2
3
, the only t-stable pairs (S,D = S ∩ H) occur when S is smooth, in which

case D is a hyperplane section with at worse one or two double points, or S has at worse A2

singularities with D general.

Proof. The proof follows from Remark 5.10.1 and Theorem 5.28, and the proof of Lemma

5.28.

We also obtain:

Lemma 5.30. For t = 2
3

the pair (S,H) is strictly t-polystable if and only if it is generated by the

following family:

f(x0, x1, x2, x3) =x
2
1 + ax0x2

g(x0, x1, x2, x3) =x1x2 + bx0x3

H(x0, x1, x2, x3) =x3

with S a singular complete intersection with Segre symbol [4] and an A3 singularity at point P , and

D = S ∩H = 3P +Q.

Proof. Suppose (S,D) is a pair, where S is a complete intersection defined by polynomials

f and g, and D = S ∩ H is defined by a polynomial H , which belongs to a closed strictly

t-semistable orbit. By Theorem 3.19, they are generated by monomials in N0
t (λ, x

J1 , xi) for

some (λ, xJ1 , xi) such that N0
t (λ, x

J1 , xi) is maximal with respect to the containment of order

of sets. As detailed in Chapter 3, these can be generated algorithmically [Pap22c], and the

above family represent the only maximal N0
t (λ, x

J1 , xi) for t = 2
3
.

Let (S,D) be strictly t-semistable, as in family 1, then notice that up to projective equiva-

lence we can write

f(x0, x1, x2, x3) =x
2
1 + x0x2

g(x0, x1, x2, x3) =x1x2 + x0x3

H(x0, x1, x2, x3) =x3.

The proof follows from Lemma 5.22.

5.4.5 Chamber t = 31
40

For chamber t = 31
40
∈ (2

3
, 4
5
) we have the following:
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Lemma 5.31. 1. The pair (S,H) is non-t-stable if and only if it pencil is generated by the non-

stable families of wall t = 2
3

minus the first family of chamber t = 37
57

, or a degeneration of

those;

2. For chamber t = 31
40
∈ (2

3
, 4
5
), the only t-stable pairs (S,D = S ∩ H) (S,D = S ∩ H) occur

when S is smooth, in which case D is a hyperplane section with at worse one double point, or S

has at worse A3 singularities with D general.

Proof. Part 1 follows from the computational program [Pap22c] we detailed in Chapter 3 and

the centroid criterion (Theorem 3.10), where the above families are maximal destabilising

families as in the sense of Definition 3.15, i.e. each family equals N−(λ, xJ , xp) for some

λ ∈ P3,2,2 and xJ , xp support monomials. The description of the above families with respect

to singularities follows from Sections 5.1 and 5.3.

For part 2, let S be t-stable. From part 1 and Section 5.3, we see that S cannot have D4 or

worse singularities. Since the maximal destabilising families of chamber t = 31
40
∈ (2

3
, 4
5
) do

not include the family of chamber t = 37
57

, we know that

f(x0, x1, x2, x3) =q1(x2, x3) + x1l1(x2, x3) + x0x3

g(x0, x1, x2, x3) =q2(x2, x3) + x1x3

H(x0, x1, x2, x3) =l(x0, x1, x2, x3)

is t-stable where S = f ∩ g has Segre symbol [4] and is a twisted cubic and a tangent line with

an A3 singularity, with D = S ∩H a general hyperplane section, by Lemma 5.21.

5.4.6 Wall t = 4
5

For wall t = 4
5

we have the following:

Lemma 5.32. 1. The pair (S,H) is non-t-stable if and only if

2. the pencil is generated by the non-stable families of chamber t = 31
40

and in addition by the

following family, or a degeneration:

Family 1:

f(x0, x1, x2, x3) =q1(x0, x1, x2, x3)

g(x0, x1, x2, x3) =q2(x2, x3) + x3l1(x0, x1)

H(x0, x1, x2, x3) =x3
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an irreducible smooth quadric f and an irreducible quadric g intersecting at a smooth elliptic

curve, with D = S ∩H a singular complete intersection of two conics with two double points.

Here, the li are linear forms in P3 and the qi are quadratic forms, maximal in their support;

3. for wall t = 4
5
, the only t-stable pairs (S,D = S ∩H) occur when S is smooth, in which case D

is a hyperplane section with at worst one double point, or S has at worse A3 singularities with

D general.

Proof. Part 1 follows from the computational program [Pap22c] we detailed in Chapter 3 and

the centroid criterion (Theorem 3.10), where the above families are maximal destabilising

families as in the sense of Definition 3.15, i.e. each family equals N−(λ, xJ , xp) for some

λ ∈ P3,2,2 and xJ , xp support monomials. The description of the above families with respect

to singularities follows from Sections 5.1 and 5.3.

For part 2, let S be t-stable. From part 1 and Section 5.2, we see that S cannot have A3 or

worse singularities. From the above family, S is smooth and D has two double points, by

Remark 5.10.1, which is t-unstable, hence D can have at worse one double point.

We also obtain:

Lemma 5.33. For t = 4
5

the pair (S,H) is strictly t-polystable if and only if it is generated by the

following family:

f(x0, x1, x2, x3) =q(x0, x1)

g(x0, x1, x2, x3) =x
2
2 + x3l(x0, x1)

H(x0, x1, x2, x3) =x3

with S a singular complete intersection with Segre symbol [(2, 1), 1] and an A3 singularity at point

P , and D = S ∩H = 2P + 2Q.

Proof. Suppose (S,D) is a pair, where S is a complete intersection defined by polynomials

f and g, and D = S ∩ H is defined by a polynomial H , which belongs to a closed strictly

t-semistable orbit. By Theorem 3.19, they are generated by monomials in N0
t (λ, x

J1 , xi) for

some (λ, xJ1 , xi) such that N0
t (λ, x

J1 , xi) is maximal with respect to the containment of order

of sets. As detailed in Chapter 3, these can be generated algorithmically [Pap22c], and the

above family represents the only maximal N0
t (λ, x

J1 , xi) for t = 4
5
.
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Let (S,D) be strictly t-semistable, as in family 1, then notice that up to projective equiva-

lence we can write

f(x0, x1, x2, x3) =x0x1

g(x0, x1, x2, x3) =x2x2 + x0x3 + x3x0

H(x0, x1, x2, x3) =x3.

The proof follows from Lemma 5.22.

5.4.7 Chamber t = 33
34

For chamber t = 33
34
∈ (4

5
, 1) we have the following:

Lemma 5.34. 1. The pair (S,H) is non-t-stable if and only if the pencil is generated by the non-

stable families of wall t = 4
5

(minus the first family of chamber t = 74
171

) and in addition by the

following family, or a degeneration:

Family 1:

f(x0, x1, x2, x3) =q1(x2, x3) + x0l1(x2, x3) + x1l2(x2, x3)

g(x0, x1, x2, x3) =q2(x2, x3)

H(x0, x1, x2, x3) =l(x0, x1, x2, x3)

an irreducible smooth quadric f and an irreducible singular quadric g intersecting at a double

line and two lines in general position with non-isolated singularities, with D = S ∩H a smooth

conic.

Here, the li are linear forms in P3 and the qi are quadratic forms, maximal in their support;

2. For chamber t = 33
34
∈ (4

5
, 1), the only t-stable pairs (S,D = S ∩H) occur when S is smooth,

in which case D is a hyperplane section with at worse one double point, or S has at worse A3

singularities with D general.

Proof. Part 1 follows from the computational program [Pap22c] we detailed in Chapter 3 and

the centroid criterion (Theorem 3.10), where the above families are maximal destabilising

families as in the sense of Definition 3.15, i.e. each family equals N−(λ, xJ , xp) for some

λ ∈ P3,2,2 and xJ , xp support monomials. The description of the above families with respect

to singularities follows from Sections 5.1 and 5.3.
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For part 2, let S be t-stable. From part 1, the above family and Section 5.1 we see that S

cannot have D4 or worse singularities. Notice, that the pair

f(x0, x1, x2, x3) =q1(x1, x2, x3) + x0l1(x2, x3)

g(x0, x1, x2, x3) =q2(x2, x3)

H(x0, x1, x2, x3) =l(x0, x1, x2, x3)

where S = {f = 0} ∩ {g = 0} has Segre symbol [(2, 1), 1], and is two tangent conics with an

A3 singularity, with D = S ∩H general, is t-stable. The proof then follows from Lemma 5.32.

5.4.8 Wall t = 1

For wall t = 1 we have the following:

Lemma 5.35. 1. The pair (S,H) is non-t-stable if and only if it is generated by the non-stable

families of wall t = 33
34

(minus the family of wall t = 2
3
) and in addition by the following family,

or a degeneration:

Family 1:

f(x0, x1, x2, x3) =q1(x1, x2, x3) + x0l1(x1, x2, x3)

g(x0, x1, x2, x3) =q2(x1, x2, x3) + x0x3

H(x0, x1, x2, x3) =x3

two irreducible smooth quadrics f, g and an irreducible quadric g intersecting at a smooth

elliptic curve, with D = S ∩H a singular complete intersection of two conics with a double

point and two other points.

Here, the li are linear forms in P3 and the qi are quadratic forms, maximal in their support;

2. for wall t = 1, the only t-stable pairs (S,D = S ∩H) occur when S is smooth, in which case

D is a hyperplane section which is a smooth complete intersection of conics in P2, or S has at

worse A3 singularities with D general.

Proof. The proof follows from Remark 5.10.1 and Lemma 5.31.

We also obtain:
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Lemma 5.36. For t = 1 the pair (S,H) is strictly t-polystable if and only if it is generated by the

following family:

f(x0, x1, x2, x3) =q(x1, x2) + x0x3

g(x0, x1, x2, x3) =x0l(x1, x2)

H(x0, x1, x2, x3) =x3

with S a singular complete intersection with Segre symbol [(3, 1)] and a D4 singularity at point P ,

and D = S ∩H = 2P +Q+R.

Proof. Suppose (S,D) is a pair, where S is a complete intersection defined by polynomials

f and g, and D = S ∩ H is defined by a polynomial H , which belongs to a closed strictly

t-semistable orbit. By Theorem 3.19, they are generated by monomials in N0
t (λ, x

J1 , xi) for

some (λ, xJ1 , xi) such that N0
t (λ, x

J1 , xi) is maximal with respect to the containment of order

of sets. As detailed in Chapter 3, these can be generated algorithmically [Pap22c], and the

above family represent the only maximal N0
t (λ, x

J1 , xi) for t = 1.

Let (S,D) be strictly t-semistable, as in family 1, then notice that up to projective equiva-

lence we can write

f(x0, x1, x2, x3) =x1x2 + x0x3

g(x0, x1, x2, x3) =x0x1 + x0x2

H(x0, x1, x2, x3) =x3.

The proof follows from Lemma 5.22.

5.4.9 Chamber t = 74
57

For chamber t = 74
57
∈ (1, 4

3
) we have the following:

Lemma 5.37. 1. The pair (S,H) is non t-stable if and only if it is generated by the families of wall

t = 1 (minus the second family of t = 37
57

) or a degeneration of those;

2. For chamber t = 74
57

, the only t-stable pairs (S,D = S ∩H) occur when S is smooth, in which

case D is a hyperplane section which is a smooth complete intersection of quadrics in P3 or S

has at worse D4 singularities with D general.

Proof. Part 1 follows from the computational program [Pap22c] we detailed in Chapter 3 and

the centroid criterion (Theorem 3.10), where the above families are maximal destabilising
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families as in the sense of Definition 3.15, i.e. each family equals N−(λ, xJ , xp) for some

λ ∈ P3,2,2 and xJ , xp support monomials. The description of the above families with respect

to singularities follows from Sections 5.1 and 5.3.

For part 2, let S be t-stable. From part 1 and Section 5.3, we see that the pair (S,H) given

by

f(x0, x1, x2, x3) =q1(x1, x2, x3) + x0x3

g(x0, x1, x2, x3) =x3l1(x1, x2, x3)

H(x0, x1, x2, x3) =l(x0, x1, x2, x3)

is t-stable. Here, S has a Segre symbol [(3, 1)] and thus a D4 singularity, with D general. The

proof then follows from Lemma 5.35

Proof of Theorem 5.23. The VGIT classification follows from the Theorems in Sections 5.4.1 to

5.4.9.

Proof of Theorem 5.24. For the characterisation of potential closed orbits, notice that the cen-

troid criterion (Theorem 3.10) shows that for each chamber none of the above destabilising

families are strictly t-semistable. For each wall, the characterisation follows from the Theo-

rems in Sections 5.4.1 to 5.4.9.
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6
K-moduli Compactification of Family 2.25

Consider a smooth intersection of two quadrics C1 and C2 in P3. The resulting complete

intersection C = C1 ∩ C2 is an elliptic curve; blowing up P3 along C gives a smooth Fano

threefold X = BlC P3, with (−KX)
3 = 32. It is known (see, e.g. [Ara+21, Corollary 4.3.16.]),

that all such smooth Fano threefolds which correspond to family 2.25 in the Mori-Mukai

classification [MM03], are K-stable.

Let C1 = {x0x1 = 0}, C2 = {x2x3 = 0} be two quadrics in P3. Then C̃ = C1 ∩ C2 is

GIT-polystable by Theorem 5.9. Notice, that C1 and C2 are toric surfaces which intersect

on a toric curve, which is the 4 lines {x0 = 0}, {x1 = 0}, {x2 = 0} and {x3 = 0}, hence C̃ is

toric. As such, as P3 is toric, the blow up of P3 along C̃, X̃ = BlC̃ P3 is a toric blow up and

hence X̃ is a toric variety. The polytope of X̃ , PX̃ , is created by ‘cutting’ the corresponding

polytope for P3, PP3 , along the 4 edges corresponding to each xi. The corresponding polytope

PX̃ , is a polytope generated by vertices (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (0, 1, 1), (−1,−1, 0),

(0,−1,−1), (−1,−1,−1). This is the terminal toric Fano threefold with Reflexive ID #199

in the Graded Ring Database (GRDB) (3-fold #255743) [Kas10]. Notice that the sum of the

vertices is (0, 0, 0), and hence, the barycenter of PX is (0, 0, 0). Hence, by Theorem 2.76, X̃ is

K-polystable. In particular, we have proved:

Lemma 6.1. Let X̃ := BlC̃ P3 where C̃ = C1 ∩C2 for C1 = {x0x1 = 0}, C2 = {x2x3 = 0}. Then X̃

is K-polystable.

The Magma code below checks that this threefold is toric and singular, and generates the

vertices of the polyhedron PX .
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Q4:=Polytope([[0,-1,0],[-1,0,1],[2,-1,0],[1,0,-1],[-1,0,-1],[0,-1,2],

[0,1,0],[-1,2,-1]]);

> ViewWithJmol(Q4: point_labels:=true, open_in_background:=true);

> P:=Dual(Q4);

> P;

> IsCanonical(P);

> Volume(Q4);

> #Points(Q4);

> #Vertices(Q4);

> Faces(P);

> IsTerminal(P);

> IsSmooth(P);

Lemma 6.2. Let X := BlC P3, where C is a strictly GIT semistable complete intersection of two

quadrics. Then X is strictly K-semistable.

Proof. Let C be a strictly GIT semistable complete intersection of two quadrics. Since C is

strictly GIT semistable, there exists a one-parameter subgroup λ such that the limit limt→0 λ(t)·

C = C̃, where C̃ is the unique strictly GIT polystable complete intersection i.e. the quadrangle

with 4 A1 singularities as in Theorem 5.9. This one-parameter subgroup induces a family

f : C→ B, over a curve B, such that the fibers Ct are isomorphic to C for all t ̸= 0, and C0
∼= C̃.

Let P := P3 × B = P3 × P1. Then, notice that C̃ = λ(t) · C in P. We define X = BlC P,

and hence we have that X0
∼= X̃ := BlC̃ P. By taking the composition of X → P, with the

projection P → B, we thus have a map X → B which is naturally a test configuration of X

with central fibre X0. Hence, we have constructed a test configuration g : X→ B where the

central fiber X0
∼= X̃ is a klt Fano threefold, which is K-polystable by Lemma 6.1, and the

general fiber Xt
∼= X is not isomorphic to X0. By [Ara+21, Corollary 1.1.14] the central fiber

Xt
∼= X is strictly K-semistable.

Remark 6.2.1. In some cases, we can construct explicit descriptions of the above degeneration.

For example, for Family 2 in Theorem 5.8 we can make a change of coordinates such that

C = {f = 0} ∩ {g = 0} is given by

f(x0, x1, x2, x2) = x0x1 + q(x2, x3) + l(x0, x1)l̃(x2, x3)

g(x0, x1, x2, x2) = x2x3.
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Then, defining for some parameter t, Ct as follows Ct = {ft = 0} ∩ {gt = 0}, where

ft(x0, x1, x2, x2) = x0x1 + t
(
q(x2, x3) + l(x0, x1)l̃(x2, x3)

)
gt(x0, x1, x2, x2) = x2x3.

we have Ct ∼= C for all t ̸= 0, and C0 to be the strictly GIT polystable curve of Theorem 5.9.

In essence, we have shown:

Corollary 6.2.1. LetC = C1∩C2 be a complete intersection of quadrics. IfC is GIT (poly/semi-)stable

then the threefold X := BlC P3 is K-(poly/semi-)stable.

Let MK
2.25 be the K-moduli stack parametrising K-semistable members in the Fano threefold

family 2.25 and let MGIT
3,2,2 be the GIT quotient stack parametrising GIT semistable complete

intersections of two quadrics in P3. By Theorem 2.91, these admit good moduli spaces MK
2.25

of K-polystable members and a GIT quotient MGIT
3,2,2 respectively.

Theorem 6.3. There exists an isomorphism MK
2.25
∼= MGIT

3,2,2

Proof. Let X be the Hilbert polynomial of smooth elements of the family of Fano threefolds

2.25 pluri-anticanonically embedded by −mKX in PN , and let HX;N := HilbX(PN). Given a

closed subscheme X ⊂ PN with Hilbert polynomial X(X,OPN (k)|X) = X(k), let Hilb(X) ∈

HX;N denote its Hilbert point. Let

Ẑm :=

Hilb(X) ∈ HX;N

∣∣∣∣∣∣∣∣∣∣
X is a Fano manifold of family 2.25,

OPN (1)|X ∼ OX(−mKX),

and H0(PN ,OPN (1))
∼=−→ H0(X,OX(−mKX)).


which is a locally closed subscheme of HX;N . Let Zm be its Zariski closure in HX;N and Zm be

the subset of Ẑm consisting of K-semistable varieties.

Since by Corollary 6.2.1 the blow-up of a smooth complete intersection of two quadrics in

P3 is K-stable and by [Oda15], the smooth K-stable loci is a Zariski open set of MK
2.25, in the

definition of moduli stack of MK
2.25 = [Zm/PGL(Nm + 1)] for appropriate m > 0 and in fact

MGIT
3,2,2
∼= [Zm/PGL(Nm + 1)].

Thus, by Lemmas 6.1 and 6.2 and Corollary 6.2.1 we have an open immersion of repre-

sentable morphism of stacks:
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MGIT
3,2,2 MK

2.25

[C1 ∩ C2] [BlC1∩C2 P3] .

ϕ

ϕ

Note that representability follows once we prove that the base-change of a scheme map-

ping to the K-moduli stack is itself a scheme. Such a scheme mapping to the K-moduli

stack is the same as a PGL-torsor over Zm, which produces a PGL-torsor over Zm after a

PGL-equivariant base change. This PGL-torsor over Zm shows the desired pullback is a

scheme. By [The22, Lemma 06MY], since ϕ is an open immersion of stacks, ϕ is separated

and, since it is injective, it is also quasi-finite.

We now need to check that ϕ is an isomorphism that descends (as isomorphism of schemes)

to the moduli spaces

MGIT
3,2,2 MK

2.25

[C1 ∩ C2] [BlC1∩C2 P3]

ϕ

ϕ

since we have a morphism ϕ of stacks, both of which admit moduli spaces. Thus ϕ is injective.

Now, by [Alp13, Prop 6.4], since ϕ is representable, quasi-finite and separated, ϕ is finite

and ϕ maps closed points to closed points, we obtain that ϕ is finite. Thus, by Zariski’s

Main Theorem, as ϕ is a birational morphism with finite fibers to a normal variety, ϕ is an

isomorphism to an open subset, but it is also an open immersion, thus it is an isomorphism.

Remark 6.3.1. The above method of proof emulates closely the moduli continuity method,

which has appeared in different forms in [OSS16], [SS17],[GMS21]. In that method, one

defines a map

ϕ : M
K →M

GIT

to prove the existence of a homeomorphism using the properties of the moduli spaces and

the continuity of ϕ. In this instance, the definition of the map is reversed, due to the existence

of Lemma 6.1 and Corollary 6.2.1. As such, we will call this method of proof the reverse moduli

continuity method.
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7
VGIT of complete intersections of Quadrics in P4

and a Hyperplane

In this chapter, we will study VGIT quotients of complete intersection of quadrics in P4

and a hyperplane, using the computational methods presented in Chapter 3. We will first

provide some general results on the singularities of such complete intersections based on

[MM90], and then we will provide a full GIT classification. We will then proceed to classify

all possible singularities of pairs (S,D = S ∩H) and provide a full VGIT classification using

our computational method. This in turn will be of use, in later chapters, when we will study

the K-stability of such pairs.

7.1 General Results

Throughout this section, we will use the geometric classification of pencils of quadrics in P4

on their singularities based on their Segre symbols found in [Dol12, §8.6 and Table 8.6]. We

summarise the results in the following table.
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Segre symbol of pencil Singularities of base locus

[5] A4

[(4, 1)] D5

[4, 1] A3

[(3, 1), 1] D4

[3, 2] 2A1 +A2

[3, 1, 1] A2

[3, (1, 1)] A2 +A1

[(2, 1), 2] A1 +A3

[(2, 1), 1, 1] A3

[(2, 1), (1, 1)] 2A1 +A3

[2, 1, 1, 1] A1

[2, 2, 1] 2A1

[(1, 1), 2, 1] 3A1

[(1, 1), 1, 1, 1] 2A1

[(1, 1), (1, 1), 1] 4A1

[1, 1, 1, 1, 1] Smooth

Table 7.1: Segre symbols of pencils of quadrics in P3 and singularities.

The lemma below gives a geometric classification of the pencils of quadrics in P4 above,

attributed to Mabuchi–Mukai.

Lemma 7.1 ([MM90, Proposition 6.7]). Let Φ(f, g) be a pencil of two quadrics f, g ∈ P4, where f

is smooth. Then the base locus of the pencil has A1 singularities if and only if the highest multiplicity

of the roots of the determinant polynomial det(λF +G) is 2.

We present the following table, which lists the possible complete intersections of two

quadrics in P4, with isolated singularities, up to projective equivalence, and their singularities.

We generate the polynomials f , g via the computational study of each Segre symbol.
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Segre symbol Generating polynomials Singularities

[(4, 1)]
f = q1(x2, x3, x4) + x1l1(x3, x4) + x0x4

g = q2(x3, x4) + x4l2(x1, x2)
D5

[4, 1]
f = q1(x2, x3, x4) + x1l1(x2, x3, x4) + x0x4

g = q2(x2, x3, x4) + x1x4

A3

[(3, 1), 1]
f = q1(x1, x2, x3, x4) + x0x4

g = q2(x3, x4) + x4l1(x1, x2)
D4

[3, 2]
f = q1(x2, x3, x4) + x4l1(x0, x1) + x3l2(x0, x1)

g = q2(x3, x4) + x4l3(x0, x1, x2) + x2x3

2A1 +A2

[3, 1, 1]
f = q1(x1, x2, x3, x4) + x0x4

g = q2(x2, x3, x4) + x1x4

A2

[3, (1, 1)]
f = q1(x1, x2, x3, x4) + x0x1

g = x24 + x23 + x2x1

A2 +A1

[(2, 1), 2]
f = x21 + x0l1(x2, x3, x4)

g = q1(x2, x3, x4)
A1 +A3

[(2, 1), 1, 1]
f = q1(x1, x2, x3, x4) + x0l1(x2, x3, x4)

g = q2(x2, x3, x4)
A3

[(2, 1), (1, 1)]
f = x0x4 + x1x3 + x22

g = q1(x3, x4) + x3l1(x1, x2) + x4l2(x1, x2)
2A1 +A3
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[2, 1, 1, 1]
f = q1(x1, x2, x3, x4) + x0x4

g = q2(x1, x2, x3, x4) + x0x4

A1

[2, 2, 1]
f = q1(x2, x3, x4) + x4l1(x0, x1) + x3l2(x0, x1)

g = q2(x2, x3, x4) + x4l3(x0, x1) + x3l4(x0, x1)
2A1

[(1, 1), 2, 1]
f(x0, x1, x2, x3, x4) =q5(x1, x2, x3, x4) + x0l7(x3, x4)

g(x0, x1, x2, x3, x4) =q6(x3, x4) + x4l8(x0, x1, x2)
3A1

[(1, 1), 1, 1, 1]
f = q1(x1, x2, x3) + x0x4

g = q2(x1, x2, x3) + x0x4

2A1

[(1, 1), (1, 1), 1]
f = x4l1(x0, x1) + x3l2(x0, x1) + x22

g = x4l3(x0, x1) + x3l4(x0, x1) + x22

4A1

[1, 1, 1, 1, 1]
f = q1(x0, x1, x2, x3, x4)

g = q2(x0, x1, x2, x3, x4)
None

Table 7.2: Segre symbols, equations up to projective

equivalence, and singularities of complete intersections

of quadrics in P4.

Remark 7.1.1. Notice, that due to Theorem 4.3, all singular pencils that have the same Segre

symbol (except for [2, 1, 1, 1] and [(1, 1), 1, 1, 1]) are projectively equivalent, and the above

table gives their full classification.

Remark 7.1.2. In order to check the type of (isolated) hypersurface singularities, one can

employ the following MAGMA script, adjusted accordingly for each different case.

Q:=RationalField();
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PP<x0,x1,x2,x3,x4>:=ProjectiveSpace(Q,4);

f1:=x1*x3-x1*x4+2*x2^2+3*x3^2-x4^2-7*x2*x4+3*x3*x4-6*x2*x3+x0*x4;

f2:=x4^2-5*x3^2 - 2*x3*x4+x4*(5*x1-6*x2);

X:=Scheme(PP,[f1,f2]);

IsNonsingular(X);

p := X![1,0,0,0,0];

_,f,_,fdat := IsHypersurfaceSingularity(p,3);

R<a,b,c> := Parent(f);

f;

NormalFormOfHypersurfaceSingularity(f);

boo,f0,typ :=

NormalFormOfHypersurfaceSingularity(f : fData := [*fdat,3*]);

boo; f0; typ;

Here, f1 and f2 are the generating polynomials, and

IsNonsingular(X);

verifies that X = f1 ∩ f2 is singular. The point p = [1, 0, 0, 0, 0] refers to a specific singular

point, whose type of singularity we want to check, which is given by the last command.

If one is unsure about the exact singular points of the complete intersection, the following

MAGMA code can check the type of singularity for each singular point in the complete

intersection:

Q:=RationalField();

PP<x0,x1,x2,x3,x4>:=ProjectiveSpace(Q,4);

f1:=x1*x3-x1*x4+3*x3^2-x4^2+3*x3*x4+x0*x4-2*x0*x3;

f2:=2*x1*x3+6*x1*x4+x3^2+2*x4^2-3*x3*x4-5*x0*x4+2*x0*x3;

X:=Scheme(PP,[f1,f2]);

IsNonsingular(X);

sngs := SingularSubscheme(X);

Support(sngs);

pts := PointsOverSplittingField(sngs);

pts;



180 VGIT of complete intersections of Quadrics in P4 and a Hyperplane

pts[1];

pt := pts[1];

k := Ring(Parent(pt));

k;

p := X(k)!Eltseq(pt);

_,f,_,fdat := IsHypersurfaceSingularity(p,3);

R<a,b,c> := Parent(f);

f;

NormalFormOfHypersurfaceSingularity(f);

boo,f0,typ :=

NormalFormOfHypersurfaceSingularity(f : fData := [*fdat,3*]);

boo; f0; typ;

7.2 GIT Classification

In this section we will study the VGIT quotient R4,2,2,1�SL(5). For wall t = 0, i.e. in the absence

of a hyperplane, this is equivalent to the GIT quotient R4,2,2 � SL(5). The following families

have been generated using the computational package [Pap22c], based on the discussion on

Chapter 3. Here, in contrast to Sections 4.2 and 5.2 we will not include the fundamental set of

one-parameter subgroups P4,2,2. This is mainly due to the fact that P4,2,2 has 1972 elements,

and as such it is more complicated and time-consuming to list. We obtain the following

outputs:

λ xJ V −(λ, xJ) B−(λ, xJ)

(42, 37, 17,−43,−53) x20 {x0, x1, x2, x3, x4}2 {x3, x4}2

(2, 0, 0,−1,−1) x1x3 {x1, x2, x3, x4}2, x0{x3, x4} {x3, x4}2, {x0, x1}{x3, x4}

(1, 1, 0,−1,−1) x0x3 {x2, x3, x4}2, {x0, x1}{x3, x4} {x2, x3, x4}2, {x0, x1}{x3, x4}

(3, 1,−1,−1,−2) x22 {x1, x2, x3, x4}2, x0{x2, x3, x4} {x2, x3, x4}2

(1, 0, 0, 0,−1) x0x4 {x1, x2, x3, x4}2, x0x4 {x1, x2, x3, x4}2, x0x4
(1, 1, 1, 1,−4) x0x4 {x0, x1, x2, x3, x4}2 x4{x0, x1, x2, x3, x4}2

Table 7.3: Outputs of the computational package [Pap22c] for destabilized families of complete

intersections of two quadrics in P4
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λ xJ V ⊖(λ, xJ) B⊖(λ, xJ)

(44, 19,−1,−11,−51) x22 {x2, x3, x4}2, x4{x0, x1} {x2, x3, x4}2, x4{x0, x1}

(42, 37, 17,−43,−53) x23 {x0, x1, x2, x3, x4}2 {x3, x4}2

(42, 37, 17,−43,−53) x0x3 {x3, x4}2, {x3, x4}{x0, x1, x2} {x3, x4}2, {x3, x4}{x0, x1, x2}

(9,−1,−1,−1,−6) x21 {x1, x2, x3, x4}2 {x1, x2, x3, x4}2

(16, 1,−4,−4,−9) x1x4 {x1, x2, x3, x4}2, x0x4 {x2, x3, x4}2

(6, 1, 1,−4,−4) x1x3 {x1, x2, x3, x4}2, x0{x3, x4} {x3, x4}2, {x1, x2}{x3, x4}

(6, 6, 1,−4,−9) x0x4 {x2, x3, x4}2, {x0, x1}{x3, x4} {x3, x4}2, x4{x0, x1, x2}, x2x3
(11, 1,−4,−4,−4) x22 {x1, x2, x3, x4}2, x0{x2, x3, x4} {x2, x3, x4}2

(1, 1, 1, 1,−4) x0x4 {x0, x1, x2, x3, x4}2 x4{x0, x1, x2, x3, x4}

.

Table 7.4: Outputs of the computational package [Pap22c] for semi-destabilized families of

complete intersections of two quadrics in P4

We obtain the following (see also [MM90, §6]).

Theorem 7.2. The following are equivalent:

1. A pencil of two hyperquadrics Φ(f, g) in P4 is unstable;

2. the base locus of the pencil Bs(f, g) has singularities worse than A1;

3. the pencil is generated by one of the following families, or their degenerations:

Family 1:

f(x0, x1, x2, x3, x4) =q1(x1, x2, x3, x4)

g(x0, x1, x2, x3, x4) =q2(x1, x2, x3, x4)

two irreducible singular hyperquadrics f, g intersecting at a singular surface, with non-isolated

singularities;

Family 2:

f(x0, x1, x2, x3, x4) =q3(x1, x2, x3, x4) + x0l1(x2, x3, x4)

g(x0, x1, x2, x3, x4) =q4(x2, x3, x4)

an irreducible smooth hyperquadric f and an irreducible singular hyperquadric g such that

Bs(f, g) is singular, with Segre symbol [(2, 1), 1, 1] and an isolated A3 singularity at (1 : 0 : 0 :

0 : 0);
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Family 3:

f(x0, x1, x2, x3, x4) =q4(x0, x1, x2, x3, x4)

g(x0, x1, x2, x3, x4) =q5(x3, x4)

an irreducible singular quadric f and two intersecting hyperplanes g, intersecting at a singular

surface, with non isolated singularities at (1 : k : l : 0 : 0) where k, l are the solutions of

q4(x1, x2, 0, 0) = 0;

Family 4:

f(x0, x1, x2, x3, x4) =x4l4(x0, x1, x2, x3, x4) + x3l5(x0, x1, x2, x3)

g(x0, x1, x2, x3, x4) =x4l6(x0, x1, x2, x3, x4) + x3l7(x0, x1, x2, x3)

two irreducible singular hyperquadrics f, g intersecting at a singular non-normal surface, with

no isolated singularities;

Family 5:

f(x0, x1, x2, x3, x4) =q6(x0, x1, x2, x3, x4)

g(x0, x1, x2, x3, x4) =x4l8(x0, x1, x2, x3, x4)

an irreducible smooth hyperquadric f and two intersecting hyperplanes g at a singular surface,

with non-isolated singularities;

Family 6:

f(x0, x1, x2, x3, x4) =q7(x2, x3, x4) + x4l9(x0, x1)

g(x0, x1, x2, x3, x4) =q8(x2, x3, x4) + x4l10(x0, x1)

two irreducible singular hyperquadrics f , g intersecting at a singular surface, with non-isolated

singularities;

Family 7:

f(x0, x1, x2, x3, x4) =q9(x1, x2, x3, x4) + x0l11(x3, x4)

g(x0, x1, x2, x3, x4) =q10(x3, x4) + x3l12(x1, x2) + x4l13(x1, x2)

an irreducible smooth hyperquadric f and singular hyperquadric g intersecting at a singular

surface, with A2 singularity;
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Family 8:

f(x0, x1, x2, x3, x4) =q11(x2, x3, x4) + x0l14(x3, x4) + x1l15(x3, x4)

g(x0, x1, x2, x3, x4) =q12(x3, x4) + x4l16(x0, x1, x2) + x2x3

an irreducible smooth hyperquadric f and singular hyperquadric g intersecting at a singular

surface, with an A2 and two A1 singularities.

Here, the li are linear forms in P3 and the qi are quadratic forms. which are maximal in their

support, i.e. they have non-zero coefficients.

The families presented here are maximal semi-destabilizing families in the sense of Definition 3.15.

Proof. The equivalence of 1 and 3 follows from the computational program [Pap22c] we

detailed in Chapter 3 and the centroid criterion (Theorem 3.10), where the above families are

maximal semi-destabilising families as in the sense of Definition 3.15, i.e. each family equals

N−(λ, xJ , xp) for some λ ∈ P3,2,2 and xJ , xp support monomials, from Table 7.4.

For Family 1, the intersection corresponds to 4 intersecting hyperplanes, which is a cone

over a quadric in P3, with non-du Val singularity at (1 : 0 : 0 : 0 : 0). For Family 2, notice

that, from Table 7.2, the Segre symbol of the pencil is [(2, 1), 1, 1]. Hence, the base locus of the

pencil is singular, and the singular point P = (1 : 0 : 0 : 0 : 0) is an A3 singularity.

For Family 3, notice that the intersection is a quadric q′4(x1, x2, x3), where the points

(1 : k : l : 0 : 0), with k, l solutions of q4(x1, x2, 0, 0) are all singular, non-isolated points. For

Family 4, notice that the intersection is singular and non-reduced. For Family 5, the analysis

is identical as to Family 3. Family 6, has non-isolated singularities at points (1 : k : 0 : 0 : 0),

lying on a line.

Family 7 has Segre symbol [3, 1, 1] and as such has an A2 singularity at point P = (1 : 0 :

0 : 0 : 0). Family 8 has Segre symbol [3, 2] (see Table 7.2) and as such has an A2 and two A1

singularities.

To conclude the proof, note that by Lemma 7.1 the base locus of the pencil has A1 singular-

ities if and only if the determinant polynomial det(λf + g) has roots of maximal multiplicity

2. Notice that the degeneration

f(x0, x1, x2.x3, x4) = x21 + x0l1(x2, x3, x4)

g(x0, x1, x2.x3, x4) = q1(x2, x3, x4)

of Family 2 has Segre symbol [(2, 1), 2].
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The degeneration

f = x0x4 + x1x3 + x22

g = q1(x3, x4) + x3l1(x1, x2) + x4l2(x1, x2)

of family 8 has Segre symbol [(2, 1), (1, 1)], while the degeneration

f = q1(x1, x2, x3, x4) + x0x1

g = x24 + x23 + x2x1

of family 2 (after the coordinate change l1(x2, x3, x4)→ x1), has Segre symbol [3, (1, 1)].

Hence, the above families and their possible degenerations represent all possible pencils

of quadrics where the determinant polynomial has roots of multiplicity > 2. Hence, 2 and 3

are also equivalent.

Theorem 7.3. The following are equivalent:

1. A pencil of two hyperquadrics Φ(f, g) in P4 is non-stable;

2. the base locus of the pencil, Bs(f, g), is singular;

3. the pencil is generated by one of the following families, or their degenerations:

Family 1:

f(x0, x1, x2, x3, x4) =x4l1(x0, x1, x2, x3, x4) + x3l2(x0, x1, x2, x3) + x2l3(x0, x1, x2) + αx21

g(x0, x1, x2, x3, x4) =q1(x2, x3, x4)

an irreducible smooth hyperquadric f and an irreducible singular hyperquadric g intersecting at

a singular surface, with isolated A3 singularity at (1 : 0 : 0 : 0 : 0);

Family 2:

f(x0, x1, x2, x3, x4) =q2(x0, x1, x2, x3, x4)

g(x0, x1, x2, x3, x4) =q3(x3, x4)

an irreducible hyperquadric f , and a pair of intersecting hyperplanes g, such that Bs(f, g) is a

singular surface, with an isolated A3 singularity at (up to a change of basis) (1 : 0 : 0 : 0 : 0);

Family 3:

f(x0, x1, x2, x3, x4) =q4(x0, x1, x2, x3, x4)

g(x0, x1, x2, x3, x4) =x4l4(x0, x1, x2, x4)
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an irreducible smooth hyperquadric f , and a pair of intersecting hyperplanes g, intersecting at a

singular surface, with an isolated A3 singularity at (up to a change of basis) (1 : 0 : 0 : 0 : 0);

Family 4:

f(x0, x1, x2, x3, x4) =x4l5(x0, x1, x2, x3, x4) + q5(x1, x2, x3)

g(x0, x1, x2, x3, x4) =x4l6(x0, x1, x2, x3, x4) + q6(x1, x2, x3)

two irreducible smooth hyperquadrics f, g intersecting at singular surface, with an A1 singular-

ity at (1 : 0 : 0 : 0 : 0);

Family 5:

f(x0, x1, x2, x3, x4) =x4l7(x0, x1, x2, x3, x4) + x3l8(x0, x1, x2, x3) + αx22

g(x0, x1, x2, x3, x4) =x4l9(x0, x1, x2, x3, x4) + x3l10(x0, x1, x2, x3) + βx22

two irreducible hyperquadrics f, g intersecting at singular surface, with A1-singularities at (up

to a change of basis) (1 : 0 : 0 : 0 : 0) and (0 : 1 : 0 : 0 : 0);

Family 6:

f(x0, x1, x2, x3, x4) =x4l11(x0, x1, x2, x3, x4) + x3l12(x0, x1, x2, x3) + q7(x1, x2)

g(x0, x1, x2, x3, x4) =x4l13(x1, x2, x3, x4) + x3l14(x1, x2, x3)

an irreducible smooth hyperquadric f and an irreducible singular hyperquadric g intersecting at

a singular surface, with isolated A3-singularity at (1 : 0 : 0 : 0 : 0).

Here, the li are linear forms in P3 and the qi are quadratic forms.

The families presented here are maximal semi-destabilizing families as in the terminology of Definition

3.15. In particular, the pencil is strictly semistable if it is generated by either Families 4 or 5.

Proof. The equivalence of 1 and 3 follows from the computational program [Pap22c] we

detailed in Chapter 3 and the centroid criterion (Theorem 3.10), where the above families are

maximal destabilising families as in the sense of Definition 3.15.

Families 1 and 3 are identical to families 2 and 5 respectively of Theorem 7.2, so we direct

the reader to the proof of that Theorem for more details.

For Family 2, the Segre symbol is [(2, 1), 1, 1] so by the Dolgachev classification, the base

locus contains an A3 singular point P = (1 : 0 : 0 : 0 : 0) up to a change of basis. For

Family 4 the Segre symbol is [2, 1, 1, 1] and hence the base locus contains the singular point
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P = (1 : 0 : 0 : 0 : 0) which is an A1 singularity. For Family 5 the Segre symbol is [2, 2, 1],

and hence the base locus contains singular points P = (1 : 0 : 0 : 0 : 0), Q = (0 : 1 : 0 : 0 : 0)

which are A1 singularities. For Family 6, the Segre symbol is [(2, 1), 1, 1], and hence base locus

contains the singular point P = (1 : 0 : 0 : 0 : 0) which is an A3 singularity.

Notice, that a degeneration

f = q1(x1, x2, x3) + x0x4

g = q2(x1, x2, x3) + x0x4

of family 4 has Segre symbol [(1, 1), 1, 1], while the degeneration

f = q1(x1, x2, x3) + x0x4

g = q2(x3, x4) + l(x3, x4)(x0, x1, x2)

of family 4 has Segre symbol [(1, 1), 2, 1]. In addition, the degeneration

f = x4l1(x0, x1) + x3l2(x0, x1) + x22

g = x4l3(x0, x1) + x3l4(x0, x1) + x22

of family 5 has Segre symbol [(1, 1), (1, 1), 1]. From Lemma 4.1 and Table 7.2 we notice that

the 6 Families above constitute all the possible pairs of quadrics in P4 (along with their

degenerations) such that their complete intersection is singular.

Theorem 7.4.

A pencil of two quadrics Φ(f, g) in P4 is polystable if and only if it is generated by one of the following

families:

Family 1:

f(x0, x1, x2, x3) =x0x4 + q4(x1, x2, x3)

g(x0, x1, x2, x3) =x0x4 + q5(x1, x2, x3)

two irreducible smooth quadrics f, g intersecting at a singular surface, with 2 A1-singularities at

(1 : 0 : 0 : 0 : 0) and (0 : 0 : 0 : 0 : 1);

Family 2:

f(x0, x1, x2, x3) =x4l3(x0, x1) + x3l4(x0, x1) + x22

g(x0, x1, x2, x3) =x4l5(x0, x1) + x3l6(x0, x1) + x22
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two irreducible smooth quadrics f, g intersecting at a singular surface, with A1-singularities at (up to

a change of basis) (1 : 0 : 0 : 0 : 0),(0 : 1 : 0 : 0 : 0), (0 : 0 : 0 : 1 : 0) and (0 : 0 : 0 : 0 : 1),

Here, the li are linear forms in P3 and the qi are quadratic forms.

Proof. First notice that by Lemma 4.1 the above families are singular, and hence by Theorem

7.3 they are non-stable. The above families have all determinant polynomials with roots of

multiplicity 2, hence by Table 7.2, [Dol12, Table 8.6] and Lemma 7.1 they have A1 singularities.

This, alongside with Theorem 7.2 implies that the above families are strictly semistable.

In more detail, the Segre symbol for the pencil of Family 4 is [(1, 1), 1, 1, 1], and by the

classification their base locus contains 2 A1 singularities. Similarly, the Segre symbol of

Family 5 is [(1, 1), (1, 1), 1], and its base locus contains four A1 singularities.

For Family 1 we can choose a one-parameter subgroup λ(s) = Diag(s, 1, 1, 1, s−1) such

that lims→0 f ∧ g = f ∧ g, hence the pencil is polystable.

For Family 2 we can make a suitable change of basis such that f = ax0x4 + x22, g =

bx1x3 + x22, and choosing one parameter subgroup λ(s) = Diag(s, s, 1, s−1, s−1) we have

lims→0 f ∧ g = f ∧ g, which shows that the pencil is polystable.

By Theorem 3.19 a complete intersection S, defined by S = {f = g = 0}, that belongs

to a closed strictly semistable orbit is generated by monomials in the set N0(λ, xJ1), for

some (λ, xJ1). The above families correspond to the only such N0(λ, xJ1) (up to projective

equivalence). In particular, these are obtained by verifying which N−(λ, xJ) give strictly

semistable families, for various support monomials xJ , and then computing N0(λ, xJ1) by

the description in Lemma 3.18. Notice that the dimension of the moduli space is 2
((

4+2
2

)
−

2
)
−
(
(4 + 1)2 − 1

)
= 2(15− 2)− 24 = 2, so these are the only two polystable families.

Remark 7.4.1. Notice that up to projective equivalence, from Theorem 4.3, we can write

Family 1 as

f(x0, x1, x2, x3, x4) =x
2
0 + x24 + x21 + x22 + x23

g(x0, x1, x2, x3, x4) =x
2
0 + x24 + λ1x

2
1 + λ2x

2
2 + λ3x

2
3

and Family 2 as

f(x0, x1, x2, x3, x4) =x
2
0 + x21 + x22 + x23 + x24

g(x0, x1, x2, x3, x4) =λ0x
2
0 + λ1x

2
1 + x22 + λ3x

2
3 + λ4x

2
4
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where the λi are distinct and λi ̸= 1, which correspond, up to projective equivalence to

the polystable families given in [MM90, Theorem A, Theorem B, Remark 6.9] and [OSS16,

Theorem 4.1].

7.3 Classifying the Singularities of Pairs (S,D = S ∩H)

Following the discussion of Section 3, we take S = C1 ∩ C2, and D = S ∩H , where the Ci

are hyperquadrics in P4 and H is a hyperplane. The lemmas below serve as to help with the

geometric classification of such pairs.

Lemma 7.5. Let S be a smooth complete intersection of two quadrics and H a general hyperplane.

Then D has at worse D4 singularities.

Proof. Let S be given by f , g and H be a hyperplane where

f(x0, x1, x2, x3, x4) =q1(x1, x2, x3, x4) + x0l1(x3, x4)

g(x0, x1, x2, x3, x4) =q2(x3, x4) + x4l2(x0, x1, x2) + x3l3(x1, x2)

H(x0, x1, x2, x3, x4) =x4.

Then S has Segre symbol [1, 1, 1, 1, 1] and is smooth and D is given by

f(x0, x1, x2, x3) =q1(x1, x2, x3) + x0lx3

g(x0, x1, x2, x3) =x
2
3 + x3l1(x1, x2)

which is an intersection of two quadrics in P3 with Segre symbol [(3, 1)] and by Sommerville

[Som59, §XIII] and the proof of Theorem 5.7 it has D4 singularities.

Similarly let S be given by f , g and H be a hyperplane where

f(x0, x1, x2, x3, x4) =q1(x2, x3, x4) + x1l1(x2, x3, x4) + x0l2(x3, x4)

g(x0, x1, x2, x3, x4) =q2(x2, x3, x4) + x1l3(x3, x4) + x0x4

H(x0, x1, x2, x3, x4) =x4.

Then S has Segre symbol [1, 1, 1, 1, 1] and is smooth and D is given by

f(x0, x1, x2, x3) =q1(x2, x3) + x1l1(x2, x3) + x0x3

g(x0, x1, x2, x3, x4) =q2(x2, x3) + x1x3

which is an intersection of two quadrics in P3 with Segre symbol [4] and by Table 5.2 it is a

twisted cubic with a tangent line, and it has A3 singularities.
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Now let S be given by f , g and H be a hyperplane where

f(x0, x1, x2, x3, x4) =q1(x1, x2, x3, x4) + x0l1(x2, x3, x4)

g(x0, x1, x2, x3, x4) =q2(x2, x3, x4) + x4l1(x0, x1)

H(x0, x1, x2, x3, x4) =x4.

Then S has Segre symbol [1, 1, 1, 1, 1] and is smooth and D is given by

f(x0, x1, x2, x3) =q1(x1, x2, x3) + x0l1(x2, x3)

g(x0, x1, x2, x3, x4) =q2(x2, x3)

which is an intersection of two quadrics in P3 with Segre symbol [3, 1] and by Table 5.2 it is a

cuspidal curve with A2 singularities.

To conclude, let S be given by f , g and H be a hyperplane where

f(x0, x1, x2, x3, x4) =q1(x1, x2, x3, x4) + x0l1(x3, x4)

g(x0, x1, x2, x3, x4) =q2(x2, x3, x4) + x1l2(x3, x4) + x0x4

H(x0, x1, x2, x3, x4) =x4.

Then S has Segre symbol [1, 1, 1, 1, 1] and is smooth and D is given by

f(x0, x1, x2, x3) =q1(x1, x2, x3) + x0x3

g(x0, x1, x2, x3, x4) =q2(x2, x3) + x1x3

which is an intersection of two quadrics in P3 with Segre symbol [2, 1, 1] and by Table 5.2 it is

a nodal curve with A1 singularities.

Lemma 7.6. Let S be the complete intersection of two quadrics f, g with Segre symbol [(1, 1), (1, 1), 1].

Then S has 4A1 singularities. Let H be a hyperplane. Then, the hyperplane section D = S ∩H has

up to an SL(5)-action:

1. no singularities if and only if H = {l(x1, x2, x3, x4) = 0};

2. an A1 singularity at one of the singularities of S if and only if H = {l(x2, x3, x4) = 0};

3. 4A1 singularities at the singularities of S if and only if H = {x2 = 0}.

Proof. From Table 7.2 we know that S is given, up to projective equivalence, by

f = x4l1(x0, x1) + x3l2(x0, x1) + x22

g = x4l3(x0, x1) + x3l4(x0, x1) + x22
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Let H = {(x1, x2, x3, x4) = 0}; using a suitable change of coordinates x̃4 = l(x1, x2, x3, x4),

x̃i = xi for i ̸= 4 we have (by abuse of notation):

f = ll1(x0, x1) + x3l2(x0, x1) + x22

g = ll3(x0, x1) + x3l4(x0, x1) + x22

H = x4

and hence D will be given by:

f ′ = q1(x1, x2, x3) + x0l1(x1, x2, x3)

g′ = q2(x1, x2, x3) + x0l2(x1, x2, x3)

which is a smooth complete intersection of two quadrics in P3.

Let H = {l(x2, x3, x4) = 0}; using a similar suitable change of coordinates we have (by

abuse of notation):

f = ll1(x0, x1) + x3l2(x0, x1) + x22

g = ll3(x0, x1) + x3l4(x0, x1) + x22

H = x4

and hence D will be given by:

f ′ = q1(x2, x3) + x0l1(x2, x3) + x1l2(x2, x3)

g′ = q2(x2, x3) + x0l3(x2, x3) + x1l4(x2, x3)

which is a singular complete intersection of quadrics in P3 with Segre symbol [2, 2] by Table

5.2 and an A1 singularity at (1 : 0 : 0 : 0).

Similarly, let H = {x2 = 0}; here, D will be given by:

f ′ = x4l1(x0, x1) + x3l2(x0, x1)

g′ = x4l3(x0, x1) + x3l4(x0, x1)

which is a singular complete intersection of quadrics in P3 with Segre symbol [(1, 1), (1, 1)] by

Table 5.2 and 4A1 singularities at (1 : 0 : 0 : 0).
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Lemma 7.7. Let S be the complete intersection of two quadrics f, g with Segre symbol [(1, 1), 1, 1, 1].

Then S has 2A1 singularities. Let H be a hyperplane. Then, the hyperplane section D = S ∩H has/is

up to an SL(5)-action:

1. 1 A1 singularity at one of the singularities of S if and only if H = {l(x1, x2, x3, x4) = 0} or

H = {l(x2, x3, x4) = 0} or H = {l(x3, x4) = 0} ;

2. 2A1 singularity at the singularities of S if and only if H = {l(x1, x2, x3) = 0};

3. non-isolated singularities if and only if H = {x4 = 0}.

Proof. From Table 7.2 we know that S is given, up to projective equivalence, by

f = q1(x1, x2, x3) + x0x4

g = q2(x1, x2, x3) + x0x4

Let H = {l(x1, x2, x3, x4) = 0}; using a similar suitable change of coordinates we have (by

abuse of notation):

f = q1(x1, x2, x3) + x0l

g = q2(x1, x2, x3) + x0l

H = x4

and hence D will be given by:

f ′ = q1(x1, x2, x3) + x0l(x1, x2, x3)

g′ = q2(x1, x2, x3) + x0l(x1, x2, x3)

which is a singular complete intersection of quadrics with an A1 singularity at point (up to

SL(3)-action) (1 : 0 : 0 : 0).

Similarly, let H = {l(x2, x3, x4) = 0}; using a similar suitable change of coordinates we

have (by abuse of notation):

f = q1(x1, x2, x3) + x0l

g = q2(x1, x2, x3) + x0l

H = x4

and hence D will be given by:
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f ′ = q1(x1, x2, x3) + x0l(x2, x3)

g′ = q2(x1, x2, x3) + x0l(x2, x3)

which is a singular complete intersection of quadrics with an A1 singularity at point (up to

SL(3)-action) (1 : 0 : 0 : 0).

Similarly, let H = {l(x3, x4) = 0}; using a similar suitable change of coordinates we have

(by abuse of notation):

f = q1(x1, x2, x3) + x0l

g = q2(x1, x2, x3) + x0l

H = x4

and hence D will be given by:

f ′ = q1(x1, x2, x3) + x0x3

g′ = q2(x1, x2, x3) + x0x3

which is a singular complete intersection of quadrics with an A1 singularity at point (up to

SL(3)-action) (1 : 0 : 0 : 0).

Now, let H = {x4 = 0}; then D will be given by:

f ′ = q1(x1, x2, x3)

g′ = q2(x1, x2, x3)

which is a singular non-reduced complete intersection of quadrics in P3.

To conclude, letH = {l(x1, x2, x3) = 0}. By making the coordinate change x3 = l(x1, x2, x3)

we get D:

f ′ = q1(x1, x2) + x0x4

g′ = q2(x1, x2) + x0x4

which has Segre symbol [(1, 1), 1, 1], and two A1 singularities at (1 : 0 : 0 : 0 : 0) and

(0 : 0 : 0 : 0 : 1), which are the singular points of S.

The rest of the proofs of this section are identical in method to the proofs of Lemmas 7.7

and 7.6, which in turn use the same method of proof for the lemmas of Section 5.3, and as

such will be omitted.
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Lemma 7.8. Let S be the complete intersection of two quadrics f, g with Segre symbol [(1, 1), 2, 1]].

Then S has 3A1 singularities. Let H be a hyperplane. Then, the hyperplane section D = S ∩H has/is

up to an SL(5)-action:

1. no singularities if and only if H = {l(x1, x2, x3, x4) = 0}or H = {l(x2, x3, x4) = 0};

2. 2A1 singularities at two of the singularities of S if and only if H = {l(x3, x4) = 0};

3. non-isolated singularities if and only if H = {x4 = 0}.

Lemma 7.9. Let S be the complete intersection of two quadrics f, g with Segre symbol [2, 2, 1]. Then

S has 2A1 singularities. Let H be a hyperplane. Then, the hyperplane section D = S ∩H has/is up

to an SL(5)-action:

1. no singularities if and only if H = {l(x1, x2, x3, x4) = 0};

2. 1 A1 singularity at one of the singularities of S if and only if H = {l(x2, x3, x4) = 0} or

H = {l(x3, x4) = 0} or H = {x4 = 0}.

Lemma 7.10. Let S be the complete intersection of two quadrics f, g with Segre symbol [2, 1, 1, 1].

Then S has 1A1 singularities. Let H be a hyperplane. Then, the hyperplane section D = S ∩H has/is

up to an SL(5)-action:

1. 1 A1 singularity at the singularity of S if and only if H = {l(x1, x2, x3, x4) = 0} or H =

{l(x2, x3, x4) = 0} or H = {l(x3, x4) = 0};

2. non-isolated singularities if and only if H = {x4 = 0}.

Lemma 7.11. Let S be the complete intersection of two quadrics f, g with Segre symbol [(2, 1), (1, 1)].

Then S has 1 A1 and 2 A3 singularities. Let H be a hyperplane. Then, the hyperplane section

D = S ∩H has/is up to an SL(5)-action:

1. 1 A1 singularity at the A3 singularity if and only if H = {l(x1, x2, x3, x4) = 0} or H =

{l(x2, x3, x4) = 0};

2. 1A3 singularity at the A3 singularity if and only if H = {x2 = 0};

3. non-isolated singularities if and only if H = {l(x3, x4) = 0} or H = {x4 = 0}.
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Lemma 7.12. Let S be the complete intersection of two quadrics f, g with Segre symbol [(2, 1), 1, 1].

Then S has 1A3 singularity. Let H be a hyperplane. Then, the hyperplane section D = S ∩H has/is

up to an SL(5)-action:

1. 1A1 singularity at the A3 singularity if and only if H = {l(x1, x2, x3, x4) = 0};

2. 1 A3 singularity at the A3 singularity if and only if H = {l(x2, x3, x4) = 0} or H =

{l(x3, x4) = 0} or H = {x4 = 0}.

Lemma 7.13. Let S be the complete intersection of two quadrics f, g with Segre symbol [(2, 1), 2].

Then S has 1A1 and 1A3 singularity. LetH be a hyperplane. Then, the hyperplane sectionD = S∩H

has/is up to an SL(5)-action:

1. 1A1 singularity at the A3 singularity if and only if H = {l(x1, x2, x3, x4) = 0};

2. 1 A3 singularity at the A3 singularity if and only if H = {l(x2, x3, x4) = 0} or H =

{l(x3, x4) = 0};

3. 1D4 singularity at the A3 singularity if and only if H = {x4 = 0}.

Lemma 7.14. Let S be the complete intersection of two quadrics f, g with Segre symbol [3, (1, 1)].

Then S has 1A1 and 1A2 singularity. LetH be a hyperplane. Then, the hyperplane sectionD = S∩H

has/is up to an SL(5)-action:

1. 2A1 singularities at the singularities of S if and only if H = {l(x1, x2, x3, x4) = 0};

2. 1A1 singularity at the A2 singularity if and only if H = {l(x2, x3, x4) = 0};

3. 1A2 singularity at the A2 singularity if and only if or H = {l(x3, x4) = 0} or H = {x4 = 0}.

Lemma 7.15. Let S be the complete intersection of two quadrics f, g with Segre symbol [3, 1, 1]. Then

S has 1A2 singularity. Let H be a hyperplane. Then, the hyperplane section D = S ∩H has/is up to

an SL(5)-action:

1. 1A1 singularity at the A2 singularity if and only if H = {l(x1, x2, x3, x4) = 0};

2. 1A2 singularity at the A2 singularity if and only if H = {l(x2, x3, x4) = 0};

3. 1A3 singularity at the A2 singularity if and only if or H = {l(x3, x4) = 0};

4. non-isolated singularities if H = {x4 = 0}.
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Lemma 7.16. Let S be the complete intersection of two quadrics f, g with Segre symbol [3, 2]. Then

S has 1 A1 and 1 A2 singularity. Let H be a hyperplane. Then, the hyperplane section D = S ∩H

has/is up to an SL(5)-action:

1. no singularities if and only if H = {l(x1, x2, x3, x4) = 0};

2. 2A1 singularities at the singularities of S if and only if H = {l(x2, x3, x4) = 0};

3. non-isolated singularities if H = {l(x3, x4) = 0} or H = {x4 = 0}.

Lemma 7.17. Let S be the complete intersection of two quadrics f, g with Segre symbol [(3, 1), 1].

Then S has 1 D4 singularity. Let H be a hyperplane. Then, the hyperplane section D = S ∩H has/is

up to an SL(5)-action:

1. no singularities if and only if H = {l(x1, x2, x3, x4) = 0};

2. 2A1 singularities, where one singularity is the D4 singularity if and only ifH = {l(x2, x3, x4) =

0};

3. a double conic if and only if H = {l(x3, x4) = 0};

4. 1A3 singularity away from the D4 singularity if and only if H = {x4 = 0}.

Lemma 7.18. Let S be the complete intersection of two quadrics f, g with Segre symbol [4, 1]. Then S

has 1A3 singularity. Let H be a hyperplane. Then, the hyperplane section D = S ∩H has/is up to an

SL(5)-action:

1. 1A1 singularity if and only if H = {l(x1, x2, x3, x4) = 0};

2. 2A1 singularities if and only if H = {l(x2, x3, x4) = 0};

3. 1A3 singularity if and only if H = {l(x3, x4) = 0};

4. non-isolated singularities if and only if H = {x4 = 0}.

Lemma 7.19. Let S be the complete intersection of two quadrics f, g with Segre symbol [(4, 1)]. Then

S has 1 D5 singularity. Let H be a hyperplane. Then, the hyperplane section D = S ∩H has/is up to

an SL(5)-action:

1. 1A1 singularity at the D5 singularity if and only if H = {l(x1, x2, x3, x4) = 0};
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2. 2 A1 singularities where one lies is the D5 singularity at S if and only if H = {l(x2, x3, x4) =

0};

3. non-isolated singularities if and only if H = {l(x3, x4) = 0} or H = {x4 = 0};

4. 1A2 singularity away from the singular point P if and only if S is given by

f(x0, x1, x2, x3, x4) =x
2
2 + ax1x3 + bx0x4

g(x0, x1, x2, x3, x4) =x
2
3 + cx1x4

and H = {x4 = 0}.

As a direct result from the above theorems, we have the following Lemma:

Lemma 7.20. Let (S,D) be a pair that is invariant under a non-trivial Gm-action. Suppose the

singularities of S and D are given as in the first and second entries in one of the rows of Table 7.5,

respectively. Then (S,D) is projectively equivalent to (f = g = 0, f = g = H = 0) for f , g as in

Table 7.2 corresponding to the Segre symbol of row 3 of Table 7.5, and H as in the fourth entries in

the same row of Table 7.5, respectively. In particular, any such pair (S,D) is unique up to projective

equivalence. Conversely, if (S,D) is given by equations as in the third and fourth entries in a given

row of Table 7.5, then (S,D) has singularities as in the first and second entries in the same row of

Table and (S,D) is Gm-invariant. Furthermore the one-parameter subgroup λ(s) ∈ SL(5), given in

the entry of the corresponding row of Table 7.5 is a generator of the Gm-action.
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Sing(S) Sing(D) Segre Symbol H λ(s)

4A1 4A1 at points [(1, 1), (1, 1), 1] x2 Diag(s, s, 1, s−1, s−1)

2A1 at

P , Q
2A1 at points [(1, 1), 1, 1, 1] l(x1, x2, x3) Diag(s, 1, 1, 1, s−1)

2A1 +A2 at

P , Q, R

non-isolated,

D = 2L+ L1 + L2

[3, 2] x4 Diag(s, 1, 1, 1, s−1)

A1 +A2 at

P , Q,

non-isolated,

D = 2L+ L1 + L2

[3, (1, 1)] x4 Diag(s, 1, 1, 1, s−1)

2A1 +A3 at

P , Q, R
double conic [(2, 1), (1, 1)] x4 Diag(s7, s2, s−3, s−3, s−3)

A1 +A3 at

P , Q
A3 at P [(2, 1), (1, 1)] x4 Diag(s7, s2, s−3, s−3, s−3)

A3 at P D4 at P [4, 1] x4 Diag(s7, s2, s2, s−3, s−8)

A3 +A1

at P , R
A1 at R [(2, 1), 2] x4 Diag(s7, s2, s2, s−3, s−8)

D4 at P A3 not P [(3, 1), 1] x4 Diag(s9, s4, s−1, s−1, s−11)

D5 at P A2 not P [(4, 1)] x0 Diag(s9, s4, s−1, s−1, s−11)

Table 7.5: Some pairs (S,D) invariant under a Gm-action.

7.4 VGIT Classification

From the algorithm described in Section 3 and the computational package [Pap22c] we obtain

the following walls and chambers:

t0 t1 t2 t3 t4 t5 t6

walls 0 1
6

2
7

3
8

6
11

2
3

1

chambers 37
228

327
1162

113
304

1039
1914

355
534

37
38

We thus obtain 11 non-isomorphic quotients MGIT
3,2,2(ti), which are characterised by the

following two Theorems.

Theorem 7.21. Let (S,D) be a pair where S is a complete intersection of two quadrics in P4 and

D = S ∩H is a hyperplane section.
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1. t ∈ (0, 1
6
): The pair (S,D) is t-stable if and only S has at worse finitely many A1 singularities,

where D may be non-reduced, or if S is smooth and D has at worse a D4 singularity.

2. t = 1
6
: The pair (S,D) is t-stable if and only S has at worse finitely many A1 singularities

and D is reduced and has at worst A1 singularities, or if S is smooth and D has at worse a D4

singularity.

3. t ∈ (1
6
, 2
7
): The pair (S,D) is t-stable if and only if S has at worse finitely many A2 singularities

and D is reduced and smooth, or if S is smooth and D has at worse a D4 singularity.

4. t = 2
7
: The pair (S,D) is t-stable if and only S has at worse finitely many A3 singularities and

D can have at worse singularities of type A3, or if S is smooth and D has at D has at worse a

D4 singularity.

5. t ∈ (2
7
, 3
8
): The pair (S,D) is t-stable if and only S has at worse finitely many A3 singularities

and D is smooth, or if S is smooth and D has at worse a D4 singularity.

6. t = 3
8
: The pair (S,D) is t-stable if and only S has at worse finitely many A3 singularities and

D is smooth, or if S is smooth and D has at worse an A3 singularity.

7. t ∈ (3
8
, 6
11
): The pair (S,D) is t-stable if and only S has at worse finitely many A3 singularities

and D is smooth, or if S is smooth and D has at worse an A2 singularity.

8. t = 6
11

: The pair (S,D) is t-stable if and only S has at worse finitely many A3 singularities and

D is smooth, or if S is smooth and D has at worse a A1 singularities.

9. t ∈ ( 6
11
, 2
3
): The pair (S,D) is t-stable if and only S has at worse finitely many A3 singularities

and D is smooth, or if S is smooth and D has at worse a A1 singularities.

10. t = 2
3
: The pair (S,D) is t-stable if and only S has at worse finitely many A3 singularities and

D is smooth, or if S is smooth and D is smooth.

11. t ∈ (2
3
, 1): The pair (S,D) is t-stable if and only S has at worse finitely many D5 singularities

and D is smooth, or if S is smooth and D is smooth.

Theorem 7.22. Let t ∈ (0, 1). If t is a chamber, or t = t5, then M(t) is the compactification of the

stable loci M(t) by the closed SL(5)-orbit in M(t) \M(t) represented by the pair (S̃, D̃), where S̃ is

the unique Gm-invariant complete intersection of two quadrics with Segre symbol [(1, 1), (1, 1), 1]
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and 4 A1 singularities, and D̃ is the union of the unique four lines in S̃, each of them passing through

two of those singularities, or the pair (S ′, D′), where S ′ is the complete intersection with Segre symbol

[(1, 1), 1, 1, 1] and 2A1 singularities, and D′ is two conics in general position with 2A1 singularities

at the singular points of S ′. If t = ti, for i = 1, 2, 3, 4, 5, then M(ti) is the compactification of the

stable loci M(ti) by the three closed SL(5)-orbits in M(t) \M(t) represented by the uniquely defined

pairs (S̃, D̃), (S ′, D′) described above, and the Gm-invariant pairs (Si, Di), (S ′
i, D

′
i) uniquely defined

as follows:

1. the complete intersection S1 of two quadrics with Segre symbol [3, 2] with 2 A1 and 1 A2

singularities, and the divisor D1 ∈ | −KS1|, where D1 = 2L+ L1 + L2 (a double line and two

lines meeting at two points), with non-isolated singularities, and the complete intersection S ′
1

of two quadrics with Segre symbol [3, (1, 1)] with 1 A1 and 1 A2 singularities, and the divisor

D′
1 ∈ | −KS′

1
|, where D′

1 = 2L+ L1 + L2 (a double line and two lines meeting at two points),

with non-isolated singularities;

2. the complete intersection S2 of two quadrics with Segre symbol [(2, 1), (1, 1)] with 2A1 and 1

A3 singularities, and the divisor D2 ∈ | −KS2|, where D2 is a double conic, and the complete

intersection S ′
2 of two quadrics with Segre symbol [(2, 1), 2] with 1A1 and 1A3 singularities,

and the divisor D′
2 ∈ | −KS′

2
|, where D′

2 has an A3 singularity at the A1 singularity of S ′
2;

3. the complete intersection S3 of two quadrics with Segre symbol [4, 1] with 1A3 singularity, and

the divisor D3 ∈ | −KS3|, where D3 is a conic and two lines intersecting in one point, with a

D4 singularity at the A3 singularity of S2;

4. the complete intersection S4 of two quadrics with Segre symbol [(3, 1), 1] with 1 D4 singularity,

and the divisor D4 ∈ | −KS4|, where D4 is two tangent conics with a A3 singularity, and D4

does not contain the singular point of S4;

5. the complete intersection S4 of two quadrics with Segre symbol [(4, 1)] with 1D5 singularity,

and the divisor D5 ∈ | −KS5|, where D5 is a cuspidal curve with a A2 singularity, and D5 does

not contain the singular point of S5.

The lemma below, will aide us with the classification.

Lemma 7.23. Let (S,D) be a pair.

1. If S is reducible or not normal, then (S,D) is t-unstable for all t ∈ [0, 1).
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2. If D is not reduced, then, (S,D) is t-unstable for all t ∈ (1/6, 1].

Proof. For the first part, the reducible case follows from Theorem 3.14. By Serre’s criterion

for normality, the complete intersection S is not normal if it has non-isolated singularities.

Assume, without loss of generality that the non-isolated singularities are at the points (a : b :

0 : 0 : 0), (a : b : c : 0 : 0), (a : b : c : d : 0). Then, the singular complete intersection will be

given by either

f(x0, x1, x2, x3, x4) =q3(x2, x3, x4) + x4l1(x0, x1)

g(x0, x1, x2, x3, x4) =q4(x2, x3, x4) + x4l2(x0, x1)

or

f(x0, x1, x2, x3, x4) =q3(x3, x4) + x4l1(x0, x1, x2)

g(x0, x1, x2, x3, x4) =q4(x3, x4) + x4l2(x0, x1, x2)

or

f(x0, x1, x2, x3, x4) = q1(x0, x1, x2, x3, x4)

g(x0, x1, x2, x3, x4) = x3x4

or

f(x0, x1, x2, x3, x4) = q1(x0, x1, x2, x3, x4)

g(x0, x1, x2, x3, x4) = x24.

Let H(x0, x1, x2, x3, x4) = l(x0, x1, x2, x3, x4) be a general hyperplane.

For the first possibility, let λ(s) = Diag(s4, s4, s−1, s−1, s−6); then µt(S,H, λ) = −4− 4t < 0

for all t ∈ [0, 1). Similarly, for the second case let λ(s) = Diag(s4, s4, s−1, s−1, s−6); then

µt(S,H, λ) = −4− 4t < 0 for all t ∈ [0, 1). For the third case let λ(s) = Diag(s1, s1, s1, s1, s−4);

then µt(S,H, λ) = 2 − 3 + t = −1 + t < 0 for all t ∈ [0, 1). For the last case let λ(s) =

Diag(s2, s, 1, 0, s−3); then µt(S,H, λ) = 4− 6 + 2t = −2 + 2t < 0 for all t ∈ [0, 1). Hence, in all

cases, the pair is unstable.

For the second part, without loss of generality we may assume that the pair is given by

f(x0, x1, x2, x3, x4) =q1(x1, x2, x3, x4) + x0l1(x3, x4)

g(x0, x1, x2, x3, x4) =q2(x3, x4) + x4l2(x0, x1, x2)

H(x0, x1, x2, x3, x4) =x4.

Then, let λ(s) = Diag(s4, s4, s−1, s−1, s−6) be a one-parameter subgroup. Then, µt(S,H, λ) =

1− 6t < 0 if t > 1
6
.
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The families presented below have been produced via the algorithm described in Chapter

3, via the computational package [Pap22c] and are all t-unstable with respect to the respective

t via the centroid criterion (Theorem 3.10). In addition, they are maximal t-destabilising

families with respect to each wall/chamber t, in the sense of Definition 3.15.

7.4.1 Chamber t = 37
228

For the first chamber with t = 37
228
∈ (0, 1

6
) we have:

Lemma 7.24. 1. the pair (S,H) is non-t-stable if and only if the pair is generated by one of the

following families, or their degenerations:

Family 1:

f(x0, x1, x2, x3, x4) =q1(x1, x2, x3, x4)

g(x0, x1, x2, x3, x4) =q2(x1, x2, x3, x4)

H(x0, x1, x2, x3, x4) =l(x0, x1, x2, x3, x4)

A singular complete intersection Swhich is a cone over a singular complete intersection in P4,

with D = S ∩H a general hyperplane section.

Family 2:

f(x0, x1, x2, x3, x4) =q3(x2, x3, x4) + x4l1(x0, x1)

g(x0, x1, x2, x3, x4) =q4(x2, x3, x4) + x4l2(x0, x1)

H(x0, x1, x2, x3, x4) =l(x0, x1, x2, x3, x4)

A singular complete intersection S whose singular locus contains a line, with D = S ∩H a

general hyperplane section.

Family 3:

f(x0, x1, x2, x3, x4) =q5(x1, x2, x3, x4) + x0x4

g(x0, x1, x2, x3, x4) =q6(x2, x3, x4) + x1x4

H(x0, x1, x2, x3, x4) =l(x0, x1, x2, x3, x4)

A singular complete intersection S with an A2 singularity, withD = S∩H a general hyperplane

section.
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Family 4:

f(x0, x1, x2, x3, x4) =q7(x2, x3, x4) + x4l3(x0, x1) + x3l4(x0, x1)

g(x0, x1, x2, x3, x4) =q8(x2, x3, x4) + x4l5(x0, x1) + x3l6(x0, x1)

H(x0, x1, x2, x3, x4) =l(x2, x3, x4)

A singular complete intersection S with four A1 singularities, with D = S ∩ H a singular

hyperplane section with an A1 singularity at one of the singular points of S.

Family 5:

f(x0, x1, x2, x3, x4) =q9(x1, x2, x3, x4) + x0l7(x3, x4)

g(x0, x1, x2, x3, x4) =q10(x3, x4) + x3l8(x1, x2) + x4l9(x1, x2)

H(x0, x1, x2, x3, x4) =l(x0, x1, x2, x3, x4)

A singular complete intersection S with an A2 singularity, withD = S∩H a general hyperplane

section.

Family 6:

f(x0, x1, x2, x3, x4) =q11(x2, x3, x4) + x4l10(x0, x1) + x3l11(x0, x1)

g(x0, x1, x2, x3, x4) =q12(x3, x4) + x4l12(x0, x1, x2) + x3x2

H(x0, x1, x2, x3, x4) =l(x0, x1, x2, x3, x4)

A singular complete intersection S with an A2 and an A1 singularity, with D = S ∩ H a

general hyperplane section.

Family 7:

f(x0, x1, x2, x3, x4) =q13(x0, x1, x2, x3, x4)

g(x0, x1, x2, x3, x4) =q14(x3, x4)

H(x0, x1, x2, x3, x4) =l(x0, x1, x2, x3, x4)

A singular complete intersection S with non-isolated singularities, with D = S ∩H a general

hyperplane section.

Family 8:

f(x0, x1, x2, x3, x4) =q15(x3, x4) + x4l12(x0, x1, x2) + x3l13(x0, x1, x2)

g(x0, x1, x2, x3, x4) =q16(x3, x4) + x4l13(x0, x1, x2) + +x3l14(x0, x1, x2)

H(x0, x1, x2, x3, x4) =l(x0, x1, x2, x3, x4)
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A singular complete intersection S with non-isolated singularities, with D = S ∩H a general

hyperplane section.

Family 9:

f(x0, x1, x2, x3, x4) =q17(x1, x2, x3, x4) + x4x0

g(x0, x1, x2, x3, x4) =q18(x1, x2, x3, x4) + x4x0

H(x0, x1, x2, x3, x4) =l(x1, x2, x3, x4)

A singular complete intersection S with an A1 singularity, with D = S ∩ H a singular

hyperplane section with an A1 singularity at the singular point of S.

Family 10:

f(x0, x1, x2, x3, x4) =q19(x0, x1, x2, x3, x4)

g(x0, x1, x2, x3, x4) =x4l15(x0, x1, x2, x3, x4)

H(x0, x1, x2, x3, x4) =l(x0, x1, x2, x3, x4)

A singular complete intersection S with non-isolated singularities, with D = S ∩H a general

hyperplane section.

Family 11:

f(x0, x1, x2, x3, x4) =q20(x1, x2, x3, x4) + x0l16(x2, x3, x4)

g(x0, x1, x2, x3, x4) =q21(x2, x3, x4)

H(x0, x1, x2, x3, x4) =l(x0, x1, x2, x3, x4)

A singular complete intersection S with an A3 singularity, withD = S∩H a general hyperplane

section.

Here, the li are linear forms in P3 and the qi are quadratic forms. In particular, the pair is strictly

t-semistable if it is generated by Family 4 or 9;

2. for t ∈ (0, 1
6
), the only t-stable pairs (S,D = S ∩H) occur when S is smooth, in which case

D is a general hyperplane section with at worst D4 singularities, or S has at worse 2 or 3 A1

singularities with D non-reduced, or 1 or 4A1 singularities with D general.

Proof. Part 1 follows from the computational program [Pap22c] we detailed in Chapter 3 and

the centroid criterion (Theorem 3.10), where the above families are maximal destabilising

families as in the sense of Definition 3.15, i.e. each family equals N−(λ, xJ , xp) for some
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λ ∈ P3,2,2 and xJ , xp support monomials. The description of the above families with respect

to singularities follows from Sections 7.1 and 7.3. In particular, the families with non-isolated

singularities are non-normal from Serre’s criterion

For part 2, suppose S is stable. From the classification Lemmas of Section 7.3 and part 1

we see that S cannot have A2 or worse singularities. From the above families, we see that

f(x0, x1, x2, x3, x4) =q1(x1, x2, x3, x4) + x0l1(x3, x4)

g(x0, x1, x2, x3, x4) =q2(x3, x4) + x4l2(x0, x1, x2)

H(x0, x1, x2, x3, x4) =x4

is a stable pair where S has Segre symbol [(1, 1), 1, 1, 1] and 2 A1 singularities from Table 7.2,

and D is given by

f ′(x0, x1, x2, x3) = q1(x1, x2, x3) + x0x3

g′(x0, x1, x2, x3) = x23

which is a double line and two lines in a triangle and is non-reduced.

In addition, the pair

f(x0, x1, x2, x3, x4) =q5(x1, x2, x3, x4) + x0l7(x3, x4)

g(x0, x1, x2, x3, x4) =q6(x3, x4) + x4l8(x0, x1, x2)

H(x0, x1, x2, x3, x4) =x4

where S has 3 A1 singularities, and D = S ∩ H is hyperplane section with non-isolated

singularities is also stable.

To conclude, we also see that the pair (S,H) where S is smooth and H is any hyperplane

section is smooth, and by Lemma 7.5, we see that D can have up to D4 singularities.

We also obtain:

Lemma 7.25. For t ∈ (0, 1
6
) the pair (S,H) is strictly t-polystable if and only if it is generated by the

following families:

Family 1:

f(x0, x1, x2, x3, x4) =x
2
2 + x4l1(x0, x1) + x3l2(x0, x1)

g(x0, x1, x2, x3, x4) =x
2
2 + x4l3(x0, x1) + x3l4(x0, x1)

H(x0, x1, x2, x3, x4) =x2
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with S a singular complete intersection with four A1 singularities, with D = S ∩ H a singular

hyperplane section with 4A1 singularities;

Family 2:

f(x0, x1, x2, x3, x4) = x4l1(x0, x1) + x3l2(x0, x1) + x22

g(x0, x1, x2, x3, x4) = x4l3(x0, x1) + x3l4(x0, x1) + x22

H(x0, x1, x2, x3, x4) = l(x1, x2, x3)

with S a singular complete intersection with 2A1 singularities, withD = S∩H a singular hyperplane

section with 2A1 singularities, at the singular points of S.

Proof. Suppose (S,D) is a pair, where S is a complete intersection defined by polynomials

f and g, and D = S ∩ H is defined by a polynomial H , which belongs to a closed strictly

t-semistable orbit. By Theorem 3.19, they are generated by monomials in N0
t (λ, x

J1 , xi) for

some (λ, xJ1 , xi) such that N0
t (λ, x

J1 , xi) is maximal with respect to the containment of order

of sets. As detailed in Chapter 3, these can be generated algorithmically [Pap22c], and the

above families represent the only maximal N0
t (λ, x

J1 , xi) for t ∈ (0, 1
6
).

Let (S,D) be strictly t-semistable, as in family 1, and take one-parameter subgroup

λ(s) = Diag(s, s, 1, s−1, s−1). Then lims→0 λ(s) · (S,D) = (S,D) hence the pair is t-polystable

by [Dol03, Remark 8.1 (5)] and Lemma 7.20. Similarly, the pair of family 2 is t-polystable via

Lemma 7.20.

Remark 7.25.1. For each chamber t ∈ (0, 1), we have that the only t-polystable families are

given by the above families in Theorem 7.25. In addition, the above pairs are t-polystable for

all t ∈ (0, 1). We will usually denote the pair of family 1 by (S̃, D̃) and of family 2 by (S ′, D′).

7.4.2 Wall t = 1
6

For wall t = 1/6 we have the following.

Lemma 7.26. 1. The pair (S,H) is non-t-stable if and only the pair is generated by the families of

chamber 37
228

in addition to one of the following families, or their degenerations:
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Family 1:

f(x0, x1, x2, x3, x4) =q1(x2, x3, x4) + x0l1(x2, x3, x4) + x1l2(x2, x3, x4)

g(x0, x1, x2, x3, x4) =q2(x2, x3, x4) + x4l3(x0, x1)

H(x0, x1, x2, x3, x4) =x4

A singular complete intersection S with 2 A1 singularities, with D = S ∩ H a general

hyperplane section with non-isolated singularities.

Family 2:

f(x0, x1, x2, x3, x4) =q3(x2, x3, x4) + x1l4(x2, x3, x4) + x0l5(x3, x4)

g(x0, x1, x2, x3, x4) =q4(x2, x3, x4) + x1l6(x3, x4)

H(x0, x1, x2, x3, x4) =l(x3, x4)

A singular complete intersection S with 2 A1 singularities, with D = S ∩ H a general

hyperplane section with an A3 singularity at one of the A1 singularities of S.

Family 3:

f(x0, x1, x2, x3, x4) =q5(x1, x2, x3, x4) + x0l7(x3, x4)

g(x0, x1, x2, x3, x4) =q6(x3, x4) + x4l8(x0, x1, x2)

H(x0, x1, x2, x3, x4) =x4

A singular complete intersection S with 3 A1 singularities, with D = S ∩ H a hyperplane

section with non-isolated singularities.

Here, the li are linear forms in P4 and the qi are quadratic forms. In particular, the pencil is

strictly t-semistable if it is generated by Families 3, 4 or 5 of chamber 37
228

;

2. for t = 1
6
, the only t-stable pairs (S,D = S ∩ H) occur when S is smooth, in which case

D is a general hyperplane section that can have at worst D4 singularities, or S has at worse

finitely many singularities at worst of type A1, with D having at worst A1 singularities. In

particular, S can have 2 A1 singularities, provided that D has at worst 1 A1 singularity at one

of the singularities of S, or 3 A1 singularities if D has at worst 2 A1 singularities at two of the

singularities of S.

Proof. Part 1 follows from the computational program [Pap22c] we detailed in Chapter 3 and

the centroid criterion (Theorem 3.10), where the above families are maximal destabilising
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families as in the sense of Definition 3.15, i.e. each family equals N−(λ, xJ , xp) for some

λ ∈ P3,2,2 and xJ , xp support monomials. The description of the above families with respect

to singularities follows from Sections 7.1 and 7.3. In particular, families with non-isolated

singularities are non-normal from Serre’s criterion.

For part 2, let S be t-stable. From the classification Lemmas of Section 7.3 and part 1, we

see that S cannot have A2 or worse singularities. In addition, we see that S can have 2 A1

singularities, provided that D has at worst 1 A1 singularity at one of the singularities of S,

or 3A1 singularities if D has at worst 2A1 singularities at two of the singularities of S. The

proof is then completed via Lemma 7.24.

We also obtain:

Lemma 7.27. For t = 1
6

the pair (S,H) is strictly t-polystable if and only if it is generated by the

following families:

Family 1:

f(x0, x1, x2, x3, x4) =x
2
2 + x4l1(x0, x1) + x3l2(x0, x1)

g(x0, x1, x2, x3, x4) =x
2
2 + x4l3(x0, x1) + x3l4(x0, x1)

H(x0, x1, x2, x3, x4) =x2

with S a singular complete intersection with four A1 singularities, and D = S ∩ H a singular

hyperplane section with 4A1 singularities;

Family 2:

f(x0, x1, x2, x3, x4) =q2(x2, x3) + x1x4

g(x0, x1, x2, x3, x4) =x
2
1 + x0x4

H(x0, x1, x2, x3, x4) =x0

with S a singular complete intersection with Segre symbol [3, 2] with an A1 and an A2 singularity,

with D = S ∩H a singular hyperplane section with Segre symbol [(2, 2)] which is a double line and

two lines in general position, with non-isolated singularities;

Family 3:

f(x0, x1, x2, x3, x4) = x4l1(x0, x1) + x3l2(x0, x1) + x22

g(x0, x1, x2, x3, x4) = x4l3(x0, x1) + x3l4(x0, x1) + x22

H(x0, x1, x2, x3, x4) = l(x1, x2, x3)
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with S a singular complete intersection with 2A1 singularities, withD = S∩H a singular hyperplane

section with 2A1 singularities, at the singular points of S;

Family 4:

f(x0, x1, x2, x3, x4) = q(x1, x2) + x0l5(x3, x4)

g(x0, x1, x2, x3, x4) = x1l6(x3, x4) + x2l7(x3, x4)

H(x0, x1, x2, x3, x4) = x0

with S a singular complete intersection with 1 A1 and singularities 1 A2, with D = S ∩ H =

2L+ L1 + L2 a singular hyperplane section with Segre symbol [(2, 2)] which is a double line and two

lines in general position, with non-isolated singularities.

Proof. Suppose (S,D) is a pair, where S is a complete intersection defined by polynomials

f and g, and D = S ∩ H is defined by a polynomial H , which belongs to a closed strictly

t-semistable orbit. By Theorem 3.19, they are generated by monomials in N0
t (λ, x

J1 , xi) for

some (λ, xJ1 , xi) such that N0
t (λ, x

J1 , xi) is maximal with respect to the containment of order

of sets. As detailed in Chapter 3, these can be generated algorithmically [Pap22c], and the

above 2 families represent the only maximal N0
t (λ, x

J1 , xi) for t = 1
6
.

Families 1 and 3 are identical to the ones in Theorem 7.25.

f(x0, x1, x2, x3, x4) =q1(x1, x2) + l7(x3, x4)l5(x3, x4)

g(x0, x1, x2, x3, x4) =x3l6(x1, x2) + x4x0

H(x0, x1, x2, x3, x4) =l7(x3, x4)

and for one-parameter subgroup λ(s) = Diag(s, 1, 1, 1, s−1) we have

lim
s→0

λ(s) · (f ∧ g) = q1(x1, x2) ∧ x0x4 lim
s→0

λ(s) ·H = H

i.e. we obtain a triple

f(x0, x1, x2, x3, x4) =q1(x1, x2)

g(x0, x1, x2, x3, x4) =x4x0

H(x0, x1, x2, x3, x4) =l7(x3, x4)

which is strictly t-semistable by the Centroid criterion 3.10. For Family 2 we write after a

suitable change of basis

f(x0, x1, x2, x3, x4) =x0x4 + x1x3

g(x0, x1, x2, x3, x4) =x
2
1 + x2x1

H(x0, x1, x2, x3, x4) =x2
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and for one-parameter subgroup λ(s) = Diag(s, 1, 1, 1, s−1) we have

lim
s→0

λ(s) · (S,D) = (S,D).

For family 4 we can write up to projective equivalence

f(x0, x1, x2, x3, x4) = x1x2 + x0x3 + x0x4

g(x0, x1, x2, x3, x4) = x1x3 + x2lx4

H(x0, x1, x2, x3, x4) = x0

Since (S,D) is strictly t-semistable for all cases, the stabiliser subgroup of (S,D), namely

G(S,D) ⊂ SL(5) is infinite (see, [Dol03, Remark 8.1(5)]). In particular, there is a Gm-action on

(S,D). The proof then follows from Lemma 7.20.

7.4.3 Chamber t = 327
1162

For chamber t = 327
1162
∈ (1

6
, 2
7
) we have the following:

Lemma 7.28. 1. The pair (S,H) is non-t-stable if and only if the pair (S,H) is generated by the

families of wall 1
6

(minus Families 3 and 6 from the chamber t = 37
228

) in addition to one of the

following families, or their degenerations:

Family 1:

f(x0, x1, x2, x3, x4) =q3(x1, x2, x3, x4) + x0l3(x3, x4)

g(x0, x1, x2, x3, x4) =q4(x3, x4) + x4l3(x1, x2) + x4l5(x1, x2)

H(x0, x1, x2, x3, x4) =l(x1, x2, x3, x4)

A singular complete intersection S with A1 singularities, with D = S ∩H a hyperplane section

with A1 singularities;

Family 2:

f(x0, x1, x2, x3, x4) =q5(x2, x3, x4) + x1l4(x2, x3, x4) + x0x4

g(x0, x1, x2, x3, x4) =q6(x2, x3, x4) + x1x4

H(x0, x1, x2, x3, x4) =l(x0, x1, x2, x3, x4)

A singular complete intersection S with an A3 singularity, withD = S∩H a general hyperplane

section.
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Family 3:

f(x0, x1, x2, x3, x4) =q3(x2, x3, x4) + x1l6(x3, x4) + x0l7(x3, x4)

g(x0, x1, x2, x3, x4) =q4(x3, x4) + x4l8(x0, x1, x2)

H(x0, x1, x2, x3, x4) =l(x0, x1, x2, x3, x4)

A singular complete intersection S with A2 singularities, with D = S∩H a general hyperplane

section,

Here, the li are linear forms in P4 and the qi are quadratic forms. In particular, the pencil is

strictly t-semistable if it is generated by Family 4 of chamber 37
228

;

2. for chamber t = 327
1162
∈ (1

6
, 2
7
), the only t-stable pairs (S,D = S ∩H) occur when S is smooth,

in which case D is a general hyperplane section with worst D4 singularities, or S has at worse

finitely many singularities at worst of type A2, with D a general hyperplane section.

Proof. Part 1 follows from the computational program [Pap22c] we detailed in Chapter 3 and

the centroid criterion (Theorem 3.10), where the above families are maximal destabilising

families as in the sense of Definition 3.15, i.e. each family equals N−(λ, xJ , xp) for some

λ ∈ P3,2,2 and xJ , xp support monomials. The description of the above families with respect

to singularities follows from Sections 7.1 and 7.3.

For part 2, let S be t-stable. From Table 7.2, the Lemmas of Section 7.3 and part 1, we see

that S cannot have A3 or worse singularities. From the above families, we know that

f(x0, x1, x2, x3, x4) =q3(x1, x2, x3, x4) + x0l7(x3, x4)

g(x0, x1, x2, x3, x4) =q4(x3, x4) + x4l8(x0, x1, x2)

H(x0, x1, x2, x3, x4) =l(x0, x1, x2, x3, x4)

and

f(x0, x1, x2, x3, x4) =q3(x2, x3, x4) + x1l6(x3, x4) + x0l7(x3, x4)

g(x0, x1, x2, x3, x4) =q4(x3, x4) + x4l8(x0, x1, x2) + x2x3

H(x0, x1, x2, x3, x4) =l(x0, x1, x2, x3, x4)

are stable pairs where S has A2 singularities, and D is a general hyperplane section.

The only polystable pairs correspond to pairs (S̃, D̃) and (S ′, D′), as in Theorem 7.25.
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7.4.4 Wall t = 2
7

For wall t = 2
7

we have the following.

Lemma 7.29. 1. The pair (S,H) is non-t-stable if and only if the pair (S,H) is generated by the

families of chamber 327
1162

(minus Families 2 and 3 from wall t = 1
6
) in addition to one of the

following families, or their degenerations:

Family 1:

f(x0, x1, x2, x3, x4) =q1(x0, x1, x2, x3, x4)

g(x0, x1, x2, x3, x4) =q2(x3, x4) + x4l1(x0, x1, x2)

H(x0, x1, x2, x3, x4) =x4

A singular complete intersection S with A1 singularities, with D = S∩H a general hyperplane

section with an A2 singularity at the A2 singularity of S.

Family 2:

f(x0, x1, x2, x3, x4) =q3(x1, x2, x3, x4) + x0l2(x2, x3, x4)

g(x0, x1, x2, x3, x4) =q4(x2, x3, x4)

H(x0, x1, x2, x3, x4) =x4

A singular complete intersection S with an A3 singularity, withD = S∩H a general hyperplane

section with A2 singularity at the A3 singularity of S;

Family 3:

f(x0, x1, x2, x3, x4) =q5(x1, x2, x3, x4) + x0l3(x3, x4)

g(x0, x1, x2, x3, x4) =q6(x2, x3, x4) + x1l4(x3, x4)

H(x0, x1, x2, x3, x4) =l(x3, x4)

A singular complete intersection S with an A1 singularity, with D = S ∩ H a hyperplane

section with A1 singularities.

Here, the li are linear forms in P4 and the qi are quadratic forms. In particular, the pencil is

strictly t-semistable if it is generated by Family 1 or by Family 4 of chamber 37
228

;

2. for wall t = 2
7
, the only t-stable pairs (S,D = S ∩H) occur when S is smooth, in which case

D is a general hyperplane section with at worst D4 singularities, or S has at worse finitely
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many singularities at worst of type A3, with D having at worst an A3 singularity at the A3

singularity of S.

Proof. Part 1 follows from the computational program [Pap22c] we detailed in Chapter 3 and

the centroid criterion (Theorem 3.10), where the above families are maximal destabilising

families as in the sense of Definition 3.15, i.e. each family equals N−(λ, xJ , xp) for some

λ ∈ P3,2,2 and xJ , xp support monomials. The description of the above families with respect

to singularities follows from Sections 7.1 and 7.3. In particular, families with non-isolated

singularities are non-normal from Serre’s criterion.

For part 2, let S be t-stable. From Table 7.2 and the Lemmas of Section 7.3, we see that S

cannot have A4 or worse singularities. From the above families, we know that

f(x0, x1, x2, x3, x4) =q3(x1, x2, x3, x4) + x0l2(x2, x3, x4)

g(x0, x1, x2, x3, x4) =q4(x2, x3, x4)

H(x0, x1, x2, x3, x4) =l(x3, x4)

is a stable pair where S has one A3 singularity, and D has an A3 singularity at the A3

singularity of S, by Lemma 7.12.

We also obtain the following.

Lemma 7.30. For t = 2
7

the pair (S,H) is strictly t-polystable if and only if it is generated by the

following families:

Family 1:

f(x0, x1, x2, x3, x4) =x
2
2 + x4l1(x0, x1) + x3l2(x0, x1)

g(x0, x1, x2, x3, x4) =x
2
2 + x4l3(x0, x1) + x3l4(x0, x1)

H(x0, x1, x2, x3, x4) =x2

with S a singular complete intersection with four A1 singularities, and D = S ∩ H a singular

hyperplane section with 4A1 singularities.

Family 2:

f(x0, x1, x2, x3, x4) =q1(x2, x3, x4)

g(x0, x1, x2, x3, x4) =x
2
1 + x0l5(x2, x3, x4)

H(x0, x1, x2, x3, x4) =x0
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with S a singular complete intersection with Segre symbol [(2, 1), (1, 1)] with 2A1 (points P and Q)

and an A3 singularity (point R), with D = S ∩H a singular hyperplane section with Segre symbol

[(1, 1, 1), 1] which is a double conic.

Family 3:

f(x0, x1, x2, x3, x4) = x4l1(x0, x1) + x3l2(x0, x1) + x22

g(x0, x1, x2, x3, x4) = x4l3(x0, x1) + x3l4(x0, x1) + x22

H(x0, x1, x2, x3, x4) = l(x1, x2, x3)

with S a singular complete intersection with 2A1 singularities, withD = S∩H a singular hyperplane

section with 2A1 singularities, at the singular points of S;

Family 4:

f(x0, x1, x2, x3, x4) = q2(x3, x4) + x1x4

g(x0, x1, x2, x3, x4) = x21 + x0l5(x2, x3)

H(x0, x1, x2, x3, x4) = x4

with S a singular complete intersection with 1A1 and 1A3 singularities, with D = S ∩H a singular

hyperplane section with 1A3 singularities, at the A1 singular point of S.

Proof. Suppose (S,D) is a pair, where S is a complete intersection defined by polynomials

f and g, and D = S ∩ H is defined by a polynomial H , which belongs to a closed strictly

t-semistable orbit. By Theorem 3.19, they are generated by monomials in N0
t (λ, x

J1 , xi) for

some (λ, xJ1 , xi) such that N0
t (λ, x

J1 , xi) is maximal with respect to the containment of order

of sets. As detailed in Chapter 3, these can be generated algorithmically [Pap22c], and the

above families represent the only maximal N0
t (λ, x

J1 , xi) for t = 2
7
.

The fact that Families 1 and 3 are t-polystable follows from Theorem 7.25. For Family 2,

we can make a change of variables such that

f(x0, x1, x2, x3, x4) =x2x3 + x4x3

g(x0, x1, x2, x3, x4) =x
2
1 + x0x2 + cx0x3

H(x0, x1, x2, x3, x4) =x0

where c ̸= 0, as otherwise S would not be normal, which is impossible from Lemma 7.23.
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For family 4 we can make the change of coordinates

f(x0, x1, x2, x3, x4) = x3x4 + x1x4

g(x0, x1, x2, x3, x4) = x21 + x0x2 + cx0x3

H(x0, x1, x2, x3, x4) = x4

where c ̸= 0 otherwise S would be non-normal.

Since (S,D) is strictly t-semistable the stabiliser subgroup of (S,D), namelyG(S,D) ⊂ SL(5)

is infinite (see, [Dol03, Remark 8.1(5)]). In particular, there is a Gm-action on (S,D); since all

the possible pairs with Gm-action have been classified in Lemma 7.20, the proof is finished.

7.4.5 Chamber t = 113
304

For chamber t = 113
304
∈ (2

7
, 3
8
) we have the following.

Lemma 7.31. 1. The pair (S,H) is non-t-stable if and only if the pair (S,H) is generated by the

families of wall 2
7

(minus families 5 and 11 from chamber t = 37
228

, family 3 from wall t = 1
6
,

family 2 from wall t = 2
7
) in addition to one of the following families, or their degenerations:

Family 1:

f(x0, x1, x2, x3, x4) =q1(x1, x2, x3, x4) + x0x4

g(x0, x1, x2, x3, x4) =q2(x3, x4) + x4l1(x1, x2)

H(x0, x1, x2, x3, x4) =l(x0, x1, x2, x3, x4)

A singular complete intersection S with A1 singularities, with D = S ∩H a general smooth

hyperplane section.

Family 2:

f(x0, x1, x2, x3, x4) =q3(x1, x2, x3, x4) + x0l2(x3, x4)

g(x0, x1, x2, x3, x4) =q4(x3, x4) + x4l3(x1, x2) + x3l4(x1, x2)

H(x0, x1, x2, x3, x4) =l(x1, x2, x3, x4)

A singular complete intersection S with an A1 singularity, with D = S ∩ H a singular

hyperplane section with an A1 singularity.
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Family 3:

f(x0, x1, x2, x3, x4) =q5(x1, x2, x3, x4) + x0l5(x2, x3, x4)

g(x0, x1, x2, x3, x4) =q6(x2, x3, x4) + x1x4

H(x0, x1, x2, x3, x4) =x4

A singular complete intersection S with an A1 singularity, with D = S ∩ H a hyperplane

section with A2 singularities.

Family 4:

f(x0, x1, x2, x3, x4) =q7(x2, x3, x4) + x0l6(x2, x3, x4) + x1l7(x2, x3, x4)

g(x0, x1, x2, x3, x4) =q8(x2, x3, x4)

H(x0, x1, x2, x3, x4) =l(x0, x1, x2, x3, x4)

A singular complete intersection S with an A3 singularity withD = S∩H a general hyperplane

section.

Family 5:

f(x0, x1, x2, x3, x4) =q9(x1, x2, x3, x4) + x0l8(x2, x3, x4)

g(x0, x1, x2, x3, x4) =q10(x2, x3, x4)

H(x0, x1, x2, x3, x4) =l(x0, x1, x2, x3, x4)

A singular complete intersection S with an A1 singularity, withD = S∩H a general hyperplane

section.

Here, the li are linear forms in P4 and the qi are quadratic forms. In particular, the pencil is

strictly t-semistable if it is generated by Family 4 from chamber t = 37
228

;

2. for chamber t = 113
304
∈ (2

7
, 3
8
), the only t-stable pairs (S,D = S ∩H) occur when S is smooth, in

which case D is a general hyperplane section with at worst D4 singularities, or S has at worse

finitely many singularities at worst of type A3, with D a general hyperplane section.

Proof. Part 1 follows from the computational program [Pap22c] we detailed in Chapter 3 and

the centroid criterion (Theorem 3.10), where the above families are maximal destabilising

families as in the sense of Definition 3.15, i.e. each family equals N−(λ, xJ , xp) for some

λ ∈ P3,2,2 and xJ , xp support monomials. The description of the above families with respect

to singularities follows from Sections 7.1 and 7.3.
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For part 2, let S be t-stable. From Table 7.2 and the Lemmas of Section 7.3, we see that S

cannot have A4 or worse singularities. From the above family, we know that the pair

f(x0, x1, x2, x3, x4) =q7(x1, x2, x3, x4) + x0l6(x2, x3, x4)

g(x0, x1, x2, x3, x4) =q8(x2, x3, x4)

H(x0, x1, x2, x3, x4) =l(x0, x1, x2, x3, x4)

is stable, where S = {f = 0}∩{g = 0} has Segre symbol [(2, 1), 1, 1] and has an A3 singularity,

and D is a general hyperplane section.

The only polystable pairs correspond to pairs (S̃, D̃) and (S ′, D′), as in Theorem 7.25.

7.4.6 Wall t = 3
8

For wall t = 3
8

we have the following.

Lemma 7.32. 1. The pair (S,H) is non-t-stable if and only if the pair (S,H) is generated by the

families of chamber 113
334

in addition to the following family, or their degenerations:

Family 1:

f(x0, x1, x2, x3, x4) =q1(x1, x2, x3, x4) + x0l1(x3, x4)

g(x0, x1, x2, x3, x4) =q2(x3, x4) + x4l1(x0, x1, x2) + x3l2(x1, x2, x3)

H(x0, x1, x2, x3, x4) =x4

A smooth complete intersection S, with D = S ∩H a hyperplane section with D4 singularities.

Here, the li are linear forms in P4 and the qi are quadratic forms. In particular, the pencil is

strictly t-semistable if it is generated by Family 1 from chamber t = 37
228

and 2 from chamber

t = 327
1162

;

2. for wall t = 3
8
, the only t-stable pairs (S,D = S ∩ H) occur when S is smooth, in which

case D is a hyperplane section with at worst A3 singularities, or S has at worse finitely many

singularities at worst of type A3, with D general.

Proof. The proof follows from the proof of Lemma 7.31 and Lemma 7.5.

We also obtain the following.
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Lemma 7.33. For t = 3
8

the pair (S,H) is strictly t-polystable if and only if it is generated by the

following families:

Family 1:

f(x0, x1, x2, x3, x4) =x
2
2 + x4l1(x0, x1) + x3l2(x0, x1)

g(x0, x1, x2, x3, x4) =x
2
2 + x4l3(x0, x1) + x3l4(x0, x1)

H(x0, x1, x2, x3, x4) =x2

with S a singular complete intersection with four A1 singularities, and D = S ∩ H a singular

hyperplane section with 4A1 singularities.

Family 2:

f(x0, x1, x2, x3, x4) =q1(x2, x3) + x1x0

g(x0, x1, x2, x3, x4) =x1l5(x2, x3) + x0x4

H(x0, x1, x2, x3, x4) =x4

with S a singular complete intersection with Segre symbol [4, 1] with an A3 singularity (at point R),

with D = S ∩H a singular hyperplane section with Segre symbol [(3, 1)] which is a conic and two

lines intersecting in one point, with a D4 singularity (at R);

Family 3:

f(x0, x1, x2, x3, x4) = x4l1(x0, x1) + x3l2(x0, x1) + x22

g(x0, x1, x2, x3, x4) = x4l3(x0, x1) + x3l4(x0, x1) + x22

H(x0, x1, x2, x3, x4) = l(x1, x2, x3)

with S a singular complete intersection with 2A1 singularities, withD = S∩H a singular hyperplane

section with 2A1 singularities, at the singular points of S.

Proof. Suppose (S,D) is a pair, where S is a complete intersection defined by polynomials

f and g, and D = S ∩ H is defined by a polynomial H , which belongs to a closed strictly

t-semistable orbit. By Theorem 3.19, they are generated by monomials in N0
t (λ, x

J1 , xi) for

some (λ, xJ1 , xi) such that N0
t (λ, x

J1 , xi) is maximal with respect to the containment of order

of sets. As detailed in Chapter 3, these can be generated algorithmically [Pap22c], and the

above families represent the only maximal N0
t (λ, x

J1 , xi) for t = 3
8
).

The fact that Families 1 and 3 are t-polystable follows from Theorem 7.25. For Family 2,
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we can make a change of variables such that

f(x0, x1, x2, x3, x4) =x2x3 + x1x4

g(x0, x1, x2, x3, x4) =x4x0 + x1x2 + cx1x3

H(x0, x1, x2, x3, x4) =x4

where c ̸= 0, as otherwise S would not be normal, which is impossible from Lemma 7.23.

Since (S,D) is strictly t-semistable the stabiliser subgroup of (S,D), namely G(S,D) ⊂ SL(5) is

infinite (see, [Dol03, Remark 8.1(5)]). In particular, there is a Gm-action on (S,D); since all the

possible pairs with Gm-action have been classified in Lemma 7.20, the proof is finished.

7.4.7 Chamber t = 1039
1914

For chamber t = 1039
1914
∈ (3

8
, 6
11
) we have the following.

Lemma 7.34. 1. The pair (S,H) is non-t-stable if and only if the pair (S,H) is generated by the

families of wall 3
8

(minus family 2 from chamber t = 327
1162

) in addition to the following family, or

their degenerations:

Family 1:

f(x0, x1, x2, x3, x4) =q1(x2, x3, x4) + x1l1(x2, x3, x4) + x0l2(x3, x4)

g(x0, x1, x2, x3, x4) =q2(x2, x3, x4) + x1l3(x3, x4) + x0x4

H(x0, x1, x2, x3, x4) =x4

A smooth complete intersection S , with D = S ∩ H a singular hyperplane section with A3

singularities.

Here, the li are linear forms in P4 and the qi are quadratic forms. In particular, the pencil is

strictly t-semistable if it is generated by Family 4 of chamber t = 37
228

;

2. for chamber t = 1039
1914
∈ (3

8
, 6
11
), the only t-stable pairs (S,D = S ∩H) occur when S is smooth,

in which case D is a hyperplane section with at worst A2 singularities, or S has at worse finitely

many singularities at worst of type A3, with D a general hyperplane section.

Proof. The proof follows from the proof of Lemma 7.32 and Lemma 7.5.

The only polystable pairs correspond to pairs (S̃, D̃) and (S ′, D′), as in Theorem 7.25.
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7.4.8 Wall t = 6
11

For wall t = 6
11

we have the following

Lemma 7.35. 1. The pair (S,H) is non-t-stable if and only if the pair (S,H) is generated by the

families of chamber 1039
1914

(minus family 1 from wall t = 1
6
, and 3 from chamber t = 113

304
) in

addition to the following family, or their degenerations:

Family 1:

f(x0, x1, x2, x3, x4) =q1(x1, x2, x3, x4) + x0l1(x2, x3, x4)

g(x0, x1, x2, x3, x4) =q2(x2, x3, x4) + x4l1(x0, x1)

H(x0, x1, x2, x3, x4) =x4

A smooth complete intersection S, with D = S ∩ H a singular hyperplane section with A2

singularities.

Here, the li are linear forms in P4 and the qi are quadratic forms. In particular, the pencil is

strictly t-semistable if it is generated by this family and family 4 from chamber t = 37
228

;

2. for wall t = 6
11

, the only t-stable pairs (S,D = S ∩ H) occur when S is smooth, in which

case D is a hyperplane section with at worst A1 singularities, or S has at worse finitely many

singularities at worst of type A3, with D a general hyperplane section.

Proof. The proof follows from Lemma 7.34 and Lemma 7.5.

We also obtain the following.

Lemma 7.36. For t = 6
11

the pair (S,H) is strictly t-polystable if and only if it is generated by the

following families:

Family 1:

f(x0, x1, x2, x3, x4) =x
2
2 + x4l1(x0, x1) + x3l2(x0, x1)

g(x0, x1, x2, x3, x4) =x
2
2 + x4l3(x0, x1) + x3l4(x0, x1)

H(x0, x1, x2, x3, x4) =x2

with S a singular complete intersection with four A1 singularities, and D = S ∩ H a singular

hyperplane section with 4A1 singularities.
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Family 2:

f(x0, x1, x2, x3, x4) =q1(x2, x3) + x0x4

g(x0, x1, x2, x3, x4) =x0l5(x2, x3) + x21

H(x0, x1, x2, x3, x4) =x4

with S a singular complete intersection with Segre symbol [(3, 1), 1] with a D4 singularity (at point

R), with D = S ∩H a singular hyperplane section with Segre symbol [(2, 1), 1], which is two tangent

conics with an A3 singularity (away from R);

Family 3:

f(x0, x1, x2, x3, x4) = x4l1(x0, x1) + x3l2(x0, x1) + x22

g(x0, x1, x2, x3, x4) = x4l3(x0, x1) + x3l4(x0, x1) + x22

H(x0, x1, x2, x3, x4) = l(x1, x2, x3)

with S a singular complete intersection with 2A1 singularities, withD = S∩H a singular hyperplane

section with 2A1 singularities, at the singular points of S.

Proof. Suppose (S,D) is a pair, where S is a complete intersection defined by polynomials

f and g, and D = S ∩ H is defined by a polynomial H , which belongs to a closed strictly

t-semistable orbit. By Theorem 3.19, they are generated by monomials in N0
t (λ, x

J1 , xi) for

some (λ, xJ1 , xi) such that N0
t (λ, x

J1 , xi) is maximal with respect to the containment of order

of sets. As detailed in Chapter 3, these can be generated algorithmically [Pap22c], and the

above families represent the only maximal N0
t (λ, x

J1 , xi) for t = 6
11

.

The fact that Families 1 and 3 are t-polystable follows from Theorem 7.25. For Family 2,

we can make a change of variables such that

f(x0, x1, x2, x3, x4) =x2x3 + x0x4

g(x0, x1, x2, x3, x4) =x2x0 + x21 + cx0x3

H(x0, x1, x2, x3, x4) =x4

where c ̸= 0, as otherwise S would not be normal, which is impossible from Lemma 7.23.

Since (S,D) is strictly t-semistable the stabiliser subgroup of (S,D), namely G(S,D) ⊂ SL(5) is

infinite (see, [Dol03, Remark 8.1(5)]). In particular, there is a Gm-action on (S,D); since all the

possible pairs with Gm-action have been classified in Lemma 7.20, the proof is finished.
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7.4.9 Chamber t = 355
534

For chamber t = 355
534
∈ ( 6

11
, 2
3
) we have the following.

Lemma 7.37. 1. The pair (S,H) is non-t-stable if and only if the pair (S,H) is generated by the

families of wall 6
11

(minus family 3 from wall t = 1
6
) in addition to the following family, or their

degenerations:

Family 1:

f(x0, x1, x2, x3, x4) =q1(x2, x3, x4) + x1l1(x3, x4) + x0x4

g(x0, x1, x2, x3, x4) =q2(x3, x4) + x4l1(x1, x2)

H(x0, x1, x2, x3, x4) =l(x0, x1, x2, x3, x4)

A singular complete intersection S with D5 singularities, with D = S∩H a general hyperplane

section,

or a degeneration of the above families. Here, the li are linear forms in P4 and the qi are quadratic

forms. In particular, the pencil is strictly t-semistable if it is generated by family 4 from chamber

t = 37
228

;

2. for wall t = 355
534
∈ ( 6

11
, 2
3
), the only t-stable pairs (S,D = S ∩H) occur when S is smooth, in

which case D is a hyperplane section with at worst A1 singularities, or S has at worse finitely

many singularities of type A3, with D general.

Proof. Part 1 follows from the computational program [Pap22c] we detailed in Chapter 3 and

the centroid criterion (Theorem 3.10), where the above families are maximal destabilising

families as in the sense of Definition 3.15, i.e. each family equals N−(λ, xJ , xp) for some

λ ∈ P3,2,2 and xJ , xp support monomials. The description of the above families with respect

to singularities follows from Sections 7.1 and 7.3. In particular, families with non-isolated

singularities are non-normal from Serre’s criterion.

For part 2, let S be t-stable. From Theorem 7.37 and the classifying Lemmas, we see that S

cannot have worse than A4 singularities. From the above family, we see that the pair

f(x0, x1, x2, x3, x4) =q1(x2, x3, x4) + x1l1(x2, x3, x4) + x0x4

g(x0, x1, x2, x3, x4) =q2(x3, x4) + x4l1(x1, x2)

H(x0, x1, x2, x3, x4) =l(x0, x1, x2, x3, x4)

is stable, with S having A3 singularities and D being general.
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The only polystable pairs correspond to pairs (S̃, D̃) and (S ′, D′), as in Theorem 7.25.

7.4.10 Wall t = 2
3

For wall t = 2
3

we have the following.

Lemma 7.38. 1. The pair (S,H) is non-t-stable if and only if the pair (S,H) is generated by the

families of chamber 355
534

(minus the family of chamber t = 1039
1914

and 5 from chamber t = 37
228

) in

addition to the following family, or their degenerations:

Family 1:

f(x0, x1, x2, x3, x4) =q1(x1, x2, x3, x4) + x0l1(x3, x4)

g(x0, x1, x2, x3, x4) =q2(x2, x3, x4) + x1l2(x3, x4) + x0x4

H(x0, x1, x2, x3, x4) =x4

A smooth complete intersection S, with D = S ∩ H a singular hyperplane section with A1

singularities, or a degeneration of the above families. Here, the li are linear forms in P4 and the

qi are quadratic forms. In particular, the pencil is strictly t-semistable if it is generated by family

4 from chamber t = 37
228

;

2. for wall = 2
3
, the only t-stable pairs (S,D = S ∩H) occur when S is smooth, in which case D

is a hyperplane section which is smooth, or S has at worse one singularity of type A3, with D

general.

Proof. From Table 7.2 and the Lemmas of Section 7.3, we see that S cannot have worse than

A4 singularities. From the above family, we see that S is smooth by our classification, and D

has an A1 singularity, hence if S is smooth D also has to be smooth in order to be stable.

Lemma 7.39. For t = 6
11

the pair (S,H) is strictly t-polystable if and only if it is generated by the

following families:

Family 1:

f(x0, x1, x2, x3, x4) =x
2
2 + x4l1(x0, x1) + x3l2(x0, x1)

g(x0, x1, x2, x3, x4) =x
2
2 + x4l3(x0, x1) + x3l4(x0, x1)

H(x0, x1, x2, x3, x4) =x2

with S a singular complete intersection with four A1 singularities, and D = S ∩ H a singular

hyperplane section with 4A1 singularities.
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Family 2:

f(x0, x1, x2, x3, x4) =x
2
2 + ax1x3 + bx0x4

g(x0, x1, x2, x3, x4) =x
2
3 + cx1x4

H(x0, x1, x2, x3, x4) =x0

with S a singular complete intersection with Segre symbol [(4, 1)] with a Dt singularity (at point R),

with D = S ∩H a singular hyperplane section with Segre symbol [3, 1], which is a cuspidal curve

with an A2 singularity (away from R);

Family 3:

f(x0, x1, x2, x3, x4) = x4l1(x0, x1) + x3l2(x0, x1) + x22

g(x0, x1, x2, x3, x4) = x4l3(x0, x1) + x3l4(x0, x1) + x22

H(x0, x1, x2, x3, x4) = l(x1, x2, x3)

with S a singular complete intersection with 2A1 singularities, withD = S∩H a singular hyperplane

section with 2A1 singularities, at the singular points of S.

Proof. Suppose (S,D) is a pair, where S is a complete intersection defined by polynomials

f and g, and D = S ∩ H is defined by a polynomial H , which belongs to a closed strictly

t-semistable orbit. By Theorem 3.19, they are generated by monomials in N0
t (λ, x

J1 , xi) for

some (λ, xJ1 , xi) such that N0
t (λ, x

J1 , xi) is maximal with respect to the containment of order

of sets. As detailed in Chapter 3, these can be generated algorithmically [Pap22c], and the

above families represent the only maximal N0
t (λ, x

J1 , xi) for t = 2
3
.

The fact that Families 1 and 3 are t-polystable follows from Theorem 7.25. Since (S,D) is

strictly t-semistable the stabiliser subgroup of (S,D), namely G(S,D) ⊂ SL(5) is infinite (see,

[Dol03, Remark 8.1(5)]). In particular, there is a Gm-action on (S,D); since all the possible

pairs with Gm-action have been classified in Lemma 7.20, the proof is finished.

7.4.11 Chamber t = 37
38

For chamber t = 37
38
∈ (2

3
, 1) we have the following:

Lemma 7.40. 1. The pair (S,H) is non-t-stable if and only if the pair (S,H) is generated by the

families of wall t = 2
3

(minus the family of chamber t = 355
534

) or their degenerations. In particular,

the pencil is strictly t-semistable if it is generated by family 4 from chamber t = 37
228

;
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2. for chamber t = 37
38
∈ (2

3
, 1), the only t-stable pairs (S,D = S ∩H) occur when S is smooth, in

which case D is a smooth hyperplane section, or S has at worse finitely many singularities of

type D5, with D general.

Proof. The pair (S,H)

f(x0, x1, x2, x3, x4) =q1(x2, x3, x4) + x1l1(x3, x4) + x0x4

g(x0, x1, x2, x3, x4) =q2(x3, x4) + x4l1(x1, x2)

H(x0, x1, x2, x3, x4) =l(x0, x1, x2, x3, x4)

is stable, where by Table 7.2 S has an D5 singularity and by Lemma 7.19, D is smooth.

The only polystable pairs correspond to pairs (S̃, D̃) and (S ′, D′), as in Theorem 7.25.

From Section 7.4.1 to 7.4.11 we obtain the following proofs:

Proof of Theorem 7.21. The classification of stable orbits for each wall/chamber follows from

Lemmas 7.24, 7.26, 7.28, 7.29, 7.31, 7.32, 7.34, 7.35 7.37, 7.38 and 7.40.

Proof of Theorem 7.22. The classification of closed orbits follows from Lemmas 7.25, 7.27, 7.30,

7.33, 7.36, Lemma 7.20 and Remark 7.25.1.
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CM Line Bundle for Complete Intersections and

Hyperplane Section

Following the discussion in Section 3 we aim to calculate the log CM line bundle for complete

intersections with a hyperplane section, introduced in Section 2. Let S = {f1 = · · · = fk = 0}

be the complete intersection of k hypersurfaces of degree d, with fi =
∑
fIi,jx

Ii,j , and H a

hyperplane in Pn. We define the sets

M1 =
{
(
∧

fIi,jx
Ii,j , l) ∈ R|S = {f1 = · · · = fk}, H = {l = 0}, Supp(H) ⊆ Supp(fi) for some i

}
M2 =

{
(
∧

fIi,jx
Ii,j , l) ∈ R|S = {f1 = · · · = fk}, H = {l = 0},∃H ′ ̸= H,S ∩H ′ = S ∩H

}
.

(8.1)

Notice that by Theorem 3.14 the set M1 contains only t−unstable elements for all 0 ≤ t ≤ tn,d,k

for kd ≤ n.

Lemma 8.1. The elements of M2 are t−unstable for all 0 ≤ t ≤ tn,d,k, for kd ≤ n.

Proof. Let (S,H) be a pair parametrised by (
∧
fi, l) ∈ M2, such that S ∩H = S ∩H ′ where

without loss of generality, we may assume that H = {xn = 0}, H ′ = {xn−1 = 0}. Without loss

of generality, we can choose a coordinate system such that S = {f1 = · · · = fk} is given by

fi = xdn + xdn−1 + xnxn−1f
i
d−2(x0, . . . , xn), H = {l(xn, xn−1). Then for one-parameter subgroup
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λ = Diag(s2, . . . , s2, 0, s−n, s−n), and for 0 ≤ t ≤ tn,d,k we have:

µ(S,H, λ) <k[(d− 2)2− n]− tn

≤2kd− 4k − kn− kd

<0

so the pair is t-unstable for all 0 ≤ t ≤ tn,d,k.

Let T := R \ (M1 ∪M2), with natural embedding j : T → R. The above discussion shows:

Lemma 8.2. Let kd ≤ n, 0 ≤ t ≤ tn,d,k. Then (T)sst := (R \ (M1 ∪M1))
ss
t = (R)sst .

Thus T parametrises pairs (
∧
aIi,j , l) which correspond to complete intersections of k

homogeneous polynomials of degree d and polynomials of degree 1 respectively.

Lemma 8.3. For kd ≤ n, d ≥ 2 we have:

1. codim(M1) =
(
n+d−1

d

)
− (k − 1)2 ≥ 2;

2. codim(M2) = k
((

n+d
d

)
−
(
n+d−2
d−2

))
− k2 + n ≥ 2.

Proof. 1. Since Supp(H) ⊆ Supp(fi) for some i, without loss of generality we may assume

i = 1, and assuming H = {l(x0, . . . , xn) = 0} we can write f1 = l(x0, . . . , xn)f
i
d−1(x0, . . . , xn)

fi = f id(x0, . . . , xn). We first find the dimension of M1: there are n + 1 coefficients in the

equation of l and
(
n+d−1
d−1

)
coefficients in f 1

d−1. Similarly, each fi has
(
n+d
d

)
coefficients. Hence

dim(M1) = (k − 1)
(
n+d
d

)
+
(
n+d−1
d−1

)
+ n+ 1− 2k, where we subtract 2 degrees of freedom for

each fi. Then:

codim(M1) =dim(R)− dim(M1)

=k
((n+ d

d

)
− k
)
+ n− (k − 1)

(
n+ d

d

)
−
(
n+ d− 1

d− 1

)
− n− 1 + 2k

=

(
n+ d− 1

d

)
− (k − 1)2

≥
(n+ d− 1

d

)d
−
(n
d
− 1
)
(k − 1)

Now, since
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2 +
n

d
(k − 1) ≤2 +

(n
d
− 1
)2

=
3d2 + n2 − 2nd

d2

≤(n+ d− 1)2

d2

≤(n+ d− 1)d

dd

we get codim(M1) ≥ 2

2. Let (
∧
aIi,j , l) ∈ H1, S = {f1 = · · · = fk = 0}, H = {l = 0} and H ′ ̸= H such that

S ∩H = S ∩H ′. Without loss of generality, we assume that H = {xn = 0}, H ′ = {xn−1 = 0}.

Since the Cartier divisor S∩H = S∩H ′ is supported on L = {xn = xn−1 = 0} ≃ Pn−2 and is a

complete intersection of k hypersurfaces of degree d in {xn = 0} ≃ Pn−1, we have that S ∩H

is kdL, hence we can write fi = aix
d
n−1 + xnf

i
d−1(x0, . . . , xn), and similarly for H ′, fi = bix

d
n +

xn−1(f
i)′d−1(x0, . . . , xn), which implies that we can write each fi = aix

d
n + bix

d
n−1 + xnxn−1f

i
d−2,

and l as l(xn, xn−1). Similar to the proof of 1, there are
(
n+d−2
d−2

)
coefficients in each f id−2, and 2

coefficients in l. Hence, dim(M2) = k
((

n+d−2
d−2

)
+ 2
)
− 2k. Thus:

codim(M2) =dim(R)− dim(M2)

=k
((n+ d

d

)
− k
)
+ n− k

((n+ d− 2

d− 2

))
=k
((n+ d

d

)
−
(
n+ d− 2

d− 2

))
− k2 + n

≥k
((n+ d

d

)
−
(
n+ d− 1

d− 1

))
− k2 + n

=k

(
n+ d− 1

d

)
− k2 + n

≥k
(
n+ d− 1

d

)
− k2 + kd

≥k
(
n+ d− 1

d

)
− k2 + 2k − 1

≥
(
n+ d− 1

d

)
− k2 + 2k − 1

= codim(M1)

≥2.

A direct consequence of the above lemma, is the result below, via [Har77, Prop. II.6.5.b].
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Lemma 8.4.

Pic(T) ≃ Pic(R) ≃ Z2,

and for L ∈ Pic(U),

L ≃ OU(a, b) := j∗(ORn,d,k
(a)⊠ ORn,1(b))

We consider now the universal family of the complete intersection of k hypersurfaces of

degree d:

πn,d,k : Xn,d,k → Rn,d,k

where:

Xn,d,k =

{
(x0, . . . , xn)×

∧
aIi,j ∈ Pn × Rn,d,k|

∑
aI1,jx

I1,j = · · · =
∑

aIk,jx
Ik,j = 0

}
.

(Here, by abuse of notation, we denote the class [
∧
aIi,j ] by

∧
aIi,j ). We then have a

commutative diagram

X Xn,d,k × Rn,1 Xn,d,k

T R Rn,d,k

Rn,1

π πn,d,k×IdRn,1
πn,d,k

j p1

p2

with

X =

{
(x0, . . . , xn)×

∧
aIi × (b0, . . . , bn) ∈ Pn × U|

∑
aI1,jx

I1,j = · · · =
∑

aIk,jx
Ik,j = 0

}
the fiber product in the first diagram. Here, j is the natural embedding and pi the projec-

tions. Since πn,d,k : Xn,d,k → Rn,d,k is a universal family, it is flat and proper, and thus, by

commutativity, π is also flat and proper.

Defining

D :=

{
(x0, . . . , xn)×

∧
aIi × (b0, . . . , bn) ∈ X|

∑
bixi = 0

}
D is a Cartier divisor of X, and the restriction πD : D→ T is also flat and proper. This implies

that π : (X,D)→ T is a Q-Gorenstein flat family.
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Notice, that in the Fano case, i.e. kd ≤ n, −KX/T is relatively ample and by Theorem 3.14

and Lemma 8.4 ΛCM,β(−KX/T) ≃ O(a, b). Hence, we can extend the CM-line bundle to R: for

β ∈ (0, 1) ∩Q

ΛCM,β := ΛCM,β(−KX/T) := ΛCM,β(X,D,−KX/T).

Lemma 8.5. Let kd ≤ n, β ∈ (0, 1] ∩Q. Then ΛCM,β ≃ O(a(β), b(β))

where:

a(β) =
(
n+ 1− kd

)n−k−1
dk−1 ·

(
(n− k + 1)(1− β)

(
(1− d)n+ 1

)
+
(
1 + (n− k)(1− β)

)(
n+ 1− kd

)
(d− 1)(n+ 1)

)
> 0

b(β) =(n+ 1− kd)n−kdk(n− k + 1)(1− β) > 0,

i.e. ΛCM,β is ample. In particular, if kd = n,

a(β) =dk−1
(
d(n− k + 1)− β

)
b(β) =dk(n− k + 1)(1− β) > 0

t(β) =
d(n− k + 1)(1− β)
d(n− k + 1)− β

Proof. For a: Consider k + 1 hypersurfaces of degree d f1, . . . , fk+1. Then blowing up Pn

along C = f1 ∩ f2 we obtain a map BlC Pn → P1. Then we have a pencil of hypersurfaces

of degree d {a1f1 + a2f2|(a1, a2) ∈ P1} and we define f1:2 := {a1f1 + a2f2 = 0}. Notice that

the proper transform of f1:2 is isomorphic to f1:2. Intersecting f̃3, . . . , f̃k+1 with f̃1:k gives a

well-defined family for complete intersections of k hypersurfaces of degree d over P1. Letting

S = f̃3 ∩ · · · ∩ f̃k+1 ∩ f̃1:2 we have a commutative diagram

S X Xn,d,k × Rn,1 Xn,d,k

P1 T R Rn,d,k

Rn,1

i

π π πn,d,k×IdRn,1
πn,d,k

i j p1

p2

For a general hyperplane H , let pH ∈ Rn,1 be the point that parametrises H . Then, we have

S× pH ⊂ P1 × Pn ×Rn,1. Notice that S is the one dimensional family of complete intersection

of a hypersurface of bidegrees (1, d) and k − 1 hypersurfaces of bidegrees (0, d) in P1 × Pn.
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Then, for a hyperplane H parametrised by PH ∈ Rn,1 we have that

D = {p ∈ P1 × Pn|p ∈ S, p|Pn ∈ H}

is a divisor obtained as the complete intersection of a hypersurface of bidegree (1, d), and

k − 1 hypersurfaces of bidegrees (0, d) and a hypersurface of bidegree (0, 1) in P1 × Pn. For

the corresponding projections pPn , p′P1 let HPn = p∗Pn(OPn(1)), HP1 = (p′)∗P1(OP1(1)). Then we

have by adjunction:

KS =(KP1×Pn) + S)|S

=(−2HP1 − (n+ 1− d)HPn +HP1 + (k − 1)dHPn)|S

=
(
−HP1 + (kd− n− 1)HPn

)
|S

Hence

KS/P1 =KS − π∗KP1

=
(
−HP1 + (kd− n− 1)HPn

)
|S + (2HPk−1)|S

=(HP1 + (kd− n− 1)HPn)|S

−KS/P1 =(n+ 1− kd)HPn|S −HP1 |S

Therefore,

(−KS/P1)n−k = (n+ 1− kd)n−kHn−k
Pn |S − (n− k)(n+ 1− kd)n−k−1Hn−k−1

Pn |S ·HP1 |S

(−KS/P1)n−k+1 = (n+ 1− kd)n−k+1Hn−k+1
Pn |S − (n− k + 1)(n+ 1− kd)n−kHn−k

Pn |S ·HP1 |S

and since S = (HP1 + dHPn) · (dHPn)k−1, D|S = HPn we obtain

c1(−KS/P1)n−k+1 =
(
(n+ 1− kd)n−k+1Hn−k+1

Pn − (n− k + 1)(n+ 1− kd)n−kHn−k
Pn ·HP1

)
·
(
HP1 + dHPn

)
· dk−1Hk−1

Pn

=− dk(n− k + 1)(n+ 1− kd)n−kHn
Pn ·HP1

+ dk−1(n+ 1− kd)n−k+1Hn
Pn ·HP1

c1(−KS/P1)n−k ·D =− dk(n− k)(n+ 1− kd)n−k−1Hn
Pn ·HP1

+ dk−1(n+ 1− kd)n−kHn
Pn ·HP1

Using [GMS21, Theorem 2.7], since L = −KS/P1 and D|Si ∈ | −KSi|, we have

deg((j ◦ i)∗(ΛCM,β)) = −
(
1 + (n− k)(1− β)

)
π∗

(
c1(−KS/P1)n−k+1

)
+ (1− β)(n− k + 1)π∗

(
c1(−KS/P1)n−k ·D

)
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and since deg((j ◦ i)∗(ΛCM,β)) = deg((j ◦ i)∗ ◦ p∗1ORn,d,k
(a) = a the result follows.

For b: Consider a hypersurface S which is the complete intersection of k hypersurfaces of

degree d, S = {f1, . . . , fk}, represented by pS ∈ Rn,d,k, and pencil of hyperplanes H(t), t ∈ P1.

Then:

D|pS×P1 = {f1 = · · · = fk = fH(t)} ⊂ pS × Pn × P1.

This implies that D|pS×P1 is the complete intersection of k hypersurfaces of bidegree (d, 0) and

one of bidegree (1, 1). Notice that S × P1/P1 is a trivial fibration, so c1(−KS×P1/P1)n−k+1 = 0.

We have:

K(S×P1)/P1 = KS×P1 − π∗KP1 = KS ⊗ OP1 = (kd− n− 1)HPn|S ⊗ OP1 ,

where HPn = π∗
Pn(OPn(1)). Hence, from [GMS21, Theorem 2.7]:

deg(ΛCM,β) =(1− β)(n− k + 1)c1(−K(S×P1)/P1)n−k ·D

=(1− β)(n− k + 1)(n+ 1− kd)n−kHn−k
Pn · dkHk

Pn · (HPn +HP1)

=(1− β)(n− k + 1)(n+ 1− kd)n−kdkHn
Pn ·HP1

i.e. b = (n+ 1− dk)n−kdk(n− k + 1)(1− β) > 0.

Corollary 8.5.1. If n = 4, d = k = 2, β ∈ (0, 1] ∩Q then ΛCM,β ≃ O(a(β), b(β))

where:

a(β) =2(6− β) > 0

b(β) =12(1− β) > 0,

and ΛCM,β is ample. In particular

t(β) =
b(β)

a(β)
=

6(1− β)
6− β

.

Remark 8.5.1. A similar theorem is shown in [GMS21, Theorem 3.8] for the case k = 1.

Theorem 8.6. Let (S,D) be a log Fano pair, where S is a complete intersection of two quadrics in P4

and D an anticanonical section. Let π : X→ T the family introduced before, with ample log CM line

bundle ΛCM,β ≃ O(a(β), b(β)). Suppose (S, (1− β)D) is log K- (semi/poly)stable. Then, (S,D) is

GITt(β)-(semi/poly)stable, with slope t(β) = b(β)
a(β)

= 6(1−β)
6−β .
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Proof. We only need to verify that the conditions for [ADL19, Theorem 2.22] are satisfied. The-

orem 8.5 shows that ΛCM,β ≃ O(a(β), b(β)) and hence the log CM line bundle is ample, hence,

condition 3 is satisfied. For the second condition, note that for S, S ′ complete intersections

of two quadrics in P4, notice that OS(1) ≃ K−1
S , OS′(1) ≃ K−1

S′ are anticanonical, and hence

invariant under automorphisms. Thus, every isomorphism S ∼= S ′ of two such complete

intersections lifts to an automorphism of P4, i.e. to an action of PGL(5), so condition 2 is

satisfied. Similarly, since automorphisms of S are induced by actions of PGL(5), and Aut(S)

is finite, so is the stabiliser GS , hence condition 1 follows.

In fact there is an alternative method to prove this Theorem:

Alternative proof of Theorem 8.6. The proof follows the idea of proof in [OSS16, Theorem 3.4]

and [GMS21, Theorem 3.10]. Consider a one-parameter subgroup λ acting on p ∈ T,

representing a log pair (S,H) with H ̸⊂ S, D = S ∩ H . We have a natural projection

π : Y := λ · p ⊂ T × P1 → P1. By abuse of notation, we extend π to π : Y \ {π−1(∞)} → C,

with q := π−1(0) ∈ T the central fiber of π. Here q is a pair (S,H), where S is a complete

intersection of two quadrics in P4, H ̸⊂ S a hyperplane and D = S∩H ∈ |−KS| a hyperplane

section. Since λ induces a test configuration, we know from [GMS21, Theorem 2.6] that

w(ΛCM,β(X,D,L
r)) = (n+ 1)!DFβ(X,D,L)

hence if (S, (1− β)D) is K-semistable then, since the one-parameter subgroup is arbitrary we

obtain the result from Corollary 8.5.1, since

w(ΛCM,β(X,D,L
r)) = µΛCM,β(S,H, λ) = µt(β)(S,H, λ).

Suppose now that (S, (1 − β)D) is K-polystable. Then in particular it is K-semistable,

and the point p ∈ T is GITt(β) semistable from the above discussion. Suppose that p which

parametrises (S,H) is not GITt(β) polystable. Then, there exists a one-parameter subgroup

λ such that p = limt→0 λ(t) · p is GITt(β) polystable but not GITt(β) stable. λ induces a test

configuration (X,D,L) with DFβ(X,D,L) = 0 by [GMS21, Theorem 2.6]. Since (S, (1− β)D)

is K-polystable, we know that (Xp,Dp) ≃ (S × C, D × C). But then for the central fiber (S,D)

of the test configuration corresponding to p, we have (S,D) = (S,D), i.e. p = p, and hence p

is GITt(β) polystable.
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9
Proof of Main Theorem and First Wall Crossing

Consider now a log Fano pair (S, (1− β)D) where S is a complete intersection of 2 quadrics

(degree 2 hypersurfaces) in P4, D is a hyperplane section and β ∈ (0, 1) ∩ Q. We will

consider Q-Gorenstein smoothable K-semistable log Fano pairs (S∞, (1− β)D∞) such that

their smoothing is a log Fano pair (S, (1−β)D) as above. We can think of these as K-polystable

limits of a degeneration family X of smooth K-polystable log Fano pairs, that have to be

"added" to the boundary in order to compactify the K-moduli spaces.

Lemma 9.1. Let (S∞, (1− β)D∞) be a Q-Gorenstein smoothable K-semistable log Fano pair such

that its smoothing is a log Fano pair (Si, (1− β)Di), where Si is a del Pezzo surface of degree 4 (i.e. a

smooth intersection of two quadrics in P4) and Di a smooth hyperplane section. For any β > 3
4
, S∞ is

also an intersection of two quadrics in P4 whose singular locus consists of A1 or A2 singularities, and

D∞ is also a hyperplane section.

Proof. Since each Di is a hyperplane section, Di ∼ −KSi
and hence, by continuity of volumes,

the degree of the limit pair is

(−KS∞ − (1− β)D∞)2 = (−KSi
− (1− β)Di)

2 = (βKSi
)2 = 4β2.

By [Liu18, Theorem 3], since S∞ is at worse klt, it must have only isolated quotient singu-

larities isomorphic to C2/G, where G is a finite subgroup of U(2) acting freely on S3. This is

implied by the fact that klt surface singularities are precisely quotient singularities [CKM88,

Proposition 6.11], and that normal surfaces have only isolated singularities.
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Moreover, the normal localised volume for quotient singularities is given by v̂olC2/G,0 =
4
|G| .

Then, by Theorem 2.98, and by [GMS21, Theorem 4.1]

v̂ol(X,(1−β)D),p ≤ v̂olX,p,

and hence, we have:

4β2 = (−KS∞ − (1− β)D∞)2 ≤
(
1 +

1

2

)2
v̂olS∞,(1−β)D∞,p

≤9

4
v̂olC2/G,0

=
9

|G|

i.e. |G| ≤ 9
4β2 .

By the classification of Q-Gorenstein smoothable surface singularities [KS88, Proposition

3.10], G must be a cyclic group acting in SU(2). Hence, the singularities of S∞ are canonical

and, by the classification of del Pezzo surfaces with canonical singularities, S∞ is a complete

intersection of two quadrics in P4 with at worse A1 or A2 singularities. In particular, D∞ is a

hyperplane section, as D∞ ∼ −KS∞ ∼ OS∞(1) by the adjunction formula.

The above Lemma allows us to prove the following:

Theorem 9.2. Let β > 3
4
. Then there exists an isomorphism of moduli stacks between the K-moduli

stack MK
4,2,2(β) of K-semistable families of Q-Gorenstein smoothable log Fano pairs (S, (1 − β)D),

where S is a complete intersection of two quadrics in P4 and D is an anticanonical section, and the

GITt-moduli stack MGIT
4,2,2(t(β)). In particular, for β > 3

4
we also have an isomorphism M4,2,2(β) ∼=

MGIT
4,2,2(t(β)) on the restriction to moduli spaces.

Proof. Let X = (X,X) be the Hilbert polynomials of (S,D), with S a smooth complete

intersection of two quadrics in P4, and D an anticanonical divisor, pluri-anticanonically

embedded by −mKX in PN , and let HX;N := HX;N ×HX;N := HilbX(PN)× HilbX(PN).

Given a closed subscheme X ⊂ PN with Hilbert polynomial X(X,OPN (k)|X) = X(k), let

Hilb(X) ∈ HX;N denote its Hilbert point. Let, as in [ADL19],

Ẑm :=


Hilb(X,D) ∈ HX;N

∣∣∣∣∣∣∣∣∣∣∣∣∣

X is a Fano manifold which is the complete intersection of

two quadrics in P4, D ∼Q −KX a smooth divisor,

OPN (1)|XOX(−mKX),

and H0(PN ,OPN (1)
∼=−→ H0(X,OX(−mKX).
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which is a locally closed subscheme of HX;N . Let Zm be its Zariski closure in HX;N and Zm be

the subset of Ẑm consisting of K-semistable varieties.

By Theorem 8.6 we know that if a pair (S, (1 − β)D) is K-(poly/semi)stable then (S,D)

is GITt(β) (poly/semi)stable, where t(β) = 6(1−β)
6−β . By [Oda15], the smooth K-stable loci is a

Zariski open set of MK
4,2,2(β), in the definition of moduli stack of MK

4,2,2(β) = [Zm/PGL(Nm +

1)] for appropriate m > 0 and in fact MGIT
4,2,2(t(β))

∼= [Zm/PGL(Nm + 1)]. Hence, by Theorems

7.21, 7.22, Corollary 8.5.1, Lemma 9.1, for β > 3
4

we have an open immersion of representable

morphism of stacks:

MK
4,2,2(β) MGIT

4,2,2(t(β))

[(S, (1− β)D)] [(S,D)]

ϕ

ϕ

with an injective decent ϕ on the moduli spaces such that we have a commutative diagram

MK
4,2,2(β) MGIT

4,2,2(t(β))

MK
4,2,2 MGIT

4,2,2(t(β)).

ϕ

ϕ

Note that representability follows once we prove that the base-change of a scheme map-

ping to the K-moduli stack is itself a scheme. Such a scheme mapping to the K-moduli

stack is the same as a PGL-torsor over Zm, which produces a PGL-torsor over Zm after a

PGL-equivariant base change. This PGL-torsor over Zm shows the desired pullback is a

scheme. By [The22, Lemma 06MY], since ϕ is an open immersion of stacks, ϕ is separated

and, since it is injective, it is also quasi-finite.

We now need to check that ϕ is an isomorphism that descends (as isomorphism of schemes)

to the moduli spaces. Now, by [Alp13, Prop 6.4], since ϕ is representable, quasi-finite and

separated, ϕ is finite and ϕ maps closed points to closed points, we obtain that ϕ is finite.

Thus, by Zariski’s Main Theorem, as ϕ is a birational morphism with finite fibers to a normal

variety, ϕ is an isomorphism to an open subset, but it is also an open immersion, thus it is an

isomorphism.

Corollary 9.2.1 (First Wall Crossing). The first wall crossing occurs at t(β) = 1
6
, β = 6

7
. In particu-

lar there exists an isomorphism of moduli stacks between the K-moduli stack MK
4,2,2(

6
7
) parametrising
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K-semistable families of Q-Gorenstein smoothable log Fano pairs (S, 1
7
D), where S is a complete

intersection of two quadrics in P4 and D is an anticanonical section, and the GITt-moduli stack

MGIT
4,2,2(

1
6
). In particular, a log Fano pair (S, 1

7
D) is log K-polystable if S is a complete intersection of

two quadrics with at 1A2 and 2 or 1A1 singularities, and D a singular hyperplane section which is a

double line and two lines meeting at two points, or S is a complete intersection of two quadrics with 2

or 4 1A1 singularities, and D a singular hyperplane section with 2 or 4 1A1 singularities.

Proof. The proof follows directly from Theorems 7.21, 7.22 and 9.2.

Remark 9.2.1. In particular, there exists such an isomorphism up to the second chamber.

After the second chamber, one needs to consider different methods, as potential toric GH

compactifications with non-quotient singularities can occur.
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