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Abstract

Autonomous navigation has become a widely researched area of expertise over the
past few years, gaining a massive following due to its necessity in creating a fully
autonomous robotic system. Autonomous navigation is an exceedingly difficult task
to accomplish in and of itself. Successful navigation relies heavily on the ability to
self-localise oneself within a given environment. Without this awareness of one’s
own location, it is impossible to successfully navigate in an autonomous manner.
Since its inception Simultaneous Localization and Mapping (SLAM) has become one
of the most widely researched areas of autonomous navigation. SLAM focuses on
self-localization within a mapped or un-mapped environment, and constructing or
updating the map of one’s surroundings. Visual Place Recognition (VPR) is an essen-
tial part of any SLAM system. VPR relies on visual cues to determine one’s location
within a mapped environment.

This thesis presents two main topics within the field of VPR. First, this the-
sis presents a benchmark analysis of several popular embedded platforms when
performing VPR. The presented benchmark analyses six different VPR techniques
across three different datasets, and investigates accuracy, CPU usage, memory us-
age, processing time and power consumption. The benchmark demonstrated a clear
relationship between platform architecture and the metrics measured, with plat-
forms of the same architecture achieving comparable accuracy and algorithm effi-
ciency. Additionally, the Raspberry Pi platform was noted as a standout in terms of
algorithm efficiency and power consumption.

Secondly, this thesis proposes an evaluation framework intended to provide in-
formation about a VPR technique’s useability within a real-time application. The ap-
proach makes use of the incoming frame rate of an image stream and the VPR frame
rate, the rate at which the technique can perform VPR, to determine how efficient
VPR techniques would be in a real-time environment. This evaluation framework
determined that CoHOG would be the most effective algorithm to be deployed in a
real-time environment as it had the best ratio between computation time and accu-
racy.





v

Acknowledgements
With great appreciation and gratitude to Dr Shoaib Ehsan for giving me the oppor-
tunity to perform my Masters studies at the Embedded Intelligent Systems (EIS) Lab
at the University of Essex, and for his supervision and guidance over the course of
this project.

I would like to thank Dr Klaus McDonald-Maier and Dr Michael Milford, who
have provided me with guidance and feedback over the course of my research, ac-
cumulating into this thesis.

Additionally, I would like to thank Mubariz Zaffra and Bruno Ferrarini for their
continuing support and assistance in my work over the course of the time I have
been with the EIS lab.





vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Visual Place Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problems facing VPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 VPR for UAVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Research Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.2 Research Motivations . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.3 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.4 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Literature Review 9
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 VPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 VPR Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Feature Based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 CNN Based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 VPR Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Platform Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 VPR Hardware Benchmark 17
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Evaluation Datasets . . . . . . . . . . . . . . . . . . . . . . . . . 17
Garden Point Walking [103] . . . . . . . . . . . . . . . . . . . . . 18
Campus Loop [99] . . . . . . . . . . . . . . . . . . . . . . . . . . 18
ESSSEX3IN1 [102] . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.2 VPR Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
HOG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
CoHOG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
AMOSNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
HybridNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
RegionVLAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
CALC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.3 Computational Platforms . . . . . . . . . . . . . . . . . . . . . . 21
UP-CHT01-A20-0464-A11 [111] . . . . . . . . . . . . . . . . . . . 21
Raspberry Pi 3 Model B [112] . . . . . . . . . . . . . . . . . . . . 24



viii

ODROID XU4 [113] . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Laptop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Desktop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Matching Performance . . . . . . . . . . . . . . . . . . . . . . . . 25
Algorithm Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 25
Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . 26
Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Algorithm Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 29

CPU Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Memory Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Processing Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.3 Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.4 Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Real-Time Matched Frames 35
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1 Evaluation Datasets . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.2 VPR Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Matching Performance . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4.1 Real-Time Matched Frames (RMF) . . . . . . . . . . . . . . . . . 38
Campus Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
ESSEX3IN1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
GardensPointWalking . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.2 Performance Benefit Curve . . . . . . . . . . . . . . . . . . . . . 39
ESSEX3IN1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Campus Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
GardensPointWalking . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Conclusion and Future Work 43
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



ix

List of Figures

1.1 An example of a query image, as well as a correctly and incorrectly
matched reference image from ESSEX3IN1 dataset, representing the
difficulties faced by VPR techniques. . . . . . . . . . . . . . . . . . . . . 2

1.2 Examples of query and corresponding reference images from the Cam-
pus Loop, ESSEX3IN1 and GardensPointWalking datasets, represent-
ing the four different types of variation present in most VPR datasets.
These variation types are illumination, season and viewpoint varia-
tion, as well as dynamic objects. . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Examples of query and corresponding reference images from the Cam-
pus Loop dataset, which is used for benchmarking throughout the
experiments detailed in this report. . . . . . . . . . . . . . . . . . . . . . 4

1.4 Examples of query and corresponding reference images from the ES-
SEX3IN1 dataset, which is used for benchmarking throughout the ex-
periments detailed in this report. . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Examples of query and corresponding reference images from the Gar-
densPointWalking dataset, which is used for benchmarking through-
out the experiments detailed in this report. . . . . . . . . . . . . . . . . 6

2.1 Figure showing example query and corresponding reference images
from various datasets, as listed in table 2.1. . . . . . . . . . . . . . . . . 15

3.1 Graphs showing the accuracy for every VPR technique used in the
paper, on each board. The results show that across platform the accu-
racy remains quite consistent. Note that the ARM platforms produced
identical results to each other, as did the x86_64 platforms. . . . . . . . 19

3.2 Power measurement circuit schematic. . . . . . . . . . . . . . . . . . . . 25
3.3 Graphs showing the CPU usage, memory usage and processing time,

for every VPR technique used in the paper. The processing time was
reported as the average encoding and matching time of all query im-
ages in the Campus Loop dataset (100 images). Each VPR technique
has a unique colour and each platform is represented by a unique shape. 26

3.4 Graphs showing the CPU usage, memory usage and processing time,
for every VPR technique used in the paper. The processing time was
reported as the average encoding and matching time of all query im-
ages in the GardensPointWalking dataset (200 images). Each VPR
technique has a unique colour and each platform is represented by
a unique shape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Graphs showing the CPU usage, memory usage and processing time,
for every VPR technique used in the paper. The processing time was
reported as the average encoding and matching time of all query im-
ages in the ESSEX3IN1 dataset (210 images). Each VPR technique has
a unique colour and each platform is represented by a unique shape. . 27



x

3.6 Average power consumption of each VPR technique when implemented
on the embedded platforms. . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.7 Graphs showing the power consumption over time on each board, for
every VPR technique used in the paper. The power consumption was
measured during the encoding and matching of every query image in
the ESSEX3IN1 dataset (210 images). . . . . . . . . . . . . . . . . . . . . 30

4.1 Graphs showing the Real-Time Matched Frames (RMF) for every VPR
technique used in the paper, on each board. CALC achieved the high-
est RMF across all platforms, greatly out-performing the other tech-
niques. Of the platforms, the laptop demonstrated the highest num-
ber of successfully matched frames within the real-time constraints. . . 40

4.2 Graphs showing the precision-recall of every VPR technique and dataset
on the desktop platform. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Graphs showing the precision-recall of every VPR technique and dataset
on the laptop platform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Graphs showing the precision-recall of every VPR technique and dataset
on the Raspberry Pi platform. . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Graphs showing the precision-recall of every VPR technique and dataset
on the odroid platform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.6 Graphs showing the precision-recall of every VPR technique and dataset
on the UP platform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



xi

List of Tables

2.1 Table showing example datasets created for VPR research. The envi-
ronment, viewpoint variation type and apperance variation type for
each dataset are provided. . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Table showing the number of images in each of the datasets used in
Chapters 3 and 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 CPU usage, memory usage and processing time of RegionVLAD, across
all datasets and platforms. . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 CPU usage, memory usage and average processing time of CoHOG,
across all datasets and platforms. . . . . . . . . . . . . . . . . . . . . . . 22

3.3 CPU usage, memory usage and average processing time of CALC,
across all datasets and platforms. . . . . . . . . . . . . . . . . . . . . . . 22

3.4 CPU usage, memory usage and average processing time of Hybrid-
Net, across all datasets and platforms. . . . . . . . . . . . . . . . . . . . 23

3.5 CPU usage, memory usage and average processing time of HOG,
across all datasets and platforms. . . . . . . . . . . . . . . . . . . . . . . 23

3.6 CPU usage, memory usage and average processing time of AMOSNet,
across all datasets and platforms. . . . . . . . . . . . . . . . . . . . . . . 24

3.7 Table showing specifications for each board. . . . . . . . . . . . . . . . 31
3.8 Table showing weights for each board. . . . . . . . . . . . . . . . . . . . 32





xiii

List of Abbreviations

VPR Visual Place Recognition
SLAM Simultaneous Localization And Mapping
RMF Real-Time Matched Frames
DOF Degree Of Freedom
FPS Frames Per Second
GPS Global Positioning System
AUC Area Under the Curve
ROI Regions Of the Interest
LiDAR Light Detection And Ranging





1

Chapter 1

Introduction

1.1 Visual Place Recognition

When navigating, it is essential to be able to self-localise. It is this localization that
provides the backbone of any and all calculations or estimations. While the solution
to this for most modern technology, Global Positioning System (GPS), is appropriate
for many modern-day devices, it is unsuitable for use in robots. This is largely due
to the fact that GPS is both unreliable and, at times, inaccurate. These problems
are often the result of any number of extenuating circumstances, including but not
limited to; signal blocking or reflecting from buildings, trees and other objects, radio
interference and satellite coverage gaps. Due to the unreliable and inaccurate nature
of GPS, it would be beneficial that a different system is put in place to allow robots
to not only map but also self-localise.

An alternative method for mapping and localisation is to use Visual Place Recog-
nition (VPR). VPR is most commonly expressed as; when given an image of a loca-
tion, a human, creature or robot can identify whether it has seen the presented loca-
tion previously. VPR is generally achieved by first extracting features or landmarks
from the image, and then assigning descriptors to either features or the image as a
whole. By comparing these features, it can be determined whether the two images
are of the same location.

In order for a VPR algorithm to be successful, it must be able to do two things,
as demonstrated in figure 1.1. Firstly it must be able to match images taken in the
same location but under different visual variations. Secondly it must be able to reject
incorrect matches two aliased images of different places.

While it can be argued that VPR shows clear superiority over GPS in its results,
it has yet to be determined which method of VPR will produce not only superior
results but also the best practical implementation. Lowry et al [1] conducted a de-
tailed survey of the challenges and developments, as well as possible future direc-
tions for research on VPR. In addition, Zaffar et al. [2] have proposed an evaluation
framework for VPR, as well as a method of quantifying viewpoint and appearance
variation.

1.2 Problems facing VPR

While VPR presents the potential for a much more reliable method of self-localisation,
it is not without its own shortcomings. One of the greatest shortcomings of VPR is
due to significant appearance variations between images of the same location. These
variations are largely due to the changing conditions of the environment.

It is widely accepted that there are 4 four types of variation that images can
be subject to. These variation types are: seasonal variation, viewpoint variation,
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FIGURE 1.1: An example of a query image, as well as a correctly and
incorrectly matched reference image from ESSEX3IN1 dataset, repre-

senting the difficulties faced by VPR techniques.

dynamic objects and illumination variation, as shown in figure 1.2. Each type of
variation poses a unique problem that must be overcome to obtain an accurate and
reliable location identification from the VPR system.

Seasonal Variation: The variation that occurs between images taken in differ-
ent seasons will cause a location to appear significantly different. For example, the
height of summer, with lush outdoor greenery, will look very different to the depths
of winter, with snowy and bleak scenes [3] [4].

Viewpoint Variation: In many early VPR techniques, it was assumed that images
of the same location would be taken at the same angles. However, in reality this is
not at all practical, as when moving around, scenes will be viewed from different
angles. Viewpoint variation is the image variation when these images capture a
scene from different angles [5] [6].

Dynamic Objects: Dynamic objects are objects that move or change, causing a
scene to appear different when viewed at different times [7] [8]. Examples of this
are cars or other vehicles that, while to us as humans would not inhibit our abil-
ity to identify the scene, will cause a street to look significantly different to a VPR
algorithm.

Illumination Variation: This occurs when images are taken at different times of
the day or under changing artificial illumination conditions [9] [10]. Images taken
using a digital camera in low illumination generally experience more noise than
under a high illumination [11], unless compensated for by image exposure time. It
could be concluded that it is generally more difficult to extract features from images
taken in poorly illuminated conditions.
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FIGURE 1.2: Examples of query and corresponding reference im-
ages from the Campus Loop, ESSEX3IN1 and GardensPointWalking
datasets, representing the four different types of variation present in
most VPR datasets. These variation types are illumination, season

and viewpoint variation, as well as dynamic objects.

1.3 VPR for UAVs

One of the most exciting and rapidly expanding areas of computer science, and
robotics in particular, is the use of Unmanned Aerial Vehicles (UAVs). In order to
achieve autonomy, UAVs must, like any other robot, be able to track their own loca-
tion. One of the most promising applications of VPR is its use on UAVs. However,
the application of VPR to UAVs is less than simple, as in addition to the aforemen-
tioned problems that VPR itself faces, UAVs present their own additional problems
for VPR to tackle, that are specific to the platform. Zaffar et al. [12] made a study to
determine the effectiveness of using different VPR methods on an aerial platform.

While there is a wide range of sensors that could be carried onboard a UAV,
the limited payload of a UAV has to be taken into consideration when choosing
which sensors to mount on the UAV. Most powerful modern sensors are too heavy
to keep flight energy efficient, meaning UAVs cannot be kept in flight for very long
without seriously draining their power. The work described in this thesis focuses on
tackling VPR using visual information from a camera, as these are generally small
and lightweight enough to be carried onboard a small UAV, and information from
internal sensors such as a gyroscope and an accelerometer. This combination of
camera and internal sensors is the most commonly used UAV setup for navigation.

One of the greatest problems that UAVs face is extreme viewpoint variation. This
viewpoint variation is the same as previously mentioned, only to a greater extent,
due to the introduction of a third dimension. In addition, due to the agility of small
UAVs, it is very likely for a UAV to approach a scene from very different viewpoints.
This is a fatal problem for techniques that use whole-image descriptor representa-
tion, and greatly challenging for feature-based techniques. This added dimension,
coupled with the 6-degree of freedom (6-DOF) from use of aerial platforms and a
wide range of viewpoint approaches causes great problems even for VPR methods
that are designed to specifically handle viewpoint variation.

In order to tackle large appearance changes, current feature-based techniques
make use of high-quality feature descriptors such as SURF [13] and SIFT [14]. How-
ever, these descriptors are generally too computationally expensive to be employed
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FIGURE 1.3: Examples of query and corresponding reference im-
ages from the Campus Loop dataset, which is used for benchmarking

throughout the experiments detailed in this report.

on a small UAV. This highlights another problem for the deployment of VPR on
small UAVs, their limited computational capabilities. This limited computational
capability is problematic due to both the intense computation that is required by
most state-of-the-art VPR techniques and the size of the feature descriptors them-
selves. As such there is a computation overhead limit for many types of VPR sys-
tems when attempting to run on small UAVs. This limit can prevent the VPR system
from working at full capacity, greatly reducing the resulting recall of the system, or
simply preventing the system from working at all. In addition to the computational
limitations of feature-based techniques; employing deep-learning techniques usu-
ally requires a powerful Graphics Processing Unit (GPU), which typically cannot be
carried onboard a small UAV. Maffra et al. [15] [16] [17] make use of binary features
that are low cost, making them more computationally suitable for employment on
small UAVs. [18] was the first work to make use of binary features for VPR. The
results showed, however, that the method was very sensitive to noise.

Maffra et al. [15] introduces and implements a pipeline for performing VPR on-
board a small UAV with limited computation power. The proposed pipeline in [15]
includes a loop-closure detection algorithm, that does not require prior knowledge
of the environment, as well as a method of generating orthophotos from features
provided by the SLAM system. Orthophotos are generally constructed using van-
ishing points, which are estimated by extracting line segments from an image. How-
ever, the estimation of vanishing points is difficult due to the small intersection an-
gles between segment lines. In addition, determining which lines are associated to
each vanishing point causes errors [19]. [20] uses orthophotos generated by detect-
ing vanishing points to correct for camera rotation when taking images of a location.
One of the benefits of the proposed method in [15] is that its method of creating or-
thophotos does not rely on the estimation of vanishing points but instead estimates
the major plane of the scene. However, high precision is only achieved in [15] when
orthophotos can be successfully be generated, which often proves difficult as the
major plane is often difficult to identify. [21] improves upon the method proposed
in [15] to achieve a robust relative position estimation, using drift correction and
relocalisation.
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FIGURE 1.4: Examples of query and corresponding reference im-
ages from the ESSEX3IN1 dataset, which is used for benchmarking

throughout the experiments detailed in this report.

The use of orthophotos was removed in [16], due to the aforementioned prob-
lems in their generation. [16] works to improve upon [15], by combining 3D and 2D
information, as well as focusing the proposed pipeline on the implemented geomet-
ric checks. The BoW [22] approach, which is used in [15], disregards all geometric
information. Generally, when employing navigation for ground robots, it is expected
that scenes will be viewed up-right, as such the method proposed in [23] is enough
to achieve navigation. However, when implementing navigation for UAVs, where it
is likely that a scene will be viewed from a wide range of viewpoints, it is essential
that geometric checks are implemented to confirm geometrical consistency between
images. [16] implements the methods proposed in [24] and [25] for its geometrical
checks.

This is further improved in [17] which introduces depth completion by imple-
menting a map densification step to further improve the benefits of combining 3D
and 2D information. Allowing for feature-based matching between images with
wide viewpoint variation. Many state-of-the-art depth completion algorithms, such
as [26] and [27], employ the use of CNNs. However, these approaches require pow-
erful GPUs which, as mentioned before, cannot be carried by small UAVs. On the
other hand, CPU-only approaches, such as [28], often rely on densely populated and
good quality depth information. Whereas the method proposed in [17] implements
a CPU-based approach designed for input form a SLAM system, allowing the han-
dling of sparsely populated maps and a certain amount of noise.

1.4 Research Methodology

This section will discuss the methodology of the work and experiments conducted
over the course of my masters.

1.4.1 Research Aims

Overall, the aims of the research conducted over the course of my masters were
to look into the use and practical applications of VPR and to provide new insight
that would be of value to the computer vision community. To do this we chose to
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FIGURE 1.5: Examples of query and corresponding reference images
from the GardensPointWalking dataset, which is used for benchmark-

ing throughout the experiments detailed in this report.

investigate the effects of hardware on several stare-of-the-art VPR techniques. In
doing so we would answer the question, does hardware have an effect on VPR and
if so, what?

To investigate this the selected VPR techniques were implemented on several
popular embedded platforms, as well as two reference high-end platforms. Origi-
nally, we planned to investigate the precision-recall and power consumption of each
technique, however this was changed. Instead, we investigate CPU usage, memory
usage, processing time, accuracy, average power consumption and our own bench-
mark, as presented in this thesis, Real-Time Matched Frames (RMF).

1.4.2 Research Motivations

This research was motivated by the work done by Zaffar et al. in [29] and [12].
These works investigate the accuracy, processing power consumption and projected
memory requirements of several state-of-the-art VPR techniques. Additional this re-
search was motivated by the work done by Hulens et al. in [30], who investigate the
processing speed, power consumption, motor efficiency and flight time of several
popular embedded platforms with a view towards on-board UAV image process-
ing.

While accuracy, processing power and memory requirements of VPR techniques
have been looked into previously, in the case of Zaffar et al., and the power consump-
tion and processing speed have been looked into, in the case of Hulens et al., they
have not been looked into with a view towards a platforms effect on VPR. Therefore,
this work is motivated by the desire to fill in the gaps and determine the effects of
the architecture and build of several popular embedded platforms on several state-
of-the-art VPR techniques.

1.4.3 Research Contributions

The contributions of this thesis can be broken down into two main sections which
are as follows:

1. There are many factors that can affect the results of VPR. Hardware factors,
often determined by architecture and platform, such as processor speeds and
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memory capacity, are constrained when employing autonomous navigation on
UAVs. Despite the usefulness in understanding the effects of constrained plat-
forms on VPR, this is a relatively unexplored area. In order to fill this gap in
literature, this thesis contributes a hardware-based benchmark evaluation of
several state-of-the-art VPR techniques, focusing on the effects of platform ar-
chitecture on the performance of VPR. This contribution provides new insight
into the practicality of using embedded platforms for VPR in robotic systems.

2. To be useful in autonomous navigation, a VPR technique must be able to han-
dle image processing and recognition in real-time. While there are many eval-
uation metrics that are widely used to evaluate Visual Place Recognition (VPR)
techniques, their relevance to real-world scenarios can be ambiguous. Higher
results may reflect that a technique retrieves a high percentage of correct matches,
but real-world factors like image-retrieval time and platform-speed are often
not considered. This means a computationally-intensive technique, that is im-
practical for use in a real-world or real-time application, may be ranked above
other more practical techniques. This thesis contributes a novel benchmark
allowing for the evaluation of algorithms with a view to real-world, real-time
VPR. This is important because it provides new insight into the use and practi-
cality of VPR in a real-time environment, allowing for better evaluation of VPR
algorithms with a specific view towards real-world deployment.

1.4.4 List of Publications

The following contributions were made over the course of this masters:

1. R. Power, M. Zaffar, B. Ferrarini, M. J. Milford, K. D. McDonald-Maier and S.
Ehsan, "A Benchmark Comparison of Visual Place Recognition Techniques for
Resource-Constrained Embedded Platforms," IEEE Access, 2023.
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Chapter 2

Literature Review

This section contains a detailed literature review of papers that I have read over the
course of my degree.

2.1 Overview

Visual Place Recognition as a field has developed greatly primarily thanks to its wide
spread application in autonomous systems. VPR is essential in any autonomous
system that requires the use of localisation. This includes the likes of construction,
agriculture, industry and a host of other domains.

While the review presented in this chapter details literature on both SLAM and
VPR, it should be noted that these principals are not the same, nor intrinsically nec-
essary for the others use. VPR can be considered a sub-section of SLAM as a method
of loop-closure or can be used independently as a its own localisation system [2].
SLAM can make use of other methodologies to achieve loop-closures [31].

The rest of this chapter is as follows; section 2.2 gives a brief overview of the
core research within the field of SLAM. Section 2.3 gives an overview of the field of
VPR, before section 2.4 details the various techniques that exist for VPR. Sections 2.5
and 2.6 will present the current methods of benchmarking, both VPR and platforms
respectively. Section 2.8 will summarise the literature reviewed in this thesis and its
basis for the work in this thesis.

2.2 SLAM

Cadena et al. [31] presented a detailed account of SLAM systems. This account
details both the software and hardware research pertaining to SLAM. Zaffra et al.
[32] details the links between software and hardware in the application of SLAM
and how these factors might affect long-term autonomy of a SLAM system. Efficient
mapping topologies [33], feature extraction and matching [34], location estimation
[35] and loop closure techniques [36] have all been core areas of research within the
field of SLAM.

A major driving factor behind VPR research has always been the sensor tech-
nologies they rely on. SLAM systems have long taken advantage of the low-cost
compact design of acoustic sensors for measuring range. [37] presents an early im-
plementation of this type of system, with other unique implementations presented
in [38] [39] [40].

Another sensor technology that has driven SLAM research is Light Detection
And Ranging (LiDAR). LiDAR utilises light to measure distance and provides depth
images of an environment. This was utilised for SLAM in [41] [42] [43]. The authors
of [44] achieve a real-time loop-closure utilising a LiDAR-based system.
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One of the most widely utilised sensor technologies for SLAM are cameras. Monoc-
ular cameras are favoured due to their low-cost, wide availability, ease of use and in-
formation quality. Monocular camera-based SLAM implementations are presented
in [45] [46] [47]. The authors of [48] present a comparison of monocular and Stereo
SLAM. Stereo camera-based SLAM implementations are presented in [49] [50] [51].
RGB-D sensor-based SLAM implementations are presented in [52] [53], and eval-
uations of RGB-D based SLAM are presented in [54] [55] [56]. Omni-directional
cameras have been used for SLAM due to their wide field of view. Omni-directional
camera-based SLAM implementations are presented in [57] [58], and a review of
Omni-directional camera-based SLAM is presented in [59]. Event cameras are favoured
due to their high dynamic range and are excellent for use in dynamic environments.
However, in a static environment they provide minimal visual information. The
authors of [60] combine event and monocular cameras for a singular SLAM system.

2.3 VPR

Visual-SLAM refers to a SLAM system where the source of information is a camera.
The objective of this system is both to create a map of a previously unknown envi-
ronment, and to localise a robot within this mapped area. [61] presents a thorough
report on Visual-SLAM. Localisation in this system can further be broken down into
Visual localisation and Visual Place Recognition for Loop-closure. Visual localisa-
tion, also referred to as Visual Odometry, overlaps information from consecutive
frames to estimate the movement of a robot. [62] presents a thorough report on
Visual Odometry. Visual Place Recognition refers to identifying previously visited
locations under appearance and viewpoint variation. Lowry et al. [1] conducted a
thorough survey of VPR, investigating the theory behind VPR, its relation to other
domains, its challenges and possible future areas of research within the field. VPR
has its majority of applications in loop-closure for Visual-SLAM, however, it also has
many other applications in the wider field of computer vision, as explored by [2].

2.4 VPR Algorithms

There are two methods for implementing VPR that have been researched. These
are feature based and learning based approaches. Feature based methods generally
work by first extracting local feature descriptors such as SURF [13] or SIFT [14]. A
study was made comparing the accuracy and computational load trade off of local
image descriptors in [63]. Once the features are extracted, they are stored for later
comparison to query images. One approach that is often employed in state-of-the-
art VPR methods for sorting and storing local image descriptors is the Bag of Words
(BoW) [22] technique. BoW works by organising descriptors into clusters, depend-
ing on the descriptor space each descriptor is closest too. These clusters are then
used to form a histogram representation of the image. Another approach often used
is VLAD [64]. VLAD is seen as an improvement over BoW in many scenarios. This
is because in addition to sorting and storing descriptors, it also records the relative
location of each descriptor within their corresponding descriptor space.

Learning based approaches use Convolutional Neural Networks (CNNs) that are
pre-trained for image classification to extract layer activations as features. One ap-
proach that can be used by learning based VPR methods in Maximum Activations
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of Convolution (MAC) [65], which uses global max pooling to create its image rep-
resentation. For this technique, the cosine similarity of two MAC descriptors is used
to determine whether two images are the same.

Within the two main method types there are many state-of-the-art VPR methods
already developed. [29] makes a study of evaluating a number of state-of-the-art
VPR techniques, comparing their accuracy and computational complexity. In ad-
dition, the feature encoding and matching times are compared to determine which
methods can run in real-time whilst maintaining good precision-recall.

2.4.1 Feature Based

In the early days of VPR techniques, handcrafted high-quality feature descriptors
such as SURF [13] and SIFT [14] were employed to label images. These descriptors
can be classified as either local or global feature descriptors. SIFT and SURF features
were used for VPR in [66] and [67] respectively. SIFT [14] features use difference of
gaussians to extract key points from an image to create its descriptors. SURF [13] is
a modified version of SIFT which makes use of Hessian-based detectors as opposed
to traditional SIFT’s Harris detectors.

Histogram-of-orientated-gradients (HOG) [68] [69] is a feature-based technique
and was used for VPR in [70]. HOG makes use of gradients that are calculated
for every pixel in an image and stores them in a histogram. While HOG is one of
the most widely used feature descriptors, its performance lags behind other current
state-of-the-art methods. More recently another feature-based technique, CoHOG
[71], was developed. CoHOG makes use of HOG descriptors to represent regions
of interest (ROI) and are compared using cosine matching in order to achieve lateral
viewpoint tolerance.

Seq-SLAM [72] is a feature-based technique that processes sequences of images
to find a best matched route by creating a confusion matrix. While this method
can take advantage of the use of sequential information to gain excellent tolerance
against seasonal and illumination variation, it struggles greatly when exposed to
viewpoint variation. In addition, Seq-SLAM is also shown to struggle [29] when a
sequence of images is taken by a camera moving at varying speeds.

2.4.2 CNN Based

The use of Convolutional Neural Networks (CNNs), convolution auto-encoders (CAEs)
and deep/shallow neural nets have successfully demonstrated superior results for
VPR over traditional handcrafted feature-based techniques. Other applications that
have also demonstrated a superiority when employing CNNs, CAEs and deep/shallow
neural nets include [65] [73].

The use of CNNs for VPR was studied in [74] where a pre-trained CNN was
used to extract features from the layers of an image. These features were later used
for image comparison in [75]

Using the knowledge provided in [74], Chen et al trained two CNNs [76] on
the specific places dataset (SPED). The two CNNS, HybridNet and AMOSNet, both
share the same architecture as CaffeNet [77]. While HybridNet uses weights taken
directly from CaffeNet and trained on the ImageNet dataset [78], AMOSNet’s weights
are randomised.

A CNN is traditionally designed for image classification, as such it does not gen-
erate the descriptors required for VPR. In [64] a Vectors of Locally Aggregated De-
scriptors (VLAD) layer was added to a traditional CNN architecture to allow for
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TABLE 2.1: Table showing example datasets created for VPR research.
The environment, viewpoint variation type and apperance variation

type for each dataset are provided.

Dataset Name Environment Viewpoint Variation Appearance Variation
17 Places Indoor Lateral Illumination

24/7 Query Outdoor 6-DOF Illumination
Campus Loop Mixed Lateral Seasonal

Corridor Indoor Lateral None
Cross Seasons Outdoor Lateral Seasonal

ESSEX3IN1 Mixed Lateral Dynamic Objects
GardensPointWalking Mixed Lateral Illumination

Living Room Indoor Lateral Illumination
Nordland Outdoor None Seasonal
SPEDTest Outdoor None Illumination and Seasonal
Synthia Synthetic Outdoor Lateral Seasonal

end-to-end training. This allowed the authors of [64] to train the CNN specifically
for the use of VPR. Other CNN models that implemented a VLAD layer include
AlexNet [77] and VGG-16 [79].

Following the introduction of the implementation of a VLAD layer, the design
of the layer itself is something that has been extensively studied. The pooling ap-
proaches that are employed on convolutional layers is a particular aspect that has
been extensively studied. Examples of these pooling approaches that have been re-
search include Max-Pooling [65], Cross-Pooling [73], Sum-Pooling [80] and Spatial
Max-Pooling [81].

The use of regions-based descriptions of images was suggested to increase the
matching performance of VPR, as demonstrated in [82] [83] [84]. Additionally, in [85]
a lightweight CNN-based regional approach and VLAD layer were implemented to
form the technique RegionVLAD.

2.5 VPR Benchmarking

Benchmark analysis has a significant impact on the understanding of a model’s us-
ability within the target application. One of the most popular VPR benchmarking
methods is precision-recall. Recall is the proportion of true positive results that are
correctly predicted as positive. This is a desirable benchmark as it reflects the num-
ber of true positive results. While this tends not to be highly rated in information
retrieval, and is often neglected in Machine learning or Computational linguistics, in
the context of Computational Linguistics and Machine Translation, Recall has shown
to have great weight in predicting the success of Word Alignment [86]. On the other
hand, Precision is the proportion of predicted positives that are true positives. This
is what Machine learning, Data mining and Information Retrieval focus on. These
two measures, and their combinations, focus on positive examples and predictions.
Combined the two measures capture some information about rates and kinds of
errors made, however, neither captures any information about how well a model
handles negative cases as noted in [87].

ROC was highlighted by Flach [88] for its utility to Machine learning analysis.
ROC characterised skew sensitivity for many measures within the field of machine
learning, allowing for the utilisation of ROC format to present geometric information
of the nature of such measures and their sensitivity to skew. Fürnkranz and Flach
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[89] elaborated on this analysis, extending it to an unnormalized PN variant of ROC
and targeting their analysis towards rule learning.

Powers et al [90] developed an unbiased accuracy measure to avoid the bias of
Precision, Recall and accuracy. Powers defines the concept of Informedness which
quantifies how informed a predictor is for a specified condition and specifies the
probability that a prediction if informed in relation to a condition. Contrary to this,
Markedness quantifies how marked a condition is for the specified predictor, and
specifies the probability that a condition is marked by the predictor.

2.6 Platform Benchmarking

In terms of benchmarking resource-constrained embedded platforms the most promi-
nent metrics to take into consideration are power consumption, memory utiliza-
tion and CPU utilization. An analysis of deep neural networks (DNN) architectures
was conducted in [91]. The authors recorded the accuracy, power consumption and
memory footprint of each DNN. Additionally, the number of parameters and opera-
tions were counted for each computer vision task. The experiments were carried out
on an NVIDIA Jetson TX1 board [92].

Huang et al. follow a similar approach in [93] with their exploration of the
speed/accuracy trade-off for full image classification. In their experiments, they
compare the performance of an Intel Xeon CPU and an NVIDIA Titan X GPU.

TANGO [94] measures inference time, power consumption and memory usage to
assess various CNN models implemented on a variety of hardware platforms. These
platforms included an embedded GPU and an FPGA. The importance of energy
usage was highlighted by Palit et al [95]. They presented an energy estimation model
and empirical data from the evaluation of several CNNs.

Fan et al. [96] show that the CPU utilization of running processes is directly
related to the power consumption of the CPU. This power consumption becomes a
significant factor over extended periods of time within all fields of robotics and espe-
cially in battery powered UAVs. The work done in [96] is extended upon by Zaffra
et al. [12], who investigate the accuracy, processing power consumption and pro-
jected memory requirements of several state-of-the-art VPR techniques, including
both feature-based and CNN-based techniques.

2.7 Datasets

A major factor in the growth of the field of VPR is the wide spread availability of
open-source datasets. Many of these datasets processes unique challenges, with a
variety of viewpoint and appearance variations. The number of images contained
within a dataset varies with each. Additionally, the number of images within a
dataset can vary from use to use, as often subsets of a dataset are used in exper-
iments. Typically, datasets contain images of the same location but under differ-
ent viewpoint or appearance variation. Table 2.1 lists some example open-source
datasets [97][98][99][100][101][102][103][104][105][82][106] produced for VPR research
over the past years. Figure 2.1 shows some examples of images contained within
each dataset listed in table 2.1. Additionally, table 2.2 lists the number of images in
each of the datasets used later in this thesis.

While there are datasets that contain visual and inertial information publicly
available, such as KITTI [107], most traverses mainly exhibit forward camera mo-
tion captured from front-facing cameras. This method of capture, however, makes



14 Chapter 2. Literature Review

TABLE 2.2: Table showing the number of images in each of the
datasets used in Chapters 3 and 4.

Dataset Name No. of Images
Campus Loop 100

ESSEX3IN1 210
GardensPointWalking 200

labelling ground-truth very difficult. In [16] new datasets were recorded specifically
for the application of place recognition using flying or hand-held setups that have
side facing cameras. This allows for clear and accurate labelling of ground-truth.
The captured sequences demonstrate both appearance changes and great viewpoint
variation. In addition, datasets were recorded that contain extreme viewpoint vari-
ation in order to isolate the problem for viewpoint variation.

The 17 Places dataset was introduced in [97] and consists of many different in-
door environments, including office, lab, hallway and bedroom environments. The
24/7 Query dataset was introduced in [98], this dataset consists of many sets of
three images taken of the same place under different conditions. Each set of images
has a corresponding three reference images. Conditions the images were taken un-
der include 6-DOF viewpoint variation, different times of day and dynamic objects.
Campus Loop, introduced in [99], is a small scale dataset consisting of traverses
of a university campus during different seasons. In addition to seasonal variation,
this dataset also contains lateral viewpoint variation between traverses. Corridor
was introduced in [100] and is a small scale dataset, consisting of low resolution im-
ages. This dataset has some lateral viewpoint variation but no appearance variation.
Cross Seasons was introduced in [101], and was built upon the CMU Visual Local-
isation dataset [108] and the Oxford RobotCar dataset [109]. This dataset contains
both seasonal and illumination variation. ESSEX3IN1 was introduced in [102] and
consists of a travers of the University of Essex campus. The dataset contains lateral
viewpoint variation, as well as dynamic objects and uninformative scenes. Gar-
dens Point Walking was introduced in [103] and is one of the most widely employed
datasets for testing VPR. The dataset consists of three traverses, two performed dur-
ing the day with lateral viewpoint variation, and a third during the night. Living
Room was introduced in [104] and consists of high resolution, wide field of view
images. The dataset contains viewpoint and illumination variation. The images in
this dataset were taken from a home service robot, so have a perspective from close
to the floor. The Nordland dataset was introduced in [105] and consists of a train
journey through Norway, the journey was performed during four different seasons
giving it seasonal variation. The original dataset does not contain any viewpoint
variation but some uses of the dataset [99] [29] employed the technique of manually
cropping images to produce synthetic lateral viewpoint variation. The SPEDTest
dataset was introduced in [82], while it has no viewpoint variation, it has challeng-
ing illumination and seasonal variation. The Synthia dataset was introduced in [106]
and consists of traverses through different simulated outdoor environments. The
traverses contain seasonal variation, as well as some lateral viewpoint variation and
dynamic objects.
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FIGURE 2.1: Figure showing example query and corresponding ref-
erence images from various datasets, as listed in table 2.1.

2.8 Summary

This chapter detailed a review of the current research landscape surrounding locali-
sation for autonomous robotic navigation with specific focus on Visual Place Recog-
nition. The points below were covered:

1. An overview of SLAM

2. The relation between Visual-SLAM, Visual Odometry, VPR and other method-
ologies.

3. A detailed survey of Visual Place Recognition techniques and datasets. This
serves as a basis for the work of Chapters 3 and 4.

4. An overview of benchmarking Visual Place Recognition techniques, from both
a hardware and software perspective. This serves as a basis for the work in
Chapter 3

The majority of existing literature in the field of VPR focuses on proposals of new
VPR techniques. These techniques are usually environment specific and computa-
tionally expensive. There is limited literature on the comparison and benchmarking
of existing VPR techniques. This work is motivated by a desire to fill the limited lit-
erature on the subject of benchmarking VPR, as well as the largely unexplored com-
parison in regards to hardware-based factors such as processor speed and memory
capacity. Motivated by the work done by Zaffar et al. [29] [12], and Hulens et al. [30],
the work in this thesis attempts to provide a comparison of VPR in regards to hard-
ware limitations with a view to the deployment of VPR onboard lightweight embed-
ded platforms able to be carried by UAVs. The benchmark presented in chapter 3
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is based on several key metrics including; place-matching accuracy, image encoding
and descriptor matching time, and memory needs.

Additionally, there is little literature investigating the performance of VPR in
real-time environments, as would be necessary for real-world applications. There
are many evaluation metrics widely used to evaluate Visual Place Recognition (VPR)
techniques, however, their relevance to real-world scenarios is limited. In chapter 4
this thesis provides an evaluation benchmark with a view to evaluating VPR algo-
rithms on their usefulness in a real-world environment, and is intended to provide
useful information about a VPR technique’s usability within a real-time application.
This is motivated by a desire to further focus the research done on VPR towards it’s
real-world deployment.
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Chapter 3

VPR Hardware Benchmark

To understand the usability and usefulness of a model, that model must first un-
dergo evaluation on a number of parameters. With the results of this benchmark we
can truly understand the usefulness of said model within its target application. This
chapter contributes a benchmark analysis of several popular embedded platforms
when performing VPR. These techniques are deployed on-board several state-of-the-
art embedded platforms in order to evaluate the effects of hardware and architecture
on VPR performance, as well as the performance and requirements of the platforms
themselves. This is significant because it provides new insight into the practicality
of using embedded platforms for VPR in robotic systems and determines what ef-
fects platform architecture has on VPR. This benchmark investigates accuracy, CPU
usage, memory usage, processing time and power consumption.

3.1 Background

Recalling a previously visited place using only visual information has become a
subject of interest within the robotic vision community and therefore Visual Place
Recognition (VPR) has developed as a dedicated field within autonomous robotics
over the past 15 years [1]. VPR is a fundamental task for autonomous navigation
as it enables self-localization within an environment. To be useful in autonomous
navigation, a VPR system must be able to run in real-time [17]. There are many fac-
tors that can affect VPR. External factors include various appearance and viewpoint
variations. Whereas internal factors are usually due to architecture or platform, and
as such can include factors such as computational power and memory capacity.

Although robots are often equipped with resource-constrained hardware, the
subject of implementing and comparing VPR on resource constrained embedded
platforms, which is potentially very useful for the application on VPR onboard small
unmanned aerial vehicles, is relatively unexplored. This work presents a hardware-
focused benchmark evaluation of a number of state-of-the-art VPR techniques on
public datasets. Popular single board computers are considered, including ODroid,
UP and Raspberry Pi 3, in addition to a commodity desktop and laptop for refer-
ence. Analysis based on several key metrics is presented, including place-matching
accuracy, image encoding time, descriptor matching time and memory needs.

3.2 Experimental Setup

3.2.1 Evaluation Datasets

There have been many datasets created for the purpose of testing VPR. This subsec-
tion will introduce the datasets used to test the techniques and platforms introduced
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later in the experimental setup. The number of images in each dataset can be found
in Table 2.2.

Garden Point Walking [103]

This dataset was created at the Queensland University of Technology. The first tra-
verse of the dataset was taken during the day and the reference traverse was taken at
night from laterally different viewpoints. As such the dataset displays both illumi-
nation and viewpoint variation, as well as dynamic objects making it a challenging
dataset. Some example images from this dataset are shown in figure 1.5.

Campus Loop [99]

The campus loop dataset was created from a sequence of indoors and outdoors im-
ages of a campus environment. The first traverse of the dataset was taken on a snowy
day with very cloudy weather and the second traverse was taken several days later
when the snow had melted and it was sunny. Whilst the seasonal variation will
not cause the images captured indoors to vary greatly, the image captured outside
present significant seasonal and some illumination variation. In addition, the im-
ages also contain viewpoint variation and dynamic objects. Some example images
from this dataset are shown in figure 1.3.

ESSSEX3IN1 [102]

The ESSEX3IN1 dataset was created to provide both viewpoint and appearance vari-
ation for the purpose of testing VPR. The dataset contains images that are confusing
for VPR techniques, with challenging dynamic objects and uninformative scenes,
causing most state-of-the-art techniques to struggle as shown in [102]. The dataset
contains 210 images and has frame-to-frame correspondence between query and ref-
erence images. Some example images from this dataset are shown in figure 1.4.

3.2.2 VPR Techniques

The experiments in this paper are carried out on a selection of state-of-the-art VPR
methods, as a representation of a variety of technique classes.

HOG

Histogram-of-orientated gradients (HOG) [68] [69] is one of the most widely used
VPR techniques that uses hand-crafted feature descriptors. This technique calculates
a gradient for every pixel in an image and organises these gradients into the bins
of a histogram. These bins will contain the sum of the gradient magnitudes. The
technique then uses the cosine function to compare the query and reference images.
While HOG is one of the most widely used techniques, it does not perform to the
same level as any other state-of-the-art techniques. While this performance level
means that HOG is not at the forefront of any new leading research, it makes HOG a
good technique for use in making comparisons. For the implementation of HOG, we
use a cell size of 8*8, a block size of 16*16, and total of 9 histogram bins as suggested
by the authors in [29].
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FIGURE 3.1: Graphs showing the accuracy for every VPR technique
used in the paper, on each board. The results show that across plat-
form the accuracy remains quite consistent. Note that the ARM plat-
forms produced identical results to each other, as did the x86_64 plat-

forms.
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CoHOG

CoHOG [71] uses handcrafted feature-based technique that uses image-entropy to
extract regions of interest. HOG [68] [69] descriptors are then assigned to repre-
sent each region and the regional descriptors are compared using cosine matching
to achieve lateral viewpoint tolerance. One of the inspirations behind this technique
was CNN-based techniques’ ability to extract regions of interest. CoHOG was de-
veloped to achieve state-of-the-art performance without any training requirements,
unlike traditional CNN-based techniques. This allows the technique to have a sig-
nificantly lower feature encoding time.

AMOSNet

AMOSNet was trained on the Specific Places Dataset (SPED) and its deployed model
parameters was open sourced by the authors in [76]. The implementation of AMOSNet
uses spatial-pyramidal pooling and activations from conv5 layer. Image descriptors
are extracted from layer activations and L1-difference is used to match the feature
descriptors of the query and reference images.

HybridNet

HybridNet, like AMOSNet, had its model parameters trained on the SPED dataset.
However, unlike AMOSNet, the model weights of the top 5 HybridNet convolu-
tional layers are initialised from CaffeNet trained on the ImageNet dataset. The im-
plementation employs a spatial pyramidal pooling on activations from conv5 layer
to form feature descriptors. L1 difference is then used to match the query and refer-
ence images.

RegionVLAD

Region-VLAD [85] uses a lightweight CNN-based regional approach, as well as
VLAD, to overcome the practical deployment limitations of traditional CNNs used
for VPR, due to their computational complexity and significant memory overhead.
Region-VLAD has shown good image retrieval time for a CNN based method, but
still retains a relatively high memory footprint [29]. For the implementation we em-
ploy the convolutional layer conv4 of HybridNet, along with 400 region of inter-
ests (ROIs). A 256 visual word dictionary is used to extract VLAD descriptors and
cosine-similarity is used to match query and reference images.

CALC

CALC [99] was first introduced by Merrill et al. when they trained an autoencoder in
an unsupervised manner for the first-time for use in VPR. The objective of the auto-
encoder was to re-create the HOG descriptors of an image, when given a distorted
version the image. Merrill et al. opensourced their implementation using intrinsic
AUC computation. For the implementation we use model parameters from the 100K
iteration of the auto-encoder on the Places dataset [110].
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3.2.3 Computational Platforms

The implementation on each board used the same code libraries and dependencies
to ensure consistency across all platforms. However, the libraries used in the im-
plementations were built independently on each platform. This makes the built
libraries architecture and processor dependent. This created the architectural dif-
ferences that are highlighted later in this work, allowing for the evaluation to be
commented on, based on the platform architecture.

The chosen platforms for this experiment all utilise CPU computing as opposed
to GPU. While the option of using GPU might present several benefits in the way of
algorithm efficiency, it was decided instead to use CPU only. This decision was made
due to a desire to keep power consumption as low as possible. In the context of the
experiment, deploying VPR on UAVs, the need to keep power consumption as low
as possible is an important one. The less power consumed, the longer the UAV can
perform the task at hand, and the smaller the battery required. This in turn reduces
weight and further reduces power consumption, thereby increasing the length of
time the UAV can be active for. The code deployed was optimised for CPU use only.

UP-CHT01-A20-0464-A11 [111]

The UP board is marketed as a high performance board with low power consump-
tion. It has a quad-core Atom x5-z8350 processor running at up to 1.92GHz. The
UP board is the only board used in this paper that has an Intel processor, like the
desktop and laptop standards. The UP board used in the study had 4GB RAM.

TABLE 3.1: CPU usage, memory usage and processing time of Re-
gionVLAD, across all datasets and platforms.

CPU
RegionVLAD Campus Gardens ESSEX3IN1
Desktop 34.38 35.50 27.36
Laptop 100.00 99.92 99.94
Odroid 14.31 17.46 18.47
RPI 21.90 17.49 17.42
UP 27.99 28.01 26.79

Memory
RegionVLAD Campus Gardens ESSEX3IN1
Desktop 66.25 71.72 79.21
Laptop 69.81 69.14 81.27
Odroid 53.95 51.70 51.72
RPI 58.90 51.00 52.55
UP 70.58 82.86 78.27

Processing Time
RegionVLAD Campus Gardens ESSEX3IN1
Desktop 1.72 1.73 2.45
Laptop 1.76 1.73 2.43
Odroid 7.83 8.13 8.74
RPI 24.16 33.25 34.31
UP 10.08 10.14 16.31
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TABLE 3.2: CPU usage, memory usage and average processing time
of CoHOG, across all datasets and platforms.

CPU
CoHOG Campus Gardens ESSEX3IN1
Desktop 91.00 96.17 89.20
Laptop 100.00 100.00 100.00
Odroid 16.08 20.32 20.47
RPI 25.84 25.74 25.74
UP 79.29 86.82 79.48

Memory
CoHOG Campus Gardens ESSEX3IN1
Desktop 64.61 70.53 78.71
Laptop 68.40 67.72 82.65
Odroid 45.85 46.48 53.29
RPI 49.16 61.26 66.95
UP 68.02 80.72 78.68

Processing Time
CoHOG Campus Gardens ESSEX3IN1
Desktop 0.36 0.58 0.57
Laptop 0.24 0.34 0.39
Odroid 8.49 18.44 17.20
RPI 5.38 10.03 10.51
UP 1.24 1.96 2.36

TABLE 3.3: CPU usage, memory usage and average processing time
of CALC, across all datasets and platforms.

CPU
CALC Campus Gardens ESSEX3IN1
Desktop 100.14 100.14 87.07
Laptop 100.00 100.00 100.00
Odroid 22.70 23.27 21.35
RPI 28.89 29.01 29.58
UP 27.57 27.71 29.30

Memory
CALC Campus Gardens ESSEX3IN1
Desktop 64.95 70.34 81.67
Laptop 67.87 66.64 84.84
Odroid 45.15 48.31 56.47
RPI 55.27 66.08 70.01
UP 68.05 80.57 78.40

Processing Time
CALC Campus Gardens ESSEX3IN1
Desktop 0.07 0.07 0.12
Laptop 0.17 0.14 0.21
Odroid 0.68 0.69 0.70
RPI 0.56 0.55 0.61
UP 0.67 0.68 1.04
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TABLE 3.4: CPU usage, memory usage and average processing time
of HybridNet, across all datasets and platforms.

CPU
HybridNet Campus Gardens ESSEX3IN1
Desktop 54.10 57.08 40.07
Laptop 100.00 100.00 100.00
Odroid 18.83 20.80 21.36
RPI 25.66 25.69 25.78
UP 25.95 25.97 25.57

Memory
HybridNet Campus Gardens ESSEX3IN1
Desktop 67.69 71.16 83.02
Laptop 69.06 67.86 85.55
Odroid 55.35 57.17 56.30
RPI 68.40 68.48 71.37
UP 70.94 82.85 78.49

Processing Time
HybridNet Campus Gardens ESSEX3IN1
Desktop 1.18 1.17 1.85
Laptop 4.81 4.80 5.54
Odroid 25.56 26.21 27.21
RPI 20.72 20.65 20.88
UP 24.57 24.47 31.38

TABLE 3.5: CPU usage, memory usage and average processing time
of HOG, across all datasets and platforms.

CPU
HOG Campus Gardens ESSEX3IN1
Desktop 41.50 27.40 22.42
Laptop 78.67 100.00 100.00
Odroid 22.45 24.94 23.61
RPI 29.36 29.00 28.98
UP 31.70 31.91 26.11

Memory
HOG Campus Gardens ESSEX3IN1
Desktop 68.13 70.31 82.88
Laptop 67.08 66.43 85.11
Odroid 40.30 44.25 43.34
RPI 63.38 56.41 57.96
UP 75.74 78.82 66.33

Processing Time
HOG Campus Gardens ESSEX3IN1
Desktop 0.02 0.02 0.09
Laptop 0.02 0.03 0.07
Odroid 0.10 0.15 0.17
RPI 0.20 0.27 0.30
UP 0.09 0.11 0.40
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TABLE 3.6: CPU usage, memory usage and average processing time
of AMOSNet, across all datasets and platforms.

CPU
AMOSNet Campus Garden ESSEX3IN1
Desktop 54.22 57.24 40.02
Laptop 100.00 100.00 100.00
Odroid 17.14 20.79 21.03
RPI 25.64 25.78 25.71
UP 25.95 25.94 25.80

Memory
AMOSNet Campus Garden ESSEX3IN1
Desktop 69.06 71.15 83.52
Laptop 69.27 67.98 85.64
Odroid 51.28 54.75 53.99
RPI 76.11 69.88 68.44
UP 77.35 80.20 78.94

Processing Times
AMOSNet Campus Garden ESSEX3IN1
Desktop 1.17 1.16 1.84
Laptop 4.73 4.84 5.61
Odroid 25.56 26.76 26.90
RPI 20.64 20.51 20.80
UP 24.08 24.48 30.21

Raspberry Pi 3 Model B [112]

The Raspberry Pi was developed by the Raspberry Pi Foundation with the desire to
create a computer that was not only cheap but could also be considered as dispos-
able. The Raspberry Pi used in this paper is the earliest model of the thrid-generation
of Raspberry Pi and is the replacement to the Raspberry Pi 2 Model B. This model
has a quad-core ARM processor with arm64 architecture.

The Raspberry Pi used in the setup had 1GB RAM and 100Mb of swap. For the
setup we increased the swap space to 2GB. This was necessary to keep up with the
computational demands of the various VPR techniques used in the experiment. It
should be noted however, that increasing the size of the swap greatly increases the
time taken for computation.

ODROID XU4 [113]

The Odroid board used in the study had 2GB RAM and no swap as default. How-
ever for the setup we created 2GB of swap. Similarly to the Raspberry Pi, this was
necessary to keep up with the computational demands of the VPR techniques used
throughout the experiment. The Odroid board is also the only board used for the
study presented in this paper that has a fan. The fan fires periodically causing a
surge in power consumption. While it is possible to disconnect the fan from the
board, for the sake of not damaging the board during the course of these experi-
ments, the fan was kept attached.
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FIGURE 3.2: Power measurement circuit schematic.

Laptop

This platform is a DELL XPS 13 9380. It has an Intel(R) Core i7-8565U CPU, operating
at 1.99GHz, and 16GB of RAM. Due to its large size, weight and power requirements,
it is not feasible to use as an embedded platform. As such, it is only included as a
reference for the other embedded boards

Desktop

As well as the laptop, a desktop computer was included as an additional reference
platform. This desktop had an AMD RYZEN 1400 Quad-Core Processor, operating
at 3.20 GHz, and 32GB of RAM.

3.2.4 Evaluation Metrics

Matching Performance

The image with the highest matching score extracted from the mapped reference
dataset should correspond to the query image of the same location. As such, a
match is determined as correct if, given a query image, the technique assigns the cor-
responding reference image the highest similarity score, determined for each tech-
nique, of every possible image. Determining the percentage of correctly matched
images for each of the datasets used will give the accuracy of each VPR technique.

Algorithm Efficiency

In this paper the efficiency of each technique used is evaluated by measuring the
CPU usage, memory usage and processing time of each technique. CPU usage and
memory usage are reported as a percentage. Memory usage is measured as the
percentage of active memory out of total memory. In addition, processing time is
recorded, reported in seconds. This includes the feature encoding time for an input
query image, as well as the descriptor matching time for the number of reference
images in the dataset, image loading and preprocessing. In order to benchmark the
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FIGURE 3.3: Graphs showing the CPU usage, memory usage and pro-
cessing time, for every VPR technique used in the paper. The process-
ing time was reported as the average encoding and matching time of
all query images in the Campus Loop dataset (100 images). Each VPR
technique has a unique colour and each platform is represented by a

unique shape.

boards accurately the images were loaded from a dataset. In real-world applications,
the images would be acquired from a camera in real-time.

Power Consumption

In addition to evaluating the precision-recall of the techniques produced by each
board, the power consumption of each board was measured using a setup of a
INA260 module [114] monitored by an additional Raspberry Pi, the configuration of
which is shown in figure 3.2. The power consumption of each embedded platform
was recorded whilst each platform first encoded a query image and then attempted
to match that image to its already complied map. The power consumption was con-
tinuously measured as every query image in the dataset was processed and matched
sequentially. This gave an indication of the power consumption over the course of
encoding and matching images.

Weight

Another interesting factor to take into consideration is weight. In the context of
UAVs, the weight of an embedded board will affect the overall power consumption
and therefore flight time of the system. A heavier board or processor will cause a
higher power consumption meaning that the possible time of flight will be reduced.
This paper takes into consideration the weights of the embedded boards used in
these experiments.

It should be noted that as this is a lab experiment, the boards evaluated are stan-
dard production models. Production robots may use custom boards that have been
refined for the target application, potentially reducing weight and power consump-
tion.
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FIGURE 3.4: Graphs showing the CPU usage, memory usage and pro-
cessing time, for every VPR technique used in the paper. The process-
ing time was reported as the average encoding and matching time of
all query images in the GardensPointWalking dataset (200 images).
Each VPR technique has a unique colour and each platform is repre-

sented by a unique shape.

FIGURE 3.5: Graphs showing the CPU usage, memory usage and pro-
cessing time, for every VPR technique used in the paper. The process-
ing time was reported as the average encoding and matching time of
all query images in the ESSEX3IN1 dataset (210 images). Each VPR
technique has a unique colour and each platform is represented by a

unique shape.
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FIGURE 3.6: Average power consumption of each VPR technique
when implemented on the embedded platforms.
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3.3 Results and Analysis

This section contains results based on all evaluation metrics for all computational
platforms.

3.3.1 Accuracy

This sub-section reports the findings of the matching performance of each technique
on all three datasets used for testing as shown in figure 3.1.

As part of this thesis, it was discovered that the Raspberry Pi and Odroid pro-
duced the same results in terms of accuracy for each VPR technique. Conversely, the
UP board, laptop and desktop platforms all produced the same results in terms of
accuracy as well. This is likely due to the fact that both the Odroid and Raspberry
Pi platforms use ARM processors, having arm64 or armhf architecture, and the UP
board, laptop and desktop use Intel Atom, Intel i7 and AMD Ryzen 5 processors
respectively, all sharing the x86_64 architecture. Ubuntu 18 operating system was
used across all platforms. Apart from architecture type, the only difference in OS is
that the raspberry Pi uses a 32-bit OS, however it produced they same accuracy as
the Odroid board which used a 64-bit OS and had the same ARM architecture sug-
gesting that the difference in 32-bit, 64-bit systems does not have a significant affect
on the accuracy of the techniques. The running environments were kept the same
for each platform using the same version of Python and additional libraries, with the
only difference being when a specific version had to be built for ARM architecture
as opposed to the standard x86_64 architecture.

3.3.2 Algorithm Efficiency

This sub-section reports the findings of the algorithm efficiency of each platform and
technique as performed on all three datasets used for testing.

CPU Usage

In terms of CPU usage each platform and technique combination only displayed
slight variation between datasets as shown in tables 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6.

The laptop displayed the highest CPU utilisation by far, using roughly 100% of
the CPU’s capacity for all techniques. In comparison, the Ordoid and Raspberry Pi
platforms had very low CPU utilisation for all techniques, using between 15-30% of
their respective CPU’s capacity. In addition, the UP board has relatively low CPU
utilisation for all techniques except for CoHOG, which uses an average of 80% of
its CPU’s capacity to perform. This is likely due to an implimentation characteristic
of x86_64 architecture that is favourable to the CoHOG tecnique, as UP is the only
x86_64 embedded platform. The desktop also displayed a high CPU usage when
running CoHOG and CALC, but had a relatively low CPU usage for the remaining
techniques.

The embedded platforms demonstrated low CPU utilisation at times. This is
likely due to their limited memory and consequent need to page to relatively slow
SD card storage. This was not exhibited by the non-embedded platforms, that had
enough memory to not require paging. Whilst the need to page caused a slight in-
crease in the computational time, it suggests that potentially a more computationally
complex algorithm could be run on the embedded platforms with similar success,
given a larger memory capacity.
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FIGURE 3.7: Graphs showing the power consumption over time on
each board, for every VPR technique used in the paper. The power
consumption was measured during the encoding and matching of ev-

ery query image in the ESSEX3IN1 dataset (210 images).
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TABLE 3.7: Table showing specifications for each board.

Name Processor Architecture Memory
UP Intel Atom x5-Z8350 Quad-Core Processor 1.92GHz x86_64 4GB

Raspberry Pi 3 model B Quad Core 1.2GHz Broadcom BCM2837 64bit CPU arm64 1GB
Odroid XU4 Samsung Exynos5422 ARM Cortex-A15 Quad 2.0GHz armhf 2GB

Laptop Intel(R) Core i7-8565U CPU 1.8GHz 1.99GHz x86_64 16GB
Desktop AMD RYZEN 1400 Quad-Core Processor 3.20 GHz x86_64 32GB

Memory Usage

Trends in memory utilization are difficult to identify due to variation in image res-
olution between datasets, the amount of memory each board has and the technique
used, as shown by the results in tables 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6. During the exper-
iments in this paper the images were loaded one at a time for processing to cut down
on memory consumption given the limited memory capacity of the embedded plat-
forms. As such, no more than one image from the dataset is stored in memory at any
given time. Memory utilisation appears also to be affected by platform architecture.

The ARM architecture platforms utilised the least memory, however this is likely
due to the resized and compressed nature of the datasets, required to make the al-
gorithms run on those platforms. After further experiments, it is estimated that the
memory utilisation of the x86 platforms could be up to 30% lower if given the same
compressed images.

Processing Time

As expected, the laptop and desktop had a much shorter processing time than any
of the embedded platforms, in some cases up to 3 times faster than the fastest of the
embedded platforms. In general, all platforms and techniques took slightly longer
when tested with the ESSEX3IN1 dataset, as shown in tables 3.1, 3.2, 3.3, 3.4, 3.5 and
3.6, likely due to the uninformative images in this dataset. However, the results are
similar across all datasets.

The Raspberry Pi took the longest on all three datasets to complete RegionVLAD,
taking over double the time of the next platform. However, in contrast, the Pi had the
shortest processing time for HybridNet across all datasets. Despite this the process-
ing time for HybridNet was significantly longer than the other techniques regardless
of platform. UP had by far the shortest processing time using CoHOG, greatly out-
performing the other embedded platforms in terms of processing time.

All platforms perform well using both CALC and HOG with the shortest pro-
cessing times of all the techniques.

3.3.3 Power Consumption

This sub-section reports the findings of the power consumption of each technique
on all three of the embedded platforms used for testing as shown in figure 3.6.

The Raspberry Pi showed a clear superiority with both low power consumption
and relatively low computation time despite being constrained by RAM limitations
and having to use swap space on the micro-SD card. This low power consumption
is likely due to having an ARM processor and no active cooling unit. In comparison
the Odroid board consistently demonstrated the highest power consumption per
unit time of the three embedded platforms at least partially due to its active cool-
ing unit. This comparatively high-power consumption makes for an unfavourable
trade-off between computation time and power consumption. The Odroid board
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TABLE 3.8: Table showing weights for each board.

Name Weight
UP 97

Raspberry Pi 3 model B 43
Odroid XU4 64

Laptop 1221
Desktop N/A

also suffered from RAM limitations, resulting in paging to the micro-SD. The UP
board had a relatively low power consumption per unit time but took the longest
on most techniques. Despite taking the longest time for most methods, this is not
significant, giving the board an acceptable trade-off between computation time and
power consumption. Despite the slightly longer computation time, the UP board
was less constrained by RAM than the other embedded platforms.

3.3.4 Weight

Another factor to take into consideration is the weight of each embedded board, as
noted in Table 3.8. A heavier board will require the UAV carrying it to consume
more power to fly. Therefore, a lighter board is usually preferable. However, if this
lighter board comes at the expense of a board that draws more power for computa-
tion, this is not as favourable and another factor is added to the trade-off between
computation time and power consumption.

Of the boards, the Raspberry Pi is the lightest, at just over 2/3 the weight of the
next lightest board. This coupled with the lowest power consumption for processing
of the three boards makes it highly recommended. In contrast, the UP board is the
heaviest, at over double the weight of the Pi. This is due to its passive cooling unit
which makes the trade-off not as favourable. Finally, the Odroid board occupies the
middle ground between the other two in terms of weight. However, as stated before
this lighter board comes at the expensive of a high-power consumption, again mak-
ing the trade-off unfavourable. None of the embedded boards showed an advantage
over the others in terms of RMF. Therefore, power consumption and weight are the
primary factors when selecting a board.

3.4 Summary

As expected, the overall performance of the high-end platforms was greater than
those of the embedded platforms. However, the embedded platforms’ ability to
match the accuracy of the high-end platforms indicates good potential for future use
in the field of VPR. Out of the three embedded platforms assessed the Raspberry
Pi showed clear superiority, with the lowest power consumption, good processing
time and similar accuracy to the high-end platforms. Apart from the UP platform,
the embedded platforms struggled with descriptor size until additional swap space
was added, when performance was acceptable. Descriptor size will become less of a
problem as embedded platform’s memory capacity increases.

In terms of power consumption, the Raspberry Pi and Odroid platforms showed
the same trends in power consumption per technique, with the most power con-
sumed when using CALC and the least when using RegionVLAD. On the other
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hand, when the techniques were run on the UP board, CoHOG had the highest
power consumption. This is likely due to the UP board utilizing up to 4 cores when
performing CoHOG, whereas the Odroid and Pi did not use more than 2 when run-
ning the same algorithm. This is potentially due to architectural differences between
the x86_64 architecture of the UP board and the ARM architecture of the Odroid and
Pi.
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Chapter 4

Real-Time Matched Frames

Benchmarking has a significant impact on the understanding of a model’s useabil-
ity within a target application. Thus, evaluating VPR techniques is an important
area of computer vision research. This thesis proposes an evaluation framework
intended to provide useful information about a VPR technique’s usability within a
real-time application. This approach makes use of the incoming frame rate of an
image stream and the VPR frame rate, the rate at which the technique can perform
VPR, to determine how efficient various VPR techniques would be at performing
VPR in real-time. This is important because it provides new insight into the use and
practicality of VPR in a real-time environment.

4.1 Background

Autonomous operation of a mobile robotic platform requires the ability to locate and
identify the platform’s own location within an environment. Simultaneous localisa-
tion and mapping (SLAM) [31] is a widely researched area of autonomous robotics
that would enable a mobile robot to self-localise within an environment and main-
tain an accurate map of the surrounding environment. Typically, robots in these
scenarios are equipped with a wide variety of sensors to provide essential location
and motion information. In these situations, dead-reckoning is used to estimate
the robots position using collected sensor information. However, consecutive dead-
reckoning estimations accumulate errors, which become more significant the longer
the robot’s trajectories are. This causes incorrect assumptions of the robot’s loca-
tion within the environment. These accumulated errors can be corrected if the robot
revisits and recognises a previously visited location within the environment. This
is known as ‘loop-closure’. In a vision-based system, this is achieved if a robot is
able to recognise a previously visited location using only visual cues. Recalling a
previously visited location using only visual cues, deemed Visual Place Recognition
(VPR), has become a subject of great interest within the robotic vision community.

Over the years, many techniques have been developed to tackle the exceedingly
difficult task of VPR. A technique must be able to correctly identify whether, given
an image, the location has been visited before, as well as be able to correctly identify
and handle false positive results. Additionally, in order to be useful in autonomous
navigation, a VPR technique must be able to run, and handle image processing and
recognition, in real-time. Due to the number of different VPR techniques that have
been developed, each with their own strengths and weaknesses, it is useful to be
able to compare these techniques.

While there are many evaluation metrics that are widely used to evaluate Visual
Place Recognition (VPR) techniques, such as AUC-PR, RecallRate@N and EP, which
try to quantitatively summarise the matching performance of a VPR technique, their
extension to real-world scenarios can be at times ambiguous. The results obtained by
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these evaluation metrics are obtained based on the processing of an algorithm which
is fed images from a dataset one at a time when the previous image has finished pro-
cessing. Subsequently, although higher AUC-PR/EP/RecallRate may reflect that a
technique retrieves mostly correct matches, real-world factors like image-retrieval
time and platform-speed are neglected. This means a highly compute-intensive tech-
nique that cannot be used in a real-world application (or in real-time) may be ranked
above others.

In a real-time scenario, cameras can provide up to 50 images per second. While
this is useful, if the VPR algorithm implemented cannot process images as fast as
a camera can provide them, then a decision must be made between processing the
next image provided or the image provided at the time. As such an algorithm with
high accuracy but also high computational time may be less effective in a real-time
scenario than an algorithm with low accuracy and low computational time.

This section provides a benchmark allowing for the evaluation of algorithms
with a view to real-world, real-time VPR. This work is not intended as a discredita-
tion to already established benchmarking methods. Instead it is intended to provide
additional methods of evaluation specifically geared towards real-time evaluation
and approximation. The use of real-time matched frames as a benchmark has no
bearing on VPR not performed in real-time.

4.2 Methodology

The following benchmark is aimed to allow for the evaluation of VPR algorithms
with a view to real-world, real-time applications. The proposal of this benchmark
is that the critical ratio of Incoming frame rate and VPR frame Rate will determine
whether a VPR algorithm will perform well in a real-world environment.

Let the sampling rate of the camera, which is usually a fixed value denoted as
frames per second (FPS), be F. Let the frames sampled per distance be D and the
speed of the platform be V. The incoming frame rate from the platforms camera, or
other vision sensor, can be computed as:

Incoming Frame Rate = min(K × D × V, F) (4.1)

In this equation K represents a unit-less constant that represents further down-
sampling cause by the vision pipeline. The VPR frame rate, which can be described
as the potential VPR matches computed per second, can be calculated as shown in
equation 4.2.

VPR Frame Rate = Floor(
1
tR
) (4.2)

The ratio G, as shown in equation 4.3, can have a maximum possible value of 1.
This is due to the fact that the maximum number of VPR query images that can be
matched can only be equal to the total incoming images provided.

G = Floor(max(
Incoming Frame Rate

VPR Frame Rate
)) (4.3)

It should be noted that the modelling of Incoming Frame Rate is one traversal-
specific and that the Incoming Frame Rate can also be an explicit specification from
either the computer vision or a robotics VPR application.

Let’s say that on a particular dataset traversal, all of the query images have been
matched by a VPR technique based on the ground-truth. A Boolean list Lmatches is
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Algorithm 1 Computing RMF

Original_Matches_List = Listmatches
Nq = Length(Listmatches)
Mq = Sum(Listmatches)
RMF = 0
V, D, F, K : Given
G : Computed
for all index, element in Listmatches do

if (index + 1)%G = 0 or index = 0 then
if element = 1 then

RMF = RMF + 1
end if

end if
end for
return Mq, RMF

calculated based on all query frames in order of traversal, where the list element 1
identifies a true positive and the list element 2 identifies a false-positive result. Often
within VPR this information is already computed for plotting PR-Curves. Given the
ratio G, a VPR technique will only be able to perform VPR for a query frame after
some constant frame interval based on G.

The total correctly matched query images in a VPR dataset at the maximum value
of recall can be denoted as Mq out of a total of Nq query images in the dataset.
Based on the prospective loss of potential place matching candidates for a slow VPR
technique due to G > 1, the number of total matched query images will reduce
to Real-time Matched Frames (RMF) out of a total of Nq query images. This RMF
can be interpreted as an active evaluation metric and we compute this RMF using
Algorithm 1. With all the parameters required to calculate RMF combined, it can be
thought of as a simulation of a traversal through an environment at a given speed,
reference map and sampling rate.

4.3 Experimental Setup

4.3.1 Evaluation Datasets

As stated in Chapters 1 and 3, there have been many datasets developed specifically
for the task of VPR. As part of the experiment laid out in this Chapter we chose
several datasets for assessing each technique against the evaluation criteria. The
datasets chosen were the same a described in Chapter 3.

4.3.2 VPR Techniques

The experiment in this chapter is carried out on a number of state-of-the-art VPR
techniques. The techniques used are the same as described in Chapter 3. The se-
lected techniques were chosen to include a range of VPR technique methodologies.
HOG and CoHOG are traditional handcrafted feature-based techniques, they re-
quire no training before use. AMOSNet, HybridNet and RegionVLAD are CNN-
based techniques, with RegionVLAD including an additional pooling stage to com-
pute image descriptors. CALC is based on the use of an auto-encoder.
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4.3.3 Evaluation Metrics

In addition to the evaluation metric presented in this chapter, the matching perfor-
mance of each technique on each platform is evaluated to further demonstrate the
need for an evaluation metric designed with a view to real-time, real-world applica-
tions.

Matching Performance

The image with the highest matching score extracted from the mapped reference
dataset should correspond to the query image of the same location. Each match
and its corresponding similarity score are then used to calculate the precision-recall
value for each technique, for each dataset, for each platform.

The area under a precision-recall curve (AUC) is widely accepted as a good
method of evaluating the matching performance of a VPR technique. For our study,
we compute the precision and recall for every matched and unmatched query image.
Using these values, we compute the AUC using the equation 4.4.

AUC =
N−1

∑
i=1

pi + pi+1

2
× (ri+1 − ri)

where; N = No. o f Query Images
pi = Precision at i

ri = Recall at i

(4.4)

4.4 Results and Analysis

4.4.1 Real-Time Matched Frames (RMF)

Overall, CALC managed to successfully match the most frames across all platforms
and datasets, as presented by the graphs in figure 4.1, often greatly out-performing
the other techniques. Out of all platforms, the laptop demonstrated the highest num-
ber of successfully matched frames within the real-time constraints, significantly
more than the UP or Odroid boards despite having comparable processor speeds.
The desktop platform had the highest processor speed, despite this it has the second
highest number of matched frames. The Raspberry Pi had the least overall number
of correctly matched frames. This makes sense as the Raspberry Pi has the lowest
processor speed of all platforms.

Campus Loop

Across all platforms, CALC correctly matched the most frames within the real-time
constraints greatly out-performing all the other techniques. RegionVLAD and Co-
HOG perform relatively consistently across all platforms, albeit quite poorly. The
remaining techniques also perform relatively poorly on the Desktop and Laptop
platforms however their performance drops when performed on the embedded plat-
forms.
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ESSEX3IN1

Similarly, to the campus dataset, CALC performs the best on the Desktop, Laptop
and Odroid platforms, however on the remaining two platforms CALC has a simi-
lar performance as all the other VPR techniques. The other techniques all perform
similarly poorly across all platforms.

GardensPointWalking

Similar to the other two datasets, CALC again performs the best on all platforms, ex-
cept for the Raspberry Pi. Aside from RegionVLAD, which demonstrates a relatively
consistent performance, the remaining techniques struggle greatly on the embedded
platforms, unable to successfully match any frames within the real-time constraints.

4.4.2 Performance Benefit Curve

This sub-section reports the findings of the Precision-Recall of each technique on all
three datasets used for testing as shown in figures 4.2, 4.3, 4.5, 4.4 and 4.6.

As part of the findings of the experiment, it was discovered that the Raspberry
Pi and Odroid produced the same results in terms of Precision-recall. Similarly, the
UP board, laptop and desktop platforms all produced the same results in terms of
precision-recall. This is likely due to fact that both the Odroid and Raspberry Pi
boards use ARM processors, having arm64 or armhf architecture, and the UP board,
laptop and desktop use Intel Atom, Intel i7 and AMD Ryzen 5 processors respec-
tively, all sharing the x86_64 architecture.

ESSEX3IN1 Dataset

The ARM based platforms achieved the highest results using RegionVLAD, CoHOG
and HOG on the ESSEX3IN1 dataset, compared to the Intel/AMD platforms. In
addition, the raspberry Pi and Odroid achieved the highest results using CALC,
greatly out-performing the remaining platforms. Conversely, the Raspberry Pi and
Odroid boards achieve a slightly lower performance than the other platforms when
using AMOSNet. When using HybridNet, all platforms performed well, with only
slight variation between them.

Campus Loop

All platforms performed well on this dataset using RegionVLAD, HybridNet and
AMOSNet, with only slight variation between them, achieving state-of-the-art per-
formance using RegionVLAD. For the other techniques, the UP board, laptop and
desktop all performed well using CoHOG, with Raspberry Pi and Odroid achiev-
ing only a slightly lower performance. In common with the ESSEX3IN1 dataset, the
Raspberry Pi and Odroid achieved the highest results using CALC, slightly out-
performing the remaining platforms. In addition, the Raspberry Pi and Odroid
boards achieved the highest results using HOG for this dataset, greatly out-performing
the remaining platforms.

GardensPointWalking

The Raspberry Pi and Odroid achieved the highest results when using RegionVLAD
and CoHOG on this dataset, closely followed by that of the UP board, laptop and
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FIGURE 4.1: Graphs showing the Real-Time Matched Frames
(RMF) for every VPR technique used in the paper, on each board.
CALC achieved the highest RMF across all platforms, greatly out-
performing the other techniques. Of the platforms, the laptop demon-
strated the highest number of successfully matched frames within the

real-time constraints.
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FIGURE 4.2: Graphs showing the precision-recall of every VPR tech-
nique and dataset on the desktop platform.

FIGURE 4.3: Graphs showing the precision-recall of every VPR tech-
nique and dataset on the laptop platform.

FIGURE 4.4: Graphs showing the precision-recall of every VPR tech-
nique and dataset on the Raspberry Pi platform.

FIGURE 4.5: Graphs showing the precision-recall of every VPR tech-
nique and dataset on the odroid platform.

desktop. The UP board, laptop and desktop all performed well using CALC, Hy-
bridNet and HOG, with Raspberry Pi and Odroid achieving only a slightly lower
performance. All platforms achieved the same performance using AMOSNet for
this dataset.
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FIGURE 4.6: Graphs showing the precision-recall of every VPR tech-
nique and dataset on the UP platform.

4.5 Summary

The results of the RMF experiment clearly favoured CALC as the VPR technique
with the best real-world, real-time applicability. On the contrary, in the results of the
more traditional PR-curve evaluation, CALC had one of the lowest performances.
This indicates a trade-off between precision and computation time. Within this
trade-off it can be seen that CALC is superior when attempting to maximise per-
formance in terms of both accuracy and time across all platforms.

A clear limitation of RMF is in the assumption that the platform in question if
always moving at a constant velocity. However, in a real-world scenario, this is not
likely to be the case. For the purpose of benchmarking, this limitation can be largely
mitigated by partitioning the dataset sequence into sub-sequences that contain near-
constant velocities and processing them individually.

It can also be noted that due to the nature of its calculation, RMF will inherently
favour techniques that have true positive results distributed fairly evenly through-
out a traversal. This is opposed to techniques that have their true positives results
concentrated in certain regions of a traversal. This is due to the distance-based sam-
pling approach of RMF. A better analysis could be obtained by combining RMF with
the true-positives (loop-closure) distribution over a dataset trajectory, as proposed
by Porav et al. [115]. The metric proposed in [115] compliments the value proposed
by RMF for applications that require a loop-closure every few meters, otherwise the
localisation drift error becomes too large to handle.
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Chapter 5

Conclusion and Future Work

Firstly, this section will conclude the findings of the research discussed within this
report and results of the experimentation undertaken throughout the course of this
masters. Secondly, the potential directions of work continuing from this research
will be discussed.

5.1 Conclusion

Overall, the setup and results of two experiments were presented in this disserta-
tion. As well as some conclusions that could be drawn from the results and the
importance and value of the contributions presented.

The first experiment, as presented in chapter 3 focused on benchmarking the
performance of VPR techniques deployed on embedded platforms. The objective
being to understand what effects, if any, the architecture and build of an embedded
platform has on the accuracy and efficiency of each technique.

The high-end platforms, the reference laptop and desktop, achieved a better per-
formance across all techniques in comparison to the other platforms, in terms of the
efficiency metrics like CPU and Memory utilization. In retrospect this was to be ex-
pected as these platforms possess far superior processing and memory capabilities.
However, it can be noted that the embedded platforms; odroid, raspberry Pi and
UP, all achieved a similar accuracy to the high-end platforms. This indicated that
the embedded platforms have good potential for use in VPR applications.

Of the embedded platforms, the Raspberry Pi was shown to have superior power
consumption and good processing time, making it the best suited to VPR of the
three platforms. It was noted that the embedded often struggled with the size of
the descriptors generated by each technique until additional swap space was added.
However, this will become less of a problem in the future as platforms are improved
and subsequent memory capacity increases.

As a continuation of the first experiment, the second experiment, as presented
in chapter 4 sort to investigate the potential of VPR techniques in a real-time appli-
cation. This experiment, like the first, was performed on several platforms in order
to investigate whether embedded platforms could keep up with the high-end plat-
forms. This is because in a real-world application it is much more desirable to be able
to perform VPR on an embedded platform, due to their compact and lightweight de-
sign.

To this end a benchmark called Real-time Matched Frames (RMF) was presented
to indicate a technique’s predicted efficiency and accuracy in a real-time applica-
tion. This was presented alongside the PR-curves of each technique. PR-curves are
widely accepted as the best indicator of a VPR techniques performance, so these
were included to identify whether techniques that are traditionally excepted as well
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performing are better in a real-time application than those traditional accepted as
not as good.

CALC produced the highest number of accurate results, indicating it had the
most potential for real-time applications. However, several limitations of RMF were
noted, as well as some solutions to these limitations in chapter 4.

5.2 Future Work

A prime objective of this thesis is to suggest a number of research ideas and ex-
tensions to not only the work presented within this thesis but that will aim to fill
other research gaps identified within the field as a whole. To this end, a number of
research suggestions and extensions are enlisted below:

1. As mentioned in chapter 4 a better analysis of VPR techniques with a view
towards real-time applications could be obtained by combining RMF with the
true-positives (loop-closures) distribution proposed by Porav et al. [115]. For
applications that require a loop-closure every few meters, as otherwise the lo-
calisation error drift becomes too large to handle, the metric proposed in [115]
compliments the value proposed by RMF.

2. Another extension to the work presented in Chapter 4 to consider would be a
system that selectively applies a high performance VPR technique to frames as
they come in, combined with a lower performance VPR system that is compu-
tationally lightweight and can be applied to every frame. The system would
apply the lightweight techniques to every incoming frame and then determine
whether to apply the higher performance technique based on the predicted cer-
tainty, or respective similarity score, of the lightweight technique’s computed
match. Designing a system in this manner would theoretically result in a re-
duced overall computational complexity in contrast to just applying the high
performance technique. In addition, the system would theoretically provide
more accurate results in comparison to just using the lightweight technique.
In this manner the system would take the best strengths of each technique and
combine them.

3. The analysis presented in chapter 3 could be continued as new platforms and
platform versions are released. An example of such could be the Raspberry Pi
4, with more onboard RAM to help avoid paging to the micro-SD card.

4. As mentioned in chapter 3, GPU platforms were excluded from the experiment
due to a desire to keep power consumption as low as possible. However, with
the recent improvements in GPU technology it could be beneficial to repeat the
experiment instead focusing on GPU boards.

5. As an extension to both the work of Chapter 3 and to the previous suggestion,
it would be beneficial to observe the accuracy vs power consumption trade off
of several state-of-the-art CPU focused boards in comparison to state-of-the-art
GPU focused boards.

6. The evaluation performed in Chapter 3 was limited to small-scale datasets due
to the storage capacity of the embedded platforms. The datasets used, there-
fore, were not necessarily ideal for including a wide variety of appearance
and viewpoint variation in the experiment for the techniques tested to tackle.
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This experiment could be further extended to utilize large-scale datasets with a
greater degree of appearance and viewpoint variations, with a selection of em-
bedded platforms that possess greater storage capacity or as embedded plat-
forms improve over time.
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