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VI.  Abstract 

 

This project aims to achieve various goals related to the selection and optimisation of 

powertrain components in a hybrid powertrain system. To achieve these objectives, 

automatic generation, calibration, and comparison of algorithms have been implemented. 

This research offers the opportunity to optimise multiple targets, such as state of charge 

(SOC), components selection, CO2 emissions, drive modes, and driveability for McLaren's 

hybrid powertrain system. The robustness of the Equivalent Consumption Minimisation 

Strategy (ECMS) is generated automatically for different optimisation objectives, and 

robustness validation is performed. Additionally, automatic calibration of the torque split 

strategy is applied to optimise another PhD's work on powertrain components selection. 

All simulations are based on McLaren's powertrain model. 

Furthermore, the limitations of the McLaren powertrain model are discussed, which 

leads to the development of a new powertrain model. The research on powertrain 

modelling is explored, and the process of generating the new powertrain model is 

presented in this project. Calibration and validation of the model, along with the 

implementation of the control strategy, are also researched. The new powertrain model is 

named after me, YR-Sim. 

For the application of the Dynamic Programming (DP) algorithm, the new powertrain 

model has been modified and upgraded with more subsystems and features. All the inputs 

and outputs of these subsystems have been standardised. The calibration and validation of 

the model with different algorithms guarantees that the simulation results are comparable 

to McLaren's model with different algorithms and optimisation cases. 

Besides optimising CO2 emissions and SOC conditions, driveability has been 

introduced to research deeper into different algorithms. Driveability is still an open 

question, but in this project, some novel concepts have been introduced. CO2 emissions, 

SOC conditions, and driveability have been optimised and researched in different drive 

cycles, including NEDC, WLTC, FTP75, and even the Nürburgring race track. For different 

views of driveability, the benefits of the application of ECMS and DP have been deeply 

researched. 

Because this is a project that focuses on real industry applications, the research on the 

algorithms shows the pros and cons of these two algorithms in different dimensions. From 

the view of the industry, the research results bridge the gap between mathematical 

algorithm research and strategies application. A series of functions for automatic 

generation, calibration, and optimisation of control strategy, as well as the experiences in 

complex powertrain modelling, control, and validation, can also be used for future 

hybrid/electric vehicle platform development. 
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The academic goals for algorithm research include the performance comparison 

between different algorithms, as well as the calibration and validation of the powertrain 

model. The industry goals include algorithm application, robustness testing, and multi-

component selection in different drive cycles. Both of these two series of requirements are 

satisfied by the end of this project. 

For the novelty part of this project, a new quantitative definition of driveability is 

introduced and discussed. Based on this new definition and research on the torque margin, 

the relationship between throttle pedal position and torque margin is studied. Driveability 

is numerically divided into prediction and linearity, and both dimensions are quantitatively 

researched and compared between different algorithms. Another novel research is the 

parameterisation method of the powertrain model, which significantly accelerates the 

simulation speed of the model and transfers the model to a steady-state model to ensure it 

generates reliable results on different control calibrations. 

Regarding the application and contribution of this project, it has helped the industry 

sponsor, McLaren, to solve the problem of high-performance hybrid powertrain system 

driveability. During the engagement of the high-torque electric motor, the torque margin 

can be controlled, and the relationship between driveability and drive modes is discovered. 

This will be applied as an important reference for future high-performance powertrain 

system development. 

 

 

Keywords 

Hybrid powertrain, Energy management, Equivalent Consumption Minimisation Strategy, 

Dynamic Programming, Driveability, Optimisation, Calibration 
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Chapter 1.  Introduction  

1.1. Background of the research  

With the development of propulsion systems for next-generation vehicles, powertrain 

simulation and modelling are becoming increasingly critical in the development process. 

Software is playing a more important role in modern vehicles. In fact, the features and 

functions are defined by the software inside the car. The software-defined vehicle’s 

functions and properties are enabled by software [1]. These vehicles require more complex 

features development progress, which will accelerate and enhance virtual development’s 

accuracy, speed, and reliability [2]. In the market forecast of connected and autonomous 

vehicles [3], in five years, the complexity of automotive software will be 1000 times greater 

than today [4].  In the UK, in order to reduce the development cost of software development, 

the latest prediction is that the software development process for a new car will be 

compressed to 18 months in the coming 5-10 years.[5], and the cost of the software 

development will need to be a quarter of today’s current estimation [6]. In the development 

of vehicles, a more comprehensive application of model-based simulation, calibration and 

validation will be required to accelerate the evolution of software-based development. 

Data-driven vehicle software development includes several different parts of 

subsystems in a vehicle software structure. The software taxonomy of vehicle software was 

researched in the early 1990s and resulted in a draft software structure [7] for autonomous 

vehicles. In the cyber security research of software-defined vehicles, the propulsion system 

is one of the software developments of vehicle systems [8]. To reduce the total cost and time 

requirement of vehicle software engineering, which will also reduce the total cost of vehicle 

development, the virtual development of propulsion systems based on modelling, 

simulation, and calibration is essential for future next-generation vehicle powertrain 

systems.     

In developing next-generation powertrain systems, the technology route is based on 

the legislation driven to be carbon-neutral from 2020[9]. At that point, hybrid and fully 

electric powertrain systems were considered one of the future development trends for 

carbon-neutral passenger transport – not the only option but an essential solution. After ten 

years, new challenges for vehicle development were discussed, and the next-generation 

powertrain system was recognised as one of the critical research areas in the future research 

domain [10]. However, in this project, this research domain will not be discussed. Electric 

vehicles (EV) and plug-in hybrid vehicles (PHEV) will be explored, with research hotspots 

around software design: modelling, simulation, energy management, and control 

strategy.      

From 2015 to 2020, the concept of carbon footprint requires tracking carbon emissions 

over the whole lifecycle of any powertrain system [11]. Battery production lifecycle costs need 
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to be reduced. Another review of the future of the powertrain system in 2020 introduced 

that [12] battery research is still the most critical area of powertrain component research. The 

trade-off between battery whole lifecycle carbon footprint and battery capacity still needs 

to be considered and researched.     

In conclusion, the research trend on powertrain systems can be summarised as below:  

1. Software research is now playing a crucial and increasingly large role in powertrain 

development; the development time duration needs to be reduced with lower cost on 

finance. Hence, a more intelligent development method for software systems is required 

for vehicle development. It should meet different cases and objectives of next-

generation propulsion systems in the future.   

2. In propulsion system software design, the control strategy on the energy management 

system is the top level of system software design. It includes subsystems and 

component modelling, algorithm simulation, optimisation calibration and validation. 

Propulsion system control strategy generation and optimisation are primarily software 

design processes for next-generation propulsion systems.  

3. Battery capacity requirements increase due to the demand for improved electric vehicle 

ranges. However, given carbon neutrality and carbon footprint, high-capacity batteries 

generate higher carbon emissions over their whole lifecycle, especially during the 

recycling time domain – for the heavy mental elements’ harmless treatment and 

recycling – than the manufacture of small batteries. Additionally, the battery carbon 

footprint highly depends on the energy supply structure of the electric grid. As a result, 

the high performance/efficiency battery still requires more research for these 

discussions. 

4. Plug-in hybrid vehicles (PHEV) have a more complex control and physical structure 

than pure electric vehicles (EV). Two different energy resources demand a better 

optimised and validated control strategy for their software design. This creates a new 

trade-off problem between powertrain control strategy generation cost and 

performance for different propulsion systems for upcoming generation software-

defined cars.   

Based on the introduction and previous discussion in this chapter, the background of 

this research area can be shown in figure 1.1:  
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Figure 1.1   The motivation for hybrid propulsion research 

  This figure shows the motivation trend from external legislation and marketing 

requirements to hybrid powertrain research. That is the reason why people spend money 

and time developing the next propulsion system for years. 

1.2. Research motivation of this project  

The market sizes for hybrid and electric vehicles keep increasing from the estimation.   

 

Figure 1.2  Market scaling for PHEV and BEV in the UK 

 Development costs continue to rise caused by higher product/marketing costs with 

fiercer competition and expanding marketing [13]. Considering the full life-cycle 

development of the vehicle manufacturers, the platform-based development of new 
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generation propulsion is essential, as well as the increasing financial pressures on new 

vehicle development [14].  With the expansion of the hybrid / electric powertrain market, the 

development of hybrid / electric vehicles is going faster than before. The vehicle system 

research needs to be faster than before to reduce the development cost. In this trend, vehicle 

industries are working on platform development for hybrid vehicles.   

The platform design of the powertrain system includes different component selections, 

component scaling (especially on batteries), and system layouts for other vehicle 

applications [15]. For the motivation of this project, the application of the algorithms is based 

on different components selection, which is still left blank for the hybrid powertrain control 

research – this will be discussed in chapter 2, from the literature review. Significantly, the 

simulation of fundamental powertrain components, including batteries, gearboxes, engines 

and electric motors, is still waiting for research.   

Another motivation is the comparison between powertrain control strategy generation 

algorithms. The development of powertrain control strategy generation algorithms has 

been researched for many years; the research trend and milestones will be reviewed in 

chapter 2. Most of the research area focuses on the emission of the algorithms. In this 

research, some new dimensions will be compared; some unique views will be introduced 

to dig deeper into these hybrid powertrain control strategy generation algorithms.   

Hence, for this project, to support future rapid development, especially for the platform 

development on a hybrid powertrain system, the research and simulation of different real 

components with component scaling and robustness is fundamental. The selection of 

components will directly affect the performance of the hybrid powertrain system. On the 

one hand. From these requirements, fast simulation, and self-adaptive control algorithms 

for different cases and components, with automatic generation of control strategies, is one 

of the very important research domains nowadays. On the other hand, the comparison 

between algorithms needs to be reviewed in different dimensions, not only for emissions 

and efficiency but also for other views, especially for high-performance powertrain 

systems.   

1.3. The expected delivery of this project 

This project is funded by IDE (Institute of Digital Engineering [16]). It develops the 

capability to model and simulates the powertrain components and controllers for a variety 

of systems. There are two main parts of this project: one is to build different components 

optimisation for different requirements of vehicle models. The architecture of the 

powertrain system can be modified based on different component selections. Another one 

is to unlock the automatically controlled strategy generation methods for different 

component selections. Additionally, based on different control targets and requirements, a 

multi-case comparison of different algorithms needs to be delivered.   

This thesis will focus on the second part of this project, the control algorithm 

automatically calibration, optimisation and comparison.  

A webpage will be established, and there is the link:  

https://www.ide.uk/project-apas  
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1.4. The overall structure of this thesis 

This thesis has nine chapters. In the first chapter, the background of this project will be 

introduced. The current research status, and the motivation of the research will be delivered. 

Also, the expected delivery of this project will be given in this chapter. Finally, the whole 

thesis structure will be presented at the end of this chapter.  

Chapter two is the literature review. The development history of the powertrain control 

strategies is reviewed in time series. From the 1990s to the 2020s, the development history 

of the powertrain control algorithm is checked. The reviews are given by different 

algorithms. After that, the research gaps are discussed, and the research trend is explored. 

One thesis and one project cannot solve all the open problems, but the location of this 

project is given in this chapter. Afterwards, the research boundaries will be finally 

delivered.  

Chapter three is an overview of the powertrain model. The research of the powertrain 

control algorithms requires two important things: one is the model, and another is the 

algorithm. The powertrain model is a complex nonlinear MIMO system (Multi Inputs Multi 

Outputs) with several levels of subsystems. A powertrain system contains many different 

features, the general overview of the powertrain model will be given in this chapter. Also, 

because this project uses McLaren’s LVSIM powertrain model as a reference, the LVSIM 

model is also introduced in this chapter.  

Chapter four is an overview of the powertrain control algorithm. In this thesis, two 

algorithms are applied, one is the ECMS (Equivalent Consumption Minimisation Strategy), 

and another is the DP (Dynamic Programming). These two algorithms are introduced from 

their basic theory and methodology of calculation. Finally, the data flow of these two 

algorithms is discussed, and the differences between these two algorithms will lead the 

research to the next step.  

Chapter five follows chapter three. The limitation of the industry sponsor – McLaren’s 

powertrain model is discussed, and the necessity of building a new powertrain model is 

researched, which leads the research of new powertrain model afterwards. All the research 

on subsystems are presented with their physical model from McLaren. Also, the data flow 

is discussed. Afterwards, the application of these two algorithms is researched. Based on 

the requirements of this project, the applications of the algorithms in the model are all 

researched deeper. The discussion and research on the algorithm will lead to the next 

chapter, the study on the calibration.  

Chapter six is the research on the control algorithm calibration and validation. It 

follows chapter four. Some extra add-on subsystems of the YRSim model are introduced. 

Afterwards, the calibration between LVSIM and YRSIM is discussed. Because in this project, 

the control strategy needs to be generated automatically, so the application of the ECMS 

and the relationship between the equivalent factor and the simulation results are discussed. 

Subsequently, the robustness of the algorithm and the model is researched, leading to the 

discussion on the sensitivity between component selection and CO2 emission.  

Chapter seven is the simulation discussion of different algorithms, drive cycles, 

emissions and SOCs. The trade-off between CO2 emission and battery consumption (which 
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shown in SOC) is compared from ECMS and DP. The correlation between final SOC and 

the drive modes design is also discussed here, which leads the reason for using final SOC 

as one of the optimisation criteria. The performance of these two algorithms is also 

reviewed in different drive cycles. Afterwards, driveability is researched for these two 

strategies. Even though it is still an open question, some conclusions are given based on a 

lot of simulation data, and the pros and cons of these algorithms are reviewed in this 

chapter.  

Chapter eight is the simulation of the Nürburgring race track. It is a very tough and 

famous race track which will push the McLaren powertrain system into its limitation. The 

simulation of this track is researched in 1 lap and five laps to simulate the driver on an 

actual track day condition. The DP and ECMS are compared on fuel economics and 

driveability. The simulation is comparable with the previous chapter to review the whole 

performance area of the powertrain system in different control algorithms on other 

dimensions.  

Chapter nine is the conclusion of the whole project. From the start of this thesis, the 

entire story is reviewed, with the initial motivation, the exploration of the research gap, the 

establishment and calibration of the model, the application of the algorithm and the 

simulation of different cases. The conclusion is given to guide future work in this research 

area.  

The whole thesis structure is shown below figure 1.3:  

 

Figure 1.3 The thesis structure 
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Chapter 2.  Literature Review 

2.1.  Introduction of this chapter  

Research into hybrid powertrain systems started in the 1980s, with the earliest patent 

on hybrid powertrain systems published in 1983[17]. During that period, there was no 

research into control strategy and powertrain system optimisation and the application and 

benefits of the hybrid powertrain are not deeply explored, but mainly focused on the 

availability of the application of electric drive. The legislation during this period was not 

tight enough to push the industry to spend money on a new concept of powertrain systems; 

the main achievement currently was the definition of the hybrid vehicle. The motivator for 

hybrid powertrain system research was the competition in fuel consumption between 

vehicle manufacturers, where the use of an E-Motor can reduce fuel consumption in cold 

start conditions. The control strategy of hybrid powertrain systems experienced rapid 

development from the late 1990s and continues today with the advent of stricter emissions 

requirements [18]. This chapter will discuss a brief literature review of the development 

history of hybrid powertrain control strategy and future research directions. 

2.2.  1990s research 

In this period, the research on hybrid powertrain systems was just started. There are not 

that many algorithms and applications for this research domain, and the simulation and 

modelling of the powertrain systems were still on explored.  

In 1997, Toyota published the first generation of the modern mass-produced hybrid car. 

This car is equipped with a 1.5L DOHC L4 engine and a 30kW electric machine [19]. The 

control strategies include the behaviour control of gear shifting and the regenerative 

braking system. It is a rule-based strategy algorithm, and it focuses on the gear-shifting 

strategy and gear ratio optimisation [20]. As the first mass-produced hybrid car, the 

controller is a rule-based (heuristic) controller. The timeline is concluded in figure 2.1: 

 

Figure 2.1    Development history in the 1990s 



23 

 

During this period, the rule-based controller was the most used algorithm due to the 

simple application and low cost of computation. At Ohio State University, the research 

focused on the energy management of the powertrain system, and the rule-based controller 

was calculated from the efficiency map of the components [21]. The University of Michigan 

also used the same strategy in 1999[22]; a toolbox ADVISOR is introduced; the control 

strategy is also Rule-based. The fuzzy logic control strategy was first applied to hybrid 

powertrain control in 1998[23]. The fuzzy logic control strategy was applied to identify the 

vehicle’s workload and decide the battery’s charging and discharging condition.   

The rule-based controller is generated without predicting the drive cycle; it is an un-

causal algorithm. 

2.3. Early 2000s research (2000 - 2005) 

Rule-based control was developed with more optimisation objectives. It was applied 

with a more accurate battery model and tested with a real car [24]. It was also designed with 

online-optimisation requirements; it was an optimisation based on multi-objective [25]. The 

simulation speed was quite fast – which makes the probabilities for the online optimisation, 

it is the benefits of the rule-based controller.   

With the development of the powertrain model, some researchers applied a clutch to 

control the energy split between the combustion engine and the electric motor. The PI 

controller was used during this period [26].  

The first ECMS (Equivalent Consumption Minimization Strategy) was published in 

2005[27]. This paper introduced the ECMS strategy with a powertrain system equipped with 

a regeneration braking system. The rule-based controller was applied as a reference, and 

the improvements from ECMS to RB on fuel consumption are roughly 5%. The ECMS was 

a single objective application here.  

The application of a rule-based controller was extended during this period. Due to the 

low cost of the computation, the rule-based controller was applied to compare the battery 

energy consumption [28] In the view of energy storage, another paper delivered the rule-

based controlled performance comparison between ultracapacitor and fuel-cell batteries 
[29].  

The DP (dynamic programming) and SDP (Stochastic Dynamic Programming) were 

applied to optimise the route of robots in a given area in the 1990s. It was used to optimise 

the traditional powertrain system (without hybrid and electric propulsion systems) from 

2002 [30]. The application of DP into a hybrid powertrain system with “route seeking” 

methodologies come from here.  

Compared with the last time, the research on hybrid powertrain system control started 

to apply optimal control strategies. More strategies are researched, and the development 

timeline is shown as figure 2.2: 
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Figure 2.2    Early 2000s research tracking 

Blue line: Rule-based control; Green line: PI control; Orange line: ECMS algorithm; Purple line: 

DP/SDP algorithm; Solid square: objectives both researched on ECMS and Rule-based algorithms 

In conclusion, during this period, the rule-based controller is wider applied, with the 

optimisation and comparison of energy storage components. The ECMS was introduced by 

the end of this period. DP and SDP were first introduced into the powertrain control but 

not the hybrid propulsion system.  

2.4. Late 2000s research (2006 - 2010) 

2006 is the first year that Dynamic Programming (DP) and Stochastic Dynamic 

Programming (SDP) algorithms be applied to hybrid powertrain systems. Two papers used 

DP to generate the control strategy for PHEV based on the given powertrain system and 

drive cycle[31][32]. The powertrain objective and the drive cycles were all defined, and DP was 

not compared with other algorithms. The application of SDP (stochastic dynamic 

programming) into the powertrain control had been researched at the University of 

Michigan in 2006[33]. This paper generated the control strategy from the SDP algorithm and 

applied it to a series of hybrid powertrain systems. The Markov chain model was applied 

to estimate the system requirement, such as power requirements and vehicle speed. Still 

from the University of Michigan, in 2008, the SDP, DP, rule-based controller and ECMS 

(Equivalent Consumption Minimization Strategy) algorithms were tested on THS (Toyota 

Hybrid System)[34]. This paper showed that the performance between SDP, DP and ECMS 

are roughly the same on the THS system, and all of them are much better than the Rule-

based controller. For another DP application, Approximate Dynamic Programming (ADP) 

was applied to the generation of control strategy in 2008[35]. The ADP was compared with 

DP in this paper.   
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For ECMS strategy, the research during this period started with the combination of 

Rule-based controllers[36]. The DP was compared with RB-ECMS here, and it shows roughly 

the same performance as DP. Another version of ECMS, the Adaptive ECMS (A-ECMS), 

was introduced and compared with DP and ECMS[37]. This paper compared different 

algorithms' fuel economic and SOC conditions on different drive cycles. In 2009, another 

algorithm, Pontryagin Minimum Principle (PMP) was compared with ECMS[38], and these 

two algorithms showed roughly the same economic performance in the given designed 

powertrain system. ECMS and PMP were compared in another paper[39] and the online & 

offline optimisation was discussed. The differences between online and offline optimisation 

are the prediction and estimation of drive cycle and driving behaviour. Based on A-ECMS, 

it was discussed again[40] based on the optimisation of fuel-cell hybrid powertrain system. 

Additionally, the differences between ECMS and A-ECMS were concluded in 2010[41].   

For mentioned algorithm, Pontryagin Minimum Principle (PMP), the first application 

of this algorithm was in 2006. One of the papers focused on the modelling of the powertrain 

system[42] while another researched on the requirement of driveability[43]. The modelling of 

the powertrain system highly correlated with the layout and energy flow management of 

the system, and the driveability definition is still an open question. Afterwards, PMP was 

applied to design and optimise the engine start-stop system in 2007[44]. For the energy 

management, the PMP was applied to control the power split for the hybrid powertrain 

system[45][46]. In 2010, the relation between ECMS and PMP was discussed, and PMP was 

compared with DP[47]. The DP performance is slightly better than PMP, while PMP and 

ECMS have the almost same performance and methodology in the end.   

GA (Genetic Algorithm) was applied to generate and optimise the hybrid powertrain 

system from 2005[48], but the first application was used to optimise the components selection. 

Afterwards, in 2006, it was applied to design the control strategy for hybrid powertrain 

based on a given drive cycle[49]. In 2007, the GA was applied to optimise series powertrain 

system[50]. Continually, the GA was kept being applied into hybrid powertrain sizing 

optimisation[51][52] and it was developed to MOGA (Multi Objective Genetic Algorithm) to 

meet different requirements. The MOGA was combined with ADVISOR toolbox to 

optimise the components and control strategy[53] for a hybrid bus.  

The rule-based controller was still researched during this period of time. The game 

theory was added into the rule-based controller to design the mode changing strategy while 

the SDP was applied as the reference [54]. Afterwards, in 2008[55] and 2009[56], the fuzzy logic 

was added into rule-based controller. With the combination of fuzzy logic, the rule-based 

controller is called heuristic controller.  

As discussed, the prediction of the drive cycle is very important for the control strategy 

optimisation. In 2007, Markov Chain was applied to predict the behaviour of the powertrain 

system[57], and it was combined with SDP algorithm to design the strategy. Afterwards, in 

2010, the Markov Chain method was applied to integrated with Model Predictive Control 

(MPC). Two papers[58][59] applied this strategy to design and optimise the control strategy of 

power management. They implemented the Markov Chain to process the previous driving 

behaviour and predict the future driving cycle to do the model-based control.   
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The research on modelling of hybrid powertrain also experienced a development; 

researchers could describe the system behaviour more accurately than previous. The 

research trend can be shown in figure 2.3:  

 

Figure 2.3    Late 2000s development history  

Blue line: Rule-based control; Green line: PMP algorithm; Orange line: ECMS algorithm; Purple line: 

DP/SDP algorithm; Light blue line: GA; Grey line: MPC; Dash line square: both compared in one research; 

Blue arrows: use as benchmark and reference; Solid square: Important algorithm; Red square: essential 

algorithm in several different researches. 

In summary, the DP was widely developed during this period of time. The S-DP, A-DP 

and DP were compared with each other. In these algorithms, the prediction and estimation 

of driving behaviour and drive cycle were also discussed. For ECMS, the A-ECMS was 

introduced, while the RB controller was combined with ECMS together. The ECMS also 

been compared with other algorithms, and all these simulations were based on same 

designed components with given drive cycles. Additionally, PMP was introduced during 

this period, and most of the research applies ECMS as the benchmarking of PMP. During 

the same time, GA and MOGA were widely applied to the optimisation of powertrain 

components, and Rule-based controller was developed with fuzzy logic and game theory, 

which leads the rule-based controller evolved to heuristic strategy. The MPC was also 

developed during this period, while the Markov Chain was applied to predict the drive 

cycle.  

2.5.  Early 2010s research (2011 – 2015) 

For ECMS, in 2011 and 2012, the adaptive ECMS (A-ECMS) was compared with ECMS 

on the PHEV control strategy[60][61], and the drive ability was researched in 2011 based on 

ECMS[62]. Afterwards, in 2013, the calculation of equivalent factor of ECMS was tried to be 

calculated from power, and the robustness of the algorithm was discussed[63]. Also, because 



27 

 

ECMS can be implemented off-line, the real time control based on ECMS was researched[64]. 

In the optimisation of ECMS, the drive cycle needs to be considered as one of the inputs in 

the algorithm, and the adaptive ECMS (A-ECMS) does need the drive cycle as a time-

forward input. In 2011, adaptive ECMS (A-ECMS) was applied to real-time optimisation[65]. 

The ECMS generated control maps to the real-world powertrain system, the efficiency and 

emission result between simulation and real-world test were compared. In 2014, another 

paper[66] compared algorithms with a neural network to estimate the driving behaviour of 

the bus. Then A-ECMS was applied to optimise the powertrain strategy for plug-in bus, 

based on the estimation of driving behaviour. In the end, ECMS was compared with DP on 

fuel consumption. In 2015, the speed prediction of A-ECMS was researched again[67]. It 

could be found the benefits of drive cycle prediction of A-ECMS and it was compared with 

ECMS.     

For DP, in 2012, there was one research that focused on the battery healthy and engine 

S/S system with DP control strategy[68]. Then from 2012 to 2013, there was a series of paper, 

with two parts, that introduced intelligent optimisation of the hybrid powertrain 

system[69][70]. The first paper applied DP (Dynamic programming) to design the power split 

strategy of the hybrid powertrain system. This paper applied 11 different drive cycles to 

train the neural network and implemented the generated power split strategy into the real 

world to test the performance. In the second paper, they established another machine 

learning block, to estimate the short term and long-term drive behaviour in the real world. 

The neural network with DP optimised the energy management strategy of the powertrain 

system. The control strategy was applied to a Ford hybrid car. The performance of these 

control methodologies was compared with default Ford control strategy. So, in these two 

papers, there are three machine learning tools generated: a neural network trained to 

predict roadway types and traffic congestion levels, a neural network to predict driving 

trend, and a DP-based neural network to generate the optimised power split strategy for 

hybrid vehicle powertrain system. In 2013, the DP was compared with PMP, based on a 

parallel hybrid powertrain system[71]. During the same time, the DP was applied to optimise 

the sizing of Li-ion battery[72]. Afterwards, in 2014, several pieces of research focused on the 

DP algorithm. The supervisory control strategy was compared with DP[73], while DP can be 

considered as the “gold rule reference” of control strategy. Because the DP needs whole 

drive cycle to optimise the hybrid control strategy, so cloud-based velocity prediction was 

added with DP strategy[74]. This research generated a daily driving behaviour estimation 

based on cloud data strategy, then apply DP to generate and optimise the control strategy. 

Also, DP was applied on components sizing optimisation again at this time[75], on a hybrid 

bus. In 2015, one important research focused on the Stochastic DP (SDP)[76]. This research 

considered the battery healthy with a cost function combined with battery C-rate. The 

application of the SDP was under the environment of real world. The SDP was applied to 

dyno test and the result was compared with previous default control strategy. During the 

same time, the DP was applied to a powertrain system equipped with Electric Variable 

Transmission (EVT)[77]. On the view of delta SOC and torque increment, the DP was applied 

to check the sensitive of these two cases on a designed Chinese drive cycle[78].      

Another very important control algorithm, Pontryagin Minimum Principle (PMP) was 

researched during this period. In 2013, PMP was researched with multi objective 
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optimisation[79]. The limitation of SOC was discussed in this paper, and from the 

comparison with DP, it showed roughly same performance as DP. In 2014, more research 

came to this algorithm. For backwards simulation, DP needs to calculate the cost-to-go 

function from the end of drive cycle, and there was research applied PMP into this kind of 

simulation[80]. It utilized a shooting method with multiple initial conditions based on the 

concept of the Newton-Raphson method and compared with DP in the end. Also, the ECMS 

and PMP were compared in 2014[81]. For PMP, the prediction of drive cycle could also affect 

the optimisation result, and there was a paper generated a model to predict the 

transportation scenario[82], which was called trajectory prediction. A power-split hybrid 

powertrain model was established, with PMP control algorithm. In this paper, the 

optimisation criteria were the SOC of battery. PMP was compared with the rule-based 

controller in this paper.   

A cooperative project between Bosch and the University of Michigan showed that the 

rule-based controller still works well for a series hybrid powertrain system[83]. In 2011, in 

this paper, all the controllers were designed for a real system, the controller calculated from 

the signal from different components’ sensors. The rule-based controller covered all the 

requirements. The rule-based controller had also been used for CNG-super capacitors 

heavy-duty vehicles in 2015[84]. This research firstly modelled the CNG-super capacitors 

system in Simulink, secondly the model was controlled by the rule-based controller and 

tested in the NEDC drive cycle.      

MPC (Model Predictive Control) method was applied to the hybrid powertrain control 

strategy generation in 2012[85]. The simulation was based on a series hybrid system. Firstly, 

they generated a simple controller to design the working line of the engine in one drive 

cycle. Secondly, they applied MPC for the model controller. The MPC had the appealing 

capabilities of enforcing constraints on system inputs and states, which were needed for 

power smoothing, and of accounting for different objectives by a cost function, such as the 

power transition smoothness and the battery charge stabilization. Then time travelled to 

2015. In this year, two pieces of research focused on MPC and Markov Chain drive cycle 

prediction. One paper delivered the Markov Chain application with PMP strategy. The 

prediction of drive cycle improved the performance of PMP, and this simulation was 

recognized as model predictive control[86]. Another paper showed the Markov Chain 

predict the drive cycle and road grade inputs[87]. The result of this MPC (Model Predictive 

Control) optimisation was compared with SDP (Stochastic Dynamic Programming). Also, 

it showed the performance benefits from the prediction of driving cycle.  

GA (Genetic Algorithm) was applied to the optimisation of PHEV control strategy for 

a given fixed roadmap[88]. In this paper, the GA was applied to optimise the gear shifting 

strategy. The approach was to protect the SOC condition for a given drive cycle. The 

optimisation was designed for a city bus in China. The GA designed the controller of ICE 

and electric motor, to reduce the total cost of the whole drive cycle.   

There were some paper overviewed the development of the hybrid powertrain system 

control issue. The discussion on optimal energy management strategies was given by Lino 

Guzzella[89]. This paper discussed the history of hybrid powertrain development and 

introduced different system optimisation algorithms. The most important thing in this 

paper is the comparison between different algorithms and the research direction in different 
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universities. The future of these algorithms has also been discussed in this paper. Another 

paper[90] discussed the modelling and control of the hybrid powertrain system in these years. 

This paper is more related to components modelling level, including the discussion on the 

different topologies and control theories. The future on the layout of the hybrid powertrain 

system and their control strategy development has also been discussed in this paper.   

From research in past years, the control strategy on the hybrid powertrain system was 

developed in different directions. After 2010, the research on this area becoming wider and 

deeper. More cases and algorithms had been tested and researched. The research trend is 

shown in figure 2.4:  

 

Figure 2.4    Earlier 2010s research track 

Blue line: Heuristic control; Green line: PMP algorithm; Orange line: ECMS algorithm; Purple line: DP/SDP 

algorithm; Grey line: MPC; Dash line square: both compared in one research; Blue arrows: use as 

benchmark and reference; Solid square: Important algorithm; Red square: essential algorithm in several 

different researches.  

In conclusion, the ECMS was developed to A-ECMS and A-ECMS was widely 

researched, not only based on simulation, but also tested in real world and compared with 

other algorithms. The prediction of drive cycle was also discussed with ECMS algorithm. 

During this period, the DP also experienced a lot of improvement. The neural network and 

machine learning were applied with DP in this period. The DP always requires a lot of 

computation time cost, so more intelligent algorithms were added with DP during this 

period. Also, because DP was always recognized as the best performance of control 

algorithm, the DP was considered as the references of other strategies. DP requires the 

whole input of drive cycle, so in some research, the prediction of drive cycle (Markov Chain 

or MPC) was combined with DP and SDP algorithm. The DP was also applied into the 

component’s optimisation, such as battery healthy research. Another algorithm, PMP, for 

the algorithm itself it was not deeper developed, but it was compared with ECMS and DP 

in many cases. Also, the prediction of the drive cycle was also discussed based on PMP 



30 

 

strategy. Generally, PMP has roughly same computation cost as ECMS, and both are able 

to get very close performance to DP strategy with the prediction of drive cycle.   

Rule-based controller still kept developing during this period of time. They were 

applied to real components with application case. GA was also applied to hybrid 

powertrain control strategy generation, but not very commonly used. During this period of 

time, because the control algorithms had been researched, there were some literature 

reviews that combined and concluded the existing algorithms. These literature reviews are 

very good reference for the conclusion of this paper. 

2.6.  Later 2010s research (2016 - 2020) 

In the previous period, most of the algorithms were researched and compared. For the 

powertrain system control strategy, there are two different clusters of algorithms. One 

series of the algorithms requires the estimation & prediction of the drive cycle, and another 

series of algorithms does not require the estimation & prediction of the drive cycle. On the 

prediction of the drive cycle, also has two different ways of inputs. For the DP series 

algorithm, the whole drive cycle needs to be the input of the optimisation, and the control 

strategy needs to be generated from the end of the whole drive cycle. For ECMS and PMP, 

the drive cycle needs to be the input in time series, what all need is the previous driving 

behaviour, the control strategy could be generated based on drive cycle prediction by 

Markov Chain or from RDE.   

The DP algorithm was kept researched during this period of time. It was applied as the 

reference for P2 and P1 HEV topology optimisation[91], and the power split strategy was 

discussed. This research was based on a parallel hybrid powertrain system, and the same 

research was done based on a rapid DP algorithm[92]. Due to the high requirement for 

computing time, the DP was accelerated and tested for different drive cycles. It can be found 

that DP is not researched as an algorithm independently but applied as a mature strategy 

for different applications. Another research[93] showed the DP application on the 

optimisation of the rule-based controller. This research focused on a parallel hybrid bus; 

the powertrain system was designed within three different working modes. Afterwards, 

the DP was combined as one of the optimisation objectives in the combination correction 

prediction energy management[94]. The fuzzy logic controller and the reinforcement 

learning were applied together with DP to generate the online correction predictive energy 

management strategy and compared with DP in the end. DP was also applied more 

practical during this period of time. It was applied for a range-extended hybrid vehicle[95] 

and a P2 HEV powertrain[96]. From previous research, the limitation is, the DP controller is 

an offline controller. Hence, stochastic DP (SDP) was applied as a real-time controller. The 

comparison of the hybrid battery system was introduced[97], with the application of DP and 

SDP. This paper researched different batteries modelling and applied these batteries into 

EV vehicles. The stochastic DP was applied to optimise the power distribution within the 

hybrid battery system in terms of energy efficiency. The optimisation was calculated based 

on the Markov chain to estimate the vehicle speed and power requirement. The 
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optimisation results between Deterministic DP (DDP) and Stochastic DP (SDP) were 

presented at the end of this paper. The research trend of DP is shown as figure 2.5:  

 
Figure 2.5 The development of the DP algorithm 

Blue arrows: use as benchmark and reference; Solid square: Important algorithm; 

  

ECMS research also kept developing in recent years. For ECMS, the equivalent factor of 

this algorithm is very important. There was one research that focus on the boundary of the 

equivalent factor[98], and it was applied to A-ECMS and compared with PMP. In the research 

of A-ECMS, the prediction of the drive cycle is very important. There was one research 

focus on the estimation of drive cycle based on A-ECMS[99]. Because the A-ECMS will 

optimise the equivalent factor with the process of drive cycle, so the prediction of vehicle 

speed based on the neural network will affect the behaviour and performance of the control 

strategy. The result was discussed and compared in this paper. For some cases, the 

calculation requirement (computing runtime) of ECMS was too high of some research. So, 

there was one research focus on the simplification of ECMS[100]. the equivalent factor is 

optimised off-line by the particle swarm optimisation (PSO) genetic algorithm under 

different driving cycles. In this research, besides PSO-ECMS application, the extreme 

learning machine (ELM) was applied for the prediction of drive cycle, and finally the results 

were compared with each other. Here, the ECMS was widely researched and combined 

with intelligence algorithms. Another paper implemented ECMS with the optimisation of 

the topology of the hybrid powertrain system[101]. The drive mode was coupled with the 

architecture of the hybrid powertrain system, and the optimisation of HEV scaling and 

control strategies are coupled with components design. ECMS was applied to generate the 

control strategy, which focuses on the gear shifting strategy. The robustness of ECMS was 

also discussed during this period of time[102]. In this paper, the sensitivity analysis on the 

equivalent factor was researched, and evaluated by SOC condition and fuel consumption. 

Afterwards, based on different drive cycle, the ECMS robustness was discussed, to check 

the sensitivities between different equivalent factors and SOC changing in different drive 

cycles. The adaptive ECMS (A-ECMS) had also been discussed in this paper. The ECMS 

had also been applied to real-time optimisation for the parallel hybrid system[103]. This paper 

used the drive speed information from the real-world test and generates the control strategy 

of E-Motor by ECMS from GPS speed information. The optimisation combined the driving 

cycle from previous information and the real-time GPS input data. The validation was the 

comparison between the rule-based controller and offline ECMS controller.  

With the development of machine learning, some new algorithms were introduced into 

the powertrain system control strategy generation. Reinforce learning was introduced with 

a Markov decision process in the control strategy generation[104]. This research based on a 
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parallel hybrid powertrain system. The reinforcement learning controller controlled the E-

Motor output of the system. On the view of intelligence control strategy, another research 

applied the Reinforcement Learning (RL) strategy with the prediction of the drive cycle in 

2019[105]. This research applied DP as reference and compared with RL strategy. The RL 

algorithm is called Q-learning. The DP has better performance, but the RL can predict the 

driving behaviour with real-time control, and RL was considered as an acceptable near-

optimised control strategy. On the view of reinforcement learning, the development of 

control algorithm experiences a new area: learning based control strategy. Generally, the 

learning-based control strategy does not need an exactly accurate powertrain model, but it 

requires a big amount of input data and output data. The control strategy will get closer 

and closer to the global optimal results, and most of the research applied the optimal-based 

strategy as reference to check the performance of intelligent learning strategy. There was 

one research applied the Reinforcement Learning (RL) into intelligent powertrain system 

model[106]. The algorithm is Q-learning network, and it applied rule-based PID controller to 

check the performance of the RL strategy based on different drive cycles. Another research 

applied another reinforcement learning algorithm: deep learning algorithm, to build the 

control strategy of the powertrain system[107]. This research also combined the components 

selection into the optimisation. The Bayesian Optimisation was applied onto the scaling of 

the components. On the control strategy, Deep Deterministic Policy Gradient (DDPG) was 

applied to find the optimal action requires an efficient evaluation of the Q-function within 

the deep learning. The results were compared and discussed based on the generation of 

control strategy and the optimisation of powertrain components. During this period of time, 

the reinforcement learning and intelligence control strategy still experienced its first stage 

of development. The Rule-based controller, which considered as the easiest control strategy, 

was applied with intelligence algorithm[108]. Compared with Q-learning strategy, the Dyno 

algorithm was introduced, and it was applied into a heuristic controller strategy of hybrid 

powertrain system. The DP was applied as reference of the Q-learning and Dyno algorithm. 

This research combined the Dyno algorithm with heuristic cost function H, and it was 

named Dyno-H strategy in this paper. There was another paper focus on the algorithm[109]. 

The deep Q-network was combined with curiosity-driven exploration. The workflow was 

discussed and an automatically optimisation platform was generated. Finally, the deep 

reinforcement learning curve was discussed. During this period, a literature review had 

concluded the development of reinforcement learning of control strategy[110]. In this paper, 

the main deep learning / reinforcement learning algorithm are concluded, and the test 

platform, data flow and system modelling are discussed. It could be found that, during this 

period, the intelligence control strategy started to be researched, and most of the research 

applied optimisation-based control strategy as the reference. Even though the RL-based 

strategies are not able to deliver same performance as optimisation-based control strategy, 

they do not need accurate powertrain model and they are easier to build the optimisation 

loop. Comparing with optimisation-based control strategy, most of them need high amount 

of drive cycle data to train the control model and function to get the optimised results. 

Besides reinforcement learning, machine learning was applied into the powertrain system 

control during the same time. There was research combined DP and machine learning to 

make the decision based on the research result of DP[111]. The decision tree was generated 
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based on the optimal gear ratio and torque split of DP simulation result. The SML 

(supervised machine learning) was generated based on the route prediction of the system 

input and based on the DP algorithm. Two optimisation-based strategy were compared as 

reference of the SML, one is PMP, and another is DP. These algorithms were tested based 

on different drive cycle and they proofed that the SML could be one of the reliable control 

algorithms for powertrain system. Another application of the machine learning was the 

prediction of energy consumption of the powertrain system[112]. The sampling was based on 

large scale simulation process (LSSP). The prediction based on the energy consumption of 

the powertrain model, and they applied this strategy into different drive cycles. In the end 

they discussed the trade-off between the efficiency and accuracy, the sampling step size 

was discussed, and the results were optimised and compared.    

 
Figure 2.6 Development of intelligent algorithms 

Solid square: Important algorithm; 

Another important algorithm, PMP, was also researched during this period. There was 

one research focused on the comparison between DP and PMP[113]. The 2-dimension DP and 

PMP algorithm was generated and compared. Also, the components scaling, and sizing was 

combined with the control strategy of the powertrain system. Finally, they applied Pareto 

front to design the optimisation boundary of the system, and the optimisation solutions 

were discussed. The application of PMP and powertrain system also covered the design of 

advanced engine[114]. On the design of hybrid powertrain system, the development of 

specific hybrid-system engine is very important. The PMP was applied as the control 

strategy for the engine design, and it shows the robustness of the algorithm for different 

powertrain components selection. On the application of PMP, another research focused on 

the autonomous driving car energy management[115]. This research introduced flexible 

power demand architecture for the prediction of the drive cycle (vehicle speed). The PMP 

was applied to control the torque split of the system, based on the prediction results of the 

vehicle speed. The PMP’s robustness was proofed on this research. For this paper and the 

previous paper reviewed, PMP showed its robustness on different drive cycles and 

components selections. This two research didn’t focus on the control algorithm itself, but 

the PMP was considered as the reference due to the stability and reliability on different 

cases. Integrated with PMP, an algorithm called Selective Hamiltonian Minimization (SHM) 

is introduced[116]. In this paper, the optimisation on the hardware scaling was coupled with 

the optimisation of the control strategy. The result was compared on the criteria of fuel 

consumption economic. PMP can also work together with adaptive recursive least square 

(ARLS) method[117]. The architecture of the powertrain system was researched in this paper, 

and the optimisation algorithm was implemented in real-time condition. Additionally, 
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adaptive PMP (A-PMP) was introduced in this paper. ECMS was applied as the reference 

and compared with A-PMP in this research. Also, PMP was available on the control of fuel 

cell hybrid powertrain system[118]. In this paper, the fuel cell super capacitor was modelled, 

and the control strategy is generated by PMP. DP is applied as a reference and compared 

in this paper. The combination of optimisation on hardware selection and control strategy 

also been researched in 2018[119]. In this paper, a 2-dimensional PMP was applied to optimise 

the energy management system (EMS) and the hardware selection. The result was 

evaluated by a given drive cycle, with the condition check on SOC and energy 

consumption.   

The model predictive control, MPC, was also developed during this period of time. The 

MPC was combined with linear quadratic tracking (LQT) to predict the driving 

behaviour[120], and these algorithms were applied into different drive cycles and discussed 

for the benefits on the fuel efficiency. On the deeper research of MPC, another research 

focus on the nonlinear MPC application[121]. The application is energy-efficient torque-

vectoring (TV) for electric vehicles with multiple powertrains. The performance of this new 

algorithm, the NMPC, was discussed by the end of this paper. There were two other 

applications of MPC in powertrain application. One focused on the CVT transmission 

control[122], the MPC controller was combined with Karman filter, and it was tested in 

different powertrain architectures. Another research focused on the powertrain thermal 

management based on the MPC strategy[123]. The calibration of the model and the 

application of the MPC for different components selection are discussed and researched. 

Another research applied MPC with Markov chain together to predict the velocity of the 

vehicle. MPC generated the E-Motor control strategy in the drive cycle[124], which is 

calculated from Markov Chain. For the application of MPC onto powertrain system, there 

was a literature review during this period[125]. This literature review concluded different 

kinds of MPC algorithms, and their performance was discussed and compared. The 

development history of MPC strategy was reviewed, and this leaded the development 

trend and direction for future research.  The MPC and ECMS are concluded as figure 2.7:  

 
Figure 2.7 Development of PMP and ECMS 

Dash line square: both compared in one research; Solid square: Important algorithm; 

There were also some different control algorithms applied to the hybrid powertrain 

system during this period of time. The fuzzy PD and PI controller were applied in robust 

speed control[126]. The parameters selection of PI and PD controller were discussed in this 

paper, based on the robustness test on different drive cycle. Hierarchical control strategies 

were applied with transportation model together[127]. In this paper, the urban transportation 

model was established, with the car-to-car connection system introduction. The control 
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strategy was generated for multi vehicle scenario, and the control strategy was tested for 

different transportation cases. Another algorithm called Kullback–Leibler (KL) divergence 

rate was applied into hybrid powertrain system control, with the application of reinforcing 

learning[128]. The requirement of vehicle speed was estimated by Markov chain, and the KL 

divergence was applied to measure the difference of power requires transition probability. 

The reinforce learning generated the control strategy online. The regeneration braking 

system modelling and control strategy are also been researched together[129]. In this research, 

the controller focused on the behaviour of the DC-DC converter. The system was generated 

on an EV car, the control strategy was evaluated by battery charging condition and 

regeneration braking efficiency.  

In conclusion, in these five years, the control algorithms themselves have been deep 

researched and discussed. In fact, most of the algorithms’ theory, know how, and 

comparison had been done during this period of time. For DP algorithm, there are two ways 

on the development. The first way is the wider & deeper research on the algorithm itself, 

such as S-DP, D-DP and A-DP discussion. The second way is to be considered as the 

reference of intelligent control strategies. DP requires high computing for complex drive 

cycle and optimisation cases, but it is able to be considered as the reference of the control 

strategy performance. So here the DP was applied for the comparison between 

optimisation-based algorithm and reinforcement learning based algorithm. For ECMS, this 

algorithm was combined with other algorithms including ELM and PS. Also, the robustness 

of ECMS and the real time application were all discussed for deeper research based on this 

algorithm. Another algorithm, PMP, also experienced two different development routes. 

The first route is the deeper development of this algorithm, the PMP was combined with 

ARLS or developed to A-PMP. The second route is the application of PMP with different 

cases, such as the optimisation of CVT or different engines. Same wider application 

happened on MPC strategy. MPC was deeper developed into NMPC or combined with 

LQP, additionally, it was applied onto different optimisation of powertrain components. 

 The research trends are combined as figure 2.8:  



36 

 

 

Figure 2.8 The whole development of algorithms from 2016 to 2020 

Blue line: Heuristic control; Green line: PMP algorithm; Orange line: ECMS algorithm; Purple line: DP/SDP 

algorithm; Red line: Intelligent algorithms; Grey line: MPC; Dash line square: both compared in one 

research; Blue arrows: use as benchmark and reference; Solid square: Important algorithm; Red square: 

essential algorithm in several different researches. 

An important research trend during this period is the development of intelligence 

control algorithm. A lot of different Reinforcement Learning (RL) and Machine Learning 

(ML) algorithms were discussed during this period. The Q-learning, DDPG, Bayesian 

Optimisation, Dyno and Dyno-H were all applied for different powertrain system. The 

performance of these algorithms was all discussed and compared. The optimisation-based 

algorithms were applied as reference of these intelligence strategies, such as DP. Generally. 

The performance of intelligence strategies does not as well as optimisation-based strategies. 

But the benefits and weak points of optimisation-based algorithms and intelligence 

algorithms were all discussed during this period of time. In the future, the development of 

intelligence control strategy could be one of the most popular research areas.  

2.7.  Summary 

This chapter reviews the hybrid powertrain system control research history in time 

series. The research on powertrain system modelling and control algorithms generation & 

optimisation in these years can be concluded as below: 

1. The control strategies are able to be divided into different clusters with different rules. 

Firstly, it is possible to consider the control algorithms into three different species: rule-

based, optimisation based, intelligence strategy. They are able to show in table 2.1: 
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Table 2.1    Different kinds of control algorithms 

The differences between rule-based and optimisation-based strategies are:  

a. The rule-based optimisation does not need any working case / drive cycle / 

driver behaviour inputs. The drive cycle is only applied for calibration and validation. 

The generation of the control strategies are all based on the components map 

themselves, the using case and objectives do not join the optimisation process. In other 

words, there is no optimisation process, it is an open-loop generation of the control 

strategy.  

b. The differences between optimisation-based and intelligence strategies are: The 

optimisation-based control strategies requires accurate powertrain model, with 

physical subsystems and well-defined data flow. Most of the algorithms requires the 

drive cycle as the input, or applies Markov chain to predict the driver behaviour. The 

intelligence strategies could be applied together with optimisation-based strategy on 

the calibration of powertrain subsystems or the prediction of driving behaviour.  

c. The other application of the intelligence control strategy is to generate the control 

strategy based on the simulation results of the powertrain system based on a given 

drive cycle. It requires a huge amount of data from previous simulation for training 

materials. The generation of cost function and the data accuracy will affect the 

performance of the control strategy.  

2. On the view of computing time cost, the rule-based controller requires lowest runtime 

cost. The optimisation-based controller requires higher runtime cost than rule-based 

controller but depends on which kind of algorithm is selected. The intelligence 

algorithms are able to be applied dependently with rule-based controller or 

optimisation-based controller, such as the prediction of drive cycle, decision tree and 

components subsystems calibration. The intelligence controllers are also able to be 

applied independently for the powertrain system based on the given inputs and outputs. 

It requires the highest computing runtime cost. It can be shown in figure 2.9: 
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Figure 2.9    Control strategy computing time comparison 

In the above figure 2.9, it shows that, without intelligent prediction for Rule-based, the 

Rule-based controller has the lowest computing runtime cost in the all algorithms. If 

intelligent algorithm driving behaviour prediction combines with RB controller, the 

runtime cost will be overlapped with optimisation-based controller. For OB controllers, 

ECMS series and MPC, PMP have roughly same computing cost, and they are all able 

to apply Markov Chain for the prediction of drive cycle. For DP series algorithm, they 

require the whole input of the drive cycle, most of them (expect A-DP) could be 

combined with intelligent decision tree prediction. So, they have highest runtime cost 

in OB controllers, and DP has computing runtime cost overlapping with intelligence 

control because it needs to review all the probabilities in the system. For intelligence 

control algorithms, the reinforcement learning is always applied for the prediction of 

drive cycle and driver behaviour. The deep learning and machine learning could be 

applied into the calibration and validation of powertrain components subsystems. The 

Neural network has the highest runtime cost for the decision tree making and it is able 

to run independently for the model calibration and control strategy generation.  

3. There is another cluster to divide the different control algorithms into different species, 

it is the requirement on the drive cycle input during the generation of the control 

strategy. The drive cycle prediction includes three different kinds of inputs: the first one 

is the designed whole drive cycle inputs; the algorithm knows the whole-time 

behaviour of the vehicle. The second one is the forward drive cycle inputs, including 
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RDE (real driving environment). This kind of input goes as same as real world driving, 

that the algorithm knows what had happened but do not know what will happen in the 

future. The third kind of input is the prediction of drive cycle, including Markov-chain 

prediction and intelligence driver model prediction. Besides these, some algorithms do 

not need the input of drive cycle. They can be shown as table 2.2: 

 

Table 2.2     Algorithm inputs comparison 

The requirement of drive cycle inputs will affect the performance of control algorithms. 

Generally, whole inputs algorithms will perform better than forwards inputs and no inputs. 

On the view of the drive cycle inputs, it could be applied into three ways: 1. The drive cycle 

is applied to generate the control strategy. 2. The drive cycle is applied to validate and 

calibrate the strategy. 3. The drive cycle is applied based on prediction. Another factor for 

the control strategy generation is the powertrain model. For model-based-control strategy 

generation, the powertrain system modelling will directly affect the generation of the 

control strategy. Generally, all the powertrain model requires a series of subsystems for 

different components, but some of the strategy does not need a very accuracy whole model. 

For different algorithms, the application of drive cycle and accurate powertrain model with 

the strategy generation could be concluded as table 2.3: 

 

Table 2.3   Data flow of different strategies 

The requirements on the accurate powertrain system are concluded in table 2.4: 
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Table 2.4   Different algorithms requirements 

Here it is able to found that, with the specification of different algorithms, for the 

application of autonomous driving, the prediction of drive cycle, or the forward inputs 

are very important. Also, the generation of the control strategy should not base on any 

given drive cycle because the user behaviour is unpredictable without any driving data 

during the development of the powertrain system. The requirements on accurate 

powertrain system will support the generation of a high-performance control strategy, 

but it will cost more time to simulate the system and it requires a lot of test data to 

calibrate the powertrain system. The trade-off on the model accuracy is one important 

topic for the algorithm selection. 

4. The future development trend of the control algorithms is more related to intelligence 

strategies and high computing runtime cost. On one hand, the trade-off between model 

accuracy and the simulation time will always be a problem for future model-based 

control research. On the other hand, the generation of control strategy will be more 

related to a real-time control case. Correlated with V2V (vehicle to vehicle) and V2X 

(vehicle to anything) communication technologies developing, the estimation of the 

drive cycle will be more related to the previous driving behaviour and the future traffic 

condition. However, on the requirement of vehicle engineering and industry, it still 

requires a series of control strategy before it is able to adjust the strategy based on the 

drive cycle estimation. The generation of the control strategy should be independent of 

the drive cycle. Thus, for an ideal algorithm, the generation of the control strategy 

should be independent of any driving behaviours but the drive cycle could be used as 

calibration and validation. For the generation of the control strategy, it should base on 

the powertrain model, for traditional method. For intelligent strategy, the model is 

considered as black box and the inputs & outputs come from the test/simulation data. 

Generally, if the generation of the control strategies require the whole drive cycle, the 

calibration and validation will not use the drive cycle as the criteria, some other 

boundaries, such as battery healthy, EV range will be considered. These boundaries are 

defined together with the system requirements and simulation objectives. Here, ideally, 

for different method of strategy generation, the data flow could be defined as figure 

2.10: 
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Figure 2.10    Control strategy generation and algorithm relationships 

On the left side, it describes different kinds of model. For the physical driven model, it 

requires complex system modelling for physical system to guarantee its accuracy 

during simulation. For data driven model, the modelling will run faster than physical 

driven model but it requires high amount of data and loads computation runtime cost 

to get reliable results for simulation. In fact, in order to improve the robustness of the 

physical model, in some subsystems, the data driven modelling is applied. Also, the 

model data flow and structure of data driven model always use physical driven model 

system as reference. On the right side, there are three different colours. The green 

colour means that the algorithm is able to generate the control algorithm without drive 

cycle input. The calibration and validation of the control strategy is able to use whole 

drive cycle inputs or forwards drive cycle inputs. The red colour means the algorithm 

is able to generate the control algorithm with forward drive cycle or the prediction of 

the drive cycle. The calibration & validation of the drive cycle will only apply whole 

drive cycle or RDE driving data. If the generation of the control strategy requires the 

whole drive cycle (blue arrow), it cannot be calibrated by itself (same as inputs). The 

external boundaries, such as battery healthy, EV range and driveability will be 

considered. Additionally, if the control strategy is generated from forward input drive 

cycle or no prediction of driving behaviour, these strategies are also able to be 

calibrated with external different boundaries and optimisation goals. 

5. In the future of control algorithm generation, the control algorithm should have enough 

robustness to meet different requirements based on different models. It should be able 

to generate an optimised reliable control strategy for both data driven model and 
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physical based driven model, with different powertrain components selection. On the 

side of powertrain modelling, the model should be able to cover the requirements of 

different algorithms with different inputs. For example, the inputs of whole drive cycle, 

forward inputs drive cycle and no drive cycle inputs. The physical drive model should 

be able to combined with data driven model to make the simulation faster with a reliable 

simulation result. For the combination with autonomous driving technology, the 

prediction of the drive cycle is very important for the generation of control strategy. The 

prediction of the drive cycle includes the previous driving behaviour forward inputs, 

the estimation of future traffic condition and route planning, with the build-in 

generated control strategy for each car based on its powertrain system. The control 

strategy should be able to adaptive with off-line generation and on-line optimisation 

and calibration. The off-line generation should be independently from any pre-

designed drive cycle or driving behaviour estimation, while the calibration and 

optimisation should be correlated with the drive cycle or driving behaviour estimation. 

Finally, for the application of optimisation-based strategy and intelligence strategy, the 

algorithm should be able to cover different boundaries and optimisation goals. The 

algorithm should be able to generate the strategy automatically for any case and 

objectives, it will make the control algorithm generation faster, and make the results 

comparable in the future. 
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Chapter 3.  Powertrain modelling and 

research 

3.1 . Chapter Introduction 

This chapter presents a brief introduction to powertrain modelling structures and 

layouts, followed by a review of the motivation and reasoning behind establishing a new 

powertrain model. For each subsystem, the research into data flows and physical models 

will be presented. The simulation results between the McLaren powertrain model – LVSIM 

and the new powertrain model will be compared for calibration and validation of the model. 

Finally, the combined application of algorithms and model modification is researched for 

the application of algorithms by the end of this chapter. 

For the powertrain simulation and modelling work, several concepts need to be cleared. 

They are listed as below: 

1. Strategy: For a powertrain system, energy flows need to be controlled to manage battery 

charging/discharging at different engine/E-motor operating points. The energy 

management policy is called powertrain control strategy, it is the underlying logic and 

principle by which the control is achieved. 

2. Algorithm: The methodology used to generate the control strategy is called an algorithm. 

In this work, DP (Dynamic Programming) and ECMS (Equivalent Consumption 

Minimisation Strategy) are considered for generating the energy management strategy. 

3. Calibration: It is the applying and implementation of a set of parameters for a given 

powertrain system within a strategy, which is called calibration. It determines how to 

ensure the simulation achieving the desired results. 

4. Optimisation: The control strategies must meet the objectives based on the given cases. 

The optimisation is the process of finding the set of calibrations and control outputs to make 

the simulation results in the best outcome for a given strategy and hardware configuration. 

5. Sub-system: A powertrain model consists of several layers. It is a complex system that 

requires different blocks to simulate various functions. These blocks can be independent or 

a series of interconnected blocks. They are linked and connected by a combined function 

with data flow. These structures are called sub-systems of the whole powertrain system. 

6. Validation: In this project, the simulation results have a reference criterion: McLaren's 

LVSIM powertrain model. To ensure that the new powertrain model can meet the same 

simulation data flow trend and dynamic as the reference, optimization of the new 
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powertrain model is essential during its generation. This process is called validation of the 

powertrain model. 

7. Components: Components are associated with different sub-systems in the powertrain 

model. Generally, each subsystem represents one component. The component refers to the 

genuine parts in a vehicle, such as an engine, E-Motor, gearbox, battery, and so on. These 

parts have their subsystems in the powertrain model, which are called components of the 

powertrain system. 

8. Standardisation: The powertrain model needs to be adjusted for different control 

algorithms. The adjustment of the powertrain model includes different topologies and 

component selection. Hence, the inputs and outputs of each block should have a 

transferable data format, unit, and matrix size. The data post-processing progress is called 

standardisation in modelling research. 

9. Objectives: Each simulation has its goals. The CO2 emission, target SOC condition, 

driveability and other requirements. The combination of these requirements is the goal of 

simulation and optimisation, it is called the objectives. 

10. Cases: For the initial setting of simulation, the drive cycle, initial SOC, drive modes, 

components selection are all need to be prepared. These are the inputs of simulation, and 

the combination of these simulation setting is called cases. 

 To make sure the whole progress is clear, here is a series of figures to show the whole 

progress of the powertrain modelling, calibration, simulation, and optimisation. The 

general data flow is shown as figure 3.1 and 3.2: 

 

Figure 3.1 The standardisation of components and subsystems inputs and outputs 
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Figure 3.2 The implementation of the powertrain calibration optimisation 

3.2 . Overview of powertrain modelling and optimisation 

Generally, vehicle powertrain models are always complex systems. For powertrain 

modelling, there are several different layers for the system. The components’ data flows 

and topologies are different for various powertrain systems, but the model layer definition 

is always the same [130]. The layers can be shown in figure 3.3 as below:  

 

Figure 3.3   General powertrain system model structure 
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This figure illustrates a typical structure of a powertrain system model. While this 

structure may not precisely reflect the powertrain components layout for the vehicle system 

analysed in this thesis, it does depict the essential blocks needed for simulating any 

powertrain. A powertrain system comprises the powertrain subsystem, which describes the 

functions and features of the vehicle, such as the regeneration braking system, transmission 

control, ICE-path (combustion engine propulsion), and E-path (electric motor propulsion). 

All these high-level subsystems are referred to as function clusters. These function clusters 

are independent of the control block and vehicle model because they are directly linked to 

the powertrain components. They play a direct role in supplying energy to the vehicle in 

the real world. For each powertrain subsystem function cluster, the function comes from 

different component subsystems, which typically require a logic-control block to ensure 

that these components can simulate in a designed powertrain energy management strategy.  

The component-level subsystems, such as the engine, electric motor, transmission, and 

battery, are typically generated from either physical-based models or an empirical model 

based on test/calibrated/reinforcement learning-based data. A lower-level control block is 

needed in the component subsystems, which may contain a lower-level physical 

description for components. For example, a battery model needs a physical-based 

description, BMS (battery management system) for the control block, and perhaps test 

data/maps for heat transfer and internal resistance. Additionally, the battery model may 

contain built-in subsystems for battery cells and over-charged protection. Hence, three 

colours are used to show the different levels of the model. Higher-level means the model is 

closer to the whole vehicle simulation, and a lower level implies the model is more 

comparable to subsystems in component details. For different levels of the model, the 

subsystems are not fixed but depend only on the requirements of the functions from the 

subsystems. 

Typically, a virtual driver is required to control signal input into the powertrain. The 

virtual driver usually contains the prediction of the drive cycle, estimation of driving 

behaviour based on previous vehicle speed (relative to the demand speed), and in some 

cases, a model-based prediction to enhance the accuracy of the driver. In the control block, 

a high-level powertrain control algorithm is also fundamental. It is the bridge between the 

driver input (high-level control, pedal inputs, for example) and components outputs (low-

level control). Within this block, the main energy control algorithms such as ECMS, PMP, 

and DP, these algorithms' generation and application will depend upon the calibration 

within the control system. In work presented in this thesis, the generation of the powertrain 

control strategy and the calibration of the performance will run multiple times to optimise 

the strategy. During each simulation, the criteria and the optimisation goal will be 

evaluated, and the control algorithm will be calibrated in the controller block. In this case, 

the evaluation of optimisation and the calibration of the control strategy are all independent 

of the driver block.    

The final part of the powertrain model is the vehicle model. This will define the 

kinematic behaviour of the vehicle system, such as the vehicle dynamic calculation always 
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requires the input of driving cycle or driving behaviour prediction. The external data input 

is one of the essential parts of the whole model data flow. One of the specific external data 

inputs is the drive cycle in time series. The drive cycle input needs to be compared with 

system output – vehicle speed - from the chassis dynamic model in some cases to calculate 

the error on speed. And the chassis dynamic model outputs are directly correlated with the 

data flow of the whole powertrain model. Additionally, for different approaches to 

different powertrain system modelling, some more additional systems and blocks will be 

added. Hence, the data input and data output formats are the essential elements of 

propulsion system modelling.   

In an industrial context, the advantage of powertrain modelling and developing 

powertrains in simulation is that they can be utilised in different structures and different 

requirements. Different powertrain models can be specified into three kinds: purely 

software modelling, Hardware-in-the-Loop (HIL) modelling and Software-in-the-Loop (SIL) 

modelling [131]. These models are applied during the different development stages in 

powertrain research.  Pure software modelling can be used from the very beginning of the 

study. At the same time, the HIL requires some finished fundamental powertrain 

components, and the SIL approach typically needs the whole powertrain system test 

platform to establish. The kinetic model data signals are associated with the subsystem 

inputs and outputs. The inputs and outputs depend on the whole system’s layout, and it 

will affect the structure of the modelling [133]. 

The energy management strategy also depends on the model structure. 

Some researchers apply internal strategy built-in control subsystem; whilst 

other researchers use external control with power or torque split strategy [134].  Hence, two 

factors affect the design principle of the powertrain model, one is the subsystems inputs 

and outputs, which is considered as the powertrain components block principle, and 

another is the control strategy with data flow definition; this depends on the control 

strategy approaching.  

3.3. Introduction to the McLaren LVSIM (Longitudinal 

Vehicle SIMulation) powertrain model 

3.3.1 High-level Overview 

The LVSIM is a powertrain model based on Matlab/Simulink. The model’s full name is 

Longitudinal Vehicle Simulation, which can simulate longitudinal dynamics only. The 

LVSIM is a top-to-down loop model with different subsystems. The total layout of the 

model at a high level can be shown in figure 3.4: 
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Figure 3.4 LVSIM system level 

The description of each high-level block is: 

1. The controller is to keep the powertrain system following the given drive cycle. The 

requirements of the drive cycle are torque based, but also some requirements are Boolean 

or number inputs such as gear selection. The powertrain control unit is separate from the 

driver block because the driver block receives the feedback from the vehicle dynamic block, 

and it transfers the differences between the reference vehicle speed and the actual vehicle 

speed to the powertrain control unit. The powertrain control unit will generate the control 

strategy to the powertrain components level to ensure the vehicle is working as expected. 

 

2. The power unit level contains powertrain components. In LVSIM, the E-path and 

ICE-path are simulated together in the simulation. It receives the control signal from the 

powertrain control unit to generate the required torque output. Then the output of the 

powertrain unit level will drive the vehicle to follow the reference drive cycle. Additionally, 

some outputs of the simulation results also come from this level, such as CO2 emission, SOC 

condition, components efficiency, and temperature. Etc. This level also contains test results 

from the real-world lab test, such as engine efficiency map, battery internal resistance map 

and other calibration results. In this block, the lower level control strategies for each 

component are built-in and designed into component subsystems. They are separate from 

the powertrain control units; they keep the components working correctly to guarantee the 

reliable inputs and outputs. The development of components level controller block is not 

included in this project. 

 

3. The vehicle dynamic block is the one that simulates the actual behaviour of the 

vehicle based on powertrain system outputs. This block calculates the vehicle speed, weight 

distribution, torque from the brake system, and tyre dynamics. The input of this level is the 

control input from the power unit, which will output the vehicle working conditions back 

to the controller block to adjust the controller from the driver subsystem. 
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3.3.2 The introduction of controller block 

As introduced, the controller block is the “brain” of the whole system. The input of this 

block is the vehicle speed and drag torque from the vehicle dynamic model and the drive 

cycle reference speed. It applies the PI controller and feed-forward controller to calculate 

the torque requirement of the powertrain subsystem.  

 

Figure 3.5 Data flow of the control block 

In this figure 3.5, both the positive and negative torque demands are calculated. The 

positive torque is for acceleration, and the negative torque is for the braking system. The PI 

controller and the feed-forward controller are all designed as a built-in system in the LVSIM 

model. 

3.3.3 The power unit block 

The power unit block contains the powertrain components subsystems of the model. 

In the LVSIM, the positive torque and negative torque demands are divided. The positive 

torque controls the acceleration of the vehicle, and the negative torque demands control the 

deceleration.  

 This model can only simulate the longitudinal dynamics of the vehicle, so the left and 

right turn dynamics are not considered. The torque is only calculated into front and rear 

axles. Considering the different powertrain components layout, the front and rear axles can 

be both driven by E-Motor and engine or separately. The torque split strategy is applied 

here to control the energy management of the E-path and ICE-path. The braking system is 

also controlled by the front/rear axles torque split, but it is not controlled by the positive 

torque split strategies (Torque split map). The regeneration braking control strategy is 

designed in the regeneration braking system, which is separated from the TS map control 

block. 
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Figure 3.6 Data flow of power unit block 

 The LVSIM model is still under development from McLaren. The front E-Motor and 

engine drive axle are not fully developed. Also, the axle torque split strategy is not finished. 

This part of the work is carried out by another PHD in this project. For the control strategy 

of the torque split, the axle torque split is not considered. Additionally, followed by the 

industry sponsor – McLaren’s suggestion, I am using the rear axle as the only output drive 

axle. This topology is entirely as same as McLaren P12 (P1) powertrain system. Also, in this 

system, the engine is not designed to drive the front axle, so the torque split map is only 

applied to the rear axle. 

 In the LVSIM powertrain system, the negative and positive torque can be calculated 

from the drive cycle and driver block. The axle split strategy is calculated by the mass centre 

of the vehicle - which is given from McLaren vehicle model. The regeneration braking 

system control strategy is a simple energy transfer subsystem which depends on the current 

SOC and the E-Motor speed. Generally, for charging the battery, the regeneration system 

will harvest as much energy as possible from the braking system. It will charge the battery 

until it meets the maximum SOC protection threshold. The checking of the regeneration 

braking system is shown as figure 3.7: 
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Figure 3.7 Regenerative braking in LVSIM 

This figure 3.7 calibrates to use ICE to fill the E-Motor when the car is accelerating. 

When the vehicle is stopped, the battery SOC decreases due to external consumption such 

as light and air conditioner. There is a relation between negative E-Motor torque and SOC 

increasing. In conclusion, this is how the regeneration braking system works. 

Another subsystem is the start/stop system. This system is shown in figure 3.8: 

 

Figure 3.8 Engine start/stop system 
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 This figure shows that when the vehicle is stopped, the engine stops working. It uses 

several blocks to determine it. When the vehicle speed is lower than 1 kph, and the gear 

selection is 0, the engine temperature is within the safety threshold (not too cold, or the 

engine will keep running to increase the temperature), the S/S system will be activated. 

 For the transmission system, the speed ratio between engine and E-Motor is fixed in 

the LVSIM model; the gear shifting strategy is controlled by the engine speed threshold and 

hysteresis delay system. Same strategy will be used in all the simulations. The McLaren 

uses DCT transmission, so when the gear shifting requirement is sent, the clutch will 

automatically engage. Also, all the gearboxes are equipped with manual mode, which is 

considered a forced gear shift requirement. The logic can be shown in figure 3.9: 

  

Figure 3.9 Downshift and upshift strategy logic 

From these two figures, the only threshold of the gear shifting logic in the LVSIM model 

is the engine speed. This means that, in a given fixed drive cycle, if the vehicle speed is the 

same, with a properly working control block, the gear shifting strategy in time series is also 

fully the same. Suppose the optimisation of the gear selection strategy is not considered in 

the whole optimisation process. In that case, the gear shifting block will keep the vehicle 

working in the same time series on the gear number. 

3.3.4 The vehicle dynamic block 

The vehicle dynamic block calculates the dynamic behaviour of the whole vehicle from 

the inputs of torque on front and rear axles. In the LVSIM, the tyre model and chassis 

suspension model are simplified for the longitudinal dimension, it only calculates the mass 

centre transfer on the selection of different components. The tyre grip force will only be 

limited by the stable mass transfer of the vehicle, with a simple polynomial fitting in the 

simulation. If the components selection is fixed, the effects of vehicle dynamic and the 

chassis mass centre transfer will be ignored. 

The tyre dimension follows the selection of the McLaren P12 car. The mass of the 



53 

 

components is given in the catalogue of components from McLaren. The air resistance 

parameter and other characteristics are all provided by McLaren. Considering the 

longitudinal drag force, only the air resistance force, rolling resistance, slope resistance 

(which is 0 in this project), and vehicle mass with acceleration and deceleration 

requirements. This block will transfer the vehicle speed data in time series back to the driver 

model for the adjustment of controller outputs. 

3.4. The limitation and solutions of LVSIM 

As introduced earlier in this chapter, the LVSIM includes several complex subsystems. 

It is a model that is still under development. Considering the requirements of this project, 

the model needs to be optimised or rebuilt. The requirements for this project are listed 

below： 

1. The algorithm optimisation requires the model should be quasi-steady state model. 

The data flow in the simulation can be saved for any condition during the simulation, and 

the simulation should be able to hold and restart from the current situation. This is essential 

for DP – will explain in next chapter. 

2. The controller for the lower components level should be able to ensure the 

components follow requirement torque outputs. The components should work stable for 

any inputs, and all the simulation results should be repeatable without variables on time 

series. 

3. The simulation speed should be as fast as possible to test more control strategies. 

4. The components should be changeable, and the reference drive cycle should make 

the simulation run properly for any inputs. 

 Based on these requirements, the LVSIM at least needs modifications as below: 

1. The unused subsystems in the default LVSIM model setting, including axle torque 

split strategy and front e-axle drive, should be removed in the algorithm calibration and 

validation. The torque split strategy will only follow the energy management between E-

path and ICE-path. The torque distribution on the front and rear axles are not included in 

this project. 

2. The system robustness should be calibrated. The model should be able to apply 

different drive cycles, components, SOC conditions and energy management strategies. The 

built-in controller, such as the regeneration braking system, and the driver block, the chassis 

model, should control all these variables properly. 

3. The model should not be time-dependent for any simulation situation. Because in 



54 

 

the control strategy generation, the simulation situation should be saved for the 

optimisation of the next operation points – especially for DP. The time-dependent systems 

cannot meet this requirement; they should be replaced by modelling or data fitting. 

4. The simulation speed needs to be accelerated. Some state-flow charts with Boolean 

logic should be replaced by independent functions to accelerate the simulation. Also, some 

subsystems should be combined to optimise the data flow of the whole model. The inputs 

and outputs of each block should be standardised to ensure the simulation results for 

different cases are comparable. 

3.5. Summary, novelty and contribution 

The chapter provides an introduction to the powertrain model theory, discussing the 

general layout, model structure, and data flow. It also includes a discussion of the meanings 

of some words from the previous literature review. The reference model for the project, 

McLaren's LVSIM model, is introduced and reviewed from top to bottom, with the 

introduction of each subsystem, data flow, essential features, and functions, and topologies 

of different subsystems. Subsequently, the chapter discusses the limitations of the model 

based on the project's requirements and presents improvement solutions on high level. The 

need for control algorithm optimisation is discussed, leading to the next chapter on 

algorithm introduction, while the optimisation and re-building of the LVSIM model will 

lead to chapter five, which focuses on establishing a new powertrain model, calibration, 

and validation. 

In this chapter, the most important contribution is the definition of the powertrain 

model at different levels, which is not limited to any specific model but is applicable to the 

general sense of powertrain systems. The definitions of key terms provided at the beginning 

of this chapter will continue to be referenced throughout the project. 

Both McLaren's LVSIM and the YRSim model developed for this research will follow 

the same strategy for building and simulation of the powertrain model. 

This chapter serves as an introduction to the modeling knowledge required for this 

research. It is crucial in outlining the general development direction and methodology of 

powertrain modeling. The "high-level, mid-level, and low-level" grading method for the 

powertrain system is an essential contribution to understanding McLaren's powertrain 

model and the development of the YRSim model. 
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Chapter 4. Hybrid propulsion system 

control algorithm 

4.1 .  Introduction of this chapter 

This chapter introduces the powertrain control algorithms used in this project, namely 

ECMS (Equivalent Consumption Minimization Strategy) and DP (Dynamic Programming). 

Although both algorithms were researched, they were applied to different models. As 

explained in Chapter 3, the algorithm is a series of automatic calculations based on the 

powertrain system that generates the control strategy for energy management. In this 

chapter, the background of hybrid powertrain system control algorithms is introduced, 

followed by presentations of the ECMS and DP algorithms. The inputs and outputs of each 

algorithm, as well as their generation methodologies, are explained using examples. Finally, 

a comparison and discussion of the algorithm application is presented at the end of the 

chapter. 

4.2. General background of hybrid powertrain system 

control algorithm 

From the literature review, the hybrid powertrain control strategy algorithm 

experienced a long development history. Generally, for hybrid powertrain control strategy, 

the optimisation of the control strategy is the trade-off between emission and battery 

consumption. The basic logic of the control strategy is shown in figure 4.1: 
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Figure 4.1     powertrain system control logic 

Generally, the control strategy will manage the energy flow of the charging and 

discharging of the battery. To guarantee the battery SOC condition in the drive cycle, the 

charging and discharging energy should be identical in the whole process. To reduce CO2 

emission, when the engine works on a low-efficiency domain, the E-Motor should support 

the engine for the whole torque output to reduce fuel consumption. When the engine is 

working in a high-efficiency range, it should provide extra energy to charge the battery to 

guarantee the SOC condition. The strategy will also consider the E-Motor efficiency and 

battery efficiency. 

Hence, to optimise the control strategy, the primary approach is to find out the 

optimised strategy of the engine and E-Motor behaviour for the powertrain system. Trade-

in SOC when the battery energy is “cheap” on fuel consumption, and trade-out SOC when 

the battery energy is “expensive”. The drive cycle will calibrate the SOC condition by the 

end of the simulation.  

McLaren's original control strategy in this project applied in their powertrain model 

LVSIM is the ECMS algorithm. ECMS is an off-line optimisation algorithm that the 

generation of the strategy does not need to correlate with the drive cycle. Still, the 

calibration and validation of the strategy need the drive cycle. Another reference strategy 

is DP, which is introduced in this project. DP is a causal strategy; it demands the drive cycle 

during the generation and optimisation of the strategy. The inputs and outputs of ECMS 

and DP are shown in figure 4.2: 
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Figure 4.2     Inputs of different algorithms 

The ECMS requires the driver model to input the torque requirement from the drive 

cycle in forwarding time series, while DP requires the drive cycle to calculate the cost-to-go 

function for each step of decision-making. Hence, the ECMS only needs a drive cycle for 

calibration, and DP’s inputs are defined by the whole predicted drive cycle during the entire 

period in optimisation. 

For any control strategy, the most common method (also applied in this project) is to 

manage the torque of the vehicle requirements. The control strategy of the ECMS is 

delivered as the torque split map, and the control strategy of the DP is the E-Motor torque 

in time series with the drive cycle. The differences on data flow are shown as figure 4.3: 

 

Figure 4.3    Differences between different data flows. 

The torque split map is the control strategy of the ECMS algorithm, while the optimised 

time series E-Motor torque is the control strategy of the DP algorithm. In DP, because the 

whole E-Motor torque in the time series is generated from the cost function of drive cycle 

time steps, there is no need for a driver block for feedback control. The ECMS needs the 
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driver block because the torque requirements come from time series drive cycle input. The 

calibration needs a loop for the simulation. 

4.3.  The introduction of the ECMS strategy  

In this research, the energy flows of the ICE-path (energy flow from combustion engine) 

and E-path (energy flow from the electric machine) are controlled by a torque split map. 

The inputs of the map generation algorithm are the efficiency map of the electric machine 

and the fuel flow map of the engine. During the calibration of the Torque Split (TS) map, 

the gearbox and the battery models are also needed for the speed and efficiency inputs. The 

initial SOC and target SOC require to be defined before the simulation. The drive cycle is 

demanded to evaluate the SOC condition after simulation. The SOC should meet the initial 

setting of the simulation. The Torque Split map generation block is described in figure 4.4: 

 

Figure 4.4     Torque split map generation process 

On the high level, the generation progress is divided into two parts: The first part is the 

generation session. The map is generated from the given fixed components and simulation 

set in this session. The map should be able to cover all the conditions for the components, 

not only for the drive cycle workload. The generation part does not need to run the model, 

and the map generation calculation is independent of the model simulation. The second 

part is the calibration session. The drive cycle is needed to simulate the SOC condition in 

the evaluation session. The optimisation will run in a loop to optimise the map, to meet the 

requirements on the drive cycle. During the calibration of the TS map, the CO2 emission 

will also be affected by changing the C-value. Thus, the CO2 emission should also be 

observed during the optimisation. The final output is the TS map, which can be directly 

implemented into the LVSIM model. The final map should meet the requirements of SOC 

conditions and reduce CO2 emissions.  

There is an equivalent factor in generating the Torque Split (TS) map to integrate the 

fuel flow map from the engine and efficiency map from the electric machine together. This 

equivalent factor is called C-value. The optimisation of the C-value is the optimisation of 

the TS map. The TS map and C-value are one-to-one correspondence.  
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In the map generation, because the speed ratio between engine speed and electric 

machine speed is fixed, the electric machine speed is also set for any given fixed engine 

speed. The optimisation process is to find the working points of the electric machine and 

engine torque that provides the lowest fuel consumption for a given fixed speed and require 

torque. The C-value is described as equation 1: 

( ) ( , ) ( , )engine e motorJ t E t u C E t u−=  +    

In this equation, J is the total cost of the powertrain system, which is a time-series data 

calculated from the drive cycle. The torque split (TS) map controls the torque output of the 

electric machine. Once the electric machine torque is calculated, the engine torque output 

can be calculated from the total torque (Total torque – Engine torque = Electric machine 

torque). In this way, the energy flow from the electric machine and engine are both 

controlled by the controller. The energy flow from the engine and electric machine is a time-

series variable because the system torque requirement depends on the drive cycle, and the 

drive cycle is in time series. 

C-value is the equivalent factor in integrating the efficiency value from the electric 

machine to the engine. For a given fixed demand speed from the drive cycle, a column 

vector of fuel consumption rate is extracted and interpolated from the fuel consumption 

map of the engine. The equivalent fuel consumption of the electric machine is calculated 

from the equivalent factor C-value. Notice that the electric machine torque can be positive 

or negative. Positive torque means the electric machine provides torque to the transmission, 

as well as negative torque means that the electric machine is using energy to charge the 

battery. Thus, if the electric machine provides negative torque to charge the battery on the 

calculation of equivalent fuel consumption, the equivalent fuel consumption is negative. If 

the electric machine provides positive torque to support the engine, the equivalent fuel 

consumption is positive. The C-value does not change during the changing of the charging 

mode. The engine will show a rising fuel flow with the increasing engine speed. This fuel 

flow trend depends on the map of the engine. Because the equivalent factor is a fixed value 

for electric machines, the equivalent fuel flow slope is a constant value. These figures are:  

 

Figure 4.5     Equivalent fuel consumption of E-Motor 

[1] 
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These diagrams select one fixed speed (3000rpm engine speed) and fixed speed ratio 

between electric machine and engine (2.0). The left chart shows the fuel flow of the engine. 

With the engine speed increase, the fuel injection flow keeps increasing. The right diagram 

shows the equivalent fuel consumption of the electric machine. The equivalent fuel 

consumption is negative when the electric machine provides negative torque. Similarly, the 

equivalent fuel consumption is positive when the electric machine provides positive torque. 

This equivalent fuel consumption line is fixed once the equivalent factor and the electric 

machine are fixed. The maximum torque at this engine speed is 658Nm, and the maximum 

torque of an electric machine (for charging and discharging) is 260Nm. 

On the aligning of equivalent fuel consumption and engine fuel consumption, the 

interpolation of the fuel consumption will represent the torque split map. From the drive 

cycle, the required torque can be all provided by the engine (ICE mode) or all supplied by 

the electric machine (EV mode). Afterwards, from Torque Split map control, the engine may 

provide more energy to the electric machine, to charge the battery. Additionally, the engine 

will also reduce its torque output, and then the electric machine will support the torque 

requirement from battery energy flow. The combination of the engine fuel consumption 

and electric machine equivalent fuel consumption with target torque is shown as figure 4.6: 

 

Figure 4.6     Target torque of E-Motor and engine torque 

This figure shows the combination of the engine and electric machine torque for a given 

fixed speed. The target torque comes from the requirements of the drive cycle. In this figure, 

point A means the pure engine mode; the engine provides all the required torque, the 

electric machine does not provide any torque, and the battery is not charged or discharged. 

Afterwards, to find out the minimum fuel consumption, the fuel consumption from the 

engine and the equivalent fuel consumption from the electric machine need to be 

interpolated as figure 4.7: 
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Figure 4.7     Minimization of equivalent fuel consumption 

In this figure, the purple line is the combination of the fuel consumption from the 

engine and the equivalent fuel consumption from the electric machine. The target torque is 

as same as in the figure 4.7. Notice that, from the description of the electric machine 

equivalent fuel consumption and engine fuel consumption, the aim torque on the x-axle is 

not always matched. The meaning of X Y Z points is described below:  

X point: This point is the total fuel consumption of the max electric machine torque. At 

this point, the engine works in the lowest fuel flow condition. Most of the energy (torque) 

is provided by an electric machine. The equivalent fuel consumption is high, so the X point 

has the maximum total fuel consumption.  

Y point: This point is the lowest (optimised) working condition, with its lowest fuel 

consumption. At this point, the engine provides more torque than required. The extra 

torque is applied to charge the battery. The electric machine works as a generator, so the 

equivalent fuel consumption is negative. This working point applies negative equivalent 

fuel consumption from the electric machine to cover the additional fuel cost from the engine 

and reduce the total fuel cost. Thus, these are the best-optimised working points. The figure 

shows the engine torque output and electric machine torque output as Mengine and Me-machine.  

Z point: This point makes the engine output reach the highest useable torque. The 

electric machine will charge the battery as much as possible. The engine is still available to 

provide more energy. Still, on this working point, it is unnecessary because the electric 

machine cannot transfer more power to charge the battery. Even though the electric 

machine charges the battery as much as possible, the additional fuel consumption from the 

engine cannot be covered by the energy storage in a battery. Thus, the Z point has higher 

fuel consumption than the Y point.  

In this calculation, an important thing is an interpolation between the engine fuel 

consumption map and the equivalent fuel consumption map. This figure only describes one 
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fixed speed for the engine and electric machine. The speed match (interpolation) between 

these two different series of fuel consumption is essential. Thus, in the optimisation of the 

working points, it is a three dimensions interpolation. As discussed, the C-value is the 

equivalent factor between engine fuel consumption and equivalent fuel consumption from 

the electric machine. The calculation of the C-value is shown in equation 2: 

[ ] [ ]Equivalent fuel consumption g s Cvalue electric machine efficiency=  −  

The C-value affects the slope of the equivalent fuel consumption in figure 3.4 (green 

line). Changing the C-value will change the combined fuel consumption trend (purple line). 

A target SOC condition is set for a given fixed drive cycle in evaluating the C-value. The 

previous calculation in figure 3.4 shows the optimised fuel consumption working points 

for any C-value. The evaluation determines the correct C-value (slope of the equivalent fuel 

consumption) for the target SOC in a drive cycle. This whole calculation method is called 

ECMS. 

In conclusion, for a given fixed engine & electric machine speed and required torque, 

this ECMS method can determine the best-optimised working points for the engine and 

electric machine. 

4.4.  The introduction and application of the DP algorithm 

4.4.1 The general optimisation progress of the DP algorithm 

The DP algorithm is a global optimisation strategy which have been applied to the 

powertrain system for several years. From the literature review, DP is generally considered 

the “gold rule” or the powertrain simulation. The DP requires the whole drive cycle as input, 

and it will find the global optimised result of the control strategy of E-Motor in time series.  

In the YRSim, to ensure the simulation results are the same as LVSIM, those time-

dependent subsystems in the YRSim are transferred to a quasi-steady state model to 

guarantee that the DP can output the correct simulation for any time step with fixed initial 

conditions. Detailly, the engine subsystem has three time-dependent subsystems: cold start 

fuelling system, water temperature system, and internal loss (including friction torque). 

These subsystems affect the CO2 emission and the fuel consumption of the simulation. For 

the E-Motor system, the battery temperature and the turbo lag fill-in subsystems are 

transferred from time dependent subsystem to quasi-steady state model to meet the 

requirements of the DP algorithm. 

For these time-depend systems, the state matrices (for the simulation state transfer) are 

changed with the time flow. For the simulation setting, the warm-up condition will last 600s. 

As introduced in section 2 of this chapter, because the output is the optimised E-Motor 

[2] 
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torque in time series with drive cycle in the optimisation of DP, the required torque is 

calculated from the vehicle model and drive cycle and there is no feedback loop for the DP 

algorithm in the simulation. Thus, to guarantee the engine speed and E-Motor speed, the 

vehicle speed and the vehicle acceleration should be the input of the DP state transaction 

matrix – to describe the drive cycle. For the DP algorithm, the engine speed and E-Motor 

speed need to be confirmed to guarantee that the state transaction matrix can keep stable 

for different conditions during the time-step backward simulation. Thus, the gear selection 

will be the input of the optimisation of the DP algorithm.  

There are four dimensions for the transaction matrix: vehicle speed and vehicle 

acceleration describe the drive cycle. The gear selection is the engine and E-Motor speed 

criteria, and the final output is the controller E-Motor torque. They can be shown in figure 

4.8:  

 

Figure 4.8     DP algorithm data flow 

As discussed, to guarantee the time-dependent subsystem can be calibrated with 

LVSIM, the time-dependent systems are transferred to a quasi-steady state system. The four 

dimensions transaction matrix is correlated with the time step; in the first 5 seconds, the 

engine is in cold start condition, and then the warm-up situation will last for 600s. After the 

600s, the system is fully warmed and back to normal condition. During the heating 

condition, the engine needs more fuel to be injected (which is controlled by cold start 

fuelling subsystem) and the start/stop system will be deactivated. The start/stop system will 

be deactivated for 180s and the cold start fuelling system will be activated for 600s. 

Afterwards, the engine is considered as fully warmed. The state changing is considered in 

the DP algorithm. As in figure 4.9: 
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Figure 4.9    Time-dependent state transaction matrix 

So here, it is a 4D dimension matrix in time series for the DP algorithm generation. The 

time-dependent YRSim for DP application makes the simulation results between ECMS and 

DP comparable. The total size of the DP state transaction matrix and cost matrix depends 

on the setting of the 4D dimension inputs. 

For the DP algorithm, there are three matrices for the optimisation totally: 

instantaneous cost matrix, state transaction matrix and cost-to-go matrix [1][2]. The 

instantaneous cost matrix is correlated with the fuel consumption, and it calculates the CO2 

emission with the inputs of the previous four dimensions matrix shown in figure 4.9. The 

state transaction will describe the SOC (State of Charge) condition changing for each time 

step. It also depends on the vehicle speed, acceleration, gear selection and E-Motor 

controller output, and it will also correlate with the previous SOC condition. The cost-to-go 

matrix will combine the instantaneous cost matrix and state transaction matrix for the 

whole drive cycle optimisation. The parameter of the cost-to-go matrix also needs to be 

optimised. These matrices are described as figure 4.10: 

 

Figure 4.10     DP matrix relationship 

In this figure, the kc  means the instantaneous cost for condition k. The ks  is the state 



65 

 

condition of condition k. The instantaneous cost and the state of step k are correlated with 

vehicle speed kv , acceleration ka , gear selection kg , and the controller output ku . The cost-

to-go matrix kJ  combines the instantaneous cost matrix and state transfer matrix.  

For the DP algorithm, the cost-to-go matrix not only depends on the current instantaneous 

cost and state transfer but is also correlated with the combination of previous instantaneous 

cost and state transfer. The description of the cost-to-go matrix, it can be found in the 

previous figure 4.10.  

Generally, DP is an algorithm that calculates the optimised controller for a given time 

series system with all predicted and calculated cost-to-go functions. The cost-to-go function 

is calculated from the instantaneous cost function and the state transfer function introduced 

in section 4 of this chapter. To calculate the instantaneous cost function and state transfer 

function, the whole drive cycle needs to be divided into several time steps to calculate the 

cost for each stage of the drive cycle. The cost and state transfer need to be calculated from 

the final stage of the drive cycle to guarantee that the final strategy is the global optimisation 

strategy. In the cost-to-go matrix generation, the sum of instantaneous cost and state 

transfer is shown in figure 4.10, which denotes that the DP needs to generate the whole 

strategy based on the sum of previous cost and state. These calculations require the entire 

drive cycle and a quasi-steady-state model to guarantee the simulation results are reliable 

for different time steps. The progress can be plot in figure 4.11: 

 

Figure 4.11     DP cost-to-go matrix optimisation progress 
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The x-axis describes the driver cycle in the time step in this figure. A fixed time gap 

divides the whole drive cycle into several time steps. In these time steps, the conditions of 

the powertrain system with all components are considered as a quasi-steady state. The total 

drive cycle is divided into n steps; the first condition and the terminal are shown as the 

initial node and terminal node in this figure. Here, the black points denote nodes, which 

means a probability condition of the powertrain system. The state transfer between nodes 

in the controller implementation to the powertrain system. From the previous condition 

node, with a different controller, the next node will exist several different selections 

(probabilities). The changing in the nodes will affect the cost-to-go function, and the cost-

to-go is described as the SOC(State of Charge) in this figure. 

There are several different colours in this figure. Orange, blue, green, black and purple 

colours mean the probabilities of the state transfer with a separate powertrain controller (E-

Motor torque). Due to the power limitation of charging and discharging, there are two red 

dash lines here that denote the unachievable area of charging and discharging. This means 

that the SOC cannot charge or discharge that much with given drive cycle torque 

requirements. The initial and terminal nodes are fixed with the limitation on the SOC 

protection in the drive cycle (the guarantee of delta SOC between the beginning and the 

finishing of a drive cycle). The boundaries of the battery energy are defined as Emax and Emin 

for the battery protection system to guarantee that the battery will not be overcharged or 

over-consumed. The max charging and discharging speed depend on the drive cycle 

requirements in this time step with the available E-Motor power. 

Hence, the DP algorithm is a numerical optimisation method; it does not check the 

physical meaning of the function and matrices but only finds the optimised strategy. It 

converts a nonlinear constraint optimisation problem into a deterministic finite-state 

optimisation problem in three steps: 

1. Define the search space ( ( )) : ( 1) ( ) ( )SOC k x k x k u k t+ = +    

2. Generate the instantaneous cost matrix: ( , , , )f f k k k km m v a g u=  

3. Generate cost-to-go matrix J , mapped onto search space:  

backwards 
( ) ( 1) ( 1)( , ) min( ( , , 1) ( , , , ) )k k k f k k k kJ x k J x u k m v a g u t+ += + +   

forwards 
( 1) ( ) ( ) 1 1 1 1( , 1) min( ( , , ) ( , , , ) )k k k f k k k kJ x k J x u k m v a g u t+ + + + ++ = +   

In this research, because we have the whole drive cycle with a quasi-steady-state model, 

the backwards optimisation progress is applied. 

[3] 

[4] 

[5] 

[6] 
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4.4.2 The generation of the state transfer matrix and the instantaneous 

cost matrix 

The CO2 matrix is generated from the engine block, and the SOC is generated from the 

E-path model. In the E-path model, the E-Motor power is considered as the input – which 

is calculated from torque and E-Motor speed. The system inputs and outputs can be shown 

as figure 4.12:  

 

Figure 4.12      E-path inputs and outputs 

Because the SOC is calculated from the small independent E-path model, the SOC 

matrix is only correlated with E-Motor torque and speed. The approach selects different E-

Motor torque and gear to determine the relationship between SOC and CO2. It is impossible 

to show the matrix in 4 dimensions on paper, so here it is possible to show the matrix in 

lower dimensions. The relationship between SOC, gear selection and E-Motor torque can 

be delivered below. Notice that the test is based on P12 powertrain selection; the time length 

is 1s – so it causes the final SOC to be that small because 1s runtime cannot charge/discharge 

the battery that much.  In the coming simulation and calculation, the step size is selected 

and fixed to 1s. This guarantees that the sampling frequency is 1Hz in the drive cycle. The 

selection of frequency will be discussed later in this chapter. 

 

Figure 4.13     Relation between gear selection, SOC and torque 
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Notice that the initial SOC is selected to 50% in this condition. Some of the E-

Motor torque points are not achievable because the E-Motor cannot reach these points with 

the power limit – remember that the input of the E-path model is power. There is a power 

limit in the E-Motor efficiency map, and the gear selection directly affects the E-

Motor speed here.  

For DP, there is a problem that will make the E-path calculation much “bigger” than 

ICE-Path: the internal resistance of the battery depends on SOC condition – not like ICE; 

different initial SOC will affect the behaviour of the battery. Here comes the problem, for 

NEDC, the system is susceptible to SOC changing – the differences could be minimal if the 

battery is big. If I select the initial SOC moving from 10% to 90% with a 1% step size, the 

total matrix size will time 80 – it is too big for DP calculation. The solution is shown in figure 

4.14: 

 

Figure 4.14     Internal voltage calculation 

The internal voltage is calculated from the OCV relationship in the battery model. This 

map uses SOC as input. This is the only block affecting the battery’s internal resistance with 

SOC conditions. Hence, because the model is a quasi-steady-state model, the output of SOC 

will be linearly affected by this OCV relationship. Therefore, the relationship between 

different initial SOC and delta SOC can be used to adjust the SOC matrix in the end. Here 

is the figure 4.15:   

 

Figure 4.15     Relationship between different initial and delta SOC 
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Here, it has fixed E-Motor input, fixed gear and fixed speed. Different initial SOC is 

applied and then check how the delta SOC can be affected by the initial SOC. Notice that 

the input of the E-Motor is mirrored – when the initial SOC is higher than 50%, the E-

Motor torque is negative. For different inputs, this relationship is fixed. Hence, this figure 

could be applied, and it is reliable. Here is the method description.  

 

Figure 4.16    Optimisation of different stages with drive cycle 

In this figure 4.16, we describe the different sampling times for various conditions. The 

SOC condition in the circle represents the condition for current time sampling points. 

Notice that each point in the circle is the initial SOC for the next sampling stamp. Also, it is 

the final SOC for the previous sampling step of the drive cycle.  Different colours are used 

to show the state transaction matrix for various initial SOCs. With the OCV relationship, 

the green line, red line and blue line need to apply different state transaction matrices 

because the battery’s internal resistance is changed. However, it is impossible to get all these 

different matrices because the required size of the matrix will be 80 times bigger than the 

current one (SOC sampling points 10:1:90). I only get the SOC state transaction matrix with 

50% initial SOC in my calculation. Then the relationship between different initial SOC and 

final SOC can be used to adjust the state transaction matrix. This adjustment (offset) is 

reliable because it is a quasi-steady-state model, and the internal resistance is only affected 

by different SOC conditions; this adjustment (offset) is dedicated. It can correctly calculate 

the state transaction by the adjustment offset of the 50% initial SOC matrix.  

As mentioned in chapter 3 section 4, due to the limitation on the calculation speed, the 

matrix dimension (resolution) is limited. For the NEDC drive cycle (or any others), most of 

the working points will be located between the sampling points of the cost-to-go matrix and 

state transaction matrix. Additionally, a long drive cycle will cost a longer calculation time 

to get the range of achievable SOC and CO2. If the function runs automatically, it will spend 

several days to find the error – if there is something unexpected in the result and function. 
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To check the behaviour of the DP function, it could be better to generate a small drive cycle 

and check the boundaries of achievable SOC and CO2 are correct.  

 

Figure 4.17     Designed small drive cycle example 

Here is the designed example drive cycle. The length of the drive cycle is the 80s. The 

sampling frequency is 1s. It includes acceleration, stable speed, zero speed and 

deceleration. So, all the behaviour in NEDC is experienced, and it is not long. This drive 

cycle will be applied to test the DP function. If the generation of CO2 emission and SOC 

boundaries are all correct, this means that the function can cover all the probabilities for 

this powertrain system with the DP algorithm.  

From the previous discussion in this section, all the materials are prepared. The CO2 

emission matrix is generated, and the SOC matrix is generated and adjusted. The drive cycle 

is designed. The SOC matrix and drive cycle are shown as same as equation 4-6 and figure 

4.17; the CO2 matrix is reviewed in figure 4.18:  

 

Figure 4.18     CO2 emissions with different E-Motor torque selection on one stage 
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Here is the available CO2 emissions range for the drive cycle:  

 

Figure 4.19    CO2 emission range for different E-Motor torque selection 

In this figure 4.19, the x-axis is the whole range of the drive cycle; each line includes 67 

sampling points of E-Motor torque (from –132 to132 Nm with 4Nm step size). The upper 

bound and the lower bound describes the max and min CO2 emission for the previous 1s 

working condition (based on the designed drive cycle and gear selection). The sampling 

frequency is 1s, so there are 80 lines in total. The differences between these lines are 

identical. This figure describes the upper bound and lowers bound of CO2 emission of this 

drive cycle. But the value only shows the CO2 emission for the previous 1s sampling time. 

The cumulated CO2 emission could be shown as below:  

 

Figure 4.20     Cumulated CO2 with sampling drive cycle 

The figure 4.20 shows the speed and gear selection as reference (not the correct value 

but only the trend). The blue line is the cumulated CO2 emission based on the upper bound 
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of the figure 4.20. The total value shows that the acceleration and high-speed range will 

generate fewer CO2 emissions than the low-speed range. The result is reliable here; it shows 

the max CO2 emission of this sample drive cycle. The CO2 emission cannot go higher than 

this limit in the optimisation.  

Notice that, for the SOC condition, it is also possible to calculate the SOC changing for 

each situation. Still, it is impossible to show in the figure because the state transaction 

matrix is different for different initial SOC, which means that there will be 80 layers in the 

figure – for each time step, there will be 80 lines shown in the same place. It is impossible 

to show in this way. Additionally, it is useless to show the SOC changing in 1s time step 

because the value is minimal – the important thing is to show the cumulated SOC condition 

for the whole drive cycle. Here is the figure.   

 

Figure 4.21     Available SOC for different E-Motor torque selection 

In this figure, the x-axis describes the drive cycle sampling points; the blue line is the 

upper bound of the available SOC range (keep charging), and the red line is the lower 

bound of the available SOC range (keep discharging).   

In the optimisation, we require the initial SOC equal to the final SOC. Due to the 

limitation of the drive cycle and components, the charging and discharging speed is limited. 

Hence, it is essential to check the available range to ensure the final SOC is 50%. Hence, the 

yellow line is the upper bound to guarantee the final SOC condition, and the purple line is 

the lower bound. In conclusion, the available range for the SOC selection could be shown 

in figure 4.22:  
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Figure 4.22     Available SOC for different E-Motor torque selection 

Here, the available range of the SOC could be found. It is used to determine the 

available range of any initial and final SOC.  

Based on the available range and CO2 emission, it is possible to find the available range 

of CO2 emission based on the achievable SOC matrix. Afterwards, it finds out the lowest 

cumulated CO2 emission in this range and finds the E-Motor torque working points; they 

are the optimised controller inputs based on the DP algorithm. Also, based on these 

indices of E-Motor torque, the SOC trend could be found through the matrix of the 

available SOC condition matrix.  

In conclusion, the DP applies the numerical method to calculate the global optimal 

solution, the result is applied to derive a heuristic strategy, and it can handle nonlinear 

constraints. It is a non-causal strategy; the future cost and disturbances should be precisely 

known. In DP, the density and resolution of the state grid and input grid will define the 

accuracy of strategy generation, and DP requires calculations to grow exponential with a 

growing number of states. So, DP is a high computational demand algorithm. 

4.5.  The deeper research of ECMS application 

The ECMS requires the drive cycle for calibration and validation. For the generation of 

the control strategy, the engine efficiency map and E-Motor efficiency map are applied. In 

this project, the code structure of the ECMS torque split map generation is described below 

in figure 4.23: 
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Figure 4.23 ECMS data flow 

 

The ECMS-based torque split map generation includes two parts. One part is the 

optimisation of the powertrain components selection, another part is the optimisation of 

the control strategy generation. The first step is hardware optimisation. In this part, the 

NSGA-ii (None-dominated Sorting Genetic Algorithm - II) algorithm is applied to optimise 

the selection of components. This part runs automatically to select the powertrain 

components from the database and it is carried by another PHD in this project. The database 

includes different engines, electric machines, gearboxes and batteries, and it is provided by 

McLaren. A series of components selection is called a case. A case will be applied to the 

calibration part, which will generate the torque split map to control the strategy of the 

powertrain system.  

In the optimisation loop of control strategy, there are two parts to generate & evaluate 

a map. The first part is the optimisation of calibration. In this part, the ECMS algorithm 

is applied. An initial C-value is defined to generate the TS map. Afterwards, this map will 

be applied to the evaluation part. The second part is the evaluation of calibration. In the 

evaluation, the LVSIM model is applied. The generated TS map replaces the original TS 

map. The setting of the simulation is defined in the initial setting of goals, the criteria are 

the SOC condition, and the loop is to find out the correct C-value and torque split map to 

meet the requirement of the target SOC for a defined drive cycle.   

Once the TS map is optimised, the control strategy will be combined with the selection 

of components. The finally optimised system will go back to control strategy output. In 

conclusion, the data flow chart of the calibration progress is shown in figure 4.24:  



75 

 

 

Figure 4.24 APAS project overview flow chart 

 

The evaluation of the map is based on the criteria of SOC condition in a given fixed 

drive cycle. The processing in evaluation is to find out the best C-value to generate a TS 

map which can meet all the requirements from the initial setting.   

4.5.1 The optimisation of C-Value equivalent factor 

During the optimisation loops, the changing trend between C-value and delta SOC is 

explored. The changing trend will help us to find out the best optimisation method to 

reduce the number of loops, and accelerate the whole optimisation progress. Generally, the 

trend between C-value and delta SOC (the differences between final SOC and target SOC) 

is shown as figure 4.25:    



76 

 

 

Figure 4.25 Optimisation area of C-value 

In this figure, the trend between delta SOC and C-value changing is described by the 

blue line. The 90% and -90% SOC condition (point B and C) is protected by the battery 

management system (BMS) to guarantee the health of the battery. For a given drive cycle, 

once the delta SOC = 0% (±0.5%), this means the target SOC is as same as simulation final 

SOC. The C-value is the target value and the torque split map is finally optimised. The area 

around point A (and away from BMS protection area B and C) is the optimisation area of 

C-value. This trend is always the same for different components selection, but the 

optimisation area could be very narrow for some cases.  The value amount of electric 

machine efficiency is roughly between 50 to 100 areas, in percentage, but the unit of fuel 

consumption of the engine is in kg/s. Thus, the value amount of C-value is quite small, 

mainly between 2e-07 to 4e-07 areas. Additionally, ins some cases, the delta SOC is quite 

sensitive to the C-value changing; a tiny change in the C-value will affect the delta SOC a 

lot. So, in the optimisation, the tuning and optimisation of the C-value should be very 

carefully, to find out the exact correct target value.  

In the evaluation loop, the bisection-secant combined method is applied to find the best 

value of the C-value. In the calibration, the delta SOC will always start from a negative value 

with a low initial guess of the C-value. Afterwards, with the rising of the C-Value, the delta 

SOC will be increased and cross the target line. In the end, the delta SOC will reach a value 

which is higher than the target SOC.   

In the LVSIM model, each simulation, the NEDC drive cycle, will cost roughly 20-30s 

to run. For a longer drive cycle, such as WLTP and FTP75, it will take longer time to simulate. 

Hence, in the calibration evaluation, it is essential to reduce the number of iteration loops, 

in order to reduce the total simulation run time. The bisection-secant combination 

method is able to find out the best C-value within 7-12 loops, and it is able to optimise the 

sensitive C-value with a very narrow optimisation area from figure 3.7. This method is 

described as below:  
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Step 1: Bracketing from higher bound 

 

Figure 4.26 Bracketing 

In this step, the bracketing is to find out the high bound of the C-value. From the initial 

guess of the equivalent factor, the optimiser will double the C-value. The initial guess of the 

C-value is defined as very small. If the first guess of the C-value makes the delta SOC lower 

than the target SOC, the C-vale will be doubled until the delta SOC becomes higher than 

the target. In this condition, this means a higher bound is found. Additionally, the previous 

C-value, which makes the delta SOC lower than the target SOC, is called the lower bound. 

Step 2: Bisection for lower bound 

 

Figure 4.27 Bisection for lower bound 
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In this step, if the first guess of the C-value is too high, which makes the delta SOC 

higher than the target SOC, the bisection step will cut the value of the initial guess C-value. 

Once the delta SOC becomes lower than the target SOC, the C-value is considered the lower 

bound of C-value, while the previous C-value is considered the higher bound. Thus, from 

bracketing and bisection progress, no matter what the initial guess of the C-value is, the 

lower bound and higher bound of the optimisation range will always be found. This area is 

the optimisation area of the C-value, equivalent factor. 

Step 3: Bisection of target SOC 

 

Figure 4.28 Bisection of target SOC 

This is the second bisection step. The new C-Value is calculated, which is located in the 

middle of the lower bound and higher bound. The delta SOC of this C-Value will be 

calculated from the simulation. If the charging on the delta SOC value is more significant 

than B+0.1B, the slope between the higher bound and lower bound will be calculated, and 

then the range of the optimisation of the C-Value is limited. If the new middle C-value 

makes the delta SOC negative, the optimisation area is between this middle value with a 

higher bound. If the new middle C-value makes the delta SOC positive, the optimisation 

area is between this middle value with a lower bound. 

Step 4: Secant for target SOC 
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Figure 4.29 Secant for target SOC 

This is the secant step to finding out the target C-value. From the previous calculation, 

with the smaller optimisation bound, from higher bound (or lower bound) is found. Also, 

between the higher bound and lower bound, the slope is seen. Thus, from the difference 

between the new higher and new lower bound C-value, and the calculation of the slope, the 

target C-value can be found. In other words, the exactly value of the C-value between higher 

bound and lower bound able to be defined by a fixed equation. The C-value on x-axle with 

target SOC on y-axle can be calculated.     

Step 5: Secant and interpolation for target SOC 

 

Figure 4.30 Secant and interpolation of target SOC 
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This is the last step of the C-value optimisation. In some cases, the difference in C-value 

between higher bound and lower bound is very small. The slope of the optimisation area is 

roughly vertical to the x-axle. This condition means the final SOC is very sensitive to the C-

value changing. The solution is to interpolate the C-Value between the higher bound and 

lower bound. The interpolation distance is calculated from the difference between the old 

lower bound and higher bound (not from the middle C-Value). The interpolation will 

directly find out the optimised TS map, no matter what is the slope between the higher 

bound and lower bound. 

4.6.  Deeper research of the DP algorithm 

From discussion in this chapter so far, these two algorithms are introduced based on 

their inputs, outputs and methodologies for the generation of the control strategy. The 

differences between ECMS and DP mainly depend on the input data flow. DP requires the 

whole drive cycle for the generation of control strategy; ECMS only applies the drive cycle 

in the calibration stage but not for strategy generation. Estimating the drive cycle is one of 

the most important classifications of control algorithms.  

The application of the two algorithms will be reviewed in modelling and simulation 

for deeper research. For DP algorithm, it needs to divide the whole drive cycle into several 

time steps and calculate the instantaneous cost function and state transaction matrix step 

by step. Afterwards, the cost-to-go matrix needs to be calculated from the last stage of the 

drive cycle to meet the requirement of SOC condition and optimise the controller (E-Motor 

torque) in time step to minimise the total CO2 emission in the end.  

4.6.1 The research on DP penalty matrix 

For more profound research of DP, the resolution of the matrices is very important. As 

discussed, there are four dimensions to research in the generation of state transfer matrix 

and instantaneous cost matrix. The four dimensions are vehicle speed, gear selection, 

acceleration and E-Motor torque. The vehicle speed, gear selection and acceleration are 

determined from the drive cycle and given a fixed gear selection strategy (transplant from 

McLaren LVSIM powertrain model). The E-Motor torque is the output of the DP algorithm. 

The state transfer matrix and cost matrix both correlated with the step size of vehicle speed, 

acceleration and E-Motor sampling. In the DP algorithm, even though the drive cycle is 

entirely given and fixed, all the possible working points in the drive cycle need to be 

calculated to meet all the possibilities for E-Motor controller input. Based on the given 

driving cycle and gear selection, there will be a series of E-Motor operating points to cover 

all the E-Motor torque ranges. The sampling step size will affect the accuracy of the DP 

algorithm. Like E-Motor torque controller dimensions, the vehicle speed and acceleration 

both need a series of sampling points to cover all the requirements. Such as the max speed 

of NEDC is 120kph, and WLTC is 131.3kph. The sampling points of vehicle speed need to 

cover all these ranges and calculate different outputs based on E-Motor controller outputs. 
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The same thing needs to be done on E-Motors available torque range. For different E-

Motor selections, the max torque for charge and discharge is different. The E-Motor 

controller torque range needs to cover all the ranges of possibilities to optimise the CO2 

emission and meet the requirement of SOC based on given drive cycle. 

As discussed in section 4 of this chapter, the instantaneous cost matrix and state 

transfer matrix come from the sampling points of E-Motor torque, acceleration, vehicle 

speed and gear selection. The size of matrices will be directly affected by the sampling 

points and step size of availability range for E-Motor. On the one hand, more sampling 

points for the instantaneous cost matrix and state transfer matrix denote more calculation 

time requirements. On the other hand, bigger size for these matrices will generate a higher 

dimension control strategy which leads to a better accuracy controller performance for the 

powertrain energy management. 

In this work, to trade off the simulation speed and control algorithm performance, the 

step size for each dimension (excluding gear selection) needs to be discussed and 

researched. All the matrices are saved in 4-dimensions, and the saving size of these matrices 

should be self-adapted, which depends on the sampling points’ step size. The progress of 

the matrices generation should be automatic, and it needs to cover all the working points 

for the hybrid powertrain system based on simulation settings.  

However, in some cases, the required working condition is unable to be reached, such 

as achieving a high speed in low gear. Hence, to make the optimisation easier to be 

observed, it could be better to find out the range of DP algorithm optimisation. The 

achievable range of the powertrain behaviours is as figure 4.31: 

 

Figure 4.31 Available range of DP matrix 

A penalty matrix is generated to save the unachievable working points in the 

instantaneous cost matrix. Same as the instantaneous cost matrix, the penalty matrix is 

generated in four dimensions. The penalty matrix and the instantaneous cost matrix are 

generated at the same time in the simulation. The instantaneous cost matrix saves the CO2 
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emission with different controller outputs in additional system requirements. During the 

same time, the penalty matrix checks whether the simulation is a success or not. The 

example can be shown in figure 4.32 from MATLAB: 

 

Figure 4.32 Penalty matrix example 

The left side is the instantaneous cost matrix, which records the CO2 emission in the 1s 

time step – the time step setting will be discussed afterwards. The right side is the penalty 

matrix. If the penalty matrix = 1, this number means the model cannot finish the simulation, 

and the CO2 emission will be NaN in the end. So, from the penalty matrix, it can find out 

which case makes the simulation failure. For example, in the screenshot, the matrix shows 

in val(:,:,6,3), which means that the vehicle’s acceleration is 2m/s2, and the gear selection is 

4 (the first index of the matrix is gear 0). The system cannot achieve 2m/s2 acceleration in 

4th gear when the vehicle is in 120kph, and the E-Motor torque is -120 Nm. The requirement 

of the system torque is out of the scope of engine performance. Hence, the simulation failed, 

and the penalty matrix is 1 in this case. 

The state transfer matrix and penalty matrix can be shown in figure 4.33: 
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Figure 4.33 The relationship between E-Motor torque, vehicle speed and CO2 emission with a penalty 

matrix 

The left figure shows the relationship between the E-Motor torque, vehicle speed and 

CO2 emission. Based on the performance of the powertrain components, there are several 

working points that unachievable. With the given gear (4th) and 2m/s2 acceleration, the 

system cannot reach high vehicle speed (150kph) with maximum charging from the E-

Motor. So, there is no value at this working points. In the right figure it shows the penalty 

matrix of this working condition. If the penalty value is 1, this means that this working 

point is not achievable. Otherwise, it will be achievable working conditions. In this case, 

from the penalty matrix, the DP cost-to-go matrix will reduce the computing time cost for 

some unachievable points.  

4.6.2 The research on DP matrix resolution 

From these two matrices and figures, it shows that with the increasing of the vehicle 

speed and required E-Motor torque for charging, the CO2 emission goes higher. Once the 

required torque overcomes the available engine torque at a given selected acceleration and 

gear, the simulation will fail and the penalty matrix will mark as 1 for this condition.  Due 

to the limitation of the 4D matrix plot, in order to show the result correctly, I need to fix two 

of the dimensions to plot the result in a 3D view. In fact, from the dimension setting of 

resolution, the acceleration and the gear shifting have 7*8 = 56 different cases – so there 

could be 56 different 3D figures totally.  

Followed by previous discussion in this section, it is possible to check the result in a 

higher resolution. Also, the time step of the model should be correlated with the step size 

of the vehicle speed input from the drive cycle. Here, the matrix dimensions are defined as 

table 4.1, one is high resolution, one is low resolution and another is extremely low 

resolution.  
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Ranges (min:step:max) High resolution Low resolution Ultra-low 

resolution 

Vehicle max speed range 

[kph] 

0:2:120 0:5:150 0:15:150 

E-Motor torque 

(controller) [Nm] 

-132:4:132 -120:10:120 -120:30:120 

Acceleration [m/s2] -1.6:0.2:1.6 -3:1:3 -3:1:3 

Gear [-] 0:1:7 0:1:7 0:1:7 

Matrix size 61*67*17*8 = 

555832 

31*25*7*8 = 

43400  

11*8*9*7 = 5544 

Run time cost [s] 68014.13 (18.89h) 11797.74(3.28h) 3292.32(0.91h) 

Table 4.1 runtime cost of different resolution 

The run time cost is measured based on Matlab 2019b. For an acceptable trade-off 

between simulation speed and accuracy, the sampling time step is set to 1s and 1Hz. 

4.7.  Summary, novelty and contribution 

In this chapter, the algorithms of the hybrid powertrain control are introduced 

independently. The requirements for the algorithms, with the inputs and outputs are 

discussed at the beginning. Afterwards, the ECMS and DP are introduced separately from 

their computing methodologies. Subsequently, the application and calibration algorithm of 

the ECMS, and the optimisation of the DP is discussed. Finally, the data flow of these two 

algorithms are discussed. This will lead to the deeper research of the calibration of the 

powertrain model with the application of these two algorithms. 

In this chapter, the novelty on the application of both ECMS and DP control algorithms 

is discussed. The generation of an ECMS-based torque split map is able to cover different 

component selections, and the calibration with application into the model is fully 

automated. Additionally, a GUI is generated for DP and ECMS strategy to ensure the 

robustness of the entire calibration generation process to meet all requirements. The novelty 

of DP includes the introduction of a penalty matrix, which significantly reduces the total 

computing cost of DP. The resolution of the matrix is also researched and optimised, further 

improving the calculation efficiency of DP in this project. 

The core algorithm and calibration generation strategies from DP and ECMS are 

discussed in this chapter. The implementation of these algorithms and their performance 

will be discussed in coming chapter.  
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Chapter 5. Hybrid powertrain model 

development, calibration and validation 

5.1.  Introduction of this chapter 

In this chapter, the development of the powertrain model will be discussed. The 

motivation of the powertrain model development will be introduced, afterwards the 

essential subsystems development of the model is researched. Finally, the simulation 

results will lead to the calibration of the powertrain model. The calibration and validation 

of the model will proof the reliability of the LVSIM model. 

5.2.  The background of powertrain model design 

The goal of this research is to automatically generate, compare and optimise the 

control strategy for different powertrain components selections and architectures for this 

project. The control strategy generation needs to follow the requirements of the design 

principles. The powertrain model is a very complex system; it includes several different 

layers with their subsystems. Generally, the powertrain model structure was shown in 

chapter 3. In the APAS project, there were several different requirements for the modelling 

and simulation; they are able to be summarised below:  

1. Robustness. Robustness means that the application of different algorithms should work 

well across many different components’ selection and different optimisation 

goals (i.e., EV range, acceleration, and drive cycle behaviour). Furthermore, the 

robustness of the model should be extended ed to different optimisation goals, such as 

different initial SOC, target SOC, components selection, and drive cycles (NEDC, WLTP, 

FTP75 and more). The control strategy generation algorithm should cover all these 

conditions for different simulation settings and optimisation goals and make the results 

comparable and reliable.  

2. The model should be able to simulate with different control algorithms. As discussed 

previously in chapter 4, the data flow of the model depends on the control strategy and 

components block design. For different algorithms, the drive cycle inputs are different. 

For ECMS, the drive cycle is not applied for the control strategy generation; but used to 

calibrate the control strategy. The drive cycle is needed to validate the CO2 emission and 

SOC condition to adjust the equivalent factor for the calibration. Also, the drive cycle is 

required as forwarding input for the model, which is different from DP. DP needs the 

whole drive cycle as the optimisation inputs, and it does not require calibration and 

validation for the control strategy. In DP’s generation of control strategy, the drive cycle 

will input from the last time scale, and it needs the backward input on time series. Hence, 

the model data flow will be changed for different control strategies; it should be able to 
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simulate under different control algorithms and guarantee the results are comparable. 

3. The result of the model simulation should be reliable (validated) and comparable. In 

this project, because of the different application requirements for the control algorithms 

(ECMS and DP), two powertrain models are applied. One model was developed and 

validated by McLaren and is their in-house Matlab/Simulink modelling 

tool, LVSIM (Longitudinal Vehicle SIMulation); A further model was established by the 

author (also in Matlab/Simulink), the YRSim. The YRSim adopts some parts of LVSIM 

for the component’s subsystem. Still, the simulation speed is significantly faster. It is 

available to apply different control algorithms since it can be configured to run 

in forwards or backwards time stepping (required for DP). To guarantee the model 

simulation results were comparable, the inputs are the same between these two models, 

while the outputs are in the same format and size to make the results comparable.  

Based on this discussion, the comparison between LVSIM and YRSim could be shown 

as table 5.1: 

 

Table 5.1    The comparison between LVSIM and YR-Sim 

Due to the complex data flow, the drive cycle cannot be readily subdivided 

into reduced time series. For DP, this is an essential requirement, and the model must be 

able to begin simulation runs from the previous stop point.  

Hence, YRSim was generated. YRSim has fewer subsystems than LVSIM, removing 

complex and discrete blocks, applies curve fitting and linearisation methods to accelerate 

the simulation speed. To make the simulation faster, some logic state flow blocks are 
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replaced by the inputs from LVSIM simulation results. However, YRSim is not available 

for component optimisation, which is not needed for the research on control 

algorithms within this thesis. The generation of the YRSim models will be discussed 

in the next part of this chapter.    

5.3.  The motivation for YR-SIM model development 

 To compare the DP and ECMS algorithms, these two algorithms need to be 

applied to the same model. As discussed in chapter 4 section 2, the DP algorithm cannot be 

evaluated on LVSIM because the LVSIM can only use drive cycle as forward input without 

any interruption points. A further issue is the application of different drive cycles. For 

LVSIM, the simulation results on NEDC are reliable and comparable, which could be 

applied as the reference to YRSIM simulation results. However, for WLTC and FTP75 drive 

cycles, the LVSIM simulation is not always successful, especially when tested 

with different target SOC and components selection. The failure of simulation on 

LVSIM can be summarised in shown as figure 5.1: 

 

 

 

 

 

 

 

 

 

 

 

For each case, there are four components that can be selected from the component 

catalogue: engine, E-Motor, Battery, and transmission. Different cases selections are shown 

Figure 5.1    Comparison between different drive cycles 

Cases: different selection on Engine, e-motor, battery, and transmission from 

McLaren powertrain components catalogue 
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by different colour bars in the figure. The x-axis denotes the initial SOC and targets SOC 

(indicated by delta SOC). The results on WLTP and FTP-75 drive cycles are shown 

separately.  Generally, these figures are applied to compare the simulation results of 

different component selections based on the P12 topology of the McLaren P1 vehicle for 

different initial SOC and target SOC. In the NEDC drive cycle, these cases all simulated 

successfully with a range of different initial and target SOCs. But for WLTC and 

FTP75 simulations, especially for FTP75, there are several simulation failures, signified by 

bars missing. The missing bar means failure simulation, which leads to model 

robustness problems of LVSIM.   

Since LVSIM did not demonstrate enough robustness in the comparison of the 

results for different components selection and drive cycles, the models were further 

interrogated to understand the root cause of failure:   

The reason for the failure is the simulation problem that comes from LVSIM itself. 

Generally, different drive cycle requires different simulation time cost, and a longer drive 

cycle will cost a long time on simulation.  It can prove that the LVSIM does not have 

enough robustness in the comparison of the results for different components selection and 

drive cycles. From the model check of the LVSIM, the failure reason is found: The reason 

for failure is electric motor integrator problem. Considering a simple solution, if a look-up 

table replaces that block, the simulation may work only for E-Motor itself, but 

it cannot provide data flow for E-path inputs and outputs for LVSIM simulation. As 

introduced, the LVSIM is not a quasi-steady-state model; the components are not able to 

run independently on each subsystem. Thus, building a model to compare the CO2 

emission on different components for different initial and target SOC is essential. YRSim 

makes this done. 

5.4. The development of the YR-Sim model structure 

As discussed in chapter 4 section 2, the data flow of the model will directly affect the 

application of the algorithm. The model structure defines the model data flow, so the model 

structure will directly affect the algorithm application. To guarantee the YR-Sim model was 

able to be robust for both ECMS and DP algorithms, the data flow needs to be defined 

before building the model.    

There are several subsystems of the model. For a hybrid powertrain system, there are 

two different energy resources; the ICE path and the E-Motor path. The vehicle system 

model will simulate these two subsystems. They are described as figure 5.2: 
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Figure 5.2   Subsystems of powertrain model 

5.4.1 The aim of the YRSim model 

The YRSim model is a revised powertrain model to compare the DP and ECMS 

strategy for a range of different cases (different initial and target SOC, various components 

selection, and different simulation settings). The subsystems of the YRSim were in 

general derived from LVSIM to guarantee the simulation results are reliable and 

comparable. Similarly, the input data (model parameters) also came from LVSIM. A data 

transfer & scaling function is finished to transfer data into the powertrain block. 

Some specific blocks is replaced and generated by myself due to the lack of data 

from LVSIM.   

For the YRSim model, the model should be able to run in different topologies and 

different components selection with varying objectives for each case. Because LVSIM is not 

a quasi-steady-state model, the subsystems from LVSIM need to be rebuilt to meet the 

requirements into YRSIM simulation.  Also, the control block and components subsystems 

all need standardisation to guarantee the input and out data are comparable; the times 

series drive cycle is adjusted with the 1s sampling step. Also, for the simulation, the LVSIM 

block map needs several independent scripts to transfer them into the new model directly.  

5.4.2 Engine model block 

The engine block includes sub-models such as fuelling, cooling, and efficiency maps. 

The inputs and outputs of the engine block are the required engine torque, gear selection 

with engine speed, and driver throttle pedal inputs. The engine efficiency maps (fuel flow 

map and BSFC map) are all built-in.   
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The engine block has several subsystems to guarantee that the engine can simulate the 

same results as the LVSIM model. Also, these subsystems are used to build the different 

functions of the YR-Sim model for different application. These subsystems are shown in 

table 5.2: 

Subsystems Inputs Outputs Function 

Pull away 

Clutch 

Gear, engine 

speed, 

acceleration 

Calibrated 

engine speed 

Simulate the clutch slipping 

stage engine speed condition 

Friction 

torque 

Water 

temperature, 

engine speed 

Friction torque Calculate the friction torque 

based on engine condition and 

add to engine total torque load 

Water 

temperature 

Fuel flow Water 

temperature 

Simulate the water temperature 

with different working 

conditions based on the 

reference of LVSIM 

Engine cold 

start 

Clock time and 

pull away 

output engine 

speed 

Calibrated 

engine speed 

Addition engine speed during 

cold start condition 

Fuel injection 

cold start 

Fuel flow and 

clock time 

Calibrated fuel 

flow 

Addition fuel flow during cold 

start condition 

 

Table 5.2     Engine model subsystems 

The engine system includes these subsystems, with a fuel flow map, torque map, and 

other essential accessories. The combined inputs and outputs with all subsystems of the 

engine block are shown in figure 5.3: 

 

Figure 5.3     Engine model inputs and outputs 
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The engine torque is controlled by a torque split map (ECMS) or optimised energy 

management strategy (DP). The engine speed is calculated from the vehicle model, vehicle 

speed, and gear selection, the acceleration comes from the drive cycle, and the gear selection 

comes from the LVSIM strategy.  

5.4.3 E-Motor model block 

The E-Motor block is the core block of the E-path. It supports the total torque output of 

the powertrain system from the battery’s discharge, or it charges the battery in some 

working conditions. Like the engine block, the E-Motor block has several subsystems for 

different functions to guarantee that the simulation results from YRSim are comparable 

with LVSIM. The subsystems of the E-Motor block are concluded as table 5.3: 

Subsystems Inputs Outputs Function 

Turbo lag fill-in Engine torque, E-

Motor torque, 

the total torque 

Calibrated E-

Motor torque 

Calculate the validated 

torque for the engine turbo 

lag 

Braking torque 

calculation 

Total brake 

torque, E-Motor 

torque limiter 

Calibrated E-

Motor torque 

Calculate the brake torque 

for the regeneration braking 

system 

 

Table 5.3     E-Motor model subsystems 

In the E-Motor model, these subsystems will combine with the E-Motor efficiency 

map and other essential parts. The turbo lag fill-in is independent of the E-Motor block 

because it needs to validate the E-Motor torque before the inputs of the E-Motor block. The 

topology of the E-Motor system can be shown in figure 5.4: 

 

Figure 5.4     E-Motor model inputs and outputs 
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 This figure calculates the E-Motor torque and engine torque from the control strategy 

(DP or ECMS); the total required torque comes from the vehicle model and drive cycle. The 

turbo lag fill-in subsystem will calibrate the E-Motor torque and make it as input of the E-

Motor subsystem. The brake torque is calculated from the vehicle model and drive cycle – 

from the torque requirement of braking in the drive cycle with the vehicle longitudinal 

dynamic model. In LVSIM and YR-Sim, the engine speed and E-Motor speed ratio are fixed 

(2.0). The E-Motor is two times faster than the engine speed. The engine speed is controlled 

by gear selection and vehicle speed, so the E-Motor speed can be calculated from the drive 

cycle and vehicle dynamic model. The outputs of the E-Motor block are E-Motor torque 

with regeneration braking (validated), the calibrated E-Motor speed, and the E-

Motor power.  

5.4.4 DC to DC converter model 

The DC-DC converter links the E-Motor output to the battery. It calculates the current 

data and current delta across the DC bus and the energy loss from converter efficiency. 

Generally, the current is calculated as: 

1 emotor
output input

converter emotor

P
I I

V
= +   

There are also some constants in this equation to adjust the outputs of the current 

meeting in the real world. The energy loss is calculated as below: 

1
( 1)loss input

converter

P P


= −   

The topology of the DC-DC converter can be shown in figure 5.5: 

 

Figure 5.5     DC-DC converter model data flow 

 The E-Motor voltage is the battery’s output; the DC-DC converter combines battery 

and E-Motor to build the E-path of the powertrain system. The essential parameters and 

[1] 

[2] 
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data flow structure come from LVSIM in McLaren; which guarantees the simulation results 

of the DC-DC converter model are comparable and reliable to YR-Sim. 

5.4.5 Battery model 

The battery model is another crucial subsystem in the E-path of the powertrain system. 

It also applies mainly data flow structure from LVSIM and components maps to ensure the 

simulation results in accuracy and comparable. There are two approaches of the battery 

model: the first one is the calculation of SOC and integrating it for output. The second one 

is calculating internal voltage and internal loss for the combination with DC-DC converter 

for the building of E-Path. The integration of the current will calculate the SOC, and the 

SOC is calculated as equation 3: 

max

1 dI
SOC

Q dt

−
=   

 The SOC is correlated with the initial SOC, and the dynamic of SOC is calculated as 

equation 4: 

max

battery

initial

I
SOC SOC

Q
= −   

The internal resistance of the battery comes from the lookup table populated with cell 

data. The function is shown equation 5: 

( , )batteryR g T SOC=  

 The battery temperature lookup table comes from the LVSIM model. The temperature 

is calculated as the integrated difference between the heat that each battery cell produces 

during the operation and the heat is transferred into the coolant. The calculation is shown 

as equation 6-8: 

, , ,( )loss
cell core cell surf p core

cells

P
T P C

N
= −   

, , ,( )cell surf cell core cell surf thermalP T T R= −   

, , ,( )
batterycoolant

cell surf cell surf p surface

cells

P
T P C

N
= −   

[3] 

[4] 

[5] 

[6] 

[7] 

[8] 
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Here, then converts between the power to temperature, while the thermalR
is applied for 

heat transfer between battery core and surface. The coolant temperature is set as constant 

36 degrees (which is as same as LVSIM’s setting), and the battery cells are assumed to have 

the identical format, and the temperature to power constants are all the same for all cells. 

The internal voltage shape curve is reshaped by max voltage. The table is called OCV 

(open circuit voltage) relationship, and the calculation is shown as equation 9: 

max ( )battery batteryV V f SOC I R=  −   

 In conclusion, the battery inputs and outputs topologies are shown in figure 5.6: 

 

Figure 5.6     Battery model data flow 

 The battery current comes from the DC-DC converter output, and the battery voltage 

will be the input of the E-Motor subsystem. The battery SOC will be an essential input and 

consider the optimisation criteria of the whole powertrain system in this project. 

5.4.6 Vehicle dynamic model 

The vehicle dynamic model is a model that calculates the torque requirement, wheel 

speed, drag force, and acceleration from drive conditions and drive cycle. The vehicle 

dynamic model is based on the force balance of longitudinal drive conditions. The force 

balance of vehicle dynamic has five parts: acceleration/deceleration force, rolling resistance 

force, air resistance force, slope incline force, and drag traction force. Any other unexpected 

disturbance inputs are ignored. These forces are all time-dependent, and the force balance 

equation is shown as equation 10: 

( ) ( ) ( ) ( )traction acceleration air slope rollingF t F t F t F t F= + + +  

[9] 

[10] 
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The traction force came from the powertrain system and was implemented by tyres. The 

acceleration force is calculated as equation 11: 

acceleration vehicleF m a=   

The air resistance force is calculated as equation 12: 

21

2
air air front dF A C v=      

Because there is no slope for any drive cycle, so there, the rolling resistance force is 

correlated with vehicle weight, and it is shown below, and it is not a time-dependent 

variable: 

rolling rolling vehicleF c m g=    

And in conclusion, the force balance on the vehicle is shown in figure 5.7: 

 

Figure 5.7     Vehicle dynamic force balance 

21
( ) ( ) ( )

2
traction vehicle air front d rolling vehicleF t m a t A C v t c m g=  +     +    

 Notice that this equation does not consider the slope incline force. The YR-Sim model 

applies the vehicle speed and reference torque to calculate the drag force and vehicle 

acceleration. The reference torque is the final torque coming from transmission output (tyre 

torque), and the vehicle speed comes from the drive cycle. The traction force is as same as 

the drag force here. The topology is shown as figure 5.8: 

[11] 

[12] 

[13] 

[14] 
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Figure 5.8     Vehicle dynamic model data flow 

5.4.7 Transmission model 

The transmission model is an essential component subsystem in the YR-Sim powertrain 

model. The gear shifting strategy is applied in this subsystem. To guarantee comparable 

and reliable simulation results, the gear shifting strategies in different drive cycles must 

keep the same as LVSIM. The gear selection of NEDC and WLTC are shown as figure 5.9 

and 5.10: 

 

Figure 5.9 Gear selection of NEDC drive cycle   Figure 5.10 Gear selection of WLTC drive cycle 

In the powertrain model, the gear selection of transmission will follow the vehicle speed 

and the total input torque. Also, the efficiency of the transmission is considered to calibrate 

the output torque from the powertrain. The topology of the transmission model is shown 

as figure 5.11: 

 

Figure 5.11     Transmission block data flow 
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 The transmission is the last component of the powertrain data flow that calculates the 

final torque onto the tyre for the traction of the vehicle. 

5.4.8 Torque split control block (for ECMS) 

The torque split strategy is applied to manage the energy flow between E-path and ICE-

path. It is a series of maps generated from the ECMS strategy mentioned in the algorithm 

chapter. The inputs of the torque split map are engine speed from the drive cycle and the 

total required torque from the vehicle model. The output is the optimised E-Motor torque 

at a given fixed engine speed (coupled with E-Motor speed) and the required total torque. 

The calibration of the map is based on the SOC during the whole drive cycle. Also, the brake 

torque is calculated here for the regeneration braking, so the reference vehicle speed is also 

applied as one of the inputs in this subsystem. Hence, the topology of this subsystem is 

shown in figure 5.12: 

 

Figure 5.12     Torque split model data flow 

 Here, there are several subsystems for the additional function of the YR-Sim. These 

functions can guarantee that YR-Sim has comparable results as LVSIM.  

1. Low-speed ICE stop system 

When the engine speed is lower than a threshold, the vehicle run in pure EV mode, which 

will reduce the SOC, but it will reduce the CO2 emission. The simulation is based on ECMS 

strategy, with a P12 battery, P13 engine, P16 E-Motor, and P12 gearbox. The drive cycle is 

NEDC, and the initial SOC is 50%. The implementations of these subsystems are shown 

below table 5.4: 
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Table 5.4     Low-speed EV mode performance 

This table shows that when the threshold is 20km/h, the final SOC is 44.24%, with the total CO2 emission being 14.43kg. When the threshold 

is 10km/h, the final SOC is 47.89%, with a total CO2 emission of 14.75 kilograms. If the system is closed, the final SOC is 48%, and the total CO2 

emission is 14.78kg. In conclusion, the low-speed EV system threshold should not be too low to make the efficiency significantly. If the 

threshold is too low, the EV mode will not consume enough energy to make the result roughly the same as the closed condition.

Vehicle 

speed 

threshold 

20km/h 10km/h 0km/h (system closed) 

Total CO2 

emission 

[kg] 

  

 

SOC [-]   
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2. Engine start/stop system 

 

The engine starts/stop system (written as the S/S system) will operate when the vehicle 

is stopped or decelerated. Because the engine and E-Motor are coupled on speed, the E-

Motor will also stop if the engine stops. The pull-away clutch subsystem will manage the 

speed of the vehicle. Thus, for the application of the S/S system, the CO2 and SOC will both 

be affected. Notice that if the E-Motor stops working during deceleration, the regeneration 

braking system will not work because it cannot charge the battery in this condition. The 

time series simulation results are shown as table 5.5: 

 

 

 

 

 Off On 

ICE 

speed 

[rpm] 

  

E-

Motor 

speed 

[rpm] 

  

CO2 

[kg] 
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Table 5.5     Engine start/stop system performance 

In these figures, the S/S system will significantly affect the SOC and CO2 emission. The 

SOC condition cannot be guaranteed when the system is activated because the regeneration 

braking system is deactivated simultaneously. However, because of the offline of the engine, 

the CO2 emission also decreased a lot. Hence, in this simulation condition, compared with 

a low-speed EV system, the S/S system can affect the CO2 emission much more efficiently, 

with more cost on SOC condition in a given drive cycle. 

3. Regeneration braking system 

 The regeneration braking system will apply braking power to charge the battery with 

the usage of an E-Motor. The results in time series are shown as table 5.6: 

 Off On 

E-

Motor 

torque 

[Nm] 

  

SOC 

[-] 
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E-

Motor 

power 

[kW] 

  

CO2 

[kg] 

  

SOC 

[-] 

  

Table 5.6      Regeneration braking system performance 

 The difference between the regeneration braking system activated & deactivated is 

clear from these figures. The regeneration braking system does not correlate with the engine, 

so the CO2 emission is unaffected. But the E-Motor power and torque output in time series 

are quite different in that more negative torque (which denotes charging the battery) is 

delivered in deacceleration conditions. The torque split map is identical in these two 

simulations, but the SOC final condition is different. If the regeneration braking system is 

not activated, the final SOC is 44.21% in the end. If the system is activated, the final SOC is 

57.79% which is 13.58% more than deactivated. Thus, the performance of the regeneration 

braking system is shown and it will significantly affect the simulation results. 

5. Power limiter of engine and E-Motor 

In the simulation, the output of the engine and E-Motor need to be checked to 
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guarantee the outputs have no “stupid value.” The power limiter will always ensure that 

all the working points stay inside the map for any given working condition. The block is 

shown as figure 5.13: 

 

Figure 5.13     Power limiter block in Simulink 

The max torque and min torque, max power, and min power for different engines and 

E-Motor speeds are external inputs from the powertrain components catalogue – they are 

updated if the components selection changes. The torque limiter will limit the outputs of 

these components and automatically calculate the limitation with different components 

selection and working conditions. 

5.4.9 Driver model (for ECMS strategy) 

The driver model is an essential part of the ECMS strategy. In the ECMS torque split 

control data flow, the driver block needs to calculate the total torque requirement from the 

driver based on the drive cycle, the command on braking and acceleration, gear selection, 

and correlated engine speed. The driver block needs to simulate human beings’ behaviour 

during driving. In this case, there are some differences between the actual vehicle speed 

and the reference drive block. This is called an “error” in the system. It is not a factual error 

but just considered as the input of the driver block to let the driver adjust the behaviour of 

acceleration and deceleration requirements. Thus, the driver block requires a closed loop of 

the whole system based on vehicle speed feedback, and the energy management is based 

on the ECMS torque split map. For the DP algorithm, the driver block is not essential 

because the cost-to-go function is generated based on all possibilities of E-Motor controller 

in the drive cycle, so there will be no error between actual simulated vehicle speed and 

drive cycle reference vehicle speed. 

 From the modelling and simulation work, in most of the working conditions, the 

braking torque requirement should not only be calculated from the drive cycle but 

also need to be controlled by the driver. It can guarantee the vehicle follows the drive cycle 

in deacceleration. Hence, the acceleration and deceleration of the vehicle both need to be 

controlled. To make this work, an independent acceleration and deceleration controller is 

designed. The PI controller is in the driver block. The input is the speed error and reference 
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speed, and the outputs are the braking torque controller and acceleration controller. The 

throttle paddle and braking paddle are controlled separately in one driver model. The block 

diagram is shown as figure 5.14: 

 

Figure 5.14    Driver block in Simulink 

 The PI controller is designed inside the driver block. It is a close-loop controller to 

generate the behaviour of the acceleration pedal and brake pedal of the driver. In the driver 

block, the output of the driver controller is the pedal position. So the pedal map is required 

to transfer the pedal position to the torque requirement. The pedal map is applied from the 

LVSIM model. Also, the engine speed is calibrated in this block with the calculation of the 

start/stop system. The topology of the driver block is shown as figure 5.15: 

 

Figure 5.15     Driver block data flow 

 The difference between drive cycle reference speed and vehicle simulation speed is the 

speed error, which is considered as the input of the driver block. The pedal position 

includes an accelerated pedal and a breaking pedal. The total torque is calculated from the 

driver model and pedal position map for the total torque requirement of the vehicle system. 

There is no energy flow management control strategy in this block, and the total torque will 

be divided to ICE-Path and E-Path in the ECMS torque split map or by DP optimised 

strategy. The calibrated engine speed is correlated with the activation of the start/stop 

system.  
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 The PID controller in the driver block controls the pedal position based on speed error. 

The structure of the PID controller includes several different parts. The driver block is 

applied as the feedforward control input, and the error is applied as the feedback control 

input. From the tuning, the feedforward control only applies to the acceleration pedal. In 

the calculation of deceleration, the feedforward input from the drive cycle is not necessary 

but affects the controller’s stability. The data flow of the PID control in the driver block is 

shown as figure 5.16: 

 

Figure 5.16     Driver behaviour controller 

 For acceleration pedal position, the PID controller compensation formula, combined 

with a feed-forward controller, is shown in equation 14: 

( )
1

i d
acceleration p ff reference

f

K K s
C K E K V

s T s
= + +  + 

+
 

 Where, 
pK  = proportional gain, iK  = integrator gain, dK  = derivative gain, 

fT  = 

derivative filter time, 
ffK  = feed forward gain, E  = error (difference between drive cycle 

speed and simulated vehicle speed), 
referenceV  = drive cycle reference speed. In this equation, 

from the simulation tunning, 
pK  = 0.1, iK  = 0.5, 

ffK  = 0.05, dK  = 0.  

 For deceleration pedal position, the PID controller compensation formula is shown in 

equation 15: 

( )
1

i d
deceleration p

f

K K s
C K E

s T s
= + + 

+
 

 In this equation, from the simulation tunning, 
pK  = 2, iK  = 1, dK  = 0.  

[14] 

[15] 
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 The criteria for the PID and feedforward controller tuning are to guarantee that the 

driver pedal operation can keep the vehicle following the driving cycle speed reference. The 

simulation is tested on four different drive cycles. The results are shown as in table 5.7: 

 

Table 5.7     Driver controller performance 

From the comparison between the reference drive cycle and simulated vehicle speed, it can 

find out that the simulated driver can follow the drive cycle. In some deceleration 

conditions, the vehicle is not able to do that fast braking. Still, it will not affect the whole 

SOC because the regeneration braking system has its own torque and power limiter to 

guarantee that the E-Motor will not overload and the charging speed of the battery is 

managed. Hence, based on these comparisons, it can confirm that the driver model meets 

the requirements of generating the requirement of the whole system torque with 

acceleration and braking pedal signal. 

FTP20 FTP75 

  

WLTP NEDC 
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5.5. The calibration and validation of hybrid powertrain 

model 

The ECMS algorithm generates the torque split strategy and applies it to the powertrain 

model. For the calibration, the simulation results should be the same between YR-Sim and 

LVSIM. The calibrations are implemented on different dimensions to guarantee that the 

simulation results from YR-Sim can be used as the reference for LVSIM. For E-path and ICE-

path, the most important outputs of these two subsystems are SOC of high voltage battery 

and CO2 emission of engine. These two outputs need to be compared on time series with 

LVSIM. 

5.5.1 Add-on subsystems of YRSim and the calibration with 

LVSIM 

The criteria are CO2 emission, and SOC condition trends in YR-Sim deliver the same as 

LVSIM. The calibration aims to guarantee the E-path and ICE-path work correctly, and that 

the state transaction matrix and cost-to-go matrix meet the requirement. To make sure the 

YRSIM can get the same simulation results as LVSIM, besides the physical model of E-path 

and ICE-path, there are several additional subsystems here: 

ICE-Path ⚫ Cold start system 

⚫ Engine friction torque calculation 

subsystem 

⚫ Engine water temperature calculation 

subsystem 

⚫ Engine start fuelling system 

⚫ Alternator torque calculation subsystem 

E-path  ⚫ DC-DC converter and energy loss system 

⚫ Turbo lag fill-in system 

Table 5.8 Subsystems for ICE path and E-path 

The subsystems will directly affect the behaviour of YRSim simulation results. The 

essential addition of powertrain components will make the new powertrain model getting 

closer to the LVSIM model – and closer to the real world. To ensure the new powertrain 

model can meet the requirements of ECMS and DP for both forward and backstep 

simulation, the subsystems need to be calibrated with LVSIM powertrain model simulation 

results. 

The ICE path and E-path are introduced separately in this chapter. Firstly the 

methodology of transferring from physical-based model to data drive model is discussed 

as figure 5.17 below: 
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Figure 5.17 The comparison between LVSIM and YRSim in ICE-path model 

 In this figure, the data flow of ICE-Path subsystems are compared between LVSIM and 

YRSim. In LVSIM, the engine model includes several subsystems are shown in this figure. 

These subsystems will calculate the energy loss and heat release of the engine. Additionally, 

each subsystem is equipped with its own control system inside, such as injection timing 

control, fuelling control and coolant liquid flow control. The internal variables between 

these subsystems are multiplexing used to calculate the energy lost and requirement in the 

ICE-path system. For this project, the most important requirement is to calculate the fuel 

flow, CO2 emission and total engine torque outputs based on the total torque requirement 

from the drive cycle and vehicle model, with given gear selection and energy management 

calibration. Hence, a lot of internal variables and outputs are not necessary at all.  

 In the building of the YRSim ICE model, followed by the LVSIM data flow, the engine 

friction torque includes the energy that overcome the heat release, pump loss and 

mechanical loss, so it can be applied to estimate the total addition torque requirements of 

the engine model in YRSim. The fuelling amount includes cold start system and engine 

warming system. The engine temperature can be considered as water temperature, oil 

temperature and coolant temperature, but the relationship can be found between each other. 

So the water temperature is applied to donate the engine temperature. Afterwards, the 

relationship between engine friction torque, water temperature and the engine speed can 

be concluded from the parameter identification of the subsystem. So the addition amount 

of fuelling can be estimated in YRSIM model. 

 The parameter identification is based on the subsystem inputs and outputs, to using 

curve fitting tool with parameter identification to find out the relationship between 

different internal variables. In the ICE-path system, it is essential to find out the relationship 

between friction torque, water temperature and fuel flow from the internal variables. They 



108 

 

are show as below figure 5.18 (using NEDC as example): 

 
Figure 5.18 Internal variables of ICE-Path 

In the figure 5.18, the relationships between these variables are shown. The engine 

friction torque has inverse proportion to water temperature, and the fuel warm ratio shows 

that how to align the fuel flow from the proportion.  

From the data flow research in figure 5.17, the friction torque is correlated with engine 

speed, and in YRSim, the estimation of engine water temperature comes from the engine 

heating power and engine thermal capacity map – which is provided by McLaren in their 

components catalogue. The engine heating power applies the calculation from McLaren’s 

subsystem, the fuel flow. The fuel flow is using the fuel flow map (with engine torque 

requirement) and the fuel warm ratio to calculate. The subsystem of water temperature 

estimation is shown as below figure 5.19: 
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Figure 5.19 The estimation of water temperature 

 Because the water temperature can be estimated from the fuel flow, and the fuel flow 

can be estimated from engine working points and fuel flow map as figure 5.20 below: 

 
Figure 5.20 McLaren engine fuel flow map 

 So here I am using these variables to fit the engine friction torque to make sure the 

YRSim is showing same trend as LVSIM, the fitting function 16 is shown as below: 

YRSimFriction torque

( engine speed+fuel warmratio fuelflow) (-1) water temperaturea b

=

    
 

 Where a and b are two parameters that needs to be identified. The minimisation 

function is to reduce the differences between YRSim friction torque and LVSIM friction 

torque. The equations 17 and 18 are shown as: 

1 YRSim LVSIM

2 YRSim LVSIM

min(Friction torque -Friction torque )

min(Fuel flow -Fuel flow )

J

J

=

=
 

[16] 

[17] 

[18] 
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 These two constrains will be able to identify the parameter a and b with curve fitting 

tool and least square method. This process can be done for any engine from McLaren 

components catalogue because the fuel flow map and engine thermal capacity fitting map 

will always be given. So once the friction torque and the fuel flow are all aligned with 

McLaren LVSIM model, the internal variables includes water temperature can also be 

reviewed. These results will be discussed in coming 5.5.1.1 part of this chapter. 

 For the E-path, it is easier because there are not so many time-dependent subsystems 

inside. The YRSim is using same physical model of battery with LVSIM, but just the battery 

temperature estimation.  

 In LVSIM, the battery temperature is measured and monitored by the Battery 

Management System (BMS). The BMS has several state flow control blocks, and they are 

not quasi steady-state subsystems. Hence, the BMS temperature measure system needs to 

be replaced by look-up table subsystem. From the components catalogue, there are five 

different batteries to select. Refer to table 6.7 in chapter 6, for each battery selection, this 

project also has different engines, gearboxes and emotors to select. A fixed series of engine, 

emotor, battery and gearbox is called a components selection case. For different batteries, 

the temperature of battery in different cases are shown as below figure 5.21: 
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Figure 5.21 Different battery selection temperature in time series 

 These figures show that, for same battery selection in different simulation cases, the 

LVSIM BMS is controlling the battery temperature in a stable condition with linearly 

increasing trend. Hence, in the YRSim, the average value of these simulation results in time 

series is used to estimate the trend of battery temperature. For each battery, a specific map 

is generated from the LVSIM test results. The difference between LVSIM reference 

temperature and the YRSim estimated curve fitting temperature is presented in the SOC 

from figure 5.31 later in this chapter. 

 For the emotor subsystem, the McLaren LVSIM is also using the look-up table to 

calculate the efficiency and estimated the turbo-lag fill in torque of the emotor. The 

temperature calculation is to estimate the coolant flow, which is not correlated with this 

project’s requirement. Additionally, there is no time-dependent subsystem in DC-DC 

converter from LVSIM, so this project is using same model of DC-DC converter in the 

YRSim. The comparison between LVSIM and YRSim in E-path is shown as below figure 

5.22: 

 

Figure 5.22 The comparison between LVSIM and YRSim in E-path model 

 Comparing with ICE-path, the E-path is using more common subsystems between 
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LVSIM and YRSim. The data flow overview in E-path in Simulink is shown as figure 5.23: 

 

Figure 5.23 The overview of E-path subsystem in YRSim 

 In this subsystem, the emotor torque requirement is firstly controlled by the torque 

split map (from ECMS) or from DP algorithm. Afterwards, based on the whole system 

torque requirement and engine working condition, the turbo lag fill-in feature is activated 

to calculate the addition positive adjustment from the block. The brake torque is calculated 

from the drive cycle and vehicle model, and the requirement of negative torque and positive 

torque (corrected by turbo lag fill-in subsystem) are all getting into emotor model block to 

calculate its power output and final torque output with regeneration braking system. Then, 

the emotor power and the emotor voltage (calculated from battery model) are the inputs of 

DC-DC converter to calculate the battery current, converter energy loss, power and drain 

current. The SOC and voltage are calculated from battery model, from the battery current 

input. In the battery block, the previous mentioned temperature estimation method is 

applied. 

 Based on these calculations, the YRSim is able to simulate the powertrain behaviours 

on different test cases and it is guaranteed to be a quasi-steady state model. It applies the 

LVSIM as reference and it is using curve fitting, system parameter identification methods 

to transfer the model from a pure physical based model into a data-driven “half-physical 

half-map” model. The performances of these subsystems will be introduced in coming part.  
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5.5.1.1 ICE-Path subsystems 

ICE path is very sensitive to the temperature. If the engine’s temperature is not 

accurately calculated, the total fuel consumption and the CO2 emission will be not reliable 

from the LVSIM result. The temperature includes oil temperature and water temperature. 

In the LVSIM model, the oil temperature is calculated from the water temperature, and the 

water temperature could be estimated from fuel injection flow.  

The fuel injection flow can be calculated from the torque requirement of the whole ICE-

Path system.  

Another factor that will affect the engine output, which is the engine friction torque. 

The friction torque combines all the mechanical efficiency loss from the LVSIM model. From 

the research of the McLaren engine model, the engine friction torque is calculated from 

engine oil temperature, coolant water temperature, engine speed, and manifold pressure. 

In the YR-Sim, a more straightforward method is applied to solve this problem. 

Additionally, the manifold pressure is also calculated from engine temperature. So, of the 

solution is to estimate the friction torque from water temperature and engine speed.  

The relationship between engine friction torque, engine speed, and coolant water 

temperature is shown in figure 5.24:  

 

Figure 5.24 Engine speed with friction torque and water temperature 

In this figure, the engine speed unit is rad/s, which is not shown on the y-axis. There 

are some trends I can conclude from this table 5.9: 
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Figure 5.25 Constant water temperature 

For a constant water 

temperature (100 degrees), if 

the engine speed goes 

higher, the friction torque 

will also go higher.  

 

Figure 5.26 Same engine speed 

For the same engine speed 

(in this figure, the RPMs for 

different working points are 

roughly the same, 95.27rad/s 

and 95.12 rad/s), if the 

temperature goes lower, the 

friction torque goes higher.  

Table 5.9 Trend between engine speed, friction torque, and water temperature 

Thus, for high temperatures (100 degrees), and low-speed conditions, the engine has 

the lowest friction torque. For low temperature (25 degrees), and high-speed conditions, 

the engine has the highest friction torque. The engine friction torque is proportional to 

engine speed and inverse proportion to engine water temperature.  

From this figure, I will set the lowest friction torque to 35Nm (which follows the setting 

in LVSIM). In this condition, the water temperature is highest (100 degrees) and the engine 

speed is lowest (idle speed). Then, an inverse proportion function is generated based on 

water temperature, and a proportion function is generated based on engine speed.  

This is how the engine friction torque is estimated and simulated. From the data flow 

research of LVSIM, the engine fuelling warmup system is calculated from the water 

temperature, engine load, engine speed, and air mass flow. As the discussion on LVSIM 

model earlier this chapter, the water temperature can be estimated. The air mass flow is 
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directly correlated with fuel flow, and the fuel flow comes from the lookup table of the fuel 

flow map. The fuelling warmup ratio also depends on the engine load. Subsequently, the 

engine load depends on the engine torque and engine speed. So, to reduce the input size of 

the fuelling warmup block in YRSIM, the relationship between engine torque & engine 

speed with fuelling warmup ratio could be shown as figure 5.27 and 5.28:  

 

Figure 5.27 Engine speed with fuel warm-up      Figure 5.28 Engine torque with fuel warm-up 

From the input of the block, I prefer to use the engine torque to generate the engine 

fuelling warmup system. From the relationship between the torque requirement and the 

fuelling warmup ratio, some trends could be detected: 

 

Figure 5.29 Fuel warm ratio with warmed engine 

 When the temperature of the cooling water becomes stable (100 degrees), the fuel 

warmup ratio becomes closer and closer to 1. If the engine torque requirement becomes 

higher, the fuel warmup ratio will be higher. So for stable warmed engine, the fuel warmup 

ratio is still higher than 1, but the value is relatively low. If the duration of the stable 

temperature is long enough, the fuelling warmup ratio will go back to 1 at the very end. 
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Figure 5.30 Fuel warm ratio with the cold engine 

With the increase in the water temperature, the fuel warmup ratio keeps decreasing. 

Thus, if the torque requirements are the same at different water temperatures, the fuel 

warmup ratio will be higher if the temperature is lower.  

Here, in conclusion, the water temperature and engine friction torque can be calculated 

as below. For the water temperature, the fuel flow comes from the YR-Sim engine block, 

and the result is compared with the LVSIM simulation result:  

 

Figure 5.31 Water temperature calibration 

The water temperature applies to the fuel flow to calculate. The fuel flow signal comes 

from the YR-Sim model. The water temperature is used to calculate the friction torque of 

the engine. In LVSIM, the water temperature is firstly estimated from fuel flow calculation; 

then, the temperature is adjusted from many lookup tables. Parts of them is used with some 

modification, to make the temperature of the water looks same between LVSIM and YRSim. 
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The friction torque requires a lot of (more than the water temperature model) lookup 

tables to calculate the engine friction torque.  Here, the engine speed and water 

temperature to calculate it. Due to the requirement on quasi-steady state model, Boolean 

logic loops are replaced by the pure math method to make the friction torque show the 

same trend and amount level. That is quite hard because there is no physical relationship 

inside, but finally. Here is the result comparison between the YR-Sim model and the LVSIM 

model in figure 5.32.  

 

Figure 5.32 Friction torque calibration 

The friction torque is calculated from the combined signal processing of water 

temperature and engine speed. The water temperature comes from the model previously 

mentioned in figure 5.24.  The friction torque is in same trend and they are reliable for the 

simulations in YRSim.  

5.5.1.2 E-path subsystems 

Generally, the E-path describes the energy flow between the E-Motor and the battery. 

The E-Motor will charge or discharge the battery while harvesting the energy from the 

braking system or supporting total torque output to the powertrain. From the model 

comparison between LVSIM and YR-Sim, it is essential to guarantee the SOC trend be the 

same.   

There are two energy resources in a hybrid powertrain system: the ICE-path and the E-

path. The ICE path working condition could be checked by the CO2 emission, and the E-

path need to be reviewed by SOC condition.   

 In the downstream data flow research and comparison, in order to keep the same 

trend on SOC between LVSIM and YRSim, building a DC-DC converter in the model is 

necessary. The application of the DC-DC converter should be integrated within E-path 
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together. So, there are three components work together in E-path: E-Motor, battery, and 

DC-DC converter. The topology is shown in figure 5.33:  

 

Figure 5.33 E-path data flow 

Based on the model research, some differences between in SOC between LVSIM and 

the YRSim come from the turbo lag fill-in system. The turbo lag fill-in system uses the E-

Motor to fill-in the turbo lag, and its inputs and outputs include the engine torque, engine 

temperature, engine turbo model, and E-Motor torque limitation calculation. The model 

consists of the temperature model, which should not be included in my YR-Sim model. A 

simpler curve fitting model is sued to describe the turbo lag fill-in system. It will modify 

the E-Motor torque with quasi-steady state model. This system is an addition system before 

the E-Motor block. 

Thus, the turbo lag fill-in system only affects the SOC condition; it is not correlated 

with the fuel consumption because the turbo temperature model is not included in the 

system. The result comparison on the turbo lag fill-in system between LVSIM and YRSIM 

is shown in figure 5.34: 

 

Figure 5.34 Battery SOC comparison 

Temperature models for turbo, E-Motor and battery are fitted by polynomial in the 

system, so the behaviours in low temperature and high temperature are different. In low-

temperature conditions, the YRSim will charge more, but in the high-temperature condition, 

the YRSim will charge less.  

Totally, the SOC difference is 0.6%. In my opinion, it is an acceptable result to consider 
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the YRSim applying as a reference for LVSIM but it still needs to be refined. The differences 

come from the temperature model of the battery and turbo, which is unsuitable for 

feedback/feedforward step simulation. 

5.5.2 Some other addition subsystems in the YR-Sim model 

In the LVSIM model, there are also some other components that support the whole 

system running. These subsystems are also using LVSIM as a reference, and they are 

calibrated from the simulation results from LVSIM. 

Several subsystems are added here: 

1. Pull-away clutch: This is a clutch which can calculate the slide of the clutch. From the 

test results of LVSIM, lower gear has a higher slide ratio. Hence, a pull-away clutch is 

considered and generated – it is not as complex as LVSIM, but it can still cover the behaviour 

of the LVSIM Pull-away clutch. 

2. Engine cold start system. In LVSIM, the engine start temperature is considered in the 

model. However, to guarantee the model can run in both feedback and feed-forward 

condition, the temperature and coolant model, are impossible to use because they are not 

quasi-steady state model. Hence, based on the control logic in YRSIM simple engine cold-

start model is added. It includes two parts: 

3. The engine cold revving will be higher than normal condition, and the engine 

starts/stop system will be deactivated due to the heat requirement of the engine. The lowest 

speed of the engine is 850rpm. 

4. The cold fuel injection system. The engine will inject more fuel when the temperature 

is low. In YR-Sim, the start temperature of the engine is always considered lower than the 

normal working temperature. Hence, at the start of the drive cycle, the system will add 

more fuel flow to be injected into the model. 

5. Notice that the engine cold start system requires the time clock of the drive cycle. 

Hence, the original engine cold start system must be removed from the DP algorithm. 

6. The transmission efficiency (for both gearbox and final drive) is considered 90%. 

Additionally, the additional electronic equipment of the vehicle (light, air conditioner, 

speaker…) is also considered. 

The pull-away clutch is used to match the engine speed from LVSIM and YRSIM. The 

simulation between the activation and deactivation of the cold start system is shown in 

figure 5.35: 
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The cold start system deactivated The cold start system activated 

  

Figure 5.35 Cold start subsystem 

The low-speed CO2 emission difference is caused by the cold start system of the engine. 

The fuel flow will be different in this condition. In conclusion, the pull-away clutch model 

and the cold start model affect the engine behaviour and the CO2 emission. A simple pull-

away clutch model and a simple cold-start model can solve this problem. 

5.5.3 The benefits of add-on subsystems application 

These subsystems of YRSim are used to calibrate the simulation results of E-path and 

ICE-path with the LVSim model. From the previous discussion shown in figure 4.1, to 

accelerate the simulation speed of the powertrain model, the E- path and ICE paths are 

designed not as complex as LVSIM, the time-dependent subsystems, Boolean logic 

functions and internal state spaces are replaced by nonlinear fitting results. These add-on 

subsystems are applied to calibrate the YR-Sim model. The calibrated model will make the 

result comparable.  

The improvement of the application of these subsystems is reviewed from the outputs 

of CO2 emission, SOC and vehicle speed. The CO2 emission denotes the working condition 

of the ICE-path, the SOC will check the simulation results of the E-path, and the vehicle 

speed is correlated with the total torque output, which can guarantee the whole powertrain 

model is delivering the correct torque in the feedback loop. Both YR-Sim and LVSIM are 

running in the same initial setting (P12 topology in NEDC drive cycle and hybrid mode). 

YR-Sim is using the vehicle model from LVSIM. All the previous subsystems are activated.  

The comparison between the de-activation and activation of these subsystems is shown 

in figure 5.36 to 5.38: 
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Figure 5.36 CO2 emission comparison 

 

Figure 5.37 Battery SOC comparison 

 
Figure 5.38 Engine torque output 

Here these three figures prove that the LVSIM has the same calibration results as YRSim. 

The SOC condition describes the E-path behaviours, and it needs to be as close as possible 
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to guarantee that all the subsystems are calibrated the same as each other. The CO2 emission 

in time series describes the ICE-Path behaviour, which includes all the subsystems of the 

engine. Both LVSIM and YRSIM are using the same drive cycle (NEDC) for calibration; this 

means that for the same vehicle model, the total torque requirements are wholly the same. 

The TS map controls the E-Motor behaviour for any given working conditions, so the same 

engine torque in time series means that these two models are using the same strategies in 

the calibration, and the calibration between LVSIM and YRSIM is successful and reliable, 

the simulation results are comparable.  

5.6. Summary, novelty and contribution 

In this chapter, based on the introduction of the powertrain model, all the essential 

subsystems are introduced in YRSIM. For different subsystems and components models, 

the physical model is discussed and presented, the inputs and outputs of the model are 

defined, and the requirement maps and calibrations from McLaren’s model are discussed. 

Finally, the driver model is getting closer to the control part, which leads to the next part – 

the calibration and validation of the powertrain model. With the references from McLaren’s 

LVSIM model, the E-path and ICE-path are validated from different outputs of the model. 

The YRSim is able to applied as the better replacement of LVSIM and simulate the 

differences between DP and ECMS. 

One of the most novelty research in this chapter is the parameterisation method of the 

powertrain subsystems modelling. As discussed in this chapter, the YRSim should repeat 

the same simulation results as LVSIM. So there should be several functions and features in 

the powertrain model. The system identification in the data-driven model is a smart method 

to avoid the time-dependent system in the model. To guarantee the model is quasi steady-

state, the transfer from physical based model to a data driven model is very essential. The 

novelty method is to find out the data flow in the model at the beginning, and then using 

linear/nonlinear fitting algorithm to find out the relationship between subsystem’s inputs 

and outputs, this step is to keep the data flow in the model is under standardisation. 

Afterwards, identify the parameters in the model to guarantee the internal variables and 

the outputs signals are fully as same as the reference model. Here, the data-driven model is 

able to simulate the powertrain behaviours fast and reliable, and it is able to cover different 

control algorithms’ requirements. 

On the view of contribution, this chapter provides the validation results of the YRSim 

model, to guarantee that the YRSim is generating same reliable simulation results as 

McLaren’s LVSIM. Also it proofs that, the data-driven model is able to be applied in fast 

simulation requirement. It is reliable, robust, and able to deployed for multi-cases and 

optimisation objectives for different algorithms. 
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Chapter 6.  The hybrid powertrain model 

calibration and validation 

6.1. Introduction of this chapter 

The ECMS algorithm generates the torque split strategy and applies it to the powertrain 

model. As discussed in previous chapters 4 and 5, the ECMS algorithm must be applied to 

YR-Sim and LVSIM models. For the calibration, the simulation results should be the same 

between YR-Sim and LVSIM. The calibrations are implemented on different dimensions to 

guarantee that the simulation results from YR-Sim can be used as the reference for LVSIM. 

For E-path and ICE-path, the most important outputs of these two subsystems are SOC of 

high voltage battery and CO2 emission of engine. These two outputs need to be compared 

on time series with LVSIM. 

6.2. The application data flow of ECMS and DP 

The YR-Sim is able applied with both ECMS and DP algorithms. As discussed in figure 

4.2, the driver block and torque split block is not required for DP strategy. The DP and 

ECMS require different data flow for simulation, and the differences are shown below. 

Notice that, all the components model and subsystems are all the same in different data 

flow conditions, and they are all belongs to the YR-Sim powertrain model. The data flow of 

ECMS application: 

 

 

 

 

 

 

 

The yellow block is YR-Sim powertrain subsystems, which are applied to simulate the 

behaviour of the powertrain system. The red blocks are addition function controllers that 

are added to the powertrain model. The ECMS generation and calibration loop are coloured 

Figure 6.1 ECMS data flow 
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in blue. This feedback loop is generated to optimise the ECMS torque split strategy to 

guarantee it meets the requirements of the CO2 emission and SOC condition in a given drive 

cycle. The ECMS map generation is independent of the powertrain model. The calibration 

of the map requires the modelling simulation, but the generation of the control strategy 

does not need to run the model. The simulation outputs are shown in the green block, and 

they will be the criteria for the calibration of the control strategy. The grey block is the 

feedback loop of the powertrain model, which is applied to generate the control input from 

the driver block in the model. 

The data flow of the DP is shown as figure 6.2: 

 

 

 

 

 

 

Figure 6.2 DP data flow 

In this flow chart, the YR-Sim model is divided into different parts to meet the 

requirement of the DP strategy. The first step is to apply the drive cycle, vehicle dynamic 

subsystem, and YR-Sim powertrain components to generate the state transfer matrix and 

instantaneous cost matrix. The state transfer matrix and instantaneous cost matrix need to 

cover all possibilities of E-Motor torque selection, so all possible strategies are calculated in 

this step. The next step is to generate the cost-to-go matrix and calibrate it. The strategy 

needs to apply back to the YR-Sim model, and minimize the combination cost based on the 

cost to go matrix. The parameters of the cost-to-go matrix need to be optimised during this 

period of time to meet the requirement of the SOC condition. This step is the third step 

which is called the validation of the strategy selection. Finally, the “best” selection path of 

E-Motor torque output is selected and considered the optimised control strategy. 

 Hence, in the comparison between ECMS and DP modelling application, the ECMS 

keeps the model E-path and ICE-Path combined to establish the feedback loop of the torque 

split strategy. At the same time, the DP will divide the whole model into several parts to 

make sure the matrices are generated correctly and comparable with ECMS in different 

optimisation steps. Both of these two applications are correlated with YR-Sim. The 

robustness, reliability, and accuracy of the model are all proven in these different 

algorithms and simulations. The methodology on the comparison and validation between 

LVSIM and YRSim is shown as figure 6.3 below: 
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Figure 6.3 Process of model validation and algorithm comparison 

Blue blocks: coming from YRSim. Yellow blocks: coming from LVSIM. Grey blocks: simulations and 

research. Green blocks: results from previous step. Red blocks: works from algorithms. 

In this project, the first part is to guarantee the calibration is correctly implemented in 

the powertrain model. This part is to validate the controller application is correct to the 

model, from the comparison between the LVSIM and YRSim calibrations. The second part 

is to check the robustness of the YRSim model, based on the comparison of the simulation 

results between LVSIM and YRSim in different subsystems (E-Path and ICE-Path).  

Hence, based on the comparison between ECMS generated calibration and LVSIM 

default calibration, the benefits on the application of ECMS is developed. From the 

comparison between LVSIM and YRSim simulation outputs, the reliability of YRSim is 

reviewed. In the last part, the DP and ECMS are compared to research their performances 

on emission and driveabilities by the end of this project. 
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6.3. The fuel consumption comparison between LVSIM and 

YRSIM ECMS strategy 

With those subsystems, the YRSim can follow the LVSIM simulation results based on 

the previous discussion from the conclusion of chapter 5. For the aim of this research, the 

relationship between CO2 and SOC needs to be researched. Generally, for the same initial 

SOC condition, higher final SOC leads to higher CO2 emission because the recharging of 

the battery will require additional energy cost from the engine. This is the same for 

discharging conditions, the consumption of the battery will make E-Motor support total 

torque output, but it will make the final SOC decrease. 

The LVSIM simulation has a default power split map in the system. The default power 

split map is generated by McLaren, and is applied in the same way as the ECMS-generated 

torque split map. There are four different maps in LVSIM, which denotes four different 

drive modes. They are track mode, sport mode, normal mode and eco mode. For the same 

initial SOC, different drive modes will come with various final SOC. Generally, more sporty 

drive modes will have a lower SOC, because the system prefers to work within lower gears 

and higher torque margin.  

For the ECMS strategy, the final SOC can be calibrated by the changing equivalent 

factor C-value. Changing the C-value will change the equivalent fuel consumption of the E-

Motor, affecting the final SOC in the simulation. Compared with the LVSIM torque split 

strategy, in ECMS map generation, more C-values can be selected and cover more different 

final SOC conditions than LVSIM. Based on the robustness discussion of LVSIM and YRSIM 

powertrain models, these different torques split maps can be compared in different drive 

cycles, including NEDC, WLTC and FTP 20. The relationship between SOC and CO2 can be 

shown in figure 6.4 to 6.6: 

 

Figure 6.4 NEDC comparison 
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Figure 6.5 WLTP Comparison 

 

Figure 6.6 FTP20 comparison 

The blue line denotes ECMS-generated maps with different equivalent factors; the red line shows LVSIM 

default maps in different drive modes. The generation method of LVSIM map is unavailable in this work. 

There are two kinds of trends that can be concluded from these figures: 

1. Given CO2 emission, the ECMS-generated torque split strategy is better than LVSIM 

build-in strategy. The relationship between SOC changing and CO2 emission is non-

linear, but the trend is the same, especially for default strategy covered area. The 

changing of the C-value (equivalent factor) will change the working points of the E-

Motor and engine, and the whole system outputs.   

2. The map generation method of LVSIM is different from the ECMS strategy. Even though 

they have roughly the same results on the final SOC condition, the maps are different. 

There are four different charging modes in LVSIM they are discharge mode, optimal 

charge mode, high charge mode and max charge mode. These modes have different 

strategies, and they will come with different final SOCs. In the view of ECMS strategy, 

for different strategies, these maps come from different C-values (equivalent factors). 
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Four different maps from LVSIM can be shown below figure 6.7: 

   

  

Figure 6.7 Different TS maps in different charge conditions 

Meanwhile, the ECMS maps are shown below figure 6.8: 

 

Figure 6.8 Example map of ECMS TS map 
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In LVSIM, most of the working points are negative, which means that the system 

prefers to charge the battery in most of the working conditions. The trend of the ECMS 

strategy is quite clear, and the map makes the E-Motor charge the battery when the whole 

powertrain is in a low-speed condition. Then the battery working points are moved to the 

side of discharge, with the increase in engine speed and total requirement of torque. 

Another way to compare the performance between LVSIM and ECMS strategy is to 

check how many benefits can be awarded from the ECMS strategy. On the one hand, if the 

final SOC target is the same, the benefits of CO2 emission (fuel consumption) can be 

reviewed. On the other hand, if the emission of CO2 is the same in each drive cycle, higher 

final SOC denotes better economics and lower energy cost. The simulation results are 

shown below table 6.1: 

Performance items LVSIM original 

TS map 

ECMS generated 

TS map 

ECMS generated 

TS map 

MPG 25.17 28.66 23.04 

Total CO2 

emission [g/km] 

262.3 230.41 286.5778 

CO2 emission [kg] 2.865 2.516 3.13 

Fuel consumption 

[kg] 

0.932 0.818 1.018 

Delta SOC [-] -20.86% -20.86% 0.22% 

Table 6.1 LVSIM and ECMS map comparison 

In this table, the maps from ECMS generation and LVSIM original map are compared 

in two methods: one is keeping the final SOC the same and comparing the benefits on CO2 

emission and fuel consumption, while another is keeping the delta SOC to zero and 

checking the additional fuel consumption. The simulation is based on the NEDC drive cycle. 

When the ECMS TS map shows the same delta SOC as the LVSIM map in the simulation, 

the CO2 emission of the LVSIM original TS map is 2.865kg, while the ECMS generated map 

is 2.516 kg. Here the ECMS has a 12.18% lower CO2 emission than the LVSIM map. Also, if 

the delta SOC comes to 0% and is compared with -20.86% battery consumption, the 

decrease in CO2 emission can be checked to see how many benefits can be achieved from 

the consumption of battery SOC. 

For the conclusion of this table, for the same final target SOC, the ECMS strategy shows 

a 12.23% lower fuel consumption than the LVSIM strategy. For ECMS strategy, if the 

simulation keeps the initial SOC and the target SOC the same (just 0.22% different), the 

system will consume 19.65% more fuel consumption. Compared with the fixed-SOC ECMS 

strategy and battery-discharged LVSIM default built-in strategy, the fixed-SOC ECMS 

strategy has just 8.45% more fuel consumption than the battery-discharged LVSIM strategy. 

In this case, the ECMS strategy has better fuel consumption than the LVSIM default built-

in torque split strategy, showing an acceptable fuel consumption increase in the battery 

SOC maintenance. 
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6.4. Automatic generation of torque split map from ECMS 

6.4.1 The relationship between C-value and torque split map 

In this project, one of the aims is to automatically generate a series of functions that can 

generate the torque split map directly and automatically applied to the LVSIM model. The 

equivalent factor will directly affect the torque split map generation. With the increase of 

the equivalent factor C-value, the equivalent fuel consumption of the electric motor will 

increase, and the system will be more likely to apply the engine to support total torque 

output. The relationship between equivalent factor changing and torque split map can show 

below table 6.5 based on LVSIM simulation results: 

C-value Torque split map generated based on LVSIM powertrain components. 

1e-8 

 

Figure 6.9 C-value 1e-8 TS Map 

4e-8 

 

Figure 6.10 C-value 4e-8 TS map 
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7e-8 

 

Figure 6.11 C-value 7e-8 TS Map 

10e-8 

 

Figure 6.12 C-value 10e-8 TS Map 

Table 6.2 Different C-value with TS Maps 

The whole relationship between C-value and TS map is in the appendix. The inputs of 

these maps are engine speed (which is calculated from gear selection and vehicle speed), 

the total required torque (calculated from the vehicle dynamic model), and the output is 

the optimised E-Motor torque based on given components selection. With the increase of 

equivalent factor C-value, more working points are in the negative torque area due to the 

high equivalent fuel consumption of battery SOC decreasing. Thus, the system will charge 

the battery to recover the energy lost. 

 The effects from equivalent factor changing on E-Motor working points are shown 

below based on LVSIM simulation results in table 6.3: 
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C-value = 3e-8 C-value = 7e-8 

 

Figure 6.13 C-value 3e-8 E-Motor working points 

 

Figure 6.14 C-value 7e-8 E-Motor working points 

Table 6.3 The effects from C-value to E-Motor working points 

 

With the changing of the C-value, the working points change the behaviour of the E-

Motor, and the battery SOC will also be affected by the changing of strategy. In the 

optimisation of ECMS strategy based on the LVSIM model, the target SOC and initial SOC 

need to be considered as the essential criteria of strategy generation.  

 

6.4.2 The application of torque split map in the powertrain 

model 

 As discussed before, the torque split map is generated from the engine efficiency map, 

emotor efficiency map and the gear shifting strategy. The calibration optimisation needs 

the drive cycle, whole powertrain & vehicle model, with a given target SOC for different 

components selection and drive modes selection. From figure 6.8 to 6.11, there are three 

different axles in each torque split map, they are total torque requirement, engine speed, 

and the emotor torque. The implementation of the torque split map is show as figure 6.15: 
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Figure 6.15 The application of torque split map 

 This figure 6.14 shows the application of the torque split map. The torque split map is 

applied as “look up table” in the powertrain system. The inputs of the lookup table are the 

engine speed and total system required torque, and the map is generated from any selection 

of battery, emotor, engine and gear box. From the higher-level inputs of the whole 

powertrain system, the working points from drive cycle and the gear selection will define 

the engine speed, and the vehicle model with the working points from the drive cycle will 

calculate the total required torque of the whole system. Thus, the torque split map will find 

out the optimised emotor working points for any given working points in the drive cycle.  

 Here, the torque split map is able to find out the optimised emotor working points for 

any given components selection cases and working points in the drive cycle. 

6.4.3 The analysis of different initial SOC conditions with C-

value  

For different initial SOC and target SOC in a given drive cycle (NEDC, for example), 

the C-value has a non-linear relation with delta SOC changing and CO2 emission. The trend 

between C-value and delta SOC changing is correlated with initial SOC and components 

selection. Firstly, the components selection is fixed, and the initial SOC is changed; the 

simulation trend between C-value and CO2 emission can be shown as figure 6.16 to 6.18: 
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Initial SOC The figure for CO2 emission 

10% 

 

Figure 6.16 Relationship between CO2 and C-Value 

40% 

 

Figure 6.17 Relationship between CO2 and C-Value 

90% 

 

Figure 6.18 Relationship between CO2 and C-Value 

Table 6.4 Different initial SOC affect the trend 

Increasing the starting SOC condition will reduce the CO2 emission. It is proven that; the 

CO2 emission will be more sensitive in low SOC conditions. 

Another trend is that for different starting SOC conditions, the emission of CO2 will 

always experience a significantly increased when the C-value is roughly equal to 3e-8. But 



135 

 

the increasing ratios are different. It is clear to see that, the rising of CO2 in low starting SOC 

conditions is quite sharp and fast. But in high starting SOC conditions, the increasing speed 

of CO2 emission is not so fast. In other words, the response band of CO2 becomes more 

comprehensive with the increase of starting SOC.  

Another conclusion is that the amount of change of CO2 is different for different SOC 

conditions. Here it could be found that the changing range of CO2 in low starting SOC 

condition is roughly 3.5 kg, from 3.5 to 7kg with the increase of C-Value. But the rising range 

of the C-value becomes smaller with the rise of the initial SOC condition. In 90% initial SOC, 

the range of CO2 emission changing is roughly 1.2kg, from 2.6 to 3.8kg. In summary, these 

trends show such a conclusion:  

[1] The CO2 emission is not so sensitive in high initial SOC conditions, but quite 

sensitive in low initial SOC conditions.  

[2] The CO2 emission will decrease with the increase of initial SOC. 

[3] The CO2 emission will always be low in low C-value due to the “cheaper” battery 

energy. On the other hand, the CO2 emission will always be quite high in high C-

Value, because the system prefers to use more engines to cover the high cost of 

battery consumption.  

[4] The increase in CO2 emission always appears when the C-value is close equal to 3e-

8. But the rising of CO2 emission will be quite rapid when the initial SOC is low and 

slow when starting SOC is high.  

[5] The rising range of CO2 emission has changed. Compared with the changing range 

of the high initial SOC condition, the low initial SOC condition has a broader range 

of CO2 emission changing.  

Initially is the discussion on the protection of battery conditions. In extremely low and 

high initial SOC conditions, the protection function of the battery will be triggered to 

protect the battery will not be overcharged or over-consumed. The certification can be 

found in the figure 6.19: 

 

Figure 6.19 Left: initial SOC = 10%, right: initial SOC = 90% 
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For extremely low SOC, the protection system will ensure the SOC condition is always 

over -0.5% to protect the battery. Similarly, the high SOC condition (90%) will always be 

protected that the delta SOC is -0.5%. Such a function will make the delta SOC shifting 

range (changing range) shows a different trend compared with CO2.  

In CO2 emission, the changing range will keep decreasing with the increase of the initial 

SOC condition, but in delta SOC, the change is small - big – small. They are listed as below 

figure 6.20 to 6.22: 

Initial SOC Figure 

20% 

 
Figure 6.20 20% initial SOC and C-value 

50% 

 
Figure 6.21 50% initial SOC and C-value 

80% 

 
Figure 6.22 80% initial SOC and C-value 

Table 6.5 Different initial SOC with C-value 
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The battery protection function of the SOC threshold will always be triggered by 

different initial SOC conditions. In low initial SOC condition, the changing range of SOC is 

70%, from -14% to 56%. Also, in high initial SOC conditions, the changing range is from -

54% to 6%, which is 60%. In the middle condition of initial SOC, the changing range is from 

-40% to 40%, which is 80%.  

Thus, due to the protection function of the battery, the changing range of delta SOC 

will increase first, reach the peak value at roughly 80%, and decrease, with the rising of the 

initial SOC condition. Also, this analysis shows a roughly same trend as CO2 emission. We 

can find out that the increase of delta SOC will be quite fast in low initial SOC conditions 

with increasing of C-Value. With the increase of initial SOC, the sensitivity between delta 

SOC and C-Value decreased, due to the increasing runtime of the engine. In high initial 

SOC conditions, the delta SOC is not so sensitive to the increase of C-value, because the 

engine will always charge the battery and trigger the battery protection function. This trend 

is the same as what we found in CO2 emission.  

So, in conclusion: The changing range of delta SOC will first increase, and reach the 

peak at 50% initial SOC, then decrease, with the continuously increasing initial SOC. The 

delta SOC is quite sensitive in low initial SOC and not so keen in high initial SOC. The 

protection of SOC after NEDC will be harder in low initial SOC conditions, compared with 

high initial SOC conditions. No matter what is the initial SOC, the 0% delta SOC after 

NEDC will always appears at 3e-8 C-Value. The protection function of SOC will be able to 

keep the SOC of the battery not lower than 5% and higher than 95%, roughly.  

The delta SOC and CO2 emission are always quite sensitive in low initial SOC 

conditions. The charging condition band in low SOC condition should be much narrower 

than in high SOC condition due to the high sensitivity in low initial SOC condition. Also, 

the C-Value will be accurately tuned in low initial SOC conditions.  

The CO2 emission will always have a lower level in high initial SOC conditions. Such a 

trend can lead to a wider band of SOC thresholds in high SOC conditions. Additionally, 

because the CO2 emission is not very sensitive to the increase of C-Value in this condition, 

in these conditions, the SOC does not need to be very “carefully” protected. The C-value 

could be tuned lower to consume more battery and reduce the CO2 emission.  

The lower rising speed of delta SOC and CO2 allows the control threshold band of SOC 

charging condition could be wider, in high initial SOC conditions. The C-Value range could 

be found from these diagrams that the too low and too high C-value does not make any 

sense to the control strategy of delta SOC and CO2 emission.  

6.4.4 The robustness of ECMS torque split map generation 

Based on the previous introduction at the beginning of this chapter, the ECMS torque 

split maps are all generated based on the LVSIM model. But they are all based on one drive 
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cycle and one series of components selection. The robustness of the map generation needs 

to be tested on different drive cycles and different component selections. The optimisation 

robustness means that the optimisation works well for all given cases – which denotes 

various components, different drive cycles and different SOC settings. The optimisation 

data flow in the simulation needs to be supervised to get to know how the working points 

of the engine and E-Motor are affected by the torque split map and how they affect the SOC 

and CO2. Firstly, the definition of “different cases and requirements” is given below:  

1. Drive cycle: previously in this chapter, the tested drive cycle was NEDC. In the 

robustness test, WLTP and FTP75 are also implemented. The WLTP and FTP75 have 

a higher load than NEDC. In the view of simulation, it will take a longer time for 

the model to run – this is the limitation of the LVSIM model. Another limitation of 

the model is that the probability of high load drive cycle simulation failure 

(integrator solver problem) will be higher than low load drive cycle simulation.   

2. SOC condition: The ECMS algorithm should be able to generate a correct map for 

different initial and target SOC conditions. The initial SOC is defined in three 

different conditions: low SOC (10%), middle SOC (50%) and high SOC (90%). The 

target SOC is also defined as 10%, 50% and 90%. Thus, the delta SOC has three 

different values: charging (+40%±1%), discharging (-40%±1%), constant (0%±1%). 

The ±1% is the acceptable width for SOC. There are seven tests for one series of 

powertrain components. They are shown as figure 6.23:  

 

Figure 6.23 Initial and target SOC 

3. The approaching target SOC: The delta SOC is defined as ±40%. For some 

components cases and drive cycles, it is hard to reach such a “big” delta SOC. In the 

NEDC drive cycle, the workload is not very high, especially for big-capacity 

batteries. Thus, in some cases, the system is unavailable to reach the target SOC. For 

example, even though the strategy controls the electric machine to charge the 

battery as much as possible, it is still unavailable to reach the target SOC. In this 

condition, the system will “try its best” to charge & discharge the battery. This 

makes the final results comparable, because it provides the same target for different 

cases and requirements, and it can detect the limitation of different strategies.  

4. In all the simulation and robustness tests, the drive mode is kept the same. For a 

given case and target SOC, the same drive cycle is applied to guarantee a 

comparable result. In the simulation, all the Simulink model blocks are kept 
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constant, and only the TS map is replaced by a newly generated map. The 

robustness test is based on the CO2 emission and SOC condition result checking. 

There are 17 different component cases in total for the robustness test.   

6.5. The simulation results of different torque split 

strategies 

Totally there are 21 cases to be applied to test the robustness. They are listed below 

with the index of the component. Notice that the index of the component means different 

components from the database. In this research, different weight (especially battery size) is 

considered. The robustness and comparison will be discussed. 

Components  battery  engine  gearbox  electric machine  

Change electric machine  1  1  1  2,5,6,7,8,9,10,11  

Change gearbox  1  2  1,2,3,4  6  

Change engine  4  1,2,3,4  2  8  

Change battery  1,2,3,4,5  3  3  5  

Table 6.6 Components list of robustness test 

In table 6.6, different components are selected and numbered. These components are 

listed as below table 6.7: 

Battery Number of cells Max voltage Max capacity 

1 324 553.8V 8.8Ah per module 

2 80 334.64V 33Ah per module 

3 80 334.64V 33Ah per module 

4 96 401.57V 33Ah per module 

5 192 656.36V 5.7Ah per module 

Engine Name Max speed Max Torque 

1 P11 3.8L V8 8000rpm 698.83Nm 

2 P12 3.8L V8 8000rpm 737.04Nm 

3 P14 4.0L V8 8000rpm 736.41Nm 

4 P16 3.0L V6 8000rpm 685.38Nm 

Gearbox Speed Ratio Final Drive 

1 4.01 2.88 1.95 1.53 1.25 1.04 0.86 3.308 

2 3.91 2.68 1.95 1.53 1.25 1.04 0.86 3.308 

3 3.91 2.68 1.95 1.53 1.25 1.04 0.86 3.308 

4 3.91 2.68 1.95 1.53 1.25 1.04 0.86 3.308 

Electric motor Max speed Max torque Continuous power 

2 18850rpm 130Nm 120kW 

5 21680rpm 100Nm 130kW 
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6 25100rpm 300Nm 240kW 

7 15800rpm 100Nm 135kW 

8 16800rpm 350Nm 240kW 

9 17800rpm 260Nm 170kW 

10 19890rpm 300Nm 135kW 

11 16000rpm 130Nm 120kW 

Table 6.7 Components details 

The idea is to prove the robustness of the TS map generation and to find out the 

sensitivity between CO2 emission and components selection. The comparison between 

different components selection on CO2 emission can be shown below: 

a. The selection of batteries 

 

Figure 6.24 The selection of batteries 

This figure 6.24 compares the effect of different battery selections on CO2 emission. The 

engine, gearbox and electric machine are all kept the same in this test. From this diagram, 

battery 1 and battery 5 can reduce more CO2 emissions in charging conditions than other 

batteries. But they show a bit more CO2 emission in high initial SOC conditions. Thus, if the 

drive mode requires more charge to the battery, battery 1 and battery 5 would be the better 

solution, but the system should observe the SOC condition, not make it too close to 90%. 

Additionally, batteries 2, 3, and 4 are showing roughly the same performance on CO2 

emission. From the three conditions of initial SOC 50% delta 0%, initial SOC 50% delta -40% 

and initial SOC 90% delta -40%, the CO2 emission is not very sensitive to the battery change. 

In this way, for the low requirements on the battery consuming and charging, the selection 

of the battery does not affect too much on the CO2 emission much.  

b. The selection of E-Motors 
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Figure 6.25 The selection of E-Motors 

This figure 6.25 shows how the different electric machine affects CO2 emission. There 

are eight electric machines to be compared in this part. Compared with the CO2 emission 

differences in battery changing the differences in CO2 emission in electric machine changing 

are much smaller. Notice that electric machine 2 has no data in the initial 10% SOC 

condition. It also has the highest CO2 emission in the initial 50% delta and 40% SOC 

conditions. This is caused by the simulation failure that the integration between engine and 

electric cannot fully cover the requirements on the SOC. In fact, the selection of electric 

machines is not very sensitive to reducing CO2 emissions. In conclusion, on the current 

platform, the electric machine selection is more related to the whole system torque 

requirement, driveability, coolant requirement and layout requirement. The CO2 emission 

is not a very important factor in electric machine selection, for all the requirements on the 

SOC condition.  

c. The selection of engine 

 

Figure 6.26 The selection of Engines 

There are four engines here to be compared, and this figure 6.24 shows the engine factor 

in the simulation of CO2 emission. Due to the simulation failure, engine 4 lacks data in the 

initial 90% delta -40% SOC condition. Compared with electric machine selection, the engine 

changing is more sensitive to CO2 emission changes. For charging mode (delta 40% SOC), 

engine 1 and engine 2 has significantly higher CO2 emission than engine 3 and engine 4. 

However, for SOC initial 50%, delta 0% charging condition, engine 1 and engine 2 have 

lower CO2 emissions than engines 3 and 4. Thus, for charging mode, engine 1 and engine 2 
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need to be limited and controlled on CO2 emission. But for optimal charge mode, engine 1 

and engine 2 have better performance than engines 3 and 4.  

Another trend in the engine selection is, that the differences on CO2 emission for 

different charging conditions are much more significant than the changing in other 

components. In engine selection, CO2 emission in charging condition (6-8kg in a drive cycle) 

is over two times than optimal charge condition and discharge condition (2-3 kg in a drive 

cycle). This trend means the charging mode is susceptible to engine selection. Still, the 

discharging condition and optimal charging condition are not very sensitive to the engine 

selection due to the roughly same CO2 emission level. Also, the engine is the only 

component that exhaust emissions, which means that the choice of the engine, especially 

engine capacity, will directly affect the CO2 emission level.  

d. The selection of gearbox 

 

Figure 6.27 The selection of gearbox 

This figure 6.27 shows the influences of gearbox selection on CO2 emission. Compared 

with other components selection, the gearbox has the most minor effect on the CO2 emission. 

Gearbox 1 has lower CO2 emission in charging conditions, but under other conditions, the 

CO2 emission level on these gearboxes is all roughly the same CO2 emission level. In 

conclusion, the change on the gearbox does not have a sensitive change in the CO2 emission. 

Another reason is, the gear selection strategy is not changed in these gearboxes. The 

working points of the engine and electric machine are not affected seriously by gearbox 

selection. Thus, the gearbox does not have too much sensitivity to CO2 emission. 

6.6. The sensitivity between components selection and CO2 

emission 

From the comparison of these components, the most significant change in the CO2 

emission comes from the engine selection. To check the correlation between the components 

changing with CO2 emission, the differences between maximum CO2 emission and 

minimum CO2 emission are calculated. The progress could be shown as below figure 6.28: 
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Figure 6.28 comparison of progress 

The calculation results show how much affects the components' selection to the CO2 

emission. This is also considered the sensitivity from the components’ selection to CO2 

emission. This result is in the same unit of CO2 emission [kg], but it could be considered the 

correlation factor. The result is shown as below figure 6.29:  

 

Figure 6.29 Correlation of components selection based on NEDC 

From this diagram, the correlation between different components and CO2 emission 

can be found. The engine has the highest sensitivity to CO2 emission. So the optimisation 

of selection on the engine has the highest priority in controlling emissions. The second 

correlated component is the battery. The battery capacity will directly affect the SOC 

condition, with different amounts of energy storage and usage. The third essential 

component is the gearbox. The gearbox will directly affect the working points of the engine, 

which will indirectly affect the CO2 emission. The electric machine does not have too many 

influences on the CO2 emission. Generally, for a normal drive cycle as NEDC, the electric 

machine will always provide enough torque, and it is not directly affecting the CO2 

emission. So, the electric machine has the smallest correlation with CO2 emission. 

6.7.  Summary, novelty and contribution 

In this chapter, first of all, the DP and ECMS data flow are introduced at the beginning. 

Subsequently, the performance between the default built-in torque control strategy in 

LVSIM and the ECMS generated TS map are compared. Also, the relationship between the 

equivalent factor (the C-value) and the SOC condition, CO2 emission, is discussed. Then, 
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the robustness of the model and the algorithm are discussed. Compared with LVSIM, the 

YRSIM has better performance on simulation speed and robustness. Also, it performs the 

same accuracy as LVSIM. The inputs and outputs are comparable for different test cases. 

So, the reliability of the YRSim is certified; it can be used to compare the various algorithms 

and test settings. Finally, the relationship between the components selection and the CO2 

emission is delivered. The sensitivity of the CO2 reduction from the view of component 

selection is one of the significant important conclusions of this project. 

One of the very important novelty research results in this chapter is the relationship 

between the components selection and the CO2 emission in different initial and target SOC 

condition. It is correlated with another PHD’s work in this project, but it is able to proof the 

robustness of the algorithm and calibration application strategy. The relationship between 

the components selection and the SOC & CO2 conditions are all based on the real 

components data and maps, which are recognised as a very useful reference from the 

industry sponsor.  

Another novelty research is to find out the relationship between the SOC condition and 

CO2 emission. It discusses the trend on the sensitivity between C-value with SOC and CO2. 

It is a very important part in this research because it will lead to the comparison between 

DP and ECMS on emissions, and it will also show how much benefits we can achieve from 

the application of DP in emission optimisation from the deeper research in next chapter. 

On the contribution of the application, this chapter compares the default build-in 

strategy from McLaren and the ECMS generated torque split strategy. The default build-in 

calibration comes with different drive modes that designed by McLaren before. Even 

though the author cannot access the generation methodologies of these calibrations, the 

comparison between the ECMS generated calibration and the McLaren’s map still shows 

that there are quite a lot of optimisation potential on the control algorithm research. The 

results from the comparison will also lead and contribute the research on the relationship 

between drive modes, driveability and calibrations.  
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Chapter 7.  Simulation results discussion 

of drive cycle performance 

7.1. Introduction to this chapter 

In this chapter, the ECMS strategy is shown it is able to achieve a lower fuel 

consumption and better efficiency when recalibrated from the LVSIM default torque split 

map. Due to robustness challenges of the LVSIM modelling tool, a revised model structure 

called YRSim was developed. However, based on the previous literature review, DP 

generally demonstrates better performance with respect to fuel consumption than ECMS. 

In this chapter, both ECMS and DP will be compared in their performance on different 

views. In this chapter all of the simulations are undertaken using the YR-Sim powertrain 

model developed in chapter 6.  

7.2. Comparison of CO2 emissions on ECMS and DP 

The overall objective of the energy management strategy is to minimise fuel 

consumption and thus CO2 emission over a given drive cycle or driver demand profile. First, 

the simulation was implemented over the NEDC drive cycle. Because the vehicle models of 

these two algorithms are the same, the total duty cycle and thus required torque is identical. 

However. with the different algorithms, the engine working points with respect to torque 

and speed will change. This is shown in the time domain, in Figure 7.1 and 7.2 for the DP 

and ECMS algorithms respectively: 

 

   Figure 7.1 DP engine working points         Figure 7.2 ECMS engine working points 

This change in operating point for these two different strategies can be compared on 

the engine BSFC maps, shown in figure 7.3 and 7.4 for ECMS and DP respectively. 
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   Figure 7.3 DP strategy working points        Figure 7.4 ECMS strategy working points 

It should be noted that all the simulations are based on the same drive cycle (NEDC in 

this case) and initial SOC conditions. The initial SOC is 50%, and the final target SOC is 50%. 

Hence, the demanded delta SOC is 0%. The simulation results presented here are all based 

on  McLaren P12 powertrain components and layout. The start-stop system and 

regenerative braking system are all activated and represented in the model. These 

subsystems are using the same setting in these simulations.  

Despite the simulation objectives to achieve a delta SOC of 0% this is not always 

achieved. In the two simulations presented here, the final SOC is 59.13 and 54.48% 

respective. Notice that these two simulations are not based on the same final SOC; this 

simulation is just a test for these two algorithms. The final SOC and total CO2 emissions of 

the two algorithms are shown in Table 7.1. 

 DP ECMS 

CO2 emission 2.424 kg 2.666kg 

Final SOC 59.13% 54.48% 

Table 7.1 Emission comparison 

The time domain responses for the CO2 emissions and SOC trends are shown in figures 

7.5 to 7.8: 
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DP ECMS 

 

Figure 7.5 DP CO2 emissions 

 
Figure 7.6 ECMS CO2 emissions 

 

Figure 7.7 DP SOC condition 

 

Figure 7.8 ECMS SOC condition 

Table 7.2 CO2 and SOC comparison 

From the result, compared with the ECMS strategy, the DP is making a higher demand 

on the battery SOC with lower CO2 emission. The CO2 emission in DP is 2.424 kg, while in 

ECMS is 2.601 kg in the total drive cycle. It shows 6.8% better optimisation performance on 

the emission control of DP. On the view of battery SOC, the final SOC of ECMS is 59.18% 

and DP is 59.09%. So, the DP harvests 7.86% more energy from the drive cycle. 

If the target SOC is set entirely the same for these two algorithms, the results are 

compared as below. Firstly, the ECMS and DP are both able arrangement for different final 

SOC. Secondly, ECMS requires tuning equivalent factor (C-value) while the DP needs to 

change the strategy from the last step to the beginning condition with optimisation of the 

Cost-to-go function.  

If the final target SOC is set to the same results and using a higher sampling frequency 

(more points in the cost-to-go matrix), the working points of the engine and E-Motor are 

compared as figure 7.9 and 7.10: 
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Figure 7.9 Engine working points comparison 

 

Figure 7.10 E-Motor working points comparison 

Red points: DP engine and emotor working points. Blue points: ECMS engine and emotor 

working points. Initial SOC: 50%, target SOC: 60%±1%, drive cycle: NEDC 

In these two figures, the red points denote the working points of DP, and the blue 

points are ECMS points. Generally, it shows that the blue points locate more continually in 

the E-Motor efficiency map. Because the TS map from ECMS is continuous, it makes the E-

Motor working points follow the trend that was designed in the map. But for DP, it only 

depends on the fuel consumption and SOC final condition. In this case, the working points 

of the E-Motor locate in all the areas of the E-Motor map, and it does not show a clear trend 

in its layout. 

Because the ECMS-generated TS map only controls the working points of the E-Motor, 

and the total torque requirement of these two algorithms are the same, the differences can 

also be noticed in the engine working points. The ECMS prefer to use more engine torque 

outputs in the low-speed range, while in the high-speed field, the E-Motor will support the 

energy output of the whole system. But for DP strategy, the engine will be supported by E-

Motor at the lost load range. The E-machine will generate more torque outputs in a high 

load range in the whole system. These trends can be found on engine map working point 
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locations. 

A torque limiter must keep the E-Motor and engine following the total torque 

requirement. The max achievable torque is calculated from the working conditions and 

components’ limitations. The total output needs to be managed, and an additional block 

should control it. The limiter and the E-Motor torque outputs are shown below; it meets the 

boundaries of the achievable torque. 

 

Figure 7.11 E-Motor torque limiter 

As discussed, the E-Motor keeps charging the battery in a high-speed range with 

negative torque output in time series. In this case, the engine needs to generate more energy 

to support the whole system output to meet the requirement from the drive cycle. The SOC 

condition can be shown as figure 7.12: 

 

Figure 7.12 SOC of DP 

The battery is charged from the high-speed range, and the results from the E-Motor 

charging the battery can be seen from the SOC results in time series. 
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As discussed, the simulation on different drive cycles can also apply DP and ECMS in 

the YR-Sim model. Based on the ECMS strategy, the relationship between C-value 

(equivalent factor), SOC and CO2 emissions can be concluded as table 7.3: 

CO2 vs C-value SOC vs C-Value 

 

Figure 7.13 ECMS in NEDC on CO2 emission 

 

Figure 7.14 ECMS in NEDC on SOC 

 

Figure 7.15 ECMS in WLTC on CO2 emission 

 

Figure 7.16 ECMS in WLTC on SOC 

 

Figure 7.17 ECMS in FTP75 on CO2 emission 

 

Figure 7.18 ECMS in FTP75 on SOC 

Table 7.3 C-value with SOC and CO2 in different drive cycles 

These figures show the trend between C-value with final SOC and CO2 emission in 

different drive cycles. The initial SOC is all the same setting to 50% at the beginning, and 
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the powertrain components are all keeping the same to McLaren P12 component’s structure. 

Generally, from the basic theory of ECMS, if the C-value goes higher, the equivalent fuel 

consumption goes higher for any SOC consumption. The system prefers to charge the 

battery in the drive cycle, which makes the final SOC higher than the initial SOC. Otherwise, 

if the C-value goes lower, the equivalent fuel consumption is low for battery discharging, 

and the system will consume the battery more during the drive cycle. 

These figures can be viewed in another way – the comparison between final SOC and 

CO2 emission. These figures are shown as figure 7.19, 7.20 and 7.21: 

 

Figure 7.19 CO2 vs SOC in NEDC 

 

Figure 7.20 CO2 vs SOC in WLTC 
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Figure 7.21 CO2 vs SOC in FTP75 

The relationship between final SOC and the CO2 emission is not entirely linear and the 

same for different drive cycles, but the trend is clear. Higher final SOC needs more fuel to 

charge it. Hence, the relationship between CO2 emission and SOC are not linear for different 

drive cycle, but the trend can be found.  

Based on the background knowledge, NEDC has the lowest torque requirements in 

these three drive cycles. WLTC stands in the highest position, and FTP is in the middle of 

these three. The result of the simulation can be fitted into three straight lines. The workload 

of these drive cycles will affect the relationship between SOC and CO2. The higher workload 

of the drive cycle will make the system’s CO2 emission more sensitive to SOC changing due 

to a higher engine load and E-Motor in different working points. 

7.3. Comparison of DP and ECMS Algorithms 

Now considering the same trend in DP. DP is also able to build different target SOC 

for different strategies. The strategy of DP has been reviewed in the previous chapter 6.1 

and 6.2. The DP and ECMS all generated for various target SOC on different drive cycles. 

The ECMS final SOC is correlated with C-value selection. 

7.3.1 Comparison of NEDC performance 

The NEDC drive cycle is the first drive cycle used to test the performance of the ECMS 

and DP algorithm because it is the simplest in terms of vehicle duty cycle and transient 

event when compared with WLTC and FTP75. Firstly, ECMS is applied on the NEDC drive 

cycle to check the relationship between C-value with SOC and CO2. The initial SOC 

condition is 50%. The results between DP and ECMS can be compared as figure 7.22: 
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Figure 7.22 ECMS and DP compared over the NEDC. 

On average, the DP algorithm has 3.34% lower CO2 emission than ECMS (the 

calculation method is based on linear curve fitting, which will be discussed later in this 

chapter). In most of the SOC sets, the DP has the same trend as ECMS; the difference 

between ECMS and DP keeps roughly stable, with the target SOC at around 50%. If the final 

SOC goes a bit higher for charging, the DP and ECMS show the same performance on CO2 

emission. 

7.3.2 Algorithm performance on the WLTC 

From literature review, WLTC drive cycle is the most commonly used drive cycle 

nowadays. It has a longer travelling distance, higher vehicle speed and requires more 

braking energy. The results between ECMS and DP are compared as figure 7.23: 

 

Figure 7.23 ECMS and DP compare in WLTC. 
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Averagely, the DP has 4.86% lower CO2 emission than ECMS on the WLTC drive cycle. 

In most of the SOC settings, the DP has the same trend as ECMS; the difference between 

ECMS and DP keeps roughly stable. For higher performance requirements drive cycle, the 

DP shows more benefits from ECMS compared with lower performance requirements drive 

cycle. The results are comparable, and the robustness of the model and the algorithms are 

proven by comparing these two algorithms in different cases. 

7.3.3 The comparison on FTP-75 

The FTP-75 drive cycle is the Federal test procedure used for homologation of vehicles 

in the US and it is therefore important to understand how the algorithms perform over this 

drive cycle, uniquely it has a long idle speed condition in the middle of the drive cycle. For 

a hybrid car, it will keep consuming the battery during this period when the engine is off 

with S/S system. Even though the FTP does not have a very high top speed, due to the 

acceleration and deceleration, FTP-75 has higher CO2 emissions than NEDC [135]. The 

application of ECMS and DP on FTP-75 is shown in figure 7.24: 

 
Figure 7.24 ECMS and DP compare in FTP75. 

On Average, the DP algorithm achieves 1.65% lower CO2 emission than ECMS. FTP75 

is not that high load; with the long engine idle condition, the benefit on FTP-75 is not that 

much as WLTC. However, the trends are the same for two different algorithms, and the 

results are reliable with these different target SOC settings. 

7.3.4 The combination of all results 

The ECMS was applied to 3 different drive cycles, and the simulation results are 
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Figure 7.25 ECMS performance over different drive cycle 

From this figure 7.25, it shows that the NEDC has the lowest emission, and WLTP has 

the highest. The NEDC is more sensitive to the final SOC condition changing, and the CO2 

emission rises to the roughly same level as FTP-75 in the charging working mode. The FTP-

75 has approximately the same sensitivity as WLTP on the final target SOC changing, but 

the emission is significantly lower than WLTC in all the optimisation objectives. Notice that 

all the initial SOC conditions in these simulations are 50%. The DP algorithm results can 

also be compared as figure 7.26: 

 

Figure 7.26 DP performance over different drive cycle 

This figure shows how DP performance on different drive cycles. Compared with the 
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it is possible to check the average differences between DP and ECMS on CO2 emission, and 

the results are concluded in table 7.4: 

Drive cycle NEDC WLTC  FTP-75 

Benefits on CO2 

emission from ECMS 

to DP 

3.34% 4.86% 1.65% 

Table 7.4 Benefits of emissions from ECMS to DP 

 The differences on CO2 emission from ECMS and DP is calculated from linearity curve 

fitting. From the algorithm calibration and simulation, the final SOC shows a roughly linear 

trend with CO2 emission in NEDC, WLTC and FTP75. The differences between ECMS and 

DP on CO2 emission are calculated from the linear fitting results. 

 

Figure 7.27 Curve fitting of simulation results 

The blue points from ECMS and the black points from DP are fitted in a linear relation 

between CO2 and final SOC. 

7.4. Driveability discussion between ECMS and DP 

Based on the literature review in chapter 2, the DP algorithm is considered the “Gold 

standard” for emission reduction compared with ECMS. In this research, considering the 

application for the McLaren powertrain system, another dimension is considered 

driveability. 

Driveability is still an open question nowadays because it is hard to describe in statistics. 

In this project, only the longitudinal dynamics of the powertrain system are considered, 

and the chassis dynamic and tyre dynamic are not researched. So, for the discussion of 

driveability, there is no input for the steering wheel and only the behaviour of the pedal 
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with powertrain response is discussed. The final conclusion will be given in the last chapter 

of this thesis. 

7.4.1 Throttle pedal response 

Firstly, think of real-world driving. Drivers typically prefer to keep in a lower gear with 

higher engine speed to achieve a more sensitive throttle response in sporty driving (such as 

race track use). For normal daily driving, a higher gear selection with an unaggressive 

engine response will reduce the sensitivity of the powertrain response to the throttle pedal 

position. It will make it easier for the driver to keep a constant speed and reduce the driving 

pressure in vehicle speed control. In this research, different torque split strategies will affect 

the throttle response for the same pedal position. Considering the same pedal position, 

because different energy management strategies will change the torque resources from 

other components, the torque response for the powertrain system will also be different. It 

can be shown as below: 

ThrottlePosition
TR

EngineTorque
=

 

Generally, the deeper throttle position means the driver needs higher rev with more 

torque requirements. Hence, in this equation, a higher TR (throttle response) value means 

a less sensitive response of driver input, while a lower throttle response value indicates a 

more sensitive response of driver input. The engine throttle response is researched 

separately from the whole powertrain system because the total torque response of the 

vehicle is the same for ECMS and DP for same drive cycle input.  

Firstly, with the activation of the engine S/S system, the engine and E-Motor may stop 

in some conditions. The discussion of these working points has no meaning, so these 

working points will be removed. Another issue is that the engine torque response to the 

pedal position should be as linear as possible. Generally, a deeper position denotes more 

torque requirement from the driver. Hence, the engine speed should be sorted to check the 

trend of the throttle response. 

 

[1] 
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Figure 7.28 Throttle response of DP and ECMS 

The sorted torque means that in a drive cycle, the required torque are sorted from low to high. On 

the x-axis, it is shown as total no-zero torque working points and the increasing of total required 

torque is shown in red line. The blue line is the torque margin with different torque requirement 

from drive cycle. 

The X-axis shows the sorted engine working points without vehicle stop conditions. 

The orange colour line is the engine torque (sorted), and the blue line is the throttle response. 

The ECMS shows a roughly linear response of the throttle position, while the DP has a more 

sensitive response in the middle range of torque requirement. Considering the driveability 

of throttle response, in qualitative, ECMS goes better than DP. Also, the same trend can be 

compared to E-Motor: 

 

Figure 7.29 ECMS and DP E-Motor sorted torque margin 
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The E-Motor speed is used as the reference on the right-side y-axis. The E-Motor speed 

is sorted to make the E-Motor speed increase monotonically. Also, the zero speed points are 

removed here. The orange line is the E-Motor speed sorted trend, and the blue line is the 

torque margin of the E-Motor. The ECMS controls the E-Motor torque in a given fixed map, 

which makes the response of the E-Motor go smooth and more linear than DP. The DP 

makes the torque output of the E-Motor not linear to the increase of E-Motor speed. Even 

though in a hybrid powertrain system, the E-Motor only supports the whole output, it will 

make the participation of the E-Motor for the entire torque not fully follow the driver’s 

expectations. Also, these points can be compared to the sorted vehicle speed. The 

comparison between DP and ECMS on the engine side is shown in figure 7.30: 

 

Figure 7.30 Comparison of algorithms in engine torque margin 

This figure compares the ECMS and DP sorted engine torque margin to the sorted 

vehicle speed. The zero speed working points are removed, and both ECMS and DP engine 

torque margin is using the same sorted index of vehicle speed. The solid blue line and red 

dash line show the different trends of engine torque margin of ECMS and DP. Followed by 

the previous figure from 7.28 to 7.30, the ECMS performs a more smooth and linear 

relationship to the engine speed changing than DP in the comparison. In the figure, the blue 

line (DP) and red dash line (ECMS) has a crossing point. At this point, the vehicle’s speed 

is 50 kph. This means that the torque margin responses of these two algorithms are the same 

in this condition. It can be considered as the bifurcation of high speed and low speed in the 

strategy. This threshold point also shows that in the low-speed range the DP prefer to use 

more E-Motor and less engine than ECMS. In high-speed range, the ECMS will use more E-

Motor and less engine than DP. The torque margin map also shows the same trend as 

shown in the engine map. 

Notice that all these discussions are qualitative based, the quantitative discussion and 

conclusions will be given in the last chapter. 
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7.4.2 Different drive modes of LVSIM and comparison with 

YRSim 

There are four different drive modes in LVSIM. These different drive modes will use 

engine and E-Motor working points in the drive cycle. In this research, two different drive 

modes will be considered as references to show how LVSIM control the torque margin base 

on sorted vehicle speed.  

Here, sport mode and normal mode are selected. The E-Motor and engine torque 

margin response are shown in figure 7.31 and 7.32: 

 

Figure 7.31 Sport mode torque margin of Engine and E-Motor 
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These figures show how the torque margin layout with the sorted vehicle speed. The 

sports mode has a higher engine torque margin in a wider speed range. This means that the 

engine can provide a more aggressive throttle response in a wider speed range. Also, the E-

Motor can provide a more significant torque margin in a wider range to keep a better 

acceleration performance. The comparison on default maps from LVSIM shows that the 

research direction on sorted torque margin for driveability is correct, because they show 

significant differences in real-world applied strategies from McLaren. Deeper research will 

follow in coming parts.   

7.5. Deeper research on the torque margin and driveability 

The ECMS and DP torque margin are reviewed in sorted vehicle speed. However, the 

value of torque margin only calculates the available value of the torque storage from the 

powertrain components. It strongly depends on the working points selection but not 

“purely” check the torque margin for different strategies. To check the driveability better, 

a new concept is introduced: torque margin ratio. 

In the pedal position signal of the driver in the powertrain system, the max value is 1 

and the lowest value is 0. The driver controls the pedal position by the depth of the pedal. 

In this case, the ratio between available torque and the current output torque is very 

important because it is directly correlated with the pedal position of the torque delivery 

output. The driveability research on the torque response is to research the ratio between 
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available torque and delivering torque for a given fixed pedal position. A linear response 

on the torque margin ratio will correlate the torque delivery linear with the pedal position 

(depth) control, and here is the figure to describe it. 

 

Figure 7.33 The torque margin ratio and pedal working points 
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For a higher torque margin ratio: more available torque available – better torque 

response, lower fuel economics. Also, lower torque margin ratio: less available torque 

available – more inadequate torque response, better fuel economics. For the same final SOC, 

the DP and ECMS can be compared as below based on the NEDC drive cycle: 

 

Figure 7.34 Torque margin ratio of Engine 
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This figure 7.34 describes the relationship between torque margin and the engine speed 

are shown in this figure. The x-axis is the engine speed in NEDC, and the y-axis is the torque 

margin ratio described in the previous equation [2]. The ECMS has a lower torque margin 

ratio in low engine speed conditions. In the higher engine speed range, the DP has a lower 

engine torque margin ratio, but it distributes the working points in the broader range of 

ECMS. In this case, the response of torque margin ratio with pedal position response will 

be more linear for ECMS than DP at higher engine speed. The E-Motor response is shown 

in figure 7.35: 

 

Figure 7.35 Torque margin ratio of E-Motor 

The E-Motor also shows that the ECMS E-Motor working points follow the TS map, 

which will keep the E-Motor working points distributed in a smaller area than DP.  The 

response of E-Motor working behaviour is harder to be estimated with the relationship of 

motor speed. In this case, the driveability of ECMS is better than DP in most of the working 

conditions. As discussed in chapter 5, different C-value will affect the working points of the 

engine and E-Motor. For other strategies, the torque margin ratio is compared in figure 7.36: 
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Figure 7.36 C-value changing with torque margin ratio 

The C-value will affect the value of torque margin in the same drive cycle, but it will 

not affect the distribution trend of these working points. The operating points layout of 

these different target SOC still goes the same, which means that, for various target SOC, the 

ECMS keeps the same torque margin ratio, and it keeps a better pedal position response 

than DP for all different cases. 

Thus, based on these discussion, two different calculation methods of torque margin 

are concluded below: one is occupied torque margin, and the equation is: 

TorqueMargin
peak requirement

peak

T T

T

−
=  

Another is storage toque margin; the equation is: 

TorqueMargin
peak requirement

requirement

T T

T

−
=  

The occupied torque margin needs to be presented with a working points layout on the 

components map. The storage torque margin shows the torque response in different 

working conditions. These two torque margins are shown in figure 7.37: 

[3] 

[4] 
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Figure 7.37 Algorithm Influence on torque margins 

The left figure shows that ECMS has a better torque margin available in low speed, and 

in the high-speed range, the DP can deliver a better response on torque. The right figure 

shows the response from the pedal position. ECMS is performing a more linear and smooth 

reaction than DP. The sorted torque margin of DP presents that DP’s response is hard to 

estimate; the torque margin does not change with the engine speed changing, but keeps 

roughly constant in an area, then experience a step to change the response. This response 

reaction makes the estimation of the vehicle powertrain response hard to predict. The 

driveability is also affected by these trends.  

 Previously in this section, the torque margin ratio is compared for the engine, which 

will participate a more significant role in the throttle pedal response to the driver in the 

driving. For the E-path, the E-Motor torque margin will be compared below to show the 

differences between DP and ECMS. 

 

Figure 7.38 Absolute value of E-Motor torque margin for DP and ECMS 

The left figure of 7.38 is the absolute value of the E-Motor torque margin based on 

different equivalent factor C-value in ECMS. The right figure is the absolute value of the E-

Motor torque margin for DP on various target SOC. Here I am using the absolute value 
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because E-Motor has charging and discharging conditions. For charging the battery, the E-

Motor output torque is negative. Hence, I need to calculate the absolute value to make sure 

the calculation results of the torque margin ratio are reliable.  

Both of these two figures show the relation between target SOC and torque margin. On 

ECMS, the changing of the equivalent factor C-value will affect the whole torque split map 

generation. With the changing of the whole map, the torque margin in the entire speed 

range will also follow this change. Thus, the response from torque margin and throttle 

pedal will all change to follow the requirement of the target SOC. For the DP, because each 

decision for E-Motor torque in the strategy is calculated from the cost-to-go matrix in the 

time step, so for different target SOC, only several working points are changed due to the 

changing of the state transfer matrix. Comparing these two figures, the ECMS strategy 

shows the same trend on E-Motor torque margin with different target SOC. At the same 

time, DP just adjusts several working points to meet various final SOC. Additionally, the 

same comparison can be made in the engine. They are shown in figure 7.39: 

 

Figure 7.39 Engine torque margin ratio comparison 

In figure 7.39, the left figure is the ICE torque margin ratio for different target SOC, and 

the right figure is for DP. Significantly, it is easy to understand that for the same drive cycle, 

if the total torque requirement is the same, and the change in the E-Motor torque margin 

will also perform change on engine torque margin. Hence, all the engine operation points 

for ECMS are changed with various torque split maps with different target SOC. But for the 

DP, only several working points will change. As same as E-path, the ECMS will change the 

whole map for different target SOC, while DP only adjusts several working points due to 

the changing of the cost-to-go matrix in several time steps. 

In the view of drive modes, from previous discussion from chapter 6 on the LVSIM 

default drive modes setting, the torque responses on different engine / E-Motor speeds 

should change for the whole speed range on different drive modes. The driver should feel 

differences in torque margin, acceleration response and throttle pedal reaction for the 

whole drive cycle. Suppose the feedback from the vehicle only changes in several working 

points. In that case, the prediction of the vehicle behaviour will be very hard for the driver 
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because he can only feel the differences between different drive modes in several special 

working conditions. Suppose the drive modes are designed from driveability and SOC 

consumption (Eco mode for SOC protection and sports mode for torque margin). In that 

case, the ECMS provides an easier way to generate various drive modes while DP is harder 

to do so. Based on this issue, the torque margin distribution in the whole engine / E-Motor 

speed should be reviewed in distribution frequency.  

 

Figure 7.40 Torque margin distribution of ICE 

 These two figures in 7.40 are the engine torque margin frequency distribution on 

different engine speeds. Generally, the distribution of the torque margin ratio should cover 

a smaller area to keep the response of the torque and pedal easier to be predicted. In that 

case, the reaction from the powertrain torque output will be easier to estimate because the 

response for different working cases is nearly identical and same. For different gear 

selection, the torque margin ratio will be different from the engine. In ECMS, the torque 

margin distribution frequencies for different gear selections are roughly the same, which 

means that the response from the engine in different gears is changing stablely, and the 

driver is easier to predict the working conditions’ change with gear changing. But for DP, 

the distribution of the torque margin location covers a more extensive area in the whole 

engine speed area. Additionally, the frequency of the torque margin ratio is over-

concentrated in some conditions. This means that the response from the engine torque 

margin could be the same in different gears. This makes it the driver feeling hard to predict 

the behaviour of the powertrain condition, especially for the McLaren sports car with high 

torque margin powertrain system. The same analysis can be implemented for E-Motor, and 

it is shown below: 
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Figure 7.41 E-Motor torque margin ratio distribution 

These two figures in 7.41 are the distribution of the E-Motor torque for ECMS and DP 

separately. Both DP and ECMS control the E-Motor torque directly apply as the input of 

the system controller. The ECMS E-Motor torque follows the torque split map, which is a 

continuous map that keeps the E-Motor working conditions covering a smaller area than 

DP. Same as the research in the ICE, the E-Motor will support the total torque output or 

charge/discharge the battery. The more extensive distribution area of E-Motor working 

points will make the charging and discharging behaviour hard to predict. A sudden 

engagement of E-Motor into the powertrain output will make the throttle pedal response 

stiff-changing during stable driving conditions. In view of driveability, the DP is not as 

good as ECMS, and it will be researched in statistics in the last chapter. 

 In the previous part of this chapter, two different torque margins are introduced. The 

occupied torque margin describes how much torque is used in the current condition by 

ratio, and the storage torque margin is to present how much torque is still available in this 

condition in ratio. Both of these two characters have no unit. The comparison of ECMS and 

DP in torque margin ratio is shown in figure 7.42: 

 

Figure 7.42 Torque ratio comparison between ECMS and DP 
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 This figure describes the torque margin in the whole speed range and the comparison 

between ECMS and DP. The sampling points are sorted with torque margin from low to 

high, and the zero speed points are removed in the drive cycle. Compared with ECMS, the 

DP has a much stiffer torque margin trend, and it comes to a significantly higher value than 

ECMS in the high-speed range. This makes the prediction of the torque response harder in 

DP than ECMS.  

For different target SOC in ECMS, the torque margin curves are kept in a smooth, 

increasing trend to ensure the throttle pedal response will not change suddenly. But for the 

DP, because the E-Motor torque is jumping to its maximum achievable working conditions 

to reduce the CO2 emission and fuel consumption, the feedback from torque margin will 

change stiff with speed increasing, and it makes the pedal and feedback from the 

powertrain system very sensitive in some unpredictable cases. For driveability, the DP has 

worse performance than the ECMS. Addition research will be presented in the WLTC drive 

cycle. 

Based on the previous discussion in figure 7.40 and 7.41, the layout of the working 

points’ torque margin ratio distribution is correlated with the throttle response at different 

engine speeds. Generally, drivers prefer a linear throttle response for a given engine speed, 

and a higher engine speed will have a more sensitive pedal position response. In other 

words, the torque margin ratio should go higher to achieve a better torque response. In the 

drive cycle, the same working points could be performed again and again, and for different 

SOC conditions, different E-Motor behaviours will be selected by the control strategy. To 

see the trend of torque margin ratio in different speeds and working conditions, the heat 

map (distribution) of different working points is discussed, same as previous research in 

NEDC in figure 7.40 and 7.41. Also, the WLTC drive cycle is selected because it has more 

working points than NEDC. The results are shown as figure 7.43 and 7.44: 

 

Figure 7.43 ECMS engine torque margin ratio distribution on WLTC 
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Figure 7.44 DP engine torque margin ratio distribution on WLTC 

In these figures, the engine torque margin is compared with the distribution layout at 

different engine speeds. The x-axis shows different engine speeds during the whole drive 

cycle. Because the same speed of the engine will be experienced many times in the drive 

cycle, there are different torque margins for the same engine speed due to the different 

working points selection in the drive cycle. The colour bar shows the distribution of the 

frequency of the torque margin at this working condition. For the torque response of the 

driver’s feedback, the driver prefers roughly the same feedback on the same engine speed 

condition. In this case, the vehicle provides approximately the same response for torque 

margin will improve the driveability of the vehicle. 

From the frequency distribution map of engine torque margin, the ECMS has a smaller 

range than DP in the whole figure. Also considering the frequency value, the ECMS has a 

higher frequency in a smaller area than DP. This means that, for any given engine speed 

working point, the feedback from engine torque margin is more predictable on ECMS than 

DP; the driver does not need that much effort to control the car, meeting expected torque 

output. 

 

Figure 7.45 The distribution of DP and ECMS E-Motor working points 

The E-Motor behaviour shows more significant differences between ECMS and DP. 
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The ECMS E-Motor behaviour follows the TS map, making the E-Motor have a better 

response to different working conditions. The DP makes the E-Motor working distribution 

in a more discrete area, which makes the whole behaviour of the E-Motor hard to predict 

by the driver. The working points layout on DP shows that it will provide better economics 

than ECMS in the drive cycle, but it cannot give a better throttle response with torque 

margin in most of the working points. The DP’s driveability is much worse than ECMS, 

which makes the industry need to consider the benefits of using DP for CO2 emission.  

Additionally, the DP does need the prediction of the whole drive cycle for strategy 

generation. Without the drive cycle prediction, DP cannot provide reliable control strategies 

for the powertrain system. But ECMS can do so. Even though the DP has a better CO2 

emission in most drive cycles, it needs to predict future driving behaviour with worse 

driveability. These make the DP cannot be widely applied in the real world for mass-

production cars. 

7.6. The comparison of ECMS and DP in time series and 

efficiency maps 

In section 5, the results are compared in engine and E-Motor torque margin ratios. The 

exact figure without time series shows all the working points from the drive cycle. The time 

series will show the differences between ECMS and DP and check the different behaviours 

in the whole drive cycle. 

7.6.1 Comparison in NEDC 

First of all, the simulation can be compared in the NEDC drive cycle. The cumulated 

CO2 emission is shown in figure 7.46: 

 

Figure 7.46 Cumulated CO2 for ECMS and DP 
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As discussed, the DP algorithm prefers to use more engines when the vehicle load is 

low and use more E-Motor to support the total torque output when the load is high. This 

difference can be found in the cumulated emission of CO2 in time series. If the differences 

between ECMS and DP emissions are checked in time series without cumulated results, it 

can be shown as figure 7.47: 

 
Figure 7.47 CO2 differences between ECMS and DP 

These are the unaccumulated differences in time series. The DP uses more engines than 

ECMS in low load working condition, which makes the CO2 emission higher than ECMS. 

In the high-speed range, the DP has lower CO2 emission than ECMS, which makes the CO2 

emission goes more elevated in the time series. Finally, the DP shows lower CO2 emissions 

by the end of the drive cycle. 

This figure 7.48 shows the difference between DP and ECMS in time series. First of all, 

the engine speed and the vehicle speed are fully correlated. The ECMS is making more CO2 

emissions for the acceleration period than DP. This means that the ECMS performs worse 

economics than DP in low-speed acceleration conditions.  

If the car is stopped and not moving, with the engine S/S system, the ECMS and DP are 

performing the same CO2 emissions with the engine S/S system. Thus, for the drive cycle, 

the acceleration and deacceleration can be divided separately; they are compared as figure 

7.49 and 7.50: 
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   Figure 7.49 Compare CO2 in acceleration     Figure 7.50 Compare CO2 in deceleration 

These two figures 7.49 and 7.50 show the acceleration and deacceleration conditions of 

the whole drive cycle in the NEDC. These two behaviours are divided. The ECMS has 

significantly higher emissions than DP in acceleration conditions, while DP has higher 

emissions in deacceleration conditions. These differences cause the different CO2 emissions 

in the drive cycle, which leads to additional cumulated fuel consumption in the whole drive 

cycle.  

DP and ECMS are all generated based on the efficiency of the E-path and ICE-path. To 

find out the differences between these two algorithms in acceleration and deacceleration 

conditions, the working points are compared as figure 7.51: 

 
Figure 7.51 Working points compare between ECMS and DP. 

Compared with ECMS, the DP is better at following the engine fuel consumption trend 

in the efficiency map. The ECMS engine working points are directly correlated with E-

Motor working points from the TS map. Thus, compared with DP engine working points, 

the ECMS is not following the optimisation trend of the BSFC map.  

Then consider the regeneration braking system. The down speed (deceleration) and up 

speed (acceleration) are correlated with the behaviour of the E-Motor. The working points 

are compared as figure 7.52: 
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Figure 7.52 Down speed and up speed working points compare. 

The E-Motor working points of ECMS follow the torque split map, while the DP 

working points do not. From the working points, during the braking condition, the DP tries 

to regenerate as much energy as possible. The TS map limits the ECMS working points, 

which makes the working points all located around the middle area of the efficiency map. 

The same trend can be found in acceleration conditions; the ECMS E-Motor working points 

are following the trend of the TS map while the DP is making the engine work in a higher 

efficiency range. Compared with the engine map, the efficiency gradient of the E-Motor is 

much lower. This means that the working points distribution of the E-Motor will not affect 

as significantly as an engine affects the fuel consumption and CO2 emission. The “jumping 

distribution” of DP E-Motor working points will be able to keep the machine working in 

high-efficiency areas more than ECMS.  

In summary, the limitation of ECMS itself is the map generation. Because the map 

generation depends on the equivalent factor, the equivalent factor transfers the battery SOC 

to fuel consumption with E-Motor working points changing. In this case, the controller and 

the TS map generation factor are both E-Motor operation points, which are not as exact as 

DP to achieve the global optimisation results. Thus, the strategy differences can be detected 

from the time series comparison. 
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7.6.2 Comparison on WLTC 

The NEDC has a lower load than WLTC. The output differences of engine and E-Motor 

between two drive cycles are shown in figure 7.53: 

 

Figure 7.53 The working points differences between NEDC and WLTC 

For WLTC, the engine and E-Motor are reaching higher speed. Because both of these 

two drive cycles are simulated in the same drive modes, the output torque of these two 

algorithms covers roughly the same range. However, the WLTC requires more torque 

outputs from the powertrain system, and it has more stimulation working points because 

it is longer than NEDC with more complex driving conditions. 

To make the comparison more reliable, more working points need to be tested. In the 

WLTC, same as NEDC, the target SOC should be the same in the whole simulation; they 

are shown in figure 7.54: 

 

Figure 7.54 Differences on CO2 emission in WLTC 

Most of the time, the DP has a lower CO2 emission than ECMS. The most significant 

differences appear in the high-speed range. Like previous research in section 5, the DP has 

lower emissions in acceleration conditions, while the ECMS performs better in deceleration 

and high-speed range. Generally, from the energy exchange between E-path and ICE-path, 
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fewer CO2 emission means more SOC consumption; they are compared in figure 7.55: 

 
Figure 7.55 SOC comparison in WLTC 

The trend in WLTC is not as straightforward as NEDC because it is more complex with 

more working points. However, from the trend of SOC differences, even though the final 

SOC are roughly the same in the end, the DP consumes more battery than ECMS in most of 

the working points. This means that the DP will also push the E-Motor to a wider 

distribution of working points compared with ECMS. They can be reached in figure 7.46 

and 7.57: 

 

    Figure 7.56 Engine working points on WLTC       Figure 7.57 E-Motor working points on WLTC 

These two figures show the working points layout differences on WLTP. Compared 

with the previous discussion on NEDC in chapter 5, it has more sampling points. The DP 

makes the engine work towards the high-efficiency domain, especially in a high load range. 

The ECMS is causing the engine to work harder in the low-speed range, which meets the 

CO2 emission trend in the previous discussion as NEDC. In the efficiency map of the engine, 

the DP working points of the engine follow the trend of low emission area, while the ECMS 

working points of the engine are controlled by the TS map from E-Motor. In the E-Motor 

map, the ECMS E-Motor working points follow the TS map trend, and the DP working 

points are distributed in the whole different positions of the E-Motor efficiency map. The 

distribution of DP in E-Motor working points does not have any trend that any generated 

map can control; this means that the DP controls the E-Motor working points in the 

calculation of the cost-to-go matrix but not any torque split map.  
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7.7. Quantitative analysis on driveability 

Previously in this chapter, all the discussions are based on the qualitative discussion 

on driveability. Here the quantitative analysis on driveability will be presented. 

7.7.1 The throttle response and torque margin 

The throttle position and torque margin will describe the vehicle responses on different 

driving conditions. From the research of McLaren’s torque split map, an aggressive strategy 

shows a stiffer increasing of torque margin with deeper pedal position. The response from 

torque margin on E-path and ICE-path are linear, but the slope is changed. Hence, the 

relationship between throttle pedal position and torque margin ratio needs to be researched. 

The relationship between engine and E-Motor torque margin to throttle pedal position 

signal on different drive cycles in figure 7.58: 

 

Figure 7.58 Engine torque margin in NEDC 

In these two figures, the x-axis shows the throttle pedal signal in ratio. One means full 

throttle, and zero indicates no throttle. The y-axis is the torque margin ratio to show the 

occupation ratio from current output torque to remaining available torque at a given 

condition. Considering the driveability for different working conditions, the response of 

the throttle pedal should be linear and concentrate on torque margin. In the NEDC 

simulation results, the ECMS presents a more linear and concentrated relationship from 

throttle pedal position to torque margin response on engine torque outputs. This means 

that the ECMS presents better driveability than DP in the whole drive cycle; the powertrain 

reaction is easier to be estimated from the driver in most working conditions. ECMS 

produces better driveability than DP. 

The E-Motor torque margin ratio comparison with throttle response is shown in figure 

7.59: 
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Figure 7.59 E-Motor torque margin ratio comparison 

This figure 7.49 contains ECMS and DP E-Motor torque margin and throttle pedal 

position. Compared with ICE, the E-Motor response does not have a clear trend following 

throttle pedal position changing. Generally, during vehicle driving, the most significant 

response from the powertrain components behaviour should be the engine but not the E-

Motor. The engagement of the engine will more directly react to the driver’s feeling than 

the E-Motor. The activation of the E-Motor should not always follow the throttle response 

because it is not a pure electric vehicle. The E-Motor will play a support role in most 

working conditions.  

Comparing the sampling points between DP and ECMS of E-Motor, the layout of 

ECMS torque margin covers a smaller area in the y-axis than DP’s sampling points. This 

means the reaction of E-Motor in ECMS keeps the same responses in different working 

conditions. In the view of DP, the reaction of E-Motor torque ratio covers the whole range 

from low to high torque margin. The engaging behaviour of E-Motor in DP will have more 

various reactions than ECMS, which makes the prediction of E-path goes harder for drivers 

in DP. Thus, from the view of the E-path, the DP has worse driveability than ECMS. For the 

WLTC drive cycle, the engine torque margin ratio comparison is shown in figure 7.60: 

 

Figure 7.60: Engine torque margin ratio comparison in WLTC 
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Using the same comparison method in NEDC, the WLTC presents more working 

points. The x-axis is the throttle pedal position, and the y-axis is the engine torque margin. 

Bothe ECMS and DP are showing a trend that the torque margin ratio keeps decreasing 

with deeper throttle position; this means that with more torque requirement from the driver, 

the vehicle will present more torque response, and the torque response will come more 

sensitive to the pedal position. Thus, this comparison method is reliable. 

Checking the distribution of torque margins sampling points in WLTC, same as NEDC, 

the ECMS has a smaller coverage area, and the points are more concentrated than DP. The 

response of the ECMS-controlled powertrain is easier to be predicted than the DP-

controlled system. Hence, the WLTC drive cycle has the same conclusion as NEDC, that the 

ECMS has better driveability than DP in ICE-path torque response.  

The E-path of WLTC is compared as figure 7.61: 

 

Figure 7.61 E-Motor torque margin ratio comparison in WLTC 

This figure 7.51 compares the torque margin of the E-path in WLTC. Like the discussion 

in NEDC, a smaller coverage range denotes a more stable response from E-Motor 

engagement. The ECMS covers roughly 60% area of DP, which means that, for different 

working conditions, the activation of E-Motor in ECMS will be more consistent than DP, 

and the response of the powertrain system will be easier to be compared. From the view of 

E-Motor torque margin, the ECMS has better driveability than DP in the WLTC drive cycle. 

Additionally, the results can be compared in the FTP-75 drive cycle, and they are shown in 

figure 7.62: 
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Figure 7.62 Engine torque margin comparison in FTP-75 

The trend in FTP-75 is as same as in the WLTC and the NEDC. The ECMS shows better 

driveability than DP in the ICE-path. Also, the E-path torque margin is compared as below 

figure 7.63: 

 

Figure 7.63 E-Motor torque margin ratio comparison in FTP-75 

The torque margin sampling points in ECMS cover roughly half the range of DP in E-

Motor behaviours. The engagement and activation of charging and discharging of the 

battery will be easier to predict in ECMS than in DP. Thus, same as NEDC and WLTC, in 

both E-path and ICE-path, the ECMS has significantly better driveability with a more linear, 

predictable throttle response in all the working conditions. 

7.7.2 The numerical comparison of driveability 

As discussed in section 5 of this chapter, the layout and distribution of the torque 

margin in the components map and throttle position dimension will directly affect the 

prediction of the reaction from the powertrain system, which will change the driveability 
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of the vehicle from the torque response. If the relationship between the torque margin and 

the throttle position is more linear, the distribution of torque margin sampling points is 

more concentrated; the driveability will be better. For the numerical comparison, the quality 

of linear fitting for the torque margin should be used to check the driveability and make the 

simulation results comparable.  

From the application of statistical mathematics, there are several different methods to 

review the distribution and the degree of dispersion. From the beginning, the Sum of 

Squares due to Error (SSE) is the parameter to describe the square of the error between 

fitting data and original raw data. The equation [1] is shown as: 

2

1

ˆ( )
N

i i i

i

SSE w y y
=

= −  

If the SSE value is closer to zero, this means the raw data goes closer to the fitting results. 

Because in our research, we are using the linear fitting, so lower SSE value means the 

linearity is better between pedal position and torque margin response. 

Another character is called Mean Squared Error (MSE). The calculation of MSE is very 

close to SSE, but calculate the average value of the differences. The equation is: 

2

1

1
ˆ( )

N

i i i

i

SSE
MSE w y y

n n =

= = −  

Based on the introduction of MSE and SSE, the Root Mean Squared Error (RMSE) is 

applied. This statistic is also called the standard deviation of the fitting to the regression 

system. The equation [3] is shown below: 

2

1

1
ˆ( )

N

i i i

i

SSE
RMSE MSE w y y

n n =

= = = −  

Here, all these statistics are based on the estimation fitting value to original value, point 

to point. Afterwards, the discussion will come to the differences between the fitting value 

and to average original value – from point to all. 

The R-square, which also called the coefficient of determination, is to present the 

quality of the fitting. It is defined by two parameters. One is SSR – Sum of Squares of the 

Regression, and another is SST – Total Sum of Squares. The equations of SSR and SST are 

shown below in equation [4] and [5]: 

[1] 

[2] 

[3] 
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2

1

ˆ( )
N

i i i

i

SSR w y y
=

= −  

2

1

( )
N

i i i

i

SST w y y
=

= −  

Here in these two equations, the SSR is the sum of squares of the difference between 

the predicted value and the average original value, and the SST is the sum of squares of the 

difference between the original and the mean value.  

The R-square, the coefficient of determination, is the ratio between SSR and SST. It is 

shown below as equation [6]: 

1
SSR SSE

R square
SST SST

− = = −  

The R-square is a statistic that describes the quality of fitting. The range of values is 

between zero to one. If the R-square is closer to one, this means that the relationship 

between x and y can be better described by the fitting. In our research, because we are doing 

the linear fitting, this explains how close the raw data is to the linear fitting result from a 

previous discussion on the whole range of data. 

Based on the equation introduced from [1]to [6], the linearity fitting results between E-

path to throttle pedal position and ICE-path to throttle pedal position on different drive 

cycles are calculated. They are presented below in table 7.5: 

Fitting 

variables 

Figure The goodness of linearity 

fitting 

SSE R-square RMSE 

NEDC 

ICE-path 

ECMS 

 

Figure 7.64 ECMS ICE-path torque margin 

fitting in NEDC 
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Fitting 

variables 

Figure The goodness of linearity 

fitting 

SSE R-square RMSE 

NEDC 

ICE-path 

DP 

 

Figure 7.65 DP ICE-path torque margin fitting 

in NEDC 
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Figure 7.66 ECMS E-path torque margin fitting 

in NEDC 
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Figure 7.67 DP E-path torque margin fitting in 

NEDC 
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Fitting 

variables 

Figure The goodness of linearity 

fitting 

SSE R-square RMSE 

WLTC 

ICE-path 

ECMS 

 

Figure 7.68 ECMS ICE-path torque margin 

fitting in WLTC 
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Figure 7.69 DP ICE-path torque margin fitting 

in WLTC 
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Figure 7.70 ECMS E-path torque margin fitting 

in WLTC 
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Fitting 

variables 

Figure The goodness of linearity 

fitting 

SSE R-square RMSE 

WLTC 

E-path 

DP 

 

Figure 7.71 DP E-path torque margin fitting in 

WLTC 

223.200 0.0953 0.3524 
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Figure 7.72 ECMS E-path torque margin fitting 

in FTP-75 
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Figure 7.73 DP ICE-path torque margin fitting 

in FTP-75 

41.8662 0.3923 0.2148 
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Fitting 

variables 

Figure The goodness of linearity 

fitting 

SSE R-square RMSE 

FTP75 

E-path 

ECMS 

 

Figure 7.74 ECMS E-path torque margin fitting 

in FTP-75 

10.8464 0.3707 0.0659 

FTP75 

E-path 

DP 

 

Figure 7.75 DP E-path torque margin fitting in 

FTP-75 

203.9868 0.5014 0.2858 

Table 7.5 The fitting results of driveability 

The linearity fitting results are compared in different characters. The SSE and RMSE 

describe the fitting quality of the linearisation in this research. In other words, because the 

response from torque margin to the throttle pedal position should be as linearly as possible, 

a better fitting quality denotes a better linearity relationship between torque margin to 

throttle pedal position. That is the physical meaning of the fitting quality in this research. 

From the description of the SSE and RMSE, if the SSE value is lower and the RMSE value is 

closer to 0, the fitting results are better, and the relationship between x and y is more relative 

to the linearity. The R-square also describes the quality of the fitting; if the value is closer to 

1, this means that the fitting results are better. So, all these variables describe the driveability 

from the response of throttle pedal position to the torque margin. The results in statistics 

need to be calculated to check how many benefits can be achieved from ECMS to DP. 
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The conclusion of the driveability data is calculated from the differences between 

ECMS and DP. The value differences are the statistical way to show the benefits of 

driveability from ECMS to DP. The results are shown in multiple numbers to see how better 

and much linear response from DP to ECMS in different drive cycles and different 

propulsion paths separately. 

Drive 

cycle 

Engine ICE-path E-Motor E-path 

SSE R-square RMSE SSE R-square RMSE 

NEDC 6.6859 2.4772 2.5860 15.9898 14.8382 3.9963 

WLTC 2.4639 14.6532 1.5795 4.1037 12.2771 2.0034 

FTP-75 1.5384 1.7418 1.4979 18.8069 1.3525 4.3369 

Table 7.6 Multiple values on different drive cycles 

This table 7.6 calculates the multiple numbers from the DP to ECMS based on previous 

linearity fitting results. The physical meaning of SSE, RMSE and R-square is shown in figure 

7.76: 

 

Figure 7.76 Physical meaning of SSE, RMSE and R-square 

The SSE and RMSE describe the linearity of the data fitting. With a deeper position of 

the acceleration pedal, the response changing from torque margin should increase linearly. 

The SSE and RMSE describe the linearity fitting, and they will tell how good the linear 

reaction from the powertrain torque margin is. The R-square describes the fitting 

qualification from the x-axis to the y-axis. This means that for a given throttle pedal position, 

how many differences will be experienced by the driver in the whole drive cycle. The 

narrower on this range, the better predictability for the torque margin will be for the driver. 

Hence, from the data analysis of the ECMS and DP torque margin response distribution, 

the ECMS has significantly better driveability than DP in all the drive cycles. It has a 

narrower range on the torque margin linearity fitting, and the linear dependence between 

torque margin and throttle pedal position is over ten times better from ECMS to DP in some 
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cases. In summary, if the driveability is transferred to numerical description, it is concluded 

as table 7.7: 

Drive 

cycle 

Engine ICE-path E-Motor E-path 

Response 

linearity on 

different throttle 

pedal position 

The predictable 

of response on 

each pedal 

position 

Response 

linearity on 

different throttle 

pedal position 

The predictable 

of response on 

each pedal 

position 

NEDC 4.64 times better 

from ECMS to 

DP 

2.48 times better 

from ECMS to 

DP 

9.98 times better 

from ECMS to 

DP 

14.84 times 

better from 

ECMS to DP 

WLTC 2.02 times better 

from ECMS to 

DP 

14.65 times 

better from 

ECMS to DP 

3.05 times better 

from ECMS to 

DP 

12.28 times 

better from 

ECMS to DP 

FTP-75 1.52 times better 

from ECMS to 

DP 

1.74 times better 

from ECMS to 

DP 

11.57 times 

better from 

ECMS to DP 

1.35 times better 

from ECMS to 

DP 

Table 7.7 Numerical description of driveability 

 

7.8.  Conclusions, novelty and contribution 

The working points comparison on E-Motor and engine show why DP and ECMS have 

different CO2 emissions in the same drive cycle and target SOC. The DP can make the 

engine working points follow the highest efficiency trend in the BSFC map. The ECMS 

applies the TS map to control the E-Motor behaviour in the whole drive cycle, which makes 

the working points limited by the given map. This limitation will make the ECMS have 

lower fuel economics than DP in most drive cycles. 

However, the ECMS has a significantly better torque margin ratio and throttle response 

in most drive cycles. The ECMS makes the engine and E-Motor working points in a smaller 

area than DP. The response of the pedal position, including torque margin in different 

working conditions, ECMS is much better than DP. The ECMS-generated TS map is 

controlling the E-Motor working in the exact requirements for a given drive cycle, no matter 

how many times these working conditions will appear. The DP is different; it follows the 

best efficiency working point for the current situation. This means that the powertrain 

components in DP will have an unpredictable response in a drive cycle. The throttle 

response with torque margin will be different for a stable working condition. In this case, 

the ECMS has significantly better driveability than the DP in the simulation.  

In the NEDC, WLTC and FTP-75 drive cycles the DP has 3-6% better fuel economy for 

the whole drive cycle. But the DP requires the whole drive cycle as the input, while the 

ECMS does not need it. Considering the real world, for the McLaren powertrain system, a 
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more complex drive cycle needs to be tested to see what will happen. This will be discussed 

in the next chapter. However, for these designed given drive cycle, if we review these two 

algorithms in the view of combination with driveability and fuel economy, the ECMS is 

recommended to be applied to the mass productive cars from McLaren because it can make 

the driver feel better during driving. It can provide roughly the same (just 3-6% higher fuel 

consumption than ideal strategy DP) without predicting the drive cycle. The statistics 

calculation and definition of driveability will be delivered in chapter nine with a combined 

conclusion. 

The most novelty research in this project is introduced here, the quantitative definition 

of the driveability. From the literature review, the driveability research is still an open 

question before this project. For McLaren’s high performance propulsion system, both 

engine and emotor are having quite high torque output for these drive cycles. During the 

implementation of the control calibration, the engagement of the electric motor will 

significantly affect the working condition of the whole powertrain system and the feedback 

from the throttle response on torque margin. Thus, the quantitative analysis shows a clear 

method on the solution to this problem. The predictable and the linearly response are both 

researched statistically and compared on different control algorithms. The conclusion 

shows a clear direction that how much benefits can be achieved from the application of 

ECMS on driveability, and it also point out that the ECMS algorithm works better on the 

design of different drive modes. The trade-off between DP and ECMS are fully concluded, 

and they are all novelty discussions in this research domain. 

This chapter also delivers contributions for future powertrain system development. On 

the view of the real-world application of this project, the challenge is to fast-develop the 

hybrid powertrain system calibration and control for a series of components selection and 

optimisation objectives. Based on the optimisation of components selection and scaling, the 

automatically calibrate of the energy management strategy is essential for the future hybrid 

vehicle development. The discussion on the driveability will be applied as reference from 

the industry for the design of drive modes and control calibrations.  

From the results discussion, because the McLaren powertrain system is quite powerful 

for any designed drive cycle, in order to find out the performance comparison on the whole 

components working range, the race track simulation is going to be discussed in next 

chapter. 
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Chapter 8. The simulation and analysis of 

Nürburgring 

8.1.  Introduction of this chapter 

The McLaren powertrain system is a high-performance powertrain system. From the 

previous research in chapter 7, none of the standard road vehicle drive cycles, whether 

NEDC, WLTP or FTP-75 drive cycles, can cover the whole range of available powertrain 

output produced by McLaren. This means that the simulation and optimisation outputs 

cover only a small area of the complete engine and E-Motor maps. In this chapter, a race 

track will be used to check the behaviour of ICE-path and E-path components under in 

high-load working conditions. 

The ECMS and DP algorithms are applied to the YRSim model for different simulation 

objectives. The simulation results are compared on different dimensions, including SOC, 

CO2 and driveability. Finally, a conclusion will be delivered to guide the control strategy 

generation and calibration for different drive modes and objectives. 

8.2.  The introduction of Nürburgring and simulation 

setting 

The Nürburgring is a series of race tracks, including the south and north rings. The 

north ring is the most challenging track, called the Nürburgring. The total length of the 

Nürburgring is 20.830km. The layout of the Nürburgring is shown in figure 8.1 below: 

 
Figure 8.1 Nürburgring lap layout 
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In this project, for the McLaren powertrain system, the total length of the track is 

considered as the drive cycle input to the model. McLaren provides real-world test results 

in LVSIM on Nürburgring, but due to the model sub-systems structure and data flow 

limitation, LVSIM cannot finish any simulation on Nürburgring. The YRSim can do so, but 

the whole simulation should apply the reference data from LVSim storage test data. The 

test settings are shown in figure 8.2 and 8.3: 

 

 Figure 8.2 Gear selection of Nürburgring   Figure 8.3 Vehicle speed reference of Nürburgring 

The total run time is 415.9 seconds with a 10Hz frequency. The time cost is 6.932 mins, 

which is a fast lap time for a McLaren powertrain system. The E-Motor speed and engine torque 

can be calculated as figure 8.4: 

 

Figure 8.4 Engine and E-Motor speed comparison 

Because the E-Motor and engine have fixed speed ratios, the speed trend in the time 

series looks the same in the figure. For the application of the Nürburgring race track, it is 

considered the drive cycle input of the whole powertrain model; the drive mode will be in 

race mode to guarantee the vehicle can deliver the highest performance on the track. To 

optimise the strategies for race track simulation, different from NEDC and WLTP, the 

Nürburgring can be extension simulated, which means that the simulation will be repeated 

for three laps and five laps. Considering the application of my research results in the real 

world, the driver may prefer to push the vehicle on a track day for a longer time, and the 
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performance of the hybrid powertrain system needs to be calibrated and optimised for such 

a high load drive cycle. 

8.3.  The initial setting of the simulation 

In this chapter, to keep the simulation results comparable, the lap time and the gear 

selection are not considered optimisation factors. The reasons are: 

1. The LVSIM and YRSIM models both do not include chassis and tyre dynamics. The lap 

time optimisation, especially for Nürburgring, the chassis dynamic is essential because 

the tyre grid force will be managed, and the TC will directly limit the total torque output 

of the powertrain system. Thus, the tyre and chassis dynamics are going different for 

different lap times, with additional total torque requirements. Without these 

subsystems, it is impossible to make a simulation on lap times.  

2. For the Nürburgring, the gear shifting strategy is another factor that will affect the 

strategy and torque requirement of the whole system. The gear shifting strategy will be 

the driver’s strategy in the simulation. In the comparison, it does not belong to ECMS 

and DP, so the gear shifting strategy and total torque requirements are both fixed for all 

the simulations. The lap time is not optimised in this project. 

3. There are also some other RDEs and drive cycles that can be used, such as Germany 

Autobahn. Compared with Nürburgring, the no-speed limit autobahn is less complex – 

Nürburgring can cover a wider range of powertrain components. For the future test, it 

should be able to test the strategy to Autobahn to test more simulation results. 

8.4.  The application of ECMS on Nürburgring 

In the simulation of the Nürburgring on different multi-laps, the ECMS limitation can 

be founded in another different way than other drive cycles. If I simulate with initial SOC 

90%, the working points of E-Motor will always be controlled by the battery protection 

system, and it will offset from the TS map. Also, suppose the simulation initial SOC is in a 

low condition (such as just finishing one previous lap and continuously moving into the 

next lap). In that case, it will activate the battery protection system and keep the battery in 

a low-charge condition all the time. 

8.4.1 Different simulations for five laps 

Here is the simulation of the model for five laps: 
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Figure 8.5 Five laps simulation SOC 

The battery protection system controls the first lap. Afterwards, the next lap starts in a 

low SOC condition (34.8%), which will hardly activate the battery protection functions 

during the whole lap. Because in Nürburgring, there is a long highspeed straight line, in 

the end, the control strategy will charge the battery before the last straight line to reduce 

the CO2 emission in the previous highspeed straight line. 

The ECMS generates a fixed map, which means that the strategy will be fixed for a 

given driving torque requirement for the whole drive cycle. In Nürburgring, to match the 

final SOC requirement, the behaviour of different laps should be the same. So this can 

explain why the behaviour in laps 2, 3, 4 and 5 are all the same but different from lap one 

due to the activation of the battery protection system. If I tried to consume the battery more 

in the first lap, the simulation results would be like the figure 8.6:  

 

Figure 8.6 Five laps simulation SOC 

If the C-value (Equivalent factor) is changed, the system will consume the battery much 

more aggressive than before. The charging for the last straight line will be considered as not 

that efficient in the whole simulation. So the simulation will start from a low charge 

condition and keep the battery in a low charging SOC with a regeneration braking system 
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activated. The limitation of the ECMS can also be found in this simulation result, that the 

car’s initial SOC and final SOC keep the same from the beginning of the second lap till the 

end. The vehicle can only run in a “low E-Motor support” condition, and it will affect the 

performance and CO2 emissions in the end. However, for a McLaren powertrain system, it 

is still available for pure ICE mode to finish the Nürburgring.  

Also, the C-value can be tuned to make the vehicle able to keep a high charge condition 

for five laps. The results can be shown in figure 8.7: 

 

Figure 8.7 Five laps with high charge mode 

In this simulation, the strategy will keep charging the battery and consume it in the 

final long straight line. Same as “low charge mode”, it will activate the protection mode of 

the battery and try to charge back at the beginning of the lap. It will increase the CO2 

emission and fuel consumption all the time.  

Here, in my opinion, due to the high energy requirement of Nürburgring, the 

behaviour of the E-path is highly dependent on the protection system of the battery. In 

other words, if the vehicle is going to be in “race mode” selected by the driver, the C-value 

must be adjusted carefully to ensure that it will never (or as little as possible) touch the 

battery protection system. Thus, the CO2 emission will be reduced (not always charged), 

and the performance can be guaranteed (E-Motor can be activated for any conditions for 

any laps). 

8.4.2 Different strategies of ECMS application 

First, the simulation is based on one lap with different C-values. The McLaren LVSIM 

model has four different drive modes; each drive mode has one torque split strategy map. 

So the adjustment of the equivalent factor C-value is the tuning of different drive modes. 

Different C-value will affect the behaviour of SOC. Generally, the strategies can be 

divided into two series: one for discharging – the battery capacity will be consumed to dry 
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in one lap for max performance. One for charging – the battery capacity will be charged as 

much as possible to guarantee the car is able to keep on track for hybrid mode for more 

laps. For discharging strategies, the dynamics of SOC are shown in figure 8.8: 

 

Figure 8.8 Different charge conditions for one lap 

The changing of the C-value will affect the behaviour of SOC. In most cases, the battery 

will be consumed at the beginning minutes. The battery will harvest some SOC from the 

braking system and engine energy supply, but it will be finished in the last straight line in 

the end. The 20% SOC is coming from the activation of the regeneration braking system. 

For charging strategies, the dynamics of SOC are shown in figure 8.9: 

 

Figure 8.9 High SOC for one lap 

The battery will be charged most of the time; the charging behaviour and strategies 

depend on the different selection of C-value. For the last straight line, due to the high torque 

requirement, the battery will be consumed and charged finally before the end of this lap. 
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The relationship between C-value and the final SOC can be checked. It is possible to 

simulate more laps to check how the SOC will be affected by the changing of strategies. 

The simulation will last for five laps; different initial SOC will be applied to check how 

the initial SOC will affect the final SOC. The results are shown in table 8.1:  

Initial SOC C-value vs final SOC 

90% 

Figure 8.10 Initial 90% SOC simulation 

50% 

Figure 8.11 Initial 50% SOC simulation 

30% 

Figure 8.12 Initial SOC 30% simulation 

Table 8.1 C-value vs final SOC in lap test 
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And if we put these three figures together, we will see: 

 

Figure 8.13 track test based on ECMS 

The simulation results are overlapped for different initial SOC. Because the initial SOC 

can only affect the behaviour of the E-Motor during the beginning seconds of simulation. 

Afterwards, the torque split map controls the E-Motor working points, and the relationship 

between C-value and final SOC is the same. 

The relationship can also be proven if the test is applied for one lap as figure 8.14: 

 

Figure 8.14 One-lap test results 

The trend of one lap shows that the initial SOC will only affect the battery behaviour 

at the beginning. The final SOC is very sensitive to the C-value changing for the calibration 

of the C-value. The E-Motor size and working points changing need to be considered. 
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From the generation method of the ECMS torque split map, a bigger E-Motor will affect 

the trend between SOC and C-value changing. A small E-Motor will make the max E-Motor 

torque equivalent fuel consumption slope bigger than a bigger E-Motor. So if a bigger E-

Motor is applied, the equivalent fuel consumption change slope will be smoother than the 

smaller E-Motor. The next step is to generate a series of TS maps based on a bigger E-Motor. 

Several TS maps are shown here to check. 

 

Figure 8.15 Yasa R750 and McLaren P12 E-Motor generate TS maps 

These two maps are generated on the same C-value but for different E-Motors. The 

YASA R750 is much bigger than the McLaren one. They are compared as figure 8.16: 

 

Figure 8.16 Map compared in the same C-value 

A torque limiter is applied to guarantee that the E-Motor response will not get over the 

available delivery. Because the map generation and the calibration are all based on the P12 

E-Motor and engine powertrain selection, so the TS map is generated from YASA R750. Still, 

the E-Motor output will be limited to 130Nm as same as the P12 E-Motor. 

The one-lap test result, based on the new E-Motor, is shown in figure 8.17: 
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Figure 8.17 SOC vs C-value 

This figure shows the relationship between the C-value and the SOC for the YASA 

motor. Even though the motor is more significant than the McLaren P12 E-Motor, the 

relationship between C-value and the final SOC still presents a nonlinear increasing trend. 

Thus, the relationship between the C-value and the final SOC always shows a rapid increase 

in this relation. It keeps happening in any drive cycles. The relationship between C-value 

and the CO2 emission can be shown in figure 8.18: 

 

Figure 8.18 Relationship between C-value and CO2 emission 

The relation between C-value and the final CO2 is compared in two laps. The 

comparison between C-value and SOC is shown in one lap because from the time series 

checking; there is no difference if the simulation lasts for longer laps. For the emission, 

longer laps will see more significant differences in the C-value changing. The changing 

trend between C-value and the CO2 emission does not show such a steep trend as SOC 

because the torque split strategy does not directly control the behaviour of the engine. The 

CO2 emission depends on the working points of the engine so that the trend can be roughly 

the same as SOC but not that such a steep will be presented.  
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8.5. The comparison of algorithm on Nürburgring 

As discussed, the DP algorithm is comparable with ECMS in the Nürburgring track. 

Same as the previous tests in NEDC and WLTC from chapter 7, the available range of the 

CO2 and SOC in time series need to be calculated. They are shown in figure 8.19: 

 

Figure 8.19 SOC and CO2 available range in time series 

These two figures show the available range of SOC and CO2 emission based on 

different E-Motor torque selection in time series. These two figures are used to generate the 

cost-to-go matrix and state transfer matrix.  

8.5.1 The comparison in time series 

For same target SOC for ECMS and DP (with acceptable differences between ECMS 

and DP in the target SOC value), the battery SOC in time series is shown in figure 8.20: 

 

Figure 8.20 One lap simulation for different final SOC 

These two figures show the high and low final SOC with DP and ECMS in one lap 
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simulation. The results are compared in time series. The left figure is the high target SOC, 

and the right figure is the low target SOC. The ECMS and DP are showing the same trend, 

but for the high target SOC (left figure), the DP keeps the SOC in a smaller range than ECMS. 

But in this range, the DP has more SOC changing than ECMS. In the low target SOC (right 

figure), both ECMS and DP are limited in the lower side of the SOC range, and DP is 

performing more SOC changing in the time series.  

The CO2 emission is shown in figure 8.21: 

     

Figure 8.21 CO2 emission comparison for DP and ECMS 

 The left figure shows the high target SOC simulation results, and the right figure shows 

the low target SOC. Because the charging of the battery needs the extra energy from CO2 

emission, so the left figure has higher CO2 emissions than the right figure. Both simulations 

are presented in one lap length. Generally, from the total CO2 emission comparison in time 

series, the DP still presents lower CO2 emissions than ECMS in the Nürburgring test. Same 

as previous research in chapter 7 from drive cycles, the E-Motor behaviour in time series is 

shown in figure 8.22: 

 

Figure 8.22 E-Motor torque in time series 

 This figure compares the E-Motor torque in the time series between DP and ECMS. 
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From the time series comparison, the ECMS and DP both present roughly the same trend 

on E-Motor torque. But the DP is more likely to use the full available torque than ECMS in 

some high demanding working points. Same as previous simulation results from NEDC 

and WLTC, the DP keeps reducing the total CO2 emission from the whole drive cycle, 

which will make the E-Motor working points “jump” in time series. From previous research 

results, this will affect the driveability of the vehicle from throttle response and torque 

margin. 

8.5.2 The comparison of driveability 

In the previous chapter 7.4, the definition of torque margin and the relationship 

between torque margin ratio and throttle response has been discussed. The comparison 

between ECMS and DP in Nürburgring also follows these same methods. The E-path and 

ICE-path are researched separately. Also, to guarantee these results are comparable and 

reliable, the simulation is based on two different target SOC: high target SOC (50%) and 

low target SOC (20%), both of the simulations are implemented in one lap from the race 

track.  

Firstly, the ICE-Path torque margin comparison is shown in figure 8.23: 

 

Figure 8.23 Torque margin from ICE-path 

The left figure is the torque margin for lower target SOC, and the right figure is for 

higher target SOC. Because the higher target SOC requires more engine torque output, there 

are more points uncovered from ECMS to DP. For the very high torque requirement (the 

last straight line of the Nürburgring), both ECMS and DP are having same behaviour to 

push the car to meet the demands. In the 4500-6000 rpm area, for a race track working 

condition, this area is recognised as a “low rpm” area; ECMS still push the engine to 

participate in most of the torque output. In high load areas, the trend is changed between 

ECMS and DP. The DP applies more engine to push the car while ECMS prefer to use the 

E-Motor to support the total output. This trend goes as same as the strategies in NEDC and 

WLTP. 
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Followed by previous research steps in WLTC and NEDC from chapter 7, the torque 

margin distribution frequency also needs to be reviewed. Same as aforementioned, I design 

high target SOC and low target SOC to simulate the race track two times. They are 

presented in figure 8.24: 

 

Figure 8.24 Low target SOC torque margin comparison 

  The left figure is the ECMS strategy, and the right figure is the DP. From the generation 

method of control strategy of DP, because it divides the whole drive cycle into several time 

steps and uses a given fixed resolution for the controller (E-Motor torque output), so the 

right figure shows the torque margin ratio in lines. On the left side is the ECMS-controlled 

E-Motor torque margin ratio distribution. The feedback from the E-Motor torque margin is 

much more linear than DP, as well as the working points distribution is more concentrated. 

It also has several obvious high-frequency working conditions, that most of the E-Motor 

reaction will be in this area. Hence, compared with DP, the ECMS E-Motor torque margin 

is easier to be predicted in driving. 

 If we move to a high target SOC, the same trend can find in figure 8.25: 

 

Figure 8.25 High target SOC torque margin comparison 
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 The high target SOC and low target SOC show the same direction of E-Motor torque 

margin between ECMS and DP. The DP presents the controller working points discrete, 

while the ECMS controls the E-Motor torque more continuously. Comparing with low 

target SOC, the trend on the map is roughly the same. There are two high-frequency areas 

on the map, one is 12000rpm, and another is 14000 rpm. These two speed areas are very 

commonly used in Nürburgring simulation. The ECMS torque margin points are much 

more concentrated than DP working points. Same as low target SOC simulation results, the 

ECMS will perform a better torque margin response in most of the working conditions in 

the simulation. 

 On the view of ICE-path, the torque margin ratio comparison is shown as figure 8.26: 

 

Figure 8.26 ICE-Path torque margin comparison 

 In the Nürburgring race track, most of the time, the driver keeps the car in full throttle 

condition. The engine, which makes most torque output, area always driven to its max 

torque to guarantee the acceleration performance. The torque margin between ECMS and 

DP does not show a clear difference between each other. The ECMS ICE-path working 

points have a more intensive torque margin ratio than DP in the whole speed range, so on 

qualitative, the ECMS has better driveability and torque response than DP from E-path and 

ICE-path, but they are hardly to find the differences quantitively.  

 As same as the comparison method in chapter 7, the relationship between throttle pedal 

position and torque margin ratio needs to be reviewed. In Nürburgring race track, most of 

the time, the vehicle is in full throttle condition. The relationship between acceleration pedal 

position to ICE-Path torque margin ratio for ECMS and DP is shown as figure 8.27: 
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Figure 8.27 ICE-Path pedal position with torque margin in ECMS and DP 

 Because most of the working points locate in full throttle condition, in this comparison, 

the comparable working points should be those between 0 to 1. The linearity fitting without 

full throttle condition with SSE, RMSE and R-Square is concluded as table 8.2: 

Drive cycle: 

Nürburgring 

Engine ICE-path 

Response linearity on different 

throttle pedal position 

The predictable of response 

on each pedal position 

1.37 times better from ECMS to 

DP 

2.09 times better from ECMS 

to DP 

Table 8.2 ICE-Path driveability comparison 

 In the comparison, the linearity response from ECMS still shows better driveability 

than DP, as same as the conclusion from chapter 7. However, because the working points 

of E-path in DP is over-discrete for any trend fitting, the driveability of E-path is not 

compared here. Whatever, because in the McLaren powertrain system, the ICE-path is 

supporting much more torque outputs than E-path in most of the time, especially on race 

track, so the driveability comparison should mostly focus on the response from ICE-path to 

acceleration pedal position. 

In the race track, on the straight line, full throttle is easy for anyone. But the control of 

torque output in corner, in late apex acceleration is much harder. On the view of driver, 

because with sporty gear changing strategy, the throttle pedal position will be very 

sensitive to the driver’s input, so a more linearity response from powertrain system is very 

important in race track driving. In this condition, the ECMS is performing better 

driveability than DP, not only on “low-load” drive cycles, but also on race track. 
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8.6.  Conclusion, novelty and contribution 

 In this chapter, the Nürburgring race track is introduced in the comparison between 

ECMS and DP. The simulation results are reviewed in time series at the beginning. 

Afterwards, the application of ECMS is reviewed, and the relationship between SOC, CO2 

emission and equivalent factor is compared for one lap and five lap simulations.  

 For the DP application, high target SOC and low target SOC are designed for one lap 

simulation. The benefits on CO2 emission are reviewed in time series. The DP has better 

economics than ECMS, even though both of these two algorithms are simulated in track 

mode. The E-Motor behaviour is checked in time series, which leads to the research on 

driveability. From the torque margin comparison for E-path and ICE-path, same as the 

research results from NEDC and WLTC, the ECMS presents a better driveability with more 

predictable reaction feedback from the powertrain system in most the working conditions. 

Hence, same as the previous discussion in this chapter, the DP achieves benefits in the CO2 

emission and fuel consumption, but ECMS presents a better driveability in most 

simulations. 

 The novelty of this chapter is the discussion on the driveability of different control 

algorithms on Nürburgring. It is able to cover the whole range of the powertrain efficiency 

maps and using the full potential of the whole system. The comparison on the driveability 

is still showing significant differences between DP and ECMS, especially on the pedal 

position feedback on torque response. This discussion has never been researched before 

from the literature review, and finally it is able to proof the application of ECMS on the 

powertrain calibration design is still better than DP on different working conditions. 

 This is the last simulation and comparison work in this research. The Nürburgring 

track simulation covers the working conditions that unreachable from previous drive cycles 

in chapter 8. The simulation has proofed that the YR-Sim model is robustness enough to 

cover different drive cycles and optimisation targets, and the strategy of the 

implementation of different calibrations are able to meet the requirement of multi-objective 

optimisation. The quantitative definition of driveability has been proofed that it is reliable 

and able to show the difference between different calibrations. 
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Chapter 9.  Conclusions, novelty and 

contribution 

This is the last chapter of this thesis. This chapter will review the whole thesis and the 

project. The conclusion will be given in the end, and the future research plan will be advised 

based on the conclusion of this project. 

9.1.  Review of the thesis 

In the first chapter, the background of the research is introduced at the beginning. The 

research status of the hybrid powertrain system is reviewed, and the research trend is 

briefly discussed. The motivation of the research is introduced, including the control 

algorithm development and the components selection of the hybrid propulsion system.  

The second chapter is the literature review of the hybrid powertrain system control 

algorithms. All the common-used powertrain control algorithms are introduced in the time 

series. The application and the generation of the algorithm are reviewed, and the 

comparison between different algorithms are discussed. Different algorithms are combined 

into one controller to ensure they can meet the requirements of different objectives in the 

simulation. By the end of this chapter, different algorithms are compared, and the control 

strategy generation and the future research gaps are delivered by the end of this chapter.  

Chapter three focuses on the powertrain modelling discussion. A briefing on the 

powertrain modelling will be given at the beginning of this chapter. Some important words 

are defined, and the general requirement of a powertrain system is discussed here. The 

general requirements of this project are discussed, with the level introduction of the LVSIM 

model. The data flow of the LVSIM is introduced, with several essential features and 

function blocks. Afterwards, the limitation of the LVSIM model is discussed, which leads to 

the generation of new powertrain model by the end of this chapter. 

Chapter four is the introduction of the hybrid propulsion system control algorithm. 

The ECMS and DP algorithms are presented separately. The data flow and the calculation 

step are introduced with the optimisation method of the control strategy generation. After 

introducing these two algorithms, the application's data flow is discussed and compared. 

The application is introduced at the end of this chapter, which also leads the discussion on 

the calibration of the algorithm and validation of the powertrain model. 

Chapter five is the development of the powertrain model. With the requirement of the 

project, the motivation for building a new powertrain model is discussed. The YRSim model 

structure is introduced at the beginning; afterwards, all the essential subsystems are 

presented based on their physical models. Then, several add-on subsystems for different 
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powertrain functions and features, are introduced. The test for each subsystem is presented, 

leading to the powertrain model's calibration and validation with LVSIM.  

Chapter six calibrates and validates the powertrain model with the application of the 

control algorithms. At the beginning of this chapter, the ICE-Path and E-path add-on 

subsystems are introduced. These subsystems are calibrated and validated in this chapter. 

Also, the fuel consumption is compared between LVSIM and YRSIM based on the ECMS 

strategy. Afterwards, the relationship between different C-value, initial and target SOC, and 

CO2 emissions on the NEDC drive cycle is researched. The trend is concluded, and the 

deeper reason is discussed. The sensitivity between CO2 emission and components selection 

is concluded at the end of this chapter.  

Chapter seven is the simulation results discussion in NEDC, WLTC and FTP75. First of 

all, the DP and ECMS are compared in different drive cycles on the fuel efficiency. The final 

SOC and CO2 emission trend is compared for DP and ECMS. Afterwards, driveability is 

introduced into the comparison between these two algorithms. The ECMS has a smoother 

increasing trend on torque margin compared with DP. The response on the acceleration 

pedal is more linear on ECMS than DP. Subsequently, the torque margin ratio is introduced 

for more profound research on torque margin and driveability. The ECMS has a better 

driveability than DP because the response of the throttle and the torque margin ratio is 

more predictable in a smaller range.  

Chapter eight is the simulation analysis based on the Nürburgring race track. For the 

McLaren powertrain system, the Nürburgring can push the whole powertrain system to its 

limits. The working points for Nürburgring and other drive cycles roughly do not overlap 

each other. The total drive cycle is run as one lap or five laps for the simulation. The different 

strategies of ECMS are applied to the simulation to see the relationship between SOC and 

CO2. The selection of a bigger emotor is discussed here due to the high load from the 

racetrack simulation. 

9.2.  The advantages and disadvantages of ECMS and DP 

In previous chapters 7 to 8, the benefits of the application of DP in CO2 emission and 

the advantage of the driveability of ECMS are all researched. By the end of this project, a 

complete comparison conclusion will be given. At the beginning of this project, the 

motivation is to find out the limitation of the ECMS and DP and find out the pros and cons 

of these two algorithms in the real-world application. In the view of McLaren, the most 

essential thing in this project is to determine the automatic generation and calibration of the 

different powertrain system control strategies with multi-cases and various components 

selection.  

Hence, the CO2 emission and the driveability are compared in quantitative analysis. 

The pros and cons of CO2 emission for different target SOC and the driveability for different 

drive cycles are compared based on simulation results with data analysis.  Besides the CO2 
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emission and driveability, two more dimensions will be added to the comparison of ECMS 

and DP they are driving cycle requirement and simulation time cost. These are qualitative 

analyses; they will show the limitation of application for these two algorithms. Results are 

compared and concluded as table 9.1: 

Drive cycle Quantitative 

analysis 

Comparison Conclusion 

NEDC Driveability ECMS 3-6 times better than DP in linearity, and 2.5 

times better in torque response prediction on the ICE 

path. E-Motor has 15 times stabler response from 

ECMS to DP. 

CO2 emission Average 3.34% better CO2 emission from DP to ECMS 

in the whole SOC range 

WLTC Driveability ECMS 1.5-2.5 times better than DP in linearity, and 

14.6 times better in torque response prediction on the 

ICE path. E-Motor has 12 times stabler response from 

ECMS to DP. 

CO2 emission Average 4.86% better CO2 emission from DP to ECMS 

in the whole SOC range 

FTP-75 Driveability ECMS 1.5 times better than DP in linearity, and 1.7 

times better in torque response prediction on the ICE 

path. E-Motor has a 1.4 times stabler response from 

ECMS to DP. 

CO2 emission Average 1.65% better CO2 emission from DP to ECMS 

in the whole SOC range 

Nürburgring Driveability ECMS is 1-2 times better than DP in the whole 

simulation on ICE-Path but not as significantly as 

NEDC, WLTP and FTP75. 

CO2 emission Average 8.34% better CO2 emission from DP to ECMS 

in the whole SOC range 

Qualitative analysis ECMS DP 

Calculation time cost 60-80s 3292-11797s 

Drive cycle prediction Not required Required 

Different drive modes Support Not support 

Table 9.1 DP and ECMS full comparison 

 From this table, the performance between ECMS and DP is thoroughly compared in 

different dimensions. From the beginning approach of the DP algorithm, the DP can find 

the global optimisation results on the CO2 emissions based on the state transfer matrix and 

instantaneous cost matrix. Compared with DP, the ECMS uses “one map fits all” strategies; 

the calibration of the equivalent factor will change the operation points for the whole drive 

cycle. Thus, from the simulation results, the DP presents better CO2 economics than ECMS 

in all the drive cycles. The lowest reduction rate of CO2 is 1.65% (from table 7.5 in chapter 



210 

 

7), and the highest reduction rate is 8.34%. The average CO2 reduction rate is 4%-5% (from 

table 7.5 in chapter 7). Generally, from the literature review for previous work, most 

researchers apply the DP as the “Gold Standard” on the benchmarking of CO2 emission and 

fuel consumption, and DP is recognised as the best performance in the optimisation of CO2 

emission reduction. 

 However, in order to achieve such benefits on CO2 emission, the DP needs the whole 

drive cycle as the simulation and calibration input to generate the global optimisation 

control strategies. For the RDE (Real Drive Emissions), the application of DP is significantly 

limited. Also, because of the traverse of the whole possibilities in the cost-to-go matrix 

generation, the runtime cost of DP is much higher than ECMS, especially for complex and 

long drive cycles. Additionally, based on the DP algorithm, the torque margin feedback 

with throttle pedal position reaction is much worse than the ECMS. The behaviours of the 

powertrain ICE-path and E-path are hardly predictable, and the response from the torque 

margin is highly nonlinear in DP. The distribution analysis and the linearity fitting quality 

check show that the ECMS has significantly better performance on the linearity response 

and predictable vehicle powertrain system acceleration feedback. Also, if we change the 

target SOC for different drive modes, the ECMS will change the whole map to change the 

vehicle behaviour in the entire drive cycle, while DP changes several working points to 

meet the target SOC. The design and calibration of different drive modes will be much 

easier on ECMS than on DP. On the trade-off between CO2 emission and other factors, the 

DP costs too much to achieve a 4%-5% better fuel economy. 

 For McLaren sports vehicles, the most important thing is performance. The ECMS is 

robust enough to meet different components selection; it can generate the control strategy 

for torque management without any prediction of the drive cycle and costs several minutes. 

It can provide better driveability, whether on track days or a daily drive. The calibration of 

different drive modes is more straightforward, which will reduce the development cost for 

several different hybrid propulsion systems. Indeed, the DP will perform better fuel 

economics with lower CO2 emissions. Still, it comes with terrible driveability and higher 

development costs, and the performance of the DP algorithm is not guaranteed in RDE 

conditions. As a customer of McLaren luxury performance vehicles, who will care about 

the 4%-5% lower CO2 emission?  

9.3. Novelty and contribution 

In this project, the novelty of the research is concluded as below: 

1. the driveability of McLaren's high-performance powertrain system has been 

quantitatively defined. It has been observed that the engagement of the emotor significantly 

affects the driveability of the powertrain system, particularly in high torque working 

conditions. The powertrain control strategies have been designed with different drive 

modes, including sport mode and race mode, and the throttle pedal feedback is highly 

sensitive to the powertrain response, which can make the behaviour of the powertrain 
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system difficult to predict. The research presented in this project provides a quantitative 

definition and discussion of the driveability, comparing the results between ECMS and DP, 

and reviewing the results under different drive cycles and modes. The estimation of 

linearity and predictable response allows for a statistical discussion of the driveability.  

In addition, a significant aspect of the research presented in this project is the definition 

of torque margin. Two distinct definitions of torque margin have been proposed in this 

study, namely, the occupied torque margin ratio and the storage torque margin. The 

occupied torque margin ratio has been utilised to compare the behaviour of E-path and 

ICE-path in different drive modes, while the storage torque margin has been employed to 

examine the relationship between the pedal position signal and the powertrain system's 

response. The drive modes design and control algorithm selection are linked to the 

relationship between the pedal position and torque response. This research has identified a 

clear trend and reference regarding the drive modes design and the trade-off between 

emission efficiency and driveability. Furthermore, the quantitative definition of driveability 

presented in this project will be beneficial in future high-performance powertrain 

calibration optimisation work. 

2. The data-driven powertrain model is another important aspect of this project. 

McLaren's LVSIM model has been utilised as a reference for the powertrain model 

simulation results. However, due to the LVSIM model's inability to be used in multi-case 

optimisation with DP algorithms, a novel approach to model building has been introduced. 

The relationships between internal variables in each subsystem have been researched, and 

the time-dependent blocks have been replaced with system parameter identification or 

look-up table/curve fitting. The inputs and outputs of E-path and ICE-path have also been 

standardised for different subsystems and component blocks to ensure that these models 

can be simulated in forwards and backward directions for different algorithms. The 

transition from a pure physical model to a "half physical half data-driven" model has also 

increased the simulation speed and the robustness of the powertrain model, ensuring that 

it can produce reliable and comparable results for different simulation cases and algorithms. 

In this project, there are also some contributions for the future research work: 

1. The ECMS and DP algorithms have been established as Matlab function toolboxes 

and have been packaged into the GUI developed for this project. In the future, these tools 

can be directly applied for fast iteration development, enabling automatic selection of 

components and generation of the related control strategy for hybrid propulsion 

powertrain systems. 

2. The design principles of drive modes, including the quantitative definition of 

drivability, will serve as an important reference for future high-performance powertrain 

control calibration designs. The ECMS is still recognised as the best control algorithm for 

real-world hybrid propulsion powertrain system applications to date. 

3. The YRSim model development work demonstrates a method and possibility of 



212 

 

transferring a physical-based powertrain model to a data-driven model. Understanding the 

internal data flow between different subsystems and identifying the relationship between 

different blocks beyond physical structure is crucial. This method and approach will be 

applied in future powertrain modelling work, particularly for specific function-based 

powertrain models. The data-driven powertrain model has been proven to have better 

robustness and lower computing time costs, resulting in reliable results. 

9.4.  Future work  

In this project, a new powertrain model is developed, its performance calibrated and 

validated, and the ECMS and DP algorithms thoroughly compared in different dimensions. 

But this is not the end of the research on this topic; there are still several future research 

areas that can expand upon the work done in this project. 

1. The RDE simulation and the prediction of the drive cycle. Because Markov Chain can 

be used to predict the drive cycle from previous driving behaviour, the application of DP 

can combine the application of Markov Chain. Based on the prediction of the future drive 

cycle, the performance of the DP and ECMS can be researched deeper on RDE. The 

prediction of the drive cycle can be linked to the research of automatic driving systems, 

including V2V and V2X communication systems. The DP and ECMS will perform different 

behaviours from the introduction of future drive cycle prediction, especially in view of 

driveability research with McLaren’s high-performance powertrain system. 

2. The more profound optimisation of DP. The DP performance is highly related to the 

computing cost. In this research, the achievable range of the cost-to-go matrix is optimised 

with the introduction of the penalty matrix. However, suppose the resolution of the matrix 

can be higher and the time step of the drive cycle can be shorter; in that case, the simulation 

results from DP optimisation will be better than the current results. That will cost much 

more runtime on computing, but if the results are good enough from DP, the trade-off on 

driveability and other factors could be reconsidered. 

3. The application of the simulation results to the real world. Because currently, I am 

using McLaren’s powertrain model as the reference for my work; the subsystems are all 

based on McLaren’s physical models and tested maps. The drive cycle is also still an open 

question. Suppose the energy management strategies from this project can be applied to the 

real world on McLaren’s cars. In that case, more feedback will be given from the driver and 

dyno testbed, especially on the theory of driveability optimisation. The real-world test also 

helps to improve the powertrain model to make sure the simulation results are closer to the 

test results in the future. 
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Appendix 

1. The torque split maps in different C-values 

As discussed in chapter 6, for ECMS strategy, different C-values will generate different 

torque split maps. The equivalent factor transfers the battery consumption to equivalent 

fuel consumption. A higher equivalent factor means the battery SOC consumption is more 

“expensive”, and the emotor prefers to charge the battery with the negative torque shown 

in the map. The reverse is also true that, for a lower equivalent factor, the torque split map 

will control the emotor working more on the positive area to consume the battery because 

the SOC is “cheap”. 

The relationship between C-value and the TS map is concluded as below: 

C-value Torque split map generated based on LVSIM powertrain components 
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2. Nelder-Mead optimisation algorithm 

 In the DP algorithm, this project generates the cost-to-go matrix, which combines the 

SOC condition and fuel consumption. The weight parameters of the CO2 emission and the 

SOC condition with the whole cost-to-go step selection are optimised by the Nelder-Mead 

algorithm. The Nelder-Mead algorithm is used to find the minimum value for multi-

dimension spaces. It is applied to multi-variables nonlinear optimisation problems. 

 For an n-dimension Nelder-Mead algorithm optimisation, it includes n+1 test points, 

and they are combined as a simplex. The target function value is calculated for each test 

point. The approach is to find a new test point to replace the old one. In the iteration 

progress, the algorithm applies the reflection of the average value for previous n points to 

replace the worst point. If the reflection point is better than the current point, the algorithm 

keeps searching for the direction of the reflection point. If the reflection point is worse, the 

algorithm will converge all the current points in the same direction. 
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 The steps of optimisation are concluded as below: 

 The target is to find the minimisation value of ( )f x . Currently, we have test points

1 1,... nx x + . 

1. Calculate each test point and sort them from minimum to maximum: 

1 2 1( ) ( ) ... ( )nf x f x f x +    

2. Calculate the centroid point, 0x  which is the average value of preview n of x. 

3. Calculate the reflection points 

0 0 1( ), 0r nx x x x += + −   

 (1) Reflection: 

If the ( )rf x is better than the second worse point but worse than current best point, such as

1( ) ( ) ( )r nf x f x f x  , use rx to replace 1nx + and come back to step 1. 

 (2) Expansion 

If 1( ) ( )rf x f x , keep searching in this direction, and calculate the expanded point: 

0 0( ), 1e rx x x x = + −   

Afterwards, check if ( ) ( )e rf x f x , use ex to replace 1nx + and come back to step 1. Otherwise, 

if not, use rx to replace 1nx + and come back to step 1. 

 (3) Contraction 

If ( ) ( )r nf x f x then calculate the contracted point: 
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0 1 0( ),0 0.5e nx x x x += + −    

If 1( ) ( )c nf x f x + , the 1nx + will be replaced by cx and come back to step 1. 

 (4) Shrink 

If all the conditions are not able to meet, replace all the test points except 1x  as below: 

1 1( )i ix x x x= + −  

Then go back to step 1. 

 Notice that,   ,  ,   ,  are reflection coefficient, expansion coefficient, contraction 

coefficient and shrink coefficient. Default value of these coefficients are: 

1 1
1 2

2 2
   = = = =， ， ，  

 For the conditions of finishing optimisation, if the standard deviation is smaller than 

tolerance, or the iteration times are coming to threshold, the simulation will stop and finish. 

In this project, the optimisation progress of the cost-to-go function is shown below: 
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