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Selected notations

Z set of integers

R set of real numbers

G a network

V a set of vertices (nodes)

E a set of edges

N number of vertices (nodes)

E number of edges

B number of groups (communities)

A adjacency matrix

⟨Auv⟩ expected number of edges between node u and v

b network partition

e edge count matrix

ers number of edges between groups r and s

⟨ers⟩ expected number of edges between groups r and s

er number of edges attaching to group r, which is equal to
∑

s ers

ein total number of within-group edges

eout total number of between-group edges

Σ description length

n group (community) size vector

nr number of nodes in group r

u, v, i, j indicies for vertices (nodes)

(u, v) an edge connecting u and v

r, s indices for groups (communities)

ku degree of node u

k degree sequence vector

⟨k⟩ average degree

θu degree propensity of node u

θ̂r sum of degree propensities of nodes in group r

θ degree propensity vector

B(·, ·) Beta function

Γ(·) Gamma function

δ Kronecker delta function

S(., .) Stirling’s number of second kind



Abstract

Many real-world systems are complex, consisting of many entities with interactions

among them. Our understanding of real-world complex systems has been significantly

advanced by modelling these systems as networks. A network is a mathematical ab-

straction of complex systems, representing entities and interactions by nodes and edges.

Recent years have witnessed a rapid growth in the demand for analysing networks data,

driven by the increased availability of large-scale, quality datasets. A common task in

network analysis is to identify the “building blocks” of a network by finding divisions

of nodes, such that nodes in the same division connect with the rest of the network

in a similar way. This task is often referred to as community detection in networks.

Community detection methods allow researchers to characterise network data from the

perspective of connection pattern, which could convey important information about

the functional and evolutionary mechanism of the underlying systems.

Recently, Bayesian inference based on generative network model has attracted great

attention as a community detection method, which is mainly due to its principle infer-

ence nature and formal implementation of the Occam’s razor. However, this method

often relies on general models that simultaneously account for different kinds of com-

munity structure. If the dominant structure in data is in fact restricted and simple,

using general models could lead to sub-optimal fit to data.

This thesis concerns with developing Bayesian inference community detection methods

that are tailored for a particular kind of structure - the assortative structure. A net-

work is said to be assortative if it can be divided into subgroups of nodes, such that

connections inside each of division are dense while between distinct divisions are sparse.

To this end, we develop the Bayesian formulation of the degree-corrected planted par-

tition model. Such model assumes the probability of an edge between a pair of nodes

is dependant on whether they are from the same subgroups as well as their node-

wise propensity of receiving an edge. This formulation leads to a novel method for



extracting assortative structures and this method is one of the main contributions of

this thesis. Compared with other existing methods, our proposed method has the ad-

vantage of being robust against overfitting, which means our method will not report

spurious community structures in random networks while other non-statistical, heuris-

tic methods usually do. In deriving our proposed method, we clarify on an established

equivalence between the popular modularity maximisation approach and maximum

likelihood inference. Our analysis shows that the equivalence result is tenuous, since it

relies on subjective choices of model parameters which lack of principle justifications.

We demonstrate the performance of our proposed method in both synthetic and empir-

ical networks. In particular, we construct a large network corpus consisting of datasets

which are diverse in terms of size and density. Using this network corpus, we find

evidence that the degree-corrected planted partition model has the ability of achiev-

ing better quality of fit in some empirical networks compared to existing models in

some cases,. Moreover, the degree-corrected planted partition model has the potential

of providing additional insight into data regarding high-resolution community struc-

ture. Moreover, by conducting model selection in our network corpus, we find that

assortativity is often too simplistic to be the dominant pattern in empirical networks.

Finally, we study the detectability of assortative community structures. In networks

where all nodes receive identical number of edges on average, there exists a detectabil-

ity threshold of the strength of community structure, below which no polynomial algo-

rithms can detect the planted community structure better than random guessing. We

conduct a numerical study to examine the effect of heterogeneity in the number of edges

attaching to nodes on the detectability of assortative structures. Such effect has been

analytically studied in a special case where networks have two equal-size communities.

Our results provide further numerical evidence for the existing theoretical analysis and

open the door to investigation about the detectability of community structures in more

general settings, e.g. in networks consisting of more than two communities, which could

have different extents of heterogeneity in degree distribution.
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Chapter 1

Introduction

Many real-world systems are complex, consisting of many entities with interactions

among them. Examples of complex systems include the human society in which peo-

ple socialise with each other, the system of human brain where information exchanges

among billions of neurones, and power grids where electricity is transmitted between

power stations. One common practice of studying complex systems is to map them

into networks, in which entitles and interactions are represented by nodes and edges.

Networked representation of complex systems has the advantage of removing distrac-

tions of fine-level details and allowing us to focus on the connection pattern, which

often plays a prominent role in the behaviour of the underlying systems [1]. Our

understanding of real-world complex systems has been significantly advanced by mod-

elling them as networks, with examples including explaining social dynamical processes

like disease spreading and scientific innovation emergence [2], revealing the underlying

mechanism of brains [3], providing guidance for mitigation of failures escalating in in-

frastructure systems [4], etc. Recent years have witnessed a rapid growth in the demand

for analysing network data, driven by the increased availability of large-scale, quality

datasets [5–7].

Among other important properties of networked systems, their community structure

has received considerable interest. Roughly speaking, communities in networks are

groups of nodes sharing similar connection patterns. The most widely studied pattern

is the assortativity. A network is said to have assortative structure if it can be divided

into subgroups of nodes such that connections inside each group are denser than that

between distinct pair of groups. There are other types of community structure that are

of equally importance as well, for example, the core-periphery structure manifests itself

1



by a densely connected core surrounded by layers of loosely connected periphery nodes.

Note that core-periphery structure could consist of more than two communities, with

multiple pair of core and periphery groups or multiple layers of periphery nodes [8, 9].

Another commonly studied structure is the bipartite structure, where nodes belong to

two intrinsic classes and edges are allowed only between nodes from distinct classes [10].

Community structures in networks are often related to the functional or evolutional

mechanisms of the underlying systems. For example, scientific collaboration networks

often acquire communities which are well correlated with disciplinary lines [11, 12].

In biological networks like metabolic networks or protein-protein interaction networks,

communities structures could represent basic functional modules [13–15]. Motivated by

the prevalence of community structures in empirical networks [16–18], much research

effort has been devoted to developing methods that divide networks into groups based

on the observed network topology. These methods are often known as the community

detection methods. Community detection has become one of the most fundamental tool

for analysing network data. We refer to [19–22] for complete surveys about community

detection methods.

Community detection methods have been successfully applied to complex systems

from a variety of disciplines, including but not limited to social science [23–26], bi-

ology [27–30], economics [31–35] and computer science [36, 37]. In addition to being

a powerful tool for analysing natural networked systems, community detection also

receives interests because it is getting common to construct similarity graphs of any

kind of data, such as text [38], images [39] and time series [40], with a hope to expose

the relation pattern in them. Then, finding the community structures in similarity

graphs can be useful for downstream applications. For example, outcomes of com-

munity detection methods can be fed to machine learning algorithms as a feature of

the original data [41]. A specific application of community detection is the design of

recommendation systems, where a network of users and items to be recommended is

constructed and inferred community structures are used to assist making recommen-

dation [42,43]. More examples of applications of community detection methods can be

found in [44,45].

One of the most widely used method for community detection is the modularity max-

imisation [46]. This method aims to identify assortative structures by assigning nodes

into groups such that the number of within-group connections exceeds that in a statis-

tical null model as much as possible. Despite modularity maximisation being intuitive

to comprehend and easy to implement, it has several limitations. Firstly, modularity

maximisation is notorious for overfitting data, i.e. it claims presence of community

2



structures in networks which are known be non-modular, e.g. in tree-like networks, in

lattices [47] and even in fully random networks [48]. To address this problem, Zhang

and Moore [49] proposed a message-passing algorithm to search for a consensus of many

partitions with high-modularity values. The idea is to construct a Gibbs distribution

of network partitions, with the energy function of partitions being dependant on their

modularity values. Then, nodes are labeled according to the marginal distributions

of the Gibbs distribution, which in essence gathers information from many partitions

with high modularity values. In random networks, there could exist a large amount of

high-modularity partitions which are uncorrelated with each other. As a result, random

networks admit no meaningful consensus. Applying the message-passing algorithm to

random networks will return uniform marginal distributions, indicating the absence

of statistically significant structures. However, in networks with known statistically

significant structure, this method might mistakenly conclude that no consensus exists.

Whether the correct structure can be correctly detected depends on the value of an

inverse temperature being used in the construction of the Gibbs distribution, which is

generally unknown in practice [50].

Besides overfitting, modularity maximisation paradoxically has the risk of underfitting

data. That means, the method might conclude overly simplistic structures compared

to the actual pattern in data. As a result of the undesired tendency of underfitting,

modularity maximisation has an intrinsic limit on the number of detectable communi-

ties, which grows with the size of networks. If the number of communities in a network

is above this limit, then modularity maximisation will fail to identify all of the com-

munities, often merging small communities into large ones regardless how significant

the small-size communities are. This observation is often referred to as the resolution

limit problem [51], since the inferred structure is deficient in resolution in the sense

that only coarse-level structures can be recovered and detailed structural information

will be missing.

There have been many attempts to resolve the resolution limit of modularity maximi-

sation. Arenas et al. [52] proposed a multi-resolution detection method, which relies

on adding self-loops with a weight to each node in the original network. The weight of

self-loops is a tunable parameter, representing our subjective bias toward the resolution

of structure to be detected. The partition is then given by optimising the modularity

function over the modified network. Another similar but different suggestion given by

Reichardt and Bornholdt [53] is to introduce a resolution parameter, which adjusts the

contribution from the null model in the original definition of modularity. One common

property of these two modified modularity measures is that they both require subjec-
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tive choice of parameters as input. Unfortunately, we often do not have the knowledge

about what are proper choices of related parameters, and more importantly, there is

generally not a single optimum value to use [50,54]. Although it is common to try out

many different resolution parameters, that often leads to a large amount of competing

results and it is not clear how to select from them. The modularity density [55, 56] is

another quality metric for finding partition that shows the ability of addressing resolu-

tion limit and does not require subjective choice of parameter. However, none of these

variants of modularity are ideal solutions, because all of them are heuristic approaches,

lacking of theoretical ground. In addition, all of these modularity-based methods fail

to consider statistical significance of their results, thereby suffering from the overfitting

problem just as the original modularity does [50,54].

Finally, modularity maximisation implicitly assumes that every community is “simi-

lar“ to each other. In particular, Newman [57] showed that maximising modularity

is equivalent to applying maximum likelihood principle (MLE) with a particular gen-

erative network model, which assumes the numbers of edges inside communities are

identical for different communities. Moreover, unlike other MLE approach in [58, 59]

which involve extra parameters controlling the size of communities, modularity max-

imisation methods do not consider this perspective and therefore implicitly assumes

the sizes of communities is uniform. These limitations are rooted in the very definition

of the modularity measure and shared by all of its variants [50, 57]. For the reasons

stated above, modularity-based methods will bias toward regular assortative structures,

where the number of edges and nodes in each community are similar. Therefore, when

communities have non-uniform sizes, modularity-based methods are expected to have

degenerate performance. Due to their restricted modelling capacity and tendency of

overfittng and underfitting data, despite their popularity, modularity-based methods

are not reliable solution for community detection.

More recently, the Bayesian inference approach for community detection based on gen-

erative models has gained great attention, mainly due to its ability to provide principled

inference and its built-in Occam’s razor effect of preventing overfitting [60]. The idea

is to construct some generative networked models, which allow us to generate networks

with desired community structures. For an observed network, we assume it is a sample

generated from our model. Then, the community detection problem becomes a model

inference problem and we can solve the inference problem by fitting models to data.

Specifically, stochastic blockmodels (SBMs) [61] are arguably the most commonly ap-

plied models in this context. In particular, among the many variants of SBMs, the

degree-corrected stochastic blockmodel (DC-SBM) is one of the most widely variant
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due to its capability of modelling heterogeneous degree distribution in real world net-

works as well as its ease for analysis. According to SBMs, communities in networks

are groups of nodes that are statistically equivalent. That means, nodes from the same

group have the same probability of being connected to the rest of the network. This

definition of community is a general one, encapsulating a series of commonly studied

structures and even the mixture of them. Therefore, Bayesian inference based on SBMs

is a versatile approach compared to modularity maximisation, since it is able to recover

not just assortativity, but many different kinds of community structures simultaneously,

as long as they exist in data.

Compared to modularity-based methods, the main advantage of Bayesian inference

with SBMs is that it will not overfit data. This is because each possible model will

be given a probability weight, in a way that complicated models will be penalised for

model complexity. As a result, a complicated model will not be favoured over a simple

one, unless using the complicated model can bring significant reward in the model fit.

As a result, unlike other non-statistical approaches, Bayesian inference with SBMs will

not claim spurious communities in fully a random network. In addition, although the

Bayesian inference approach with SBMs can also run into the underfitting problem [62,

63], the root cause of this problem has been well understood. The underfitting problem

occurs to the Bayesian inference approach when a naive choice of uninformative prior is

used. This problem can be circumvented by employing a hierarchical prior [63], leading

to the hierarhical or nested variant of SBMs. Overall, Bayesian inference approach

based on SBMs should be preferred over modularity-based methods, since it is robust

against overfitting and underfitting, and has the ability of revealing different types of

community structure.

The versatility of the Bayesian inference approach based on general SBMs is a strength,

because it allows practitioners to be agnostic about what kind of structure to be in-

ferred. However, general models are suboptimal when it comes to networks where a

particular kind of structure dominates. This is due to exactly the Bayesian Occam’s

razor effect, which states that complicated models should not be preferred over simpler

ones, given their quality of fit being equal. Moreover, with only general models at hand,

we will not be able to decide which particular structure dominates in data, which is

of great importance for characterising the underlying systems. As a result, there is a

pressing need for restricted models which are tailored for particular kinds of commu-

nity structure. There have been works on Bayesian inference with restricted variants

of SBMs focusing on bipartite [10] and core-periphery structure [64]. However, an

assortative-constrained variant is still lacking. The main motivation of this thesis is to
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fill this gap by developing a Bayesian formulation of an assortative constrained variant

of general SBMs, which leads to a novel method for detecting statistically significant

assortative structures in networks. We will provide details of the method in Chapter 3.

In Chapter 4, we will further study the overfitting and underfitting properties of our

proposed method in a large set of empirical networks.

In addition to the development of useful model variants, there is another line of re-

search concerning the detectability of community structure in networks. Research in

this direction exploded after the work by Decelle et al. [65] in which a phase transi-

tion phenomenon was shown in community detection: Networks generated from SBMs

show different phases which are related to the detectability of structures used in the

data generating process. Decelle et al. provided an estimate of the position where the

transition happens through a stability analysis of the belief propagation (BP) algo-

rithm for SBMs. Based on their analysis, Decelle et al. conjectured that there exists

a non-trivial detectability threshold of the strength of community structure, below

which networks generated from SBM are in an undetectable phase and no polynomial

algorithms can perform better than a random guess. Moreover, the position of the de-

tectability threshold was found to be related to the average number of edges attaching

to each node, which is known as the average degree of the network. The estimate of

the position of the detectability threshold implies that, as the average degree increases,

the detectability threshold is expected to decrease, i.e. community detection becomes

easier as we observe more data (i.e. more edges sampled according to the model)

generated from the model. Such conjecture regarding the detectability of community

structures has inspired a series of theoretical works that have provided rigorous proofs

of the detectability threshold [59,66,67]. These results are unexpected and remarkable,

because they tell us that structural information which is fundamentally different from

randomness might remain undetectable, regardless of which inference algorithms we

use.

When the phase transition phenomenon was firstly reported in [65], the authors fo-

cused on symmetric communities, where nodes from each community receive identical

number of edges on average. In other word, the average degree of each community is

the same across the entire network. Nevertheless, this assumption is rather strict and

communities are more likely to be asymmetric in empirical networks. Intuitively, sym-

metry of communities makes the detection problem more challenging than when the

symmetry breaks. This is because if nodes from different communities have different

degrees, then the discrepancy in degree provides extra local information that can assist

us in inference. The detectability of asymmetric communities was studied by Zhang
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and Moore in [68]. The phase transition phenomenon was found to disappear as the

asymmetry of communities increases, i.e. we can find partitions of nodes that are posi-

tively related to the planted community structures as long as they exist. For the same

reason, phase-transition does not appear in the task of detecting core-periphery struc-

ture [69], in which nodes in the core naturally acquire higher degree than those in the

periphery. The detectability phase-transition also disappears in the semi-supervised

community detection task, in which the correct labelling of a fraction of nodes is given

as a priori knowledge [70].

All of previous studies regarding the detectability of SBMs assumed that the degree

distribution of nodes within communities are homogeneous, which means the expected

number of edges connecting to each node inside each community is the same. However,

real-world networks often acquire heterogeneous distribution, which are commonly in

the form of power-law [71]. In [72], Massoulé et al. derived rigorously the detectability

threshold of community structure in networks generated from SBMs, when the degree

distribution is heterogeneous. It turns out that the detectability threshold will van-

ish as the second moment of the degree distribution diverges, i.e. the detectability

phase-transition will disappear as in the unequal average degree setting and the semi-

supervised setting. However, such theoretical result only applies to networks with two

communities. Extending such result to more general setting - e.g. in networks with

more than two communities - with the same theoretical technique is hard. In order to

explore the complete picture of the detectability phase-transition, as will be explained

in Chapter 5, we instead adopt the numerical approximation methods proposed in [65]

by Decelle et al. and [73] by Yan et al. Our numerical results are consistent with exist-

ing theoretical result in [72] and will serve as a stepping stone to better understanding

the detectability phase-transition in networks with heterogeneous degree distributions.

1.1 Contributions of the thesis

My motivation during my PhD project is to study community structures in networks

with a focus on assortative structures, using tools from statistical physics and Bayesian

inference. The objective of this thesis is to develop a novel method for extracting assor-

tative structures from networks without overfitting or underfitting data. We summarise

the main original results in the order of their presence in the rest of this thesis.

1. We develop a Bayesian formulation of the degree-corrected planted partition model

(PP model) - an assortative-constrained variant of SBMs - which leads to a novel

algorithm for detecting assortative structures in networks. Compared to Bayesian
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inference with general SBMs, our proposed method focuses on assortative struc-

tures and will achieve better performance than general models if the dominant

structure in data is indeed assortativity. At the same time, PP model has the abil-

ity to recover more general assortative structures than modularity-based methods

do. Specifically, unlike modularity-based methods which are restrictive to regular

assortativity, PP model has the potential to resolve heterogeneous assortativity,

which means the sizes of communities can vary across the entire network. In

deriving our proposed method, we also look into an established result regarding

the equivalence between MLE with PP model and the modularity maximisation

approach [57]. It turns out this equivalence is tenuous and we discuss to what

extent the equivalence holds, which is crucial but has not been examined in the

literature. These results have been summarised in this paper

Statistical inference of assortative community structures, Lizhi Zhang and

Tiago P. Peixoto, Physical Review Research, 2020.

We shall explain these results in details in Chapter 3.

2. We study the underfitting properties and the quality of fit to data of our pro-

posed PP model by conducting a meta study of empirical networks. With the

Bayesian formulation of PP model at hand, we conduct model selection to find

out whether assortativity is the dominant pattern in data. We do the comparison

between our PP model and general SBMs, as well as the modularity maximisation

method. Our results show that although general models achieve the best fit most

of the time, in several illuminating examples, our assortative-constrained variant

can achieve better fit than its general counterparts. We also show that our pro-

posed approach is free from the underfitting problem of DC-SBM and modularity

maximisation, and investigate the extent to which underfitting problem happens

in practice. It turns out that DC-SBM systematically underfits compared to the

nested version of DC-SBM (Nested DC-SBm) in our network corpus. In networks

where assortativity is the dominant pattern, our PP model shows the ability to

recover much detailed structures than both DC-SBM and Nested DC-SBM. We

shall present these results in Chapter 4.

3. We adapt the BP algorithm for DC-SBM and use the algorithm to investigate the

effect of heterogeneous degree distribution on the detectability of community struc-

tures. Specifically, in networks generated from the PP model, we observe that

as the heterogeneity in degree distribution increases, the detectability threshold

decreases and the area of undetectable phase of the model shrinks. These results
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are detailed in Chapter 5.

1.2 Organisation of the thesis

The remaining chapters of this thesis are organised as follows.

In Chapter 2, we shall define the SBM and several its variants and explain how to

conduct Bayesian inference with them for community detection.

In Chapter 3, we shall focus on the detection of assortative structures in networks. We

provide the Bayesian formulation of the PP model and demonstrate its use in synthetic

and empirical networks. We shall also clarify the established equivalence between the

modularity maximisation approach and MLE for the PP model.

In Chapter 4, we characterise the underfitting and overfitting behaviour of different

variants of SBMs by fitting them to a large empirical network corpus. By conducting

model selection, we also show that our proposed assortative-constrained model achieve

better quality of fit compared to general SBMs in networks where the assortative struc-

ture dominates.

In Chapter 5, we shall turn to the detectability phase-transition in community detec-

tion. We firstly introduce the belief propagation algorithm for community detection

with SBMs and review existing results of detectability in community detection. We

then demonstrate the effect of heterogeneity in degree distribution on the detectability

phase-transition by applying the BP algorithm to networks with heterogeneous degree

distribution.

In Chapter 6, we summarise the contributions of this thesis and outline potential di-

rections for future work.
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Chapter 2

Background

This chapter aims to provide a basic introduction to the Bayesian inference approach

for community detection in networks. We will define the stochastic blockmodel and

a few of its variants that will be used in the following chapters. Having specified the

models, we then explain how to use them to infer community structure in networks, fol-

lowing closely the steps in [60,74]. Specifically, for a given model, we need to derive the

posterior probability distribution of all possible network partitions given the observed

network. Although posterior distributions rarely permit direct sampling or maximi-

sation, we can still make useful inference from them using numerical approximation

algorithms.

We start with notations in Section 2.1, then define stochastic blockmodels in Section 2.2.

In Section 2.3, we use the degree-corrected stochastic blockmodel as an example to ex-

plain how to derive the posterior probability distribution, followed by Section 2.4 where

we introduce another two variants of the stochastic blockmodel, i.e. the microcanonical

and the nested variant. In Section 2.5, we explain the numerical algorithm for drawing

samples from posterior distributions. Section 2.6 considers comparing different model

variants under the Bayesian framework and we wrap up this chapter in Section 2.7 with

concluding remarks and motivations for the next chapter.

2.1 Preliminaries

2.1.1 Networks

We introduce some terminologies to use throughout the thesis. A network, or a graph
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u

v

ij

A =

u v i j


u 0 2 0 1
v 2 0 1 1
i 0 1 0 0
j 1 1 0 2

Figure 2-1: A toy example of network G with N = 4 nodes and E = 6 edges. Elements in
the adjacency matrix A = {Auv}4×4 are the number of edges between nodes. The set of nodes
is V = {u, v, i, j} and the set of edges is E = {(u, v), (u, j), (j, j), (j, v), (v, i)}. The degree of
nodes are ku = 3, kv = 4, ki = 1, kj = 4.

is a tuple G = (V, E), where V is the node set of size N = |V|, and E is the list of edges

of size E = |E|. We denote elements in the node set V by u, v or i, j, and elements in

the edge set E by tuples in the form of (u, v). A network is directed if its edges have

directions. In this thesis, we will restrict ourselves to undirected networks where edges

have no directions.

An undirected network G can be uniquely encoded by an adjacency matrix A =

{Auv} ∈ ZN×N whose entries Auv represent the number of edges between node u

and v if u ̸= v, or twice that number if u = v for convention. This convention allows

us to write the number of half-edges1 adjacent to node u as follows

ku =
N∑
v

Auv. (2.1)

The value of ku is called the degree of node u. An example of network and its adjacency

matrix is given in Fig 2-1. We denote by ⟨k⟩ the average degree of a network, which

can be computed as ⟨k⟩ = 2E/N .

A walk in a network consists of a sequence of edges {(un, vn)}, such that the end node

of the previous edge is the same as the starting node of the next edge, i.e. vn = un+1.

The length of a walk is the number of edges required to form the walk. A cycle is a

special walk that needs to satisfy the following conditions: it starts and ends at the

same node; its length is larger or equal to three; the walk does not visit any of its nodes

twice except for the starting (ending) node.

An undirected network contains no cycles2 is called a tree. For example, in Fig. 2-2(a),

1A self-loop of a node contributing two half-edges attaching to the node
2No cycles nor self-loops.
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Figure 2-2: (a) An example of tree with 5 nodes (b) Adding an edge between node v3 and v6
in the tree (a) destroys the tree structure and forms a cycle of length 4, consisting of edges
{(v1, v3), (v3, v6), (v6, v4), (v4, v1)}.

we show an example of tree with 5 vertices. In Fig. 2-2(b), we add an edge between

node v3 and v6, then the resulted graph is not a tree anymore, since the new edge leads

to a cycle of length 4.

There are other kinds of network representation which are used for specific problems.

For example, it is not uncommon to see weighted networks, where edges are equipped

with weights, representing attributes like counts, distance, or strength [75, 76]. Multi-

plex networks are networks with multiple layers, in which all layers share the same set

of nodes but acquire different set of edges [77]. Temporal networks with time-dependent

nodes and edges also consist of multiple layers, but the layers are strictly ordered ac-

cording to the time-stamp of layers [78,79]. In addition to mapping systems’ connection

pattern, sometimes it is useful to integrate the attributes, or properties associated with

nodes and edges [80, 81] into analysis as well. Although these modelling tools are of

great importance in practice, they are beyond the scope of this thesis. We will focus on

undirected, static, single-layered networks without any associated properties of nodes

or edges.

2.1.2 Network partition

The main theme of this thesis is identifying community structures in networks. The

community structure of a network is commonly described by a partition of the network,

which assigns nodes to non-overlapping groups. A partition of a network of size N can

be represented by a vector b = {bu} ∈ ZN , where bu ∈ {1, 2, .., B} represents to which

group node u belongs and B is the corresponding number of groups. As an example, we

visualise a partition of the Grevy’s zebra network [82] in Fig. 2-3, where the colouring

of nodes indicates a specific partition of the network. This partition is inferred by

fitting the planted partition model, which will be introduced in the Chapter 3.
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Figure 2-3: A social network of interactions among zebras with 23 nodes and 105 edges [82].
Each node represents a Grevy’s zebra and an edge between two nodes means the two zebras
were observed to appear together in the field study. The colouring of nodes indicates the
network partition b = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2), which is inferred by
fitting the planted partition model [83].

The layout of the visualisation in Fig. 2-3 is obtained with a force-directed graph draw-

ing algorithm [84]. At a high level, the algorithm assumes that there exist attractive

forces between connected nodes and repulsive forces among all nodes in the network.

Then, the positions of nodes and edges are determined by minimising the energy of

the system. For the rest of network visualisations in this thesis, we will use the same

drawing algorithm unless otherwise stated.

For a given network partition b of a network, we denote by n = {nr} ∈ ZB the number

of nodes in each group (or community). The matrix e = {ers} ∈ ZB×B is the edge

count matrix, in which entries ers counts the number of edges between group r and s.

We define er =
∑

s ers which is the number of edges attaching to group r. For example,

for the zebra network in the Fig. 2-3, we have B = 2 and

n = (15, 8), e =

(
176 5

5 24

)
, (2.2)

and

e1 = 176 + 5 = 181, e2 = 5 + 24 = 29. (2.3)

Sometimes it is useful to consider overlapping partitions of networks where nodes can

belong to multiple communities at the same time [85, 86]. Although the discussion in

this thesis will be exclusively devoted to non-overlapping setting, our main results and

conclusions should hold in overlapping setting as well and we expect to work toward

this direction in the future.
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(a) assortative (b) bipartite (c) core-periphery

Figure 2-4: Examples of networks with community structures generated from the family of
stochastic blockmodels with (a) assortative (b) bipartite structure and (c) core-periphery.
Colouring of nodes indicate the community membership of nodes that are used to generate the
observed networks.

2.2 Stochastic blockmodels

The stochastic blockmodel (SBM) is a generative model that allows generation of net-

work samples that contain community structure. Since the origin of the model in [61],

many different variants of the SBM have been developed but sharing the same spirit.

Specifically, the family of SBMs assumes nodes in a network belong to groups (or

communities) and edges are independently placed among nodes following some prob-

ability distributions. The probability distributions of edge occurrence depend on the

group membership of nodes, leading to modular structures in networks sampled from

the model. This generating process also implies what constitutes a community in the

SBMs sense: a community is a subgroup of nodes which are stochastically equivalent,

i.e. they have the same probabilities of being connected to the rest of the network.
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Figure 2-5: A toy example of network with a mixture of assortative and core-periphery struc-
tures. As indicated by the affinity matrix in subfigure (a), the probability of edges is relatively
large inside the each of the group 1 and 6 but small between them. In addition, groups 2 and
3 are periphery surrounding group 1 while group 6 is surrounded by group 4 and 5.

We begin with the stochastic blockmodel for simple networks. A network is simple if

it contains no multiple edges and no self-loops. Therefore, in a simple network, the

number of edges between any two nodes is either 0 or 1. Following the idea of SBMs,

for any two nodes u and v in the network, we assume the probability of an edge is pbubv ,

and non-edge is 1 − pbubv . The matrix p = {prs} ∈ [0, 1]B×B is known as the affinity

matrix, playing the role of determining the modular structures of network samples. For

example, we can generate networks with assortative structures by choosing diagonally

dominant affinity matrices satisfying prr > prs for r, s ∈ {1, 2, .., B} . Similarly, one

can generate networks with other kinds of community structure like bipartite, core-

periphery or even the mixture of them by tuning the affinity matrix (see Fig. 2-4 and

Fig. 2-5). The probability of generating an observed network G with adjacency matrix

A = {Auv} ∈ ZN×N from the model we just describe is

P (A|p, b) =
∏
u<v

pAuv
bubv

(1− pbubv)1−Auv . (2.4)

We will refer to this model as the Bernoulli SBM in the rest of the thesis, since the gen-

erating process above implies that the counts of edges between nodes are independent

Bernoulli random variables.
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The Bernoulli SBM has one major shortcoming which restricts its use in practice. Real-

world networks often possess heterogeneous degree distribution [71], i.e. the number

of edges attaching to each node can vary significantly. However, degree distributions

have little variation in networks generated by the Bernoulli SBM. Indeed, the Bernoulli

SBM implicitly assumes that the expected degree of nodes from the same communities

are identical. To see this, under the assumption that the size of each community is

sufficiently large, the expected degree of any node u is approximately a Poisson variable

with mean ⟨ku⟩, which has the following expression

⟨ku⟩ =
N∑
v

⟨Auv⟩ =
B∑
r

nrpbur, (2.5)

where ⟨Auv⟩ is the expected number of edges between node u and v. Since ⟨ku⟩ depends

on the node-wise index u only via its community membership bu, any two nodes u

and v from the same community r = bu = bv then have identical expected degree

⟨ku⟩ = ⟨kv⟩. As a result, the degree distribution is expected to be homogeneous inside

each community. For this reason, the Bernoulli SBM is often inadequate for modelling

empirical networks.

A better alternative to Bernoulli SBM for modelling real-world networks is the Degree-

Corrected SBM (DC-SBM) [87], which relies on the Poisson SBM. The Poisson SBM

assumes the number of edges between any two nodes are Poisson rather than Bernoulli

random variables

Auv ∼ Poi(λbubv), (2.6)

where λbubv is the probability of an edge between two nodes from group bu and bv

respectively (or twice that number if u = v)3. The likelihood of the Poisson SBM for

an observed network A reads as

P (A|λ, b) =
∏
u<v

e−λbubv
λAuv
bubv

Auv!

∏
u

e−λbubv/2
(λbubv/2)Auu/2

Auu!!
. (2.7)

To accommodate the degree heterogeneity, the DC-SBM extends the Poisson SBM by

introducing a degree propensity parameter θ = {θu} for each node in the network. The

number of edges between two nodes u and v is still a Poisson random variable, but the

mean of the Poisson variable changes to θuθvλbubv , which means

Auv ∼ Poi(θuθvλbubv). (2.8)

3This is due to the aforementioned convention Auu is twice the number of self-loops connecting to
node u
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The extra degree propensity parameter allows us to control the number of edges con-

necting to each node, since the expected degree of a node u under the DC-SBM is

⟨ku⟩ =
∑
v

θuθvλbubv = θu
∑
v

θvλbubv . (2.9)

The likelihood of DC-SBM is then

P (A|θ,λ, b) =
∏
u<v

e−θuθvλbubv
(θuθvλbubv)Auv

Auv!

∏
u

e−θ2uλbubv/2
(θ2uλbubv/2)Auu/2

Auu!!
. (2.10)

Note that the model has not been fully defined yet, since in the last expression, θu

and λbubv always appear in the form of the product θuθvλbubv , leaving a freedom of the

multiplying constant to be fixed. If every θu is multiplied by a factor C, the probability

of generating a network A is unchanged if we decrease every λrs by a factor C2. To

fully determine the model, it is convenient to define the quality θ̂r =
∑

u δrbu ,∀r ∈
{1, 2, .., B} where δ is the Kronecker delta function and impose the following constraints

θ̂r = 1, ∀r ∈ {1, 2, .., B}. (2.11)

This choice leads to straightforward interpretations of model parameters θ = {θu} and

λ = {λrs}: θu is the probability of choosing node u from its group bu, and λrs is the

expected number of edges between group r and s (or twice that number of r = s), since

⟨ers⟩ =
1

2

∑
u,v

⟨Auv⟩ =
1

2

∑
u,v

θuθvλbubvδrbuδsbv = θ̂rθ̂sλrs = λrs. (2.12)

Notice that the non-degree-corrected Poisson SBM can be viewed as a special case

nested within the DC-SBM with parameters θ = {θu} being uniform within each

community, i.e. under the constraint in equation (2.11), the non-degree-corrected model

is equivalent to setting θu = 1/nbu , with nr being the number of nodes in community

r.

2.3 Bayesian inference: the posterior probability of the

DC-SBM

With an observed network A, our goal is to make inference about the community

structure b, assuming that the network is generated from a SBM. In this section we

explain how to compute the posterior probability distribution of the DC-SBM, following

the steps in [60]. Although these results have been presented in the literature, they
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are worth a review since we will make use of similar ideas and techniques in Chapter

3, where we shall introduce a the main contribution of the thesis.

To begin with, the Bayes’ rule allows us to express our knowledge about the unknown

community structure in a succinct formula,

P (b|A) =
P (A|b)P (b)

P (A)
. (2.13)

The P (b|A) is called the posterior probability distribution, which represents the un-

certainties of the unknown community structure conditioned on the network (data)

we observe. In words, the Bayes’ rule says that the status of our understanding is a

combination of our prior knowledge, represented by the prior distribution P (b), and

the information presented in the observed data, represented by the likelihood function

P (A|b). Sometimes the likelihood P (A|b) is also referred to as the marginal likelihood

to emphasise the fact that it requires marginalisation of all model parameters Θ except

for the community structure b,

P (A|b) =

∫
P (A,Θ|b)dΘ. (2.14)

The term P (A) is called the model evidence

P (A) =
∑
b

P (A|b)P (b), (2.15)

which serves as a normalising constant. Although P (A) is generally intractable, be-

cause P (A) is the same for every possible partition b, most of the time it is sufficient

to conduct inference of the community structure b as long as we can evaluate P (b|A)

up to its normalising constant P (A). Hence, the necessary pieces for inference are the

expressions of the marginal likelihood P (A|b) and the prior distribution P (b). Here,

we take the DC-SBM as an example to explain how to obtain the posterior probability

(up to its normalising constant) of the community structure.

Marginal likelihood for the DC-SBM

In DC-SBM, except for the network partition b, the model takes the average number

of connections between groups λ = {λrs} and the degree propensity of nodes θ = {θu}
as parameters. Assuming that λ and θ are conditionally independent given b, our goal
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is then to compute the following integral to derive the marginal likelihood,

P (A|b) =

∫
P (A,λ,θ|b)dλdθ =

∫
P (A|λ,θ, b)P (λ|b)P (θ|b)dλdθ. (2.16)

The P (θ|b) and P (λ|b) are prior distributions of parameters λ and θ respectively, con-

veying our knowledge about the model before any data is observed. Prior distributions

can be set to incorporate a priori knowledge into inference, for example results from

previous studies or experts’ domain knowledge. However, network data often comes as

a single, unique object (e.g. the World Wide Web, power station transmission grid), in

which no past knowledge can be directly applied to present analysis. In this case, it is

reasonable to choose “uninformative” priors, which are as agnostic about the pattern

in data as possible, such that any significant pattern in data can be fully revealed with-

out being suppressed by subjective bias. To this end, we will choose prior probability

distributions according to the maximum entropy principle [88,89]. Intuitively, because

entropy describes the amount of uncertainty in a probability distribution, maximum

entropy distributions then are the least informative choices for priors and therefore

meet our requirement the best. Maximum entropy priors are derived by solving a

constrained optimisation problem with the following form,

maximise
p(X)

−
∫
X
p(X) ln p(X)dX

subject to

∫
X
p(X)Mi(X)dX = ci for all constraints Mi.

(2.17)

The zeroth moment constraint ∫
X
p(X) = c0 = 1, (2.18)

is a must to make sure the sum of probability is equal to one.

To derive the maximum entropy prior for the degree propensity parameter θ, we need

to optimise the following Lagrangian function w.r.t. p(θ)

L(p(θ), ξ0) = −
∫
θ∈C

p(θ) ln p(θ)dθ + ξ0

(∫
θ∈C

p(θ)dθ − 1

)
,

with C = {θ : θ̂r =
∑
u

θuδbur = 1, ∀r = 1, 2, .., B}.
(2.19)

The integral is restricted to the space C due to the group-wise normalisation constraints
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defined in equation (2.11). It is easy to derive4 that the maximum entropy distribution

for θ is simply a product of uniform distribution over nr − 1 regular simplices for

r ∈ {1, 2, .., B}

P (θ|b) =
B∏

r=1

(nr − 1)!× δ∑
u θbur,1. (2.20)

For the expected number of connections between groups λrs which take values in [0,∞],

defining the maximum entropy prior requires an extra constraint on the first moment.

We adopt the empirical Bayes approach [90] in which the mean of the λrs is set to

be the value of observed average number of connections between any pair of groups

λ̄ = 2E/B(B + 1).5 Because all λrs are equivalent and independent, the maximum

entropy distribution of each λrs is the stationary point of the Lagrangian function

L(p(λrs), ξ0, ξ1)

= −
∫ ∞

0
p(λrs) ln p(λrs)dλrs + ξ0

(∫ ∞

0
p(λrs)dλrs − 1

)
+ ξ1

(∫ ∞

0
λrsp(λrs)dλ− λ̄rs

)
.

(2.21)

It is easy to show [92] the solution of this constrained optimisation is the exponential

distribution with mean λ̄,

p(λrs|λ̄) =


1

(1+δrs)λ̄
e[−λrs/(1+δrs)λ̄], λrs ∈ [0,∞]

0, otherwised
, (2.22)

where the δrs term is used to accommodate the fact that λrr are twice the number of

edges inside group r.

Having made our choice of the priors for λ and θ, we are ready to compute the marginal

likelihood P (A|b) by plugging the equations (2.20) and (2.22) into (2.16), which gives

the following expression

P (A|b) =
λ̄E

(λ̄+ 1)E+B(B+1)/2
×
∏

r<s ers!
∏

r err!!∏
u<v Auv!

∏
uAuu!!

×
∏
r

(nr − 1)!

(er + nr − 1)!

∏
u

ku!. (2.23)

We leave the detailed derivation of this expression to Appendix A.2.

4Please see derivation in Appendix A.1.
5Empirical Bayes approach is relatively straightforward to implement, with hyperparameters being

set to be estimates obtained from data. By contrast, fully Bayesian inference requires to integrate
hyperparameters out, which might not admit analytical solution. However, Empirical Bayes approach
is generally a reasonable approximate to the fully Bayesian approach [91]. Since we will focus on the
microcanonical variant later, which does not require actual computation of marginalisation, we just
choose the empirical Bayes approach for the canonical DC-SBM here for the ease of presentation.
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Prior for the network partition

Choosing the prior distribution for the network partition b requires more work com-

pared to what we have done for the parameters λ and θ. Since we generally do not

have any prior knowledge about the community structure, we should again consider

the most uninformative distribution. However, applying the maximum entropy prin-

ciple might still introduce undesired bias. To begin with, we consider the following

Lagrangian function

L(p(b), ξ0) = −
∑
b

p(b) ln p(b) + ξ0

(∑
b

p(b)− 1

)
, (2.24)

where the summation in the last equation goes through all possible network partitions

b. The stationary point of the Largrangian function above is the uniform distribution

P (b) =
1∑
b′ 1

=
1

aN
, (2.25)

where in the denominator aN is the total number of possible partitions with N nodes,

aN =
N∑

B=1

S(N,B)B!, (2.26)

with S(N,B) being the Stirling’s number of second kind, counting the number of ways

to assign N nodes into B indistinguishable blocks [93]. Despite being the maximum

entropy solution, this uniform distribution actually carries strong bias regarding the

number of communities. As shown in Fig. 2-6, the values of S(N,B) are significantly

smaller when B is either very small or very large. In practice, the number of communi-

ties B is rarely compatible with the total number of nodes N . In the more practically

relevant region where B is much smaller than N , the left tail of the “bell shape” given

in Fig. 2-6 indicates that the prior in equation (2.25) has preference toward the par-

titions with large values of B. Because the number of communities B is usually an

important aspect we like to infer from data, it is necessary to choose a prior which does

not carry bias regarding the number of communities.

One general solution for removing undesired bias is to construct hierarchical priors [74].

The idea is to model the higher-oder perspective with which we like to be agnostic, e.g.

the number of communities, by a hyperprior. Then, the prior to be used is a parametric

probability distribution which is conditioned on the values being sampled from the

hyperprior. In particular, we view the number of communities B as a hyperparameter
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Figure 2-6: Stirling number of the second kind S(N,B) as explained in the text for N = 20 and
B ∈ [1, 19]. As suggested by the bell shape of the points in the figure, the uniform distribution
in equation (2.25) carries strong bias regarding certain values of the number of blocks.

that is sampled from a uniform hyperprior, e.g. P (B) = 1/N . The network partition

b then can be drawn from the following uniform distribution,

P (b|B) =
1

S(N,B)B!
, (2.27)

which leads us to a hierarchical prior

P (b, B) = P (b|B)P (B) =
1

S(N,B)B!

1

N
. (2.28)

However, the hierarchical prior above it is still not a good choice. This is because

the hierarchical prior still carries bias regarding the sizes of communities. If we draw

samples from the prior (2.28), most of partitions will acquire approximately identical

size of communities. Since we generally do not want to assume a uniform distribution

of community sizes, to represent our agnosticism regarding the size of communities, we

can take the same remedy as before. Specifically, we adapt the prior by treating the

group sizes n = {nr} s.t.
∑

r nr = N as another hyperparameter, then draw n = {nr}
from a uniform distribution with equal probability,

P (n|B) =

(
N − 1

B − 1

)−1

, (2.29)

where
(
N−1
B−1

)
counts the number of ways to assign N nodes into B nonempty groups.
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The network partition is then being drawn from a uniform distribution which assigns

equal probability to every possible configuration of b, conditioned on the communities’

sizes n = {nr},
P (b|n) =

∏
r nr!

N !
. (2.30)

The arguments above leads to the following Bayesian hierarchical prior6

P (b) = P (b|n)P (n|B)P (B) =

∏
r nr!

N !

(
N − 1

B − 1

)−1 1

N
. (2.31)

We will stick with this choice of prior for the network partition in the rest of the thesis.

Although it is always possible to find bias of the prior at higher-level perspectives,

there is a good reason to stop developing the hierarchy further. As argued in [60, 74],

constructing higher hierarchy of the prior will bring only vanishingly small reward.

Specifically, if we take the logarithm of the prior (2.31) and assume that community

sizes are large enough to allow Stirling’s factorial approximation lnx! = x lnx − x, as

well as B ≪ N , then

lnP (b) ≈ −NH(n)−O(lnN), (2.32)

where H(n) = −∑r(nr/N) ln(nr/N) is the entropy of the community size distribution.

The first term −NH(n) in the last equation is in fact an information-theoretical limit

of lnP (b) [94]: for sufficient data, the log-probability of the data generating process

approaches the entropy of the data. Therefore, no matter how we further refine the

prior in (2.31), the improvement will be no larger than the scale of O(lnN), which will

make little practical difference. Therefore, we choose (2.31) as our final choice of prior

for the partition b.

Now we have obtained all necessary ingredients for inference in the Bayes’ formula

(2.13). In summary, we can evaluate the posterior probability of the DC-SBM up to a

normalising constant via the following expression

P (b|A) ∝ λ̄E

(λ̄+ 1)E+B(B+1)/2
×

∏
r<s ers!

∏
r err!!∏

u<v Auv!
∏

uAuu!!

×
∏
r

(nr − 1)!

(er + nr − 1)!

∏
u

ku!×
∏

r nr!

N !

(
N − 1

B − 1

)−1 1

N
.

(2.33)

6Here we write the prior probability of network partition b as P (b) rather than P (b,n, B) to be con-
sistent with the literature [60,74]. This convention comes from the fact that n and B are hyperparam-
eters which are fixed for a particular network partition b. In other words, P (b) =

∑
n,B P (b,n, B) =

P (b,n∗, B∗), where {n∗, B∗} is the pair of hyperparameters compatible with b.
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Figure 2-7: Three samples drawn from the same microcanonical SBM with parameters

b = (1, 1, 1, 1, 2, 2, 2, 2, 2), e =

(
10 2
2 14

)
,k = (3, 3, 3, 3, 4, 4, 3, 3, 2). Note that the edge count

matrix e and degree sequence k are satisfied exactly across all the examples.

As we shall explain later, when we can only evaluate a probability distribution up

to the normalising constant, we can make useful inference via numerical approximate

algorithms. Before we look at the inference algorithm in Section 2.5, in the next section,

we introduce another two important variants of SBMs to be used later.

2.4 Microcanonical SBM, description length and Nested

SBM

2.4.1 Microcanonical SBM

The term “microcanonical” has its origin in the field of physics, suggesting that model

parameters are set to satisfy hard constraints without variation, as opposed to canonical

models where parameters are only required to obey on average. In particular, parame-

ters of the microcanonical DC-SBM [74] include a network partition b, the edge count

matrix e = {ers} ∈ ZB×B whose entries ers are numbers of edges between group r and

s, and the degree sequence of each node k = {ku} ∈ ZN , with
∑

rs ers =
∑

u ku = 2E.

As a concrete example, in Fig 2-7, we consider a microcanonical DC-SBM with 2 com-

munities and visualise three samples drawn from the same model. The point is that the

edge count matrix e and the node degree sequence k remain the same across different

samples. The sample space of a microcanonical DC-SBM model consists of all compat-

ible (with the predefined parameters b, e,k) networks, and each of them acquires equal

probability of being seen under the model.

To write down the probability of generating an observed network from the microcanon-

ical DC-SBM, we simply need to count the number of all possible compatible networks.
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Firstly, note that the total number of edge count matrices satisfying the predefined

model parameter e is

Ω(e) =

∏
r er!∏

r<s ers!
∏

r err!!
. (2.34)

Since the number of adjacency matrices A satisfying a fixed edge count matrix e = {ers}
is

Ξ(A) =

∏
u ku!∏

u<v Auv!
∏

uAuu!!
, (2.35)

the probability of generating a network A from the microcanonical SBM is then

P (A|e,k, b) =
Ξ(A)

Ω(e)
=

∏
r<s ers!

∏
r err!!

∏
u ku!∏

u<v Auv!
∏

uAuu!!
∏

r er!
. (2.36)

To obtain the posterior probability P (b|A) of the microcanonical SBM, we need to

go through the same steps we have done for the DC-SBM: choose appropriate priors

for the parameters Θ = {e,k}, then marginalise the likelihood P (A|e,k, b) to derive

P (A|b). One important property of the microcanonical variant is that the derivation of

its marginal likelihood does not require any actual computation of marginalisation. To

see this, we write down the expression of the marginal likelihood of the microcanonical

SBM according to equation (2.16),

P (A|b) =
∑
e,k

P (A, e,k|b) = P (A|e,k, b)P (k|e, b)P (e|b), (2.37)

where the integral in (2.16) becomes summation here because the parameters e and k

are discrete under the microcanonical formulation. The second equals sign in the last

equation holds due to the microcanonical nature of the model parameters: Conditioned

on network partition b, there is only one pair of (e,k) that matches the observed data

and all other inconsistent parameters have zero probability (recall the three example

networks shown in Figure 2-7). Such property is an advantage of the microcanonical

variant compared to its canonical counterpart, since the marginal likelihood is easy

to derive without any computation involved. To complete the marginal likelihood of

the microcanonical DC-SBM, we just need to pick appropriate prior distributions for

P (e|b) and P (k|e, b).

Interestingly, one can make specific choices of priors P (e|k, b) and P (k|b) such that

the microcanonical DC-SBM equivalent to the canonical DC-SBM [74]. In particular,

consider the geometric distribution with parameter p, which states that the probability

of getting x tails when the first head occurs in a series of identical Bernoulli trails with

25



probability p is

P (x|p) = (1− p)xp, for x ∈ {0, 1, 2, ...}. (2.38)

If we assume ers - the number of edges between group r and s - are independent

variables drawn from geometric distributions with the same parameter p = 1/(λ̄+1),

then we have

P (e|b) =
∏
r<s

λ̄ers

(λ̄+ 1)ers+1

∏
r

λ̄err/2

(λ̄+ 1)err/2+1
=

λ̄E

(λ̄+ 1)E+B(B+1)/2
. (2.39)

Suppose we choose the mean parameter7 λ̄ = 2E/(B(B+ 1)), and set the prior for the

degree sequence P (k|e, b) to be the following uniform distribution

P (k|e, b) =
∏
r

er!(nr − 1)!

(er + nr − 1)!
=
∏
r

((
nr
er

))−1

, (2.40)

where
((

n
m

))
=
(
n+m−1

m

)
counts the number of m-combinations with repetitions from a

set of size n, we can write down the marginal likelihood of the microcanonical DC-SBM

in equation (2.37),

P (A|b) = P (A|e,k, b)P (k|e, b)P (e|b)

= Eq. (2.37)× Eq.(2.41)× Eq.(2.40)

=

∏
r<s ers!

∏
r err!!

∏
u ku!∏

u<v Auv!
∏

uAuu!!
∏

r er!
×
∏
r

er!(nr − 1)!

(er + nr − 1)!
× λ̄E

(λ̄+ 1)E+B(B+1)/2

=
λ̄E

(λ̄+ 1)E+B(B+1)/2
×

∏
r<s ers!

∏
r err!!∏

u<v Auv!
∏

uAuu!!
×
∏
r

(nr − 1)!

(er + nr − 1)!

∏
u

ku!.

(2.41)

The last equation is identical to the marginal likelihood of the canonical DC-SBM we

derived in equation (2.23). Such an observation implies that, despite the microcanonical

and canonical SBM prescribing different data generating processes, we will not be able

to determine the observed data is generated from which of the two models.

The choice of prior in equation (2.39) is made simply to show the connections between

the canonical and microcanonical models. However, with the microcanonical generating

process in mind, it is natural to use microcanonical priors instead. For the edge count

7The geometric distribution is not the only possible choice for the prior distribution of ers. We
consider geometric distributions with the particular choice of λ̄ as explained in the text is simply
because they make microcanonical and canonical SBMs equivalent. We shall replace this prior later
with a microcanonical prior because it the microcanonical prior does require any hyper-parameters,
making the final expression of the posterior distribution non-parametric.
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matrix e = {ers}, the microcnanonical prior is the uniform distribution over all possible

ways to assign the total number of edges E among B communities:

P (e|b) =

((
B(B + 1)/2

E

))−1

. (2.42)

Notice that this microcanonical prior does not require any extra hyperparameter, while

the mixture geometric prior in equation (2.39) needs a subjective estimate of the mean

value λ̄. For this reason, the microcanonical prior in equation (2.42) is a better choice8

in the sense that the resulted posterior probability P (b|A) is independent of any extra

information not included in b, except for the total number of edges E. Since the total

number of edges E is independent of the network partition b, the prior P (E) can be

chosen arbitrarily, which only amounts to a multiplying constant without affecting the

posterior distribution. This is the other advantage of using the microcanonical variant:

the posterior probability of the microcanonical SBM is fully non-parametric, requiring

no subjective estimate of any hyperparameters. We summarise the posterior probability

of the microcanonical DC-SBM (up to the normalising constant) as follows,

P (b|A) ∝
∏

r<s ers!
∏

r err!!
∏

u ku!∏
u<v Auv!

∏
uAuu!!

∏
r er!

×
∏
r

er!nr!

(er + nr − 1)!

×
∏
r

((
nr
er

))−1

×
((

(B(B + 1)/2)

E

))−1

×
∏

r nr!

N !

(
N − 1

B − 1

)−1 1

N
.

(2.43)

2.4.2 Description length

The Bayesian inference approach has a built-in Occam’s razor effect, making it robust

against overfitting data. The microcanonical formulation of the DC-SBM allows us to

examine the Bayesian Occam’s razor effect in a direct way, which requires some concepts

from the field of information theory. Specifically, consider a discrete random variable

X generated from some source with probability distribution P (X), then the amount

of information required to compress an observed outcome X = x is approximately

− lnP (x) (nats) units. Then, we can rewrite the joint probability P (A, b) as follows

lnP (A, b) = e−Σ, (2.44)

8We will see later in Chapter 4 that this prior is still not ideal, causing the “resolution limit”
underfitting problem. This problem can be resolved by replacing the uniform prior by a hierarchical
prior, which leads to the nested variant of variant.
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where

Σ = − lnP (A|e,k, b)− lnP (e,k, b) (2.45)

is called the description length of the data [95,96]. Description length is approximately

the total amount of information required to describe the data, as well as the model

used to help data compression. As can be read from the last equation, the expression of

description length consists of two parts: the first term − lnP (A|e,k, b) is the asymp-

totic amount of information required to describe the data, conditioned on the model

described by the parameters {e,k, b}; the second term − lnP (e,k, b) is the amount of

information required to describe the model itself. As the model becomes more compli-

cated with more modelling parameters, the modelling capacity should increase, making

the amount of information required to describe the data decrease. Nevertheless, the

increase in model complexity should cause increase in the amount of information re-

quired to describe the model itself, playing a role of penalising the use of complicated

models. Therefore, the quality of model fit and model complexity fight with each other,

and as a result, the partitions with high posterior probability will be those reaching

a good balance between the two. For this reason, complicated models will not be se-

lected unless the reward in the model fit exceeds the penalty of model complexity. This

trade-off between the model fit and model complexity functions as an instantiation of

the Occam’s razor that prevents us from overfitting data.

Note that the equivalence between the Bayesian inference approach and the minimum

description length (MDL) principle holds in general [96] and does not rely on the use of

the microcanonical model. Conducting Bayesian inference with other variants of SBM

also has the advantage of being robust against overfitting, but the microcanonical model

allows the connection, therefore the robustness of the Bayesian approach, to reveal itself

in a more evident way.

2.4.3 Nested DC-SBM

The mirocanonical variant of DC-SBM makes it convenient to define the hierarchical,

or the Nested DC-SBM [63]. The main motivation behind the Nested DC-SBM is that

inference with the DC-SBM has the risk of underfitting data. We say underfitting occurs

if what we get from the algorithm is overly simplistic compared to the actual pattern

in data. The underfitting behaviour of DC-SBM leads to a so-called “resolution limit”

of the number of detectable communities. If the number of communities is above the

resolution limit, no matter how significant the community structure is, DC-SBM will

only be able to partially identify the communities structure, often merging communities

of small sizes into large ones. As explained by Peixoto in [60] and [63], the root cause
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of the underfitting behaviour lies in the use of the maximum entropy prior of the

edge count matrix e = {ers} as defined in equation (2.42), or the canonical version in

equation (2.39). Samples being drawn from these two choices of prior for e tend to have

identical expected number of connections between any pair of communities. When the

pattern in data deviates from this property, the penalty effect caused by the prior could

overtake the signal in data, causing the loss of detailed structure information. Later

in Chapter 4, we shall demonstrate the underfititng problem of DC-SBM in synthetic

networks with clear community structures.

The Nested DC-SBM proposed by Peixoto in [63] resolves the underfitting problem of

DC-SBM by considering the connection pattern at community level as another aspect to

be modelled. The idea behind the Nested DC-SBM is similar to the one for developing

the hierarchical prior for the network partition as defined in equation (2.31). Because

the undesired bias is about the connections among communities, we can remove the bias

by firstly sampling the connection matrix e from some hyperpriors. One trick here is

to exploit the fact that the edge count matrix e = {ers} of a network partition b can be

viewed as the adjacency matrix of a meta-graph, where meta-nodes are communities

and edges are placed according to the connections between meta-nodes. Then, this

meta-graph can be modelled by another SBM at one level above the original model,

serving as a prior for the edge count matrix at the bottom level. This procedure

can carry on recursively, modelling the edge count matrix of the graph at the current

level by another SBM at a higher level, until we reach the highest level with a single

meta-node. Fig 2-8 visualises the hierarchical construction of a Nested DC-SBM with

three levels. To write down the posterior distribution of the Nested DC-SBM, assume

the total number of levels is L. Let bl be the network partition and el be the edge

count matrices at the lth level. Then the probability of generating the hierarchical

construction {el}, l ∈ {1, 2, .., L} can be written as

P ({el}|{bl}) =
L∏
l=1

P (el|el+1, bl), (2.46)

and at each level l, we have

P (el|el+1, bl) =
∏
r<s

((
nlrn

l
s

el+1
rs

))−1∏
r

((
nlr(n

l
r + 1)/2

el+1
rr /2

))−1

(2.47)

being the probability of sampling a multigraph from the microcanonical SBM.
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Figure 2-8: Visualisation of the hierarchal construction of a nested variant of SBM with three
levels, reproduced from [60].

This leads to the joint distribution

P (b|A,k, {el}, {bl}) ∝ P (A|k, e0, b1)× P (k, e1, b1)× P ({el})× P ({bk})

=

∏
u ku!

∏
r<s ers!

∏
r err!!∏

r er!
∏

u<v Auv!
∏

uAuu!!
×
∏
r

((
nr
er

))−1

×
L∏
l=1

∏
r<s

((
nlrn

l
s

el+1
rs

))−1

×
∏
r

((
nlr(n

l
r + 1)/2

el+1
rr /2

))−1

×
∏

r n
l
r!

Bl−1!

(
Bl−1 − 1

Bl − 1

)−1 1

Bl−1
. (2.48)

Despite the Nested DC-SBM requiring more modelling parameters compared to the

vanilla DC-SBM, under the Bayesian framework, we do not need to worry about over-

fitting data. As before, we can see the Occam’s razor is in place by writing down the

description length of data in terms of the joint probability P (A,k, {el}, {bl}),

Σ = − lnP (A,k, {el}, {bl}) = − lnP (A|k, {el}, {bl})− lnP ((k, {el}, {bl}). (2.49)

Since the vanilla DC-SBM is in fact a special case of the Nested DC-SBM with a single

layer L = 1, the Nested DC-SBM will always perform at least as well as the vanilla

DC-SBM, but having the potential to achieve better fit to data. We will explain how

to conduct model selection to decide which model is better in Section 2.6 after we
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explain the numerical approximate algorithm for making inference from the posterior

distribution of SBMs in the next section.

2.5 Inference algorithm

The goal of the inference task is to extract information about the network partition b via

the posterior distribution P (b|A), which requires us to draw samples, or to maximise

P (b|A). Although we can write down the expression of the posterior distribution of

SBM, direct sampling or maximisation could be challenging. In practice, inference

from the posterior distribution often relies on numerical approximation algorithms. In

particular, we can use techniques based on the Markov Chain Monte Carlo (MCMC)

method. The idea is that we can construct a Markov chain that acquires our target

distribution as its equilibrium distribution. After we realise the chain for a sufficiently

long time and the chain is in its equilibrium distribution, samples drawn from this

chain will serve as approximation of samples from our target distribution. Specifically,

we firstly start with some random initialisation b0, then successively make moves from

current state b to a new state b′ using some proposal distribution P (b′|b). If the

proposal distribution is ergodic, i.e. every state has a non-zero probability to be visited,

and we accept samples from P (b′|b) according to the Metroplis-Hasting criterion [97],

which states that we accept a proposed sample with probability

a = min

{
1,
P (b′|A)P (b|b′)
P (b|A)P (b′|b)

}
, (2.50)

then the chain will have an equilibrium distribution being our target distribution

P (b|A). To find the maximum a priori (MAP) solution

b∗ = argmax
b

P (b|A), (2.51)

we can use the simulated annealing scheme [98, 99]. This can be done by replacing

the P (b|A) in (2.50) with P (b|A)π, where π is called the inverse temperature, which

should increase at each iteration and gradually grow to infinity (see Algorithm 2.1).

When π is small, the algorithm is in an exploring status with a strong interest to search

in a broad region. As π becomes large, the algorithm becomes greedy and exploits the

region with as large increment in the objective function as possible.
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Algorithm 2.1: Simulated annealing

1. Start from a random initialisation b0; choose the number of iterations of the

simulated annealing niter and the minimum and maximum values of the inverse

temperature, πmin and πmax

2. Consider an exponentially decrease scheme for the temperature, where the

speed of increase of the inverse temperature is ∆π = exp((lnπmax−lnπmin)/niter)

3. The simulated annealing proceed as follows

for i = 1, 2, .., niter do

π ← πmin(∆π)i

for u = 1, 2, ..., N do

move node u from group bu to b′u with a probability a, where

a = min

{
1,

(
P (b′|A)

P (b|A)

)π P (b|b′)
P (b′|b)

}
end for

end for

Despite its theoretical guarantee of convergence, it is not uncommon to see MCMC

methods require prohibitively long convergence time in practice when the algorithm is

naively implemented. For example, there are two typical factors that can significantly

affect the efficiency of MCMC. The first one is the choice of the initial state b0. Intu-

itively, if we start from a “bad” position where all of its surrounding regions acquire low

posterior probability, then the chain takes a longer time to travel to high-probability

regions where the mass of probability density concentrates. In a worse situation, if

our goal is to find the MAP solution, starting from a bad position might result in

getting stuck in local optimums. The other important factor for the convergence speed

of MCMC is the quality of the proposal distribution P (b′|b). A proposal with poor

quality can cause an overly high rejection rate, wasting time on generating samples

that end up with being rejected. For instance, suppose we make proposal from the

uniform distribution

P (b′u = r|b) =
1

B + 1
, (2.52)

whereB+1 is total number of possible communities (including the possibility of creating

a new community). Then, most of the proposal will be rejected when the networks have
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relatively well-defined structure and large number of communities.

Fortunately, for the task of community detection with SBMs, recent advances in the

field have equipped us with various strategies for facilitating MCMC [100, 101], mak-

ing it possible to conduct Bayesian inference in networks with millions of nodes and

edges. Firstly, regarding the initial state of simulating the Markov chain, rather than

starting from a random network partition, one intuitive remedy is to start from some

educated guesses, e.g. partitions given by heuristic algorithms or spectral clustering

methods [102]. Moreover, instead of using the random proposal as given in equa-

tion (2.52), a more effective strategy is to use proposals which leverage the information

of the graph structure and the current state of Markov chain. For example, making

proposals of moving a node based on its neighbours’ community membership has been

proved to an effective technique [100]. In particular, to move a node u in the network

to group r, we can get hints from one of its neighbours v and make the move with the

following probability,

P (r|u, b) =
erbv + ϵ

ebv + (B + 1)ϵ
, (2.53)

where the ϵ parameter is used for maintaining the ergodicity (i.e. even when ebvr is

zero, the probability of proposing a move toward group r is still non-zero). Since the

probability of a random neighbour of u being in group s is

yus =
∑
v

Auvδsbv/ku, (2.54)

the proposal distribution is

Pe(bu = r|b) :=
∑
s

yus
esr + ϵ

es + ϵ(B + 1)
. (2.55)

In words, the proposal in equation (2.55) tends to recommend the groups with which

most of node u’s neighbours are connecting. Computing this proposal takes O(ku)

times for node u, as long as the edge count matrix e = {ers} is tracked, then the

overall complexity of one sweep the MCMC takes O(E) which is scalable to large-scale

systems. In [100], the author showed that start simulating MCMC from a partition

given by an agglomerative heuristic with the smart proposal defined above, MCMC

shows decent performance in terms of convergence time and not getting stuck at local

optimums.

In the rest of this thesis, when it comes to fitting SBMs to data with MCMC, we

make use the graph-tool library [103] unless we state otherwise. The graph-tool li-
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brary provides efficient implementation of MCMC, combining the smart proposal de-

fined in equation (2.55), an agglomerative heuristic for finding good initial state for

MCMC [100], and a merge-split proposal for fast traversing low-probability barriers

in the solution space [101]. In our numerical experiments, with the implementations

available in the graph-tool library, we manage to conduct inference in networks at the

sizes of 106 nodes and 107 edges.

2.6 Model selection

Applying different variants of SBMs to the same dataset is likely to yield different

results. To select from different partitions given by different models, we can conduct

pairwise comparison of partition-model pairs by computing the posterior probability

ratio [89]. Specifically, for two partitions b1 and b2 obtained with modelsM1 andM2

respectively, the posterior probability ratio is defined as

Λ =
P (b1,M1|A)

P (b2,M2|A)
=
P (A, b1|M1)P (M1)

P (A, b2|M2)P (M2)
, (2.56)

where P (M1) and P (M2) are prior probabilities representing our bias toward the two

models. The pair (b1,M1) is preferred if Λ > 1, otherwise (b2,M2) is preferred and

the magnitude of Λ indicates the level of confidence of model selection. When we have

no preference toward any of the two models, we might set P (M1) = P (M2), then the

ratio can be rewritten in terms of the description length of the two models

Λ = exp(Σ2 − Σ1), (2.57)

with Σ1 = − lnP (A, b1|M1) and Σ2 = − lnP (A, b2|M2) being the description length

of data under the two models respectively. This shows how the idea of posterior proba-

bility ratio coincides with the Minimum Description Length (MDL) principle for model

selection: we should choose the partition-model pair which achieves the shortest de-

scription length. In Chapter 3 and 4, we will extensively make use of the MDL principle

to find the best fitting model among different variants of SBMs in empirical networks.

2.7 Concluding remarks

In this chapter we define various variants of SBMs and explain how to use them to infer

community structures in networks. Taking the DC-SBM as an example, we explained

how to choose prior distributions properly to avoid intrinsic bias in the process of

deriving the posterior distribution of network partitions. Once we can evaluate the
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posterior probability up to a normalising constant, MCMC algorithms allow us to

draw samples or to obtain the maximum a posteriori estimate solution. When we are

faced with different network partitions given by different models, we can compare them

by computing the posterior odds ratio, which is equivalent to making use of the MDL

principle.

All models covered so far are designed to account for general community structures.

On one hand, the versatility of general models is a strength because it allows data to

speak for themselves: Bayesian inference with general SBMs can detect not just the

typical assortativity, but also many other fundamental community structures, as long

as they exist in data. On the other hand, for a class of networks in which a particular

kind of structure dominates, using general models could be suboptimal. This is due

to the Bayesian Occam’s razor effect, which penalises complicated models and prefers

simpler models if they have identical ability of explaining the data. Under the Bayesian

inference framework, restricted variants of SBMs for particular structures like bipartite

and core-periphery structure have been developed. These restricted model variants

have demonstrated the ability of achieving better quality of fit to data than general

model. Although assortative constrained variant of SBMs has been widely studied

in the literacture, no work has considered Bayesian inference with the assortative-

constrained variant of SBMs. In the next chapter, we will fill this gap in the literature

by providing the Bayesian formulation of an assortative-constrained variant of DC-

SBM.
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Chapter 3

Statistical inference of assortative

structures

The assortative structure is probably the most intensively studied community struc-

ture [104]. Roughly speaking, a network is said to be assortative, or to have assortative

structure, if it can be divided into subgroups of nodes such that nodes in the same

group are more connected to themselves than to nodes in other groups. Most of the

popular community detection methods search for assortative structure exclusively, ig-

noring other fundamental structures that are equally important. The widespread use

of these methods has led to an impression that assortative structure is a ubiquitous

property shared by networks across different domains [105]. However, it is not clear

yet whether the assortative structures reported in the literature are simply an arte-

fact caused by using methods that can only find assortative structures. One reason

for the doubt on the prevalence of assortativity is that most of assortative community

detection methods do not take statistical significance of their results into account. As

a result, these methods often return spurious communities in networks known to be

non-modular [47,48]. Such tendency of presenting exaggerated results is known as the

overfitting behaviour: overfitting algorithms tend to report overly complicated results

compared to the actual pattern in data.

The main advantage of the Bayesian inference approach over non-statistical commu-

nity detection methods is its robustness against overfitting [60]. We have explained

the robustness of Bayesian inference from the information-theoretic perspective in Sec-

tion 2.4.2 and this point is supported by a series of empirical studies as well [106,107].

The models we have covered so far are general models, which account for general com-
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munity structure including assortativity as a special case. The versatility of general

models is a strength, because it allows practitioners to be agnostic about the kind of

structure to be inferred. However, having only general models at our disposal also has

disadvantages. Firstly, due to the Bayesian Occam’s razor effect [108], Bayesian infer-

ence approach will prefer simpler models over complicated models if they have identical

ability of describing data. As a result, using general models will be suboptimal in the

case where a particular kind of community structure dominates. In addition, there are

questions that we can not answer with only general models at hand. For example, we

might want to know whether an observed network acquires a dominant structure, which

happens to be a particular kind of structure, say assortativity. If assortativity is in fact

not the dominant structure, then applying methods that can only search for assortative

structures could return misleading results. Besides, when assortativity is indeed the

dominant structure, we might want to know to what extent using a general models

is unnecessarily complicated. Answers to these questions are valuable for deepening

our understanding of data, but they are difficult to be obtained with general models

alone, unless we can have restricted models that are designed for particular structures

of interest.

In this chapter, we propose a novel method for extracting statistically significant as-

sortative structures in networks. Our method is based on the planted partition model

(PP model), an assortative-constrained variant of the DC-SBM. We will stick with

the Bayesian approach for the inference of the planted partition model, which has the

benefit of automatically preventing from overfitting data. Compared to conducting

Bayesian inference with DC-SBM and Nested DC-SBM, using PP model is equivalent

to adjusting the prior distribution according to the planted partition constraint, which

should be detailed later. We demonstrate via analysis and numerical experiments that

our method can indeed extract assortative structures and perform robustly against

overfitting.

In deriving our method, we also clarify on a claimed equivalence between maximum

likelihood inference (MLE) of the planted partition model and the celebrated mod-

ularity maximisation approach for detecting assortative structure [57]. Modularity

maximisation has been one of the most widely applied community detection methods

in network analysis. Despite its popularity, modularity maximisation receives criticism

because of its heuristic nature and tendency of overfitting data. The connection be-

tween modularity maximisation and MLE with PP model was considered as a principle

deviation of the former, which has inspired a series of extended community detection

methods [109,110]. However, our analysis shows that this equivalence does not hold in
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general, since it requires subjective choices of model parameters, which lack principled

justification. Even in the narrow regime of model parameters where the equivalence

holds, the equivalence result implies several limitations of the modularity maximisa-

tion approach. Specifically, the model to which modularity maximisation is equivalent

assumes the number of edges inside each community is identical. Besides, MLE is no-

torious for overfitting data. Being equivalent to MLE means modularity maximisation

will have exactly the same problem with no improvement. In comparison, our pro-

posed method not only will not overfit (i.e. will not report spurious communities in

fully random networks), but also have the ability of resolving more general assortative

structure, with the number of edges inside different communities being non-uniform.

For the reasons listed above, despite the established connection between the two meth-

ods, applying Bayesian inference with the PP model is different from, and superior to

both maximum likelihood inference and modularity maximisation for detecting statis-

tically significant assortative structures.

There are several related works which also introduced assortative constraints to gen-

eral SBMs. Lu and Szymanski [111] proposed a regularised SBM, which associates

each node with two different degree-propensity parameters, one for within-group and

the other for between group connections. Then, assortativity is enforced by setting

higher propensity of having within-group edges than that of between group-edges. One

key difference between our proposed method and the regularised SBM is that the latter

carry subjective a posteriori bias toward finding assortative structures, while our pro-

posed approach adapts a priori constraint. In particular, regularised SBM comes with

tunable parameters, which control the strength of assortative structures to be inferred

in data. When applying this method to different datasets, practitioners generally need

to adjust the value of corresponding tunable parameters to search for some “desired”

assortative partitions. Therefore, when we say the regularised SBM carries a posteri-

ori bias toward assortativity, we mean that their assortative-constraints are dependent

on observed data. In comparison, our proposed method adapts a priori constraints

which are independent of data. In the other related work given by Gabriel et al. [112],

constraints on model parameters are explicitly enforced such that the probability of

within-group edges always exceed that of between-group edges. Such constraints are

stricter than the one we apply in the PP model, and they are generally not appropriate

unless the networks of interest are known to have assortative structure. By contrast,

our method is arguably more suitable if the goal is to objectively assess whether sta-

tistically significant assortative structures exist, and if so how the structures look like.

Our method is amenable to model selection, which allows us to verify the prevalence of
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assortative structure. To this end, we compare the performance of the two assortative-

constrained models to that of general models, including the DC-SBM and Nested DC-

SBM as defined in Chapter 2, using a set of empirical networks from various scientific

domains. Such comparison is possible because all these models are developed under

the Bayesian inference framework, and they share the same underlying model (i.e. the

DC-SBM) and differ from each other only in the perspective of the choice of prior

distributions. We find that assortative-constrained variants manage to achieve better

fit to data in a few illuminating examples. Nevertheless, general models outperform the

constrained variants most of the time, implying that assortative structure is often too

simplistic to sufficiently describe the pattern in empirical networks. Our results suggest

that the ubiquitousness of assortative structure has been exaggerated in the literature.

Therefore, it is worth considering the possibility of general community structure in the

design and application of community detection methods.

The rest of this chapter is organised as follows. In Section 3.1, we introduce the max-

imum likelihood inference with the PP model, followed by the clarification of the es-

tablished equivalence between maximum likelihood inference and the modularity max-

imisation approach. We then move to derive the Bayesian inference approach with PP

model in Section 3.2. In Section 3.3, we present numerical results in synthetic and

empirical networks.

3.1 The planted partition model and modularity maximi-

sation

3.1.1 Maximum likelihood inference with the planted partition model

Before we look into the assortative-constrained variant of SBM, it is useful to remind

the DC-SBM and discuss the maximum likelihood inference with it. Following the

ideas in [74, 87], we can rewrite the probability of generating a network A from the

(canonical) DC-SBM - i.e. the likelihood function of DC-SBM - as follows

P (A|θ,λ, b) =
∏
u<v

e−θuθvλbubv
(θuθvλbubv)Auv

Auv!

∏
u

e−θ2uλbubu/2
(θ2uλbubu/2)Auu/2

(Auu/2)!!
(3.1)

=
∏
r<s

e−θ̂r θ̂sλrsλersrs

∏
r

e−θ̂2rλrr/2λerr/2rr ×
∏

u θ
ku
u∏

u<v Auv!
∏

uAuu!!
, (3.2)
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with θ̂r being the sum of degree propensity parameters θu inside community r. That

is,

θ̂r =
N∑
u

θuδrbu . (3.3)

From equation (3.1) to (3.2), we simply change the order of multiplications from being

node-wise to being community-wise. We provide detailed derivation of such result in

Appendix A.3.

To obtain the maximum likelihood estimators of model parameters λ = {λrs} and

θ = {θu}, it is more convenient to work with the log-likelihood,

lnP (A|θ,λ, b) = −1

2

∑
rs

θ̂rθ̂sλrs −
1

2

∑
rs

ers(lnλrs − δrs ln 2) +
∑
u

ku ln θu, (3.4)

with the constant − ln(
∏

u<v Auv!
∏

uAuu!!) being dropped. Differentiating the last

equation and setting the derivatives to zeros gives1

λ∗rs =
ers

θ̂rθ̂s
, θ∗u =

ku
ebu

θ̂bu . (3.5)

Looking at the expression of the maximum likelihood estimators λ∗rs and θ∗u, we notice

that the inferred probability of an edge in the network is independent of the values of

θ̂r, since

p∗uv = λ∗bubvθ
∗
buθ

∗
bv =

ebubv
ebuebv

kukv. (3.6)

This property reflects the fact that the DC-SBM requires extra constraints on θ̂r to

fully define the model. We do have the freedom to choose arbitrary values of θ̂r at our

convenience and the model does not change.

The assortative-constrained model to be considered is called the planted partition (PP)

model. In the literature, the term planted partition is refered to a special constraint on

the parameters of SBMs. In a general Poisson SBM with B communities, the connection

pattern is described by its connection matrix λ = {λrs}, which consists of B(B + 1)/2

unique elements. In comparison, under the planted partition constraint, only two

distinct values are allowed in the connection matrix. All of the diagonal elements take

the same value λrr = λin, representing twice the expected number of edges inside each

community. Similarly, all of the off-diagonal elements in the connection matrix share

the same value λrs = λout
2, representing the expected number of connections between

1We leave derivations to Appendix A.4
2Although it is possible to assume the number of edges between communities are dependant on the
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General SBMs PP model

Figure 3-1: Visualisation of two possible connection matrices λ = {λrs}. Both matrices rep-
resent assortative connection pattern since both of them are diagonally dominant. However,
in principle, general SBMs allow arbitrary mixing structure, which describes by B(B + 1)/2
uniques values in the connection matrix λ. Therefore, general SBMs have the ability of describ-
ing much more general pattern by varying the elements in λ. In comparison, the PP model is a
restricted model. Under the planted partition constraint, the elements of λ can take only two
distinct values: λin for diagonal elements and λout for off-diagonal elements. The PP model is
only able to describe assortative structure when λin > λout, or disassortative otherwise.

any pair of distinct communities. In other words, the planted partition constraint states

that the elements in the connection matrix λ = {λrs} can be written as

λrs = λinδrs + λout(1− δrs). (3.7)

In Fig. 3-1, we show a pictorial comparison of the connection matrix λ between general

SBMs and the PP model. Although this planted partition constraint significantly

reduces the flexibility of the general DC-SBM, it maintains the ability of generating

networks with assortative structures. To generate a network with dense within-group

connections and sparse between-group connections, we just need to tune the value of

λin, λout and θ = {θu} such that the inequality λin
∑

r θ̂
2
r/2 > λout

∑
r<s θ̂rθ̂s holds.

The likelihood function of the PP model can be obtained by substituting the planted

partition constraint into the likelihood of DC-SBM in (3.2),

P (A|λin, λout,θ, b) = e−λout
∑

r<s θ̂r θ̂sλeoutout e
−λin

∑
r θ̂

2
r/2λeinin

∏
u θ

ku
u∏

u<v Auv!
∏

uAuu!!
. (3.8)

number of nodes in related communities, e.g. λrs = nrnsλout, that might make further analysis tedious.
Moreover, such modelling choice is partially due to a historical reason: the planted partition model was
originally studies with the assumption that every community has the same number of nodes and the
probabilities of an edge between or within communities are the same across the entire network [113].

41



In the last equation, ein and eout are the number of edges within and between commu-

nities respectively,

ein =
1

2

∑
uv

Auvδbubv , (3.9)

eout = E − ein =
1

2

∑
uv

Auv(1− δbubv). (3.10)

We would like to make a comment on the maximum likelihood estimator of the de-

gree propensity parameter {θu} for the PP model. The expression of the maximum

likelihood estimator can be obtained again by finding the stationary point of the log-

likelihood

lnP (A|λin, λout,θ, b) = −λin
∑
r

θ̂2r
2
− λout

∑
r<s

θ̂rθ̂s + ein lnλin + eout lnλout

+
∑
u

ku ln θu.

(3.11)

Differentiating lnP (A|λin, λout,θ, b) above with respect to parameters except for the

network partition b leads to following results,

∂ lnP (A|λin, λout,θ,b)
∂λin

= −
∑
r

θ̂2r
2

+
ein
λin

, (3.12)

∂ lnP (A|λin, λout,θ,b)
∂λout

= −
∑
r<s

θ̂rθ̂s +
eout
λout

, (3.13)

∂ lnP (A|λin, λout,θ,b)
∂θu

= −λinθ̂bu − λout
∑
s ̸=bu

θ̂s +
ku
θu
. (3.14)

Equating the three equations above to zeros gives,

λ∗in =
2ein∑
r θ̂

2
r

, (3.15)

λ∗out =
eout∑
r<s θ̂rθ̂s

, (3.16)

θ∗u = ku

[
2einθ̂bu∑

s θ̂
2
s

+
eout

∑
s ̸=bu

θ̂s∑
r<s θ̂rθ̂s

]−1

. (3.17)

Unfortunately, these equations do not permit analytical solutions and require numerical

methods for approximation. Moreover, compared to the maximum likelihood estimator

for {θu} in the DC-SBM in equation (3.5), here we do not have the freedom to choose
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the value of θ̂r anymore. This is because, by definition, the maximum likelihood solution

θ̂∗r should satisfy the following equations

θ̂∗r =
∑
u

θ∗uδrbu = er

[
2einθ̂r∑

s θ̂
2
s

+
eout

∑
s ̸=bu

θ̂s∑
t<s θ̂tθ̂s

]−1

. (3.18)

These equations generally do not permit analytical solutions, except for the special

case where all communities have the same total degree. That is, if we do have er =

2E/B, then our freedom in choosing the value of θ̂r is partially restored, since the

equation (3.18) will hold as long as all θ̂r are identical, i.e. θ̂r = θ̂. Otherwise, the

maximum likelihood estimates of θ̂r are determined by equation (3.18) and we need

numerical approximation algorithm to obtain the values of θ̂∗r . Since the estimator

λ∗in and λ∗out also depends on the value of θ̂r, overall, imposing the planted partition

constraint to the DC-SBM complicates the maximum likelihood inference of the model.

However, note that we actually have the freedom to make a priori constraints on

the values of θ̂r as a part of the model. Then, as we should see below, maximum

likelihood solutions for parameters of the constrained PP model turn out to have simple

expression. The maximum likelihood estimators of the new model are the stationary

points of the Lagrangian function,

lnP (A|λin, λout,θ, b) = −λin
∑
r

θ̂2r
2
− λout

∑
r<s

θ̂rθ̂s + ein lnλin + eout lnλout

+
∑
u

ku ln θu +
∑
r

ξr(θ̂r − θ̂′r),
(3.19)

where θ̂′r are any pre-defined value. Then, the maximum likelihood estimators have the

following expressions,

λ∗in =
2ein∑
r θ̂

2
r

, (3.20)

λ∗out =
eout∑
r<s θ̂rθ̂s

, (3.21)

θ∗u =
ku
ebu

θ̂bu . (3.22)

The estimators λ∗in and λ∗out for the PP model are the same as before when there is no

extra constraints of θ̂r, however, the estimator θ∗u now changes to be the same as that

for the DC-SBM in equation (3.5). We emphasise that the constraints on θ̂r need to be

predefined before any data is seen. It is really because the values {θ̂r} are associated
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with the model can we restore the convenience of the inference.

Despite that constrained PP model and DC-SBM have the same expression of the

maximum likelihood estimator for {θ∗u}, the former is not able to produce consistent

degree-correction as the latter does. Specifically, the expected degree of a node in

networks generated from an inferred DC-SBM matches with the observed degree in

data, i.e.

⟨ku⟩ =
∑
u

θuθvλbubv =
ku
ebu

θ̂bu
∑
s

θ̂s
ebus

θ̂bu θ̂s
= ku. (3.23)

By contrast, the constrained PP model fails to provide accurate degree correction, with

the expected degree depending on the predefined constraints θ̂r. The expression for

the average degree in the constrained PP model is

⟨ku⟩ =
∑
v

θuθv[λinδbubv + λout(1− δbubv)]

= θu

[
λinθ̂bu + λout

∑
r ̸=bu

θ̂r

]
. (3.24)

If we plug the maximum likelihood estimators λ∗in, λ
∗
out and θ∗u into the last equation,

we get

⟨ku⟩ =
kuθ̂bu
ebu

[
2einθ̂bu∑

r θ̂
2
r

+
eout

∑
r ̸=bi

θ̂r∑
r<s θ̂rθ̂s

]
. (3.25)

The expression of ⟨k⟩ in equation (3.25) tells us that networks generated from the

inferred PP model will not have the property ⟨ku⟩ = ku, unless the communities are

uniform in the sense that the total degree er =
∑

u kuδrbu = 2E/B and θ̂r = θ̂ for all

communities.

Overall, we have seen that adding the planted partition constraint complicates the

maximum likelihood solution of model parameters of DC-SBM. It is important to keep

the trade-off between the ease of inference and accurate degree-correction in mind as we

move on to discuss the celebrated modularity maximisation approach, which is closely

related to the maximum likelihood inference of the PP model.

3.1.2 Modularity maximisation

Modularity maximisation is arguably the most widely used method for community

detection. This method is built on the modularity measure, which is a quality function

measuring how modular a network partition is [46]. Modularity takes the adjacency A

and a network partition b as input and returns a numerical score Q, which is defined
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as

Q(A, b) =

N∑
uv

(Auv − ⟨Auv⟩)δbubv . (3.26)

In the definition of the modularity above, the term ⟨Auv⟩ is the expected number of

edges between node u and v in a chosen null model. A null model in the context

of community detection is a model that generates network samples with no commu-

nity structures. Modularity measure compares the observed number of within-group

connections to the expectation of the same quantity in a random network ensemble.

Therefore, a network partition with large modularity value is modular in the sense that

the density of within-group connections is higher than what is expected in a random

network.

The choice of the null model can vary depending on the problem at hand. One of the

most popular choice is the configuration model. The configuration model attaches each

node with ku half-edges according to a given degree sequence {ku}, then randomly

pairs half-edges together. For a half-edge attaching to node u, its probability of being

connected to another node v with degree kv is kv/(2E − 1). Therefore, the expected

number of edges between node u and another node v in the configuration model is

⟨Auv⟩ =

ku∑
i=1

kv
2E − 1

≈ kukv
2E

, (3.27)

assuming the number of edges E is sufficiently large. Substituting the ⟨Auv⟩ in equa-

tion (3.27) into the equation (3.26) and adding a normalising factor 1/2E in the front,

we obtain the celebrated Newman-Girvan modularity

Q(A, b) =
1

2E

N∑
uv

(
Auv −

kukv
2E

)
δbubv , (3.28)

where δbubv is the Kronecker delta function. The normalising constant scales to the

modularity value such that Q ∈ [−1, 1]. The expression of the Newman-Girvan modu-

larity is often written in a slightly different form,

Q(A, b) =
1

2E

B∑
r

(
err −

e2r
2E

)
, (3.29)

where the summation now goes through each group of network partition r ∈ {1, 2, .., B}.
This rewritten expression of the Newman-Girvan modularity implies the requirement

of forming a community. Because the partition that puts all of the nodes into the same
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group has modularity value zero,

Q(A, b) =
1

2E

(
2E − (2E)2

2E

)
= 0, (3.30)

a community in networks consists of group of nodes satisfying

err −
e2r
2E

> 0. (3.31)

The last inequality means that the observed number of edges inside the group of nodes

exceeds the same quantity in a network generated from the corresponding configuration

model. Although modularity was originally proposed as a quality function for evaluat-

ing network partitions, it was soon realised that we can use modularity as an objective

function to search for assortative communities [114]. This is the central idea behind

the class of modularity-based methods for community detection. Despite the fact that

exact optimisation of modularity is NP-hard [115], many approximate algorithms have

been proposed, which can provide good estimates in practice [116,117]. As an example,

we explain the Louvain algorithm in Appendix A.8 for finding the maximum modularity

solution and show its results in several empirical networks.

However, maximising the Newman-Girvan modularity measure in equation (3.28) is

known to suffer from a resolution limit problem [51]. The name of the problem is

referred to an undesired property of the method: in networks with large size, modularity

maximisation might fail to identify communities with small sizes, regardless how strong

the community structure is. We will look into the resolution limit problem in Chapter

4. To get around the resolution limit problem, it is common to use the generalised

modularity Qγ instead, which is defined as

Qγ(A, b) =
1

2E

N∑
uv

(
Auv − γ

kukv
2E

)
δbubv , (3.32)

or equivalently

Qγ(A, b) =
1

2E

B∑
r

(
err − γ

e2r
2E

)
. (3.33)

The generalised modularity is identical to the Newman-Girvan modularity except for

an extra resolution parameter γ, which was multiplied to the expected number of

connections in configuration model. Setting γ to different values has the effect of

tuning the resolution of the inferred community structure. If γ is small, then the

weight of the negative contribution in Qγ is small, lowering the criterion for forming
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new communities. As a result, maximising Qγ with a small value of γ will lead to

high-resolution network partitions, with relatively larger number of communities and

small community sizes. On the contrary, large γ will lead to community structure with

low-resolution. The Newman-Girvan modularity is a special case of the generalised

modularity with the resolution limit parameter being set to one.

The modularity measure as well as its generalisation had triggered a burst of inter-

est in identifying community structure in real-world networked systems. Despite their

widespread use, the modularity maximisation approach also receives criticism because

of its heuristic nature. Recently, the generalised modularity function (3.32) was found

to be equivalent to the likelihood function of the PP model [118] under certain choices

of model parameters. This equivalence result was considered as a theoretical justifi-

cation of the modularity maximisation approach and it has inspired further extension

of the equivalence results, as well as new algorithms which are built on the equiva-

lence [109, 110]. However, as we are going to explain, the extent to which this equiva-

lence holds is rather limited. Moreover, the equivalence result also implies that mod-

ularity maximisation shares several limitations of the maximum likelihood approach,

making it an unreliable tool for community detection.

3.1.3 On the equivalence between the planted partition model and

generalised modularity

We firstly revisit the results developed in [57], in which the generalised modularity Qγ

in equation (3.32) is found to be equivalent to the log-likelihood function of the PP

model in equation (3.36). The derivation of the equivalence result begins with writing

down the log-likelihood of the DC-SBM,

lnP (A|λ,θ, b) =
1

2

∑
uv

(Auv(log λbubv − θuθvλbubv) +
∑
u

ku ln θu, (3.34)

with constants independent of the network partition being discarded. Then, we can

obtain the log-likelihood of the PP model by plugging the planted partition constraint

into the last equation, which gives

lnP (A|λin, λout,θ, b) =
1

2

∑
uv

[
Auv(δbubv lnλin + (1− δbubv) lnλout

− θuθv(λinδbubv + λout(1− δbubv)
]

+
∑
u

ku ln θu.

(3.35)
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Based on the observation that the modularity in equation (3.32) involves the summa-

tion of terms multiplying to the Kronecker delta function, we can expose the relation

between the likelihood function in equation (3.36) and the modularity by grouping

terms multiplying to the Kronecker delta, which leads to the following expression

lnP (A|λin, λout,θ, b) =
ψ

2

∑
uv

(
Auv −

λin − λout
log λin − lnλout

θuθv

)
δbubv

+E lnλout −
λout

2

(∑
u

θu

)2
+
∑
u

ku ln θu,

(3.36)

with ψ := lnλin− log λout. Note that only the first summation depends on the network

partition b via the Kronecker delta function. Therefore, conditioned on the values of

the degree propensity θ = {θu}, discarding the last three terms in the last equation

does not affect the result of maximising the likelihood with respect to the network

partition b. If now we set the constraints of θ̂r as follows

θ̂′r =
er√
2E

, (3.37)

then according to our analysis in Section 3.1.1 regarding the maximum likelihood in-

ference with PP model, the maximum likelihood estimator of θ∗u in equation (3.22)

becomes

θ∗u = ku/
√

2E. (3.38)

Substituting the last equation back to the log-likelihood function in (3.36), we get

lnP (A|γ∗,θ′, b) =
ψ

2

∑
uv

(
Auv − γ∗

kukv
2E

)
∝ Qγ(A, b), (3.39)

with independent constants E log λout, −λout(
∑

u θu)2 and
∑

u ku log θu being dropped.

The resolution limit parameter γ∗ has the following expression:

γ∗ =
λin − λout

lnλin − lnλout
. (3.40)

Equation (3.39) implies that, conditioned on the values of λin and λout, the network

partition b∗ that maximises the generalised modularity Qγ∗ also maximises the likeli-

hood function of the PP model, when the choice of constraint in (3.37) is made. Based

on this observation, the author of [57] claimed that modularity maximisation approach

is equivalent to implementing the maximum likelihood principle with the PP model.

The establishment of the equivalence result has several implications. Firstly, although
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modularity maximisation was heuristically motivated, being equivalent to the max-

imum likelihood approach means the former is a consistent method in a sense that

the inferred partition will converge to the underlying truth as we observed sufficient

data. Moreover, the expression of γ∗ in equation (3.40) can be used as a principled

way to choose the resolution limit parameter. When the values of λin and λout are not

available, as proposed in [57], we might estimate them from data using the following

expressions

λ∗in =
ein∑

r e
2
r/2E

, λ∗out =
eout∑

r<s eres/2E
, (3.41)

which are simply the maximum likelihood estimators in equation (3.20) with θ̂r being

set to er/
√

2E. The corresponding estimate of the resolution parameter is then

γ∗(λ∗in, λ
∗
out) =

λ∗in − λ∗out
lnλ∗in − lnλ∗out

. (3.42)

Although the equivalence result above provides useful insight into the modularity max-

imisation approach, we argue that it should not be interpreted as the advocacy for

modularity-based methods. In fact, the extent to which the equivalence holds has been

overlooked. In particular, one key step for developing the equivalence is to make the

choices of constraints on θ̂r = er/
√

2E. These choices are made simply for constructing

the equivalence result, but they do not have any principled justifications. More impor-

tantly, recall that when we derivate maximum likelihood estimators for the PP model

in Section 3.1.1, we also make subjective choices for the values of θ̂r such that the

maximum likelihood solutions admit cleaner expressions. However, our choices have

to be determined before any data is observed. By contrast, the choices of θ̂r which

induces the equivalence as given in equation (3.37) obviously depend on the observed

network A via the degree sequence k,

θ̂′r = er/
√

2E =
∑
u

kuδrbu/
√

2E. (3.43)

In general, any choices of θ̂r that differs from θ̂r = er/
√

2E will invalidate the equiv-

alence result. When no constraints of θ̂r is made, the maximum likelihood principle

requires us to use the estimates θ̂∗r satisfying equation (3.18), which is unlikely to co-

incide with the choice made by modularity maximisation in equation (3.37), with the

only exception that all er = 2E/B. Last but not least, when we apply the maximum

likelihood principle, the parameters of λ∗in, λ∗out and θ∗u need to be inferred simulta-

neously, and their maximum likelihood estimators are all dependent of the network

partition b. Therefore, optimising the objective function in equation (3.36) is princi-
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pally different from optimising the one in equation (3.39). For the reasons above, we

argue that the claimed equivalence between modularity maximisation and maximum

likelihood approach in [57] is an overstatement. Such nuance was firstly brought up

in [83] and a more recent work [50] provides numerical evidence for the discrepancy

in the performance of modularity maximisation and the maximum likelihood inference

with the PP model.

Furthermore, suppose we take a different proposition that modularity maximisation is

just related to maximum likelihood inference, this relation actually implies that mod-

ularity maximisation inherits the disadvantages of the maximum likelihood approach.

One problem of the maximum likelihood approach is the tendency of overfitting data.

As a result, maximum likelihood usually requires proper regularisation to work well

in practice. Being equivalent, or just related to the maximum likelihood just means

modularity maximisation also suffers from the overfitting problem, which has been

widely reported in the literature [16, 119]. Besides, the planted partition constraint in

equation (3.7) implies a rather restricted pattern: the ratio of within- and between-

group connections is the same for every community. Since modularity maximisation

is equivalent to conducting inference when such restricted constraint is in place, the

performance of modularity maximisation could degenerate especially in networks with

properties at odds with the prescribed restrictive pattern.

In short, although the equivalence result provides an alternative derivation of the mod-

ularity maximisation method, the equivalence is rather tenuous and it implies modu-

larity maximisation inherits weaknesses from the maximum likelihood approach with

no improvements. In the next section, we shall provide a better solution for extracting

assortative structures. Our method is based on Bayesian inference with the PP model.

We will show our approach is advantageous in term of preventing overfitting and also

in the ability of modelling more general assortative pattern.

3.2 Bayesian inference: posterior probability of planted

partition models

Instead of doing maximum likelihood, we propose to consider Bayesian inference with

the PP model, where the goal is to draw samples or to optimise the posterior distribu-

tion

P (b|A) =
P (A|b)P (b)

P (A)
(3.44)
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For the PP model, the marginal likelihood is obtained by computing the integral

P (A|b) =

∫
P (A, λin, λout,θ|b)dλindλoutdθ

=

∫
P (A|λin, λout,θ, b)P (λin, λout|b)P (θ|b)dλinλoutdθ,

(3.45)

where P (A|λin, λout,θ, b) is the likelihood function in equation (3.8), and P (λin, λout|b),

P (θ|b) are priors for model parameters θ, and λin and λout. Just like what we have

done for general models in the Chapter 2, we need to specify the priors carefully such

that we do not introduce any intrinsic bias in the posterior distribution. We begin with

the prior for the degree propensity parameter θ. For the ease of inference, we consider

the following constraints

θ̂r = 1, ∀r ∈ {1, 2.., B}. (3.46)

This choice is associated with the model and does not depend on data. With these

constraints on θ̂r, the parameter λin becomes twice the expected degree (equivalently

twice the number of edges) within each community, since

⟨err⟩ =
∑
uv

θuθvλinδrbuδsbv = θ̂2rλin = λin. (3.47)

Similarly, λout is the expected number of edges between any pair of distinct communi-

ties. With the constraint on {θu} in equation (3.46), maximum-entropy prior of θ is

the uniform distribution on nr − 1 regular simplex,

P (θ|b) =
∏
r

(nr − 1)!δ∑
u θuδrbu ,1

. (3.48)

For λin, λout the maximum-entropy prior is the exponential distribution

P (λin|λ̄) = e−λin/2λ̄/(2λ̄),

P (λout|λ̄) = eλout/λ̄/λ̄,
(3.49)

where λ̄ = 2E/(B(B + 1)). Performing the integral in equation (3.45) with the likeli-

hood function in equation (3.8) and priors in equations (3.48) - (3.49) gives3

P (A|λ̄, b) =
ein!eout!

2λ̄2
[
B
2 + 1

2λ̄

]ein+1 [(
B
2

)
+ 1

λ̄

]eout+1×
∏
r

(nr − 1)!

(er + nr − 1)!
×

∏
u ku!∏

u<v Auv!
∏

uAuu!!
.

(3.50)

3Details of the derivation are provided in Appendix A.6.
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Just like the canonical DC-SBM, the marginal likelihood of the PP model has an

alternative microcanonical formulation. The marginal likelihood above can be rewritten

as follows

P (A|λ̄, b) = P (A|e,k, b)P (k|e, b)P (e|ein, eout, b)P (ein|λ̄)P (eout|λ̄), (3.51)

with

P (A|e,k, b) =

∏
r<s ers!

∏
r err!!∏

r er!!
×

∏
u ku!∏

u<v Auv!
∏

uAuu!!
(3.52)

being the likelihood of the microcanonical DC-SBM as we introduced in Section 2.3,

and the other four terms correspond to the priors of the degree sequence k and e:

P (k|e, b) =
∏
r

er!(nr − 1)!

(er + nr − 1)!
, (3.53)

P (e|ein, eout, b) =
ein!

Bein
∏

r(err/2)!
× eout!(

B
2

)eout∏
r<s ers!

, (3.54)

P (ein|λ̄, b) =
(Bλ̄)ein

(Bλ̄+ 1)ein+1
, (3.55)

P (eout|λ̄, b) =

((
B
2

)
λ̄
)ein

((
B
2

)
λ̄+ 1

)eout+1 . (3.56)

Note that because the microcnanoical model generates networks with the exact degree

sequence k, the inferred model will have accurate degree-correction even though we

have made pre-defined constraints on θ̂r. That is, Bayesian inference with the PP

model does not have the problem of inaccurate degree-correction which occurs to the

maximum likelihood inference. Moreover, the microcanonical interpretation allows us

to replace the parametric priors with non-parametric ones. Specifically, the prior for

ein and eout in equation (3.55) and (3.56) are geometric distributions with mean λ̄. We

can proceed to replace the geometric priors P (ein, eout|λ̄, b) = P (ein|λ̄, b)P (eout|λ̄, b)

with the following non-parametric prior

P (ein, eout|b) = P (ein, eout|E, b)P (E), (3.57)

where

P (ein, eout|E, b) =

(
1

E + 1

)1−δB,1

(3.58)

is a uniform distribution of splitting total E edges into ein within-group edges and

eout between-group edges. The prior for the number of edges P (E) can be arbitrarily
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chosen since it will just introduce a multiplying constant independent of the network

partition b. In summary, the marginal probability distribution of the PP model takes

the following decomposition

P (A|b) = P (A|e,k, b)P (k|e, b)P (e|ein, eout, b)P (ein, eout|E, b)P (E) (3.59)

which reads as

P (A|b) =
ein!eout!(

B
2

)ein (B
2

)eout
(E + 1)1−δB,1

×
∏
r

(nr − 1)!

(er + nr − 1)!
×

∏
u ku!∏

u<v Auv!
∏

uAuu!!
.

(3.60)

Together with the prior for network partition P (b) we defined in equation (2.31), we can

now fit the PP model to data with the MCMC algorithm we described in Section 2.5.

Fitting the PP model to data by sampling or maximising the posterior probability will

not overfit data, and we can assure this point by exploiting the connection between

Bayesian inference and information theory, just as we did in Section 2.4.2. Alternatively,

we can see why the Bayesian approach is more robust than the maximum likelihood

approach by directly looking at the joint probability

P (A, b) = P (A|e,k, b)︸ ︷︷ ︸
model likelihood

P (e,k, b)︸ ︷︷ ︸
prior

, (3.61)

where the prior is

P (e,k, b) = P (k|e, b)P (e|ein, eout|b)P (ein, eout|E, b)P (b). (3.62)

The maximum likelihood approach only cares about the quality of fit, which corre-

sponds to the likelihood term in the joint probability in equation (3.61). From a

Bayesian point of view, that is equivalent to adopting an inappropriate constant prior

P (e,k, b) = 1 for all possible parameter combinations {k, e, b}. Because the modelling

capacity of the model naturally grows with the order of the model, which represented by

the number of communities B, maximum likelihood is likely to prefer models which are

overly complicated. The Bayesian approach, by contrast, chooses the prior P (e,k, b)

carefully to represent our prior knowledge. The prior knowledge plays a role of reg-

ularisation on the maximum likelihood approach: although complicated models can

achieve better fit to data, i.e. large likelihood values P (A|e,k, b), their corresponding

prior value P (e,k, b) are small. This is because as models become complicated (e.g.

the number of communities B increases), the number of possible parameter combina-

tions {e,k, b} increases. Since the sum of the prior probability must be one, complex
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uniform PP model non-uniform PP model

Figure 3-2: Visualisation of possible connection matrices λ = {λrs} under the uniform and
non-uniform planted partition constraints.

models (large number of communities B) permit large number of possible parameter

combinations, resulting in smaller prior probabilities for each possible parameter combi-

nation in the uniform prior distribution. Such comparison between maximum likelihood

and Bayesian inference, together with the information-theoretical explanation in Sec-

tion 2.4.2 about the Bayesian Occam’s razor effect, assure us to use Bayesian inference

without worrying about overfitting data. In the next section, we will provide further

numerical evidence for the robustness of Bayesian inference approach for community

detection.

Non-uniform PP model

Reminds that our goal is to develop a restricted version of SBMs which focuses on as-

sortative structures. The planted partition constraint in equation (3.7) indeed reduces

the flexibility of the general model, leaving the assortativity and disassortativity as

the only two structures that the model can describe. However, the assortative struc-

tures prescribed by the planted partition constraint seems overly restricted, with every

community having the same within- and between-communities connection rate. As a

compromise between the general model and the regular assortativity, we propose to

adopt a non-uniform planted partition constraint,

λrs = λrδrs + λout(1− δrs). (3.63)

As illustrated in Fig. 3-2, compared to the uniform case, the constraint in equa-

tion (3.63) allows each community to acquire its own expected number of within-
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community connections. The marginal likelihood of the DC-SBM under the non-

uniform planted partition constraint reads as

P (A|b) =
eout!

∏
r err!!(

B
2

)eout
(E + 1)1−δB,1

×
(
B + ein − 1

ein

)−1

×
∏
r

(nr − 1)!

(er + nr − 1)!
×

∏
u ku!∏

u<v Auv!
∏

uAuu!!
.

(3.64)

The derivation of this expression is similar to that of the uniform case and we defer

the details to Appendix A.7. From now on, we will refer to the DC-SBM with the non-

uniform planted partition constraint as the non-uniform PP model, and to its uniform

counterpart as the uniform PP model. Having defined our models, in the next section,

we will demonstrate their performance in synthetic and empirical networks.

3.3 Numerical experiments

3.3.1 Results for synthetic networks

We firstly show how PP models perform in synthetic networks with known community

structures. We compare the result of the PP models with the DC-SBM, as well as the

modularity maximisation approach with different values of the resolution parameter.

We will focus on the risk of overfitting data, i.e. the potential of identifying non-existing

communities. To this end, we generate networks with known assortative structures

from the uniform PP model. We have examined networks with a various number of

communities while the community sizes are set to be identical, i.e. nr = N/B, ∀r ∈
{1, 2, .., B}. Nodes are assumed to have uniform degree propensities

θu =
1

nr
=
B

N
, ∀u ∈ {1, 2, .., N} ,∀r ∈ {1, 2, .., B}. (3.65)

The expected number of edges between communities are parameterised as follows

λin =
(

1 + (B − 1)ϵ
)
⟨k⟩N

B
, λout = (1− ϵ)⟨k⟩N

B
. (3.66)

The ϵ parameter takes values in the interval [0, 1] and it controls the strength of assor-

tative structures. When ϵ = 0, the expected probability of an edge within-community

is the same as that of an between-community edge,

⟨pin⟩ = θuθvλin = B
⟨k⟩
N

= λoutθuθw = ⟨pout⟩, (3.67)

for any u, v, w ∈ N with bu = bv and bu ̸= bw. Therefore, networks generated from the

model with ϵ = 0 are random networks with no community structures. When ϵ = 1,
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λin > 0 but λout = 0, we have an extreme case of assortativty, in which edges are

only allowed within communities. Values of ϵ between 0 and 1 correspond to all other

intermediate cases between randomness and perfect assortativity. To fit the data to PP

model and DC-SBM, we find the MAP solution by running the simulated annealing

scheme as described in Section 2.5 and we refer to the documentation of the graph-tool

library [103] for details of the implementation.

For maximising modularity, we sample from the target distribution

P (b|A) =
eβQγ(b,A)

Z(A)
, (3.68)

where Z(A) =
∑

b e
βQγ(b,A) is a normalising constant and Qγ(b,A) is the generalised

modularity as defined in equation (3.32). With the connection between the generalised

modularity and the PP model in mind, the inverse temperature parameter β is set to

be E(lnλin − lnλout) such that the posterior will be proportional to the likelihood of

the true underlying model, i.e. P (b|A) ∝ P (A|λin, λout,θ, b), as long as we choose the

γ = γtrue =
λin − λout

lnλin − lnλout
. (3.69)

We also examine the results obtained with the original Newman-Giravn modularity

Qγ=1, as well as the generalised modularity with the maximum likelihood estimate of

γ,

γ = γfit =
λ∗in − λ∗out

lnλ∗in − lnλ∗out
, (3.70)

where the value of λ∗in and λ∗out are

λ∗in =
Bein
E

, λout =
Beout

(B − 1)E
, (3.71)

using the maximum likelihood estimators we derived in equation (3.20) and making

the following assumption

θ̂r =
er√
2E

=

√
2E

B
. (3.72)

The inferred number of communities is plotted against the true number of groups

in Fig. 3-3. In our experiment, we set the assortative parameter sufficiently strong

(ϵ = 0.8) such that the structure is easy to detect 4. As can be seen from Fig. 3-

4Community detection in networks generated from the uniform PP model undergoes a phase tran-
sition phenomenon. The phases of the model are related to the detectability of the planted community
structures. Under our parameterisation, the uniform PP model is in an undetectable phase if the as-
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Figure 3-3: Inferred number of groups as a function of the true number of groups. Networks
are generated from the uniform PP model with the parameterisation given in text. The error
bars show the standard deviation of the distribution. Networks consist of 105 nodes and all
communities have the same size nr = N/B, average degree ⟨k⟩ = 5.

3, Bayesian inference of the PP models (both uniform and non-uniform) consistently

manage to identify the correct number of groups. By contrast, all versions of modularity

maximisation systematically overfit, manifested by significantly larger number of groups

compared to the planted number of communities.

The difference between the performance of different versions of modularity is a bit

bizarre. Having seen the connection between the generalised modularity and the likeli-

hood function of the uniform PP model, one might expect the generalised modularity

Qγ to perform better than the original modularity Qγ=1, because it resembles the im-

plementation of the maximum likelihood principle. However, from the perspective of

overfitting data, the original modularity Qγ=1 is the least problematic one among all

three versions of modularity we have tested. The modularity with the fitted value

γ = γfit gives the worst performance, which are orders of magnitude wrong compared

to the correct number of communities as indicated by the purple pentagons. Although

maximising the generalised modularity Qγtrue is equivalent to maximising the likelihood

of the underlying model, because maximum likelihood has the tendency of overfitting,

it is not surprising to see Qγtrue prefers exaggerated results (given by brown diamond

sortative strength ϵ is below the threshold ϵ∗ = 1/
√
k [65]. We will discuss more on the detectability

phase-transition in Chapter 5. For our experiment here, we set the value of ϵ such that the model is in
the detectable phase.
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Figure 3-4: Difference in description length between the best fitting model and other model
variants of interest. Models are fitted to a selection of 29 networks obtained from the KONECT
repository [120]. The best fitting model appears in the bottom. For reference, the values in
ln 10 and ln 100 are shown as dashed lines.

markers). Although the overfitting problem seems to be less severe for the original

modularity Qγ=1 (given by red traingles) compared to its generalised generalised ver-

sions, the discrepancy between the true and inferred number of communities is notable,

especially when the true number of communities is small, say when B < 8.

3.3.2 Results for real-world networks

The majority of traditional community detection algorithms search for assortative

structures exclusively and ignore other possible structures. However, it is possible

that there exist other non-assortative structures being the better description of data.

Here, we conduct model selection with our assortative-constrained variants and general

SBMs, including the DC-SBM as well as the Nested DC-SBM, using a set of empirical

networks. A comparison study like this allows us to investigate whether assortativity

is indeed the dominant pattern in data.

We choose 29 networks from a variety of scientific domains, obtained from the KONECT

repository [120]. For each network, we find the MAP solution of network partition given

by different models, then compare the description length of each pair of model and their

inferred network partition. Fig. 3-4 summaries the difference in description length

between each of model variants and the model with the best fit to data. Points in the

bottom indicate the best fitting model in each network. It is clear that most of the time
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general DC-SBM are selected as the best model with a high level of confidence. This

implies that simple assortative structures (both uniform and non-uniform) prescribed

by the PP models are too simplistic to describe the pattern in our dataset.

However, there are exceptions where PP models are preferred over the general models.

One example is an online co-purchase networks of American political books around

the time of 2004 presidential election [121]. In this network, nodes are political books

available in an online bookselling website and edges represent frequent co-purchases

of books by the same customers. As shown in the top panel in Fig. 3-5, the Nested

DC-SBM finds a partition with three groups, aligning closely to the known labelling of

books: books are either liberal, neutral or conservative. However, the non-uniform PP

model manages to compress the data even further by splitting the group in the middle

into two sub-groups.

Another example is the American college football network [11] which represents the

schedule of matches among college football teams. This is the only case we find the

uniform PP model is selected as the best fitting model. In the bottom panel in Fig 3-5,

we show the community structure inferred by the uniform PP model and the Nested

DC-SBM respectively. Although the partition given by the two models are quite similar

to each other, the uniform PP model achieves a slightly better fit in terms of description

length. The advantage of the uniform PP model is well supported by the generating

process of this network. When this dataset was constructed, college football teams were

divided into conferences. Matches are arranged more frequently between teams in the

same conference, leading to the highly assortative structure in the observed network.

Moreover, the assortativity is relatively regular because edges in the network represent

match relationship during the regular season of games. Therefore, it is not surprised to

have small variance in the arrangement of number of matches across different teams.

Whether assortative structures are absolutely the dominant pattern in these two ex-

amples is debatable, as the advantage of PP models in the description length are not

significant, and the level of confidence for rejecting alternative hypothesis is always

subjective. However, it is clear that the Bayesian approach does not always favour

complicated models, and simple models can be selected as long as they are sufficient to

describe the pattern in data. Notice that in Fig. 3-4. for the terrorists network [122]

and the social network of dolphins [123], general SBMs achieve better fit to the data

than PP models but with only little advantage. This means there is no sufficient infor-

mation that allows us to conclude which kinds of structure provides the best summary

of the pattern in data. In these cases, we should consider general SBMs and PP models

as equally possible generating processes of the observed networks.
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Political books

Nested DC-SBM PP (non-uniform)
Σ = 1343.44 (nats) Σ = 1337.69 (nats)

American football

Nested DC-SBM PP (uniform)
Σ = 1780.58 (nats) Σ = 1761.50 (nats)

Figure 3-5: Community structures inferred by the Nested DC-SBM and PP models in a net-
work of co-purchases political books [121] and American college football team [11] respectively.
Legends show the description length of partitions and their corresponding models.
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(a) PP (non-uniform) (b) Nested DC-SBM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Group r

0.00

0.05

0.10

0.15

q r

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Group r

0.00

0.05

0.10

0.15

q r

Σ = 8944.09 (nats), Q = 0.765 Σ = 8775.82 (nats), Q = 0.706

Figure 3-6: Inferred community structure in a social network of high school students [124],
obtained with the non-uniform PP model and the Nested DC-SBM. The bottom panels show
the community-wise modularity value as defined in the text. The group colours are chosen
to maximise the matching between both partitions, as described in Ref. [125], and the same
colours are used in the bottom panels.
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In the rest of networks we have examined (25 out of 29), general models significantly

outperform PP models in terms of the description length. Interestingly, general model

can achieve better fit to data even when the uncovered structure is indeed very assor-

tative. This is exemplified by a social network of high school students [124] and we

visualise the inferred community structure in this network in Fig. 3-6. Although the

overall modularity value of the partition given by the Nested DC-SBM is not as high as

that given by the non-uniform PP model, each group of the partition actually acquires

positive community-wise modularity value, which is computed as

qr =
1

2E

(
err −

e2r
2E

)
, (3.73)

such that
∑

r qr = Q holds. However, the Nested DC-SBM allows better data compres-

sion, therefore is prefered according to the MDL principle. If we look into the results

of the two model closely, to a large extent, the partition given by the Nested DC-SBM

can be obtained by subdividing that of the non-uniform PP model. For instance, in

Fig 3-6, the No.7 community (nodes filled with red colouring) in the partition given by

the Nested DC-SBM is merged into the No.5 community (nodes filled with darkgreen

colouring) in that of the non-uniform PP model. This can be explained by the fact that

the DC-SBM can leverage the preference of connections between different communities

as additional evidence for their existence alongside the assortative pattern.

In Fig. 3-7, we provide further information about the results obtained on the set of em-

pirical networks, including the number of inferred communities B, the modularity value

of partitions Q, and the normalised maximum overlap distant [125] d(b, b′) between the

best fitting partition b and other partitions b′. The overlap distant is computed as

d(b, b′) = 1− 1

N
max
ϕ

∑
u

δbu,ϕ(b′u), (3.74)

where ϕ(r) here is a bijection between the group labels of b and b′ such that the

distance is the maximum value over all possible permutations of labels. In terms of

the inferred number of communities, PP models generally give conservative results,

concluding smaller number of groups compared to general SBMs. We also find that

the partitions given by PP models and general SBMs are rarely similar according to

the partition distance, even when the modularity values of the corresponding partitions

are close. If we compare the modularity values of the best fitting model (most of the

time the Nested DC-SBM) to that of PP models, they are similar in some cases, but

in examples like the Douban social network [126], political blogs [127], and internet
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Figure 3-7: More details about the inference results on the set of 29 empirical networks, includ-
ing the number of communities found with each method (top panel), the normalised maximum
overlap distance [125] between the best fitting model and other model variants (middle panel),
and the modularity value of the partitions (bottom panel).
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at the autonomous system level (Internet AS) [128], the modularity value obtained

with the best fitting model is significantly smaller than that with the PP models,

indicating that the dominant patterns are not assortativity in these networks. Thus,

it will be imprudent to apply a community detection algorithm that blindly searches

for assortativity to these networks, e.g. the modularity maximisation approach, which

will lead to significantly biased results.

We also include results obtained with the modularity maximisation approach in Fig 3-7.

Having seen that the overfitting behaviour of modularity maximisation in synthetic net-

works in Section 3.3.1, one might expect that modularity maximisation will always find

more communities than Bayesian inference approach does. Indeed, in some networks

like the E-mail network of undisclosed European institution [129], protein-protein in-

teraction [130], and bipartite person-crime association [131], modularity maximisation

finds significantly larger number of communities than what is given by the Bayesian

inference approach, signifying the risk of overfitting in these datasets. Although we

are not to able to directly evaluate the extent of overfitting, because there is no un-

derlying truth associated with real-world networks for evaluation, we can still get a

rough idea about how much information in the inferred community structures is due

to random fluctuations rather than to statistically significant structures. To do so, we

take the protein-protein interaction network [130] as an example. We apply modularity

maximisation and the non-uniform PP model to this network and show the inferred

community structures in Fig 3-8. Maximising modularity approach returns a partition

with over 200 communities and a high modularity value Q = 0.84. On the contrary,

the non-uniform PP model is much more conservative and return only two commu-

nities with modularity value Q = 0.11. Then, we randomise this network according

to the configuration model by randomly pairing edges attaching to each node. The

resulted network contains no community structures, because the probability of an edge

between any two nodes only depends on their degree and nothing else. However, in

the randomised network, modularity maximisation still finds a partition with over a

hundred communities and a large modularity value (Q = 0.75). In comparison, the

non-uniform PP model correctly returns a single community in the random network,

indicating there is no structures in the data.

It is possible that in a different realisation of the same configuration model, modularity

maximisation returns some partitions with modularity values which are much smaller

than the value obtained in the original network. If that is the case, one might argue

that the problem of modularity might not be as problematic as it seems in the exam-

ple show above. Indeed, there are actually works try to conduct statistical test for
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modularity maximisation, concluding the presence of community structure only when

the modularity value is significantly large compared to a population of modularity val-

ues obtained in random networks [132]. However, the point is that Bayesian inference

should correctly puts all of the nodes into a single group in every random networks,

given that networks of consideration are sufficiently large. The robust performance of

the Bayesian inference approach is backed by the powerful Shannon’s source coding

theorem [133], which states that it is impossible to compress the outcomes x of a prob-

ability source P (x) more than using the code associated with the source probability

distribution. Recalling the correspondence between data compression and model infer-

ence we have introduced in Section 2.4.2, the theorem can be translated as that there

is no other models can achieve higher posterior probability than the trivial SBM with

one single block in random networks, since the trivial SBM is exactly the source prob-

ability for generating the data. The exaggerated result of modularity maximisation

in this experiment brings up the caveat that, to a non-negligible extent, community

structures given by modularity maximisation are not statistically significant and can

be simply explained by the degree sequence of nodes.

On the other hand, despite the tendency of overfitting, modularity maximisation some-

times finds rather conservative results in terms of the inferred number of communities

compared to the Bayesian inference approach. General SBMs finds more communi-

ties because they can identify non-assortative structures, which are not the targets of

modularity maximisation. However, if we focus on the comparison between modularity

maximisation and PP models which are designed for extracting assortative structures,

for networks like the Douban social network [126] and word associations [134], PP mod-

els find roughly 100 times larger number of communities than modularity maximisation

does. In other words, modularity maximisation seems to massively “underfit” in these

two datasets even though it generally tends to overfit. In fact, despite being vulnerable

to overfitting, modularity maximisation ironically has the tendency of underfitting data

at the same time [51]. In the next chapter, we will look into the underfitting problem

in community detection. We will show that our PP models are better alternatives for

detecting assortative structures because they are robust against not only the overfitting

but also the underfitting problems.

3.4 Concluding remarks

In this chapter, we revisit the equivalence result between the modularity maximisation

approach and the maximum likelihood inference with the uniform PP model. We

clarify that this equivalence does not hold in general because it relies on subjective
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Original network

Modularity maximization PP (non-uniform)
B = 185, Q = 0.84 B = 2, Q = 0.11

Randomized network

Modularity maximization PP (non-uniform)
B = 168, Q = 0.75 B = 1, Q = 0

Figure 3-8: Inferred community structures in a network of protein-protein interactions [130],
using modularity maximisation and Bayesian inference with the non-uniform PP model. In the
top panel, we show the results obtained with the original network, while in the bottom panel
the results with a randomised network generated from the configuration model.
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choices of model parameters lacking of principle justifications. In fact, even when the

equivalence holds, it implies that limitations of applying the maximum likelihood pass

over to modularity maximisation, e.g. the tendency of overfitting and the restricted

modelling capacity.

We develop the Bayesian formulation of the PP models which can be used to extract

assortative structures in networks. Our Bayesian approach based on the PP models

has the advantages of being robust against overfitting and describing more general

assortative patterns. In making inference with the PP models, the change in the

posterior likelihood is not more complicated to compute than that of the modularity

measure. Therefore, in principle, the existing collection of modularity maximisation

heuristics can be exploited by adopting the posterior probability of PP models as their

objective functions, which should provide better regularisations for their results5.

Our PP models are amenable to model selection technique which allows us to compare

different model variants in a principle way. We compare PP models with general SBMs

and discuss how this comparison allows us to determine whether assortativity is the

dominant structural pattern in networks. Our results suggest that assortativity is often

too simplistic to appropriately describe the community structure in empirical networks,

at least for the dataset we have considered so far. We have found a few instructive

examples which the assortative-constrained models manage to fit better than general

models. In these examples, the difference in description length between PP modelss

and general SBMs provides a quantitative measure which reflects how much modelling

capacity is unnecessarily wasted by adopting general models.

Note that in the examples where PP models achieve the best fit to data, the difference

in the inferred network partitions is not notable between PP models and general SBMs.

In addition, in these examples, PP models’ advantages over general models in terms

of description length is not significant. These observations promotes the question that

whether PP models are actually useful in practice. If general SBMs can always return

results which are similar to that of PP models, should we just stick with the general

models and forget about the PP models? The doubt on the necessity of PP models also

comes from the observation that general models might achieve better fit than PP models

when the inferred network partition is indeed assortative. This happens because our

PP models cannot describe all possible assortative structures. The planted partition

constraint, either uniform or non-uniform, rules out not just the possibility of other

5For example, we manage to adapt the celebrated Louvain algorithm [116] for modularity max-
imisation to find the MAP solution of the uniform PP model. For further details, please see the
Appendix A.8.
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kinds of community structures, but also the general form of assortativity with varying

connections rate between different groups. For these reasons, PP models might seem

practically redundant. However, as we are going to see in the next chapter, PP models

in fact are the best fitting model in some networks while the difference in the inferred

network partition are significant between PP models and general SBMs. Therefore,

it is definitely worth including PPM models into our analysis toolbox, since they can

provide extra insight into data, which would haven been overlooked by general models.
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Chapter 4

Assessment of underfitting,

overfitting, and model selection

for modular network structure

Although the Bayesian inference approach keeps us safe from overfitting data, we still

need to be careful with the risk of underfitting data. As the term suggests, we say

a method underfits if its result is overly simplistic compared to the actual pattern in

data, just the opposite to overfitting. In particular, we are interested in the underfitting

behaviour of community detection algorithms in terms of the order of inferred models,

which is reflected by the number of inferred communities. Underfitting community

detection methods often find themselves being able to extract structural information at

a coarse-grained level, but struggling with resolving fine-resolution details. Specifically,

it is common to see an underfitting method merges communities of small sizes into large

ones, returning partitions with overly conservative number of communities.

Bayesian inference with DC-SBM is vulnerable to underfitting [63]. The root cause of

this problem is in the use of an inappropriate uninformative prior for edge placement.

The uninformative prior has a penalising effect on the model complexity, which is

reflected by the number of communities. When the underlying assumption of the

uninformative prior is not compatible with the pattern in data, the penalty caused by

the uninformative prior could be excessively strong, which might suppress significant

structural pattern. The tendency of underfitting data leads to a resolution limit of DC-

SBM. The limit is related to the number of detectable communities and it grows with

the size of networks. When the actual number of communities is above the resolution
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limit, DC-SBM will fail to recover complete structural pattern in data.

Addressing the underfitting problem of DC-SBM is the main motivation behind the

development of the Nested DC-SBM [63]. The Nested DC-SBM does not have the

underfitting problem because it replaces the uninformative prior for edges with a hi-

erarchical prior. Unlike the uninformative prior which assumes edges placement is

completely random among communities, the Nested DC-SBM explicitly models the

connections between communities as a multigraph above the original network. The

multigraph is then assumed to be generated from another SBM. This procedure can

carry on recursively until there is a single node at the highest level. By doing so, the

models inferred at upper levels form a hierarchy of priors for the inference at the bottom

level. The hierarchical prior is a more realistic prior for the edge placements than the

uninformative one, because the hierarchical prior can adapt its structure according to

data. As a result, the hierarchal construction allows Nested DC-SBM to detect much

more refined structures compared to DC-SBM. Interestingly, the PP models we devel-

oped in the last chapter also have the advantage of not underfitting data [83]. This

is because PP models are restricted models with less modelling complexity. Hence,

even when simple uninformative priors are in place, PP models have less severe in-

duced penalty than DC-SBM, allowing detection of statistically significant structures

of arbitrary sizes.

The underfitting behaviour of community detection methods is often studied in syn-

thetic networks with well-defined structures, which are mainly assortative for the ease

of analysis. However, these synthetic examples are not satisfactory representatives of

real-world networks. Community structures in real-world networks usually constitute a

mixture of randomness and pattern, with different kinds of community structures being

present at the same time. Amir et al. [106] evaluated the underfitting behaviour of DC-

SBM together with other 15 different community detection methods in an empirical

network corpus. However, the evaluation was done in an indirect way, where algo-

rithms’ underfitting behaviour was measured by their performance in a downstream

application. Peixoto [63] directly compared the difference in the inferred number of

communities between DC-SBM and Nested DC-SBM, but the comparison was only

done in a small set of empirical networks and PP models were not included in the com-

parison. Therefore, it is still not clear yet how widespread the underfitting problem of

the DC-SBM occurs in practice, and to what extent DC-SBM behaves differently from

non-underfitting methods like Nested DC-SBM and PP models.

In this chapter, we aim to reveal the underfitting behaviour of DC-SBM in practice

by comparing its performance to that of Nested DC-SBM and PP models on a large

70



empirical network corpus. We construct a network corpus with 263 empirical networks

which are diverse in both their sizes and scientific domains. Although underlying truth

of community structures generally do not exist in empirical networks [135], since both

Nested DC-SBM and PP models are known to be free from the underfitting problem of

DC-SBM, we propose to measure the underfitting behaviour of DC-SBM by conducting

model selection. We know underfitting occurs to DC-SBM when non-underfitting meth-

ods manage to achieve better quality of fit, or equivalently shorter description length of

data, with more detailed partitions. Our results suggest that DC-SBM systematically

underfits and using Nested DC-SBM is able to find significantly more detailed struc-

tures, especially in networks with large sizes. Although PP models do not have the

underfitting problem, their results are usually more conservative compared to that of

DC-SBM. This is due to the fact that PP models are restricted models focusing on as-

sortative structures, but assortativity is usually not the dominant pattern in empirical

networks. When assortativity is indeed the dominant pattern, we find that PP models

are able to extract detailed structures that are not visible to general SBMs. Finally, us-

ing the same network corpus, we show that the modularity maximisation approach also

suffers from the problem of underfitting data, even though its underfitting behaviour

is often covered by its tendency of overfitting.

We begin this chapter with an introduction to the resolution limit problem of DC-SBM

in Section 4.1. Then in Section 4.2, we explain why the Nested DC-SBM and the PP

models are free from the resolution limit. In Section 4.3, we compare the results of DC-

SBM to that of Nested DC-SBM and PP models. Section 4.4 focuses on comparing PP

models to general models. Finally, Section 4.5 concerns the underfitting behaviour of

the modularity maximisation approach.

4.1 The resolution limit underfitting problem

We start with introducing the underfitting problem of the DC-SBM, which is often

demonstrated by considering synthetic networks with clear community structures. For

example, in Fig 4-1, we show a network consisting of 64 isolated cliques. A clique is

a fully connected subgraph. Intuitively, we should assign each clique into it its own

community, concluding an extreme assortative partition. However, the partition with

the maximum posterior probability of DC-SBM, or equivalently the MDL solution, is

the one with every two cliques being merged together. Although this result partially

recover the clique structure, it is an inadequate fit to the data, because the inferred

model with only 32 communities has a vanishingly small probability of generating

the observed example. This counter-intuitive behaviour is referred to as underfitting,
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Figure 4-1: A network consists of 64 cliques of size 10. Shading ovals as well as the colouring
of nodes imply the partition given by applying the MDL principle with the DC-SBM. This is
undesired behaviour of DC-SBM is known as the resolution limit problem. We should derive
the resolution limit of DC-SBM later in equation (4.10). Figure reproduced from [60].

because the inferred model is overly simplistic, even though DC-SBM has the ability

of describing the assortative structure in the data. As explained in [63], DC-SBM

suffers from the underfitting problem because the choice of the uninformative prior

for edge placements as defined in equation (2.42) is inappropriate. According to this

uninformative prior, edges are randomly assigned among communities with an equal

probability. As a result, it is implicitly assumed that the expected number of edges

among different pairs of communities are identical. When this assumption violates the

pattern in data, using this uninformative prior might cause an over-penalising effect.

To see how the uninformative prior leads us to the undesired solution given in Fig. 4-1,

we firstly write down the expression of the posterior probability P (b|A) for the correct

partition b∗, which identifies all 64 cliques as 64 disconnected communities. For b∗,

we have er = 2E/B∗ and nr = N/B∗, with B∗ = 64. Then, the posterior probability

P (b∗|A) is proportional to the joint probability P (A, b∗), which involves the likelihood

of DC-SBM

P (A|k, e, b∗) =
(2E/B∗)!!B

∗

(2E/B∗)!B∗ ×
∏

u ku!∏
u<v Auv!

∏
uAuu!!

, (4.1)

and the prior probabilities for parameters b, e,k:
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P (b∗) =
(N/B∗)!B

∗

N !
×
(
N − 1

B∗ − 1

)−1 1

N
, (4.2)

P (e|b∗) =

((
B∗(B∗ + 1)/2

E

))−1

(4.3)

P (k|e, b∗) =

((
N/B∗

2E/B∗

))−B∗

. (4.4)

The logarithm of the joint probability then has the following expression1

lnP (A,k, e, b) ≈ (E −N) lnB∗ − (E +B∗2/2)g

(
E

E +B∗2/2

)
, (4.5)

where g(x) = −x lnx− (1− x) ln(1− x) and the Stirling’s approximation is used. The

first term in the log-probability above corresponds to the model likelihood while the

second term corresponds to the priors of the model parameters. The B∗2 term comes

from the uninformative prior of edges placement P (e) and it is exactly the number

of unknown parameters in the connection matrix e = {ers}. The expression in (4.5)

suggests that the uninformative prior has a penalising effect that increases quadratically

with the number of communities B.

Having seen the contribution of the uninformative prior in the joint probability in

equation (4.5), we can try to understand a bit more about why the correct partition b∗

is missed by the MDL approach. To this end, we try to find some partitions b′ which

are different from the correct partition b∗, such that the posterior probability with b′

is higher than that of b∗. Rather than exploring all possible network partitions, we will

restrict ourselves to a special set of partitions, in which correct communities (cliques)

are merged into larger communities of equal sizes. Although this special set only takes

up a small fraction of the entire solution space of network partitions, restricting to this

special set makes our analysis easier. Specifically, for any partition b′ in this special

set, its likelihood function and prior distributions have exactly the same expressions as

those of b∗ in equations (4.1) to (4.4), except for the number of communities B needs

to be rescaled correspondingly to B′. Consider B′ ∈ [1, B], we then have the logarithm

of the joint probability with b′ as a function with the only variable being the number

of communities B′,

lnP (A,k, e, b(B′)) ≈ (E −N) lnB′ − (E +B′2/2)g

(
E

E +B′2/2

)
. (4.6)

1We have provided the erivation of the expression is provided in Appendix B.1, further details please
refer to [63,74].
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Then, finding the best partition is equivalent to finding the best number of communities

Bmax which leads to the highest posterior probability, or equivalently

Bmax = argmax
B′

P (A,k, e, b(B′))
P (A)

. (4.7)

To proceed, we might treat B′ as a continuous variable and differentiate the equa-

tion (4.6) with respective to B′. The derivative of lnP (A,k, e, b(B′)) of B′ reads as

dP (A,k, e, b(B′))
dB′ =

E −N
B′ +B′ ln

B′2/2
E +B′2/2

. (4.8)

In the case where E−N ≤ 0 or equivalently ⟨k⟩ = 2E/N ≤ 2, the derivative is negative

regardless the value of B′. This means, for an observed network with an average degree

smaller than 2, the amount of information in data will not be sufficient to support any

modular structures2, and the most plausible partition is the one that puts all of the

nodes in a single group,

Bmax = min
Z
B′ = 1. (4.9)

When average degree ⟨k⟩ is larger than 2, setting the derivate in equation (4.8) equal

to zero gives

Bmax = x(⟨k⟩)
√
N, (4.10)

where x(⟨k⟩) is the solution of the following equation

⟨k⟩ − 2 = 2x2 ln
⟨k⟩+ x2

x2
. (4.11)

Although there is no analytic expression of x(⟨k⟩), it is clear that the solution x(⟨k⟩)
is a function of the average degree ⟨k⟩, which does not grow with the size of network

N . Therefore, the expression of Bmax in equation (4.10) implies the optimal number

of communities has an intrinsic scale at O(
√
N). This scaling is often referred as

the resolution limit and many community detection methods are found to suffer from

similar limits of the number of detectable communities. Empirically, the solution of

equation (4.11) is at the scale of O(
√
k), leading the entire scale of the resolution limit

to beO(
√
N⟨k⟩) = O(

√
E)3. When the correct number of communities B is larger than

Bmax in equation (4.10), we will not able to recover the correct partition by finding the

2We emphasis that our discussion here is restricted to the special “isolated cliques” networks only.
3We used the Newton-Raphson method [136] to obtain numerical estimates of the resolution limit

Bmax for datasets in the empirical network corpus to be analysed later in this chapter. Our results
support that the resolution limit of DC-SBM is roughly as the scale O(

√
E). We present the results of

approximated resolution limit in Appendix B.2.
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maximum a posterior solution. This is exactly what happens in the network of cliques

in Fig 4-1, where the numerical estimate of the resolution limit Bmax = 36.06, which is

smaller than the correct number of communities 64. With the resolution limit in mind,

we should be careful with the interpretation of the community structures inferred by

DC-SBM, since significant structures might remain undetected below the resolution

limit.

4.2 Models that do not suffer from the resolution limit

4.2.1 Nested DC-SBM

The Nested DC-SBM we introduced in Section 2.4 addresses the resolution limit prob-

lem of DC-SBM by replacing the uninformative prior of edge placement with a hierar-

chical prior. The hierarchical prior is more realistic compared to the non-uninformative

prior since it does not make any particular assumption about the connections between

communities. Instead, the hierarchical prior explicitly includes the connection pattern

at community-level as a part of the model. As a result, the structures inferred at higher

levels will serve as more appropriate priors for the inference of community structure at

bottom levels, leading to a better description of data.

We can try to deduce the limit of the inferred number of communities for Nested DC-

SBM, if any exists, just as we did for DC-SBM. In the network of cliques, following the

steps in [74], let the number of communities given by Nested DC-SBM be B′ ∈ [1, B]

and assume a uniform hierarchical division where at each level the number of groups

decreases by a factor σ, i.e. Bl = B′/σl. Then, the number of nodes in each level l is

Nl = Bl−1 = B′/σl−1 and the number of nodes in each group is nlr = Nl/Bl = σ. By

construction, the top level of the hierarchy should have one community with a single

node, which means B′L = 1. Therefore, the height of the hierarchy should satisfy

L = lnσ B
′. Then the hierarchical prior in equation (2.46) for the 64 cliques example

in Fig 4-1 is

P (e) =

L∏
l

P (el|el−1, bl−1)P (bl−1)

=

lnσ B′∏
l

B′/σl∏
r

((
σ(σ + 1)/2

2Eσl/B′

))−1

× σ!B
′/σl

(B′/σl−1)!

(
B′/σl−1 − 1

B′/σl − 1

)−1
1

B′/σl−1 − 1
.

(4.12)

Since the underfitting problem is more likely to occur in network with large number of
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communities, we are mainly interested in the regime where the number of communities

in the network is at the scale of the network’s size, i.e. B = O(N). Then, assume B ≫ σ

and σ is sufficiently large such that we can make use of the Stirling’s approximation,

making use of results in [63,74], lnP (e) has the following expression

lnP (e) ≈ −σ(σ + 1)

2(σ − 1)
B′ lnE, (4.13)

and hence the description length

lnP (A,k, e, q) ≈ (E −N) lnB′ − σ(σ + 1)

2(σ − 1)
B′ lnE. (4.14)

Differentiating the last equation with respective to B′ and setting the derivative equal

to zero gives the optimum number of communities

Bmax =
(σ − 1)(⟨k⟩ − 2)

σ(σ + 1)
× N

lnN
. (4.15)

This expression of Bmax implies that the scale of maximum number of detectable com-

munities for Nested DC-SBM is O(N/ lnN). Notice that the scale of this limit is not

only significantly larger than the limit of DC-SBM, but also compatible with the maxi-

mum number of communities N , since there is at most B = N groups in a network with

N nodes. Therefore, the Nested DC-SBM virtually resolves the underfitting problem

of DC-SBM and is able to find arbitrarily large number of communities as long as they

exist in data.

4.2.2 The planted partition models

Conducting inference with PP models as we explained in Chapter 3 also does not

have the resolution limit problem of DC-SBM [83]. The Nested DC-SBM solves the

underfitting problem by adopting a hierarchical prior, whereas PP models are free from

the problem even when a uninformative prior is used. This is because PP models have

less modelling parameters than general SBMs. Recall that DC-SBM allows B(B+1)/2

distinct values in its connection matrix for the number of connections between all

possible B(B + 1)/2 pair of groups. In comparison, the uniform PP model only takes

two parameters regarding the edge placements among communities, i.e. ein and eout.

As a result, the uninformative prior P (e) for the uniform PP model has less severe

penalty than that for DC-SBM. The prior for the uniform assortativity is the one in
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equation (3.54) and it has the following expression in the network of cliques

P (e) = P (e|ein = E, eout = 0, b)P (ein = E, eout = 0|b) =
E!

B′E ∏B
r (E/B′)!

1

(E + 1)δB′,1
.

(4.16)

Notice that this uninformative prior has a constant contribution to the description

length:

lnP (e) ≈ −E lnE. (4.17)

This reflects the fact that the uniform PP model only requires a constant number of

parameters to generate the edge count matrix e = {ers}. Hence, the description length

of the model with the use of the uniform planted partition prior has the following

expression

lnP (A, e,k, b(B′)) = (E −N) lnB′, (4.18)

which is simply an increasing function of B′ under the assumption B′ in [1, B]. There-

fore, the uniform PP model will not incorrectly merge cliques as DC-SBM does.
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Figure 4-2: Description length as a function of the number of communities obtained in the 64
cliques example in Fig 4-1. The DC-SBM suffers from the resolution limit underfitting problem,
merging every two cliques into a large group. In comparison, both the Nested DC-SBM and
the PP models are able to correctly identify 64 cliques.

Similarly, if we consider the non-uniform PP model, the prior for the edge count matrix

is then

P (e) = P (e|{err}, eout = 0, b)P ({err}, eout = 0|b)

=

((
B

E

))−1 1

(E + 1)δB′,1
.

(4.19)
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Compared to DC-SBM, the penalty caused by the uninformative prior reduces from a

quadratic function dependent on B′ to a term which is only linearly dependant on B′

with lnP (e) ≈ −(E + B′) lnE. The description length of the non-uniform PP model

of the network of cliques is

lnP (A, e,k, b(B′)) = (E −N) lnB′ − (E +B′) lnE, (4.20)

where the linear penalty term corresponds to the linearly growing modelling complexity

that comes from the {err} parameters. The maximum of the equation above is achieved

at

Bmax =
⟨k⟩ − 2

2 log⟨k⟩
N

lnN
, (4.21)

which has the scale at O(N/ lnN). This is again significantly larger than the reso-

lution limit of DC-SBM and is similar to that of Nested DC-SBM as we derived in

equation (4.15). In Fig 4-2, we show the result of fitting the DC-SBM, Nested DC-

SBM and uniform PP model to the 64 cliques network. Both Nested DC-SBM and PP

models correctly distinguish 64 cliques, while the DC-SBM places the optimum at a

partition with only 32 communities.

Having seen that Nested DC-SBM and PP models manage to get around the resolution

limit of DC-SBM in the network of cliques, it is natural to ask how DC-SBM differs from

non-underfitting models in practice. After all, real-world networks are rarely to have

structures that are as clear as the cliques example. Besides, it is not clear whether DC-

SBM still underfits when networks consist of non-assortative structures, or when the

true number of communities is below the resolution limit, and if so, to what extent DC-

SBM performs differently from non-underfitting models. It is not impossible that DC-

SBM actually provides similar results compared to non-underfitting models in empirical

networks, and that the underfitting problem we observed in synthetic networks is just

an extreme case with little practical relevance. To answer the questions above, we will

compare the results of DC-SBM to that of Nested DC-SBM and PP models using an

empirical network corpus.

4.3 Underfitting in empirical networks

We compare the performance of the DC-SBM to that of Nested DC-SBM as well

as PP models (uniform and non-uniform) by fitting them to a network corpus with

263 empirical networks. We constructed the corpus by gathering networks from the

Netzschleuder network dataset repository [7]. We collected every available network
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in the repository with a cut-off of the largest number nodes at 106. For datasets that

consist of multiple networks, we picked only one of them to avoid closely related network

samples. One exception is the Adolescent health dataset [137]. We included all of the

84 networks in this dataset into our network corpus, because there are no correlations

among these networks, which correspond to social networks of students in different

schools. As shown in Fig. 4-3, our network corpus spans a wide range of network sizes

and density (average degree), but with a majority of networks coming from the social

science domain. This skewed distribution of network domains prevents us from learning

the correlation between algorithmic behaviours and the source of network data, but it is

not a problem for our purpose of comparing the results of DC-SBM to non-underfitting

models. For each network, we consider its simple version (no self-loops and no multiple

edges) and focus on their largest connected component. When we fit models to our

network corpus, we find the MAP solution using the MCMC algorithm as explained

in Section 2.5. To fully explore the solution space, we ran the inference algorithm

for multiple times with different initial states and recorded the inferred community

structure that achieves the shortest description length. Our experiment was done with

the Balena high performance computing system at the University of Bath.

Unlike in synthetic networks where we know the correct community structures, under-

lying truth of structures in empirical networks are not only unavailable to us, but also

generally do not exist [135]. For this reason, we are not able to assess the underfit-

ting behaviour of models at an absolute level. Nevertheless, we can obtain evidence

of model’s tendency of underfitting at a relative level by conducting model selection.

In particular, we are interested in how the difference in description length between

DC-SBM and non-underfitting models relates to their difference in inferred number of

communities. The idea is that, following the connection between statistical inference

and data compression as we explained in Section 2.4.2, when DC-SBM finds a partition

with longer description length than that of a non-underfitting model, the difference in

description length is approximately the amount of structural information not being

captured under the parameterisation of DC-SBM. We say DC-SBM underfits relative

to non-underfitting models if its inferred community structure has longer description

length and smaller inferred number of communities than that of non-underfitting mod-

els. We emphasis that this definition consists of two parts - one regarding the differ-

ence in description length and the other regarding the number of inferred communities.

What we care is the disadvantage in description caused by the limitation of the model

which restricted its ability to detect statistically significant structure, although we are

only exploring the correlation here. According to this criterion, looking at the result of

fitting the network of cliques in Fig 4-2, we say DC-SBM underfits compared to Nested
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Figure 4-3: (a) The average degree ⟨k⟩ against the number of edges E in our network corpus.
(b) The distribution of network domains of datasets in our network corpus. Note that the 84
networks from the the Adolescent health dataset are counted as one contribution to the social
network domain in the histogram.

DC-SBM and PP models, because DC-SBM misses the chance of compressing data

(equivalently better quality of fit) by leveraging the existence of significant structure.

When comparing the results of PP models to that of Nested DC-SBM, we do not say

the latter underfits compared to the former, since they find exactly the same network

partition, despite the difference in description length between them.

To reveal how much DC-SBM underfits in our network corpus, we compare its inferred

number of communities in our network corpus to that of the Nested DC-SBM. Because

DC-SBM can be viewed as a special Nested DC-SBM with a single layer, Nested DC-

SBM should always perform at least as good as, if not better than, the single-layered

DC-SBM. What is not clear yet is the correlation between Nested DC-SBM’s advantage

over DC-SBM in the quality of fit, or equivalently the description length of data,

and their difference in the inferred number of communities. In Fig. 4-4, we plot the

difference in inferred number of communities between the DC-SBM the Nested DC-

SBM, BNested − BDCSBM, for each dataset in our network corpus. The x-axis is the

indices of networks which lists networks in the increasing order of their sizes (number of

edges). For networks with small sizes, the difference in inferred number of communities

between the two models is minor, so is the difference in the description length indicated

by the colouring of points. As the network size increases, there is a trend that Nested

DC-SBM resolves significantly larger number of communities, with differences being in

orders of magnitude. At the same time, the advantage of the nested model in description

length also grows as the sizes of networks become large. From Fig. 4-5 we can see clearly
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Figure 4-4: Inferred number of communities given by the Nested DC-SBM subtracted from
that given by the single layer DC-SBM. Networks indices are ordered in the increasing order
of network sizes (number of edges) and the colouring of points indicates the description length
difference: ΣDCSBM − ΣNested. The middle point of the colour map is ln 100 such that points
with reddish colouring should be interpreted as the Nested DC-SBM is significantly preferred
over the single-layered DC-SBM according to MDL.
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the positive correlation between the difference in inferred number of communities and

the difference in description length. The seemly power-law shape in Fig. 4-5 might be

explained by considering the analytical expression of ΣDCSBM − ΣNested in the clique

example in Section 4.1. By subtracting equation (4.10) from (4.15), we get

ΣDCSBM − ΣNested = −(E +B∗2)g

(
E

E +B∗2/2

)
+
σ(σ + 1)

2(σ − 1)
B′ lnE = O(E). (4.22)

Similarly, BNested −BDCSBM roughly have the following expression

BNested −BDCSBM =
(σ − 1)(⟨k⟩ − 2)

σ(σ + 1)

N

lnN
−
√
Nx(⟨k⟩) = O(N). (4.23)

The last two equation justifies the power-law shape we observed in Fig. 4-5. These

observations imply that DC-SBM systematically underfits in our network corpus, and

using Nested DC-SBM is able to resolve much more detailed structures.

One comment should be made to the Fig. 4-4 is that there is no correspondence between

the inferred number of communities B and the description length of the corresponding

network partition. Therefore, although we know the Nested DC-SBM should always

outperform the single-layer DC-SBM in terms of description length, this knowledge

does not imply that the former will always find more communities than the latter. In

our network corpus, there is only one such example in which Nested DC-SBM finds less

communities than the single-layer DC-SBM, corresponding to the only point landing

below the horizontal line y = 0 in Fig. 4-4. This example is the E. coli transcription

network [138] and we visualise the inferred communities in this network in Fig. 4-6.

The inferred number of communities for the Nested DC-SBM is 4 while that for the

single-layered DC-SBM is 5. Both of these two partitions are local optimum solutions

for both the nested and single-layer variants, but the hierarchical construction brings

more improvement in description length for the partition with less communities. This

indeed can happen in practice and it is just by chance that we only have one such

example in our network corpus.

Although PP models do not have the resolution limit of DC-SBM in the clique example

in Fig. 4-1, recall that PP models are restricted models and can only extract assortative

structures. Therefore, we should expect PP models to show advantage in terms of

resolving detailed structures only when the dominant patterns in data are assortative.

Otherwise, DC-SBM might find more communities but simply because it can identify

non-assortative structures which will be hidden from PP models. For instance, in

the top panel of Fig 4-7, we show the inferred community structures in the network
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Figure 4-6: Inferred community structures for the network of E. coli transcription. Legends
give the description length and inferred number of communities of the corresponding network
partitions. Constructing a hierarchical partition with the bottom level partition being the one
inferred by the single-layered DC-SBM has description length Σ = 2125.86, which is larger than
that of the result given by Nested DC-SBM.
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PP (non-uniform) DC-SBM
B = 4,Σ = 7665.66 (nats) B = 15,Σ = 7324.81 (nats)
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Figure 4-7: Top panel: inferred community structures in the network of the nematode C.
elegans [139]. Bottom panel: the edge count matrices of partitions inferred given by the non-
uniform PP model (left) and the DC-SBM (right).

84



of the nematode (roundworm) C. elegans [139]. In this network, non-uniform PP

model returns a partition with 4 communities while the DC-SBM finds 15. In the

bottom panel of Fig 4-7, we visualise the edge count matrices of inferred partitions

given by the two models. It is clear that the non-uniform PP model returns a typical

assortative structure with little variations in connections between distinct communities,

while the DC-SBM concludes a hybrid structure, consisting both of assortativity and

heterogeneous disassortativity.
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Figure 4-8: Inferred number of communities given by the non-uniform PP model subtracted
from that given by the single layer DC-SBM. Networks indices are ordered in the increasing
order of network sizes (number of edges) and the colouring of points indicates the description
length difference: ΣDCSBM − ΣPPM. The results for the comparison between the uniform PP
model and DC-SBM is similar and it is given in the Appendix B-2.

Therefore, when we compare the inferred number communities of DC-SBM to that of

PP models, it is not surprised to see that PP models generally return more conservative

results than DC-SBM, as shown in Fig 4-8. The difference seems to be a function of the

number of edges E, reflecting the fact that the number of detectable communities is a

function of
√
E for DCSBM or E for PP models. The colouring of points reflects the

difference in description length between the two models, indicating that assortativity is

often less plausible compared to the general pattern described by DC-SBM according to

the MDL principle. That means PP models often “underfits” data relative to DC-SBM,
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finding less communities than general SBMs, but in an expected way: PP models can

only identify assortative structures and fail to detect other kinds of structures, which

can be detected by general models. Nevertheless, as we are going to see in the next

section, in networks where the dominant pattern is indeed assortative, we find that PP

models are able to achieve better fit to data with higher-resolution network partitions

compared to general models.

4.4 Are PP models redundant?

Both PP models and Nested DC-SBM can address the resolution limit problem of

DC-SBM, but the former are restricted while the latter is more general with better

modelling capacity. In the network of cliques in Fig 4-1, although PP models achieve

shorter description length than Nested DC-SBM, they conclude the same partition

which corresponds to the correct structure. In addition, recall that in Section 3.3

we found PP models only achieve better fit to data in a minority of examples, i.e.

the political books and American college football in Fig. 3-5. In these two examples,

PP models only win by marginal advantage in terms of the description length and

the inferred partitions given by PP models and general SBM are very similar. These

observations promote the question that whether PP models are practically redundant

if our goal is to infer the structures in data rather than justifying assortativity. As we

we going to show, general models could actually “underfit” compared to PP models in

some empirical networks. That means, there exist empirical networks where PP models

achieve the best fit and their inferred network partitions have larger number of groups

than that of general models.

We firstly find the best fitting model among DC-SBM, Nested DC-SBM, and PP mod-

els according to the MDL principle for every dataset in our network corpus. In the

left panel of Fig. 4-9, we plot an indicator variable which represents the best fitting

model for each network. In the right panel of Fig 4-9 is a histogram showing the fre-

quency of each model being the best fitting model. Similar to what we have seen in

Section 3.3, Nested DC-SBM achieves the best fit to data most of the time, suggesting

that real-world networks often possess structures that are more general than simple

assortativity. In addition, Fig 4-9 shows that general models are more likely to be

the best fitting model in networks of relatively large size, reflecting by the distribution

of points along the x-axis. Interestingly, this time we find more examples where PP

models are preferred over general SBMs (32 examples this time compared to only 2

in Chapter 3). We will take a closer look at these examples and investigate how PP

models perform differently compared to general models.
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Figure 4-9: Frequency of models being selected as the best model according to the MDL
principle. Networks are indexed in the increasing order of number of edges as indicated in the
top axis. There are 25 networks in which all models agree on the lack of any modular structures
(i.e. B = 1) and we exclude them from the this histogram.

We find PP models achieve the best fit in 32 out of 263 networks. Among the 32

networks where PP models win, 12 of them are known to have bipartite structure.

In Table 4.1, we show the description length of each model. The uniform and non-

uniform PP model show almost identical results in these bipartite networks, achieving

shorter description length compared to general models. However, in fact, the difference

between PP models and general models is also minor, as can be read from Table 4.2

and Table 4.3, showing the inferred number of communities and the partition overlap

between each model variant and the best fitting model respectively. The only exceptions

are the first three networks in Table 4.2 : the south African companies [140], wikipedia

book edits [141] and plant-pollinator interaction at Safariland [142]. If we look at the

inferred number of communities in the top panel of Table 4.3, it seems that PP models

manage to resolve the bipartite structure in these three networks while general SBMs

fail.

However, much of information in the posterior distribution has been overlooked when we

only look at the MAP solution. If we draw samples from the the posterior distribution

of DC-SBM and record the inferred number of communities and the description length,

we observe that the difference between PP models and general DC-SBM is actually

not significant. General SBMs actually also acknowledges the bipartite structure as a
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PP (uniform) PP(non-uniform) DCSBM Nested DCSBM

South African companies 35.00 35.00 +1.37 +1.37
Wikipedia book edits 75.97 75.97 +0.38 +0.38
Plant-pollinator webs 106.52 106.52 +2.27 +2.27
Wiktionary edits 99.62 99.62 +3.82* +3.82*
CEO Club Memberships 258.41 258.41 +3.88* +3.88*
Elite affiliations 294.39 294.39 +3.92* +3.92*
American revolution 337.31 337.31 +4.39** +4.39**
Boards of directors 749.43 749.43 +4.54** +4.54**
Swingers and parties 746.50 746.50 +4.84** +4.84**
Kidnappings 1673.93 1673.93 +5.19** +5.19**
EU procurement contract +8.48* 10831.68 +2.96* +2.96*
Foursquare NYC restaurants +34.54** 93569.10 +8.81** +8.81**

Table 4.1: Description length achieved by models in a set of 12 bipartite networks where
PP models achieve better fit compared to general models. For best fitting models in
each network, the value of description length is provided in bold. For other models,
the difference between its description length and the best fitting model is shown. For
reference purpose, description length differences are marked with marked with one
asterisk ∗ if they are larger than ln 10 = 2.30 (bits) or two asterisks ∗∗ if larger than
ln 100 = 4.61 (bits).

plausible explanation of structures in these three networks4. Therefore, despite being

able to achieve better fit to data, the results of PP models are similar to general SBMs

in networks with bipartite structures.

When we restrict our analysis to unipartite networks, we find the uniform PP model is

the best fitting model for 7 networks. We show the description length, inferred number

of communities and partition overlap between each model variant and the best model

in Table 4.4 - 4.5. As can been seen from Table 4.4, uniform PP model only achieves

marginal advantage in terms of description length, except for the student coopera-

tion [143] and the American college football network [11]. We have seen in Section 3.3

the results of PP models and general SBMs are similar in the American college football

example. However, this is not the case in the student cooperation network. In Fig 4-10,

we visualise the communities found by different variants of SBMs in the student co-

operation network. In this example, PP models identify more communities with small

sizes by subdividing the communities identified by general SBMs. If we check from

the angle of posterior distribution5, in addition to the student cooperation network,

the uniform PP model also concludes very different results from general models in the

network of Illinois high school student and physician trust. Whereas in the other three

networks in the set of networks where the uniform PP model outperforms (the US

4Results are given in the Appendix Fig. B-3 and Fig. B-5.
5Results are given in the Appendix Fig. B-4 and Fig. B-6.
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PP (uniform) PP(non-uniform) DCSBM Nested DCSBM

South African companies 1.00 1.0 0.55 0.55
Wikipedia book edits 1.00 1.0 0.74 0.74
Plant-pollinator webs 1.00 1.0 0.74 0.74
Wiktionary edits 1.00 1.0 1.00 1.00
CEO Club Memberships 1.00 1.0 1.00 1.00
Elite affiliations 1.00 1.0 1.00 1.00
American revolution 1.00 1.0 1.00 1.00
Boards of directors 1.00 1.0 1.00 1.00
Swingers and parties 1.00 1.0 1.00 1.00
Kidnappings 1.00 1.0 1.00 1.00
EU procurement contract 0.97 1.0 1.00 1.00
Foursquare NYC restaurants 1.00 1.0 1.00 1.00

Table 4.2: The partition overlap between partitions given by each model and the best
fitting model. Notice that uniform PP model and non-uniform PP model produce
almost identical results. Regarding the comparison between general models and PP
models, their inferred partitions are the same in 9 out of the 12 networks in this set,
with exceptions being the first three small networks.

PP (uniform) PP (non-uniform) DCSBM Nested DCSBM

South African companies 2 2 1 1
Wikipedia book edits 2 2 1 1
Plant-pollinator webs 2 2 1 1
Wiktionary edits 2 2 2 2
CEO Club Memberships 2 2 2 2
Elite affiliations 2 2 2 2
American revolution 2 2 2 2
Boards of directors 2 2 2 2
Swingers and parties 2 2 2 2
Kidnappings 2 2 2 2
EU procurement contract 2 2 2 2
Foursquare NYC restaurants 2 2 2 2

Table 4.3: The inferred number of communities in the set of 12 bipartite networks
where PP models achieve the best fitting models.
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PP (uniform) PP (non-uniform)
B = 12,Σ = 1117.85 (nats) B = 10,Σ = 1123.40 (nats)

DC-SBM Nested DC-SBM
B = 5,Σ = 1149.58 (nats) B = 6,Σ = 1145.51 (nats)

Figure 4-10: Inferred community structures in a network of computer science student cooper-
ation [143]. The legends show the inferred number of communities as well as the description
length of the corresponding partitions.

contiguous state [144], Adolescent health No.76 [145], PDZ-domain interactome [146]),

the difference is not notable.

In comparison, in networks where the non-uniform PP model is the best fitting model,

the difference between PP models and general SBMs is more evident, as shown in Ta-

ble 4.7 - 4.9. Among these networks, there is a set of transportation and infrastructure

networks, including the road network of streets in Abbeville [147], Alaska [148], Eu-

rope [149] and the American western states power grid [150]. Note that the generating

process of these networks involve spatial constraints which are not incorporated in any

variant of SBMs we have considered here. However, being suboptimal for describing

these datasets does not prevent us from making comparison among them. In fact, it
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PP (uniform) PP (non-uniform) DCSBM Nested DCSBM

US contiguous states 377.17 +0.5 +0.43 +0.43
Adolescent health No.76 504.86 +0.7 +0.3 +0.3
PDZ-domain interactome 920.19 +0.63 +3.5* +3.5*
Student cooperation 1117.86 +7.14** +31.72** +27.65**
Illinois high school students 832.94 +4.41* +2.94* +2.94*
Physician trust 1728.93 +1.05 +0.56 +0.56
Football 1761.50 +1.63 +24.42** +19.80**

Table 4.4: Description length of models in the set of 7 networks where the uniform
PP model achieves the best fitting model. For best fitting models in each network,
the value of description length is provided in bold. For other models, the difference
between its description length and the best fitting model is shown. For reference
purpose, description length differences are marked with marked with one asterisk ∗ if
they are larger than ln 10 = 2.30 (bits) or two asterisks ∗∗ if larger than ln 100 = 4.61
(bits).

PP (uniform) PP (non-uniform) DCSBM Nested DCSBM

US contiguous states 1.0 0.86 0.88 0.88
Adolescent health No.76 1.0 0.53 0.53 0.53
PDZ-domain interactome 1.0 1.00 1.00 1.00
Student cooperation 1.0 0.80 0.44 0.52
Illinois high school students 1.0 1.00 1.00 1.00
Physician trust 1.0 0.86 0.86 0.86
Football 1.0 0.96 0.90 0.90

Table 4.5: Partition overlap between each model and the uniform PP model in a set of
7 networks where the latter is the best fitting model.

PP (uniform) PP (non-uniform) DCSBM Nested DCSBM

US contiguous states 2 3 2 2
Adolescent health No.76 2 1 1 1
PDZ-domain interactome 2 2 2 2
Student cooperation 12 10 5 6
Illinois high school students 4 4 4 4
Physician trust 2 2 2 2
Football 11 12 10 10

Table 4.6: The inferred number of communities in a set of 7 networks where the uniform
PP model is the best fitting model.
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PP (uniform) PP (non-uniform) DCSBM Nested DCSBM

Blumenau drug +0.62 634.30 +0.8 +0.8
Adolescent health No.1 +3.52* 704.07 +0.19 +0.19
Marvel partnerships +14.6** 1148.40 +5.62 ** +5.89 **
Freshwater stream webs +2.0 682.90 +2.34* +2.34*
Adolescent health No.6 +13.61 ** 1308.05 +1.16 +1.16
Abbeville city streets +8.03 ** 2461.24 +5.07 ** +6.17**
Political books network +30.19** 1337.69 +5.75** +5.75 **
Adolescent health No.67 +55.65** 4723.52 +34.04 ** +23.11 **
Euroroad +31.68 ** 8919.45 +8.66** +6.86**
Adolescent health No.27 +35.37 ** 15241.26 +248.4 ** +30.83**
Western US Power Grid +463.64 ** 51927.76 +870.71 ** +556.42 **
Roads in Alaska +8812.95** 568568.02 +8234.43 ** +531.96**

Table 4.7: Description length in a set of 13 networks where the non-uniform PP model is
the best fitting model. For best fitting models in each network, the value of description
length is provided in bold. For other models, the difference between its description
length and the best fitting model is shown. For reference purpose, description length
differences are marked with marked with one asterisk ∗ if they are larger than ln 10 =
2.30 (bits) or two asterisks ∗∗ if larger than ln 100 = 4.61 (bits).

PP (uniform) PP (non-uniform) DCSBM Nested DCSBM

Blumenau drug 0.84 1.0 1.00 1.00
Adolescent health No.1 1.00 1.0 1.00 1.00
Marvel partnerships 0.93 1.0 0.73 0.73
Freshwater stream webs 0.95 1.0 1.00 1.00
Adolescent health No.6 0.71 1.0 0.78 0.78
Abbeville city streets 1.00 1.0 1.00 1.00
Political books network 0.82 1.0 0.91 0.91
Adolescent health No.67 0.71 1.0 0.87 1.00
Euroroad 0.67 1.0 1.00 1.00
Adolescent health No.27 0.64 1.0 0.42 0.46
Western US Power Grid 0.75 1.0 0.57 0.69
Chicago road 0.68 1.0 0.44 1.00
Roads in Alaska 0.29 1.0 0.43 0.93

Table 4.8: Partition overlap between each model and the non-uniform PP model in a
set of 13 networks where the latter is the best fitting model.
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PP (uniform) PP (non-uniform) DCSBM Nested DCSBM

Blumenau drug 2 2 2 2
Adolescent health No.1 4 4 4 4
Marvel partnerships 3 4 3 3
Freshwater stream webs 2 2 2 2
Adolescent health No.6 4 4 5 5
Abbeville city streets 3 3 3 3
Political books network 2 4 3 3
Adolescent health No.67 10 8 7 8
Euroroad 3 4 4 4
Adolescent health No.27 46 49 17 24
Western US Power Grid 23 34 14 16
Chicago road 82 91 36 90
Roads in Alaska 29 131 25 112

Table 4.9: Number of inferred communities in in a set of 13 networks where the non-
uniform PP model achieves the best fit.

is an understandable result that the non-uniform PP model stands out in these cases.

These spatial networks can be easily divided into locally densely connected groups

which correspond to different spatial regions. As an example, we visuialise the inferred

communities in the American western state power grid [150] in Fig 4-11. Based on vi-

sual inspection, the partition given by the non-uniform PP model seems to largely agree

with that of the DC-SBM at a coarse-grained level. Both uniform and non-uniform

PP models manage to find more detailed structures (23 and 33 communities given by

uniform and non-uniform PP model respectively) with shorter description length of

data than general SBMs. Although Nested DC-SBM is able to make improvements

over DC-SBM, the inferred number of communities given by Nested DC-SBM is just

about a half of that of the non-uniform PP model (14 and 16 for DC-SBM and Nested

DC-SBM respectively), with a not negligible difference in the description length.

There are non-spatial networks where non-uniform PP model returns significantly dif-

ferent results from that of general SBMs as well. One example is the a social net-

work from the Adolescent health dataset [137]6. We demonstrate how the non-uniform

PP model differs from general SBMs by plotting the edge count matrices of their in-

ferred partitions. As shown in Fig. 4-12, all model variants agree on the dominance

of assortative structure in this network. The DC-SBM clearly underfits compared

to others, concluding a partition with only 17 communities. Using Nested DC-SBM

leads to a partition with 24 communities and a large reduction in description length,

from ΣDC-SBM = 15489.66 (nats) to ΣNested = 15272.09 (nats). However, the non-

uniform PP model manages to find an even more detailed partition with 49 commu-

6This is the 27th network in the dataset.
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PP (uniform) PP (non-uniform)

B = 23,Σ = 52391.40 (nats) B = 33,Σ = 51927.76 (nats)

DC-SBM Nested DCSBM

B = 14,Σ = 52798.47 (nats) B = 16,Σ = 52482.17 (nats)

Figure 4-11: Inferred community structures in the American western states power grid net-
work [150] given by PP models, DC-SBM and Nested DCSBM. Nodes are transforms or power
relay points and edges represent power transmission relationship.
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Figure 4-12: Edge count matrices of inferred partitions of the No.27 network from the Adoles-
cent health dataset [137] given by PP models, DC-SBM and Nested DC-SBM. The legends show
the inferred number of communities B and description length of the corresponding partitions.
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nities and achieve the shortest description length of data among all model variants,

Σnon-uniform PP = 15241.25 (nats). In other words, the Nested DC-SBM “underfits”

compared to the non-uniform PP model in this example, despite the former being

known to not have the underfitting problem. Although it is debatable whether PP

models’ advantage in description length is significant enough to completely reject gen-

eral models, it is clear that the non-uniform PP model manages to find a more refined

partition of the network, which is not less plausible than that given by general models.

Although Nested DC-SBM seems to be the most powerful variant with the most so-

phisticated construction, PP models demonstrate its ability of achieving the best fit if

the dominant pattern in networks are assortative, or if the true network generating pro-

cess significantly deviates from the process described by SBMs (e.g. spatial networks).

Therefore, in practice, when we have no prior knowledge about the network, we might

just try each of model variants available to us and select the one with the shortest

description length. As a result, far from being redundant extensions, PP models are

important complement to the general models since they have the potential of providing

extra insight into data.

4.5 The underfitting and overfitting behaviour of modu-

larity maximisation

4.5.1 Underfitting in synthetic networks

The modularity maximisation approach also has the problem of underfitting data. As

a result, modularity maximisation has its own resolution limit [51]. The resolution

limit of modularity maximisation is commonly demonstrated by considering a network

consisting of a ring of cliques, as shown in Fig. 4-13. Each clique has only two edges

connecting them with two neighbouring cliques. Because the connections within each

cliques are much denser than that between distinct cliques, it is intuitive to expect

community detection algorithms to assign each clique into its own group. However,

the maximum modularity approach favours the partition that merges every two neigh-

bouring communities together. We can obtain an estimate of the resolution limit of

modularity maximisation just as we did for SBMs. Consider a special set of partitions

in which cliques are merged into equal-size groups. For these network partitions, we

have er = (2E − B)/B and err = 2E/B. Then, the modularity measure of these spe-

cial network partitions defined in equation (3.29) becomes a function of the number of
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(a) (b)

B = 24, Q = 0.867 B = 12, Q = 0.871
ΣPP (unif) = 942.18 (nats) ΣPP (unif) = 969.96 (nats)

Figure 4-13: Two different partitions of a ring of cliques network with 24 cliques of size 5.
Colouring of nodes indicates the corresponding network partition. Legends show the corre-
sponding number of communities B, modularity value Q and the description length of the
uniform PP model.

communities:
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E
− 1

B
.

(4.24)

Treating B as a continuous variable and setting the derivative with respect to B to

zero gives

Bmax =
√
E. (4.25)

This means the modularity maximisation has a resolution limit which is at the same

scale O(
√
E) as the DC-SBM. In comparison, we have seen in Section 4.2 that PP

models do not have the resolution limit problem. In this ring of cliques example, the

correct partition indeed has a shorter description length than the merged partition

according to the uniform PP model, shown in the legends in Fig 4-13.

Recall that the generalised modularity we introduced in Chapter 3 was proposed to

address the resolution limit problem of modularity maximisation. The generalised
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modularity Qγ for partitions that merge cliques together has the following expression

Qγ(B) = 1− B

E
− γ

B
. (4.26)

Then the optimal number of communities becomes

Bmax =
√
γE. (4.27)

With this estimate of the resolution limit in mind, it was argued that we can resolve

detailed structure which would have been blinded from the original modularity by

adjusting the resolution parameter γ to some values larger than one [53].

Unfortunately, the generalised modularity Qγ is not an ideal solution for two reasons.

Firstly, the resolution limit parameter is an extra input required by the algorithm and

this information is usually unavailable in practice. The author in [57] argued that

we can estimate the value of the resolution parameter γ by exploiting the connection

between modularity and the uniform PP model. That means, we might use the γfit as

defined equation (3.70), which reads as

γfit =
λin∗ − λ∗out

lnλ∗in − lnλ∗out
, (4.28)

where λ∗in, λ
∗
out are maximum likelihood estimators of the λin and λout parameters of

the uniform PP model. However, as we have explained in Section 3.1, the connection

between modularity and uniform PP model does not hold in general. Therefore, there

is no reason to believe that estimating γ with γfit is better than other arbitrary choices.

Secondly, the generalised modularity measure Qγ can only search for structures at one

single resolution at a time. Nevertheless, real-world networks often posses structures

which vary in size, thereby exhibiting structures at multiple resolutions at the same

time [14,52]. Lancichinetti and Fortunato [54] demonstrated the deficient performance

of generalised modularity in networks with heterogenous distribution of community

sizes. If the resolution limit parameter strongly biases toward high-resolution struc-

tures, then significant structures of large size will be mistakenly split into small com-

munities in order to accommodate the subjective bias. As a concrete example, we

generate a synthetic network consisting of two small and one large communities. The

two small communities are cliques of size 10, while the large one has 512 nodes with

internal edges being randomly placed such that its average is 10. In Fig 4-14, we show

the inferred community structures given by maximising the generalised modularity Qγ

with varying values of the resolution limit parameter γ. When γ = 1, the two small
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(a) γ = 1, B = 7 (b) γ = 0.8, B = 5

(c) γ = 0.7, B = 3 (d) γ = 0.6, B = 2

Figure 4-14: Inferred community structures in a synthetic network with three communities
of different sizes, using the generalised modularity Qγ with varying values of the resolution
parameter γ. Legends give the values of γ as well as the corresponding inferred number of
communities.

cliques are correctly identified, while the third large community is mistakenly divided

into several sub-communities. Decreasing the value of γ introduces bias toward par-

titions with large-size communities. However, before all of the sub-communities in

the large community are correctly merged together, the two small cliques are grouped

into a larger group. In fact, Lancichinetti and Fortunato showed in [54] that there is

no a single value of γ that allows detection all of three communities in this synthetic

example.

The undesired performance of the generalised modularity in networks with unequal

communities is understandable: The underlying model of modularity maximisation is

the uniform PP model, which is restrictive to regular assortative structures. However,

we point out that the tendency of splitting the large community in the last example is

not only due to the restrictive nature of the underlying model, but also due to the fact

that statistical significance of inferred partitions is not properly taken into account.
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(a) PP (uniform) (b)PP (non-uniform)

B = 1,Σ = 22238.18 (nats) B = 3,Σ = 21820.82 (nats)

Figure 4-15: Inferred community structures in a synthetic network with three communities of
different sizes, using the uniform and non-uniform PP models. Legends give the corresponding
description length Σ of data and inferred number of communities.

For this reason, the generalised modularity Qγ suffers from the overfitting problem7

just as the original modularity does. For comparison, we fit the uniform PP model to

this example and the most plausible partition is the one assigning all of the nodes into

a single group, as shown in 4-15(a). Although this is still not recovering the correct

structure, we know the uniform PP model is insufficient to describe the structure in

this network, and replacing the uniform PP model with the non-uniform PP model can

successfully identify all of three communities with a shorter description length than

the trivial partition given by the uniform PP model (see Fig 4-15(b)). Therefore, the

non-uniform PP model is generally better than its uniform counterpart as well as other

modularity-based methods, because it not only fixes overfitting and underfitting at

once, but also enables the detection of multiple-resolution assortativity.

4.5.2 Underfitting in empirical networks

We also want to know whether modularity maximisation underfits in empirical net-

works and whether underfitting could happen below the O(E) scaling of the resolution

limit. We apply modularity maximisation to the network corpus we have considered

in Section 4.3. We only compare the modularity maximisation to Bayesian inference

with the uniform PP model since these two methods share the same underlying model.

In Fig 4-16, we plot the difference in the inferred number of communities between the

uniform PP model and modularity maximisation, Bppm −Bmodualrity, for each dataset

in our network corpus. We find that modularity maximisation finds larger number

7Here we abuse the term “overfitting” to refer to the fact that generalised modularity finds exag-
gerated results, while more strictly we say a method overfits if it returns structures in fully random
networks.
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Figure 4-16: Difference in the inferred number of communities between the uniform PP model
and the modularity maximisation approach, i.e. BPPM(unif) − BModularity. The colouring of
the points indicates the difference in the description length ΣModularity−ΣPPM(unif), where the
description length of the partition given by modularity maximisation is computed using the
same expression as the uniform PP model.

of communities than that of the uniform PP model in over a half of networks in our

dataset (194 out of 263). This result does not contradict our previous analysis that

modularity maximisation underfits while uniform PP model does not, because the par-

titions given by modularity maximisation are less plausible than that of the uniform

PP model as indicated by the description length difference in the colorer on the right.

The synthetic example in Fig 4-14 already hints us about why the inferred number of

communities given by modularity maximisation outnumbers that of the uniform PP

model: modularity maximisation lacks of proper regularisation and therefore has the

tendency of returning exaggerated results.

To further illustrate the extent to which modularity maximisation overfits, we extend

our experiment with the protein-protein interaction example in Section 3.3 to all net-

works in our network corpus. We apply the modularity maximisation approach to

networks in our corpus as well as their randomised counterparts, which are generated

from the configuration model. As shown in Fig 4-17, modularity maximisation returns

spurious communities in random networks. For comparison, the uniform PP model

correctly concludes that there is no structures. Moreover, in Fig. 4-18 (a), we plot
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Figure 4-17: Inferred number of communities in randomised networks, using (a) modularity
maximisation (b) uniform PP model. The results of DC-SBM, Nested DC-SBM and non-
uniform PP model are given in Appendix B-7.

the inferred number of communities given by modularity maximisation in the original

networks against that in randomised networks. There is a strong correlation, indicating

that a non-negligible portion of the modular structures detected in the original net-

works can be simply explained by the degree sequence of nodes. Similarly, Fig. 4-18 (b)

shows the overfitting behaviour of modularity maximisation from a different perspec-

tive: even in randomised networks, modularity maximisation always finds partitions

with positive modularity values, and the modularity values found in original networks

seems to be positively related to that in randomised networks.

Having seen that modularity maximisation systematically overfits in our network cor-

pus, we expect that modularity maximisation runs into the underfitting problem with

a large chance in those cases where its inferred number of communities is smaller than

that of the uniform PP model. This is because modularity maximisation’s tendency of

overfitting makes it more likely to return more communities than what actually exists in

data. In comparison, Bayesian inference with the uniform PP model is generally more

conservative and should be closer to the correct structure, if any existed, according to

the minimum description principle. As a result, seeing that generally exaggerated mod-

ularity maximisation outnumbers the conservative uniform PP model is a strong sign of

underfitting problem occurring to modularity maximisation. From Fig 4-16, we can see

the underfitting problem of modularity maximisation is more severe in networks with

larger sizes. Moreover, we identify networks where modularity maximisation underfits

relative to the uniform PP model, and plot the inferred number of communities given
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Figure 4-18: (a) Inferred number of communities given by modularity maximisation in the
original network as a function of that obtained in the randomised network for every dataset in
our network corpus. The grey line is the identity function y = x. (b) Modularity values found
in original networks against that of randomised networks.

by the latter in Fig 4-19. It turns out that the inferred number of communities given

by the uniform PP model are often not close to the O(
√
E) scale of the resolution limit

of modularity maximisation. Although we should not treat the results of uniform PP

model as the underlying truth, this observation provides strong evidence that modu-

larity maximisation could suffer from the underfitting problem even when the number

of communities are below its resolution limit.

4.6 Concluding remarks

By analysing a large empirical network corpus, we confirm that the underfitting problem

of DC-SBM is widespread. Specifically, we find that there exists a positive correlation

between the difference in inferred number of communities and the difference in descrip-

tion length between the single-layer and Nested DC-SBM. Using Nested DC-SBM gen-

erally allows us to extract more detailed structures compared to DC-SBM. Although the

PP models do not have the underfititng problem, since they are assortative-constrained

variants and most real-world networks have more general community structures, PP

models often find more conservative results compared to general models. Therefore,

when it comes to characterising different community detection algorithms, it is impor-

tant to keep in mind that algorithms designed for different structures might intrinsically

have different behaviours. When assortativity is the dominant pattern in data, we find

several examples where PP models reveal notably different results compared to general

SBMs. Our results suggest that PP models are important extension of the existing col-
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Figure 4-19: Inferred number of communities found by the uniform PP model in networks where
BPPM(unif) − BModularity > 0. The grey dashed line is the resolution limit of the modularity

maximisation approach
√
E.

lection of network models, since they have the potential of providing extra insight into

data. In general, we expect Nested DC-SBM to be a good starting point for identifying

large-scale community structures in networks. If the network of interest is relatively

small and sparse, then it is worth considering simpler models like DC-SBM and PP

models. If we are only interested in assortative structures, then PP models should be

the preferred over general models.

Modularity maximisation suffers from the overfitting and underfititng problem at the

same time. Even though the underfitting problem of modularity maximisation is often

covered by its overfitting behaviour, we find evidence that modularity maximisation

could underfit in practice, even when the number of communities is below the theoret-

ical estimate of resolution limit. Adapting the generalised modularity does not solve

the problem, since the resolution limit parameter is generally unknown and it does

not address the tendency to overfit data. Our PP models are better alternatives for

extracting assortative structures, because they address the overfitting and underfitting

problem at once, and the non-uniform PP model is able to detect assortative structures

at multiple resolutions without the need for any ad-hoc parameter.
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Chapter 5

Detectability of community

structures in SBMs

Although Nested DC-SBM and PPMs assure us that significant structures will not be

missed, it is worth pointing out that there exists a fundamental limit of community

detection in networks generated from SBMs. This limit was firstly demonstrated by De-

celle et al. in [65], where a phase-transition phenomenon was discovered in community

detection: there exists a non-trivial threshold of the strength of community structure.

Below the threshold, SBMs are in an undetectable phase, in which no polynomial com-

munity detection algorithms can do better than random guessing. In other words, even

in networks that contain community structures, we might still not be able to recover

the structures, unless their strength are sufficiently strong. This result was revealed

by analysing the stability of the belief propagation algorithm - a semi-parametric al-

gorithms for computing the marginal distribution of variables on graphs. The belief

propagation algorithm allows Decelle et al. to demonstrate the detectability phase-

transition phenomenon via numerical simulations, which has been rigorously proved

for networks with two equal-sized communities [59,67].

Knowing the existence of the detectability phase-transition affects the way we interpret

the results of community detection. Intuitively, if fitting a SBM to an observed network

leads to a trivial partition where every node is in a single group, we might conclude that

there is no community structure in the network and edges are just randomly placed

among nodes. However, having been told that there is an undetectable phase of SBMs,

we should adjust our conclusion. When applying the inference approach with SBMs

finds no communities, it is possible that certain structure exists, but its strength is
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below the detectability threshold.

The detectability phase-transition in community detection was firstly reported in net-

works where every community is assumed to share the same average degree [65]. There

were a series of following works that studied the detectability of community detection

under different, arguably more realistic conditions. In [70], the authors considered a

semi-supervised setting where the correct labels of a fraction of nodes are provided

as side information for the inference. In the semi-supervised learning setting, it turns

out the phase-transition phenomenon disappears. That means, as long as community

structures exist, we can find network partitions that are well-correlated to the correct

structures, no matter how weak the structures are. The detectability phase-transition

also disappears in networks with asymmetric communities [68,69]. Asymmetry of com-

munities affects the detectability of community structure via the average degree of

nodes: If nodes in different communities have different average degrees, then the aver-

age degree can be leveraged to facilitate the inference when the strength of community

structure is weak. These studies around the detectability phase-transition not only

have deepened our understanding of the limitation of community detection in practical

applications, but also have provided guidance for the development of novel detection

algorithms [151].

All of the aforementioned works are restricted to networks with homogenous degree

distribution. However, degree distribution in real-world networks are usually heteroge-

neous. Therefore, previous results have provided limited insight into the fundamental

limit of community detection in realistic scenarios. In [72], Guilders et al. provided

rigorous proof of the detectability of community structures in networks with heteroge-

neous degree distribution in SBMs. It turns out that the detectability threshold will

decrease as the heterogeneity in degree distribution increases. The positive part of this

detectability results is later confirmed in [152] where a spectral algorithm was shown

to recover planted structures up to the theoretical detectability threshold. However,

the analysis in [72] has only considered networks with two communities and is hard to

be generalised to general cases where networks contain more than two communities. It

has been shown that the detectability phase-transition phenomenon can be significantly

different when it comes to networks with more than two communities in homogeneous

case [65, 68]. In this Chapter, in order to explore the detectability phase-transition

phenomenon in more general cases, we consider an alternative approach for studying

the detectability phase-transition. In particular, we apply the belief propagation (BP)

algorithm for DC-SBM to networks with customised heterogeneous degree distribu-

tions. Our numerical results confirm the effect of the heterogeneous degree distribution
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on the detectability of community structures: as the heterogeneity in degree distribu-

tion increases, we find that planted structures become more detectable in the sense

that the area of undetectable phase shrinks. Our results and modified algorithm shall

serve as the stepping stone to further investigation of detectability phase-transition in

more general settings, e.g. in networks with more than two communities or asymmetric

degree distribution.

Following this introduction, in Section 5.1, we introduce the BP algorithm for the

Bernoulli SBM. In Section 5.2, we apply the algorithm to demonstrate the detectabil-

ity phase-transition when the degree distribution is homogeneous. In Section 5.3, we

explain our experiment for studying the effect of heterogeneity of degree distribution

on detectability and present our numerical results.

5.1 Belief propagation

Studies of phase-transition phenomenon in community detection often relies on the

belief propagation (BP) algorithm [94]. BP is a message-passing method that provides

estimate of the marginal distribution of variables in graphs. By applying BP to the

inference of SBMs, one can obtain the the marginal posterior distribution of the group

assignment of each node u,

P (bu = r|A) =
∑
b\u

P (b|A) := qur . (5.1)

The marginal estimator given by this marginal distribution

b∗u = argmax
r

qur (5.2)

is the optimal estimator in terms of the number of nodes being correctly labeled [153].

Although the MCMC algorithm we introduced in Chapter 1 can provide estimate of

the marginal posterior distribution as well, BP is more efficient because it computes

the marginal distribution {qur } directly, while MCMC relies on drawing large amount of

samples. In the following, we define the BP algorithm for the inference of the Bernoulli

SBM, which will be used to illustrate the detectability phase-transition.

Recall that the Bernoulli SBM takes the probability of connections among communities

{prs} ∈ RB×B
[0,1] as input. Furthermore, we assume nodes are independently assigned into

one of {1, 2, .., B} groups according to a prior distribution {ηr} with
∑B

r ηr = 1. Then

we go through all possible pairs of nodes in the network, place an edge between a pair
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of nodes u and v with probability pbubv . The probability of generating an observed

network A, together with the network partition b, is then

P (A, b|{ηr}, {prs}) =
∏
u

ηr
∏
u<v

pAuv
bubv

(1− pbubv)1−Auv . (5.3)

Because real-world networks are usually sparse, we assume the probabilities prs are

in the order of O(1/N), such that networks generated from the model do not become

denser as the size of networks increases. It is therefore convenient to work with the

rescaled connection matrix {crs}, where each entry crs satisfies crs = prsN , hence

having a scale at O(1). We will further assume that we know the true modelling pa-

rameters {crs}, {ηr}, and the number of communities B. Then, the task of community

detection is simply to decide how to assign nodes into {1, 2, .., B} groups according to

the observed network A. This assumption that we have access to the underlying data

generating process might not seem realistic. Indeed, we rarely have knowledge about

how our data is generated in practice1. However, assuming we know the generating

process is useful for the purpose of understanding the fundamental limit of the detec-

tion problem. If we are not able to do well in this kind of best-case scenario, there

is no reason to believe we can do better when the true modelling parameters are not

available.

The BP algorithm consists of recursively computing a set of BP equations that are

satisfied by the conditional marginal distributions, or messages. Messages are defined

for all possible interactions among nodes. For any two nodes u and v in the network,

the message sending from node u to v conveys the probability of node u belonging to

one of the B communities, when node v is removed from the network (or equivalently

when we do not know whether u and v are connected). We motivate the definition of

messages for the Bernoulli SBM below and refer to [94] for further details. Our goal

is to compute the marginal probability

P (bu|A) =
∑
b\u

P (b|A) ∝
∑
b\u

P (A, b|bu = r)P (bu = r). (5.4)

Under the conditionally independent assumption which states that neighbours of a node

u are independent with each other conditioned on the label of node u, the likelihood

term P (A, b|bu = r) can be arranged into factors. Each factor consists of marginali-

sation of nodes in the branch where the starting point of the branch is a neighbour of

1We can still conduct inference of SBMs even when we have no knowledge about the parameters
used to generate the data by adopting the expectation-maximisation procedure [65], where BP can
provide estimates in the expectation step.
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node u. In particular, we might rewrite the last equation as follows

P (bu|A) ∝ P (bu = r)
∏
v∈∂u

[ ∑
bw:w∈B(v)

(∏
w

P (bw)
∏

i<j:i,j∈B(v)
P (Aij , bi, bj |bu = r)

)]

= ηr
∏
v∈∂u

[ ∑
bw:w∈B(v)

( ∏
w∈B(v)

ηbw
∏

i<j:i,j∈B(v)
c
Aij

bibj
(1− cbibj/N)1−Aij

)]
, (5.5)

where B(v) represents the set of nodes in the branch starting with node v. Then,

in the square bracket in the last equation, we further rearrange the summation by

leveraging the conditionally independent assumption. We can explicitly write out the

marginalisation with respect to v, i.e. the set of neighbours of node u, and let µv→u
r

denote the messages, which are obtained by marginalising over neighbours of node v

except for node u. Then, the expression in the last equation becomes

P (bu|A) ∝ ηr
∏
v∈∂u

[
B∑
s=1

µw→u
s cAuv

rs

(
1− crs

N

)1−Auv

]
. (5.6)

To obtain P (bu|A), we just to need to update the values of messages {µu→v
r } recursively,

with each message having the following expression

µu→v
r =

ηr
Zu→v

N∏
w∈∂u\v

[
B∑
s=1

µw→u
s cAuv

rs

(
1− crs

N

)1−Auv

]
, (5.7)

where Zu→v is the normalising constant ensuring
∑

r µ
u→v
r = 1.

The conditional independence assumption holds if the network contains no cycles, which

are also referred to as trees. Although this requirement seems difficult to be satisfied in

practice, BP is approximately exact in locally tree-like networks [65]. Locally tree-like

means the typical length of cycles in the network is large, such that the neighbourhood

of any nodes in the network looks like a tree. Networks generated from SBM are locally

tree-like, because in the sparse regime where the probabilities between any pair of nodes

are in the order of O (1/N), the typical length of a cycle L in the network is in the

order of logN . To see this, firstly consider the probability of forming a cycle of length

3 containing node u,

pu3 =
N∑

v ̸=u

puv

N∑
w ̸=u,v

pvwpwu =
∑
v ̸=u

puvO
(⟨k⟩
N

)
= O

(⟨k⟩2
N

)
. (5.8)

The second and third equal signs in the last equation make use of the assumption that
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every node has the same expected degree ⟨k⟩ =
∑

v puv =
∑

v pwv
2. According to the

expression of pu3 above, the density of cycles of length will be vanishingly small as the

size of network becomes large. More generally, the probability of forming a cycle of

length L has the following expression

puL = O
(⟨k⟩L−1

N

)
(5.9)

and such probability will not vanish as long as ⟨k⟩L−1 = O(N), which implies that

L = O(log⟨k⟩N). Therefore, the length typical cycles in networks generated from

SBMs will grow as the size of networks increase, making neighbourhoods of nodes

locally-treelike and hence we can apply BP to make inference of SBMs.

The BP messages defined in (5.7) leads to a series of equations which can be solved

iteratively. The estimate of marginal distribution {qur } is then given by

µur =
ηr
Zu

N∏
w∈∂w

[
B∑
s=1

µw→u
s cAuw

rs

(
1− crs

N

)1−Auw

]
. (5.10)

However, there is a practical issue in computing BP equations in (5.7). Recall the

generating process of SBMs, there are interactions between every pair of nodes in the

network. As a result, there are in total N(N − 1) = O(N2) messages to update in each

round of iteration, which is prohibitively expensive to track. We can get around this

issue by noticing that all the messages on non-edges are in fact identical, except for

an error up to the order O(1/N). To see this, consider u and v are not connected and

we split the product in the message µu→v
r into two parts, one for interactions along

observed edges and the other for non-edges. The message µu→v
r in equation (5.7) then

becomes

µu→v
r =

ηr
Zu→v

( ∏
w/∈∂u

B∑
s

µw→u
s

(
1− crs

N

))( ∏
w∈∂u

B∑
s=1

µw→u
s crs

)

=
ηr

Zu→v

( ∏
w/∈∂u

1−
B∑
s

µw→u
s

crs
N

)( ∏
w∈∂u

B∑
s=1

µw→u
s crs

)

≈ ηr
Zu→v

exp
(
−
∑
w

∑
s

µw→u
s

crs
N

) ∏
w∈∂u

B∑
s=1

µw→u
s crs +O

(
1

N

)
, (5.11)

where ∂u is the set of neighbouring nodes of u. In the last equation, we make use

2Indeed, when it comes to networks with heterogeneous degree distribution, extra care is needed for
verifying the validity of BP. This will be discussed later in Section 5.3
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of the approximation e−x ≈ 1 − x when x is sufficiently small. The approximation

in equation (5.11) suggests that the messages on non-edges are independent of the

destination node. On the other hand, if u and v are connected, then the message is

indeed dependent on the destination node v,

µu→v
r =

ηr
Zu→v

( ∏
w/∈∂u

1−
B∑
s

µw→u
s

crs
N

) ∏
w∈∂u/v

B∑
s=1

µw→u
s crs

 . (5.12)

With the observation above, we can rewrite the BP equations defined in (5.7) as follows

µu→v
r =

ηr
Zu→v

e−hr
∏

w∈∂u/v

∑
s

crsµ
w→u
r . (5.13)

with terms up to order O(1/N) being ignored. The exponent hr has the following

expression

hr =
1

N

N∑
w

B∑
s

µws crs, (5.14)

which is easy to track, since it only requires O(1) computation to update. After each

time µws is updated, the hr should be adjusted as follows

hnewr = holdr −
∑
s

(µws )oldcrs +
∑
s

(µws )newcrs. (5.15)

And the final estimate of {qru} is given by

µur =
ηr
Zu

e−hr
∏
w∈∂u

∑
s

crsµ
w→u
r . (5.16)

As a result, we only need to record in total 2E messages and each message requires

O(⟨k⟩B) computations. For sparse networks in which the average degree is significantly

smaller than the size of the network, i.e. ⟨k⟩ ≪ N and the degree distribution of nodes is

homogeneous, the total time complexity is O(E), which is highly scalable for networks

of large size. We summarise the BP algorithm for the Bernoulli SBM below. In the

next section, we apply this algorithm to demonstrate the detectability phase-transition

in community detection.
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Algorithm 5.1: BP inference for Bernoulli SBM

1. Initialise {µu→v
r } for every edge (u, v) in E

2. Compute {µur} according to equation (5.16) and the {hr} according to equa-

tion (5.14)

3. For every edge (u, v) ∈ E , update µu→v
r according to equation (5.13), then the

message µvr according to equation (5.16), and the {hr} according to (5.15)

4. Repeat step 3 until convergence

5.2 Detectability phase-transition in factorised SBMs

The detectability phase-transition in community detection was firstly demonstrated in

networks where the factorised condition holds. The factorised condition states that the

average degree of each community are identical. That means,

⟨k⟩ =
B∑
a

craηa =
B∑
b

csbηb, ∀r, s ∈ {1, 2, .., B}. (5.17)

The name of this condition comes from the fact that the prior probability η = {ηr} of

network partition b is always a fixed point of belief propagation equations. Indeed, if

we substitute µu→v
r = ηr into belief propagation equations in (5.13), with the factorised

condition in equation (5.17),

µu→v
r =

ηr
Zu→v
u

e−hr
∏

w∈∂u/v

(∑
s

crsµ
w→u
r

)
=

ηr
Zu→v

e−⟨k⟩⟨k⟩ku−1 ∝ ηr. (5.18)

In the literature, a fixed point where messages are independent of their source and

destination nodes is called a factorised fixed point. This is where the name of the

condition comes from. A SBM satisfies the fixed point condition is called a factorised

SBM.

When the factorised fixed point is the correct marginal distribution, community de-

tection is in principle impossible in the sense that we are not able to make better

decision than guessing the labels of nodes according to the prior distribution {ηr}.
Community structures are only detectable when the factorised fixed point becomes un-

112



0.0 0.2 0.4 0.6 0.8 1.0
0.5

0.6

0.7

0.8

0.9

1.0

Pa
rti

tio
n 

ov
er

la
p

Undetectable

0.0 0.2 0.4 0.6 0.8 1.00

100

200

300

400

500

Co
nv

er
ge

nc
e 

tim
e

(a) (b)

Figure 5-1: (a) Partition overlap and the (b) convergence time of BP as a function of the
strength of community structure. Here, networks are generated with N = 105 nodes, B = 2
communities, and the average degree ⟨k⟩ = 10. The vertical dashed line corresponds to the
estimated position of critical point ϵ∗ = 1/

√
⟨k⟩.

stable, and other fixed points which are correlated with the correct structure emerge.

To demonstrate the detectability phase-transition phenomenon, we generate networks

from the Bernoulli SBM and apply the BP algorithm we introduced in the last section.

We restrict to networks with assortative structures by imposing the planted partition

constraint

prs = pinδrs + pout(1− δrs). (5.19)

To control the strength of assortativity, we further parameterise the parameters pin and

pout as follows

pin =
(1 + (B − 1)ϵ)⟨k⟩

N
, pout =

(1− ϵ)⟨k⟩
N

. (5.20)

The assortativity parameter ϵ takes values in the interval [0,1]. If ϵ = 0, the probability

of an edge is the same across the entire network, p = pin = pout, then the resulted

networks are random networks with no community structures. Whenever the assorta-

tivity parameter ϵ > 0, networks generated from the Bernoulli SBM contain assortative

structures, because the probability of an edge inside communities is larger than that

between distinct communities.

In Fig. 5-1, we show the results of applying the BP algorithm to synthetic networks with

N = 105 nodes, average degree ⟨k⟩ = 10, B = 2 communities and different strengths of

assortativity. We measure the quality of inference by computing the partition overlap
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between the correct structure b∗ and the inferred partition b, which is defined as

overlap(b∗, b) = 1− d(b∗, b) =
1

N
max
ϕ

∑
u

δb∗u,ϕ(bu), (5.21)

where d(b∗, b) is the partition overlap distanced in equation (3.74) and ϕ(r) is a bijection

between the group labels of b and b∗. The partition overlap for the trivial partition

btrivial which randomly assigns nodes according to the prior distribution η is

overlap(b∗, btrivial) =
1

N

∑
u

( ∑
b∗u=0,1

∑
btrivialu =0,1

δb∗u,btrivialu
P (b∗u, b

trivial
u )

)
= 0.5. (5.22)

Although our synthetic networks are fundamentally different from random networks

whenever ϵ > 0, there is a non-trivial regime of the assortativity parameter ϵ, where

the BP algorithm converges to the factorised fixed point. As can be seen from Fig 5-

1(a), the overlap value remains at 0.5 when ϵ are small. When ϵ approaches a critical

position ϵ∗, the overlap abruptly jumps to values above 0.5, then gradually grows to 1

as the assortativity parameter ϵ increases. This kind of change is referred to as phase-

transition and the two regimes of the assortativity parameter are called the phases of

the model. The value ϵ∗ at which the transition happens is called the critical point.

When ϵ < ϵ∗, the SBM is said to be in the undetectable phase, because even the correct

marginal posterior distribution (the prior distribution {ηr}) fails to detect the planted

structures.

Generally, the critical point of phase-transition does not permit analytical expression

and usually are estimated by using numerical approaches. One rule of thumb for

locating the critical point is that the phase-transition is often associated to the critical

slowing down [154], e.g. the divergence of BP algorithm. However, for factorised SBMs,

it is actually possible to obtain analytical estimate of the critical point. This is done

by analysing the stability of the factorised fixed point of the BP equations [65], which

leads to the detectability condition

|pin − pout| > B
√
⟨k⟩ ⇒ ϵ >

1√
k
. (5.23)

The detectability condition means the detectability of community structures in fac-

torised SBMs is dependant on the average degree ⟨k⟩, which effectively represents the

amount of data related the latent community structure.
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Algorithm 5.2: Semi-supervised BP inference for SBM

1. Initialise {µu→v
r } for every edge (u, v) in E

2. Compute {µur} and {hr} as in the normal BP, but for nodes with known correct

label, set µur = δbur

3. Update {µu→v
r }, {µur} and the {hr} as in the normal BP except for nodes with

known labelling; Keep µur = δbur unchanged

4. Repeat step 3 until convergence

Following the discovery of the detectability phase-transition in factorised SBMs, there

are a series of following works looking at the detectability phase-transition under differ-

ent conditions. For example, in a semi-supervised setting where we have access to the

correct labelling of a fraction of nodes, the detectability phase-transition vanishes [70].

It is straightforward to adapt the BP algorithm we defined in Algorithm 5.1 to the

semi-supervised learning setting. In each round of iteration, the messages of nodes

with known correct labels will be fixed as

µur = δb∗u,r. (5.24)

Only the rest of unknown messages are updated until convergence. The semi-supervised

version of BP is summarised in Algorithm 5.2.

In Fig 5-2, we show the results of the BP algorithm under the semi-supervised setting.

Suppose there is a fraction α ∈ [0, 1] of nodes with known correct labelling. When

α = 0, we reduce back to the unsupervised learning setting. The detectability phase-

transition is clearly signified by the abrupt change of the overlap function as well

as the divergence of the BP algorithm. In comparison, when α > 0, the partition

overlap becomes a smooth increasing function of the assortativity parameter ϵ. Since

we know the correct labelling of a fraction of nodes, the partition overlap is slightly

above 0.5 even when there is not community structures (i.e. when ϵ = 0). Whenever

ϵ > 0, the partition overlap are always larger than 0.5 and gradually increases as the

assortatitvity parameter ϵ increases. It seems that the BP algorithm can leverage the

fixed correct labelling of nodes to propagate the success of detections to nodes with

unknown labelling. Moreover, the convergence time of BP does not diverge anymore.

Since we cannot identify distinct phases of the model according to the behaviour of the
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overlap function and no critical slowing occurs in the BP convergence time, we say the

detectability phase-transition disappears.
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Figure 5-2: (a) Partition overlap (b) the convergence time of semi-supervised BP as a function
of the strength of community structure. The parameter α controls the fraction of nodes being
set to acquire correct marginal message {µu

r } as described in the text. Networks are generated
with N = 105 nodes, B = 2 communities and average degree ⟨k⟩ = 10.

5.3 Detectability phase-transition in networks with het-

erogeneous degree distribution

All of previous works on the detectability of community structures assume the degree

distribution is homogenous. Since most of real-world networks have heterogeneous de-

gree distributions, we are interested in how heterogeneity in degree distribution affects

the detectability phase-transition. We expect the heterogeneity in degree distribution

to enhance the detectability of community structures. This is because heterogeneous

degree distribution implies that some nodes will have larger degrees than others. As a

result, the detection task should be relatively easy in some (denser) regions than what

is implied by the detectability condition in equation (5.23), which was derived in the

homogeneous case. We hypothesise that the undetectable phase should shrink, if not

disappear completely, when the degree distribution of nodes become heterogeneous.

5.3.1 Belief propagation for DC-SBM

To verify our hypothesis, we consider instead the DC-SBM which allows us to generate

networks with customised degree distributions. Nodes are assumed to be sampled from

a prior distribution {ηr}, and the probability of generating an observed network A

116



together with its network partition b is

P (A, b|{λrs},θ) =
∏
u

ηbu
∏
u<v

e−θuθvλbubv
(θuθvλbubv)Auv

Auv!

∏
u

e−θ2uλbubu/2
(θ2uλbubu)Auu/2

(Auu/2)!
.

(5.25)

We can fit the model with the BP algorithm for DC-SBM as introduced in [73]. For

the ease of presentation, denote the probability of the number of edges between two

nodes u and v as a function g,

g(θu, θv, λrs, Auv) = e−θuθvλrs
(θuθvλrs)

Auv

Auv!
. (5.26)

The edge-wise messages for the DC-SBM have the following expression,

µu→v
r =

ηr
Zu→v

e−Hu
r

∏
w∈∂u\v

∑B
s=1 µ

w→u
s g(θw, θu, λrs, Auw)∑B

s=1 µ
w
s g(θw, θu, λrs, 0)

, (5.27)

where Hu
r is a defined as

Hu
r = −

N∑
w

ln
( B∑

s=1

µws g(θw, θu, λrs, 0)
)
. (5.28)

Finally, the node-wise messages are

µur =
ηr
Zu

e−Hu
r

∏
w∈∂u

∑B
s=1 µ

w→u
s g(θw, θu, λrs, Auw)∑B

s=1 µ
w
s g(θw, θu, λrs, 0)

. (5.29)

It is worth noting that there are important nuances in the time complexity of BP

between fitting networks with homogeneous and heterogeneous degree distribution.

Firstly, consider generating networks with the degree propensity parameter being uni-

form, θu = θ. Then, the resulting networks are expected to acquire homogenous degree

distributions. When applying BP to these networks, the function Hu
r in equation (5.28)

is the same for every node, Hu
r = Hr. By contrast, when different nodes acquire dif-

ferent degree propensity parameters θu, computations for updating {Hu
r } increases

linearly as the number of unique degree propensity increases. However, notice that

for two nodes u and v with the same degree propensity θu = θv, we have Hu
r = Hv

r .

Therefore, we only need to maintain {Hu
r } for unique degree propensity parameters in

the network3. This is generally not an issue in practice, since the number of unique

3When we do not know the true degree propensity parameter, we can make inference with BP by
adopting the expectation-maximisation procedure. In that case, θu will be estimated by the maximum
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u

v

v′

Figure 5-3: When we update the messages sending out from the node u to two of its neighbours v
and v′, the ratio in equation (5.32) remains unchanged but will be recomputed for all neighbours
of u except for v, v′, as indicated by the grey dashed curved.

degree propensity is much smaller than the size of network.

The other issue is in computing the messages in Section (5.3.1). Note that the product

involves all the neighbours of node u, requiring Bku computations, where ku is the

degree of node u. The total time complexity of computing the messages {µu→v
r }is then

N∑
u

∑
v∈∂u

kuB =
N∑
u

k2uB. (5.30)

For sparse networks with homogeneous degree distribution, the expected degree of all

of the nodes are identical, and much smaller than the total number of nodes,

⟨ku⟩ = ⟨k⟩ ≪ N. (5.31)

The order of the number of computations in equation (5.30) is therefore roughly linearly

dependent on the size of the network, O(N⟨k⟩2) ≈ O(N). Nevertheless, in the het-

erogenous case, some nodes might have significantly larger degrees than others. The

expression in equation (5.30) means that the time complexity of updating BP mes-

sages will increase quadratically as the heterogeneity in degree distribution (so does

the number of nodes with large degrees) increases.

It turns out that we can avoid the issue mentioned above by adopting a slightly different

way of updating BP messages. In particular, we point out that many computations

are unnecessarily repeated when we update messages according to equations (5.27)

likelihood estimator, which will be dependent on the degree of node u only. Therefore, the BP algorithm
remains scalable as long as the number of distinct degrees is much smaller than the size of the network,
which generally holds in practice.
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and (5.29). According to the definition of messages in equation (5.27), for messages

sending out from node u to two of its neighbours v and v′, the following ratio remains

unchanged but will be computed in both µu→v
r and µu→v′

r ,∑B
s=1 µ

w→u
s g(θw, θu, λrs, Auw)∑B

s=1 µ
w
s g(θw, θu, λrs, 0)

, w ∈ ∂u \ v, v′. (5.32)

As shown in Figure 5-3, it is easy to see that the amount of unnecessary computations

increases with the degree of node u. This increase in the unnecessary computations is

the main cause of the increase in the time complexity in networks with heterogeneous

degree distribution. With this observation in mind, we can precompute the product in

equation (5.29)

Iur :=
∏
w∈∂u

∑B
s=1 µ

w→u
s g(θw, θu, λrs, Auw)∑B

s=1 µ
w
s g(θw, θu, λrs, 0)

(5.33)

for every node u and store {Iur } in a table. Then, we can perform exactly the same

update of the message µu→v
r according to (5.27) but with the following expression,

µu→v
r =

ηr
Zu→v

e−Hr × Iur ×
(∑B

s=1 µ
w→u
s g(θw, θu, λrs, Auw)∑B

s=1 µ
w
s g(θw, θu, λrs, 0)

)−1

, (5.34)

and the node-wise messages are

µur =
ηr
Zu

e−HrIur . (5.35)

Updating each message µu→v
r in this improved way only requires O(1) computations

(assume the number of communities B ≪ N), making the total time complexity at

the scale of O(E). Although this modified updating scheme induces extra computa-

tions for maintaining the table of {Iur }, we find that the implementation of BP is more

efficient when the modification is in place, even when the degree distribution is homo-

geneous4. We summarise the scheme of updating the BP for DC-SBM in Algorithm

5.3. In Section 5.3.3, we will make use of this BP algorithm to investigate the effect of

heterogeneity in degree distribution on the detectability phase-transition in DC-SBM.

4We have compared the running time of BP in networks with heterogeneous degree distributions,
using the original and modified updating schemes. Details of the comparison can be found in Ap-
pendix C.1.
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Algorithm 5.3: BP inference for DC-SBM

1. Initialise {µu→v
r } for every edge (u, v) in E

2. Compute {µur} according to equation (5.16), and {Hr} according to equa-

tion (5.28) as well as the {Iur } defined in equation (5.33)

3. For every edge (u, v) ∈ E , update µu→v
r according to equation (5.34);

Update the value of Ivr

4. Update the message µvr according to equation (5.35);

Update the value of Iwr for all w in the neighbouring set of node v and {Hr}

5. Repeat step 3-4 until convergence

5.3.2 Generating heterogeneous degree propensity

We generate networks from the DC-SBM with the following parametrisation. Remind

that the DC-SBM assumes the number of edges between any pair of nodes is a Poisson

variable

Auv ∼ Poi(θuθvλbubv), (5.36)

where {θu} is the degree propensity parameter for each node and {λrs} are the ex-

pected number of connections between group r and s when the following group-wise

normalisation is imposed,

θ̂r =
∑
u

θuδrbu = 1, ∀r ∈ {1, 2, .., B}. (5.37)

We will set a hard constraint on the size of communities

nr =
N

B
∈ Z, ∀r ∈ {1, 2, .., B}, (5.38)

which allows us to impose the same degree propensity across different communities

θu = θu+nN/B, ∀u ∈ {1, 2, .., N/B}, ∀n ∈ {1, 2, .., B − 1}. (5.39)

As a result, the prior distribution of assigning a node u to group r is the uniform

distribuion

ηbu =
nr
N

=
1

B
. (5.40)
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Furthermore, we enforce the planted partition constraint

λrs = λinδrs + λout(1− δrs), (5.41)

and parameterise λin and λout as follows

λin =

(
N

B

)2

pin =
N

B
(1 + ϵ(B − 1))⟨k⟩,

λout =

(
N

B

)2

pout =
N

B
(1− ϵ)⟨k⟩,

(5.42)

where the ϵ parameter controls the strength of the assortativity just as it did in the

equation (5.20).

To obtain networks with heterogeneous degree distribution, we need to manipulate the

degree propensity parameter {θu}. We can examine the effect of the value θu on the

expected degree of node u by noticing that

⟨ku⟩ =
N∑
v

θuθvλbubv = θu

B∑
r

θ̂rλrbu . (5.43)

Substituting λin, λout into the expression of the expected degree in equation (5.43) and

making use of the normalisation we imposed in equation (5.37), we get

⟨ku⟩ = θu
N

B
⟨k⟩. (5.44)

This expression of ⟨ku⟩ implies that our model also satisfies the factorised condition in

equation (5.17), because the expected degree of nodes in any communities r is

∑
u

⟨ku⟩δrbu/nr =
N

B
⟨k⟩(nr)−1 = ⟨k⟩, (5.45)

no matter what are the values of {θu}. When θu = θ = (N/B)−1, we reduce to

the uniform case where each node has the same average degree as the global average

degree ⟨k⟩. As θu becomes heterogenous, since the expected degree ⟨ku⟩ is proportional

to θu, the degree distribution in the network will also become heterogeneous. The

extent to which ⟨ku⟩ is scaled up or down compared to the global average degree ⟨k⟩
depends on how much the degree propensity parameter θu differs from the uniform

choice θu = θ = (N/B)−1.

Since most of real-world networks possess power-law degree distributions [71], a natural
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choice for the degree propensity parameter is to use samples drawn from the Zipf’s

distribution, which is defined as follows

fX(x) =

x−ζ/
∑∞

xmin
x−ζ , if xmin ≤ x; x ∈ Z

0, otherwise
. (5.46)

Without the loss of generality, we can set xmin = 1. The value of the ζ parameter

controls the strength of the heterogeneity of the distribution. We will restrict ourselves

to the choice of ζ in [2,∞], since the mean of the Zipf’s distribution is not defined

when ζ ≤ 2. We are particularly interested in the case when ζ takes a value in the

interval [2, 3], because when ζ in this interval the Zipf’s distribution has a finite mean

but diverging variance, which aligns best with most of empirical networks with locally

dense but globally sparse connections. To satisfy the normalisation constraint in equa-

tion (5.37), we draw samples {xu} ∈ ZN/B from the Zipf’s distribution and then set

{θu} to the following normalised values,

θu+nN/B = θu =
xu∑N/B

v=1 xv
, ∀u ∈ {1, 2, .., N/B}, ∀n ∈ {1, 2, .., B − 1}. (5.47)

There are two caveats on using samples from the Zip’s distribution for the degree

propensity parameter {θu}. Firstly, because we like to learn the effect of heterogeneous

degree distribution on the detectability of community structure, it is important to

control other perspectives which might affect the detectability. When generate networks

with {θu} obtained via equation (5.47), there is a risk that the average degree of the

network is out of control, especially in the case where the heterogeneity is strong (ζ

close to 2). This is because the values of {θu} could be extremely small when there are

some dominantly large samples in {xu}. As a result, there is a great chance to observe

a non-negligible amount of isolated nodes, making the average degree in the connected

component much larger than the value we expect. To make sure our experiments

can properly reflect the effect of heterogeneous degree distribution rather the network

density, it is therefore important to monitor the size of the connected component and

make sure the network density is under control.

Secondly, as pointed out in [155], the number of short cycles could diverge when the

degree distribution follows a power-law distribution with the exponent of the power-

law ζ ∈ being in [2, 3]. The existence of short cycles disqualifies the use of the BP

algorithm, because short-length loops violates the conditional dependance assumption

that is used in deriving BP equations. Since we want to take advantage of the efficiency
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of BP, instead of the Zipf’s distribution, we turn to the truncated Zipf’s distribution

fX(x) =

x−ζ/
∑xmax

x=1 x
−ζ , if 1 ≤ x ≤ xmax;x ∈ Z

0, otherwise
. (5.48)

Compared to the Zip’s distribution, the truncated Zip’s distribution introduce a cut-off

xmax for the values of samples {xu}. Note that both the parameter ζ and xmax have

effect on the heterogeneity of the distribution. If we set xmax = 1, then we reduce back

to the homogeneous case, regardless of the value of ζ. For a fixed xmax which is larger

than 1 and ζ in [2,∞], the distribution becomes more heterogeneous as ζ decreases.

When the value ζ is fixed, increasing the value of xmax also increases the heterogeneity

in samples of {xu}. We want to select a cut-off value for xmax such that the resulted

networks are also locally-treelike and therefore BP is still a valid inference tool. To this

end, similar to the arguments we used in Section 5.1, we need the probability of an edge

between any pair of nodes to be at the scale of O(1/N). When such condition holds, in

our DC-SBM, the probability of having edges between nodes i and j is approximately

1− P (Aij = 0|λ,θ, b) = 1− e−θiθjλbibj ≈ θiθjλbibj . (5.49)

and hence the following condition needs to be satisfied

θiθjλbibj ≤ θ2maxλbibj = θ2maxO (N) , (5.50)

where the equation sign makes use of our parameterisation in equation (5.42). There-

fore, we need

θ2maxO (N) = O(1/N)⇒ θmax = O (1/N) (5.51)

Notice that for samples {xu} which are drawn from the truncated Zipf’s distribution,

we can obtain an upper bound for the largest degree propensity parameter

θmax =
max
u
{xu}∑
u xu

≤ xmax

nr − 1 + xmax
≤ xmax

nr
. (5.52)

With such upper bound of ⟨θmax⟩ in mind, if we set the cut-off value xmax at the scale

O(1), then the expected largest degree θmax = O(1/N) holds and can use BP to make

inference.
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Figure 5-4: Results obtained with the BP algorithm in networks generated from the DC-
SBM with the degree propensity parameter {θu} being sampled from the truncated Zipf’s
distribution. The cutoff value xmax of the truncated Zipf’s distribution is set to be 50. We
choose B = 2, N = 105 and ⟨k⟩ = 10. (a) Partition overlap and (b) the convergence time of
BP as a function of the strength of community structure. The vertical dashed line indicates
the estimate of the critical point given by the detectability condition in equation (5.23).

5.3.3 Numerical results

We applied the BP algorithm defined in Section 5.3.1 to networks generated from DC-

SBM with degree propensity parameters being proportional to samples of the truncated

Zipf’s distribution. Our results show that, when the network density (global average

degree) is fixed, increase in heterogeneity of degree distribution enhances the detectabil-

ity of communities structures. In Fig. 5-4, we show the partition overlap achieved by

BP for different values of ζ. When ζ = ∞, the truncated Zipf’s distribution is equiv-

alent to a uniform distribution, degree propensity parameter {θu} is uniform and the

detectability phase-transition is clearly signified by the sharp change of the overlap

function as well as the divergence of BP algorithm. When ζ takes values in [2, 3], it

seems that the detectability phase-transition still occurs, but the critical position shifts

toward the region where the assortative structure is weaker. The extent of the shift

of the critical point is larger when there are more variation in the degree propensity

parameter.

Remind that in the homogeneous case, according to the detectability condition in

the equation (5.23), the critical point also shifts if we increase the average degree in

the networks. In Fig 5-5, we show how the critical point of the detectability phase-

transition changes as we increase the average degree from 10 to 15 and 20. Indeed,

as the average degree ⟨k⟩ increases, the critical point moves to the left and the area
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Figure 5-5: Results obtained with the BP algorithm in networks generated from the DC-SBM
with uniform propensity parameter θu = B/N . Networks are generated with B = 2, N = 105

and average degree ⟨k⟩ being 10, 15, and 20. (a) Partition overlap the (b) convergence time of
BP as a function of the strength of community structure. The vertical dashed line indicates
the estimate of the critical point given by the detectability condition in equation (5.23).

of undetectable phases shrinks. We emphasis that, for results in the Fig. 5-4 where

we examine the effect of heterogeneous degree distribution, the global average degree

⟨k⟩ = 10 is fixed. However, we also observe the reduce in the undetectable phase of

model as the heterogeneity in degree distribution increases. Therefore, we conclude

that the global average degree ⟨k⟩ = 2E/N alone does not determine the detectability

phase-transition when nodes acquire heterogeneous degree distribution: Heterogeneity

in degree distribution can enhance the detectability of the community structures.

Nevertheless, as the old saying goes, “there is no such thing as free lunch”. Notice that

in Fig. 5-4, the curves for partition overlap cross over at some point. That means, for ϵ

larger than certain value (say 0.5), the partition overlap achieved by BP is lower when

the extent of heterogeneity in degree distribution is stronger. To further understand

this trade-off between detectability of community structure and accuracy, in Fig 5-6,

we plot the histogram of 5 × 104 samples from the truncated Zipf’s distribution with

different values of ζ. Because the total number of samples is fixed, the area under the

histogram remains the same when we change the values of ζ. When the value of ζ

decreases, there are more samples x become larger than the rest, making more nodes

acquire large degree propensity parameter θu. In other words, as the degree distribution

becomes more heterogeneous, the fixed amount of input is reorganised among nodes,

forcing some nodes to receive less edges than others. The degree propensity parameter

θu acts like a filter: It magnifies the signals for some nodes at the price of shrinking the
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Figure 5-6: Histogram of 5× 104 samples x drawn from the truncated Zipf’s distribution with
varying values of the shape parameter ζ and a cut-off at xmax = 50.

signals for others. As a result, when the global average degree ⟨k⟩ is fixed, detecting

the correct labelling of nodes with large degrees is easier than what is implied by

the detectability condition, which is derived for networks with homogeneous degree

distribution. The “lunch” to pay is that the correct labelling of nodes with small

degree propensity parameter are more difficult to detect, even when the strength of

assortative structure described by ϵ is high. The filtering effect of the degree propensity

parameter wastefully assigns too much observations to large-degree-propensity nodes,

whose correct labelling could have been detected even when a portion of their received

edges were passed over to other nodes with low-degree-propensity.

According to our explanation above, we expect that the increase in detectability of

community structures does not require the degree propensity parameter to follow the

power-law distribution. As a way to verify this postulation, we consider an alternative

heterogeneous degree distribution, where {θu} are computed by normalising samples of

a bimodal distribution

P (tu = t1) = τ, P (tu = t2) = 1− τ, τ ∈ [0, 1] (5.53)

where t1 and t2 are two positive values. Without loss of generality, suppose t1 ≤ t2.

Choosing degree propensity {θu} according to this bimodal distribution means nodes

can have either low-degree propensity with probability τ , or high-degree propensity

with probability 1 − τ . The value of difference the t2 − t1 controls the extent to

which high degree nodes exceed the average degree ⟨k⟩. In light of the results we

have obtained with the truncated Zipf’s distribution, we expect the detectability of

community structure to increase as the value of difference t2 − t1 increases. With the
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Figure 5-7: Results obtained with the BP algorithm in networks generated from the DC-SBM
with B = 2, N = 105, ⟨k⟩ = 10. The degree propensity parameter {θu} are sampled from
the bimodal distribution with the parameter t2 being 1, 4, and 16. When t2 = 1, the degree
propensity parameter is uniform. (a) Partition overlap and (b) convergence time of BP as a
function of the strength of community structure

group-wise normalisation constraint, there are only two possible values of the degree

propensity parameter

θmin =
B

N

t1
(τt1 + (1− τ)t2)

, θmax =
B

N

t2
(τt1 + (1− τ)t2)

. (5.54)

We set t1 = 1, then the absolute value of t2 alone controls the extent of heterogeneity.

Because we want to use the BP algorithm for inference, the value of t2 cannot be arbi-

trarily large, which could make the BP an invalid tool to use. We should examine the

largest expected degree to get what are the valid choices of t2. Under the parameteri-

sation in equation (5.53) and (5.54), the expected degree of nodes can take one of the

following two values

⟨kmin⟩ = θmin
N

B
⟨k⟩ =

1

(τ + (1− τ)t2)
⟨k⟩,

⟨kmax⟩ = θmax
N

B
⟨k⟩ =

t2
(τ + (1− τ)t2)

⟨k⟩.
(5.55)

Notice that, when τ is fixed, ⟨kmax⟩ will saturate as t2 increases. Therefore, we further

parameterise τ as follows

τ = 1− t−1
2 , (5.56)

such that ⟨kmax⟩ is always a increasing function of t2. The expected largest degree in
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networks generated with the bimodal degree distribution becomes

⟨kmax⟩ = θu
N

B
⟨k⟩ =

t2

2− t−1
2

⟨k⟩. (5.57)

The last equation indicates that as long as we choose t2 at the order of O(1), networks

generated with the bimodal degree propensity distribution will have vanishingly small

number of short-length loops, which justifies the use of the BP algorithm. We present

in Fig 5-7 the results of applying BP to networks generated with the degree propensity

being sampled from the bimodal distribution. Similar to what we have seen before when

the truncated Zipf’s distribution is in place, larger values of t2 causes more significant

reduce in the area of the undetectable phase. These results corroborate our hypothesis

that variation in degree distribution affects the detectability phase-transition, causing

the undetectable phase of the model to shrink compared to that in networks with

homogenous degree distribution.

5.4 Concluding remarks

In this chapter, we investigated the effect of heterogeneous degree distribution on the

detectability of community structures. To this end, we apply the BP algorithm to

networks generated from the uniform PP model with customised degree distributions.

When the global average degree is fixed, we show that enforcing heterogeneous degree

distribution makes the detectability of community structures increases, manifested by

the reduced area of the undetectable phase of the model. This is because nodes with

large degree propensity receive more edges than the rest of the network, forming some

relatively dense regions where the detection task is less challenging. The price to pay

for the increased detectability is that there are more nodes with low degree whose

correct labelling are difficult to infer. Overall, our numerical results provide further

confirmation for the existing theoretical analysis in [72] which states that the global

average degree alone does not determine the detectability of community structure in

real-world networks, where degree distributions are often heterogeneous.

Our results and the adapted BP algorithm open the door to investigation about de-

tectability phase-transition in more general settings. For example, one possible di-

rection to pursue is to extend our experiments by considering networks with more

than two communities. This is interesting because the detectability phase-transition

phenomenon in networks with homogeneous degree distribution is found to change sig-

nificantly as we move from two communities to more than two communities [65, 70].

Moreover, another interesting question to ask is that whether the detectability phase-
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transition will vanish just as it does in the semi-supervised learning setting, when the

heterogeneity in degree distribution becomes asymmetric across distinct communities.

The asymmetric degree distribution is a more realistic assumption. For example, con-

sider the situation where the truncated Zip’f distribution is used for sampling the degree

propensity parameters but with different heterogeneity parameter ζr, or different cut-

off values xrmax for different communities r ∈ {1, 2, .., B}. With this parameterisation,

the symmetry of communities breaks despite the fact that their average degree could be

the same. When different communities acquire different average degree but with homo-

geneous degree distributions, the detectability phase-transition is known to completely

disappear [68, 69]. It is not clear yet how the detectability phase-transition changes

when the asymmetry of communities arises in the degree distribution. We leave this

question to future work.
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Chapter 6

Conclusions and future work

We close this thesis by summarising contributions and outlining some potential revenues

for future work. In terms of theoretical contributions, we hope this thesis can provide

new insights about the modularity-based community detection methods as well as their

relation to the statistical inference method that relies on generative network models.

From the practical perspective, this thesis contributes to the field of network inference

by providing a novel method to extract statistically significant assortative structures in

network data. Our method has the advantages of not overfitting and not underfitting

data, as well as being able to simultaneously resolve assortative structures at multiple

resolutions. In networks where the dominant pattern is assortative and the sizes of

networks are large, our proposed assortative-constrained models can achieve better

quality of fit than their general counterparts.

In Chapter 3, we clarify on the equivalence between the maximum likelihood inference

and the popular modularity maximisation approach for detecting assortative struc-

tures. Modularity-based methods dominate in the early stage of network analysis, as

evidenced by a large amount of citations and a series of extensions that are built on the

original modularity measure. For instance, there are modularity measures for temporal

networks and multilayer networks [79], spatial networks [156], hypergraph [157, 158],

etc. Given the clarification we have provided here on the relation between modularity

maximisation and the maximum likelihood inference, it is worth re-examining the re-

sults and conclusions which rely on the use of the modularity maximisation approach,

especially from the perspective of overfitting data and the bias toward uniform assor-

tative structures.

As an example, it is useful to generalised our PP models to multilayer networks. In
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contrast to the ordinary graphs (monolayer networks) that we have been discussed

throughout the thesis, multilayer networks are collections of interrelated ordinary net-

works. Multilayer networks are commonly used to describe temporal interactions or

different kinds of interactions occur in the same systems. To detect assortative struc-

tures in multilayer networks, researchers have come up with the multilayer version of

modularity measure [77] and SBMs [159,160]. In light of the equivalence result between

the monolayer version of modularity maximisation and the inference of the planted par-

tition model given by Newman in [57], a recent work showed the equivalence between

the multilayer version of the two methods [109]. However, as we have discussed in

Chapter 3, Newman’s equivalence result is tenuous and our arguments can be easily

applied to challenge the equivalence result in multilayer networks as well. Instead of

modifying the modularity measure, we believe that our proposed PP models will serve

as a more reliable base model for developing community detection method in multilayer

networks.

In Chapter 4, we found that Bayesian inference with the degree-corrected stochastic

block models (DC-SBM) systematically underfits when we apply it to empirical net-

works. In comparison, using Nested DC-SBM can systematically lift the resolution

limit of DC-SBM. Our PP models also do not have the underfitting problem and are

able to identify arbitrarily large number of assortative communities, as long as they

exist in data. By conducting model selection, we find that assortative-constrained vari-

ants are the best fitting model in only a minority of datasets in our network corpus.

Most of the time, general SBMs achieve the best quality of fit according to the MDL

principle, indicating that assortativity is often too simplistic to account for the struc-

tures in empirical networks. We are well aware that our experiment only gives us the

best model in a relative sense, and it will not be a surprise to see other models that

we have not considered in this thesis to achieve better fit, especially when assumptions

of SBMs are not compatible with the true generating processes. It is easy to envision

that other variants of SBMs to be proposed to better match data with special charac-

teristic. For example, we have seen that PP models outperform general models in a

set of infrastructure networks where edges between nodes are likely to be subjective to

spatial constraints. One potential direction to pursue is to develop spatial variant of

SBMs with spatial constraints being appleid to the placement of edges between nodes.

Understanding the relation between community structures and network domains will

facilitate the design and use of the appropriate community detection methods in prac-

tice. Unfortunately, the network corpus we have constructed in this thesis does not

allow us to make any conclusions related to the source of networks, because our corpus
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has a skew distribution of network domains. Hence, in order to understand what are

the most typical structures for each network domain, we need to expand our analysis

with a careful selection of data such that the source of networks is sufficiently diverse.

In addition, it could be helpful to conduct a comparative study with a larger collec-

tion of community detection algorithms. We have only compared our proposed PP

models to the modularity maximisation as well as the generalised modularity variant,

mainly due to the fact that modularity has a close relation to our uniform PP model

and modularity-based methods are widely used. However, there are a plethora of other

methods for extracting assortative community structures in networks, such as the mod-

ularity density [56], spectral algorithms [161], and methods that consider dynamical

processes taking place on networks, e.g. the Markov stability [162] and Infomap [163].

A comprehensive comparison will deepen our understanding of the strengths and limits

of our proposed PP models in practice.

In Chapter 5, we study the detectability of community structures when the degree

distribution is heterogeneous. We observe that the area of undetectable phase of the

uniform PP model shrinks when the heterogeneity in degree distribution increases. To

obtain a complete picture of the detectability phase-transition when degree distribu-

tion is heterogeneous, it is worth extending our experiment in Chapter 5 to networks

with more than two communities. This is because the number of communities has an

effect on the types of detectability phase-transition phenomenon [65,68]. Moreover, our

analysis in Chapter 5 is restricted to the situation where different communities acquire

identical degree propensity parameters. A more realistic setup is to assume each com-

munity has its own way of adjusting the degree propensity of nodes. This asymmetric

degree propensity setting is expected to affect the detectability phase-transition as well,

since average degrees in the dense regions of different communities will be different, even

though the average degree of each community could remain identical. Because the van-

ishing of detectability phase-transition has been observed in networks where different

communities acquire different average degrees [68,69], it is interesting to examine how

the detectability phase-transition changes as the symmetry of heterogeneity in degree

distribution breaks.
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Social physics. Physics Reports, 948:1–148, 2022.

[19] Santo Fortunato. Community detection in graphs, 2 2010.

[20] Santo Fortunato and Darko Hric. Community detection in networks: A user

guide. Physics reports, 659:1–44, 2016.

[21] Michael T Schaub, Jean-Charles Delvenne, Martin Rosvall, and Renaud Lam-

biotte. The many facets of community detection in complex networks. Applied

network science, 2(1):4, 2017.

[22] Clement Lee and Darren J Wilkinson. A review of stochastic block models and

extensions for graph clustering. Applied Network Science, 4(1):1–50, 2019.

134
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pervised clustering of sparse networks. Physical Review E - Statistical, Nonlinear,

and Soft Matter Physics, 90, 11 2014.
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[232] Alessio Cardillo, Jesús Gómez-Gardenes, Massimiliano Zanin, Miguel Romance,

David Papo, Francisco del Pozo, and Stefano Boccaletti. Emergence of network

features from multiplexity. Scientific reports, 3(1):1–6, 2013.

[233] Ulrich Stelzl, Uwe Worm, Maciej Lalowski, Christian Haenig, Felix H Brembeck,

Heike Goehler, Martin Stroedicke, Martina Zenkner, Anke Schoenherr, Susanne

Koeppen, et al. A human protein-protein interaction network: a resource for

annotating the proteome. Cell, 122(6):957–968, 2005.

[234] Rados law Michalski, Sebastian Palus, and Przemys law Kazienko. Matching or-

ganizational structure and social network extracted from email communication.

In International conference on business information systems, pages 197–206.

Springer, 2011.

[235] Steven J Cook, Travis A Jarrell, Christopher A Brittin, Yi Wang, Adam E Blo-

niarz, Maksim A Yakovlev, Ken CQ Nguyen, Leo T-H Tang, Emily A Bayer,

Janet S Duerr, et al. Whole-animal connectomes of both caenorhabditis elegans

sexes. Nature, 571(7763):63–71, 2019.

[236] Stephen Kosack, Michele Coscia, Evann Smith, Kim Albrecht, Albert-László
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Appendix A

Supplementary materials for Chapter 3

A.1 Maximum entropy distribution for the degree-propensity

parameter

The Lagrangian function to be optimised with respect to θ is the equation (2.19), which

reads as the following

L(p(θ|b), ξ0) = −
∫
θ∈C

p(θ|b) ln p(θ|b))dθ + ξ0

(∫
θ∈C

p(θ|b)dθ − 1

)
,

with C = {θ : θ̂r =
∑
u

θuδbur = 1, ∀r = 1, 2, .., B}.
(A.1)

Differentiating L(p(θ), ξ0 with respect to p(θ|b) leads to the following expression

∂L(p(θ|b), ξ0)

∂p(θ|b)
= − ln p(θ|b))− 1 + ξ0. (A.2)

Setting the derivate equal to zero, we obtain the form of the maximum entropy distri-

bution

ln p(θ|b)) = ξ0 − 1⇒ p(θ|b) = eξ0−1. (A.3)

Since the expression of p(θ|b) in the last equation only depends on a constant ξ0

(rather than θ itself), the maximum entropy distribution p(θ|b)) is simply the uniform

distribution which assigns the same probability to every valid θ in C = {θ : θ̂r =∑
u θuδbur = 1, ∀r = 1, 2, .., B}. The probability is then the reciprocal of the volume

of C, which can be obtained by multiplying the volumes of B regular simplexes,

p(θ|b) =
1

Vol(C)
=

B∏
r

(nr − 1)!× δ∑
u θbur,1. (A.4)
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The second equality in the last equation is implied by a result to be proved later in

equation (A.11).

161



A.2 Marginal likelihood of DC-SBM

The marginal likelihood of DC-SBM can be obtained by computing the integral

P (A|b) =

∫
P (A|λ,θ, b)P (λ|b)P (θ|b)dλdθ. (A.5)

As shown at the beginning of Section 3.1, the likelihood function of DC-SBM can be

rewritten as follows

P (A|λ,θ, b) =
∏
u<v

e−θuθvλbubv
(θuθvλbubv)Auv

Auv!

∏
u

e−θ2uλbubu/2
(θ2uλbubu/2)Auu/2

(Auu/2)!!

=
∏
r<s

e−θ̂r θ̂sλrsλersrs

∏
r

e−θ̂2rλrr/2λerr/2rr ×
∏

u θ
ku
u∏

u<v Auv!
∏

uAuu!!
. (A.6)

To proceed, consider the following uninformative priors,

P (λrs|λ̄) = e−λrs/λ̄(1+δrs)/λ̄(1 + δrs), for λrs ∈ [0,∞],

P (θ|b) =
∏
r

(nr − 1)!× δθ̂r,1,
(A.7)

the integral in equation (A.5) becomes

P (A|λ̄, b) =
∏
r<s

∫
e−λrs(1+1/λ̄)λ

ers
rs

λ̄
dλrs ×

∏
r

∫
e−λrr(1/2+1/2λ̄) (λrr/2)err/2

2λ̄
dλrr

×
∏
r

(nr − 1)!

∫
θ̂r=1

∏
u:bu=r

θkuu dθ × 1∏
u<v Auv!

∏
uAuu!!

:=
I × II × III∏

u<v Auv!
∏

uAuu!!
.

(A.8)

The first two products in the numerator in the last equation can be obtained using

integration by parts,

I =
∏
r<s

∫
e−λrs(1+1/λ̄)λ

ers
rs

λ̄
dλrs =

∏
r<s

λ̄ers

(λ̄+ 1)ers+1
ers!,

II =
∏
r

∫
e−λrr(1/2+1/2λ̄) (λrr/2)err/2

2λ̄
dλrr =

∏
r

λ̄
err/2
rr

(λ̄+ 1)err/2+1
err!!.

(A.9)
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For the third product III in which we integrate the degree propensity parameter θ,

III =
∏
r

(nr − 1)!

∫
θ̂r=1

∏
u:bu=r

θkuu dθ (A.10)

we need to make use of the following result∫
y∈Ω

n∏
u=1

yau−1
u dy =

h(
∑

u au−1) ×∏n
u=1 Γ(au)

Γ(
∑n

u=1 au)
, Ω = {y|yu ≥ 0,

n∑
u=1

yu = h}.

(A.11)

Let’s assume this result hold for the moment and apply it to each integral in the

equation (A.10) with au = ku + 1 and h = 1, we have

III =
∏
u

ku!
∏
r

(nr − 1)!

(er + nr − 1)!
. (A.12)

Substituting I, II and III back to the equation (A.8) gives us the expression of the

marginal likelihood of DC-SBM in equation (2.23).

In the following we derivate the result in equation (A.11). Firstly we define∫
y∈Ω

n∏
u=1

yau−1
u dy

∆
= In(h). (A.13)

Then we can change the variables of integration as the following:

In(h) =

∫
y∈Rn

+

ya1−1
1 ya2−1

2 · · · yan−1
n × δ(y1 + y2 + · · ·+ yn − h) dy1dy2 · · · dyn

= (h
∑

u au−1)

∫
y∈Rn

+

(y1
h

)a1−1
· · ·
(yn
h

)an−1
× δ

(y1
h

+
y2
h

+ · · ·+ yn
h
− 1
)

d
y1
h

d
y2
h
· · · dyn

h

= (h
∑

u au−1)

∫
u∈Rn

+

ga1−1
1 ga2−1

2 · · · gan−1
n × δ(g1 + · · ·+ gn − 1) dg1 · · · dgn

(
gu =

yu
h

)
= (h

∑
u au−1)In(1). (∗)

Now our task is just to compute the integral In(1). To proceed, notice that we can

rewrite In(1) as follows
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In(1) =

∫
u∈Rn

+

ga1−1
1 ga2−1

2 · · · gan−1
n × δ(g1 + g2 + · · ·+ gn − 1) dg1dg2 · · · dgn

=

∫ 1

0
ga1−1
1

(∫ (1−g1)

0
ua2−1
2 · · ·

∫ (1−g1)(1−
∑n−1

u=2 gu/(1−g1))

0
gan−1
n dgndgn−1 · · · dg2

)
dg1

=

∫ 1

0
ga1−1
1 In−1(1− g1)dg1.

From the result in (∗), we have In−1(1− g1) = In−1(1)(1− g1)
∑

g=2 ag−1, then the last

equation becomes

In(1) = In−1(1)

∫ 1

0
ua1−1
1 (1− g1)

∑n
u=2 au−1du1

= In−1(1)B(a1,
n∑

u=2

au),

where B is the Beta function. This gives us the recursion of In(1). Recall the relation-

ship between the Beta function and gamma function is

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

Then, the recursion of In(1) can be written as

In(1) = In−1(1)
Γ(a1)Γ(

∑n
u=2 au)

Γ(
∑n

u=1 au)

=In−2(1)
Γ(a2)Γ(

∑n
u=3 au)

Γ(
∑n

u=2 au)

Γ(a1)Γ(
∑n

u=2 au)

Γ(
∑n

u=1 au)

· · ·

=

∏n
u=1 Γ(au)

Γ(
∑n

u=1 au)
. (∗∗)

Substituting (∗∗) back into (∗) leads to the result in equation (A.11).
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A.3 Simplifying the likelihood function of DC-SBM

Here, we explain how to derive the expression of the likelihood function of DC-SBM in

equation (3.2)

P (A|θ,λ, b) =
∏
r<s

e−θ̂r θ̂sλrsλersrs

∏
r

e−θ̂2rλrr/2λerr/2rr ×
∏

u θ
ku
u∏

u<v Auv!
∏

uAuu!!
(A.14)

from equation (3.1)

P (A|θ,λ, b) =
∏
u<v

e−θuθvλbubv
(θuθvλbubv)Auv

Auv!

∏
u

e−θ2uλbubu/2
(θ2uλbubu/2)Auu/2

(Auu/2)!!
. (A.15)

The main idea is to rearrange terms properly, changing the order of multiplications from

being node-wise to being community-wise (i.e. according to the community membership

of nodes). For the illustration purpose, we firstly consider a toy example - a graph

consists of only two nodes u and v. The reason why we look at this trivial example

is that we can easily write down every term in equation (A.15) and equation (A.14) for

the toy example such that we can get the inspiration about deriving the latter from

the former in a general setting.

Likelihood of DC-SBM for the toy example with nodes belonging to

the same group

We firstly consider a parameterisation b = (bu, bv) where node u and v belong to the

same group denoted by r, i.e.

r = bu = bv. (A.16)

Then, we write down the likelihood function in equation (A.15) for the toy example as

follows

P (A|λ,θ, b) =

[
e−θuθvλrr

(θuθvλrr)
Auv

Auv!

]
×
[
e−θ2uλrr/2 (θ2uλrr/2)Auu/2

(Auu/2)!!
× e−θ2vλrr/2 (θ2vλrr/2)Avv/2

(Avv/2)!

]
(A.17)

=
(
e−(θu+θv)2λrr/2

)
×
(
λ(Auv+Auu/2+Avv/2)
rr

)
×(
θ
(Auv+Auu)
u θ

(Auv+Avv)
v

Auv!
[
2Auu/2(Auu/2)!

] [
(2Avv/2Avv/2)!

]) .
(A.18)

165



One key observation in the last equation is that once exponential functions are combined

together, the exponent of the exponential function is in the form of square of the sum

of degree parameters θu. Furthermore, since there are only two nodes in the entire

graph, we have the following identities hold

ku =

N=2∑
w=1

Auw = Auv +Auu, (A.19)

err =

N=2∑
u,v=1

Auvδbubv = Auv +Avu +Auu +Avv, (A.20)

where ku is the degree of node u and err is twice the number of edges inside group r.

Remind that the definition of the adjacency matrix A of a network takes the convention

that Auv is the number of edges between nodes u and v, while Auu is twice the number

of self-loops of node u. Since we have been restricted to symmetric networks, we have

Auv = Avu,∀u, v. (A.21)

and therefore equation (A.20) indicates the following equations hold

err/2 = Auv +Auu/2 +Avv/2 (A.22)

= Avu +Auu/2 +Avv/2. (A.23)

With these results, equation (A.18) can be further written as

P (A|λ,θ, b) = e−θ̂2rλrr/2λerr/2rr × θkuu θkvv
Auv!(Auu!!)(Avv!!)

, (A.24)

with

θ̂r =
N=2∑
u=1

θuδrbu = θu + θv (A.25)

being the sum of degree parameters θu inside group r, and Auu!! = 2Auu/2(Auu/2)!. It

can be easily verified that the expression derived in equation (A.24) is consistent with

equation (A.14).
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Likelihood of DC-SBM for the toy example with nodes belonging to

distinct groups

Consider the same toy example as we discuss above, but with a different parameteri-

sation b′ where nodes are assumed to belong to distinct groups. That is,

r = bu ̸= bv = s. (A.26)

Again, we can write down every term of the likelihood function in equation (A.15) for

the toy example,

P (A|λ,θ, b) =

[
e−θuθvλrs

(θuθvλrs)
Auv

Auv!

]
×
[
e−θ2uλrr/2 (θ2uλrr/2)Auu/2

(Auu/2)!!
× e−θ2vλrr/2 (θ2vλrr/2)Avv/2

(Avv/2)!

]
(A.27)

=
(
e−(θ2u+θ2v)λrr/2e−θuθvλrs

)
×
(
λAuv
rs λAuu/2

rr λAvv/2
ss

)
×
(

θ
(Auv+Auu)
u θ

(Auv+Avv)
v

Auv!
[
2Auu/2(Auu/2)!

] [
(2Avv/2Avv/2)!

]) .
(A.28)

In the last line above, we do nothing but rearranging terms in equation (A.15) with a

hope to simplify the expression by combining similar terms together. Given that there

are only two nodes in the graph and each of them form its own group (only two groups,

i.e. r and s respectively), we have the following properties

θ̂r =

N=2∑
w

θwδrbw = θu, (A.29)

θ̂s =

N=2∑
w

θwδsbw = θv, (A.30)

θ̂rθ̂s = θuθv, (A.31)

and

ers =

N=2∑
u,v

Auvδrbuδsbv = Auv, (A.32)

err =

N=2∑
u,v

Auvδrbuδrbv = Auu, (A.33)
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ess =
N=2∑
u,v

Auvδsbuδsbv = Auu. (A.34)

Substituting equation (A.29)-(A.34) to (A.28) gives

P (A|λ,θ, b) =
(
e−(θ̂2r+θ̂2s)λrr/2e−θ̂r θ̂sλrs

)
×
(
λersrs λ

err/2
rr λess/2ss

)
×
(

θkuu θkvv
Auv!Auu!!Avv!!

)
,

(A.35)

which can be easily verified to be consistent with equation (A.14).

Likelihood of DC-SBM for any graph

Given our discussion above regarding the toy example, now we explain how to derive

the expression in equation (A.14) from equation (A.15) in a general setting. Similar to

what we have done above, we begin with rearranging terms in equation (A.14):

P (A|λ,θ, b) =
N∏

u<v

e−θuθvλbubv
(θuθvλbubv)Auv

Auv!

N∏
u

e−θ2uλbubu/2
(θ2uλuu/2)Auu/2

(Auu/2)!

=

[
N∏

u<v

e−θuθvλbubv

N∏
u

e−θ2uλbubu/2

]
×
[∏
u<v

(θuθv)Auv
∏
u

θAuu
u )

]
×
[

N∏
u<v

λAuv
bubv

N∏
u

λAuu/2
uu

]

× 1∏
u<v Auv!

∏
u 2Auu/2(Auu/2)!

:= I × II × III × 1∏
u<v Auv!

∏
uAuu!!

. (A.36)

To proceed, we work on each of I, II, III in the last equation separately.

- For I,

I =

N∏
u<v

e−θuθvλbubv

N∏
u

e−θ2uλbubu/2 (A.37)

=

[
N∏

u<v

(
e−θuθvλbubv

)1−δbubv
(
e−θuθvλbubv

)δbubv

]
×

N∏
u

e−θ2uλbubu/2 (A.38)

=

N∏
u<v

(
e−θuθvλbubv

)1−δbubv
N∏

u<v

(
e−θuθvλbubv

)δbubv ×
N∏
u

e−θ2uλbubv/2. (A.39)
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From equation (A.37) to (A.38), we simply split the first product in (A.37) into two

parts: the first part corresponds to contribution from edges with end-nodes coming

from distinct groups, and the second part corresponds to contribution from edges with

end-nodes belonging to the same groups.

Notice that we can rewrite the first product in equation (A.39) by changing the order

of the product,

N∏
u<v

(
e−θuθvλbubv

)1−δbubv
=

B∏
r ̸=s

e−(λrs/2)
∑N

u,v:u̸=v θuθvδrbuδsbv (A.40)

=
B∏
r ̸=s

e−(λrs/2)[
∑N

u=1 θuδrbu(
∑N

v ̸=u θvδsbv)] (A.41)

=

B∏
r ̸=s

e(−λrs/2)[
∑N

u=1 θuδrbu(
∑N

v=1 θvδsbv)] (A.42)

=

B∏
r ̸=s

e−θ̂r θ̂sλrs/2 (A.43)

=
B∏
r<s

e−θ̂r θ̂sλrs . (due to the parameterisation fact that λrs = λsr)

(A.44)

From equation (A.41) to equation (A.42), we use the fact that N∑
u=1

θuδrbu

 N∑
v ̸=u

θvδsbv

 =

[
N∑

u=1

θuδrbu

(
N∑
v=1

θvδsbv

)]
(A.45)

when r ̸= s.

Then, in equation (A.39), the last two products can be manipulated as follows,

N∏
u<v

(
e−θuθvλbubv

)δbubv
=

B∏
r

e−λrr
∑N

u,v θuθvδrbuδrbv , (A.46)

N∏
u

e−θ2uλbubu/2 =
B∏
r

e−(λrr/2)
∑N

u θ2uδrbu , (A.47)

and these two products can be combined such that exponents of exponential terms are
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in the form of square of the community-wise sums of degree propensity parameter θu:

B∏
r

e−λrr
∑N

u,v θuθvδrbuδrbv

B∏
r

e−(λrr/2)
∑N

u θ2uδrbu =
B∏
r

e−(
∑N

u θuδru )
2λrr/2 =

B∏
r

e−θ̂2rλrr/2.

(A.48)

As a result, substituting equation (A.44), (A.48) into (A.39) leads us to the following

expression of I defined in equation (A.36):

I =
B∏
r<s

e−θ̂r θ̂sλrs

B∏
r

e−θ̂2rλrr/2. (A.49)

- For II,

II =
N∏

u<v

(θuθv)Auv

N∏
u

θAuu
u

=

(
N∏

u<v

θAuv
u

)(
N∏

u<v

θAuv
v

)
N∏
u

θAuu
u

=

(
N∏
u

θ
∑N

v:u<v Auv
u

)(
N∏
v

θ
∑N

u:u<v Auv
v

)(
N∏
u

θAuu
u

)

=

(
N∏
u

θ
∑N

v:v ̸=u Auv

u

)(
N∏
u

θAuu
u

)

=

N∏
u

θ
∑N

v Auv
u

=

N∏
u

θkuu (A.50)

- For III,

III =

N∏
u<v

λAuv
bubv

N∏
u

λ
Auu/2
bubu

=

(
B∏
r<s

λ
∑N

u<v Auvδrbuδsbv
rs

)
×
(

B∏
r

λ
∑N

u Auu/2
rr

)
=

B∏
r<s

λersrs

B∏
r

λerr/2rr

(A.51)

Substituting what we have for I, II, III in equation (A.49) - (A.51) back into equation

(A.36), we reach the expression in equation (A.14).
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A.4 Maximum likelihood inference with DC-SBM

The log-likelihood of DC-SBM has the following expression

lnP (A|θ,λ, b) = −1

2

∑
rs

θ̂rθ̂sλrs +
1

2

∑
rs

ers(lnλrs − δrs ln 2) +
∑
u

ku ln θu. (A.52)

Differentiating the log-likelihood above with respect to λrs and θu respectively gives

∂

∂λrs
lnP (A|θ,λ, b) = −θ̂rθ̂s +

ers
λrs

, (A.53)

∂

∂θu
lnP (A|θ,λ, b) = −

∑
r

θ̂rλrbu +
ku
θu
. (A.54)

Firstly setting the derivates respective to λrs to zeros gives the MLE of λrs

λ∗rs =
ers

θ̂∗r θ̂∗s
. (A.55)

For the MLE of θu, notice that the following equality needs to hold

ku
θ∗u

=
∑
r

θ̂rλ
∗
rbu =

∑
r

erbu

θ̂∗bu
=
ebu

θ̂∗bu
, (A.56)

for every node u in the same group bu, which implies that

θ∗u =
ku
ebu

θ̂∗bu . (A.57)

The solution for θ∗ remains undetermined at this point, since there are many different

valid solutions which differ from each other up to some multiplying constants. This

is because for some particular choices of {θ∗u} satisfying the last equation, {cθ∗u} is

also valid for an arbitrary constant c. To fully determine the MLE for θ, we there-

fore need to specify a normalising constant θ̂r for each group r. The convention

θ̂r = 1, ∀r ∈ {1, 2, .., B} makes the λrs parameter becomes the expected number of

connections between group r and s (or twice the number if r = s),

⟨ers⟩ =
1

2

∑
uv

θuθvλbubvδrbuδsbv = θ̂rθ̂sλrs = λrs. (A.58)
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A.5 Maximum likelihood inference with the uniform PP

model

The log-likelihood of the uniform PP model reads as

lnP (A|λin, λout,θ, b) = −λin
∑
r

1

2
θ̂2r−λout

∑
r<s

θ̂rθ̂s+ein lnλin+eout lnλout+
∑
u

ku ln θu.

(A.59)

Differentiating the log-likelihood function above with respective to λin, λout and θu, we

get

∂

∂λin
lnP (A|λin, λout,θ, b) = −

∑
r

1

2
θ̂2r +

ein
λin

, (A.60)

∂

∂λout
lnP (A|λin, λout,θ, b) = −

∑
r<s

θ̂rθ̂s +
eout
λout

, (A.61)

∂

∂θu
lnP (A|λin, λout,θ, b) = −λinθ̂bu − λout

∑
s ̸=bu

θ̂s + ku/θu. (A.62)

The MLE for model parameters then are obtained by equating these derivates to zeros,

leading to the following estimators

λ∗in =
2ein∑
r(θ̂

∗
r)2

, (A.63)

λ∗out =
eout∑
r<s θ̂

∗
r θ̂

∗
s

, (A.64)

θ∗u =
ku

λ∗inθ̂
∗
bu

+ λ∗out
∑

s ̸=bu
θ̂∗s
. (A.65)

We can substitute the MLE λ∗in and λ∗out into θ∗u, which gives us exactly the expression

of θu we present in equation (3.18).
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A.6 Marginal likelihood of the uniform PP model

Here we provide detailed derivation of the marginal likelihood of the uniform PP model

presented in equation (3.50). We need to conduct the integral in equation (3.45), which

reads as

P (A|λ̄, b) =

∫
P (A|λin, λout,θ, b)P (λin, λout|λ̄)P (θ|b) dλindλoutdθ

=

∫
e−λout

∑
r<s θ̂r θ̂sλeoutout e

−λin
∑

r θ̂
2
r/2λeinin

∏
u θ

ku
u∏

u<v Auv!
∏

uAuu!!
× eλout/λ̄/λ̄× eλin/(2λ̄)/(2λ̄)

×
∏
r

(nr − 1)!δ∑
u θuδrbu ,1

dλindλoutdθ

(A.66)

Since the parameters λin, λout and θ are mutually independent, the integral in the last

equation can be decomposed as follows,

P (A|λ̄, b) =

∫
e−λout(B2)λeoutout × eλout/λ̄/λ̄ dλout ×

∫
e−λinBλeinin × eλin/(2λ̄)/(2λ̄) dλin×∫ ∏

u

θkuu
∏
r

(nr − 1)!δ∑
u θuδrbu ,1

dθ × 1∏
u<v Auv!

∏
uAuu!!

.

(A.67)

The first two integrals are in the form of∫ ∞

0
e−axxbdx =

b!

ab+1
, (A.68)

so we can easily obtain∫
e−λout(B2)λeoutout × eλout/λ̄/λ̄ dλout =

eout!

λ̄
[(

B
2

)
+ 1

λ̄

]eout+1 , (A.69)

∫
e−λinB/2λeinin × eλin/(2λ̄)/λ̄ dλin =

ein!

2λ̄
[
B
2 + 1

2λ̄

]ein+1 . (A.70)

Finally, making use of the result in equation (A.11), we∫ ∏
u

θkuu
∏
r

(nr − 1)!δ∑
u θuδrbu ,1

dθ =
∏
u

ku!
∏
r

(nr − 1)!

(er + nr − 1)!
. (A.71)
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Combining equations (A.69) - (A.71), we get the desired expression

P (A|λ̄, b) =
ein!eout!

2λ̄2
[
B
2 + 1

2λ̄

]ein+1 [(
B
2

)
+ 1

λ̄

]eout+1×
∏
r

(nr − 1)!

(er + nr − 1)!
× ku!∏

u<v Auv!
∏

uAuu!!
.

(A.72)
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A.7 Marginal likelihood of the non-uniform PP model

The model likelihood of the non-uniform PP model described in the text can be written

as follows

P (A|{λr}, λout,θ, b) = e−λout
∑

r<s θ̂r θ̂sλeoutout ×
∏
r

e−λr θ̂2r/2λerr/2r ×
∏

u θ
ku
u∏

u<v Auv!
∏

uAuu!!
.

(A.73)

Enforcing the constraint θ̂r = 1 and using the maximum-entropy priors

P (λr|λ̄) = e−λr/2λ̄/(2λ̄), (A.74)

P (λout|λ̄) = eλout/λ̄/λ̄, (A.75)

P (θ|b) =
∏
r

(nr − 1)!δ(
∑
r

θuδbur − 1), (A.76)

where λ̄ is a hyperparameter for the expected number of edges between any pair of

distinct groups. As we have explained in the text, it is possible to take the empirical

Bayes’ approach and set λ̄ equal to the average number of connections among all B

communities, λ̄ = 2E/(B + 1)B. By computing the following integral,

P (A|λ̄, b) =

∫
P (A|{λr}, λout,θ, b)P ({λr}, λout|λ̄)P (θ|b) dλrdλoutdθ (A.77)

we obtain the marginal likelihood of the non-uniform PP model,

P (A|λ̄, b) =
eout!

∏
r(err/2)!(

1
2 + 1

2λ̄

)ein+B [(
B
2

)
+ 1

λ̄

]eout+1
×

∏
u ku!∏

u<v Auv!
∏

uAuu!!
. (A.78)

Just as we have seen for the DC-SBM and uniform PP model, the marginal likelihood of

the non-uniform has an alternative interpretation, which is based on the microcanonical

formulation of SBM. The marginal likelihood in the last equation can be rewritten as

P (A|{λr}, b) = P (A|e,k, b)P (k|e, b)P (e|{err}, eout, b)P ({err}|λ̄, b)P (eout|λ̄, b)P (E),

(A.79)

where P (A|e,k, b) is the likelihood function of the microcanonical SBM in equa-

tion (2.36) and the priors are

P (e|{err}, eout, b) =
eout!(

B
2

)eout∏
r<s ers!

, (A.80)
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P ({err}|λ̄, b) =
∏
r

λ̄err

(λ̄+ 1)err+1
, (A.81)

P (eout|λ̄, b) =

[
λ̄
(
B
2

)]eout
[
λ̄
(
B
2

)
+ 1
]eout+1 , (A.82)

and P (E) is just a constant independent of the network partition b hence can be

arbitrarily chosen. With the microcanonical interpretation in mind, we can replace

the parametric priors P ({err}|λ̄, b) and P (eout|λ̄, b) with the following microcanonical

prior,

P ({err}, eout|b, E) = P ({err}|ein, b)P (ein|E, b)

=

(
B + ein − 1

ein

)−1( 1

E + 1

)1−δB,1

.
(A.83)

This prior firstly samples the number of intra- and inter-group connections ein and eout

from a uniform distribution P (ein, eout|E) = (E+1)−1, then assigns equal probability to

every possible configuration of {err} such that
∑

r err = 2ein. The marginal probability

of sampling a network A from the non-uniform PP model is then

P (A|b) = P (A|e,k, b)P (k|e, b)P (e|{err}, eout, b)P ({err}, eout|b, E)P (E), (A.84)

which has the expression as we introduce in equation (3.64).
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A.8 Louvain algorithm with uniform PP model refine-

ment

Original Induced graph

Figure A-1: The induced graph required in the second phase of the Louvain algorithm is
constructed by merging nodes in the same groups together.

Recall that the Newman-Girvan modularity is defined as

Q =
1

2E

∑
uv

(
Auv −

kukv
2E

)
δuv. (A.85)

The Louvain algorithm is a greedy heuristic algorithm for finding the network partition

b with the maximum modualrity. The algorithm starts from a partition where every

node is put in its own community, i.e. B = N . To proceed, the algorithm iterates

between two different phases. Firstly, in the search phase, we go through every node in

the network and try to move the node to one of its neighbouring group. The criterion

for whether we make the move is based on the change in the modularity value once

the move is made. We should move each node to its neighbouring group which leads

to the maximum increase in the modularity value. Such local search continues until

there is no a move of a single node can make the modularity value increase. Then, in

the induced graph phase, an induced graph is constructed by considering communities

obtained in the first phase as meta-nodes, and meta-edges are placed accordingly (see

Fig. A-1). The induced graph is then used as the input to conduct local search in the

first phase. The algorithm iterates the two phases until the modularity value converges.

The main advantage of the Louvain algorithm is in its implementation speed. The key

of the efficient implementation is in the fact that it takes only constant time to evaluate
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the change in the modularity value after moving a node u from group r to group s,

∆Q =
1

2E

(
er + 2kru −

(er + kru)2

2E

)
− 1

2E

(
er −

e2r
2E
− k2u

2E

)
. (A.86)

Moreover, it was argued that the induced graphs generated at different iterations lead to

a hierarchical partition of nodes which could convey useful information of the underlying

systems.

Recall that the expression of the posterior probability of the PP model is

P (b|A) =
ein!eout!(

B
2

)ein (B
2

)eout
(E + 1)1−δB,1

×
∏
r

(nr − 1)!

(er + nr − 1)!
×

∏
u ku!∏

u<v Auv!
∏

iAuu!!

×
∏

r nr!

N

(
B − 1

N − 1

)−1 1

N
.

(A.87)

To evaluate the change in the posterior probability, we just need to track the following

properties of the network partition: ein, eout, {er}, {nr}, B, which are no more difficult

to obtain compared to the change in the modularity value. Therefore, we can in fact

use the change in the posterior probability of the uniform PP model as the criterion

that is used in the search phase of the Louvain algorithm. By doing so, the output of

the modified Louvain algorithm is an approximate of the MAP solution of the uniform

PP model.

We provide a Python implementation of the Louvain algorithm for finding the MAP

estimate of the uniform PP model1. The main purpose of this implementation is to

show how practical it is to adapt existed optimisation heuristics to perform inference

based on statistically principled models. Moreover, refining the results obtained with

the Louvain algorithm according to the uniform PP model can be used as a sanity

check in terms of overfitting data. As we are going to see, if we start with the par-

titions given by modularity maximisation and replace the objective function with the

posterior probability of the uniform PP model, the Louvain heuristic will continue to

merge communities, signalising the noises that have been included when the modularity

measure is used as the objective function.

We firstly consider synthetic networks with known community structures. In light

of the fact that the underlying models of the modularity maximisation approach is

the uniform PP model, we compare the performance of modularity maximisation and

1Code available in author’s Github repository. The implementation of the Louvain heuristic is built
on the python-louvain package [164].
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Modularity maximisation PP (uniform)

B = 10, Q = 0.461 B = 1, Q = 0

Figure A-2: Inferred community structures in a ER network with N = 200 and ⟨k⟩ = 5. We
run the Louvain algorithm with different objective function: (left) Newman-Girvan modularity
maximisation and (right) the posterior probability of the uniform PP model.

the uniform PP model in a sample of the uniform PP model. Recall that we can

parameterise the parameters of PP model as follows,

pin =
(1 + (B − 1)ϵ)⟨k⟩

N
, pout =

(1− ϵ)⟨k⟩
N

, (A.88)

such that the ϵ parameters controls the strength of assortative structures. When ϵ = 0,

pin = pout, the PP model is equivalent to the ER model and there is no community

structures in the networks sampled from the model. As shown in Fig A-2, running

the Louvain algorithm for modularity maximisation gives us a partition with B = 10

communities, Q = 0.461. Then, start with this partition, we continue the Louvain

heuristic but use the posterior likelihood of the PP model as the objective function.

Refining the partition in this way leads to a partition in which all nodes are correctly

put in a single community.

Then, we generate a network with two equal-size assortative communities. We set

the average degree and the assorativity parameter as ⟨k⟩ = 5 and ϵ = 0.85 such that

the assortative structure is above the detectability threshold. The network with true

labelling as well as the inferred community structures given by the Louvain with modu-

larity and the uniform PP model are given in the Fig. A-3. Having seen the overfitting

behaviour in the random network, it is not surprised to see modularity maximisation

finds an overly complicated partition here, in which the correct communities are sub-
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Underlying truth

Modularity maximisation PP (uniform)

B = 9, Q = 0.512, accuracy = 0.355 B = 2, Q = 0.428, accuracy = 0.965

Figure A-3: Inferred community structures in a network generated from the uniform PP model
with B = 2, n1 = n2 = 100, ⟨k⟩ = 5. The strength of the assortative structure ϵ is defined as
introduced in the text. We choose ϵ = 5 such that the assortative structure is far above the
detectability threshold. We run the Louvain algorithm with different objective functions: (left)
Newman-Girvan modularity and (right) the posterior probability of the uniform PP model.
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Figure A-4: Inferred community structures in the American college football network [11] with
B = 10, Q = 0.605. Start from the partition given by the modularity maximisation approach,
there is no room to refine according to the posterior probability of the uniform PP model.

dividing into small communities. Using the PP model refinement leads to a partition

which is almost identical to the underlying truth. We also test the Louvain algorithm

with the uniform PP model refinement in empirical networks. In the American col-

lege football network, the maximum modularity approach identifies a partition with

B = 10 communities, as shown in Fig. A-4. This partition cannot be further refined

according to the the posterior probability of the uniform PP model. This is because

the community structure is rather significant and each community has relatively small

sizes. However, in general, refining the results given by the modularity maximisation

according to the uniform PP model will lead to more conservative results. For example,

in the bottlenose dolphins social network, modularity maximisation finds a partition

with 5 communities and modularity value Q = 0.529, as given in Fig A-5. Refining

this partition according to the posterior probability of the uniform PP model leads to

the partition where four communities in the left are merged together.
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Modularity maximisation PP (uniform)

B = 5, Q = 0.529 B = 2, Q = 0.373

Figure A-5: Inferred community structures in the social network of the bottlenose dol-
phins [165]. The modularity maximisation approach identify 5 communities. Running the
refinement according to the posterior probability of the uniform PP model reduce the number
of communities to 2.
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Appendix B

Supplementary materials for Chapter 4

B.1 Derivation of the logarithm of the joint probability

distribution for DC-SBM in the clique network

Here we provide the derivation of the logarithm of the joint probability of DC-SBM for

the clique network

lnP (A,k, e, b) ≈ (E −N) lnB∗ − (E +B∗2/2)g

(
E

E +B∗2/2

)
, (B.1)

where g(x) = −x lnx− (1− x) ln(1− x). Firstly, because of the microcanonical nature

of the model, we can decompose the joint probability as follows

lnP (A,k, e, b) = lnP (A|k, e, b∗) + lnP (k|e, b) + lnP (e|b∗) + lnP (b∗), (B.2)

with each term in the last equation as given below

P (A|k, e, b∗) =
(2E/B∗)!!B

∗

(2E/B∗)!B∗ ×
∏

u ku!∏
u<v Auv!

∏
uAuu!!

, (B.3)

P (b∗) =
(N/B∗)!B

∗

N !
×
(
N − 1

B∗ − 1

)−1 1

N
, (B.4)

P (e|b∗) =

((
B∗(B∗ + 1)/2

E

))−1

, (B.5)

P (k|e, b∗) =

((
N/B∗

2E/B∗

))−B∗

. (B.6)

Now we just need to take the logarithm of these terms and make use of the Stirling’s

approximation lnx! ≈ x lnx−x. Also note that we will drop all the constants that are

independent of B∗ because they do not affect the result of optimising the joint prob-
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ability (therefore the description length) with respect to the number of communities

B.

lnP (A|k, e, b∗) = B∗ ln
(

(E/B∗)!2E/B∗
)
−B∗ ln(2E/B∗)!

= B∗
[
E

B∗ ln
E

B∗ −
E

B∗ +
E

B∗ ln 2− 2E

B∗ ln
2E

B∗ +
2E

B∗

]
= E lnB∗. (B.7)

lnP (b∗) = B∗ ln(N/B∗)!− ln
(N − 1)!

(N −B∗)!(B∗ − 1)!

= B∗
[
N

B∗ ln
N

B∗ −
N

B∗

]
− [(N − 1) ln(N − 1)− (N −B∗) ln(N −B∗)− (B∗ − 1) ln(B∗ − 1)]

= −N lnB∗ − (N − 1)g

(
N −B∗

N − 1

)
= −N lnB∗. (B.8)

Note that from the second to the last line to the last line above, we make use of the

fact that g(x) = −x lnx− (1− x) ln(1− x) is the binary entropy function which takes

values at the order of O(1) 1.

lnP (e|b∗) = − ln
(E +B∗(B∗ + 1)/2− 1)!

(B∗(B∗ + 1)/2− 1)!E!

= −(E +B∗(B∗ + 1)/2− 1) ln(E +B∗(B∗ + 1)/2− 1)+

(B∗(B∗ + 1)/2− 1) ln(B∗(B∗ + 1)/2− 1)− E lnE

= (E +B∗2/2)g

(
E

E +B∗/2

)
. (B.9)

In the last equation, we assume that E,B∗ ≫ 1 and only keep leading terms depending

on B∗. Finally,

lnP (k|e, b∗) = −B∗ ln
(N/B∗ + 2E/B∗ − 1)!

(N/B∗ − 1)!(2E/B∗)!

= −B∗
[
(N/B∗ + 2E/B∗ − 1) ln(N/B∗ + 2E/B∗ − 1)− (N/B∗ − 1) ln(N/B∗ − 1)

− 2E/B∗ ln 2E/B∗
]

= (N + 2E −B∗)g
(

N/B∗

N/B∗ + 2E/B∗ − 1

)
. (B.10)

1The binary entropy function must be non-negative and it reaches its maximum when x = 1− x =
1/2, which leads to g(x) = ln 2, therefore g(x) = O(1) since 0 ≤ g(x) ≤ ln 2 for any values of B∗.
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Again, since g(x) = O(1), the leading terms in lnP (k|e, b∗) are constants independent

of B∗. Combining equations (B.7)-(B.10), we reach the desired equation in equa-

tion (B.1).
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B.2 Numerical estimate of the resolution limit of DC-

SBM
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Figure B-1: We consider the empirical network corpus as detailed in Section B.6. The resolution
limit of DC-SBM has the expression Bmax = x(⟨k⟩)

√
N . (a) Numerical estimate of x (b)

Numerical estimate of Bmax.

As explained in Section 4.1, the resolution limit of DC-SBM has the expression

Bmax = x(⟨k⟩)
√
N, (B.11)

where x(⟨k⟩) is the solution of the following equation

⟨k⟩ − 2 = 2x2 ln
⟨k⟩+ x2

x2
. (B.12)

In the last equation, ⟨k⟩ is the average degree ⟨k⟩ = 2E/N . Generally, x(⟨k⟩) does

not permit analytical solution. However, we can compute numerical approximaten of

x(⟨k⟩), thereby obtaining the resolution limit of DC-SBM. We do so for datasets in

the empirical network corpus as detailed in Section B.6, using the Newton–Raphson

method [136]. As can be seen from Fig B-1(a), x(⟨k⟩) rougly scales as the function√
⟨k⟩/2. In Fig B-1(b), the estimate of Bmax seems to have the scaling O(

√
E), which

is consistent with the results in literature [63, 106]. The size of points in Fig B-1(b) is

proportional to the average degree ⟨k⟩. It seems that the larger ⟨k⟩ is, the closer Bmax

is compared to the
√
E.
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B.3 Compare the non-uniform PP model to DC-SBM in

an empirical network corpus
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Figure B-2: Inferred number of communities given by the uniform PP model subtracted from
that given by the single layer DC-SBM. Networks indices are ordered in the increasing order
of network sizes (number of edges) and the colouring of points indicates the description length
difference per edges (nats): (ΣDCSBM − ΣPPM(unif))/E.
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B.4 Samples from the posterior distribution of the uni-

form PP and DC-SBM

(a) South African companies
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(b) Wikipedia book edits
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(c) Plant-pollinator webs
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Figure B-3: Posterior distribution of the number of communities and description length ob-
tained with the uniform PP model and DC-SBM for three bipartite networks (a) South African
companies [140] (b) Wikipedia book edits [141] (c) Plant-pollinator web in Safariland [142].
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(a) US contiguous state
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(b) Adolescent health No.76
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(c) PDZ-domain interactome
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Figure B-4: Posterior distribution of the number of communities and description length ob-
tained with the uniform PP model and DC-SBM for the network of (a) US contiguous [144] (b)
No.76 dataset from the Adolescent health dataset [137] (c) PDZ-domain interactive [146].
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(d) Student cooperation
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(e) Illinois high school student
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(f) Physcian trust
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Figure B-4: Posterior distribution of the number of communities and description length ob-
tained with the uniform PP model and DC-SBM for the network of (d) student coopera-
tion [143](e) high school [166] (f) physician trust [167].
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(g) American college football
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Figure B-4: Posterior distribution of the number of communities and description length ob-
tained with the uniform PP model and Nested DC-SBM for the network of (g) American college
football [11]
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B.5 Samples from the posterior distribution of the uni-

form PP model and Nested DC-SBM

(a) South African companies
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(b) Wikipedia book edits
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(c) Plant-pollinator webs
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Figure B-5: Posterior distribution of the number of communities and description length ob-
tained with the uniform PP model and Nested DC-SBM for three bipartite networks (a) South
African companies [140] (b) Wikipedia book edits [141] (c) Plant-pollinator web in Safari-
land [142].
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(a) US contiguous state
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(b) Adolescent health No.76
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(c) PDZ-domain interactome
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Figure B-6: Posterior distribution of the number of communities and description length ob-
tained with the uniform PP model and DC-SBM for the network of (a) US contiguous [144] (b)
No.76 dataset from the Adolescent health dataset [137] (c) PDZ-domain interactive [146].
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(d) Student cooperation
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(e) Illinois high school student
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(f) Physcian trust
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Figure B-6: Posterior distribution of the number of communities and description length ob-
tained with the uniform PP model and Nested DC-SBM for the network of (d) student coop-
eration [143](e) high school [166] (f) physician trust [167].
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(g) American college football
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Figure B-6: Posterior distribution of the number of communities and description length ob-
tained with the uniform PP model and Nested DC-SBM for the network of (g) American college
football [11]
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B.6 Details of the network corpus

Name Description N E

sa companies A bipartite network of the affiliations between a small group of individuals and

five important companies in South African finance, around 1919 [140].

13 11

ambassador (1985 1989) A temporal network representing snapshots of relationships among individuals

directly or indirectly associated with Philippines Ambassador Residence Bombing

2000, Jakarta [168].

19 11

edit wikibooks (aa) Two bipartite user-page networks extracted from Wikipedia, about books [141]. 23 23

internet top pop

(Aarnet)

Assorted snapshots of internet graph at the Point of Presence (PoP) level (which

lies between the IP and AS levels), collected from around the world and at various

times [169].

24 19

florentine families Multiplex network with 2 edge types representing marriage alliances and business

relationships between Florentine families during the Italian Renaissance [170].

27 15

plant pol vazquez

(Safariland)

Eight bipartite networks of plants and pollinators, from the Nahuel Huapi Na-

tional Park and surrounding areas in Rio Negro, Argentina, from September 1999

to Feburary 2000 [142].

35 31

moreno taro A network of gift-giving relationships (taro exchange) among households in a

Papuan village [171].

39 22

edit wiktionary (aa) Three bipartite user-page networks extracted from Wiktionary, for French, Ger-

man, and English [141].

51 32

new guinea tribes A network of friendships among tribes of Gahuku-Gama alliance structure of the

Eastern Central Highlands region in New Guinea [172].

58 16

dutch school

(klas12b-net-1)

A series of snapshots of the friendships among freshmen at secondary school in

The Netherlands, in 2003-2004 [173].

63 26

november17 A network representing connections among members of the November 17 (N17)

Greek terrorist group [174].

66 22

moviegalaxies (1) Social graphs for over 700 movies from the moviegalaxies [175]. 68 21

rhesus monkey Grooming interactions among a group of wild adult rhesus monkeys (Macaca

mulatta) in Cayo Santiago, during a two month period in 1963 [176].

69 16

montreal Network representing relationships between gangs, obtained from Montreal Po-

lice’s central intelligence database, spanning 2004 to 2007 [177].

75 29

karate (77) Network of friendships among members of a university karate club [178]. 77 34

dutch criticism A network of criticisms among Dutch literary authors in 1976 [179]. 80 35

add health (comm3) A directed network of friendships obtained through a social survey of high school

students in 1994 [124].

91 32

kangaroo Dominance relations among a group of free-ranging grey kangaroos (Macropus

giganteus) [180].

91 17

ceo club A bipartite network of the memberships of chief executive officers and the so-

cial organizations (clubs) to which they belong, from the Minneapolis-St. Paul

area [181].

95 40

196
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elite A small bipartite network of the affiliations among elite individuals and the cor-

porate, museum, university boards, or social clubs to which they belonged, from

1962 [182].

99 44

zebras Social interactions among a group of wild Grevy’s zebras (Equus grevyi), observed

in Mpala Ranch in Kenya in 2002 [82].

105 23

add health (comm77) A directed network of friendships obtained through a social survey of high school

students in 1994 [137].

106 25

contiguous usa A network of contiguous states in the USA, in which each state is a node and

two nodes are connected if they share a land-based geographic border [144].

107 49

terrorists 911 Network of individuals and their known social associations, centered around the

hijackers that carried out the September 11th, 2001 terrorist attacks [183].

152 62

high tech company Multiplex network of 3 edge types representing relationships (advice, friendship,

and “reports to”) between managers of a high-tech company [184].

159 21

dolphins An undirected social network of frequent associations observed among 62 dolphins

(Tursiops) in a community living off Doubtful Sound, New Zealand, from 1994-

2001 [123].

159 62

revolution A bipartite network of the memberships of notable people and organizations, from

the American Revolution (1765-1783) between users and groups on YouTube,

extracted from a larger YouTube network in 2007 [5].

160 141

blumenau drug A network of drug-drug interactions, extracted from 18 months of electronic

health records (EHRs) from the city of Blumenau in Southern Brazil [185].

181 75

board directors

(net2m 2002-05-01)

224 networks of the affiliations among board directors due to sitting on common

boards of Norwegian public limited companies (as of 5 August 2009), from May

2002 onward, in monthly snapshots through August 2011 [186].

184 179

add health (comm76) A directed network of friendships obtained through a social survey of high school

students in 1994 [137].

185 43

cattle Dominance interactions among a group of dairy cattle at the Iberia Livestock

Experiment Station in Jenerette, Louisiana [187]

205 28

interactome pdz A network of PDZ-domain-mediated protein–protein binding interactions, ex-

tracted from the PDZBase database [146].

209 161

add health (comm1) A directed network of friendships obtained through a social survey of high school

students in 1994 [137].

220 69

bison Dominance relations among a group of American bisons in the National Bison

Range in Moiese Montana, observed in 1972 [188].

222 26

marvel partnerships A network of partnerships among characters in the Marvel comic book uni-

verse [189].

224 181

fresh webs (AkatoreA) A set of 26 networks of trophic-level species interactions in streams in New

Zealand, Maine and North Carolina [190].

227 84

swingers A bipartite sexual affiliation network representing “swing unit” couples (one node

per couple) and the parties they attended [191]

232 96

moreno sheep Dominance interactions among a group of female bighorn sheep (Ovis canadensis)

from the National Bison Range in western Montana USA, over a 27 month period

ending in 1984 [192].

235 28
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train terrorists A network of associations among the terrorists involved in the 2004 Madrid train

bombing, as reconstructed from press stories after-the-fact [193].

243 64

7th graders A small multiplex network of friendships among 29 seventh grade students in

Victoria, Australia [194].

250 29

lesmis The network of scene coappearances of characters in Victor Hugo’s novel ”Les

Miserables [144].

254 77

student cooperation Network of cooperation among students in the ”Computer and Network Security”

course at Ben-Gurion University, in 2012 [143].

256 141

highschool A network of friendships among male students in a small high school in Illinois

from 1958 [195].

274 70

add health (comm63) A directed network of friendships obtained through a social survey of high school

students in 1994 [137].

282 96

macaque neural A network of cortical regions in the Macaque cortex [196]. 313 47

windsurfers A network of interpersonal contacts among windsurfers in southern California

during the Fall of 1986 [197].

336 43

add health (comm70) A directed network of friendships obtained through a social survey of high school

students in 1994 [137].

344 76

add health (comm2) A directed network of friendships obtained through a social survey of high school

students in 1994 [137].

348 103

game thrones Network of coappearances of characters in the Game of Thrones series, by

George R. R. Martin, and in particular coappearances in the book ”A Storm

of Swords [198].

352 107

cs department Multiplex network consisting of 5 edge types corresponding to online and offline

relationships (Facebook, leisure, work, co-authorship, lunch) between employees

of the Computer Science department at Aarhus [199].

353 61

kidnappings Bipartite network of members of the Abu Sayyaf Group in the Philippines, and

the kidnapping events they were involved in [200].

357 285

add health (comm71) A directed network of friendships obtained through a social survey of high school

students in 1994 [137].

358 74

add health (comm6) A directed network of friendships obtained through a social survey of high school

students in 1994 [137].

378 108

college freshmen A small network of friendships among freshmen at Dutch College in 1994-

1995 [201].

422 32

adjnoun A network of word adjacencies of common adjectives and nouns in the novel

“David Copperfield” by Charles Dickens [202].

425 112

london transport Multiplex network with 3 edge types representing links within the three layers of

London train stations: Underground, Overground and DLR [203].

430 369

openstreetmap

(01-AL-cities-street

The road network for the entire United States, as extracted from the Open-

StreetMap project in c. 2018. [147].

434 351

networks:0100124 Abbeville)

polbooks A network of books about U.S. politics published close to the 2004 U.S. presi-

dential election, and sold by Amazon.com [121].

441 105

ecoli transcription

(v1.0)

Network of operons and their pairwise interactions, via transcription factor-based

regulation, within the bacteria Escherichia coli [138].

456 329
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physician trust A network of trust relationships among physicians in four midwestern (USA)

cities in 1966 [167].

465 117

sp kenyan households A network of proximity contacts measured between members of 5 households of

rural Kenya, between April 24 and May 12, 2012 [204].

504 47

ugandan village

(friendship-1)

Complete friendship and health advice social networks among households in 17

rural villages bordering Lake Victoria in Mayuge District, Uganda in 2013 [205]

547 202

webkb

(webkb wisconsin link1)

Web graphs crawled from four Computer Science departments in 1998, with each

page manually classified into one of 7 categories: course, department, faculty,

project, staff, student, or other [206].

553 280

football A network of American football games between Division IA colleges during reg-

ular season Fall 2000 [11].

613 115

copenhagen (sms) A network of social interactions among university students within the Copen-

hagen Networks Study, over a period of four weeks, sampled every 5 minutes [207].

628 457

add health (comm37) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

694 358

add health (comm5) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

730 157

sp office A temporal network of contacts between individuals, measured in an office build-

ing in France, from June 24 to July 3, 2013 [208].

755 92

add health (comm55) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

800 331

add health (comm8) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

809 204

add health (comm67) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

913 439

netscience A coauthorship network among scientists working on network science, from

2006 [202].

914 379

add health (comm9) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

1004 248

law firm Multiplex network with 3 edge types representing relationships (coworkers,

friendship, advice) between partners and associates of a corporate law firm [209].

1008 71

yeast transcription Network of operons and their pairwise interactions, via transcription factor-based

regulation, within the yeast Saccharomyces cerevisiae [210].

1065 664

add health (comm4) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

1136 281

sp hospital This dataset contains the temporal network of contacts between patients, patients

and health-care workers (HCWs) and among HCWs in a hospital ward in Lyon,

France, from Monday, December 6, 2010 at 1:00 pm to Friday, December 10,

2010 at 2:00 pm [211].

1139 75

macaques Dominance interactions among a group of adult female Japanese macaques

(Macaca fuscata fuscata), observed during a non-mating season in 1976 [212].

1167 62

add health (comm18) A directed network of friendships obtained through a social survey of high school

students in 1994 [137].

1189 284
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plant pol kato A bipartite network of plants and pollinators from Kyoto University Forest of

Ashu, Japan, from 1984 to 1987 [213].

1205 768

unicodelang A bipartite network of languages and the countries in which they are spoken, as

estimated by Unicode [120]

1249 858

euroroad A network of international “E-roads”, mostly in Europe [149]. 1305 1039

add health (comm78) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

1333 430

crime A network of associations among suspects, victims, and/or witnesses involved in

crimes in St. Louis in the 1990s [214].

1377 1263

add health (comm56) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

1393 444

add health (comm72) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

1398 352

celegans interactomes

(wi2007)

Ten networks of protein-protein interactions in Caenorhabditis elegans (nema-

tode), from yeast two-hybrid experiments, biological process maps, literature

curation, orthologous interactions, and genetic interactions [215].

1500 1108

add health (comm53) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

1510 579

add health (comm21) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

1531 377

human brains Networks of neural interactions extracted from human patients using the Mag-

netic Resonance One-Click Pipeline (MROCP), where nodes are voxels of neural

tissue and edges represent connections by single fibers [216].

1563 116

add health (comm11) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

1590 411

add health (comm31) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

1635 728

add health (comm51) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

1665 676

add health (comm74) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

1677 654

add health (comm7) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

1698 437

sp high school new

(2011)

These datasets contain the temporal network of contacts between students in a

high school in Marseilles, France [217].

1709 126

add health (comm80) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

1745 594

residence hall A network of friendships among students living in a residence hall at Australian

National University (date unknown) [218].

1839 217

add health (comm65) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

1869 557

eu procurements alt

(AT 2008)

These 234 networks represent the annual national public procurement markets

of 26 European countries from 2008-2016, inclusive [218].

1921 1684
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add health (comm38) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

1925 521

interactome yeast A network of protein-protein binding interactions among yeast proteins [219]. 1948 1458

facebook friends A small anonymized Facebook ego network, from April 2014 [220]. 1954 329

edit wikiquote (af) A bipartite user-page network extracted from Wikiquotes [141]. 1956 1119

celegans metabolic List of edges comprising the metabolic network of the nematode C. elegans [139]. 2025 453

add health (comm26) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

2066 551

foodweb baywet Networks of carbon exchanges among species in the cypress wetlands of South

Florida [221].

2075 128

add health (comm19) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

2096 492

contact A network of human proximities, as measured by carried wireless devices [222] 2124 274

celegansneural A network representing the neural connections of the Caenorhabditis elegans

nematode [150].

2148 297

sp hypertext (contacts) The temporal network of contacts among attendees of the ACM Hypertext 2009

conference, which spanned 2.5 days of time [223].

2196 113

fullerene structures

(C1500)

Fifteen networks of carbon atoms and the atomic bonds that connect them within

molecules of fullerenes, from 60 atoms up to 6000 atoms [224]

2250 1500

kegg metabolic (aae) 109 metabolic networks of various species, as extracted from the Kyoto Encyclo-

pedia of Genes and Genomes (KEGG) database in March 2006 [225].

2296 880

add health (comm13) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

2350 652

facebook organizations

(S1)

Six networks of friendships among users on Facebook who indicated employment

at one of the target corporation [226]

2369 320

faa routes A network of air traffic routes, from the FAA (Federal Aviation Admin-

istration) National Flight Data Center (NFDC) preferred routes database

(www.fly.faa.gov) [227].

2408 1226

foodweb little rock A food web among the species found in Little Rock Lake in Wisconsin [228]. 2434 183

add health (comm22) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

2449 612

ego social (facebook 0) Ego networks associated with a set of accounts of three social media platforms

(Facebook, Google+, and Twitter) [229].

2514 324

add health (comm27) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

2530 1152

add health (comm29) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

2534 569

add health (comm25) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

2567 790

add health (comm14) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

2688 562

add health (comm62) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

2737 1040
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add health (comm30) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

2740 718

jazz collab The network of collaborations among jazz musicians, and among jazz bands,

extracted from The Red Hot Jazz Archive digital database, covering bands that

performed between 1912 and 1940 [230].

2742 198

add health (comm45) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

2745 921

sp infectious This dataset contains the daily dynamic contact networks collected during the

Infectious SocioPatterns event that took place at the Science Gallery in Dublin,

Ireland, during the artscience exhibition INFECTIOUS: STAY AWAY [223]

2765 410

add health (comm10) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

2795 678

add health (comm12) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

2805 581

malaria genes (HVR 1) Networks of recombinant antigen genes from the human malaria parasite P. fal-

ciparum [231].

2812 307

add health (comm64) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

2861 694

add health (comm66) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

2865 644

add health (comm23) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

2897 667

eu airlines A multiplex network of airline routes among European airports, where each of

the 37 edge types represents routes by a different airline [232].

2953 417

add health (comm24) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

3003 849

add health (comm54) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

3037 1035

interactome stelzl A network of human proteins and their binding interactions [233]. 3106 1615

add health (comm35) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

3151 851

email company A network of emails among employee email addresses at a mid-sized manufactur-

ing company [234].

3250 167

add health (comm59) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

3339 971

add health (comm32) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

3440 853

add health (comm16) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

3462 778

add health (comm57) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

3480 1180

add health (comm83) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

3583 1260
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add health (comm69) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

3678 891

add health (comm60) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

3699 1131

add health (comm81) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

3795 1290

add health (comm68) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

3871 1385

add health (comm39) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

3915 987

add health (comm84) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

4003 1545

add health (comm82) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

4020 921

add health (comm20) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

4075 910

add health (comm79) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

4154 1190

new zealand collab A network of scientific collaborations among institutions in New Zealand 4246 1463

add health (comm47) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

4378 985

add health (comm15) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

4391 1062

add health (comm75) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

4396 994

add health (comm61) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

4399 1710

celegans 2019

(male chemical)

Networks among neurons of both the adult male and adult hermaphrodite worms

C. elegans, constructed from electron microscopy series, to include directed edges

(chemical) and undirected (gap junction), and spanning including nodes for mus-

cle and non-muscle end organs [235].

4500 559

add health (comm28) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

4715 1136

add health (comm33) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

4833 1974

add health (comm42) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

4931 1405

us agencies (alabama) 50 networks, one for each U.S. state, representing the web-based links between

their associated government agencies websites [236].

4983 1115

add health (comm48) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

4990 1171

add health (comm44) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

5096 1127
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route views (19971108) 733 daily network snapshots denoting BGP traffic among autonomous systems

(ASs) on the Internet, from the Oregon Route Views Project, spanning 8 Novem-

ber 1997 to 2 January 2000 [237].

5156 3015

add health (comm43) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

5242 1638

add health (comm17) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

5337 1218

add health (comm52) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

5438 1719

uni email A network representing the exchange of emails among members of the Rovira i

Virgili University in Spain, in 2003 [238].

5451 1133

add health (comm58) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

5605 1703

add health (comm34) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

5748 1605

add health (comm46) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

5749 1519

sp high school

(proximity)

These data sets correspond to the contacts and friendship relations between stu-

dents in a high school in Marseilles, France, in December 2013, as measured

through several techniques [239].

5818 327

sp primary school

(day 1)

Two temporal networks of contacts among students and teachers at a primary

school in Lyon, France, on consecutive days of in October 2009 [240].

5899 236

interactome vidal A network of human proteins and their binding interactions [241]. 6007 2783

messal shale A network of feeling links among taxa based on the 48 million years old uppermost

early Eocene Messel Shale [242].

6395 700

interactome figeys A network of human proteins and their binding interactions [243]. 6418 2217

physics collab

(pierreAuger)

Two multiplex networks of coauthorships among the Pierre Auger Collaboration

of physicists (2010-2012) and among researchers who have posted preprints on

arXiv [244].

6426 475

wiki science A network of scientific fields, extracted from the English Wikipedia in early

2020 [245]

6517 677

power A network representing the Western States Power Grid of the United States, in

which nodes are transforms or power relay points and two nodes are connected

if a power line runs between them [150].

6594 4941

add health (comm73) A directed network of friendships obtained through a social survey of high school

students in 1994 [137].

6813 1630

add health (comm49) A directed network of friendships obtained through a social survey of high school

students in 1994 [137].

7031 1877

add health (comm36) A directed network of friendships obtained through a social survey of high school

students in 1994 [137].

7986 2152

collins yeast Network of protein-protein interactions in Saccharomyces cerevisiae (budding

yeast), measured by co-complex associations identified by high-throughput affin-

ity purification and mass spectrometry (AP/MS) [246].

8319 1004

un migrations A network of migration between countries, collected by the United Nations [247] 8405 232
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add health (comm40) A directed network of friendships obtained through a social survey of high school

students in 1994 [137].

8522 1996

add health (comm41) A directed network of friendships obtained through a social survey of high school

students in 1994 [137].

8646 2064

bible nouns A network of noun phrases (places and names) in the King James Version of the

Bible [248].

9059 1707

fao trade Multiplex network representing trade relationships between countries from the

Food and Agricultural Organization of the United Nations [249].

9420 214

dnc A network representing the exchange of emails among members of the Democratic

National Committee, in the email data leak released by WikiLeaks in 2016 [250]

10384 849

add health (comm50) A directed network of friendships obtained through a social survey of high school

students in 1994 [137]

10455 2539

foursquare

(NYC restaurant checkin)

Two bipartite networks of users and restaurant locations in New York City on

Foursquare, from 24 October 2011 to 20 February 2012 [251].

13457 4906

bitcoin alpha A network of who-trusts-whom relationships among users of the Bitcoin Alpha

platform [252].

14120 3775

plant pol robertson A bipartite network of plants and pollinators, from southwestern Illinois,

USA [253].

15254 1882

genetic multiplex

(Arabidopsis)

Multiplex networks representing different types of genetic interactions, for differ-

ent organisms [254].

16064 6692

polblogs A directed network of hyperlinks among a large set of U.S. political weblogs from

before the 2004 election. Includes blog political affiliation as metadata [127].

16714 1222

us congress (H93) Two temporal networks of bill co-sponsorship tendencies among US Congress-

people, from 1973 (93rd Congress) to 2016 (114th Congress) [255].

18083 446

openflights A network of regularly occurring flights among airports worldwide, extracted

from the openflights [256]

18833 3188

chicago road A transportation network of Chicago, USA, from an unknown date (probably

late 20th century) [257].

20627 12979

bitcoin trust A network of who-trusts-whom relationships among users of the Bitcoin OTC

platform [258].

21489 5875

escorts A bipartite network of escort and individuals who buy sex from them in Brazil,

extracted from a Brazilian online community for such ratings [259].

38540 15810

edit wikinews (ar) Two bipartite user-page networks extracted from Wikipedia, about news

events [141].

38619 23975

advogato A network of trust relationships among users on Advogato, an online community

of open source software developers [260].

39227 5042

gnutella (04) A sequence of 9 snapshots of the Gnutella peer-to-peer file sharing network from

5-31 August 2002 [261].

39994 10876

hiv transmission A set of networks of HIV transmissions between people through sexual, needle-

sharing, or social connections, based on combining 8 datasets collected from 1988

to 2001 [262].

41206 26706

word adjacency (darwin) Directed Networks of word adjacency in texts of several languages including En-

glish, French, Spanish and Japanese [263].

44205 7377
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arxiv collab

(cond-mat-1999)

Collaboration graphs for scientists, extracted from the Los Alamos e-Print arXiv

(physics), for 1995-1999 for three categories, and additionally for 1995-2003 and

1995-2005 for one category [264].

44619 13861

internet as A symmetrized snapshot of the structure of the Internet at the level of Au-

tonomous Systems (ASs), reconstructed from BGP tables posted by the Univer-

sity of Oregon Route Views Project [128].

48436 22963

anybeat A snapshot of the Anybeat online social network from 2013, before it was shut

down [265].

49132 12645

inploid Inploid is a social question and answer website in Turkish. Users can follow others

and see their questions and answers on the main page. Each user is associated

with a reputability score which is influenced by feedback of others about questions

and answers of the user. Each user can also specify interest in topics [266].

49334 14360

dblp cite Citations among papers contained in the DBLP computer science bibliogra-

phy [267].

49579 12494

jung A network of software class dependency within the JUNG 2.0.1 and javax 1.6.0.7

library namespaces edu.uci.ics.jung and java/javax. Nodes represent classes and

a directed edge indicates a dependency of one class on another [268].

50290 6120

caida as (20071112) A sequence of 122 network snapshots denoting Autonomous System (AS) rela-

tionships on the Internet, from 2004-2007, inferred using the Serial-1 method

from RouteViews BGP table snapshots and a set of heuristics [269].

52861 26389

jdk A network of class dependencies within the JDK (Java SE Development Kit)

1.6.0.7 framework. Nodes represent classes and a directed edge indicates a de-

pendency of one class on another [270].

53658 6434

us roads (AK) The road networks of the 50 US States and the District of Columbia based on

UA Census 2000 TIGER/Line Files [148].

55014 48560

chess A network among chess players (nodes) giving the chess match outcomes (edges),

for game-by-game results among the world’s top chess players [271].

55779 7115

us air traffic Yearly snapshots of flights among all commercial airports in the United States

from 1990 to today [272].

58226 2274

nematode mammal A global interaction web of interactions between nematodes and their host mam-

mal species, extracted from the helminthR package and dataset [273].

58825 26197

budapest connectome

(all 20k)

A parameterizable consensus brain graph, derived from connectomes of 477 peo-

ple, each computed from MRI datasets of the Human Connectome Project [274].

70654 1015

movielens 100k Three bipartite networks that make up the MovieLens 100K Dataset, a stable

benchmark dataset of 100,000 ratings from 1000 users on 1700 movies [275].

70946 23761

digg reply Network of replies among users of digg.com. Each node in the network is a digg

user, and each directed edge indicates that user i replied to user j [276].

84781 29652

cora Citations among papers indexed by CORA, from 1998, an early computer science

research paper search engine [277].

89157 23166

foldoc A network of hyperlinks among entries in the Free On-line Dictionary of Com-

puting [278].

91471 13356

marvel universe The Marvel Universe collaboration network, where two Marvel characters are

considered linked if they jointly appear in the same Marvel comic book [279].

95445 19182
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dbpedia writer A bipartite network of writers and the written works they created, as extracted

from Wikipedia by the DBpedia project [280].

98895 74775

elec A network of votes on Request for Adminship (RfA) elections from a 2008 snap-

shot of Wikipedia [281].

100667 7066

topology An integrated snapshot of the structure of the Internet at the level of Autonomous

Systems (ASs), reconstructed from multiple sources, including the RouteViews

and RIPE BGP trace collectors, route servers, looking glasses, and the Internet

Routing Registry databases [282].

107720 34761

python dependency Python’s package dependency networks [283]. 107819 58302

slashdot threads A network of replies among users of the website Slashdot on the various discussion

threads on the site [284].

116573 51083

reactome A network of human proteins and their binding interactions, extracted from Re-

actome project [285].

145778 5973

google A directed network of webpages from Google’s own sites, and the hyperlinks

among them [286].

148585 15763

dbpedia producer A bipartite network of producers and the works they created, as extracted from

Wikipedia by the DBpedia project [280].

150714 111632

email enron The Enron email corpus, containing all the email communication from the Enron

corporation, which was made public as a result of legal action [287].

180811 33696

wiki rfa The set of all votes on Requests for Adminships (RfA), from 2003 to May 2013,

represented as a directed, signed network in which nodes represent Wikipedia

members and edges represent votes [288].

181906 11381

facebook wall Friendship relationships and interactions (wall posts) for a subset of the Facebook

social network in 2009, recorded over a 2 year period [289].

182384 43953

arxiv authors (AstroPh) Scientific collaborations between authors of papers submitted to arxiv [129]. 196972 17903

pgp strong Strongly connected component of the Pretty-Good-Privacy (PGP) web of trust

among users, circa November 2009 [290].

197150 39796

dbpedia occupation A bipartite network of the affiliations between notable people and occupations,

as extracted from Wikipedia by the DBpedia project [280].

203971 143222

linux A network of Linux (v3.16) source code file inclusion [291]. 213208 30817

scotus majority (2008) Network of legal citations among majority opinions written by the Supreme Court

of the United States (SCOTUS), from 1754-2002 (2008 version) and 1792-2006

(2007 version) [292].

216436 25389

dbpedia recordlabel Bipartite networks of the affiliations (contractual relations) between artists and

the record labels under which they have performed, as extracted from Wikipedia

by the DBpedia project [280].

222516 169463

dbpedia location A bipartite network of the affiliations between named entities from Wikipedia

and particular notable locations, as extracted from Wikipedia by the DBpedia

project [280].

263957 181951

dbpedia starring A bipartite network of movies and the actors that played in them, as extracted

from Wikipedia by the DBpedia project [280].

264909 134016

corporate directors Bipartite network of directors and the companies on whose boards they sit, span-

ning 54 countries worldwide, constructed from data collected by the Financial

Times [293].

293598 264699
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word assoc A network of word associations showing the count of such associations as collected

from subjects, from the Edinburgh Associative Thesaurus (EAT) [294].

297094 23132

twitter events

(NYClimateMarch2014)

Various multiplex networks of retweets, mentions, and replies among Twitter

users during specific events or occasions in 2013 and 2014 [295].

325093 99666

douban A friendship network among users on Douban [296]. 327162 154908

email eu An email network (anonymized) from a large European research institution, col-

lected from October 2003 to May 2005 (18 months) [129].

339925 224832

foursquare friendships

(old)

A network of user friendships on Foursquare, from April 2012 to September

2013 [297].

357921 105091

epinions trust A who-trusts-whom online social network of the general consumer review site

Epinions [298]

405739 75877

github The bipartite project-user membership network of the software development host-

ing site GitHub [299].

417361 139752

arxiv citation (HepPh) Citations among papers posted on arxiv.org under the hep-ph and hep-th cate-

gories, between 1993 and 2003. This time begins a few months after axiv was

launched. If a paper i cites a paper j also in this data set, then a directed edge

connects i to j. (Papers not in the data set are excluded.) These data were

originally released as part of the 2003 KDD Cup [300].

420784 34401

dbpedia genre A bipartite network of the affiliations between artists and their works on one

side and genre classifications on the other, as extracted from Wikipedia by the

DBpedia project [280].

458324 259139

slashdot zoo A network of interactions among users on Slashdot (slashdot.org), a technology

news website [301].

467731 79116

wordnet A network of English words from the WordNet [302] 656230 145145

wiki users A network derived from interactions between editors of the English language

Wikipedia, as derived from the edit histories of 563 wiki pages related to poli-

tics [303].

715334 137740

wiki link dyn Six networks of the evolving hyperlink structure among wikipedia articles, for

simple English (en), German (de), Dutch (nl), Polish (pl), Italian (it), French

(fr), taken in August 2011 [304].

824581 99636

academia edu Snapshot of the follower relationships among users of academia [301]. 1022440 200167

myspace aminer This network contains the social graph of MySpace, a social networking website

which also has a strong music emphasis [305–308].

5635236 853360

as skitter An aggregate snapshot of the Internet Protocol (IP) graph, as measured by the

traceroute tool on CAIDA’s skitter infrastructure, in 2005 [309].

11094209 1694616

libimseti A network of ratings given between users at Libimseti [310]. 17233144 220970

208

http://konect.cc/networks/eat
https://manliodedomenico.com/data.php
https://manliodedomenico.com/data.php
http://konect.cc/networks/douban
http://snap.stanford.edu/data/email-EuAll.html
https://sites.google.com/site/yangdingqi/home/foursquare-dataset
https://sites.google.com/site/yangdingqi/home/foursquare-dataset
http://snap.stanford.edu/data/soc-Epinions1.html
http://konect.cc/networks/github
http://snap.stanford.edu/data/cit-HepPh.html
http://konect.cc/networks/dbpedia-genre
http://konect.cc/networks/slashdot-zoo
http://konect.cc/networks/wordnet-words
http://konect.cc/networks/wikisigned-k2
http://konect.cc/networks/link-dynamic-simplewiki
https://homes.cs.washington.edu/~fire/#section3
https://lfs.aminer.cn/lab-datasets/multi-sns/
http://snap.stanford.edu/data/as-skitter.html
http://konect.cc/networks/libimseti


B.7 Results of fitting SBMs to randomised networks
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Figure B-7: Inferred number of communities in randomised networks, using the non-uniform
PP model, DC-SBM, and Nested DC-SBM. For comparison, we also present the result of the
modularity maximisation approach.
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Appendix C

Supplementary materials for Chapter 5

C.1 Comparison of the BP running time
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Figure C-1: Running time of one BP iteration in networks with different level of heterogeneity
in degree distribution. Networks are sampled from the (degree-corrected) planted partition
model with N = 105, B = 2, ⟨k⟩ = 10. The assortativity structure is set according to the
parameterisation defined in the equation (5.42), with ϵ = 0.8.

The x-axis is the value of the shape parameter ζ of the Zipf’s distribution, which was

used to generate the degree propensity parameters θu. When ζ takes a value in [2, 3], the

Zipf’s distribution has a finite mean but its variance diverges. Smaller values of ζ make

the Zipf’s distribution more heterogeneous, and ζ =∞ represents the homogenous case

θu = (N/B)−1. To avoid arbitrarily large samples, we set a cut-off value at xmax = 50.

As can be seen from the figure, the running time of the BP iterations significantly

increases as the degree distribution becomes more heterogenous. However, about a

third of the running time is caused by unnecessarily repeated computation, which

can be avoided by updating the BP messages in a modified way as we introduce in

210



Chapter 5. Although the modified updating scheme requires extra time for maintaining

precomputed terms, we found that the BP implementation is more efficient when the

modification is in place, even when the degree distribution is set to be homogeneous.

The advantage of the modified updating scheme gets more clear as the heterogeneity

in the degree distribution increases. A simple demonstration of the difference between

the two different update schemes is available in author’s Github repository.
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