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A B S T R A C T

With the proliferation of screening tools for chemical testing, it is now
possible to create vast databases of chemicals easily. However, rigorous
statistical methodology used to analyse these databases are in their
infancy, and further development to facilitate chemical discovery is
imperative. In this thesis, conditional Gaussian process models are
developped within a regression and classification setting to predict
herbicidal efficacy from glasshouse experiments . The Tanimoto metric
is employed within the covariance of the Gaussian processes to ac-
count for distances and capture correlated effects within the chemical
space. Using molecular fingerprints, a representation of a compound
within the chemical space, it is shown that by accounting for corre-
lation amongst herbicidal compounds, predictive performance can
be improved over the uncorrelated model, where the effects between
compounds are assumed to be independent. Moreover, several optimi-
sation techniques on discrete spaces are presented for the facilitation
of chemical discovery. These methods assist in searching interesting
regions of the chemical space and support the identification of key
molecular features attributing to high efficacy. Furthermore, a simu-
lation study is conducted to confirm the suitability of the both the
Tanimoto metric and the method of scoring rules to evaluate model
performance on the novel application. We conclude that the spatially
correlated model has the ability to improve predictions, and also
has the potential to be applied to other drug discovery settings and
beyond.
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1
I N T R O D U C T I O N A N D M O T I VAT I O N

1.1 introduction to the problem in a general context

1.1.1 Project aim and hypothesis

This thesis aims to develop suitable methodology in assessing com-
pounds from their descriptive characteristics and predicting their
chemical properties within controlled experiments. By representing
molecular structures as chemical fingerprints, we aim to account for
the “closeness” of compounds within the chemical space. GPs will be
adapted to live on the chemical space, see Section 1.1.4, and will be
employed and tested for predicting compound performance in both
a regression and classification setting, the latter presenting greater
novelty to the thesis. Furthermore, a ranking system for the com-
pounds will be implemented in terms of a given property. In-turn,
several optimisation algorithms will be applied, including the genetic
algorithm GA and simulated annealing (SA), for the navigation of the
chemical space, i. e., the space containing the ensemble of all chemi-
cal compounds, and to identify potentially promising compounds in
terms of a given property. By implementing these novel approaches,
the effect of untested compounds as well as capturing the uncertainty
of the proposed effects.

An underlying assumption of the model is that two compounds
“close” within the chemical space will demonstrate similar biological
properties. Using chemical fingerprints, a representation of molecules
as a binary string, we aim to identify compounds similar to those
known to be effective molecules. The novelty of this project is that
closeness in the chemical space is accounted for within the model,
meaning information on observed compounds will inform the assess-
ment of unseen compounds. In-turn, novel compounds of high efficacy
may be proposed, with the consideration that proposed compounds
may not obey necessary physical laws. In identifying similarity be-
tween compounds, we employ the Tanimoto (Jaccard) coefficient, a
proper metric on dichotomous spaces.

With the model developed to predict both the effect of the com-
pound and the class damage resulting from experiments, we then
identify the features within the compounds which present the great-
est contribution towards potency. This will be achieved by applying
several optimisation techniques, including SA and GA. These newly
proposed compounds can then be assessed to determine their effect.

1



2 introduction and motivation

In practice, the results imply that compounds similar in nature to the
proposed compounds me be derived.

The data used to demonstrate our methods are provided by Syn-
genta, an agro-technology company. At Syngenta, thousands of poten-
tial herbicides undergo a sequence of screening tests in glasshouses,
where compounds are tested under a variety of experimental con-
ditions for any given project. The dataset used to demonstrate our
methods consists of 35,740 unique glasshouse experiments conducted
at the initial stages of testing. Within the glasshouse dataset, there are
745 distinct compounds. Each compound is described by a unique
chemical fingerprint which comprises 2048 features. The chemical fin-
gerprint may be viewed as a representation of the chemical space, see
Section 2.1. The glasshouse experiments are characterised by several
factors, including the compound used, rate of application (dosage),
accustomed climate of the plant (warm or cold), stage of growth (pre-
or post-emergence), and the plant group (dicot or monocot). The out-
come of each experiment is the level of damage on the plant, recorded
within 14 days of application and measured by comparing the pigmen-
tation of the plant against colour codes. The damages are recorded as
percentages in multiples of 10. A recorded damage of 0% indicates no
herbicidal effect, whilst a damage of 100% indicates complete necrosis
of the plant.

1.1.2 Contributions

We show that, indeed, GPs can be defined on spaces other than Eu-
clidean with the Tanimoto metric, and present suitable correlation
functions within this pursuit. We define a GP model in both a regres-
sion and an ordinal classification context [23], with the focus being on
the latter. The GP model developed in this thesis incorporates fixed
covariates which capture the additional information on the testing
process. The GP model can be described as a cumulative link model
with correlated random effects [1, Section 5.1]. As the likelihood is not
available in closed-form, the Laplace approximation is employed to
evaluate and fit the model. Thus, another contribution of this thesis
is the application of the Laplace approximation for estimation and
prediction of ordinal data. Due to the correlation structure of the GP

model, we can predict the effect of untested compounds and their
outcomes from glasshouse experiments. To date, this has not been
achieved using a generalised linear mixed model with independent
random effects. Confidence intervals for the predicted effects are as-
sumed through the closed form nature of the predictive distribution,
a particularly attractive feature of the GP. Another contribution of
this project is the implementation of drug discovery methods using
novel approaches. By defining the predictions form the GP as the tar-
get variable and the features within the fingerprints as independent
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predictors, we may identify key features within the chemical finger-
prints attributing to high efficacy. This is performed using several
optimisation methods, including GA and SA.

1.1.3 Review of existing methods

Traditionally, drug discovery is a lengthy and expensive process prone
to high failure rates. Machine learning (ML) has become increasingly
utilised to aide in drug discovery and development due to its computa-
tional speed and ease of scaling. While traditional physical models rely
on quantum chemistry or molecular dynamics simulations, ML uses
algorithms to recognise patterns and relationships between empirical
observations of compounds [87]. The trained ML model can be used to
make predictions in various stages of the drug discovery process, such
as predicting target structure, biological activities, and interactions.

In drug discovery, a key application of ML is assisting with the under-
standing of relationships between molecular structures and biological
activity [2]. For example, given a promising herbicidal compound from
a series of screening trials, we may wish to know how its chemical
structure can be optimized to improve several molecular properties,
including its biological responses or mode of action. Until recently,
investigating these types of relationships could only be performed
through costly and labour-intensive analysis [4].

Today, modern ML techniques can be used to model quantitative
structure-activity relationships (QSAR) and develop artificial intelli-
gence (AI) programs that accurately predict how chemical modifica-
tions influence biological behaviour [20]. Various molecular properties,
such as metabolism, toxicity, and interactions, have been effectively
modelled by QSAR techniques [20]. Even though early methods were
successful at the time, ultimately these approaches were limited by
the scarcity of relevant experimental data. Therefore, sophisticated ML

techniques capable of capturing non-linear relationships, as well as
data of increasing depth and complexity, are required.

The motivation for this project comes from our collaboration with
Syngenta, an agrotechnology company that operate worldwide. At
Syngenta, thousands of chemical compounds are screened yearly in
glasshouse experiments under regulated conditions. The core aim of
these trials is to identify compounds, and their associated chemical
properties, which have the potential to become effective herbicidal
products. Within each experiment, a compound is applied to crops of
various physical characteristics. The effect of the compound is assessed
by a biologist typically within two weeks of initial application. A score
is then attributed to the experiment, indicating the level of damage
inflicted on the plant. Successful herbicides will progress through a
series of trials with the final compounds being sent to field trials.
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1.1.4 Chemical space

The chemical space describes the ensemble of all organic molecules
[74]. The chemical space is not continuous, i. e., there are only discrete
changes that can be made to a compound, e. g., including or excluding
a substructure within the molecule. Using the concept of “closeness”
between two molecules is a central principle in chemoinformatics for
the navigation of the chemical space, and allows for the discovery of
compounds with similar biochemical properties [7, 53]. However, the
vast number of regions to explore makes virtual screening particularly
challenging [8]. Referring to the set of all possible chemicals as a space
likens this to a geographical map illustrating the distribution of molec-
ular properties. To visualise such a map, each molecular descriptor can
be assigned a dimension, thereby assigning each molecule a location
within a multidimensional space. Using the concept of a space con-
taining positional information allows for the navigation of bioactive
molecules, thus performing virtual screening to select compounds for
in-vitro testing [74].

The concept of the chemical space has wide-spread practical ap-
plications. Within the drug discovery realm, the chemical space has
provided a solid conceptual framework to support diversity analy-
sis, structure classification, library design, compound selection and
assessment of structure-property, and structure-activity relationships
[63]. Drug discovery is important to many applications outside the
pharmaceutical industry. In particular, drug discovery methods can be
applied to herbicide selection, where it is currently impossible to eval-
uate all combinations of atomic features to identify the ideal herbicide.
Instead, intelligent methods are needed as a guide for exploration of
interesting regions within the chemical space

Many chemoinformatics methods rely on QSAR analysis [67, 86],
which quantitatively correlates the chemical structure with the bio-
logical activity [66]. Chemical graph theory is vital in understanding
the influence chemical structures have on their biological activity [9].
A chemical graph is a mathematical representation of a chemical
structure and containins sufficient information to model and provide
insight into a wide range of biological phenomena [58]. The chemical
graph contains chemical descriptors, which are numerical features
extracted from chemical structures. Representing the chemical struc-
ture in this way allows the application of several machine learning
techniques, including molecular data mining, compound diversity
analysis and compound activity prediction [27]. Chemical descriptors
can be represented in several dimensions, ranging from 1D to 4D [58].
The representation of 3D molecular fingerprints have been applied
in recent chemoinformatics literature [68, 95]. However, it has been
shown that 2D and 3D descriptors have similar performance in certain
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applications, with 2D being the most common representation due to
their generation being easy, fast, and convenient [36].

1.2 existing approaches

1.2.1 Existing uses of chemical structures

Drug discovery is of vital importance to many fields including agri-
cultural sciences, chemistry, medicine, and the food industry [90].
Many of the methods applied in analysing biological activity for drug
discovery fall under the umbrella of chemoinformatics. Chemoinfor-
matics is the branch of statistics concerned with the prediction of
chemical and biological properties of chemical compounds based on
each compound’s chemical structure [64]. There are many areas in
chemoinformatics related to the discovery of novel drugs, including
computer-aided drug synthesis, chemical space exploration, scaffold
analysis, and library design, [3, 51].

1.2.1.1 Existing studies incorporating chemical structures

Statistical modelling of herbicide performance has long been utilised
when developing effective herbicides. Various methods have been
employed to analyse herbicidal activity, most commonly through the
use of regression analysis [54, 69, 76]. Other statistical methods of
modelling herbicidal data have been employed. Colby [24] presents a
method for calculating expected responses of herbicide combinations
through dose-response curves. Flint, Cornelius, and Barrett [34] use
analysis of variance (ANOVA) to check for difference in treatment
means of herbicides, whilst Seefeldt, Jensen, and Fuerst [78] fitted the
log-logistic function to express dose-responses.

A notable drawback of these methods is that they fail to incorporate
the chemical structure of the herbicidal compounds, thereby neglect-
ing important information in the model. We therefore require methods
which allow for chemical structures. Machine learning methods ad-
dress this shortfall and can be used in the application of chemical
discovery.

1.2.2 ML applications

A vast number of machine learning methods can incorporate molecular
fingerprints for drug discovery, including random forests, gradient
boosted decision trees, single- and multitask deep neural networks
[36].

Recent literature in chemoinformatics includes the application of
several machine learning techniques for the discovery of novel com-
pounds, including support vector machine (SVM) [59, 70], K-nearest
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neighbours [71], random forest (RF) [15, 96] and deep learning [18,
75]. These methods posses several benefits including their ability to
scale and their accuracy in classification. However, these methods
fail to account for the correlation between effects of the compounds,
thereby assuming the effects of the compounds to be independent of
one another.

The effects within our application correspond to the damage in-
flicted upon a plant by the application of each compound. Incorporat-
ing a spatial effect within the model allows correlation to be accounted
for. Typically, correlation is incorporated as a function of Euclidean
distance, thereby restricting the application to problems of a geograph-
ical nature. By incorporating distances on dichotomous spaces within
the model, we can broaden the application to other data types, in
particular categorical and count data.

1.3 similarity of compounds

There exist over 70 methods for quantifying closeness in dichotomous
features-spaces [21], however many are discounted as proper metrics
as they do not satisfy the metric criteria. The Tanimoto coefficient [33]
is a measure of similarity between two dichotomous vectors and does
satisfy the metric criteria, see Section 3.1. It has been shown that when
neglecting a priori knowledge on the compounds in testing, the Tani-
moto similarity scores highest in terms of modelling results, alongside
similarity metrics such as the Dice index and cosine similarity [4, 19].

The value of the Tanimoto coefficient ranges between 0 and 1, with
a value of 1 indicating that the two compounds are considered iden-
tical and a value of 0 indicating no common features exist between
them. Compounds are not necessarily identical when the Tanimoto
coefficient is 1, as one only considers a subset of the entire feature
space. However, the number of features is rich enough in practice that
compounds are distinguishable. Subtracting the Tanimoto coefficient
from 1 converts the expression into a distance, known as the Sorgel
or Jaccard distance [57], and is sometimes referred to as the Tanimoto
dissimilarity. This means two compounds are treated as identical if
their Tanimoto distance is 0. This is an important procedure when
calculating the GP covariance structure for modelling similarity of com-
pounds, since covariances are functions of distances. An important
result is that the Tanimoto distance does satisfy the metric criteria, in
particular the triangular inequality [57], thereby making it a suitable
metric. Within the chemoinformatics literature, it is the most widely
used method for quantifying similarity of molecular substructures [4].

Since the matrix of Tanimoto similarities is itself positive definite, it
has been applied in several machine learning applications, including
artificial neural networks [47], and SVMs [87]. Further, Tanimoto simi-
larities have been utilised in GPs as a correlation matrix for the effects
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of compounds [65]. One criticism these papers is the absence of the
scale parameter which controls for correlation, thereby treating corre-
lations as fixed. We overcome this drawback by using the Tanimoto
distance as a distance measure within well known GP correlations
within the spatial statistic literature, such as the exponential kernel.
This widens the application of the GP by living on non-Euclidean
spaces, resulting in a vast number of data-driven problems being open
to the application of GP.

1.3.1 Tanimoto literature

The Tanimoto coefficient is widely applied within the ML literature.
However, it has seldom been applied within spatial GP models. Moss
and Griffiths [65] proposed a GP framework for molecular property pre-
diction within a regression setting using Tanimoto coefficient. Bajusz,
Rácz, and Héberger [4] quantifies the similarity of molecules using the
Tanimoto distance, as well as other similarity metrics. Swamidass et al.
[87] and Gärtner, Le, and Smola [37] used a Tanimoto based kernel
in the application of support vector machines in assessing molecu-
lar similarity. Czarnecki [26] applied weighted Tanimoto kernels as
hidden layer nodes within a neural network for drug classification.
Our application uses the Tanimoto similarity within a GP, thereby
capturing the distance between compounds as a means of informing
the effects of unobserved compounds.

1.3.2 Gaussian process models

We present a novel approach to incorporating chemical distance into
a statistical model with the use of GP. GP are commonly defined on
Euclidean spaces and act on the notion of distance. Two items close
in Euclidean space should have a similar effect on the outcome we
are modelling. For instance, predicting earthquakes, oil locations and
many other spatially correlated phenomena. In this project, the metric
we use for chemical structures is non-Euclidean, and therefore the GP

may be defined on the chemical space. The values of the GP represent
the effect of each compound on the outcome we wish to model. In our
application, we are modelling the level of damage resulting from a
glasshouse experiment. Distance in the chemical space is measured by
the Tanimoto or Jaccard metric [55, Ch. 5].

1.4 thesis layout

This thesis is organised as follows. Chapter 2 discusses the type of
data subject to analysis and describes the herbicidal selection process.
We discuss measuring similarity of compounds using the Tanimoto
coefficient. We then conduct preliminary analysis to provide insight
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to the data. Chapter 2 also discusses the statistical methods to be
applied to the data, including GPs (Section 2.2) and RF with its vari-
ants (Section 2.5.3). We discuss how these methods will be used to
predict the characteristics of herbicidal compounds using the Tani-
moto coefficient as a measure of correlation. Section 2.2.1 examines
the covariance functions applied to modelling herbicidal data with
GPs and how we inform our choice of covariance by the nature of
the data. We discuss obtaining parameter estimates of the covariance
function through maximising the likelihood. Section 2.2.6 presents
the bottlenecks in modelling large amounts of data with GPs and how
we may overcome certain impracticalities. Chapter 3 provides details
on the Tanimoto metric and its properties within a GP framework. A
variogram is discussed and implemented to demonstrate the spatial
dependence of the Tanimoto distance. The conditional GP model for or-
dinal outcomes is detailed in addition parameter estimation methods.
Further, optimisation methods, including GA and SA are discussed.
Furthermore, a simulation study is conducted to demonstrate the
suitability of proper scoring rules when evaluating the GP predictive
performance. Chapter 4 details the steps in modelling Syngenta’s glass
house data using GPs along with graphical illustrations of our model’s
accuracy. Chapter 5 gives a summary of the project findings and po-
tential directions for further research. All calculations in this project
were performed using R [88].



2
B A C K G R O U N D

2.1 representation of the chemical space

Molecular fingerprints are a widely used concept for assessing molecu-
lar substructures within the chemical space, and are frequently used in
the the application of drug discovery [87]. They comprise a sequence of
dichotomous features indicating the presence of some atomic substruc-
ture, e. g., a vertex or a cycle [52]. Figure 2.1 illustrates two molecules
and a sample of their associated fingerprints. Representing the graphi-
cal structure of molecules as a vector of features allows one to assess
“closeness” within the chemical space.

Each compound within our dataset, introduced in Section 4.1, is
uniquely identified by a chemical fingerprint. These chemical finger-
prints are 2048 features in length, where each feature takes a dichoto-
mous value and indicates the presence or absence of some atomic
feature, see Figure 2.1. These features can represent, for example, a
ring or a nitrogen molecule or a ring and, in general, form part of
the compounds molecular graph. Fingerprint features may also take
integer values representing counts of the features occurrence. Counts
can, however, be converted to dichotomous features by repeating the
feature within the fingerprint by the number of counts. Within the
data received by Syngenta, only 95 of these features were present in
some compounds.

Figure 2.1: Two molecules and their corresponding fingerprints based on
their substructures. The second feature within the two fingerprints
have the value of 1, indicating the common presence of a cycle.

9
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2.2 definition and theory gp

GPs are a popular method of modelling data due to their flexibility, sim-
plicity, and substantial theoretical support [22]. With GPs, rather than
prescribe a parametric formula for the function f(x), as with linear
regression, we let the data ‘speak for itself’. A GP is a random function
on an n× d dimensional space Xn×d, f : Xn×d → R with Gaussian
finite dimensional distributions. Here, n represents the number of
data points and d represents the number of variables in the design
matrix. Existence is guaranteed by Kolmogorov’s consistency theorem
[83, Ch. 2]. Formally, a GP is a distribution over functions such that any
finite set of function values follows a joint multivariate Gaussian distri-
bution [72]. Essentially, a GP is an extension of a multivariate normal
distribution to infinite dimensions. The two main characterisations of
a GP are its mean function, µ, and variance-covariance function, k,

µ(x) = E[f(x)],

k(x, x1) = E[(f(x) − µ(x))(f(x1) − µ(x1))]

= Cov(f(x), f(x1)),

where x and x1 are two input vectors. Covariance functions can take
several forms depending on the nature of the data, see Section 2.2.1. We
denote the class of a GP, f(·) with mean function µ(·) and covariance
k(·, ·) by

f(·) ∼ GP(µ(·),k(·, ·)). (2.1)

By convention, it is common to assume a zero-mean prior i. e., E[f(x)] =

0, resulting in the structure of a GP being entirely determined by its
covariance. In our application, we incorporate covariates into the
model. We later incorporate the mean within the GP through a se-
ries of basis functions. The value of the kernel at pairwise inputs
x1, . . . , xn gives a variance-covariance matrix. The general form of the
variance-covariance matrix of a GP is

K(x, x) =


k(x1, x1) k(x1, x2) . . . k(x1, xn)

k(x2, x1) k(x2, x2) . . . k(x2, xn)
...

...
. . .

...

k(xn, x1) k(xn, x2) . . . k(xn, xn)


where x = (x1, . . . , xn). New observations also form a kernel with
existing data points, K∗ = Cov(f(x), f(x∗)) = [k(x∗, x1) . . . k(x∗, xn)],
with the covariance of the new data point being denoted by K∗∗ =

Cov(f(x∗), f(x∗)) = k(x∗, x∗). GPs are effective at interpolation since
there is no dependence on ‘far away points’. However, extrapolation
of new data increases uncertainty in our predictions.
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2.2.1 Kernel

The covariance function is an important aspect of predictive modelling
as it encodes assumptions about how the underlying process appears
[79]. New inputs with similar performance to those already seen will
be highly correlated, which is an important feature in the prediction
process. If, for example, x ≈ x∗ then the kernel k(x, x∗) approaches
its maximum value, resulting in f(x) ≈ f(x∗). This feature essentially
defines the smoothness of the function in question. If, on the other
hand, we assess a new input x∗ which is unlike any existing data, i. e.,
a low correlation being present, we expect the value of the covariance
to be near zero, i. e., k(x, x∗) ≈ 0.

There are a whole family of kernels to choose from, with our choice
being motivated by the nature of the data. Valid kernels must be both
symmetric and positive definite, meaning all eigenvalues of the GP

variance-covariance matrix are positive. More formally, a kernel is
positive semi-definite if the following holds∫ ∫

k(x, x∗)s(x)s(x∗)dν(x)dν(x∗) ⩾ 0, (2.2)

for all squared integrable functions s ∈ X with respect to the measure.
The integral in Equation (2.2) corresponds to the Stieltjes integral and
ν is a measure on the Borel sigma-algebra generated by X.

Kernels can be either stationary or non-stationary. Stationary kernels
are a function of x − x ′, which are invariant to translations in the
input space. If the kernel is a function of |x− x ′| alone, where |x−

x ′| is the Euclidean distance between x and x ′, then we say it is
isotropic. Another important aspect of a stationary covariance function
is continuity in mean square (MS). In defining MS continuity, we let
x1, x2, . . . be a sequence of points and x∗ ∈ X, such that |xk−x∗|→ 0 as
k→∞. Suppose f is a random field on X, then f(x) is MS continuous
at x if E[|f(xk) − f(x∗)|

2]→ 0 as k→∞. It turns out that an isotropic
GP is MS continuous if and only if k(h) is continuous at 0. To prove
this, let

E[(f(xk) − f(x∗))
2] = E[(f(xk)

2 + f(x∗)
2 − 2f(xk)f(x∗)]

= 2k(0) − 2k(xk − x∗).

The right-hand side goes to 0 if and only if limk→∞ k(xk − x∗) = k(0).
For a GP, f(x), define

fk(x∗) =
f(xk) − f(x∗)

|xk − x∗|
. (2.3)

Then f(x) is MS differentiable if limk→∞ fk(x∗) exists and is finite. An
isotropic GP is MS differentiable if and only if k ′′(0) < ∞. Therefore
the choice of kernel characterises continuity and differentiability of a
GP.
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The following subsections give examples of commonly used kernels
in the literature along with illustrations of their behaviour when
varying the kernel’s hyperparameters. We follow the basis that X ∈ R

and that |x− x ′| corresponds to the Euclidean distance.

2.2.1.1 Exponential

One of the simplest kernels is the exponential kernel, parametrised
by the length scale, ϕ > 0, and a variance term σ2. The exponential
kernel takes the form

k(x, x∗) = σ2 exp
[
−
|x− x∗|

ϕ

]
.

The length-scale parameter, ϕ, reflects how ‘wiggly’ the function fitted
to the data is. Informally, we may view ϕ as the distance needed
to move in the input space before a function value will change sig-
nificantly [72]. The second parameter, σ2, determines the functions
average squared distance from the mean and gives an idea of the
amount of variability in the population.
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Figure 2.2: Exponential covariance with length-scale parameters ϕ = 1, 0.1,
and 0.01 respectively

2.2.1.2 Radial basis function

One of the most frequently used kernels in SVM is the RBF, also known
as the squared exponential kernel, denoted

k(x, x∗) = σ2 exp
[
−|x− x∗|

2

ϕ2

]
.

The RBF is stationary invariant and is parametrised by ϕ and σ2. The
RBF is infinitely differentiable, meaning a GP with an RBF kernel will
have mean square derivatives of all orders.
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Figure 2.3: RBF with length-scale parameters ϕ = 1, 0.1, and 0.01 respectively.

2.2.1.3 Rational quadratic

The rational quadratic kernel is an infinite sum of RBF kernels with
varying length-scales. The two parameters are the length-scale, ϕ,
and the scale mixture parameter, α > 0, which determines the rela-
tive weighting of large-scale and small-scale variations. The rational
quadratic function is denoted

k(x, x∗) =
(
1+

|x− x∗|
2

2αϕ2

)−α

.

When α→∞, the rational quadratic is identical to the RBF.
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Figure 2.4: Rational quadratic function with a fixed length-scale parameter,
ϕ = 1, and varying scale mixture parameter, with values α = 10,
2, and 0.5 respectively.
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2.2.1.4 Exponential-sine squared

The exponential-sine squared kernel is adopted when capturing peri-
odic trends, such as effects due to seasonality. Parametrised by both a
length scale and a periodicity parameter, p where p > 0. The kernel is
defined as

k(x, x∗) = exp
[
−2 sin2

(
π

p

|x− x∗|
2

ϕ2

)]
.
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Figure 2.5: Exponential-sine-squared prior with fixed length-scale parameter
ϕ = 1, whilst varying the periodicity parameter p = 10, 2, and 0.5

2.2.1.5 Dot-product

The dot-product kernel is non-stationary, meaning it is invariant to
rotations about the origin, but not translations and is denoted

k(x, x∗) = σ2
0 + x · x∗,

where x · x∗ corresponds to the dot product. This can be obtained
from linear regression by assigning N(0, 1) priors on the coefficients of
xd,d = 1, . . . ,D and a prior of N(0,σ2

0) on the error term. There is a
single parameter called the bias, σ2

0, and when this is zero, the kernel
becomes the homogeneous linear kernel.
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Figure 2.6: Dot product prior with a fixed length-scale parameter ϕ = 1,
whilst varying the variance σ2 = 10, 0.5. and 0.001

2.2.1.6 Matérn

Named after the work of swedish mathematician Bertil Matérn [61],
the Matérn is a common choice of kernel when modelling geo-spatial
phenomena. The Matérn kernel is expressed as

k(x, x∗) = σ2 2
1−ν

Γ(ν)

(√
2ν

|x− x∗|

ϕ

)ν

Kν

(√
2ν

|x− x∗|

ϕ

)
,

where Γ is the gamma function, Kν is the modified Bessel function of
the second kind, and ϕ and σ2 are the scale and variance parameters.
The Matérn kernel parameter, ν, acts as a smoothing parameter. Given
ν = 0.5, the Matérn kernel becomes the exponential kernel, which is
very rough, and if ν→∞, the Matérn kernel converges to the RBF.
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Figure 2.7: Matérn prior with a fixed length-scale parameter of ϕ = 1, whilst
varying the smoothing parameter ν = 1, 0.5 and 0.01.

2.2.2 GP regression

Suppose we have some data (xi,yi) for i = 1, . . . ,n, and we wish to
create a model that predicts y from x. With a parametric approach to
regression, we assume that the relationship between the mean of yi

and the regressor variables can be represented by some parametric
form, such as a linear function. GP regression, on the other hand, is
a non-parametric approach, meaning we seek a distribution over all
possible functions that are consistent with the data [28].

In describing the GP, we model under the assumption

f(x) ∼ GP(µ(·),k(·, ·)).

For any given random vector x ∈ Rn, f is Gaussian if it has the
density

P(f(x)) =
1√

(2π)n|K|
exp

(
−
1

2
(y− f(x))⊤K−1(y− f(x))

)
,

where |K| = det(K) and y ∈ Rn are the observed values of the response
variable. Under the proportionality sign, the constant term may be
dropped, leaving

f(x) ∝ |K|−1/2 exp
(
−
1

2
(y− f(x))⊤K−1(y− f(x))

)
,

where K is retained as it is a function of the parameters. Considering
the case where the observations are noise free, that is assume we are
provided with a sample set, yi = f(xi),

S = {xi, f(xi)|i = 1, . . . ,n},
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and wish to predict at new inputs x∗. Then according to the GP prior,
the joint distribution of the training outputs given by f = f(x) =

(f(xi), i = 1, . . . ,n), and the test outputs f∗ = f(x∗) is defined as[
f

f∗

]
∼ N

(
0⃗,

[
K K⊤

∗

K∗ K∗∗

])
,

where K = K(x, x) ∈ Rn×n, K∗ = K(x∗, x) ∈ Rn∗×n, and K∗∗ =

K(x∗, x∗) ∈ Rn∗×n∗ . To derive the posterior distribution over func-
tions, we restrict this joint prior distribution to contain only those
functions which are commensurate with the observed data points, i. e.,
we need to take the conditional expectation. The multivariate Gaus-
sian distribution has the property that any conditional distribution
is also Gaussian. Therefore, the conditional distribution of f can be
fully described with a mean and covariance matrix. From Gaussian
conditioning rules, this posterior predictive distribution for noise-free
observations is

f∗|f ∼ N(K∗K
−1f,K∗∗ −K∗K

−1K⊤
∗ ). (2.4)

To obtain the expected values of our predictions, we simply compute
the quantity K∗K

−1f. To obtain the uncertainty of each prediction, we
compute the quantity K∗∗ −K∗K

−1K⊤
∗ and take the square root of the

diagonal elements to get the standard errors.
In the case of noisy data, the posterior predictive distribution be-

comes

y(x) = f(x) + ε(x),

where ε(x) ∼ N(0, τ2I). The joint distribution becomes[
y

f∗

]
∼ N

(
0⃗,

[
K+ τ2I K⊤

⋆

K⋆ K⋆⋆

])
,

where τ2 is the noise variance. If we wish to predict the effect in
the case of noisy observations, the posterior predictive distribution
becomes

f∗|y ∼ N
(
K∗[K+ τ2I]−1y,K∗∗ −K∗[K+ τ2I]−1K⊤

∗

)
. (2.5)

2.2.3 Incorporating regressor variables into a GP regression model

When developing GP models, one may wish to account for fixed effects,
in addition to random effects, to improve the model’s fit to the data
and increase its predictive accuracy. Incorporating fixed effects in
addition to random effects simply adjusts the mean function, thereby
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providing greater model flexibility. One such model which achieves
this is

y = X⊤β+ f(x) + ε(x), (2.6)

f(x) ∼ N(0,K),

ε(x) ∼ N(0, τ2I),

where y ∈ Rn denotes the values of the target variable and X denotes
the design matrix, i. e., the matrix containing the data used for fitting
the model, β denotes the unknown regression parameters for the
fixed effects, K is the variance covariance matrix for the random effect,
which varies according to the model, and ε is the overall model error
where τ2 is the noise parameter.

Assuming a stationary GP, the covariance may be decomposed into
a correlation matrix R and the GP variance σ2, giving K = σ2R. As
the sum of normally distributed random variables is itself normally
distributed, the distribution of the response is closed and is denoted

y ∼ N(X⊤β,σ2[R+ λI]), (2.7)

where λ = τ2/σ2. This reparametrisation reduces the number of
parameters to numerically optimise over by one. After optimisation,
we obtain the model variance τ2 by computing the product σ2λ. The
parameter estimates β̂ and σ̂2 have closed form expressions in terms
of λ and R, given in Section 2.2.4

Due to Gaussian conditioning rules, the posterior predictive distri-
bution for the damages, y∗, is denoted

y∗|y ∼ N
(
m(x∗),σ2v(x∗, x∗)

)
,

m(x∗) = X⊤
∗ β+ R⊤

∗ R
−1(y − Xβ), (2.8)

v(x∗, x∗) = R∗∗ −Q⊤(XR−1X⊤)−1Q, (2.9)

where X∗ denotes the dataset used for testing, R∗ denotes the correla-
tion matrix between the observed and unobserved values, R∗∗ denotes
the correlation of the unobserved values and Q = X∗ − XR−1R∗. The
model parameters are learnt using optimisation and maximum likeli-
hood, see Section 2.2.4.

2.2.4 Likelihood and estimation

To learn the GP parameters,i. e., the scale parameter ϕ and the variance
parameter σ2, we optimise the marginal likelihood, given by the
product of normal realisations. In our application, we assume no error
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term in the model and µ = X⊤β. Given y ∼ N(µ,σ2R), the likelihood
takes the form

L(µ,σ2,ϕ|y) = C|σ2R|−
1
2 exp{−

1

2
(y − µ)⊤(σ2R)−1(y − µ))}

= C(σ2)−
1
2 |R|−

n
2 exp{−

1

2σ2
(y − µ)⊤R−1(y − µ))},

where yi ∼ N(µ,σ2) and Corr(yi,yj) = Rij. C corresponds to the
constants not dependent on the parameters. For mathematical conve-
nience, we model the log-likelihood, denoted

L(µ,σ2,ϕ|y) =
n

2
log(σ2) −

1

2
log |R|−

1

2σ2
(y − µ)⊤R−1(y − µ).

where the constant terms which do not depend on the model parame-
ters are omitted.

To estimate the parameters from the log-likelihood, L, we use the
method of maximum likelihood. In practice, we take derivatives of
the log-likelihood with respect to each parameter and solve for the
stationary points, having set the derivatives to zero. The derivatives of
the log-likelihood with respect to the GP parameters are expressed as:

∂L

∂σ2
= −

n

2σ2
+

1

2σ4
R−1(y − µ),

∂L

∂ϕ
= −

1

2
tr(R−1 ∂R

∂ϕ
) +

1

2σ2
(y − µ)⊤

∂R−1

∂ϕ
(y − µ))

= −
1

2
tr(R−1 ∂R

∂ϕ
) +

1

2σ2
(y − µ)⊤R−1 ∂R

∂ϕ
R−1(y − µ)),

where tr(·) is the sums the diagonal elements of the matrix in the
brackets. We have used the relation

RR−1 = I =⇒ dR

dϕ
R−1 + R

dR−1

dϕ
= 0

=⇒ R
dR−1

dϕ
= −

dR

dl
R−1

=⇒ dR−1

dϕ
= −R−1 dR

dϕ
R−1.

The parameters for the linear effects β and the model variance σ2, can
be found in closed form. To estimate the parameters β and σ2, we
first differentiate the log-likelihood with respect to these parameters
and set to zero.

The resulting maximum likelihood estimate for β is

β̂ =
(

XR−1X⊤
)−1 (

XR−1y
)

.

Following the same procedure for σ2, it’s maximum likelihood
estimate becomes



20 background

σ̂2 =
R−1(y − µ)

n
.

We also note that

Var(β̂) = σ̂2(X⊤R−1X)−1 (2.10)

is the variance-covariance matrix of the fixed effects with the diagonals
being the variances of β̂. This allows us to construct 100(1 − α)%
confidence intervals for β̂, in particular by taking the square root of
the diagonal elements of Equation 2.10 for the standard error terms. A
confidence interval for β̂ takes the form

β̂± z1−α
2

SE(β̂), (2.11)

where z is the quantile from the standard normal distribution, α

denotes the Type 1 error rate, i. e., the probability of rejecting the null
hypothesis when true. A typical value of α is 0.05, meaning if we
generated samples from the true population, one in twenty of the
estimates from those samples will not contain the proposed value.
SE(β̂) denotes the standard error of β̂ found from We may also apply
this method to estimate confidence intervals for the parameter σ̂2.

To estimate the GP parameters θ = {ϕ, λ}, we optimise the profile like-
lihood using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm.
We then substitute these estimates into the closed form expressions
for β̂ and σ̂2 to obtain their estimates. To obtain the standard errors
of an ML parameter, we compute the inverse of the Fisher information
matrix, Var(θ) = [I(θ)]−1, where I(θ) = −E[H(θ)] and H(θ) = ∂2L

∂θ∂θ ′

is the matrix of second order derivatives of the negative log-likelihood,
also known as the Hessian matrix.

2.2.5 Optimisation using BFGS quasi-Newton Method

To identify the GP, we must optimise over the GP parameters. There
are several methods of optimisations available, with our application
utilising the quasi-newton method [14].

For a given objective function L(θ) with initial point θ0 and initial
positive definite matrix B0, the BFGS iterations for k = 0, 1, 2, . . . are
given by

θk+1 = θk +αk∆k,

where αk > 0 is the step-length, ∆k = −Bk∇l(θk) and Bk is a sym-
metric positive definite matrix given by the iteration

Bk+1 = (I −
ska

⊤
k

a⊤
k sk

)Bk(I −
ska

⊤
k

a⊤
k sk

) +
ska

⊤
k

a⊤
k sk

, (2.12)
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where sk = θk+1 − θk and ak = ∇l(θk+1) −∇l(θk). The correspond-
ing approximate Hessian iteration is given by

Hk+1 = Hk +
aka

⊤
k

a⊤
k sk

−
Hksk[Hksk]

⊤

s⊤k Hksk
. (2.13)

Equations (2.12) and (2.13) are implemented iteratively until a stop-
ping criteria is reached or the maximum number of iterations is met.
The output of R’s optim function gives an exit code which reveals the
status of the optimisation once complete.

2.2.6 Gaussian Processes for Large Datasets

GPs are commonly used for modelling spatial data [16], but are bur-
dened with computational challenges for large scale datasets [77].
Spatial model fitting requires inverting an n×n matrix for a dataset
of size n. Evaluations of the likelihood typically require O(n3) opera-
tions and O(n2) memory, which makes inverting large scale matrices
using traditional methods impractical.

There are several methods for invert an n× n matrix of the form
A+CBCT . One such method is the Woodbury identity, denoted

(A+CBCT )−1 = A−1 −A−1C(B−1 +CTA−1C)−1CTA−1. (2.14)

For the Woodbury identity to be computationally efficient, A has to
have dimension significantly lower than n, as the inverse of A and the
inverse of (B−1 +C⊤A−1C) is needed.

We also make use of the matrix determinant lemma for increased
computational efficiency, denoted

det(A+CBCT ) = det(B−1 +C⊤A−1C)det(B)det(A). (2.15)

In addition, the Cholesky decomposition is applied form matrix
inversion. The Cholesky decomposition states that if a matrix A is
positive definite, there exists a unique upper triangular matrix, U, such
that A = U⊤U. This makes inversion more practical for large datasets
since we are now inverting triangular matrices. The inversion be-
comes A−1 = U−1(U⊤)−1. Since these triangular matrices are sparse,
less computations are required. However, computing the Cholesky
decomposition still requires computational expense of O(n3).

Unless the kernel has a convenient structure, predictive modelling
becomes impractical using traditional matrix inversion techniques.
Methods have been developed to overcome this bottleneck. [84] ex-
plained the idea of subset of regressors approach, which essentially
reduces the dimensionality of the problem through spectral decompo-
sition of the covariance matrix. [73] proposed a predictive model by im-
puting f(·) conditional on values at certain knot locations but deciding
knot locations itself is problematic. The method of linear projections
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was adopted by [5] in conjunction with reduced-rank approximations.
We now describe some of the large-scale matrix inversion methods
used within the literature.

2.2.6.1 Tapering method

The idea behind covariance tapering is to treat location pairs as inde-
pendent if their associated covariance is less than some pre-determined
value [46]. If correlations between distant observations are negligible,
then the tapering idea is suitable. Tapering allows us to create sparse
matrices by multiplying element-wise the a covariance matrix with
a compactly supported covariance function, resulting in a positive
definite covariance matrix. Computational expense is reduced by re-
placing negligible covariances with zeros. It is, therefore, important to
decide between the level of computational efficiency and predictive
performance.

We let K(θ) be a n× n covariance matrix with the (i, j)th element
equal to k(|xi − xj|; θ), i, j = 1, . . . ,n. Denoting the tapering function,
ktap(h;γ), which is a type of compact correlation function, and γ

denotes the tapering range and is strictly positive. It has the property
ktap(h;γ) = 0 if h ⩾ γ. Smaller values of γ give more sparsity,
however greater sparsity means reduced accuracy, therefore a suitable
balance is required. The tapered covariance function at distance h is
denoted by

k̃(h; θ,γ) = k(h; θ) · ktap(h;γ), h > 0, (2.16)

and the tapered covariance matrix is

K̃(θ,γ) = K(θ) ◦Ktap(γ), (2.17)

where ◦ denotes the Hadamard product and Ktap(γ) denotes the
covariance matrix corresponding to ktap(|xi − xj|;γ).

In light of parameter estimation, covariance matrices in the log-
likelihood are now replaced with a tapered covariance, i. e.,

L(µ,σ2,ϕ|y) ∝ 1

2
y⊤[K̃(θ,γ)]−1y −

1

2
log |K̃(θ,γ)|. (2.18)

Using a tapered covariance function in the log-likelihood results in a
biased likelihood, meaning there is no guarantee the estimator which
maximises Equation (2.18) is asymptotically unbiased when the true
covariance matrix is K(θ)

Covariance tapering works well for small-scale dependencies, how-
ever, is not as effective for long-range dependencies [77]. With tapering,
computational complexity is O(nl2), where l is the average number of
non-zero entries in each row of K̃[35].
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2.2.6.2 Predictive process

We first consider a GP model,

y(x) = f(x) + ε(x), (2.19)

where f(x) is a GP and ε(x) is the independent process, with f(x) ∼

GP(0,K(x, x ′; θ)) and ε ∼ GP(0, τ2I(x = x ′)). Along with specifying
a suitable covariance function for the model, predictive process is
dependent on the choice of knot locations, x∗1, . . . , x∗m, with m < n.
[6] identified several open questions regarding the spatial design for
placement of knots. Ideally, the specified number of knots are placed
in such a way that spatially averaged prediction variance is minimized,
noting that a predictive process with smaller predictive variance might
be viewed as better approximation to the parent process [32]

Specification of the m knots is required at certain locations. An
important consideration is how we decide on the knot locations. We
may wish to chose a random set of knots across the input space or we
may wish to select our knots around the most concentrated area of data
samples. Knots may also be chosen through clustering fingerprints
and sampling from each cluster. Not only are the locations of the
knots important, but also are the number of knots we wish to model
with. Ideally, we wish to reduce the dimensionality of the problem
without sacrificing model accuracy. We therefore approximate f̃(x) by
selecting knot locations which accurately represent the input space,
whilst reducing the dimensionality.

Considering a set of knots, X∗ = {x∗1, . . . , x∗n}, which is a sub-
set of the input space, X. From Equation (2.19), it follows f∗ =

[f(x∗i )]
m
i=1 ∼ N{0,K∗(θ)}, where K∗(θ) = [K(x∗i , x∗j ; θ)]mj=1 is the m×m

covariance matrix. At a site, x0, spatial interpolation is defined by
f̃(x0) = E[f(x0)|f∗] = k⊤0 (θ)K

∗−1(θ)f∗, where k0(θ) = [k0(x0θ)]
m
j=1.

The GP f̃(x) ∼ GP(0, K̃(·, ·)) for a single site interpolator has covariance

k̃(x, x ′; θ) = k⊤(x;X∗)K∗−1(θ)k(X∗, x ′). (2.20)

We define

ỹ(x) = f̃(x) + ε(x). (2.21)

The process ỹ(x) has covariance matrix

K̃y = K̃f + τ2I,

where K̃f = k̃(x, x; θ). The inverse and determinant of K̃y are obtained
using Equation (2.14) and (2.15). This method is more efficient for
long range dependencies, and reduces computational complexity to
O(nm2).

The predictive process is advantageous when capturing long-range
dependencies, but fails to capture local, small-scale correlations [77].
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2.2.6.3 Full scale approximation

The full scale approximation is a mixture of both tapering and pre-
dictive process which overcomes their individual short comings [77].
This is achieved by decomposing the GP into a reduced rank process
to capture the large scale dependencies and apply tapering to capture
small scale dependencies. The result is accurate approximations to
both small are large scale dependencies [77]. Decomposing the GP in
Equation (2.19),

f(x) = f1(x) + fx(x), (2.22)

where the reduced rank approximation of f(x) is denoted by f1(x)

and the residual process is defined to be fx(x) = f(x) − f1(x). The
predictive process can therefore be expressed as

f1(x) = K⊤(x,X∗)K∗−1f∗, (2.23)

with covariance matrix

K1(x, x ′) = K⊤(x,X∗)K∗−1K(x ′,X∗) (2.24)

= Cov(f1(x), f1(x ′)). (2.25)

The residual process has the following covariance matrix

K̂(x, x ′) = K(x, x ′) −K⊤(x,X∗)K∗−1K(x ′,X∗). (2.26)

see (17) from [77]. Therefore, the tapering process becomes:

Kx(x, x ′) = {K(x, x ′) −K⊤(x,X∗)K∗−1K(x ′,X∗)} ◦Ktap(h;γ) (2.27)

which encompasses both the predictive process and tapering. We note
this takes the form suitable for inversion via the Woodbury identity.
Computational complexity is now O(nl2 +nm2).

2.2.7 Advantages and disadvantages of fitting Gaussian processes

Like many machine learning methods, GPs are equipped with useful
properties and bottlenecks.

Some of their advantages are:

• the closed form expressions for the predictive mean and variance
and that data points may be easily predicted that have not yet
been observed. If a data point is to be predicted which is unlike
any data point already observed, the GP prediction will return
high uncertainty for the predicted effect,

• through the use of the covariance function, GPs are adaptable to
the data [28]. With GPs, we are able to combine multiple kernels,
both additively and multiplicatively, which provides a wealth of
models to choose from,
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• the prediction of data is probabilistic, which allows us to con-
struct empirical confidence intervals and inform decisions on
whether one should refit the prediction in some region of interest
[29], and

• working with GPs is made feasible by the marginalisation prop-
erty, that is, we can marginalise over infinitely many variables,
even those we have not seen [72].

Some of the drawbacks of GPs are:

• they lack sparsity, i. e., they use whole feature space, resulting in
a computationally expensive process [25],

• they can be computationally expensive in the prediction phase
(see Section 2.2.6.) Since we are required to invert the covari-
ance matrix, this becomes computationally impractical for large
datasets, as evaluations of the posterior involve O(n3) compu-
tations [5]. We therefore require alternative matrix inversion
methods, and

• they are also limited as the user is required to choose the kernel
based on the data type and there are a wealth kernels to choose
from [85].

2.3 latent-variable models

Many statistical models contain unobservable variables known as
latent variables and act as a way of introducing correlation in the
model. For example, suppose two coffee brands are to be reviewed
by n reviewers at two different temperatures xi1 and xi2. The ith
reviewer will then produce a rating for the two different temperatures,
denoted yi1, yi2. Ratings between reviewers are considered indepen-
dent, given a reviewer is not informed of anyone’s opinion on the
taste, whereas the ratings for the same reviewer will be dependant. To
include the unmeasurable effects for each reviewer, we introduce latent
variables u1, . . . ,un and assume the observed ratings for reviewer i

are independent conditional on the value of ui. However, the ratings
are correlated as we do not observe ui unconditionally. A possible
model in this case would be

yij|ui
iid
∼ N(µij,σ2), µij = xTijβ+ ui, i = 1, . . . ,n, j = 1, 2,

ui
iid
∼ N(0, τ2).

(2.28)

This model implies that, marginally, Cov(yi1,yi2) = τ2, so indeed, the
ratings of the same reviewer are correlated.

Often, statistical models such as the model in Equation (2.28) can
be expressed in vector form. Let y = (y11,y12,y21, . . . ,yn2), u =
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(u1, . . . ,un), µ denotes the 2n dimensional vector and X the 2n× p

design matrix. Then,

y|u ∼ N2n(Xβ+ Pu,σ2I2n),

u ∼ Nn(0, τ2In).

In the above, In denotes the n× n identity matrix and P = In ⊗ 12,
where ⊗ is the Kronecker product and 1k is the k dimensional vector
of ones. The latent variable model may be written in vector form,

f(y) =
n∏

i=1

f(yi) (2.29)

and the joint density of (y,u) is

f(y, u) = f(y|u)f(u) =
n∏

i=1

2∏
j=1

f(yij|ui)

n∏
i=1

f(ui). (2.30)

It is necessary to find the likelihood of the observed data y for infer-
ence. For Equation (2.30), it is more computationally demanding due
to the presence of the latent variable u. We, therefore, must compute
the integral

f(y) =
∫
f(y, u)du =

∫
f(y|u)f(u)du (2.31)

In effect we are integrating out the latent variables in the model. In the
case of the model in Equation (2.28), we see that both f(y|u) and f(u)
are the PDF of two normally distributed random variables. When the
expression for f(y|u) is non-normal, then Equation (2.30) will not have
a closed form expression and we have to resort to numerical methods
of approximation, such as Monte-Carlo integration.

2.3.1 Monte-Carlo methods

Monte-Carlo integration is performed by computing expectations of
functions of simulated random variables. We see that the integral in
Equation (2.30) can be expressed as an expectation

f(y) = E[f(y|u)] (2.32)

where the expectation is taken with respect to u. Then given random
samples u(1), . . . , u(N) from the density f(u), we approximate

f̂MC(y) =
1

N

N∑
l=1

f(y|u(l)). (2.33)

Monte-Carlo simulations provide probabilistic insight into each out-
come and allow for graphical aids to show a range of possible values.
However, since the method relies on a proposed distribution, a poor
distributional choice will result in unreliable estimates. McCulloch
[62] provided several approaches for maximising the likelihood. In
addition, Monte-Carlo methods are notably slow in their application.
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2.3.2 Laplace approximation

When we have a large dataset to sample from, the Monte-Carlo method
can be very accurate, but can also be computationally intensive if the
dimension of u is large. Another approximation to Equation (2.30) is
through the Laplace approximation. The exact integral we wish to
approximate is the following

f(y) =
∫∞
−∞ f(y|u)f(u)du (2.34)

=

∫∞
−∞ e−(− log(f(y|u)f(u)))du (2.35)

=

∫∞
−∞ e−(− log(f(y|u))−log(f(u)))du

=

∫∞
−∞ e−g(u)du,

where g(u) = − log(f(y|u)) − log(f(u)). We assume that g(u)→∞ as
n→∞. Applying the Taylor expansion to g(u) in the neighbourhood
of its minimiser û, we obtain

g(u) ≈ g(û) + g ′(û)(u − û) +
1

2
(u − û)⊤g ′′(û)(u − û).

Since the gradient of a function about its maximiser is 0, i. e., g ′(û) = 0,
the second term vanishes, leaving

g(u) ≈ g(û) +
1

2
g ′′(û)(u − û)⊤Ĥ(u − û).

Here we have made use of the fact that g ′′(û) = Ĥ, where Ĥ denotes
the Hessian matrix at û. Therefore, the integral in Equation (2.35) can
be approximated using the expression

I ≈
∫∞
−∞ e−(g(û)+ 1

2 (u−û)⊤g ′′(û)(u−û))du

= e−g(û)
∫∞
−∞ e−

1
2 (u−û)⊤Ĥ(u−û)du

= e−g(û)
(
(2π)n

|Ĥ|

) 1
2
∫∞
−∞

(
|Ĥ|

(2π)n

) 1
2

e−
1
2 (u−û)⊤Ĥ(u−û)du

= e−g(û)(2π)
n
2 |Ĥ|−

1
2 · 1 (2.36)

where the integrand corresponds to the multivariate normal density
with mean û and variance-covariance matrix Ĥ−1.

A disadvantage of the Laplace approximation is that it is essentially
uncontrolled, i. e., the Hessian may provide poor approximation to
the true shape of the posterior. The peak could be much broader or
narrower than the Hessian indicates, or it could be a skew peak, while
the Laplace approximation assumes it has elliptical contours.
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2.4 ordinal response models

2.4.1 Multinomial distribution

To define a multinomial GLM, we must first define a multinomial exper-
iment. A random experiment is called a multinomial experiment with
parameters (m,k, [π1, . . . ,πk]) if it satisfies the following conditions.

1. The number of trials, m, is fixed,

2. all observations are contained within one of the k categories,

3. observations are independent,

4. the probability of observing each category j, j = 1, . . . ,k, is the
same for each trial, and equals πj,

5. all probabilities sum to one, i.e. π1 + π2 + · · ·+ πk = 1.

The multinomial distribution is an extension to the binomial distribu-
tion, where we have more than two possible outcomes. The random
variable, Y, which counts the number of occurrences of each category
of a multinomial experiment with parameters (m,k, [π1, . . . ,πk]) is
said to follow the multinomial distribution, usually denoted

Y ∼ Multinomial(m,k,π),

where π = (π1, . . . ,πk). If Y ∼ Multinomial(m,k,π), then y = [y1, . . . ,yk],
is a k-dimensional vector where the jth element of the vector is the
number of times category j was observed in m trials. This means
y1 + · · ·+ yk = m, for each yj ∈ {0, 1, . . . ,m}.

The probability mass function (PMF) of a multinomial random vari-
able Y is denoted

f(y;π) =
m!

y1! · · ·yk!
π
y1

1 · · ·π
yk

k

∝ π
y1

1 · · ·π
yk

k ,

where the constant terms are omitted under proportionality.

2.4.2 Multinomial likelihood

Suppose we observe n outcomes y1, . . . ,yn from a multinomial exper-
iment with parameters (m,k,π) such that the categories are ordered.
The contribution of the ith datum to the log-likelihood for the multi-
nomial distribution is expressed as

L(πi;yi) =

k∑
j=1

yij logπij,
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where each yi is the observed damage and πi is the vector of probabil-
ities for the ith experiment. The constraints on the observations and
probabilities are∑

j

yij = mi and
∑
j

πij = 1,

where there are m replicates. The cumulative probability of observing
up to class j in a single trial is denoted γj, and πj gives the probability
of observing class j only. Therefore,

γ1 = π1,

γ2 = π2 + π1,
...

γj = πj + πj−1 + · · ·+ π1

⇐⇒

π1 = γ1,

π2 = γ2 − γ1,
...

πj = γj − γj−1.

The derivative of the log-likelihood with respect to the class probabili-
ties is denoted

∂L

∂πj
=

yj −mπj

πj

It is also of interest to find the derivative of the negative log-likelihood
with respect to the cumulative probabilities. We perform this by using
the chain rule,

∂L

∂γj
=

k∑
j ′=1

∂L

∂πj ′

∂πj ′

∂γj

=
∂L

∂π1

∂π1

∂γj
+

∂L

∂π2

∂π2

∂γj
+ · · ·+ ∂L

∂πj

∂πj

∂γj
+

∂L

∂πj+1

∂πj+1

∂γj

=
∂L

∂π1
· 0+ ∂L

∂π2
· (0) + · · ·+ ∂L

∂πj
· 1+ ∂L

∂πj+1
· (−1)

=
∂L

∂πj
−

∂L

∂πj+1
.

We now compute the second derivative of the log likelihood with
respect to π and γ

∂L

∂πij
=

ỹi −mπij

πij

∂L

∂γij

=
∂L

∂πij
−

∂L

∂πij+1
⇐⇒

∂2L

∂πij∂πij ′
=

ỹi

π2
ij

, j = j ′, else 0

∂2L

∂γij∂γij ′
= 0, j ′ /∈ {j− 1, j, j+ 1}
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∂2L

∂γij∂γij−1
=

k∑
j ′=1

∂

∂πij ′

(
∂L

∂γij

)
∂πij ′

∂γij−1

=

k∑
j ′=1

∂

∂πij ′

(
∂L

∂πij
−

∂L

∂πij+1

)
∂πij ′

∂γij−1

=

k∑
j ′=1

(
∂2L

∂πij∂πij ′
−

∂2L

∂πij+1∂πij ′

)
∂πij ′

∂γij−1

=
∂2L

∂π2
ij

∂2πij

∂γij−1
−

∂2L

∂π2
ij+1

∂2πij+1

∂γij−1

=
ỹi

π2
ij

· (−1) −
∂2L

∂π2
ij+1

· (0)

= −
ỹi

π2
ij

,

where ỹi = 1 if the observed class is the jth class.

2.4.3 Cumulative link models

Given some observed data (x1, y1), . . . , (xn, yn), where each yi is the
outcome of a multinomial experiment with parameters (1,k,π) and
the k classes are ordered 1 < . . . < k, the objective is to estimate
the probability of observing category j, πij = πj(xi), where xi is
a vector of p predictors. We denote the predicted probabilities for
observing classes 1, . . . ,k for a given x as π̂1(x), . . . , π̂k(x). The class
containing the highest estimated posterior probability is chosen to be
the predicted class.

In order to estimate the probabilities of each class, our model needs
to relate the linear predictor, denoted η = β⊤xi, to these probabilities,
usually through some link function. A model which achieves this is
denoted

G(γij) = αj +β⊤xi j = 1, . . . ,k− 1

= ηij, (2.37)

where G(·) denotes the link function, γij = P(Yi ⩽ j) and we have
k ordered classes. We write Yi for the observed class corresponding
to yi. For example, yi = (0, 1, 0) implies γi = 2. We note that the
intercepts α = (α1, . . . ,αk−1) are strictly increasing, a feature specific
to ordinal response outcomes. The role of α is to determine the cut-off
points for the response variable between each class, which we learn
from the data through optimisation.
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2.4.4 Choice of cumulative link function

For the logit model, cumulative probabilities, i. e., the probability the
random variable takes any value up to the jth class, may be expressed
as

P(Yi ⩽ j) =
exp(ηij)

1+ exp(ηij)
, j = 1, . . . ,k− 1

=
1

exp(−ηij) + 1
.

If the response variable is ordinal in nature [1, 62], individual class
probabilities are obtained by subtracting the cumulative probabilities
of consecutive classes, i. e.,

P(Yi = j) = P(Yi ⩽ j) − P(Yi ⩽ j− 1)

=
exp(ηij)

1+ exp(ηij)
−

exp(ηij−1)

1+ exp(ηij−1)

= π(xi).

When fitting GLMs to ordinal response outcomes, there are several
link functions, denoted by G(·), at one’s disposal. Link functions relate
the mean of the response variable to the linear predictor. Thier choice
is motivated by the behaviour within the data. These behaviours may
be non symmetrical, for instance, shifting values by some constant
amount at the lower end of the linear predictor may have a different
impact on the class assignment than the same shift for greater values
of the linear predictor. Table 2.1 shows some common choices for link
functions where Φ(γj) =

1
2
√
π

∫γj

−∞ e−z2/2dz and z are the quantiles of
the standard normal distribution. The log-log and complementary log-
log are asymmetrical links, and are suited for behavioural differences
at the extremes of the linear predictor. There are other link functions at

Link G(γ)

Logit log γ
1−γ ,

Probit Φ−1(γ),

Log-log log(− log(γ)),

Complementary log-log log(− log(1− γ)),

Table 2.1: Four link functions used for GLMs. Φ is the standard normal CDF.

one’s disposal. However, link functions must be continuous, monotonic
and differentiable, so standard CDFs suffice. Figure 2.8 illustrates the
different behaviours of the link functions given in Table 2.1. We see
the log-log and complementary log-log are asymmetrical functions.
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Figure 2.8: Link functions plotted against increasing values of the linear
predictor

2.5 ensemble methods

2.5.1 Decision Trees

Classification trees, commonly referred to as decision trees, are a
simple class of models which make predictions based on a series of
decisions. They may be represented as a tree, where the nodes are
labelled as features, edges are labelled as either a single value or a set
of values, and the leaves are class labels. Decision trees can be regarded
as a multistage decision making process, where different subsets of
features are the decision criteria and various stages of the tree. These
decision trees are somewhat of a feature selection method since they
determine the most important features for the classification boundary.
Instead of using all features present within the data, subsets of features
are chosen at different levels of the tree. The three characteristics of a
decision tree are:

• Root node: This is usually the top of the tree with no incoming
edges

• Internal nodes: these contain a single incoming edge and multi-
ple outgoing edges

• Leaf/terminal node: these are nodes with a single incoming
edges and no outgoing edges
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The decision to split at each node is made according to the metric
called purity. A node is 100% impure when a node is split evenly
50/50 and 100% pure when all of its data belongs to a single class.
See Figure 2.9 for an illustrative example of a decision tree.

Figure 2.9: A generic decision tree used in a classification setting

2.5.2 Bootstrap aggregating

Bootstrap aggregating (bagging) [12] is a popular ensemble method
used in classification and regression. The method involves selecting
samples with replacement from the training set, called bags, and
using these samples as individual training sets. The optimal sample
size of the training set for bootstrap aggregating is around 60%, see
Figure 2.10. Having trained the models on the samples, predictions
are made on the upsampled data. In a regression setting, predictions
are aggregated and a majority vote is made in a classification setting.
More formally, given a training set X = x1, . . . , xn with responses
Y = y1, . . . ,yn, bagging selects B random samples with replacement
and fits trees to the samples. In regression, a global prediction is made
by computing f̂ = 1

B

∑B
b=1 fb(x∗) where x∗ are the unseen samples

and b is a dummy variable denoting the bth function applied to the
bootstrapped dataset. In classification, we select the prediction with
the most votes.

Bootstrapping has been shown to improve model performance by
decreasing the variance of the model without increasing the bias
[12]. This is the result of averaging over many decision trees, since
a single tree is sensitive to noise in the training set. Estimates of the
prediction uncertainty can be calculated as the standard deviation of
the prediction of a single decision tree for the unseen samples, x∗.
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Figure 2.10: Out of bag error rate vs sample sizes with replacement

σ =

√∑B
b=1(fb(x∗) − f̂)2

B− 1
(2.38)

The number of samples, B, can be found through cross validation
or through the out of bag error. The out of bag error is the average
error on the training samples that were not selected in the bootstrap
sample. Depending on the size of the data, it is customary to use
several hundred, or even thousands of decision trees.

2.5.3 Random Forests

Random forests are a supervised ML technique widely used for classi-
fication. The random forest classifier is an ensemble learner built on
decision trees. A drawback of decision trees is that they often lead
to complex trees and over-fitting. Random forests reduce this risk as
it aggregates over many decision trees by making use of bootstrap
aggregation. When used for classification, a random forest obtains a
class prediction from each decision tree, then classifies based on the
majority vote, see Figure 2.11 Decision trees are suitable for bagging
as they are able to capture complex interaction structures within the
data with relatively low bias (given the tree if sufficiently deep.)

In decision trees, nodes are generated by using the best split among
all regressors, assessed through the Gini index or entropy, whereas
in random forests the nodes are constructed by the best split among
a sample of regressors. Selecting a subset of features is sometimes
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Figure 2.11: A series of decision trees forming a random forest

referred to as “feature bagging”. Random forests have shown com-
parable performance to other classifiers such as SVMs and neural
network (NN)s, [56] and are immune to over-fitting [13].

2.5.4 Model Averaging/ Stacking

Given several models are under consideration, a single classifier may
be formed using the predictions of each individual model which has
the ability to outperform the performance of the individual models in
question. This approach is motivated by Bayesian model averaging. We
may wish to make inference on a quantity of interest, ∆ , which may
be a future observation, y∗, a regression coefficient, βj, the indicator
of the regression coefficient being non-zero j, or the posterior density
of the regression coefficient Pr(βj|y), where y are the observed data.
The posterior density for ∆ is obtained as a weighted average for the
densities for ∆ under each model Mi and the weights are the posterior
probabilities of the models Mi [45]. This may be expressed as

Pr(∆|y) =
M∑
i=1

Pr(∆|Mi,y)Pr(Mi|y), (2.39)

where M models are under consideration. Models with high prob-
ability receive more weight, while models with less probability are
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discounted. We may also find the posterior expected value for ∆ using
a similar relation,

E(∆|y) =

M∑
i=1

E[∆|Mi,y]Pr(Mi|y). (2.40)

Both Equation (2.39) and (2.40) have the form of a weighted average
over models, hence the term Bayesian model averaging. If our quantity
of interest are the predicted values ∆ = y∗, the predictions using
Bayesian model averaging are denoted y∗ =

∑M
i=1 y∗i Pr(Mi|y), where

y∗i are the fitted values under each model. If each model Mi has
parameters θi, we write

Pr(Mi|X) ∝ Pr(Mi)Pr(X|Mi) (2.41)

∝ Pr(Mi)

∫
Pr(X|θi,Mi)Pr(θi|Mi)dθi. (2.42)

One may wish to specify priors Pr(θi|Mi) and compute the posterior
probabilities numerically. However, this may not be worth the extra
effort over computing a simpler Bayesian information criterion (BIC)
approximation [45].

We may also wish to apply the same principle from a frequentist
perspective. Given some fitted values f̂1(x), f̂2(x), . . . , f̂M(x), under
squared error loss we seek to calculate weights w = w1, . . . ,wM such
that

ŵ = argmin
w

EP[y −

M∑
m=1

wmf̂m(x)]2, (2.43)

where the data X are distributed according to P. This is solved through
the population linear regression of y on F̂(x)⊤ ≡ [f̂1(x), . . . , f̂M(x)]:

ŵ = EP[F̂(x)F̂(x)
⊤]−1EP[F̂(x)y]. (2.44)

It is also possible to implement other loss functions.
Since the full regression has smaller error than an individual model,

combining models will not reduce predictive performance at popula-
tion level [45], i. e.,

EP[y −

M∑
i=1

wif̂i(x)]
2 ⩽ EP[y − f̂i(x)]

2∀i. (2.45)

Weights are chosen so that the expected loss is minimised.
Rather than optimise over the weights, it is possible to use the

Akaike information criterion (AIC) as model weights [91]. To compute
this, we derive weights, wi, based on the equation

wi(AIC) =
exp

{
−1

2∆i(AIC)
}∑K

k=1 exp
{
−1

2∆k(AIC)
} , (2.46)

where K models form the ensemble and ∆i(AIC) is the model AIC mi-
nus the minimum AIC of all models. These weights are then multiplied
by the predictions from each model.
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2.6 model metrics

The type of metric used to evaluate mode performance is determined
by the nature of the response variable. Functions of residuals are
commonly used in a regression setting, e. g., mean squared error
(MSE), whereas classification performance factors the posterior class
probabilities, e. g., score function [40]. The AIC may be used in both a
regression and classification setting to determine the trade-off between
fit and model complexity. The likelihood ratio test may also be used for
both regression and classification problems for comparison of nested
models. A nested model is a model whose parameters are a subset of
the parameters within the competing model.

When assessing predictive performance on unobserved data, in both
a classification and regression setting, one typically uses a train-test
split. This is performed by randomly splitting the data into two sets,
a common choice being 80 : 20 split, called training and testing sets.
The training set is used to learn the model parameters and the left out
data are predicted from the trained model. The model which has the
greatest accuracy is typically preferred, subject to time constraints.

In some cases, a validation set may be included, for instance in the
train, test, validation ratio of 80 : 10 : 10. The validation set is used
when we have identified the best performing model on the test set
and are interested in its performance on a separate dataset, i. e., the
validation set. However, the performance on the validation set may, in
fact, be worse than the performance on the test set.

2.6.1 K-fold cross validation

K-fold cross validation is a method to assess a model’s predictive
performance on untrained data, which simultaneously prevents over-
fitting in the process. Like the train-test split, K-fold cross validation
involves partitioning the data into K roughly even folds. The data
contained within a single fold is left out for prediction, whilst the data
within the K− 1 folds are used for model training. Choices of K vfary,
with typical values being 5 or 10. Figure 2.12 illustrates the partition
into 10 folds for cross validation.

2.6.2 Regression model metrics

To assess the performance of a regression model, there are several
common metrics available at ones disposal. These include the mean
squared error,

MSE =
1

n

n∑
i=1

(yi − ŷi)
2,
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Figure 2.12: Data partitioned into 10 folds for cross validation.

and the mean absolute error

MAE =
1

n

n∑
i=1

|yi − ŷi|,

where n is the number of points in the test set, yi is the observed value
of the ith experiment and ŷi is the fitted value of the ith experiment. A
lower model error indicates greater predictive accuracy. The difference
between these is referred to as the residual, given as ϵi = yi − ŷi,
which mey either be positive or negative. The MSE operates by reflect-
ing the residuals on the positive axis and squaring the distance. This
has the effect of inflating larger differences, thereby penalising models
with less accuracy. The mean absolute error (MAE) is similar metric
which acts on the magnitude of the difference.

Another useful metric for regression modelling, which may be used
for non-nested models, is the coefficient of determination, typically
denoted,

R2 =

∑n
i=1(ŷi − ȳ)2∑n
i=1(yi − ȳ)2

,

where ȳ is the mean of the response variable. R2 gives an idea of
how correlated with predictors are with the response variable and
may take negative values. The closer R2 is to one, the more correlated
the predictors are with the target variable. Typically, the adjusted
coefficient of determination is used for model selection.

Another metric used with a regression setting is the score function,
with the family of methods referred to as proper scoring rules [40].
The score function factors in the whole distribution, meaning predic-
tions with low variance that are inaccurate will be penalised more
than inaccurate predictions with high variance. The score function
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essentially acts as a level of loss from each model. In a regression
setting, a choice of score is the probability density function (PDF) of
the log-normal distribution, denoted

Score = C−
1

2
logσ2 −

(y − ỹ)2

2σ2
, (2.47)

where C are the constant terms in the log-normal PDF, ỹ is the vector
of the fitted value, and σ2 is the variance of the fitted value. The
scores of all data points are then averaged to obtain an average loss for
each data point. The closer the score is to zero, the greater the model
accuracy.

One may also consider the AIC for spatial models [48]. The idea
behind AIC is to act as a trade-off between model fit, through the
likelihood term, and model complexity, through a penalty parameter.
In model selection, we choose a combination of regressors which
minimises the AIC. The AIC is assessed when fitting the model to the
entire dataset, and is denoted

AIC = −2 logLz(Ψ̂) + 2p, (2.48)

where the model Ψ̂ contains p explanatory variables and is evaluated
at n data points.

2.6.3 Classification model metrics

The metrics for a classification model vary as we are now modelling
the mean of the response and not the residuals. The metric varies
according to the number of responses and are typically functions of
predicted class probabilities.

2.6.3.1 Binary response

When the response is binary, there are several metrics at one’s dis-
posal, and are, typically, some construct of the confusion matrix. The
confusion matrix is a visual way of assessing the fitted values com-
pared with the observed values. There are three main constructs of
the confusion matrix, namely

• Sensitivity/ recall: TP
TP+FN

(
Number of true positive assessments
Number of all positive assessments

)
• Specificity: TN

TN+FP

(
Number of true negative assessments
Number of all negative assessments

)
• Accuracy: TN+TP

TN+TP+FN+FP

(Number of correct assessments
Number of all assessments

)
These metrics should be assessed amongst each other, as increasing
one usually results in the decrease of another. Model performance may
also be assessed visually through the receiver operating characteristic
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receiver operating characteristic curve (ROC) curve. This method assess
the true positive rate against the false positive rate when varying the
threshold of classification, typically set to 0.5. This means that once
transforming the linear predictor using, say, the logit transformation,
any value above 0.5 is classed as a 1 and values below 0.5 are classed as
a 0. The ROC curve identifies the different true positive to false positive
rates while the area under the curve (AUC) identifies the optimal ROC

curve which has the greatest area underneath.
There are two heuristic approaches to assessing multi-class classi-

fication performance whereby we reduce multiple classes to binary
comparisons. This involves reducing the number of classes to binary
sub-problems, then evaluating several models. The are two main ap-
proaches are:

One-vs-one Here we divide the K class problem into K(K−1)
2 binary

classifiers. A classifier, f̂jk, is constructed by coding the jth class as
positive and the kth class as negative, with j,k = 1, . . . ,K, j ̸= k. For
a new data point, x, we average the votes in each class and assign
x to the class with the highest number of votes. This method is less
sensitive to the problems of imbalanced datasets, however it has
greater computational expense.

One-vs-all In this approach, we have to train a separate classifier
for each different pair of labels. This approach involves dividing the
K-binary classification problem into K-class sub-problems, comparing
the kth class with the not kth class, for k = 1, . . . ,K. A classifier, f̂k,
is then constructed so that the instances in the kth class are positive
and the union of all other classes are negative. A new data point, x, is
then assigned to the class with the largest value of f̂k(x), k = 1, . . . ,K,
where f̂k(x) is the optimal solution to the binary problem.

Setting up multiple binary classification problems may result in
extra computational burden as well as having too many models to
compare, depending on the number of classes in the response. It may,
therefore, be preferable to evaluate performance from a single model

2.6.3.2 Multinomial response

There are several methods to assess multi-class classification perfor-
mance without reducing the number of classes. AIC is one such method
for non-nested models. Scoring rules are another popular choice.

In defining a scoring rule, suppose M models were fitted, each
with different link or correlation functions, and estimated probabilities
for input x π̂m(x), m = 1, . . . ,M and corresponding data yi, for
i = 1, . . . ,n, the overall loss for the mth model is

n∑
i=1

Loss(π(m),yi),

where Loss(π,yi) is the loss function for experiment i, and π is the
probabilistic forecast of the observed class. There are several choices
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of loss functions, such as the logarithmic,Brier, and spherical losses,
defined as

log :Loss(πi,yi) = logπi,yi
,

Brier :Loss(π,yi) = −2πi,yi
+

C∑
j=1

π2
ij + 1,

Spherical :Loss(π,yi) =
πi,yi

||π2
i ||

,

where yi is the observed class of the ith experiment. We seek the
models with a lower loss as they tend to assign the highest probabilities
to the correct classes.





3
G P M O D E L F O R C O M P O U N D D ATA A N A LY S I S A N D
D I S C O V E RY

3.1 fingerprints as a representation of the chemical

space

Fingerprints are a widely used concept for assessing molecular sub-
structures and are represented as bit vectors based on their chemical
graphs. Each feature within the fingerprint indicates the presence
of some atomic substructure, e.g., a vertex or a cycle [52]. Most of
the molecular fingerprints have been developed to describe molecu-
lar structures associated with biological activities based on synthetic
compounds [80] .

The Tanimoto (Jaccard) similarity is a measure of closeness between
fingerprints. Consider two vectors of the form cr = (cr1, cr2, . . . , crκ)
where cri is either 0 or 1, and not all 0, denoting the presence of
feature (atomic substructure) i in the rth compound, i = 1, . . . , κ. The
Tanimoto similarity Srs = S(cr, cs) for a pair of compounds cr, cs is
defined to be the number of features in common between the two
compounds over the number of features in either. More specifically,

Srs =
⟨cr, cs⟩

⟨cr, cr⟩+ ⟨cs, cs⟩− ⟨cr, cs⟩
, (3.1)

where ⟨cr, cs⟩ =
∑κ

i=1 cricsi. By definition, 0 ⩽ Srs ⩽ 1. When the
two compounds have no features in common, the Tanimoto similarity
is zero, i. e., Srs = 0, and when the compounds have identical features,
the Tanimoto similarity is one, i. e., Srs = 1. The m×m matrix with
elements Srs, r, s = 1, . . . ,m, is positive definite [11]. This allows us to
apply the Tanimoto similarity as a valid covariance function, denoted
Jaccard in Table 3.1.

Subtracting the Tanimoto similarity from one converts the simi-
larity into a distance [41, 42], with the Tanimoto distance between
compounds cr and cs denoted by

T(cr, cs) = Trs = 1− Srs. (3.2)

Some authors [31] used the Tanimoto distance directly within a Gaus-
sian kernel to model the correlation of a Gaussian process. Although
the Tanimoto distance is a metric, it is non-Euclidean, and can result
to non-positive definite correlations when used with spatial kernels.
This result allows us to create a vast catalogue of correlation functions
based on the Tanimoto distance, inspired by the correlation functions
used in the GP literature, which allow the GP model to have certain

43
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Correlation R(t,ϕ)

independent 1(t = 0)

exponential exp{−
√
t/ϕ}

Gaussian exp{−t/ϕ2}

Jaccard 1− t

Table 3.1: Correlation functions based on the Tanimoto metric at distance t

with scaling parameter ϕ.

properties. Table 3.1 lists several choices of the GP correlation, R(t,ϕ),
corresponding to compounds with Tanimoto distance t. The inde-
pendent correlation corresponds to what is commonly referred to
as the mixed effects model, and is used for reference to assess the
improvement when incorporating correlation.

As an example, consider the chemical space C = {c1 = (0, 1, 1), c2 =

(1, 0, 1), c3 = (1, 1, 0), c4 = (1, 1, 1)}. The matrix of pairwise Tanimoto
distances, T , and the corresponding correlation matrix R with elements
Rrs = exp(−T2

rs), are given by

T =


0 2/3 2/3 1/3

0 2/3 1/3

0 1/3

0

 , R =


1 0.6412 0.6412 0.8948

1 0.6412 0.8948

1 0.8948

1


Note that the distances given in T cannot correspond to distances in
some Euclidean space. To see this, suppose there exist points ε1, . . . , ε4
on some Euclidean space with pairwise distances given by T . Then,
as T14 + T24 = T12, T14 + T34 = T13, and T24 + T34 = T23, the point ε4
must lie simultaneously in the middle of the edges of the equilateral
triangle formed by ε1, ε2, and ε3, which is impossible. Note also that
the correlation matrix R is not positive definite as its lowest eigenvalue
is about −0.036.

Next, we discuss the use of the Tanimoto distance with well-known
spatial kernels.

Definition 1. Let (C,d) be a metric space. The metric d is called Eu-
clidean if for any set of points c1, . . . , cm ∈ C, there exist ε1, . . . , εm ∈
Rα (α depends on m), such that d(cr, cs) = ∥εr − εs∥ for all r, s =

1, . . . ,m, where ∥ · ∥ denotes the Euclidean norm in Rα. In this case,
we say that the points {c1, . . . , cm} can be isometrically embedded in a
Euclidean space of dimension α.

The following theorem, appearing in Gower [43], can be used to
show that a metric is Euclidean. We denote the m×m identity matrix
by Im, and the m×m matrix of ones by Jm.
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Theorem 1. Let (C,d) be a metric space.

1. The metric d is Euclidean if and only if, for any set of points c1, . . . , cm ∈
C, the m ×m matrix B = HAH is positive semi-definite, where
H = Im − m−1Jm, and A is the m ×m matrix with elements
Ars = −d(cr, cs)2/2, r, s = 1, . . . ,m.

2. Furthermore, let α = rank(B). Then, the points {c1, . . . , cm} can be
isometrically embedded in a Euclidean space of dimension α, and α is
the lowest dimension for which this is possible.

Now consider the chemical space C = {c1, . . . , cm} with the met-
ric d(cr, cs) =

√
T(cr, cS). The matrix B from Theorem 1 is B =

−1
2H(Jm − S)H = 1

2HSH, where S is the m ×m matrix with ele-
ments given by (3.1). As S is positive definite, B is positive semi-
definite and rank(B) = m − 1, therefore, the points C can be em-
bedded in a (m − 1)-dimensional Euclidean space. Mardia, Kent,
and Bibby [60, Section 14.2.2] provide an algorithm for finding the
points ε1, . . . , εm in the Euclidean space. In the example given earlier,
ε1 = (−1/

√
6,−1/

√
18,−1/12), ε2 = (1/

√
6,−1/

√
18,−1/12), ε3 =

(0, 2/
√
18,−1/12), ε4 = (0, 0, 1/4) have pairwise Euclidean distances

given by the square root of the elements of T .

3.2 sample variogram as a method of assessing correla-
tion

The Tanimoto distance is a suitable metric if there exists spatial depen-
dence. To confirm dependence, we may resort to the variogram, or the
semi-variogram. For a stochastic process f(x), a variogram is defined
to be the variance of the difference between two field values (draws
from the GP) at locations x1 and x2, defined by their fingerprints. The
variogram is expressed as

2γ(x1, x2) = Var(f(x1) − f(x2)),

= E[(f(x1) − f(x2))
2] − E[f(x1) − f(x2)]

2, (3.3)

= E[(f(x1) − f(x2))
2].

The second term in (3.3) vanishes as we assume E[f(x)] = 0 for a GP.
To compute the the variogram, we first generate pairwise Tanimoto
similarities between all compounds. We then create a matrix for the
associated differences of residuals from a regression model of choice,
one such option being the random effects model. We fit a suitable
model and look at the residuals since the assumption E[f(x)] = 0



46 gp model for compound data analysis and discovery

might not hold for the actual process, but it holds for the residuals.
We map
t(c1, c1) t(c1, c2) . . . t(c1, cn)

t(c2, c1) t(c2, c2) . . . t(c2, cn)
...

...
. . .

...

t(cn, c1) t(cn, c2) . . . t(cn, cn)

→

r1 − r1 r1 − r2 . . . r1 − rn

r2 − r1 r2 − r2 . . . r2 − rn
...

...
. . .

...

rn − r1 rn − r2 . . . rn − rn


where ri corresponds to the ith residual. The procedure is applied
to all elements in the matrix distance h. The variogram is computed
at various distances. This makes sense only for isotropic GP when
the variogram is only a function of h. We then find all the associated
differences in residuals that correspond to compounds of distance h.
Because of the symmetry, we only need to observe either the upper
or lower triangle. Once we have selected the residuals corresponding
to distance h, we calculate the variance of these residuals using the
formula

2γ̂(h) =
1

nh

∑
i,j

(ri − rj)
2 (3.4)

where the sum is over all pairs (i, j) such that t(ci, cj) = h and nh

corresponds to the number of pairwise distances equal to h.
We then select the number of bins used for the variogram, which

contain all distances that lie within h. This will increase the sample
size used for estimating 2γ(h) for different values of h. In practice,
there are only few data with a given distance h, which makes the
estimator unreliable. To improve the estimate, we use distances within
h − ϵ,h + ϵ for the calculation of the variogram at distance h. We
proceed by plotting the variance of the residuals against the mid-point
of each bin. This then creates points for the scatter plot, known as the
sample variogram. Spatial dependence exists if the covariance will
decrease as the distance increases, i. e., anything other than a straight
line. A straight line indicates that no matter the distance of xi − xj, the
covariance will be constant.

3.3 gps for ordinal outcomes

For the GP classification model, we consider a chemical space C =

{c1, . . . , cm} of m distinct compounds. In practice, m is large, but only
a small number of them will be used in experiments. We assume
observed data (x1,y1, cl1), . . . , (xn,yn, cln), where yi ∈ {1, 2, . . . ,C},
with 1 < 2 < . . . < C, is the class response, xi are the testing conditions,
and li ∈ {1, . . . ,m} indicates which compound is used in the ith
experiment among m distinct compounds in C, i = 1, . . . ,n. The
objective is to predict the outcome y∗ given experimental conditions
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x∗ with unobserved compound c∗, i. e., to estimate the probabilities
Pr(y∗ = j|y) for each class j ∈ {1, . . . ,C}, where y = {y1, . . . ,yn}.

Let T(·, ·) be a distance in the chemical space. Define u : C 7→ R

to be a GP on C, such that for any finite collection of compounds
u = (u(c1), . . . ,u(cm)) is distributed according to the m-dimensional
multivariate normal distribution with mean 0 and variance covari-
ance matrix K. We write the (r, s)th element of the matrix K, kr,s,
r, s = 1, . . . ,m, corresponding to compounds cr and cs as krs =

σ2R(T(clr , cls),ϕ), where R(t,ϕ) denotes the correlation function at
distance t with scaling parameter ϕ, and σ2 denotes the variance
parameter.

Let y denote the outcome of an arbitrary experiment under condi-
tions x with compound c, and let γj = Pr(y ⩽ j|u(c)), with γC = 1.
Our model assumes that

G(γj) = αj +β⊤x + u(c), j = 1, . . . ,C− 1,

= ηjc,

where G : (0, 1) 7→ R is the link function, β denotes the regressor
coefficients, and α1, . . . ,αC−1 the intercepts. Note that this model is
an extension of the model presented in Section 2.4.

Let γij = Pr(yi ⩽ j|u(ci)), be the cumulative probabilities for up
to class j, j = 1, . . . ,C, and πi1 = γi1, πij = γij − γi,j−1, j = 2, . . . ,C
be the individual class probabilities. We assume that the distribution
of each yi is conditionally independent of yi ′ for i ′ ̸= i given u(cli).
Thus our model can be described by

yi|u(cli)
ind
∼ Categorical(πi), i = 1, . . . ,n,

u ∼ Nm(0,K),
(3.5)

where πi = (πi1, . . . ,πiC) and u is the value of the GP at the m distinct
compounds.

Within our application, decreasing values of u results in the esti-
mation of higher high-class probabilities when the link function is
increasing. To demonstrate this, we consider the odds ratio (1−γj)/γj

for j = 1, . . . ,C and its behaviour as a function of u. We can see that
(1−γj)/γj = 1/γj− 1 = 1/G−1(ηjc)− 1, where ηjc = αj+β⊤x+u(c).
If G is increasing, then so is G−1, so the odds ratio is a decreasing
function of u.

3.3.1 Estimation of model parameters

Let θ = (α1, . . . ,αC−1,β,σ2,ϕ) denote the model parameters. We use
the symbol f(·) to represent the probability density/mass function
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of the expression in the brackets. Given the model in (3.5), we have,
excluding any factors that do not depend on θ or u,

f(y|u; θ) ∝
n∏

i=1

C∏
j=1

π
1(yi=j)
ij , (3.6)

f(u; θ) ∝ |K|−1/2 exp
(
−
1

2
u⊤K−1u

)
. (3.7)

Here, 1(·) denotes the indicator function. The likelihood, based on
data y, is then

L(θ|y) = f(y; θ) =
∫
f(y|u; θ)f(u; θ)du. (3.8)

The integral in (3.8) does not have a closed-form solution, so obtaining
the maximum likelihood estimates of θ by direct maximisation of
the likelihood is not possible. To compute the likelihood, we apply
Laplace approximation, a technique which enables approximations to
integrals of the form

∫
e−g(u) du. Letting

g(u) = − log[f(y|u; θ)f(u; θ)],

where û denotes the point at which the function g(u) is minimised,
and Ĥ denote the Hessian matrix of g(u) at û, we may express the
second order Taylor expansion of g(u) as

g(u) ≈ g(û) +
1

2
(u − û)⊤Ĥ(u − û). (3.9)

By substituting (3.9) into (3.8), we obtain the approximation to the
likelihood

f(y; θ) ∝ e−g(û)|Ĥ|−
1
2 . (3.10)

We obtain θ̂ by maximising (3.10) with respect to θ. Furthermore,
recognising that the exponential of (3.9) is proportional to a multivari-
ate normal density, leads to the approximation

u|y ∼ Nm(û, Ĥ−1) approximately as n→∞. (3.11)

For this approximation to be valid, we must have n→∞ and that
g = O(n). Shun and McCullagh [82] commented on the error of the
Laplace approximation when m → ∞. For the error of the Laplace
approximation to be small, we require m/n → 0 as n → ∞. In our
application, m increases as the number of features in the fingerprint
increases, so the number of experiments, n, must increase as well.
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3.3.2 Likelihood of GP classification model

The logarithm of the probability mass function for y|u, from (3.6), is
given by

ℓ(y|u; θ) =
n∑

i=1

C∑
j=1

1(yi = j) log(πij)

=

n∑
i=1

C∑
j=1

1(yi = j) log(γj − γj−1)

=

n∑
i=1

C∑
j=1

1(yi = j) log(G(ηi,j) −G(ηi,j−1))

where ηi,j = αj + β⊤x + u(cli) and we define α0 = −∞, γ0 = 0.
Therefore

∂ℓ

∂u(c)
=

n∑
i=1

C∑
j=1

1(yi = j)η1(cli = c),

∂2ℓ

∂u(c)∂u(c ′)
=

n∑
i=1

C∑
j=1

1(yi = j)
{
η ′ − η2

}
1(cli = c)1(cli = c ′),

where

η =
G ′(ηi,j) −G ′(ηi,j−1)

G(ηi,j) −G(ηi,j−1)
,

η ′ =
G ′′(ηi,j) −G ′′(ηi,j−1)

G(ηi,j) −G(ηi,j−1)
.

Overall, we can write

∂ℓ

∂u
= P⊤Ψ1,

∂2l

∂u∂u⊤ = P⊤Ψ2P

where P is an n×m binary matrix where its ith row is 0 everywhere
except at li which equals 1, and Ψ1 is an n-dimensional vector and Ψ2

is an n×n diagonal matrix with elements

Ψ1i =

C∑
j=1

1(yi = j)η,

Ψ2ii =

C∑
j=1

1(yi = j)
{
η ′ − η2

}
,

respectively, for i = 1, . . . ,n. To find û used in the Laplace approxima-
tion, we solve

K−1û − P⊤Ψ̂1 = 0, (3.12)

and the Hessian is Ĥ = K−1 − P⊤Ψ̂2P, where Ψ̂1 and Ψ̂2 denote Ψ1

and Ψ2 evaluated at û.
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3.3.3 Prediction

The approximation in (3.11) enables predictions of the class damage,
y∗, for an unseen compound. We begin by evaluating the conditional
distribution u∗|y to estimate the unobserved effects of the GP. Using
the conditional independence of u∗ and y given u, we observe that

f(u∗|y) =
∫
f(u∗|u)f(u|y)du ≈

∫
f(u∗|u)f̂(u|y)du =: f̂(u∗|y),

so the density f(u∗|y) can be approximated by a Gaussian density
f̂(u∗|y), whose mean and variance can be computed using the law of
total expectation and variance. In doing so,

E[u∗|y] = E[E[u∗|u]|y]

= E[K∗K
−1u|y]

= K∗K
−1û (3.13)

Var[u∗|y] = E[Var[u∗|u]|y],+Var[E[u∗|u]|y]

= E[K∗∗ −K⊤
∗ K

−1K∗|y] +K⊤
∗ K

−1Var[u|y]K∗K
−1

= K∗∗ −K⊤
∗ K

−1K∗ +K⊤
∗ K

−1Ĥ−1K∗K
−1 (3.14)

where K∗ = Cov(u∗, u), and K∗∗ = Cov(u∗, u∗). Here we have made
use of the well known relations E[u∗|u] = K∗K

−1u and Var[u∗|u] =
K∗∗ −K⊤

∗ K
−1K∗ from Gaussian conditioning rules.

Let y∗ denote the outcome of a future experiment under conditions
x∗ using compound c∗. To obtain the predicted outcome, we require
the probabilities Pr(y∗ = j|y) for j = 1, . . . ,C. This can be estimated as
follows.

Pr(y∗ = j|y) = E[1(y∗ = j)|y]

= E[E[1(y∗ = j)|y, u∗]|y]

= E[E[1(y∗ = j)|u∗]|y]

= E[π∗j|y]

=

∫
π∗jf(u∗|y)du∗

≈
∫
π∗jf̂(u∗|y)du∗. (3.15)

Equation (3.15) is evaluated using numerical integration. In this paper,
we use the Gauss-Hermite quadrature method [30] with 21 integration
points.

3.3.4 Variance corrections to parameter uncertainty

The formula for Var[u∗|y] given in the previous section is a function
of the model parameters, θ. In practice, θ is unknown and is replaced
by its estimate θ̂, effectively assuming that the true value of θ is θ̂.
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This ignores the uncertainty in the value of θ. Booth and Hobert [10]
provided a correction to the prediction variance for generalised linear
mixed models with independent random effects. We follow a similar
approach here.

Let u∗ be the true value and let û∗(y, θ) = E[u∗|y] be the predic-
tion with known θ. We want to assess the error û∗(y, θ̂) − u∗, where
θ̂ denotes the maximum likelihood estimator for θ and I(θ) is the
corresponding Fisher information matrix.

We write û∗(y, θ̂) − u∗ = û∗(y, θ̂) − û∗(y, θ) + û∗(y, θ) − u∗ = e1 +

e2, where e1 = û∗(y, θ̂) − û∗(y, θ) is the additional error due to the
uncertainty in θ and e2 = û∗(y, θ) − u∗ is the error had θ been known.
Note that, e1 is a function of y, but not of u∗, and E[e2|y] = û∗(y, θ) −
E[u∗|y] = 0. Then,

E[e1e2] = E[E[e1e2|y]]

= E[e1E[e2|y]] = 0.

Furthermore,

e1 = û∗(y, θ̂) − û∗(y, θ)

≈ ∇θû∗(y, θ)T (θ̂− θ)

⇒ Var(e1) ≈ ∇θû∗(y, θ)T I(θ)−1∇θû∗(y, θ).

Then,

E[(û∗(y, θ̂) − u∗)
2] = E[(e1 + e2)

2]

= Var(e1 + e2)

= Var(e1) + Var(e2)

≈ ∇θû∗(y, θ)T I(θ)−1∇θû∗(y, θ) + Var[u∗|y].
(3.16)

The second term in (3.16) is given by (3.14), while the first term is the
variance correction due to estimation in θ. To compute the derivatives
∇θû∗(y, θ), note that, by (3.13), ∇θû∗(y, θ) = K∗K

−1∇θû(y, θ), where
û(y, θ) is the solution to (3.12). By differentiating both sides of (3.12)
with respect to elements of θ, we are able to compute ∇θû(y, θ)
algebraically.

3.3.5 Estimating standard errors through bootstrapping

Bootstrapping is a statistical procedure that resamples a single dataset
to create many simulated samples. This process allows you to calculate
standard errors, construct confidence intervals, and perform hypoth-
esis testing for numerous types of sample statistics. In defining the
bootstrap, suppose we have a data-generating mechanism f(y|θ) from
which we can sample independent data, y1, . . . ,yn ∼ f(y|θ0), where
θ0 denotes the ‘true’ value of the parameter θ. We assume we know



52 gp model for compound data analysis and discovery

the true value of the model f(y|θ), but we don’t know the true value
θ0. Using the data, our goal is to estimate the true value of θ by fitting
the model to the observed data. Let θ̂ = g(y) be the estimated value of
θ based on data y = {y1, . . . ,yn}. The notation g(y) is used to indicate
that θ̂ is a function of the observed data y. Bootstrap helps us obtain
measures of the bias and variability of the estimator θ̂. The idea of
bootstrap estimator is to generate new data from a distribution close
to f(y|θ), then fit the same model to the new data to obtain a new esti-
mate of θ. Repeating this process a large number of times, say B, will
provide us with a sample of size B from the distribution of θ̂ which we
can use to compute the estimates. Suppose f̂(y|y) is a distribution close
to f(y|θ0) that can generate new data. We use a distribution based on
the observed data y and not based on θ0 as the latter is unknown,
but the former is observed. We then generate yb = yb1, . . . ,ybn as
an independent sample from f̂(y|y), for b = 1, . . . ,B. Let θ̂b = g(yb)

be the estimate of θ based on the sample yb. Then θ̂b, . . . , θ̂B is and
independent sample from the distribution of θ̂.

Using θ̂b, . . . , θ̂B allows us to compute

1. the bias of θ̂ as bias(θ̂) = θ̄− θ̂,

2. the variance of θ̂ as Var(θ̂) = (1/(B− 1))
∑B

b=1(θ̂b − θ̄)2,

where θ̄ = (1/(B))
∑B

b=1(θ̂b) is the average bootstrap estimate of θ.
The above formulae can be used to provide the bias-corrected estimate

of θ by θ̂− bias(θ̂) = 2θ̂− θ̄, and the standard error of θ̂ as
√

Var(θ̂).
It remains to choose the distribution f(y|y) from where the data are
sampled. There are two ways to do that:

1. Non-parametric bootstrap: sample from the empirical distribu-
tion of the sample. This corresponds to sampling with replace-
ment n observations among the observed data.

2. Parametric bootstrap: sample from f(y|θ̂)

Application to regression

In regression, the data are (x1,y1), . . . , (xn,yn). If non-parametric
bootstrap is used, the we are resampling each pair (xi,yi). For para-
metric bootstrap, we resample or choose arbitrary x values and then
sample the y values from the fitted model.

Application to correlated data

The above methods assume that the observed data are indepen-
dent and identically distributed. If the data are correlated, then non-
parametric bootstrap is difficult to implement, but parametric boot-
strap is applied the same way. Parametric bootstrap is comprised of
the following steps.
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1. Fit the model to the original data to obtain θ̂.

2. Generate B new data from the model using θ̂.

3. Fit the model to each of the new data to obtain θ̂b, . . . , θ̂B.

4. Compute bootstrap bias and variance.

3.4 optimisation methods for drug discovery

Exploration the chemical space is vital when discovering new and
effective compounds. Due to the space of all possible compounds
being so large, it is impossible to assess all combinations of features to
discover the ideal compound [8]. Therefore, we would like techniques
that guide us on the interesting regions to explore, as . Optimisation
methods allow exploration of such chemical spaces and are suitable
for the discovery of new drugs. They are a tool used to identify
the key features with the compounds, i. e., the region within the
chemical space where the molecule possess herbicidal features. We
require discrete optimisation algorithms since the chemical space is
discrete. Our aim is to minimise u(c) over C, thereby finding the most
active compound. Optimisation methods may also be used to propose
hypothetical compounds of high efficacy. We present a few methods
employed for these pursuits which allow wider regions of the objective
functions to be explored, thereby discovering several optima.

3.4.1 Simulated annealing

Simulated annealing is an optimisation method which seeks to approx-
imate a solution to a given objective function. It is employed when one
is interested in a global solution, rather than a local solution. Newton
and BFGS optimisation algorithms are only used when the search
space is continuous and are not suitable for discrete problems such
as optimising over the chemical space. Unlike the Newton method
of optimisation where one perpetually moves in the direction of the
steepest gradient, there are two kinds of acceptance of the proposed
move, namely a regular acceptance if the solution is improved upon,
and a probabilistic acceptance for when a non-improving solution is
proposed. Enabling the search in a direction which does not lead to
an improved solution allows for the greater regions to be explored.

In our application, simulated annealing no longer searches over a
continuous space, since the features of a fingerprint are dichotomous.
Instead, we move in a high-dimensional, discrete space by single
steps. These steps equate to either adding or removing arbitrary sub-
structures, regarded as a ‘switch’, within the compound. Every switch
results in a novel compound from which we may estimate its effect.
If the newly proposed compound’s effect is lower, i. e., it has greater
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predicted potency than the predeceasing compound, then our options
are two-fold: we remain in the current state, i. e., the same location
of the chemical space and randomly select another feature to switch,
or, with some probability, we accept the newly proposed compound
and move to this location within the chemical space, see algorithm 1

for the Pseudocode. The effect of accepting a new compound with
less predicted activity allows for broader exploration of the chemical
space.

Given a candidate solution c ′, the probability of moving to c ′ is
given by

P(Accept c ′) = min
(
1; exp

(
−
∆E

Ti

))
where ∆E = u0 − u ′ is the difference in the effect of the current
solution u0 and the effect of the newly proposed solution u ′. The pa-
rameter Ti represents the current temperature and, in our application,
takes the form

Ti =
λ

log(
⌊
i−1
τ

⌋
+ e)

. (3.17)

where λ is the maximum temperature, τ is the number of iterations
until the temperature changes, and i is ith iteration of the optimisation.
The operator ⌊·⌋ is the floor function.

When optimising using SA, the parameters of the temperature, Ti,
should be chosen in such a way that allow you to obtain a range of
probabilities. The value of ∆E should be taken into account for this.
If λ is too high compared to ∆E, then the acceptance probability will
be very close to 1, so movements are simply random. If λ is too small
compared to ∆E, then the acceptance probability will be very close to
0, so movements will occur when a better compound is found, thus
being unable to explore the chemical space sufficiently.

In choosing λ, one may take all fingerprints used to fit the data
and change one feature from each, say the first active feature. This
gives an idea on the different values of ∆E that are encountered. One
may proceed by setting λ to some value close to the maximum of
these ∆E values. Then select λ so that towards the end, the acceptance
probability is lower than 0.1, for example. Algorithm 1

3.4.2 Genetic algorithm

A GA is a stochastic optimisation technique which follow the “Dar-
winian” model of natural selection, and may be applied to both con-
tinuous and dichotomous data. GAs act as a feature selection tool by
choosing the optimal combination of features based on the strength
of the parent features. The GA is an adaptive strategy and a global
optimization technique. As an evolutionary algorithm, it belongs to
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Algorithm 1 Pseudocode for Simulated Annealing

Input: Fingerprintlength, iterationsmax, tempmax,Model

Output: Sbest
C0 ← CreateInitialSolution(Fingerprintlength)
Cbest ← C0

for i = 1 to iterationsmax do
C ′ ← C0

u ′ = Predict(Model,C ′)

if u ′ ⩽ u0 then
C0 ← C ′

if u ′ ⩽ ubest then
Cbest ← Ci

end if
else if Exp

(
u0−u ′

Ti

)
< Rand() then

C0 ← Ci

end if
end for
return Cbest

the broader study of Evolutionary Computation. GA are capable of
solving for a near-optimal solution for multivariable functions without
the mathematical requirements of strict continuity, differentiability,
convexity and other properties [17].

The main tuning parameters within thw GA are the crossover rate
and the mutation rate, which play a central role in diversifying indi-
viduals and exploring the search space to discover new solutions s [39,
94]. See Figure 3.1 for an illustration of the crossover and mutation
roles and algorithm 2 for the Pseudocode.

3.5 simulation study

We perform a simulation study to examine whether the method of
scoring identifies the true model from which the data are sampled.
If the scoring identifies the true model, then we may assume it is a
suitable method for model identification using our novel approach.

The chemical space is formed by combining 5 features, producing a
total of 25 − 1 = 31 distinct compounds, excluding the vector where
no feature is present. The data consist of n = 310 realisations, where
each of the 31 compounds was tested under 10 different experimental
conditions. Let yik ∈ 1, 2, 3, i = 1, . . . , 10, k = 1, . . . , 31, denote the
observed outcome at the ith experiment with compound k, which can
be among C = 3 categories. The model for the cumulative probabilities
is

logit Pr(yik ⩽ j) = αj +βxi + uk, j = 1, 2,
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Figure 3.1: Methods to induce diversity in the population of individuals
(candidate solutions). (a) During crossover, a feature within the
fingerprint is exchanged by another feature of another compound.
(b) When mutating, one or more features within a fingerprint are
converted to a different one. This results in the survival of the
fittest features.

Algorithm 2 Pseudocode for Genetic Algorithm

Input: Populationsize,Problemsize,Pcrossover,Pmutation

Output: Sbest
Population← InitialisePopulation(Populationsize,Problemsize)

EvaluatePopulation(Population)
Sbest ← GetBestSolution(Population)
while StopCondition() do

Parents← SelectParents(Population,Populationsize)

Offspring← ∅
for each Parent1,Parent2 ∈ Parents do

Offspring1,Offspring2 ← Crossover(Parent1,Parent2,Pcrossover)
Offspring← Mutate(Offspring1,Pmutation)

Offspring← Mutate(Offspring2,Pmutation)

end for
EvaluatePopulation(Offspring)
Sbest ← GetBestSolution(Offspring)
Population← Replace(Population, Offspring)

end while
return Sbest
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α1 α2 β σ̂2

True −1 0 1 0.1

Estimate −0.9963 −0.0004 0.9965 0.0725

St dev 0.3028 0.2931 0.3889 0.1262

Table 3.2: True and average estimated parameter values and their standard
deviations for the simulation study.

with a single covariate xi = (i− 1)/9. We choose α1 = −1, α2 = 0, and
β = 1. The GP model for u consists of the Tanimoto covariance, with
variance parameter σ2 = 0.1.

We conduct 500 simulations in total. The parameter estimates for
the logit-Tanimoto model, along with their standard deviations, were
averaged across the 500 simulations and are presented in Table 3.2.
We observe in Table 3.2 the parameters of the simulated data lie
particularly close to the true estimates.

We fit 17 different models to each realised dataset. The different
models consists of different choices of link and correlation function,
as shown in Table 3.3, plus a random forest model. For computing the
loss of each of these models, we partition the experiments into training
and test sets in the ratio 80 : 20. We train the models on 80% of the sim-
ulated data and test the models’ predictive accuracy on the remaining
20% through the method of scoring, using either the spherical score
or the log score. The score of each model was averaged across the 500

simulations. Table 3.3 illustrates the classification performances of the
16 GP models as well as a random forest model. We see the model
achieving the greatest classification accuracy is the GP model with
logit link and Tanimoto covariance, that being the model from which
the data were sampled. This demonstrates that scoring rules identifies
the true model, thereby affirming its suitability for model selection.
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Link Correlation Spherical Log

logit Tanimoto −0.6007 1.0592

probit Tanimoto −0.6006 1.0593

log-log Tanimoto −0.6003 1.0601

probit Gaussian −0.6000 1.0606

logit Gaussian −0.6000 1.0606

logit independent −0.5999 1.0607

logit exponential −0.5999 1.0608

probit exponential −0.5998 1.0609

probit independent −0.5998 1.0610

C-log-log Tanimoto −0.6000 1.0612

log-log Gaussian −0.5997 1.0615

log-log exponential −0.5995 1.0616

log-log independent −0.5995 1.0617

C-log-log Gaussian −0.5990 1.0634

C-log-log exponential −0.5989 1.0637

C-log-log independent −0.5987 1.0642

RF −0.5120

Table 3.3: Average spherical and logarithmic loss for each model on the
simulated data, ordered from highest to lowest in terms of their
accuracy.



4
A P P L I C AT I O N T O S Y N G E N TA’ S D ATA

4.1 description and presentation of data

4.1.1 Syngenta’s testing process

Every year, thousands of compounds undergo testing at Jealott’s
Hill Research Centre, to discover new and effective herbicides. Every
compound is subjected to numerous stages of approval, namely screen
tests, where compounds where compounds are tested for herbicidal
properties. The most successful compounds will progress onto field
trials for agricultural testing. Examples of herbicides produced by
Syngenta include Acuron, Axial, Gramoxone and Touchdown, all of which
have different means of addressing crop protection.

Syngenta externally source compounds for experimental research.
Groups of experiments are stored into what are referred to as ‘Projects’.
Projects contain compounds posessing similar biological activity, i. e.,
share a common mode/method of action. For the purposes of this
thesis, we will conduct our analysis using compounds from a single
project.

Herbicidal performance is influenced by a number of factors in-
cluding temperature, humidity, species, and developmental stage of
the weed [50]. Important considerations when producing herbicides
include efficacy and bystander safety. In light of this, it may be prefer-
able to apply a lower dose, as this also tends to reduce the level of
herbicidal resistance [44]. When determining the optimal dose of a
herbicide, factors such as the crops’ yield potential, the price of output,
and the rotation practised are considered [38]. Before progressing onto
field trials, herbicides typically undergo numerous stages of testing.
In this project, we are analysing data from the initial stages, that is
EPS. During EPS and PPS, compounds are tested on a mixture of weeds
and crops contained in a trough with an untreated row left as the
control group. Each trough is labelled with a compound descriptor
and a date of application, with applications most commonly occur-
ring at 250g ha−1, 500g ha−1, or 1 kg ha−1 (one hectare equates to
100m× 100m). Tests are performed either prior to the plant emerg-
ing (pre-emergence) or once the plant is partially or fully established
(post-emergence).

Within two weeks of application, a trained biologist visually assesses
the damage and ranks the herbicidal effect accordingly. Damages are
recorded as percentages in multiples of 10. A score of 0% indicates no
herbicidal effect, whilst a score of 100% indicates complete necrosis of

59
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the plant. Damage, however, presents itself in multiple ways, such as a
reduced pigmentation, or stunted growth. This also leads to variability
in the biologists opinion of levels of damage. The pigmentation of
the leaves is compared with colour codes to assist the biologists’
assessments.

The following provides a summary of EPS and PPS trials:

1. EPS trial: EPS is preliminary stage of testing where around 8000

compounds are tested yearly to distinguish between inactive and
active herbicides. Compounds are tested on various weeds and
crops in climate controlled glass houses with a constant tem-
perature of 24 ◦C and regular overhead irrigation. Compounds
inflicting high levels of damage on the plant will progress to
PPS. However, herbicides showing high levels of damage may
not progress for other reasons, such as notable levels of toxicity.
Within the glasshouse data, roughly 48% of the compounds
tested in EPS are present in PPS.

2. PPS trial: compounds demonstrating herbicidal potential during
EPS will undergo further testing on more established weeds and
crops and are subjected to a more rigorous set of criteria. The
objective in PPS is to determine overall effectiveness and con-
sistency in damage and to identify other interesting properties,
such as selectivity, i. e., whether damage is inflicted on the weeds
alone or acts on all crops. During PPS, we expect the average
performance of compounds to be greater than in EPS. However,
crops that are resilient to certain herbicides are subject to testing
in PPS to further distinguish toxicity.

The data from PPS occurs from 1997, which is much earlier than 2007,
the first year we have data for EPS. 35470 tests occurred during EPS and
238396 during PPS. There are also a vast number of compounds (745)
being tested on few species (15) in EPS, which signifies the discovery
aspect of the EPS stage. During PPS, we see less compounds are tested
(361) which supports the claim that more potent compounds are tested
during PPS. It is important to note that there are 10 years worth of
data for EPS compared with 21 years for PPS. Interestingly, 98% of the
EPS experiments were conducted on weeds and not crops, as opposed
to 77% during PPS. This suggests EPS assess herbicidal vigour rather
than selectivity.

Figure 4.1 shows there are two main periods of testing for PPS for
the given project, one around 2003 and the other around 2013. Most of
the EPS tests in our data occur around 2012 whereas in PPS is around
2013. It is important to note the times of the tests are for the first
batch of data received and may not be reflective of the total number
of experiments conducted during this time.
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Figure 4.1: Histogram depicting the number of herbicidal tests per year for
EPS and PPS.

EPS:Pre EPS:Post PPS:Pre PPS:Post

Species tested 13 15 43 43

Compounds tested 745 745 310 361

Distinct tests 193 193 406 407

Total experiments 17811 17929 107470 130926

Table 4.1: Summary statistics of the herbicide data by stage and method of
application.

4.1.2 Tanimoto similarities

We now illustrate the distribution of the normalised Tanimoto simi-
larities for the compounds in EPS and PPS. We observe in Figure 4.3
there is an average Tanimoto similarity of µ ≈ 0.35 with slightly less
variation for the experiments in PPS

4.1.3 Frequency of experiments

In this section, we present summary statistics of the frequency of
experiments for EPS and PPS data.

Table 4.1 shows 15 species were tested for EPS post-emergence and
13 for EPS pre-emergence. In PPS, 43 species were subject to testing
for both pre- and post-emergence Out of the 35, 740 tests in EPS, 193
were conducted during distinct times. In PPS, of the 238, 396 tests,
there were 410 conducted at a distinct time. Table 4.1 also shows that
most of the compounds were applied during post-emergence, perhaps
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Distribution of raw damages, transformed damages, the rate of
application of the herbicide, cold and warm acclimatised plants,
pre- and post-emergence plants, and dicot and monocot plants
for the EPS data
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Figure 4.3: Tanimoto similarity for compounds tested within EPS and PPS

reflecting the greater demand to eliminate established weeds in an
agricultural setting.

4.1.4 Dose-response

Some compounds had been tested substantially more than others. For
example, the leading compound was applied in 142, 480 tests, indicat-
ing this compound may be the commercial standard. Compounds are
commonly tested against the commercial standard to assess relative
potency. Figure 4.4 illustrates the dose-response effect of the eading
compound for both pre- and post-emergence.

We selected species 37 and 15 for testing since these appeared
most frequently in testing. Figure 4.4 illustrates a generalised additive
model (GAM), [93], fitted to the data within the R package ggplot2

[92]. The points indicate the damages at given rates, with a single
data point representing multiple points. We see in Figure 4.4 for fixed
species and methods of application, we see a positive trend between
rate of application and damage for both the pre- and post-emergence
plants. These plots suggest the herbicide has a stronger effect when
applied during pre-emergence for both species. We also note the rate
of damage increase for pre-emergence compared with post-emergence.
There appears to be a steady increase for post-emergence, with a slight
fall in damage as we reach the maximum rate of application. This
suggests that pre-emergence plants reach the highest level of damage
sooner, again indicating their susceptibility to the herbicide.
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Figure 4.4: The effect of compound C∗ on species 37 and 15, with applica-
tions occurring during pre- and post-emergence. The blue line
represents a generalised additive model

4.1.5 Species effect on Damage

In Figure 4.7a, we have plotted the observed damages for selected
species as this may provide insight to their susceptibility. We have
divided the data into pre- and post- emergence for both EPS and PPS

and all compounds are included in assessing the effect of herbicide on
the species. These particular species have been selected since they were
most frequently used in testing. Other species may show a different
distribution of damages.

For the sake of analysis, understanding the susceptibility of each
plant will help in the predictive phase, since this may be factored in
when theoretically testing a compound on one of the species. We may
also test a single compound on all species and aggregate the effects
accordingly.

Figure 4.7a shows that Species 3, which is a monocot weed suited to
a cold environment, has had many damages recorded as 0% and no
damages at 100%. From this we may suspect that Species 3 is more
resilient to the herbicidal effects than other varieties. On the other
hand, Species 1, which is a dicot weed suited to a warm environment,
has had many damages recorded above 80% and few damages at
0%. From this we infer species 3 is a less resilient variety of weed.
These results motivate further analysis on causation of susceptibility,
since being in a warm environment, or being a dicot may result in an
increased susceptibility to herbicides.
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Figure 4.5: Distribution of damage rates by species. Note that species 5, 12,
14, 16, 28, and 45 were excluded as combined they only appeared
49 times.
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An approach to modelling the responses may be to subdivide the
damages into three classes, red, amber and green, red being com-
pounds scoring a low damage, and green being compounds scoring a
high damage. Since we are only interested in the compounds which
are either inactive or successful, we may wish to only consider the
compounds in the red and green zone and discard compounds in the
amber category. This also reduces the dimensionality of the problem
to a binary response and will result in greater computational efficiency.
The colour coded system was a suggestion made by the computational
chemists at Syngenta.

Knowing the impact of species properties to the damage is also of
interest, since the type of plant and its natural climate may have an
impact on the herbicidal effect. We have therefore decided to show the
change in damage as we distinguish between the species properties.

Figure 4.6 shows bar charts for the frequency of damages for the
species information. We notice that many more experiments were
conducted on weeds than crops. This may be partly due to prioritising
the development of non-selective herbicides. We note that for both
weeds and crops, many of the damages were recorded at zero, which
may indicate either the resilience of the particular plant or the lack of
potency in the herbicide. What is evident between the two graphs is a
very similar distribution exists for the damages. This may suggest the
similarity of herbicidal effect on both weeds and non-weeds. In total,
there were 54, 720 experiments on crops and 219, 416 on weeds.

In contrast, the effect of herbicides on monocots and dicots varies
quite noticeably. Based on the data, it appears there is a greater sus-
ceptibility to the herbicides for dicot species than for monocots. This
is shown by the increased number of zeros for monocot and also the
increase in the number of high damages for dicot. There were a total of
140, 220 experiments for monocot plants and 133, 916 for dicot plants.

In assessing the herbicidal effect on cold and warm plants, Figure 4.6
indicates plants in a warm environment have an increased sensitiv-
ity to the herbicidal effect. This is shown by the greater number of
damages recorded at 80% and above. There are a total of 107, 251 ex-
periments for cold climate plants and 166, 885 for warm climate plants.
We now wish to take this analysis further by studying the histograms
for all the possible combinations of the species characteristics.

Figure 4.7 illustrates the effect of the different combinations of
species characteristics to the damage. Monocot plants in a warm
environment appear to be more sensitive to herbicidal effects than in
a cold environment.

4.2 compound effect on damage

We now observe the compound effect on the damage, whilst including
all species and rates of application in the analysis. We do this to gain
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Figure 4.6: Panels (a), (b), and (c) show damage rates for different species
characteristics weed, monocot, and warm respectively.
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Figure 4.7: Damage rates for different combinations of species characteristics.
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Figure 4.8: The frequency distribution of the observed damages for the two
most tested compounds in the EPS data.

insight into the potency of each compound. We illustrate the effect of
the compounds through histograms in Figure 4.8. These compounds
have been selected since they were most frequently tested. As with
the analysis of species, we divide the groups into pre- and post-
emergence for both EPS and PPS. Taking compound 2641015529 for
example, we see that many of the recorded damages are greater than
80%, which illustrates the potency of this compound. This compound
was however most frequently tested in the four groups, suggesting this
may be the commercial standard. Compound 2528308950 on the other
hand appears to be lacking in herbicidal vigour, with only around
350 tests being scored at 100% and around 1, 000 being scored at 0%.
With other compounds, it appears they are either mostly successful or
quite the opposite, suggesting the experimental nature of herbicide
production.

4.2.1 Dicot vs monocot susceptibility

We wish to explore the effect of the species type, either monocot or
dicot, on the damage of the plant. In analysing all the data from the
glass-house experiments, Figure 4.9 illustrates that higher damages
are recorded for dicot species (red) than for monocots (blue). This
result aligns with prior belief that dicots are more susceptible to the
effect of herbicides. Table 4.2 shows the average damage for monocot
is consistently less than for dicot, thus supporting the statement that
dicots are presumed to be more susceptible to herbicides.

4.2.2 Toxicity of compounds

The compounds in our dataset are applied at rates between 1mg ha−1

and 1000mg ha−1. The maximum damage inflicted on a plant where
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Figure 4.9: Damages for dicot and monocot species. The horizontal axis are
indices of experiments

Rate (mg ha−1) 62.5 125 250 500 1000

Monocot 35 41 49 53 59

Dicot 53 67 72 75 72

Table 4.2: Average damage for dicot and monocot species for commonly
applied rates
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Figure 4.10: Average damage of compound for increasing average rate.

1mg ha−1 of compound is applied is 100%. This was achieved by
compound 2302716872. This is the only compound to score 100%
damage when applied at 1mg ha−1. There are 11 distinct compounds
which scored 90% damage when applied at 1mg ha−1.

On the other hand, the least damage inflicted on a plant when a
compound is applied at 1000mg ha−1 is 0%. In total, 356 compounds
have shown this lack of herbicidal vigour. This contrast illustrates the
range of toxicity of compounds prevalent within the data set. When
ranking the compounds later in the project, we will factor in this
toxicity, as compounds which demonstrate high damage at low doses
will be ranked highly.

Figure 4.10 illustrates the toxicity of compounds. We average the
compounds in the data set by toxicity and damage recorded. Each
point resembles a compound. We see that as the average dosage
increases, compounds on average perform less effective in the experi-
ments. The blue line is a least squares fit to the data, which illustrates
the downward association between average rate and average damage.

4.3 examination of the chemical space

In this section, we apply clustering methods to the herbicide data.
Clustering the compounds enables one to distinguish between certain
properties, such as average potency and rate applied. One may also
depict the chemical space in this way, by projecting the compounds
onto their principal components. We also cluster the species to identify
any patterns and similarities.
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4.3.1 Varying the number of clusters

Here, we present further cluster analysis of the data. We use the cluster
membership variable in-place of the compound id, resulting in fewer
parameters to optimise over. Other variables in the model are Rate, pre-
and -post emergence, warm, and if the plant was a weed or not. We
initially assigning the compounds to two clusters. The data are split
in a test-train ratio of 80 : 20. A decision tree is fit to the training data
using the R package rpart [89]. We then assess the models predictive
ability on the test set through the log score. We are interested in seeing
the decay of the model error as we increase the number of clusters.

Figure 4.11a shows the log-score error as we increase the number
of clusters the compounds can fall into. We observe a gradual decline
in error as we increase the number of clusters, as expected. However,
the error is minimised when the number of clusters is between 275-
360, where 360 is the maximum number of trees permitted in the R
package rpart. We also observe the variability in the error for fewer
clusters which levels out as we have 60 clusters. Figure 4.11b depicts
the times taken to fit the decision tree model. This is evidently increase
with more clusters. However, there appears to be a certain numbers of
clusters in the model where the time taken is considerably greater.

4.3.2 Hierarchical clustering of compounds

Hierarchical clustering is an unsupervised learning method used for
the clustering of compounds. This method aims to group items most
similar in nature through their cluster membership. Also know as
farthest neighbour clustering, the process begins by assigning each
element to its own cluster. The clusters are then sequentially combined
into larger clusters by finding the minimum distance between elements
of disjoint clusters. This is repeated until all elements are grouped into
a single cluster. Clusters within the chemical space are calculated by
identifying all pairwise Tanimoto distances, stored in a n×n matrix,
where n is the number of compounds. We then pass this matrix on to
the R function hclust which implements hierarchical clustering using
the ‘complete linkage’ method.

In determining the optimal number of clusters within a Euclidean
setting, we assess the within cluster sums of squares and the average
silhouette width. The within cluster sums of squares measures the
squared average distance of all the points within a cluster to the cluster
centroid. Within the chemical space, we instead use the Tanimoto
metric. The average silhouette method determines how well each
object lies within each cluster and measures the level of confidence
in determining the clustering of the data [81]. The closer the value
is to one, the better the samples have been clustered. The closer the
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Figure 4.11: Panel (a) shows log scores of a decision tree model when in-
creasing the number of clusters. A least squares line of best fit is
provided. Panel (b) Times taken to fit decision tree modes while
increasing cluster membership



74 application to syngenta’s data

value is to −1, the greater the misclassification of the clustering is. The
silhouette width is defined to be

S(i) =
bi − ai

max(bi,ai)
,

ai =
1

ni

∑
j∈Ci

dist(i, j),

bi = min
i/∈Ck

∑
j∈Ck

dist(i, j)
nk

where ai is the average distance between i and all other observations
in the same cluster, bi is the minimum average distance between obser-
vations at the other clusters, Ci is the cluster containing observation i,
dist(i, j) is the Tanimoto distance between observations i and j, and
nc is the cardinality of cluster C, i. e., the number of samples in the
cluster.

To determine the optimal number of clusters for the data, we refer
to the dendrogram, scree plot, and silhouette width demonstrated
in Figure 4.12, Figure 4.13a and Figure 4.13b respectively. Using the
dendrogram, we select the optimal number of clusters when there
exists the greatest horizontal split with the greatest drop in height.
For the scree-plot, we select the number of clusters using the elbow
method, i. e., when levelling off occurs.

The dendrogram in Figure 4.12 illustrates optimal separation of the
compounds being two clusters. Figure 4.13a and Figure 4.13b also
show the optimal number of clusters is two. We will therefore continue
our analysis using two clusters.

Having assigned the compounds to two clusters, we find the cluster
sizes are 254 and 529. Using the compounds from each two clusters, we
find the average damage on the logit-scale, as well as the average rate
applied. The average damages were −2.42 and −1.44, with average
rates 365 and 281 respectively. Based on this information, it appears the
potency of the second cluster is greater than the first, since the average
rate of application is lower, and the average damage is higher. To
reiterate, 50% damage equates to 0 damage on the logit-transformed
scale. Interestingly, 19 compounds from cluster one were present in
PPS, which amounts to 17% of the compounds. One the other hand,
281 compounds from cluster two progressed to PPS, which amounts to
44%. This indicates that the second cluster is grouped by herbicidal
potency.

4.3.2.1 Hierarchical clustering of species

Overall there is information on 49 species of plant. The variables used
to describe species are weed, monocot, and warm. each species is
characterised by having at least one of these traits. That means there
are 3! = 6 possible combinations of characteristics a plant can have.
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Figure 4.12: Dendrogram depicting two clusters as being optimal using hier-
archical clustering
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Figure 4.13: Panel (a) shows the total within-cluster sum of squared distances
against the number of clusters. Panel (b) shows the average
silhouette width against the number of clusters.
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Figure 4.14: Hierarchical clustering according to the 7 different species of
crop

The number of clusters should be less than the possible number of
configurations of the species characteristics.

Upon inspection of the data, there are 15 species of plant used in EPS

whereas there are 43 species in PPS. Species 41 was the only species to
appear in EPS and not PPS. This means there were 29 new species used
in PPS.

Using complete linkage hierarchical clustering, we group the species
into 6 clusters and assess both the average damage and rate for each
cluster. We make use of the full dataset in our analysis. From Fig-
ure 4.14, it is not so clear the distinction between species according to
their damages.

4.3.2.2 Principal component analysis for compounds

Principal component analysis may be used to identify lower-dimensional
representations of the chemical space. This is performed by projecting
the compound onto their first two principal components, for example.

Figure 4.15 shows the first two principal components with each
compound plotted according to their cluster membership, see Sec-
tion 4.3. The first two components account for approximately 26% of
the explained variation in the fingerprints. We see that the compounds
within first cluster share similar properties, as indicated by the blue
confidence ellipse. The compounds from the second cluster present
greater variation and may be the more experimental compounds. The
two outlying compounds in panel (a) have identical testing condi-
tions and are both tested 36 times. Their average damages are 28.8%
and 48.0%, which is lower than the overall average across all com-
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Figure 4.15: Panel (a) shows the first two principal components plotted across
the full range of the compounds in the EPS dataset, and are
divided into two clusters. Confidence ellipses are plotted to one
standard deviation’s width. Panel (b) shows (a) zoomed in to
distinguish the clusters.
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pound, that being 55%. This may inform us that one or both of the
components are a contrast of potent and inactive compounds.

4.4 gp regression model

We apply both a regression model as well as a classification model
to the glasshouse data. The classification model is applied due to the
novelty of this approach and that the damages from the experiments
are naturally classes, so a classification model is preferred.

4.4.1 Regression results

We now present the parameters and predictive performance for the
GP regression model. We assume the following relationship

y = X⊤β+ Pu+ ε, (4.1)

u ∼ Nm(0,σ2R),

ε(x) ∼ N(0, τ2I),

where y ∈ Rn are the logit-transformed damages and the extremes
of 0 and 100 have been mapped to 1 and 99 respectively to eliminate
singularities. This, however, is an arbitrary choice,and other methods
of scaling are possible. In addition, X is the design matrix accounting
for the fixed effects, β are regressor effects, P is the indicator matrix
mapping the vector of unique random effects u ∈ Rm to their location
in the dataset, and ε is the residual error. The continuous covariate is
scaled using the log transformation, having divided the variable by
the maximum value of 1000. This helps to ensure numerical stability.
The dichotomous variables in the data are weed, monocot, and warm.
The parameters in the GP regression model are shown in Table 4.4
and the kernels used to calculate R are shown in Table 3.1, all being a
function of Tanimoto distances.

From Table 4.3, we can identify the relationships between the pre-
dictors and the levels of damage from the glasshouse experiments. We
see the that the effect of rate is positive, meaning an increase in rate
by 0.01 leads to a unit increase of damage on the logit transformed
scale. The effect of monocot is negative, meaning as we go from a
dicot to a monocot, the damage decreases. The scale parameter is
0.46 for the exponential model and 0.47 for the Gaussian model. We
also observe that the residual variation when applying Tanimoto co-
variance is much higher. This indicates less flexibility in comparison
to the models accounting for the scale parameter. We also observe
that the time taken to optimise the likelihood is much greater for the
exponential and Gaussian models.



80 application to syngenta’s data

θ independent exponential Gaussian Tanimoto

β0 −0.55 −0.23 −0.20 0.05

β1 0.001 0.001 0.001 0.001

β2 −1.91 −1.91 −1.91 −1.91

β3 0.37 0.37 0.37 0.37

σ2 1.68 4.74 4.66 17.31

ϕ - 0.46 0.47 -

λ 0.45 0.01 0.13 0.13

Time(s) 0.28 2.16 2.07 0.75

Table 4.3: Parameter estimates from the GP regression models.

Parameter Description

β0 Intercept

β1 Log(Rate/1000)

β2 Monocot, Dicot = 0

β3 Warm, Cold = 0

σ2 compound variance

ϕ length scale

λ model variance to compound variance, τ2

σ2

t time (seconds) to optimise the likelihood

Table 4.4: Parameters used within the GP regression model. The categorical
predictors indicated are referred to when the dummy takes the
value 1.
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Figure 4.16: Variogram capturing spatial dependence of the Tanimoto simi-
larity.

4.4.2 Spatial dependence and Tanimoto similarity

Based on the methodology described in Section 3.2, we now illus-
trate the results the findings results of the variogram. In Figure 4.16,
we show the Tanimoto distance plotted against the variogram. The
residuals are based on the GP regression model fit.

We create 20 evenly spaced intervals (bins) in our analysis, of which
the 591 distinct Tanimoto similarities will be assigned to. Figure 4.16

shows there is some correlation in the Tanimoto similarity, i. e., the
further distances become, the less spatial dependence is exhibited. This
validates the spatial dependence of Tanimoto metric. This however is
purely an exploratory experiment as it does not take into account the
effect of the other variables.

4.5 classification model

In this section, we present our analysis to the glasshouse data. Since
the damages are presented in classes, it is natural to develop a classi-
fication model. Before conducting analysis, the number of classes in
the response variable are reduced from from 11 to 4 classes according
to the following ranges [0 : 0− 20, 1 : 30− 50, 2 : 60− 80, 3 : 90− 100]%.
This was based on a suggestion by the computational chemists at
Syngenta to help reduce bias due to human factors. We then fitted
the proposed GP model with various link and correlation functions as
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Parameter Description

G(γj) Link function

krs Correlation function

α̂1 Intercept 1

α̂2 Intercept 2

α̂3 Intercept 3

β̂1 Log(Rate/1000)

β̂2 Stage, Pre-emergence = 0

β̂3 Warm, Cold = 0

α̂4 Monocot, Dicot = 0

ϕ̂ GP scale parameter

σ̂ GP variance

Table 4.5: Parameters used within the GP classification model. The categorical
predictors indicated are referred to when the dummy takes the
value 1.

shown in Table 4.6 as well as a random forest model. We ensure the in-
tercepts of the models are strictly increasing by defining θ0 = α0 and
αk = αk−1 exp θk, where k ∈ {1, . . . , 3}. A high performance computer
was used for carrying out the computations.

In estimating the model parameters, we fit the 16 GP models to the
full dataset consisting of 35,740 distinct experiments. The parameter
estimates of each model are presented in Table 4.6 along with their
definitions given in Table 4.5. The standard errors of the parameters
are presented inTable 4.7 From Table 4.6, we observe the signs of the
parameters for the effects of rate, warm, and monocot are negative.
Due to the way the model is defined, we can infer that increasing the
rate of application in an experiment increases the odds of the damage
falling within a higher class. We also infer that the warm variety of
crops and those that are monocots are more susceptible to damage than
dicots and those that are accustomed to a colder environment. We also
observe that the model with Tanimoto covariance has a considerably
higher variance parameter than the competing models. This is due to
the absence of the scale parameter which controls for the correlation.

In assessing the classification accuracy of each model, we split the
data into training and test sets and implement ten-fold cross vali-
dation. We take a random sample of 80% from each compound to
form the training set and the remaining 20% are used within the test
set. We implement a random forest model for further comparison,
where the features of the fingerprints are used as predictor variables.
The random forest was tuned using a grid search method. The pa-
rameters after tuning were found to be mtry = 30, ntree = 450, and
nodesize = 29. The results of the classification performances, as as-



4.5 classification model 83

G
(γ

j )
k
r
s

α̂
1

α̂
2

α̂
3

β̂
1

β̂
2

β̂
3

α̂
4

ϕ̂
σ̂

logit
independent

-
1.

4
1
5

-
0.

4
1
8

1.
4
7
1

-
0.

9
1.

9
3
8

-
1.

1
1
3

-
1.

0
7
6

9.
3
2

logit
exponential

-
1.

4
1
5

-
0.

4
1
8

1.
4
7
1

-
0.

9
1.

9
3
8

-
1.

1
1
3

-
1.

0
7
6

0
9.

3
2

logit
G

aussian
-
1.

4
1
5

-
0.

4
1
8

1.
4
7
1

-
0.

9
1.

9
3
8

-
1.

1
1
3

-
1.

0
7
6

0
9.

3
1
9

logit
Tanim

oto
-
1.

0
1
1

-
0.

0
1
4

1.
8
7
4

-
0.

9
1.

9
3
8

-
1.

1
1
3

-
1.

0
7
5

3
6.

7
0
1

probit
independent

-
0.

7
9
4

-
0.

2
3

0.
8
4

-
0.

4
9
8

1.
0
7
6

-
0.

6
1
9

-
0.

5
7
7

2.
9
7
6

probit
exponential

-
0.

5
5
6

0.
0
0
8

1.
0
7
8

-
0.

4
9
8

1.
0
7
7

-
0.

6
1
9

-
0.

5
7
7

0.
5
8
3

3.
6
4
6

probit
G

aussian
-
0.

6
3
2

-
0.

0
6
8

1.
0
0
2

-
0.

4
9
8

1.
0
7
7

-
0.

6
1
9

-
0.

5
7
7

0.
5
0
1

2.
9
7
3

probit
Tanim

oto
-
0.

9
6
7

-
0.

4
0
3

0.
6
6
7

-
0.

4
9
9

1.
0
7
7

-
0.

6
1
9

-
0.

5
7
7

1
1.

7
2
8

log-log
independent

-
0.

2
1
5

0.
3
3
6

1.
4
3
5

-
0.

4
6
4

0.
9
1
4

-
0.

5
8
9

-
0.

4
6
7

3.
5
9
1

log-log
exponential

0.
0
7

0.
6
2
1

1.
7
2

-
0.

4
6
4

0.
9
1
5

-
0.

5
8
8

-
0.

4
6
7

0.
6
0
1

4.
4
6

log-log
G

aussian
-
0.

0
1
5

0.
5
3
5

1.
6
3
4

-
0.

4
6
4

0.
9
1
5

-
0.

5
8
8

-
0.

4
6
7

0.
5
0
5

3.
5
9
5

log-log
Tanim

oto
0.

2
2
2

0.
7
7
2

1.
8
7
1

-
0.

4
6
4

0.
9
1
5

-
0.

5
8
8

-
0.

4
6
6

1
3.

9
5
3

C
-log-log

independent
-
1.

5
1
1

-
0.

8
1
3

0.
4
6
3

-
0.

6
1.

4
4
5

-
0.

7
9
2

-
0.

7
7
7

4.
3
4
8

C
-log-log

exponential
-
1.

0
8
3

-
0.

3
8
8

0.
8
9
4

-
0.

6
0
7

1.
4
6
5

-
0.

8
0
4

-
0.

7
8
1

0.
5
6
5

5.
2
4
9

C
-log-log

G
aussian

-
1.

1
4
3

-
0.

4
4
9

0.
8
3
3

-
0.

6
0
5

1.
4
6

-
0.

8
0
1

-
0.

7
8
4

0.
4
9
3

4.
1
7
2

C
-log-log

Tanim
oto

-
1.

0
1
9

-
0.

3
2
5

0.
9
5
5

-
0.

6
0
6

1.
4
6
2

-
0.

8
0
2

-
0.

7
8

1
6.

5
1

Table 4.6: Parameters of the GP models fit to the herbicide testing data. α̂1, α̂2,
and α̂3 are the ordered intercepts, β̂1 = log(Rate/1000), β̂2= Stage,
β̂3= Warm, and β̂4=Monocot are the regressor variables, and σ̂2

and ϕ̂ are the variance and scale parameters.
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Table 4.7: Standard deviations of GP parameters obtained from bootstrapp-
ping the cross validation estimates
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G(γj) krs Spherical Log AIC Time (h)

C-log-log Gaussian −0.75913 0.74656 44,643.00 1.97

C-log-log independent −0.75910 0.74714 44,759.76 1.21

C-log-log exponential −0.75897 0.74860 44,647.45 2.06

probit Gaussian −0.75764 0.75149 44,828.16 2.13

probit independent −0.75764 0.75169 44,943.45 1.08

probit exponential −0.75750 0.75312 44,831.50 2.23

logit exponential −0.75691 0.76755 44,867.34 1.29

logit Gaussian −0.75691 0.76755 44,867.34 1.26

logit independent −0.75691 0.76755 44,865.34 1.14

C-log-log Tanimoto −0.75505 0.77549 44,766.58 1.88

probit Tanimoto −0.75443 0.77658 44,952.41 1.86

log-log Gaussian −0.74958 0.78669 46,602.51 2.35

log-log independent −0.74954 0.78708 46,718.09 1.51

log-log exponential −0.74927 0.78940 46,605.19 2.40

log-log Tanimoto −0.74407 0.82072 46,725.58 2.04

logit Tanimoto −0.74348 0.83215 44,875.88 1.77

RF −0.63530 0.02

Table 4.8: Comparison of the classification performances of the random forest
and GP models, ordered from highest to lowest in terms of their
scores. The AIC and the time taken to optimise the likelihood are
also given.

sessed through the log and spherical scores, as well as the models’ AIC,
are shown in Table 4.8. From Table 4.8 we see that the model with the
complementary log-log link and Gaussian covariance has the greatest
classification accuracy according to the log and spherical scores, and
has an optimisation time of 1.97 hours. The model with the lowest AIC
is the model with the probit link and Gaussian covariance. The model
with the lowest classification accuracy is the random forest model,
however, this has the greatest computational time of approximately
.02 hours. A log score is omitted for the random forest model since
forecasted probabilities contain 0, resulting in undefined values of the
score.

4.5.1 Ranking compounds

Having fit the models, we now rank the compounds according to their
predicted effect. We display the top 10 performing compounds based
ont heir predicted effect in Table 4.9. These effects are based on the
model with logit link and exponential covariance. We see in Table 4.9
that the compounds applied were tested in similar circumstances, i. e.,
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according to the recorded damage across all experiments, rate applied,
and number of experiments they appear in. According to our model,
the top performing compound is ID1692213733, with a predicted effect
of −8.01. This compound had a total of 38 active features within its
fingerprint. Within the glasshouse experiments, this compound had
an average damage of 95.4 across all experiments it was tested in, as
well an average rate of 155 on the natural scale. This compound was
tested in 24 experiments, somewhat less than many of the other top-
performing compounds. We see the commercial standard, compound
ID1530256782, is perhaps less effective as a herbicide, however, ranks
in third place according to our model. Since this was applied in 1656

experiments, we believe this to be the commercial standard. This
compound was applied at a much higher average rate of 443 across
all glasshouse experiments, indicating this has less toxicity than the
top performing compound.

Compound Effect Damage Rate N

ID1692213733 −8.01 95.4 155.0 24

ID20175182147 −7.90 97.5 436.7 36

ID1530256782 −7.38 92.1 443.0 1656

ID0536275554 −7.18 94.4 436.7 36

ID0445671389 −7.17 95.0 436.7 36

ID0056683832 −7.14 95.3 436.7 36

ID2003280057 −7.13 94.2 436.7 36

ID0033643583 −6.67 93.9 436.7 36

ID1277426043 −6.65 94.2 436.7 36

ID0291647191 −6.63 94.2 436.7 36

Table 4.9: 10 best predicted compounds from estimated effects using the logit
link with exponential covariance. Summary information on their
glasshouse experiments is also provided.

Table 4.10 shows the worst performing compounds according to our
model. Compound ID2035763344 has the worst effect of 4.2. The aver-
age damage across all experiments is 1.7%, indicating the compounds
lack of herbicidal potency. The average rate is also very high, with the
mean average rate across all experiments being 583.3. Rate in this case
is the rate of application of a herbicide in its raw form. This compound
was tested in 36 experiment in total. Compound ID0228086210 had
an average damage of 0%. This compound had a total of 23 active
features within its fingerprint. Since damages can only be positive, that
means this compound scored 0% across all experiments, indicating
the lack of any herbicidal efficacy. We observe that no commercial stan-
dard appears in the 10 worst predicted compounds. Between the top
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performing compound ID1692213733 and the compound which scored
0%, ID0228086210, there were only two fingerprints in common.

Compound Effect Damage Rate N

ID2035763344 4.20 1.7 583.3 36

ID2006139222 4.19 4.7 583.3 36

ID1141507261 4.12 1.4 436.7 36

ID1496344124 4.05 1.9 583.3 36

ID0115790621 4.04 2.5 583.3 36

ID2833335762 4.03 0.8 583.3 36

ID2678094703 4.03 1.1 583.3 36

ID0301843169 4.00 2.2 436.7 36

ID0228086210 3.99 0.0 436.7 36

ID1910205245 3.99 2.8 436.7 36

Table 4.10: 10 worst predicted compounds, logit link with exponential covari-
ance. Summary information on their glasshouse experiments is
also provided.

To illustrate the top performing and worst performing compounds,
we illustrate their predicted effect, for an arbitrary glasshouse ex-
periment, when varying the rate of application. This is shown in
Figure 4.17. We see that from the lowest rate of application, the best
performing compound starts in class 3 and the worst performing
compound starts in the lowest class of 1. As we increase the rate for
both classes, the probability of the top performing compound being
in class 3 increases, whereas the probability of the worst performing
compound of being in class 1 decreases. This illustrates the toxicity,
and lack of, for both these compounds.

4.5.2 Discovering potent compounds

We next focus on searching the chemical space to identify potent
compounds and present the results from GA when applied to the
herbicidal fingerprints. The predicted effects from the 16 GP models
are used as target variables and the features within the fingerprints as
predictors. The GA were tuned using a grid search method over the
mutation and crossover rates. The GA was run using 200 iterations,
with the results displayed in Table 4.11. ûGA and SD(ûGA) give the
predicted effect from the optimal solution along with its standard error,
and NGA gives the number of features within the proposed solution.
ûGP and SD(ûGP) give the best solution and its standard error found
by the corresponding GP model. Pr(crossover) and Pr(mutation) are
the tuned crossover and mutation rates associated with the proposed
solution.
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Table 4.11: Comparison of GA solutions with the estimated effects from 16

GP models used as the target variable. Pr(cr) is the crossover rate
and Pr(mt) is the mutation rate.
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best and worst compounds with varying rate. Predictions are
based on the model with logit link function and exponential
covariance.

We observe in Table 4.11 the model which proposes the greatest
performing solution is the model with logit link and Tanimoto co-
variance, with ûGA = −12.24 which is considerably greater than the
corresponding GP solution, ûGP = −7.31. This GA solution, however,
has the most uncertainty, with SD(ûGA) = 5.94, as well as the least
amount of features retained, with NGA = 33. We observe the models
with a zero scale parameter are unable to predict the effect of the
proposed solutions.



90 application to syngenta’s data

0 20 40 60 80 100

0
2

4
6

8

Generation

F
itn

es
s 

va
lu

e

Best
Mean
Median

Figure 4.18: GA plot depicting fitness value (positive compound effect)
against the surviving generations



5
C O N C L U S I O N A N D F U T U R E W O R K

The core aims of this project were to incorporate correlation within the
chemical space within a statistical model through the use of GPs. Our
hypothesis is that compounds which live close within the chemical
space will exhibit similar herbicidal properties. In our application, we
defined distances in the chemical space through the Tanimoto distance,
a proper metric on the chemical space. Until now, GLM have not been
able to account for correlated random effects, a feature attributed to
GPs. Therefore, in our application, existing approaches would treat the
effects of herbicides as independent. Our belief is that by incorporating
correlated random effects through GPs, we can improve predictive
performance. This could be achieved within a classification setting.
A notable contribution of the project is that by using information on
the seen compounds, we are able to make predictions on the effect
and damages of unseen compounds, which is not yet possible with
current models. In addition to being able to predict the effect of the
compounds, we can predict the uncertainty of their effect.

To develop the classification model we employed the Laplace ap-
proximation to provide a normal approximate the likelihood. Another
contribution of this project is the use of the Laplace approximation for
estimation and prediction of ordinal data. This has yet to be applied
within the literature.

When developing the GP models, we implemented several covari-
ances, including the Tanimoto covariance. This in itself is a novel
approach to GPs and can be regarded as another contribution of this
project. In addition to the covariances, we introduced several link
functions, including symmetrical and non-symmetrical link functions.
These models were compared with the random forest.

Having developed a model in a classification setting, we developed
a ranking system for the compounds. This was based on the pre-
dicted effect from the GP model. We demonstrated the top performing
compounds according to our model, as well as the worst performing
compounds.

We also conducted a simulation study, simulating data from a GP

model an using all models under consideration to see if the true model
could be identified. Our simulation study confirmed the suitability of
proper scoring rules as a means of assessing model performance. We
showed the best performing model was identified as the true model
through proper scoring rules, hence validating this metric’s suitability
for assessing the classification model performance.
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92 conclusion and future work

This project also implemented several optimisation methods for the
facilitation of drug-discovery. This was performed by using the effects
estimated from the GP model as the target variable and the fingerprint
features as covariates. We showed that GAs could propose compounds
of the highest efficacy.

5.1 limitations and future work

The issue of the lack of data accounting for the middle class damages
meant the GP model could not predict well for certain outcomes. One
possible remedy would be to take interim readings after the initial
application so that the progress of the compound is recorded. In-turn,
this may provide an indication the the speed of action, which could
then be accounted for within the model to improve fit. This would also
mean that the damage classes of the GP model would not have to be
reduced to fewer classes, thereby providing a more accurate estimate
of the compounds performance in the middle class damages.

One may also critique the manner in which the damages are recorded
by the biologists at Syngenta. One could argue that the damages as-
signed by the biologists at Syngenta have some variability since not all
opinions will consistent. A colour code is given to eliminate this varia-
tion, however not all damage is presented in the same way, as some
show lack of pigment, while others show a stunt in growth or even
necrosis. To eliminate the variation from the biologist’s perception of
damage, an image classifier could be trained to consistently rank the
class of damage resulting from a glasshouse experiment. This would
require many pictures of damages and have the biologists manually
label their opinion of what constitutes the class damage. Given enough
data, and variability in the data, are provided, this could provide a
more accurate, and more cost effective approach.

A notable criticism of our methodology is how we encode the
molecule into the mathematical expression of a fingerprint. When
geometry of a compound is neglected, only the atom connectivity
information is retained. Modelling chemicals as graphs therefore sig-
nificantly reduces the complexity of the compound [49].

Possible directions for future work may include incorporating 3D
molecular structures, as well as 4D structures, to capture more in-
formation about the compounds location and construct within the
chemical space. When working with 2D representations, information
on the compounds structure is neglected, such as positional arguments.
This information can be captured with the distance measure to gain a
more accurate indication of how close chemical compounds are with
each other within the chemical space.

Another criticism of our methodology is within the use of the
Tanimoto covariance. Since this lacks the scale parameter that adjusts
for the correlation in the data, the fit of the model is reduced. To
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remedy this, one may incorporate a parameter in the exponent whilst
ensuring the positive definiteness is retained.

Further analysis could incorporate other binary metrics, such as the
cosine similarity or the dice coefficient within the covariance of GPs to
assess the improvement of model predictions. One may also wish to
explore other link functions.

GPs don’t work well for large data due to the presence of large
matrices. This is due to needing the inversion and determinant of
these matrices. Some of the methods to deal with this issue have
been proposed in this thesis. A sparse matrix based on the Tanimoto
similarity can be constructed by reducing the number of features in the
fingerprints, hence making compounds more dissimilar and forcing
some of the similarities to 0.

The GP model facilitates the application of Bayesian optimisation
for exploration and exploitation of the chemical space. Bayesian opti-
misation can be used to propose new compounds to test in sequential
experiments. The idea is to choose to test the compound that will
result in the largest expected improvement towards identifying the
optimal compound. Optimising the expected improvement can be
done using SA or GA as demonstrated.
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