
        

University of Bath

PHD

Errors, stop codons, and the evolution of genomes

(Alternative Format Thesis)

Ho, Alex

Award date:
2023

Awarding institution:
University of Bath

Link to publication

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

Copyright of this thesis rests with the author. Access is subject to the above licence, if given. If no licence is specified above,
original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC-ND 4.0) Licence (https://creativecommons.org/licenses/by-nc-nd/4.0/). Any third-party copyright
material present remains the property of its respective owner(s) and is licensed under its existing terms.

Take down policy
If you consider content within Bath's Research Portal to be in breach of UK law, please contact: openaccess@bath.ac.uk with the details.
Your claim will be investigated and, where appropriate, the item will be removed from public view as soon as possible.

Download date: 04. May. 2023

https://researchportal.bath.ac.uk/en/studentTheses/6b5169a6-d908-48bc-b883-0602235382cd


 

 

 

Errors, stop codons, and the evolution of genomes 
Alexander Thomas Ho 

A thesis submitted for the degree of Doctor of Philosophy 

University of Bath 

Department of Biology and Biochemistry 

March 2022 

 

 

COPYRIGHT: 

Attention is drawn to the fact that copyright of this thesis rests with the author. A copy 

of this thesis has been supplied on condition that anyone who consults it is understood 

to recognise that its copyright rests with the author and that they must not copy it or 

use material from it except as permitted by law or with the consent of the author. 

 

The material presented here for examination for the award of a higher degree by 

research has not been incorporated into a submission for another degree. I am the 

author of this thesis, and the work described therein was carried out by myself 

personally, with the exceptions of the two appendices containing work from 

collaborators. For these manuscripts, contribution details have been included. 

 

SIGNED: 

 

 

 

 



Acknowledgements 

 

Thank you, Laurence, for your support and mentorship throughout my undergraduate 

studies and PhD. Thank you for believing in me and thank you for providing the 

perfect environment for me to develop as a scientist. I have learned so much from our 

thought-provoking conversations. 

 

To my colleagues in the lab – Alan, Atahualpa, Dana, Liam, Lucy, Rosina and Will – 

thank you for making the last ~3.5 years thoroughly enjoyable. I’ll miss the lunches, 

the laughs, and the drunken dancing at conferences. To Christine, Laura, Bethan, Greg, 

and Samir – thank you for those SARS-CoV-2 collaborations that kept me busy (but 

smiling) during the early months of the pandemic. 

 

To my Mum and Dad, as always, thank you for your support. Undertaking a PhD was 

a step into the unknown and I couldn’t have done it without you. Thanks also to my 

girlfriend Danielle, for supporting me through the final stretch. 

 

Finally, thank you to the European Research Council for providing the funding that 

supported all my work. 

 

 



Table of Contents 

 

Summary         4 

Abbreviations        5 

Chapter 1: Introduction       6 

Chapter 2: In eubacteria, unlike eukaryotes, there is no evidence for  

selection favouring fail-safe 3’ additional stop codons   24 

 Published manuscript        26 

 Supplementary information      59 

Chapter 3: Effective population size predicts local rates but not local  

mitigation of read-through errors      89 

 Published manuscript       91 

 Supplementary information      111 

Chapter 4: Variation in release factor abundance is not needed to  

explain trends in bacterial stop codon usage     121 

 Published manuscript       123 

 Supplementary information      135 

Chapter 5: Sequence conservation need not imply purifying selection:  

evidence from mammalian stop codon usage     140 

 Unpublished manuscript      142 

 Supplementary information      197 

Chapter 6: (Discussion part 1) Stop codon usage as a window into  

genome evolution: mutation, selection, biased gene conversion and  

the TAG paradox        211 

 Unpublished manuscript      213 

Chapter 7: Discussion part 2       245 

Appendix 1: Evidence for strong mutation bias toward, and selection  

against, U content in SARS-CoV-2: implications for vaccine design 270 

Appendix 2: Causes and consequences of purifying selection on  

SARS-CoV-2         289 

 



 4 

Summary 
 

The canonical view of protein evolution is one where selection acts upon the final 

product of gene expression. As gene expression is extremely prone to error, and these 

errors are deleterious, it is however becoming increasingly apparent that selection acts 

far earlier to oppose erroneous protein synthesis. Genomes may evolve to become 

more error-proof by preventing their occurrence or by mitigating their impacts. In this 

thesis I seek to resolve several questions regarding error control using translational 

read-through (TR) as an exemplar. TR occurs when the stop codon of an mRNA 

transcript is missed by the termination machinery during translation, leading to the 

continuation of translation into the 3’ UTR and potential generation of C-terminally 

extended proteins. TR prevention and mitigation can be achieved by selection for stop 

codons. TR rate can be reduced by using the least error-prone stop codon, TAA, to 

terminate translation while TR may theoretically be mitigated by 3’ in-frame 

additional stop codons (ASCs) which could act as a fail-safe mechanism. In Chapter 

2, I ask how often we see evidence for error mitigation strategies in response to TR. I 

present evidence for ASC enrichment in some, not all, unicellular eukaryotes but no 

such evidence in multicellular species or bacteria. I note that the strength of selection 

for TR mitigation should depend on the TR rate, thus in Chapter 3 I investigate how 

ASCs and TAA stop codons co-evolve, asking whether there is a preferred 

evolutionary route for error handling. I observe that TAA enrichment significantly 

correlates with effective population size (Ne), while ASC enrichment does not. As 

nearly neutral theory predicts that selection is most efficient in species with high Ne, 

from these results I infer that error prevention might be optimal. If TAA is positively 

selected to prevent TR, how then might we explain variation in the usage of the non-

optimal stops, TGA and TAG? In Chapter 4, I re-examine the long-standing 

hypothesis that bacterial stop codon usage adapts to the cellular abundance of RF1 and 

RF2 release factors, finding evidence to the contrary. I note also that TGA is 

enigmatically highly abundant and highly conserved in mammals despite its high 

intrinsic TR rate. This, however, I find in Chapter 5 to be better explained by the action 

of GC-biased gene conversion than selection for TGA stop codons or mutation bias. 

All the above I frame within the wider literature in a review article presented as 

“discussion part 1” in Chapter 6. During the pandemic I also contributed to two papers 

concerning the evolution of SARS-CoV-2, which are presented as appendices.
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Abbreviations  

 

A     Adenine 
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Gene expression is inherently prone to error 

 

The canonical view of protein evolution is one where selection acts upon the final 

product of gene expression. How well does a protein do its job within the cell? How 

well does an enzyme’s active site fit to its substrate? Under this framework, one 

expects selection to merely discriminate between what might be described as “good” 

protein and “bad” protein. It is, however, becoming increasingly apparent that the 

multi-step process of gene expression is extremely prone to errors (Drummond and 

Wilke 2009). A newer view considers that selection acts much earlier in a protein’s 

lifecycle to oppose erroneous protein synthesis (Warnecke and Hurst 2011).  

 

At all stages from transcription to translation to post-translational modifications, 

molecular errors are ubiquitous (Drummond and Wilke 2009). These molecular errors 

do not refer to mutations or any other heritable error that might influence the fitness 

of the next generation, but to non-heritable “phenotypic” errors that impact only the 

fitness of the cell where gene expression is taking place. During transcription, such 

errors include nucleotide misincorporations by RNA polymerase that may lead to 

reduced functionality and expression of the resultant protein (Parker 1989; Ogle and 

Ramakrishnan 2005; Drummond and Wilke 2009; Wong, et al. 2018). During splicing, 

phenotypic errors include intron retention that leads to the inclusion of uneconomical 

sequence in mature mRNA (Wilhelm, et al. 2008; Drummond and Wilke 2009). 

During translation, phenotypic errors include accidental ribosomal slippage, where the 

ribosome skips one or more nucleotides and resumes translation in an incorrect reading 

frame (Drummond and Wilke 2009; Seligmann 2019),  amino acid misincorporations 

(sometimes called mistranslations) (Parker 1989; Ogle and Ramakrishnan 2005), and 

translational read-through (TR), where translation fails to terminate at the stop codon 

of an mRNA transcript and thus continues into the 3’ UTR (Doronina and Brown 

2006; Namy and Rousset 2010; Rodnina 2018). 

 

The rate of any given phenotypic error varies according to the molecular machinery 

required at that stage of gene expression. Estimated from the number of mistakes 

present in end-product RNAs, overall transcription fidelity has an error rate of 

approximately 1 in 1,000 to 1 in 100,000 across prokaryotes and eukaryotes (James, 

et al. 2017), with misincorporations introduced by mistakes RNA polymerase but 
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often corrected by proof-reading machinery. In humans, from quantitative PCR 

against exon-exon boundaries, it is estimated that erroneous intron retention occurs at 

a rate of ~5.7×10−6 to 2.3×10−2 per correctly spliced intron (Fox-Walsh and Hertel 

2009). Across the tree of life, erroneous ribosomal slippage occurs approximately once 

per 10,000 to 100,000 codons (Parker 1989; Kurland 1992), thought to be promoted 

by slippery sequences that can take the form of A|AAB|BBC where AAA and BBB 

are identical nucleotides and C is any other nucleotide (Brierley, et al. 1992; Licznar, 

et al. 2003; Napthine, et al. 2003). Phenotypic rates such as these are typically orders 

of magnitude higher than the spontaneous mutation rate. Direct sequencing in humans 

predicts a mutation rate of ~1.1-1.4 x 10-8 per bp per generation depending on the 

genomic region (Lynch 2010; Kong, et al. 2012; Milholland, et al. 2017; Rodriguez-

Galindo, et al. 2020), while bacterial mutation rates typically range from ~1 x 10-7 to 

~1 x 10-9 (Westra, et al. 2017; Chevallereau, et al. 2019), but have been estimated as 

low as 2.3 × 10−11 per bp per generation (Drake 1991). In certain clinical and natural 

environments bacterial mutations can occur at ~100 times greater frequency (LeClerc, 

et al. 1996; Matic, et al. 1997; Oliver, et al. 2000) but even these rates are dwarfed by 

those of phenotypic errors. 

 

Are phenotypic errors truly deleterious?  

 

Whether selection should oppose phenotypic errors or not depends upon their fitness 

effects. Theoretically, phenotypic errors need not be deleterious. Just as mutations 

introduce the genetic novelty for selection to act upon, phenotypic errors could also 

place new coding sequences and protein domains in the view of selection (Masel 2006; 

Whitehead, et al. 2008). Nucleotide misincorporations might mirror de novo mutations 

by creating a mRNA transcript containing a single base change. If retained introns do 

not contain a premature termination codon (PTC) (Ge and Porse 2014), they may 

activate or repress translation initiation if located in the 5’ UTR by introducing 

upstream open reading frames (ORFs) (Tahmasebi, et al. 2016), introduce cis-

elements that affect mRNA stability or translational efficiency if located in the 3’ UTR 

(Sun, et al. 2010), or contribute amino acids to the protein product if located in coding 

sequence without disrupting the reading frame (Jacob and Smith 2017). Perhaps the 

largest impact on coding information can result from ribosomal slippage, where 

reading frame disruption may have profound effects on amino acid composition, not 
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least when the frameshift occurs at the 5’ end (Ketteler 2012). Indeed, programmed 

frameshifting is commonly utilised in viruses (Maia, et al. 1996; Brierley and Dos 

Ramos 2006; Dulude, et al. 2006; Ketteler 2012), and less commonly in bacteria 

(Craigen and Caskey 1986; Gupta, et al. 2013) and eukaryotes (Clark, et al. 2007; 

Baranov, et al. 2011), to maximise the coding potential of their genomes. One could 

argue that phenotypic errors provide even more selective utility than de novo 

mutations given much more “novelty” may be tested at one time. 

 

Whilst the results of phenotypic error can sometimes be functional, we can be 

confident that most are deleterious. One clear indicator of this is that quality control 

pathways to ensure successful gene expression are abundant across the tree of life. 

Both bacteria and eukaryotes, for example, have evolved pathways to degrade 

transcripts containing PTCs (Belasco 2010). Eukaryotes selectively degrade PTC-

containing mRNAs via nonsense mediated decay (NMD) after recognising irregular 

exon junctions downstream of the stop codon (Maquat and Carmichael 2001; Belasco 

2010; Lykke-Andersen and Jensen 2015). Bacterial genes do not contain introns and 

thus typical NMD is not possible, but their PTC-containing transcripts are nevertheless 

rapidly degraded (Nilsson, et al. 1987), possibly via internal cleavage by RNase E 

(Arnold, et al. 1998; Baker and Mackie 2003). To protect against translational read-

through, both groups also contain non-stop decay (NSD) pathways that detect 

transcripts lacking a stop codon and degrade them using 3’ endonucleases (van Hoof, 

et al. 2002; Richards, et al. 2006). At the protein level, bacteria and eukaryotes possess 

a wide repertoire of chaperone proteins that function to ensure nascent proteins fold 

correctly, are protected from heat shock, and do not aggregate (see Saibil 2013 for 

review). What would be the need for such diverse quality control if phenotypic errors 

were not deleterious?  

 

More evidence of evolution to minimise phenotypic errors can be found in molecular 

evolution studies, many of which come from the lab of Jianzhi Zhang. The hypothesis 

that phenotypic errors are deleterious predicts that errors should be minimised in 

highly expressed genes, the fitness costs of erroneous gene expression being a product 

of the error rate multiplied by the expression level. Zhang hence predicts that the 

sequence evolution of highly expressed genes is constrained to minimise errors, 

observing for example that transcriptional start site diversity (Xu, et al. 2019), 
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polyadenylation diversity (Xu and Zhang 2018), and the presence of translational 

read-through motifs (Li and Zhang 2019) all covary negatively with expression. Non-

optimal transcription initiations, polyadenylations, and translation terminations are 

thus most-often deleterious and purged by purifying selection. Indeed, Zhang and 

colleagues find several more similar examples (Xu and Zhang 2014; Liu and Zhang 

2018a, b; Jiang and Zhang 2019; Xu and Zhang 2020, 2021). 

 

Error handling at the sequence level is not only controlled by purifying selection, but 

by positive selection for error proofing motifs. Mistranslations may be prevented by 

selection for optimal codon usage, which improves translational accuracy and lowers 

the rate of amino acid misincorporations (Akashi 1994; Powell and Moriyama 1997; 

Stoletzki and Eyre-Walker 2007; Punde, et al. 2019). To mitigate the impacts of 

ribosomal slippage, out-of-frame stop codons (OSCs) are under selection downstream 

of “slippery” codons to terminate translation should the ribosome find itself translating 

sequence in the +1-reading frame (Seligmann and Pollock 2004; Abrahams and Hurst 

2018; Seligmann 2019). It is probably for this error proofing purpose that adenine is 

enriched at the +4-nucleotide site at the start of bacterial genes, ATGA motifs 

containing the ATG start codon with a TGA stop codon hidden in the +1 reading frame 

for the immediate cessation of erroneous protein synthesis should it be necessary 

(Abrahams and Hurst 2017). In-frame additional stop codons (ASCs) may also be 

under selection in eukaryotic (Liang, et al. 2005; Adachi and Cavalcanti 2009; 

Fleming and Cavalcanti 2019), but possibly not bacterial (Major, et al. 2002; 

Korkmaz, et al. 2014), 3’ UTR sequences to act as a fail-safe mechanism that protects 

against translational read-through by providing a second opportunity for translation to 

terminate.  

 

Error proofing selection during molecular evolution works in tandem with cellular 

quality control to minimise the consequences of gene expression error. For example, 

in genomic locations that are invisible to NMD, such as the coding sequence of 

intronless genes in mammals (Zhang, et al. 1998; Maquat and Li 2001; Brocke, et al. 

2002) and the final exon of any coding sequence (Le Hir, et al. 2001; Lindeboom, et 

al. 2016), codons that are only one point mutation away from a PTC are avoided to 

prevent the need for NMD in the first place (Cusack, et al. 2011). For translational 

read-through errors, while NSD pathways are present in bacteria and eukaryotes (van 
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Hoof, et al. 2002; Richards, et al. 2006), termination motifs that minimise TR rate are 

consistently enriched in highly expressed genes to prevent the need for degradation 

(Korkmaz, et al. 2014; Trotta 2016; Wei and Xia 2017; Cridge, et al. 2018). 

 

Error prevention and mitigation may be achieved locally or globally 

 

While supporting the argument that phenotypic errors are deleterious, the above 

evidence also demonstrates that error control can be achieved at two different scales. 

Mutations that reduce cellular error rates, by improving proofreading or degradation 

pathways for example, can be considered “global” solutions because they affect every 

qualifying gene or transcript in the genome. Mutations that have less far-reaching 

effects, such as those producing OSCs to protect against frameshifts or PTCs to 

mitigate the consequences of intron retention, are by contrast “local” solutions because 

they operate only at a single locus. As originally theorised and modelled by Rajon and 

Masel (2011), local solutions hence require repeated bouts of selection and fixation to 

produce genome-wide effects while global solutions need to evolve only once.  

 

Rajon and Masel (2011) argue that selection against error forms a positive feedback 

loop, such that only global or only local solutions evolve in any given population. The 

differences in fitness effects between global and local solutions hence makes several 

predictions with what to expect in species with different effective population size (Ne) 

when evoking nearly neutral theory (Ohta 1992). They hypothesize that local solutions 

evolve readily in species with large Ne as selection is efficient and deleterious 

sequences resulting from error are purged. By contrast, low Ne species that are more 

sensitive to drift accumulate deleterious sequences as they cannot easily fix local 

solutions, hence selection strongly favours global error solutions for a genome-wide 

remedy. Intermediate population sizes, they find in their simulations, are bistable and 

either global or local solutions might result (Rajon and Masel 2011).  

 

There is, however, a limitation to the Rajon and Masel (2011) models as they fail to 

consider that both global and local solutions may take the form of error prevention or 

error mitigation. Error prevention refers to any adaptation that reduced the rate at 

which phenotypic errors occur, while error mitigation refers to adaptations that reduce 

the impact of such errors. Within the exemplar of translational read-through, Rajon 
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and Masel (2011) assume global solutions to reduce error rate (without naming a 

candidate pathway to facilitate this) and local solutions to provide mitigation (via 

selection for ASCs). Their models therefore fail to account for global error mitigation 

and local error rate reduction despite both being known TR error control mechanisms. 

Global error mitigation against TR, for example, occurs via NSD pathways that 

degrade transcripts lacking a stop (van Hoof, et al. 2002; Richards, et al. 2006) and 

also via mRNA surveillance systems that repress the expression of nonstop mRNAs 

and destabilise their translated products (Ito-Harashima, et al. 2007). TR error rate 

reduction can be facilitated locally by changing the stop codon used by a transcript, 

TAA being the most reliable stop codon followed by TAG and TGA in both 

eukaryotes and bacteria (Strigini and Brickman 1973; Geller and Rich 1980; Parker 

1989; Jorgensen, et al. 1993; Meng, et al. 1995; Sanchez, et al. 1998; Tate, et al. 1999; 

Wei, et al. 2016; Cridge, et al. 2018). Error handling should thus be described not 

simply by global versus local solutions, but by a 2x2 grid of global/local and 

rate/mitigation solutions. As the strength of selection acting upon each of the four axes 

is dependent upon the others, how they might co-evolve is an open question. 

 

Questions 

 

In this thesis, using the case example of TR, I aim to answer several questions of how 

genomes evolve to control phenotypic errors.  

 

How often do we see evidence of local error mitigation? In Chapter 2, I ask how often 

we see evidence of such strategies against TR errors. In doing so I examine the 

hypothesis that ASCs are under selection to act as a “fail-safe” mechanism in 3’ UTR 

sequences to provide a second opportunity for translation to terminate should this not 

occur at the canonical stop site. Indeed, this hypothesis has been the topic of some 

debate, with evidence of ASC enrichment beyond nucleotide expectations being 

observed in yeast (Liang, et al. 2005) and ciliates (Adachi and Cavalcanti 2009; 

Fleming and Cavalcanti 2019) but not in bacteria (Major, et al. 2002; Korkmaz, et al. 

2014). Past studies have, however, focused on relatively few species and hence there 

is a gap for a systematic multi-species analysis that I here hope to fill. 
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How do local error mitigation and local error prevention strategies co-evolve? Noting 

that the strength of any selection acting upon ASCs should depend on the stop codon 

used for termination, the three stops having distinct TR rates, in Chapter 3 I ask how 

TAA stop codon usage and ASCs co-evolve. To achieve this I follow Rajon and Masel 

(2011) in considering both error control strategies against the predictions of nearly 

neutral theory with regards to Ne. The hypothesis that local solutions are the preferred 

route for species with large Ne predicts both TAA and ASC enrichment to correlate 

positively with Ne. If one, and not the other, were to correlate with Ne this could be 

inferred as a selective preference for either prevention or mitigation.  

 

How might we explain between-species variation in non-optimal stop codon usage? 

As all the available experimental data for TR rates point towards TAA optimality, the 

simplest null expectation is that TAA should be the most abundant stop codon in all 

genomes, especially in bacteria due to their large Ne. In Chapter 4, I consider a long-

standing hypothesis that the between-species stop codon usage trends of bacteria can 

be explained by variation in the relative abundance of class I release factors (RFs) 

(Sharp and Bulmer 1988; Wei, et al. 2016), RF1 binding TAA and TAG and RF2 

binding TAA and TGA (Rodnina 2018). To assess this hypothesis it is useful to note 

that eukaryotes and archaea contain only one RF, eRF1 (Inagaki and Doolittle 2000; 

Jackson, et al. 2012) and aRF1 (Kobayashi, et al. 2012) respectively, that recognises 

all three stop codons. If the stop codon usage trends of bacteria match those observed 

in eukaryotes and archaea, this would suggest that RF biology is not needed to explain 

such trends and hence that other hypotheses are needed to explain imperfect stop 

codon usage. 

 

How can we explain the high abundance and conservation of TGA in mammals? 

Related to the previous question is how to explain the unusual high abundance and 

conservation of non-optimal TGA stop codons observed in mammalian genomes 

(Belinky, et al. 2018; Seoighe, et al. 2020). In Chapter 5, I consider three hypotheses 

that could explain this phenomenon: mutation bias, selection for TGA, and GC-biased 

gene conversion (gBGC). To differentiate between these, I analyse both stop codon 

usage and follow the Belinky, et al. (2018) methodology to analyse stop codon flux 

(the rate at which one stop codon changes to another, per incidence of the ancestral 

stop codon). Mutation bias can be easily assessed by inferring a mononucleotide or 
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dinucleotide mutational matrix from de novo mutations. Selection for TGA may be 

assayed by regression analysis that predicts stop codon usage as a function of gene 

expression, under the assumption that highly expressed genes are under the greatest 

selection pressure for error control. The gBGC hypothesis may be investigated by 

assessing the relationship between stop codon usage and recombination rate, gBGC 

being tightly linked to the mismatch repair process (Brown and Jiricny 1988, 1989) 

during homologous recombination (Mugal, et al. 2015). 

 

I summarise all the above in a commissioned review article focused on stop codon 

usage, Chapter 6. This I present as “Discussion part 1” as this manuscript places the 

results of the previous chapters within the wider literature. Following “Discussion part 

2” where I discuss other unanswered questions and the methodological limitations of 

my work, I present two published papers concerning the molecular evolution of 

SARS-CoV-2 as appendices. These are slightly removed from the story of my thesis 

but nonetheless represent work undertaken during my PhD. 
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Pre-amble 

 

How often do we see evidence of local error mitigation?  

 

In this first published chapter, I ask how often we see evidence of local error mitigation 

strategies against translational read-through (TR) errors. To achieve this, I examine 

the hypothesis that in-frame additional stop codons (ASCs) are under selection to act 

as a “fail-safe” mechanism in 3’ UTR sequences to provide a second opportunity for 

translation to terminate should this not occur at the canonical stop site. While TR rates 

may be reduced by any given genome by increasing its usage of TAA stop codons, the 

least error prone stop, TR to some degree is inevitable. The fail-safe hypothesis states 

that ASCs enables the translation of TR-affected transcripts to terminate only a short 

distance downstream of the canonical stop codon, minimising the energy wastage 

from translating the 3’ UTR and limiting the size of the resultant C-terminal 

extensions. 

 

The fail-safe hypothesis is particularly interesting because it receives mixed support 

from the literature. In eukaryotes, there is strong evidence for ASC enrichment in some 

yeast and ciliate species but very little in other eukaryotic taxa. In bacteria, 

bioinformatic studies have failed to identify any genomes enriched beyond null for 

ASCs. At first look, ASCs appear enriched immediately downstream from the 

canonical stop codon in bacterial 3’ UTRs, but this is confounded by a general 

preference for thymine as the immediately proximal nucleotide (the so-called +4 

base).  

 

To date most studies have focused on very few species and there is hence a gap in the 

literature for a systematic multi-species analysis. I hope to fill this gap with this 

chapter, presenting bioinformatic analyses that test a wealth of predictions made by 

the fail-safe hypothesis in ~650 phylogenetically distinct bacterial genomes and ~70 

unicellular eukaryotes. Corroborating prior studies, I find no evidence to support ASC 

selection in eubacteria and observe ASC enrichment in yeast and ciliates. In addition, 

I observe evidence of ASC enrichment in several more unicellular eukaryotes for the 

first time.  
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S1 Fig. Z-scores measuring deviation from a null model (10,000 simulations) 

plotted against the genomic GC3 content of filtered TT11 bacterial genomes. 

Significant negative relationships were observed between Z-score and genomic GC3 

content at each position (Spearman’s rank: p < 2.2 x 10−16 for all positions; ρ = -0.61 

at position +1, ρ = -0.65 at position +2, ρ = -0.51 at position +3, ρ = -0.45 at position 

+4, ρ = -0.41 at position +5, ρ = -0.46 at position +6). 

https://doi.org/10.1371/journal.pgen.1008386.s001  
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S2 Fig. Gradient analysis of Z-score plotted against genomic GC3. 

Raw gradients (of Z-score plotted against genomic GC3) plotted at each of the six 

positions downstream (A). Absolute gradients plotted against codon position (B). Our 

expectation under the fail-safe hypothesis is that at codon position +1, stops will be 

largely resistant to GC pressure while at position +6 this resilience will be diminished. 

We thus predict that looking across genomes, the plot of ASC usage against GC 

content should be flatter at site +1 than at site +6. Interestingly, there is a significant 

correlation between absolute gradient and distance from the primary stop (Spearman’s 

rank: p = 2.8 x 10−3 ρ = -1). We therefore infer that either the presence of ASCs is 

more resilient to GC pressure when located further downstream relative to the primary 

stop, or ASCs are actively selected against at positions closest to the primary stop. 

Both of these inferences go against the fail-safe hypothesis. 

 

https://doi.org/10.1371/journal.pgen.1008386.s002  

 

 



 62 

 
 

S3 Fig. Raw ASC frequencies at positions +1 to +6 plotted against genomic GC3 

content. 

There is a significant negative correlation between the variables at all positions tested 

(Spearman’s rank: p < 2.2 x 10−16 for all positions; ρ = -0.92 for position +1, ρ = -0.95 

for position +2, ρ = -0.95 for position +3, ρ = -0.94 for position +4, ρ = -0.93 for 

position +5, ρ = -0.94 for position +6). The gradient of the linear model fitted for 

position +1 is significantly different than that of position +6 (p = 2.035732 x 10−10), 

with position +6 having the more negative gradient. 

 

https://doi.org/10.1371/journal.pgen.1008386.s003  
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S4 Fig. Gradient frequencies of HEGs compared to LEGs. 

Each bar represents one genome, with genomes ordered by genomic GC3 content from 

left to right. Bar heights represents the raw difference between in ASC frequency 

between the two groups tested. A positive difference represents enrichment in the 

HEGs group, a negative difference represents enrichment in the LEGs group. There is 

a no significant difference between HEGs and LEGs at any position (Wilcoxon signed-

rank test: p > 0.05/6). 

 

https://doi.org/10.1371/journal.pgen.1008386.s004  
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S5 Fig. Z-scores, measuring deviation of observed ASC frequencies in +4T-

containing genes from +4T-containing null simulations, plotted against genomic 

GC3 content. 

Only position +1 and position +2 are considered as these are the only sites where a 

signal for ASC enrichment has been noted. We find Z-scores to be negatively 

correlated with genomic GC3 when considering all genes at position +1 (Spearman’s 

rank: ρ = -0.3054869, p < 2.2 x 10−16) and position +2 (Spearman’s rank: ρ = -

0.1880088, p = 1.62 x 10−06). There is no relationship between Z-score and genomic 

GC3 in HEGs or LEGs at either position (Spearman’s rank, p > 0.05). 

 

https://doi.org/10.1371/journal.pgen.1008386.s005  
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S6 Fig. Assessment of fifth site nucleotide preferences. 

Fifth site nucleotide frequencies in +4T-containing genes of different primary stop and 

expression level (A). Frequencies of TC (B) and TT-starting (C) codons at position +1 

compared to the average frequency of the respective codons between positions +1 to 

+6. Positive scores represent enrichment whilst negative scores represent under-

representation. 

 

https://doi.org/10.1371/journal.pgen.1008386.s006  
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S7 Fig. ASC frequencies of TT4 mollicute genomes calculated and compared to 

those of GC-matched TT11 genomes. 

Each bar represents the frequency difference between a mollicute genome and the 

average of its GC-matched TT11 genomes. TGA was underrepresented at positions 

+3 and +5 only (Wilcoxon signed-rank tests: p = 0.11 for position +1; p = 0.15 for 

position +2; p = 1.5 x 10−3 for position +3; p = 0.70 for position +4; p = 6.8 x 10−4 for 

position +5; p = 0.11 for position +6). 

 

https://doi.org/10.1371/journal.pgen.1008386.s007  
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S8 Fig. Relative usage of each stop codon as the primary stop (position +0) and 

as ASCs at positions +1 to +6. 

Contra to our expectations, we find codon usage at positions +1 to +6 to be consistent 

with that of the primary stop. 

 

https://doi.org/10.1371/journal.pgen.1008386.s008  
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S1 Table. Positional codon switch (from stop to non-stop and non-stop to stop) 

counts and frequencies compared between the in-frame and out-of-frame 3’ UTR 

codons of 29 triplets of closely related bacterial genomes. 

 

https://doi.org/10.1371/journal.pgen.1008386.s009  
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S2 Table. Codon switch (from stop to non-stop and non-stop to stop) counts and 

frequencies compared between the in-frame and out-of-frame 3’ UTR codons of 

a triplet of TT4 mollicute genomes. 

 

https://doi.org/10.1371/journal.pgen.1008386.s010  
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S3 Table. 3’ UTR frequencies of all codons in TT4 mollicutes compared to 

prediction by LOESS model fitted to TT11 codon frequencies. 

Observed frequencies were compared to predicted frequencies using one-tailed 

Wilcoxon-signed rank tests, the p-values from which are found in the table below. A 

significant p-value represents significant under-enrichment in the TT4 genomes. Stop 

codons are highlighted in blue. 

 

https://doi.org/10.1371/journal.pgen.1008386.s011  
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S4 Table. Association between relative stop codon usage and GC3 content 

assessed by Spearman’s Rank tests at each downstream position. 

 

https://doi.org/10.1371/journal.pgen.1008386.s012  
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S5 Table. Association between relative stop codon usage and GC3 content 

assessed by Spearman’s Rank tests in each reading frame. 

 

https://doi.org/10.1371/journal.pgen.1008386.s013  
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S6 Table. Association between gene length and gene expression level assessed at 

genome-wide level. 

Gene expression (represented by experimental protein abundance data) and gene 

nucleotide lengths were used in Spearman’s rank tests. 

 

https://doi.org/10.1371/journal.pgen.1008386.s014  
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S7 Table. Z-score analysis of single-celled eukaryotic genomes. 

Z-scores represent deviation in ASC frequency from dinucleotide-controlled 

simulations. 

 

https://doi.org/10.1371/journal.pgen.1008386.s015  
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S8 Table. Chi2 analysis of ASC frequency single-celled eukaryotic genomes 

against dinucleotide-controlled simulations. 

 

https://doi.org/10.1371/journal.pgen.1008386.s016  
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S9 Table. Chi2 analysis of ASC frequency single-celled eukaryotic genomes 

against the Adachi and Cavalcanti null. 

 

https://doi.org/10.1371/journal.pgen.1008386.s017  
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S1 Text. Supporting text for S1 Fig, S2 Fig and S3 Fig. 

 

https://doi.org/10.1371/journal.pgen.1008386.s018  

 

A prediction of the fail-safe hypothesis is that the closer a site is to the primary stop 

codon, the stronger the selection should be to preserve an ASC (all else being equal), 

closer stops having the effect of reducing costs of error prone readthrough. One way 

to test this hypothesis is to consider the extent to which ASC frequency is resilient to 

underlying GC pressure. Our expectation under the fail-safe hypothesis is that at codon 

position +1, stops will be largely resistant to GC pressure while at position +6 this 

resilience will be relatively diminished. We thus predict that looking across genomes, 

the plot of ASC usage against GC content should be flatter at site +1 than at site +6.  

 

To evaluate this, Z-scores were calculated using the mean ASC frequencies and 

standard deviations, as calculated from the aforementioned simulations, for each 

genome and plotted against GC3 content with the slope determined by linear 

regression of Z-score predicted by GC3 (S1 Fig). While for reasons unknown, 

significant negative relationships were observed between Z-score and genomic GC3 

content at each position (Spearman’s rank: p < 2.2 x 10-16 for all positions; rho = -0.61 

at position +1, rho = -0.65 at position +2, rho = -0.51 at position +3, rho = -0.45 at 

position +4, rho = -0.41 at position +5, rho = -0.46 at position +6), unexpectedly the 

negative slope is steeper at position +1 than position +6 (p = 5.2 x 10-14) contra to fail-

safe hypothesis expectations. Indeed, there is a significant negative correlation 

between absolute gradient and distance from the primary stop (Spearman’s rank: p = 

2.7 x 10-3, rho = -1; S2 Fig), confirming that slope becomes flatter with 3’ distance. 

Using absolute stop codon frequency, rather than Z-score, confirms the same result 

(S3 Fig). These results additionally indicate that in GC-rich genomes, fail-safe ASCs 

are if anything avoided (note the Z scores control for dinucleotide content) and provide 

no support for the hypothesis that ASCs in closest proximity to the primary stop are 

more strongly preserved. This test comes with the caveat that the costs of stops further 

downstream may be relatively weak and thus failure to meet expectations is not 

necessarily strong evidence against the hypothesis. This being said, it is notable the 

trend is against our expectations. 
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S2 Text. Supporting text for S1 Table and S2 Table. 

 

https://doi.org/10.1371/journal.pgen.1008386.s019  

 

Do we find no evidence for ASC enrichment because genomes specifically remove 

ASCs at a higher rate than chance? Perhaps switches from non-stop to stop occur at a 

lower rate than chance, and hence ASCs are a difficult evolutionary solution to stop 

codon readthrough? Further to the whole-UTR analysis in the main manuscript, we 

investigate both of these possibilities through analysing codon switches from stop to 

non-stop, and vice versa, in all downstream codon positions separately (S1 Table). 

Additionally, we look at a triplet of mollicute genomes to analyse TAA, TGA and 

TAG separately (S2 Table). 
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S3 Text. Supporting text for S4 Fig. 

 

https://doi.org/10.1371/journal.pgen.1008386.s020  

 

Selection for termination efficiency is thought to be highest in HEGs due to the notion 

that the net effect of readthrough is a function of the number of translation events any 

given transcript is subject to. If the fail-safe hypothesis of ASCs is true, we therefore 

expect ASC frequencies to be significantly higher in HEGs than LEGs. This, however, 

does not seem to be the case. Standardised differences in ASC frequency for each 

genome [(HEGs – LEGs)/mean(HEGs + LEGs)] were calculated and are presented in 

S4 Fig. There were no significant differences between the ASC frequencies of HEGs 

and LEGs at any position (Wilcoxon signed-rank tests, p = 0.40 for position +1, p = 

0.68 for position +2, p = 0.62 for position +3, p = 0.57 for position +4, p = 0.83 for 

position +5, p = 0.77 for position +6), suggesting that either expression level has no 

influence over the negative effects of readthrough or ASCs do not significantly affect 

the ability of a transcript to avoid these consequences. 
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S4 Text. Supporting text for S5 Fig. 

 

https://doi.org/10.1371/journal.pgen.1008386.s021  

 

Are stop codons enriched when we allow for +4T enrichment? To compensate for the 

detected +4T enrichment, we returned to our initial null simulation experiment. This 

time we considered only +4T containing genes and adjusted our Markov models such 

that only +4T-containing genes were produced via simulation. Sequences were 

generated such that thymine was the first base 100% of the time, with following 

nucleotides selected according to dinucleotide frequencies. Therefore, these +4T-

containing simulated sequences produced a null model appropriate for comparison 

with the +4T-containing genes from real genomes. In acknowledgement of a possible 

weak signals identified at position +1 (see main paper) and position +2 in HEGs (see 

Fig 3 of the main paper), we consider only these two positions. The null neutral 

expectation was that there is no difference between the ASC frequencies of the real 

genomes and simulated sequences. To assess this, we calculated Z-scores and 

completed binomial tests. Given our simulated sequences are built upon dinucleotide 

content alone we expect a random distribution of ASCs, thus our null expectation is a 

50:50 split of positive and negative Z-scores. We find there to be significant variation 

from this ratio at both positions in all genes (Binomial tests: 34/644 Z > 0, p < 2.2 x 

10-16 for position +1; 67/644 Z > 0 at position +2). These results are repeated in HEGs 

(Binomial tests: 1/22 Z > 0, p = 1.1 x10-05 for position 1; 4/22 Z > 0, p = 4.3 x10-03 for 

position 2) and LEGs (Binomial tests: 5/21 Z > 0, p = 0.026 for position 1; 3/21 Z > 

0, p = 1.4 x10-03 for position 2). The result at position +1 in LEGs however does not 

survive multi-test correction (p > 0.05/2). As with the original simulations, in contrast 

to the prediction of enrichment per the fail-safe hypothesis, we note that deviation is 

due to under usage of ASCs (note the rarity of instances of Z > 0). 

 

As before, we next looked at the proportion of genomes showing significant deviation 

from null (|Z| > 1.96). In this instance, the null expectation of the binomial test is no 

longer 50:50, rather that 95% of genomes will not be significantly deviated and 5% 

will. In all genes, there no significant deviation from this ratio at position +1 (Binomial 

test: 36/644, p = 0.4693) but significant deviation at position +2 (Binomial test: 0/644, 

p = 7.0 x 10-15). Closer examination indicates that significant difference at position +2 
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is due to under enrichment (Binomial test, alternative = ‘lower’: 0/644 Z > 1.64, p = 

4.5 x 10-05 at position +1 and position +2). In HEGs and LEGs, there are no significant 

deviations from null (|Z| > 1.96). 

 

The direction and magnitude of deviation from null was once again considered using 

the calculation of Z-scores. As discussed in the analysis of our previous simulations, 

the fail-safe hypothesis predicts resistance to GC pressure at position +1 and thus a 

flat slope when Z-score is plotted against genomic GC3. We repeat this analysis with 

our +4T-controlled null model (S5 Fig). Consistent with our original simulation-based 

analysis, we find Z-scores to be negatively correlated with genomic GC3 when 

considering all genes at position +1 (Spearman’s rank: rho = -0.31, p < 2.2 x 10-16) 

and position +2 (Spearman’s rank: rho = -0.19, p = 1.6 x 10-06). It therefore appears 

that ASCs are in fact avoided rather than enriched, consistent with our initial 

simulation experiment. No such negative relationships are found in HEGs and LEGs 

at either position (Spearman’s rank: p > 0.05), however low Z-score magnitudes (|Z| 

< 1.96) indicate that ASCs frequencies defy the fail-safe prediction of enrichment at 

the very least. 
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S5 Text. Supporting text for S6 Fig. 

 

https://doi.org/10.1371/journal.pgen.1008386.s022  

 

Building on the observation that there may be a preference for fifth site thymine or 

cytosine in +4T-containing genes, we look at fifth site nucleotide frequencies. +4T-

containing genes were extracted and fifth site nucleotide frequencies were calculated 

and compared (S6 Fig). Consistent with the enrichment of TC and TT-starting codons, 

there is preference for either thymine or cytosine when considering all genes. Fifth 

site T and C are both found in significantly higher frequency than the next most 

common nucleotide in TAA-terminating genes (Wilcoxon signed-rank tests: T > A, p 

< 2.2 x 10-16; C > A, p < 2.2 x 10-16), TGA-terminating genes (Wilcoxon signed-rank 

tests: T > A, p < 2.2 x 10-16; C > A, p = 4.2 x 10-08), and TAG-terminating genes 

(Wilcoxon signed-rank tests: T > A, p < 2.2 x 10-16; C > A, p = 3.7 x 10-15). 

Interestingly, in HEGs a fifth site T is preferred over C in all three groups (Wilcoxon 

signed-rank test: p = 3.7 x 10-3 in TAA-terminating genes; p = 6.2 x 10-3 in TGA-

terminating genes; p = 0.034 in TAG-terminating genes), suggesting fifth site T is 

most optimal. In LEGs, there is no significant difference between any of the 

nucleotides at the fifth site of +4T-containing TAA-terminating genes (Kruskal-

Wallis: c = 7.503, p = 0.057). Adjusting for Bonferroni correction (p > 0.05/3), 

thymine is not present in significantly higher frequency than the next highest base in 

TGA-terminating LEGs (T > G – W = 130.5, p = 0.026) or in TAG-terminating LEGs 

(T > A – W = 114, p = 0.11).  

 

The above test doesn’t control for GC pressure and may thus reflect an excess of AT 

rich genomes in our sample. To address this, we compare frequencies of TC or TT-

starting codon frequency at position +1 to the average frequency of the respective 

codons between positions +1 to +6. In agreement with our frequency plots, we find 

TC-starting codons to be significantly enriched at position +1 (Wilcoxon signed-rank 

test: p < 2.2 x 10-16), and thus fifth site cytosine to be enriched in +4T-containing 

genes. However, we unexpectedly find no enrichment of TT-starting codons compared 

to null (Wilcoxon signed-rank test: p = 0.26). As this result is not consistent with our 

expectation, we cannot rule out the possibility that enrichment arises merely due to 

GC nucleotide pressure. Consistent with this we find that TT-codon usage at position 
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+1 decreases with genomic GC3, whereas TC-codon enrichment increases (S6 Fig). 

This proposes a hypothetical model where fifth site thymine is favoured at low GC, 

and cytosine at high GC in +4T-containing genes. 
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S6 Text. Supporting text for S7 Fig. 

 

https://doi.org/10.1371/journal.pgen.1008386.s023  

 

We acknowledge the limitations of LOESS modelling, which include those relating to 

the arbitrary nature of kernel/span function, and therefore validate the LOESS result 

with a different test design. Mollicute ASC frequencies were compared to GC-

matched TT11 genomes (S7 Fig). In TT4 genomes, only TAA and TAG are used for 

chain termination. Hence, as TGA functions as a stop codon in TT11 genomes, it is 

expected under the fail-safe hypothesis that TGA frequency 3’ of the primary stop in 

TT4 genomes should be consistently lower than that in TT11 genomes. For each 

mollicute genome analysed, TT11 genomes of GC3 content within 3.5% were 

selected. The ASC frequencies of these genomes were calculated, and averages were 

calculated for each position. We find TGA to be underrepresented at positions +3 and 

+5 only (Wilcoxon signed-rank tests: p = 0.11 for position +1; p = 0.15 for position 

+2; p = 1.5 x 10-3 for position +3; p = 0.70 for position +4; p = 6.8 x 10-4 for position 

+5; p = 0.11 for position +6). This result is consistent with our LOESS analysis.   
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S7 Text. Supporting text for S3 Table. 

 

https://doi.org/10.1371/journal.pgen.1008386.s024  

 

Prior mollicutes analysis (see main paper and S4 Fig) agrees with the hypothesis that 

TGA is underused in 3’ domains when it isn’t employed as a stop codon, compared 

with its usage in genomes of similar GC content when it can function as a stop. Whilst 

it remains possible that other codons may also be under-used in these genomes, for 

other reasons, our hypothesis does predict TGA to be among the most strongly under-

enriched. We thus investigated all 64 codons using the aforementioned LOESS 

methodology and ranked them by their one-tailed Wilcoxon signed-rank test p-value 

(S3 Table). We find TGA to be the 25th most under-enriched codon at position +1, 

20th at position +2, 4th at position +3, 49th at position +4, 2nd at position +5, and 

16th at position +6. Instead, we find codons CCG (1st at positions +1, +4, +6), GTG 

(2nd at position 1, 3rd at positions +4 and +6), and TAT (1st at position +2, 2nd at 

position +3, 4th at position +1) among the more commonly underrepresented codons 

at specific positions. It therefore appears premature to presume that there is something 

special about TGA selection in bacterial 3’ UTRs relating to translational termination. 
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S8 Text. Supporting text for S8 Fig, S4 Table and S5 Table. 

 

https://doi.org/10.1371/journal.pgen.1008386.s025  

 

Given that the vast bulk of our evidence argues against ASCs functioning as fail-safe 

stop codons, we predict that there is no reason to maintain relative codon usage 

downstream of the primary stop. In contradiction, we find striking similarities between 

position +0 (primary stop) and positions +1 to +6 (S8 Fig). Surprisingly, we find that 

trends in TGA and TAG usage remains clearly decoupled despite their equal GC 

content (S4 Table).  

 

This result implies that stop codon usage at the primary stop is the same as usage at 3’ 

positions. However, this would not necessarily be the case if we were to find that 

relative codon usage is also maintained across the two other reading frames. We find 

this to be true (S5 Table), and hence question the validity of current hypotheses that 

release factor abundance explains the decoupling of TGA and TAG usage. 
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S9 Text. Supporting text for S6 Table. 

 

https://doi.org/10.1371/journal.pgen.1008386.s026  

 

Our proposed hypothesis of gene shortening via the conversion of candidate stop 

codons (those that are upstream of the primary stop and are one-point mutation away 

from being a stop codon) to stop codons predicts that HEGs are longer in nucleotide 

length than LEGs. We consider only preliminary tests to indicate whether this may be 

true at a genomic level. Specifically, we assess the correlation between nucleotide 

length and protein abundance (S6 Table). Indeed, 18/22 demonstrate a negative trend 

of which 14/22 are significant.   
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S10 Text. Supporting text for S7 Table, S8 Table and S9 Table. 

 

https://doi.org/10.1371/journal.pgen.1008386.s027  

 

For the identification of ASC enrichment in eukaryotic genomes we apply three 

methodologies – Z-score deviation from dinucleotide-controlled null (S7 Table), Chi2 

with dinucleotide-controlled null (S8 Table), and Chi2 with the Adachi and Cavalcanti 

null (S9 Table). Please find the detailed results of these analyses for each genome over 

the next few pages. 
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Chapter 3 

 

Effective population size predicts local rates but not local mitigation 

of read-through errors 
 

Alexander T. Ho and Laurence D. Hurst 

Molecular Biology & Evolution, msa210. 

 

This chapter contains work published on 14th August 2020 at MBE, the original and 

sole place of publication. It thus contains analysis of publicly available data using 

bespoke scripts that are freely available at the locations cited within the paper. The 

paper is open access and I have permission as the author to include the article in full 

(https://academic.oup.com/journals/pages/authors/production_and_publication/onlin

e_licensing). The latest version of the published article can be found by following the 

address: https://doi.org/10.1093/molbev/msaa210.    
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Pre-amble 

 

How do local error mitigation and local error prevention strategies co-evolve? 

 

In the previous chapter, I note that the strength of selection acting upon additional stop 

codons (ASCs) should depend on the error rate of the stop codon used for termination. 

If an error-prone stop codon is used to terminate translation then ASCs might be under 

strong selection, while reliable termination at the canonical site might render ASCs 

unnecessary. Indeed, the causal arrow could theoretically face the opposite direction. 

If error mitigation by ASCs were to efficiently ameliorate the consequences of 

translational read-through (TR) then genomes might not need to adapt their stop codon 

usage to reduce TR error rates. The co-dependence of error prevention and error 

mitigation strategies upon each other is thus an intriguing problem. 

 

Chapter 2 provided one line of evidence supporting error prevention being the 

preferred solution. While the highly expressed genes of bacteria and humans prefer 

termination with TAA, the most reliable stop codon, I found no evidence that such 

bacterial genes are enriched for ASCs. In this chapter, I investigate how well both 

error control strategies accord with the predictions of nearly neutral theory. Under 

nearly neutral theorem, species with large effective population size (Ne) have more 

efficient selection to purge deleterious mutations and thus fix optimal sequence motifs. 

The tendency for any given species’ genome to be enriched for TAA or fail-safe ASCs 

should thus depend upon its Ne. Without co-dependency between the two error 

solutions, one might predict both TAA and ASC enrichment to correlate positively 

with Ne. If one, and not the other, were to correlate with Ne this could be inferred as a 

selective preference for either prevention or mitigation. 
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Pre-amble 

 

How might we explain between-species variation in non-optimal stop codon usage?  

 

As all the available experimental data for TR rates point towards TAA optimality, the 

simplest null expectation is that TAA should be the most abundant stop codon in all 

genomes. Why, then, is this not the case? Chapter 3 provides a parsimonious answer 

for eukaryotic species: those with low effective population size (Ne) have less efficient 

selection, are more susceptible to drift, and thus cannot increase their TAA usage. It 

is less clear why TAA usage does not always dominate in bacterial genomes as all 

species in this group have large Ne. In this chapter, I re-analyse the long-standing 

hypothesis that the between-species stop codon usage trends of bacteria can be 

explained by variation in the relative abundance of class I release factors (RFs), RF1 

and RF2.  

 

During translation termination, TAG is recognised by RF1, TGA is recognised by 

RF2, and TAA may be recognised by either RF1 or RF2. The RF hypothesis may thus 

explain both a preference for TAA, but also between-genome differences in TGA and 

TAG usage. Indeed, this has been supported by observed correlations between the 

RF1:RF2 ratio and the TAG:TGA usage across several bacterial species. In Chapter 

2, however, between-species stop codon usage trends in bacteria observed at the 

canonical stop codon site were also seen both in-frame and out-of-frame in the 3’ 

UTR. This clearly cannot be explained by the RF hypothesis as stop codon 

trinucleotides in the 3’ UTR almost never participate in translation termination.  

 

Here, then, I test several further predictions of the RF hypothesis, questioning whether 

it is more parsimonious that release factor abundance is adapted to stop codon usage 

than vice versa. Lack of support for the RF hypothesis would be potentially influential 

in resolving the underlying causes of stop codon usage by directing attention towards 

other mutational, selective, or other hypotheses that may be needed to explain the 

abundance imperfect stop codons in many genomes. 
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Pre-amble 

 

How can we explain the high abundance and conservation of TGA in mammals?  

 

Related to the problem of explaining non-optimal stop codon usage in bacteria is the 

question of how to explain the unusual high abundance and conservation of TGA stop 

codons observed in mammalian genomes. Three lines of evidence immediately refute 

selective hypotheses related to minimising translational read-through: highly 

expressed human genes prefer TAA stop codons, TAA enrichment positively 

correlates with effective population size (Ne) in eukaryotes (chapter 3), and TAA is 

the most enriched stop codon in eukaryotes, bacteria, and archaea (chapter 4). Nearly 

neutral theory might partially explain high TGA abundance in these species, mammals 

having low Ne and hence inefficient selection to increase TAA usage. It cannot, 

however, explain why TGA might be more conserved than TAA and TAG stop 

codons. In this chapter I assess three broad hypotheses that could explain this 

phenomenon in mammalian taxa: mutation bias, a unique mammalian selective 

preference for TGA, and GC-biased gene conversion (gBGC).   

 

To differentiate between the three hypotheses, I analyse both stop codon usage and 

flux (the rate at which one stop codon changes to another, per incidence of the 

ancestral stop codon). Mutation bias can be assessed by inferring a mutational matrix 

from de novo mutations and determining the extent of AT->GC or GC->AT bias. 

Selection for TGA may be assayed by regression analysis that predicts stop codon 

usage as a function of gene expression, assuming highly expressed genes to be under 

the greatest selection pressure for error control. I investigate the gBGC hypothesis by 

assessing the relationship between stop codon usage and recombination rate, gBGC 

being tightly linked to the mismatch repair process during homologous recombination. 

 

If gBGC were to provide a parsimonious framework for mammalian TGA 

conservation, this would represent a unique example where gBGC unambiguously acts 

in opposition of selection (promoting TGA, not TAA, stop codon usage). 
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Abstract 

 

The assumption that conservation of sequence implies the action of purifying 

selection is central to diverse methodologies to infer functional importance. In 

mammals, however, GC-biased gene conversion (gBGC), a meiotic mismatch 

repair bias strongly favouring GC over AT, can in principle mimic the action of 

selection. As mutation is GC→AT biased, to demonstrate that gBGC does indeed 

cause false signals requires confidence that an AT-rich residue is selectively 

optimal compared to its more GC-rich allele, while showing also that the GC-rich 

alternative is conserved. We propose that mammalian stop codon evolution 

provides a robust test case. Although in most taxa TAA is the optimal stop codon, 

TGA is both abundant and conserved in mammalian genomes. We show that this 

mammalian exceptionalism is well explained by gBGC mimicking purifying 

selection and that TAA is the selectively optimal codon. Supportive of gBGC, we 

observe (i) TGA usage trends are consistent at the focal stop and elsewhere (in 

UTR sequences), (ii) that higher TGA usage and higher TAA→TGA substitution 

rates are predicted by high recombination rate and (iii) across species the 

difference in TAA <-> TGA rates between GC rich and GC poor genes is largest 

in genomes that possess higher between-gene GC variation. TAA optimality is 

supported both by enrichment in highly expressed genes and trends associated 

with effective population size. High TGA usage and high TAA→TGA rates in 

mammals are thus consistent with gBGC’s predicted ability to “drive” 

deleterious mutations and supports the hypothesis that sequence conservation 

need not be indicative of purifying selection. A general trend for GC-rich 

trinucleotides to reside at frequencies far above their mutational equilibrium in 

high recombining domains supports generality of these results. 

 

Introduction 

 

If at a given site in DNA a mutation appears in a population and is eliminated by 

selection owing to its deleterious effects, the site in question will tend to be more 

conserved between species than comparable neutrally evolving sequence. This simple 

logic underpins the notion that the functionality of sequence can be inferred from its 

degree of conservation – for discussion see Ponting (2017). It is explicit in, for 
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example, molecular evolutionary tests for purifying selection (e.g. Ka/Ks test (Nielsen 

and Yang 1998; Yang and Bielawski 2000; Hurst 2002; Pond and Frost 2005)), 

attempts to identify sites prone to disease-causing mutations (Cooper, et al. 2010; Sun 

and Yu 2019), and estimates of the proportion of DNA within a genome that is 

“functional” (Ponting 2008).  

 

These methods assume, however, that no force other than selection can 

deterministically act to alter the frequency of extant alleles. Over the past two decades 

GC-biased gene conversion has been established as a potentially important influence 

on allele frequencies (Lachance and Tishkoff 2014), mimicking selection (Galtier, et 

al. 2001; Duret and Galtier 2009; Galtier, et al. 2009). The process of gBGC results 

from a repair bias favouring G/C alleles over A/T alleles during GC:AT mismatch 

repair in a (commonly assumed to be meiotic) heteroduplex (Brown and Jiricny 1988, 

1989). In humans, at non-crossover gene conversion events 67.6% of GC:AT 

mismatches favour the GC allele (Halldorsson, et al. 2016). It is probably as a 

consequence of this bias, coupled with the regionalisation of recombination domains 

over extended time periods, that mammals, alongside birds and possibly other 

amniotes (Bernardi, et al. 1985), have genomes with large (> 300Mb) blocks of 

relatively homogeneous higher or lower GC content (isochores) (Eyre-Walker and 

Hurst 2001; Galtier, et al. 2001; Duret and Galtier 2009). Importantly, assuming 

consistency of local recombination rates over evolutionary time and a correlation 

between crossover rates and non-crossover rates (Williams, et al. 2015), gBGC also 

can explain the relatively strong correlation between GC content of these blocks and 

local recombination rates in mammals (Eyre-Walker 1993; Fullerton, et al. 2001; 

Duret and Arndt 2008; Pessia, et al. 2012) (but see also Marsolier-Kergoat and 

Yeramian 2009; Kiktev, et al. 2018). That the correlation is stronger with male meiotic 

events than female ones is taken as evidence that the trends cannot be explained by 

selection with reduced Hill-Robertson interference in domains of high recombination 

(Duret and Arndt 2008). Consistent with such models, SNP analysis reveals the 

predicted fixation bias for AT→GC mutations in GC rich domains, even after allowing 

for non-equilibrium GC content (Duret, et al. 2002; Lercher, et al. 2002).  

 

While the human conversion bias is strong, defining the expected impact of gBGC on 

the human genome is not trivial. For example, in any given generation, the net effect 
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of bias is a function of the length of the relevant conversion tracts, the commonality 

of AT:GC mismatches within the tracts and the rate of initiation of such tracts. 

Williams et al. (Williams, et al. 2015) estimate a rate in human non-crossover events 

(where there is the strong GC:AT bias) of 5.9 × 10−6 per bp per generation. More 

generally, Glemin et al. (Glemin, et al. 2015) estimate that the net effect on 

substitutions is on average in the nearly-neutral area. However, as recombination 

occurs primarily within recombination hotspots ~2% of the human genome is subject 

to strong gBGC in any generation (Glemin, et al. 2015). Over the longer term as the 

location of recombination hotspots evolves rapidly, they predict that a large fraction 

of the genome is affected by short episodes of strong gBGC (Glemin, et al. 2015). 

Galtier (2021) estimates that ~60% of all synonymous AT→GC substitutions are 

influenced by gBGC. 

 

Strong gene conversion is, however, not phylogenetically universal. In the best 

resolved instance, yeast, where meiotic tetrads can be directly studied, the bias is 

extremely weak at best. The highest estimates suggests that the GC-allele is the donor 

allele in 50.62% of cases (Mancera, et al. 2008; Duret and Galtier 2009). Further 

analysis report a lesser bias (Liu, et al. 2019), with a further large study reporting weak 

bias in the opposite direction (Liu, et al. 2018). Meta-analysis of over 100,000 GC:AT 

mismatch resolutions in Saccharomyces cerevisiae determined a net segregation of 

50.03%, only just in favour of the GC alleles and not significantly different from 50:50 

segregation (Liu, et al. 2018). To date strong conversion has been observed in only a 

few taxa (Liu, et al. 2018), mammals (Duret and Galtier 2009) and birds (Weber, et 

al. 2014; Rousselle, et al. 2019) being the two well-described exceptions, though 

weaker and non-regionalised gBGC is suspected in many taxa (Pessia, et al. 2012). 

 

In terms of the population genetics influence, the action of gBGC is directly 

comparable to meiotic drive (alias segregation distortion) (Gutz and Leslie 1976). In 

this sense gBGC may be said to “drive” alleles. In turn, such drive can mimic positive 

selection (Nagylaki 1983). Importantly, it has previously been noted that gBGC can 

(and in birds and mammals regularly does) create false signals of positive selection by 

promoting the spread from rare to common of AT→GC mutations (Dreszer, et al. 

2007; Berglund, et al. 2009; Galtier, et al. 2009; Ratnakumar, et al. 2010; Corcoran, 

et al. 2017; Bolivar, et al. 2018). However, as is implicit in all such models (Harrison 
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and Charlesworth 2011), gBGC could also mimic the action of purifying selection. A 

GC allele at fixation mutating to a selectively advantageous AT allele would be forced 

by gBGC to eliminate the AT allele, causing conservation of the deleterious GC allele.  

 

Mimicry of positive selection owing to gBGC in mammals is thought to be common 

and, to date, analyses have focused on the substitional process, rather than the 

conservation process (Dreszer, et al. 2007; Berglund, et al. 2009; Galtier, et al. 2009; 

Ratnakumar, et al. 2010; Corcoran, et al. 2017; Bolivar, et al. 2018). We are aware of 

no clear example of gBGC causing false signals of purifying selection. A core 

difficulty is finding a circumstance where gBGC makes predictions different from 

those of mutation bias and selectionist models. Differentiating between the effects of 

gBGC and mutation bias tends to be relatively straightforward as mutation is near-

universally GC→AT biased (Smith and Eyre-Walker 2001; Lynch, et al. 2008; 

Hershberg and Petrov 2010; Long, et al. 2018; Smith, et al. 2018), while gBGC is 

biased in the opposite direction. More problematic is the possibility that the GC state 

is also the selectively optimal state. If so, then both gBGC and selection make the 

same predictions of conservation of GC and covariation with the recombination rate. 

Given Bengtsson’s argument, that gBGC may be biased in this direction to counter a 

deleterious GC→AT biased mutational process (Bengtsson 1985), it may well be 

unusual to have the selectively optimal state being promoted by mutation bias but not 

by gBGC. Indeed, in Drosophila, for example, “optimal” codons tend to end G or C 

(Vicario, et al. 2007). Codon optimality may also not be adequate to define the 

direction of selection, however, as such selection may also be contingent on the overall 

GC-richness of the sequence (owing to RNA structure effects (Harrison and 

Charlesworth 2011)). Thus, the core difficulty to establish gBGC as a cause of false 

signals of purifying selection and cause conservation of deleterious alleles is to 

identify a case where we can have confidence (and independently verify) that the AT 

state is selectively optimal compared to its GC-richer allele.  

 

Here we suggest that mammalian stop codon usage may provide an exceptional test 

case. Across all domains of life the three stop codons, TAA, TGA and TAG, are not 

used equally (Belinky, et al. 2018), with TAA being commonly, if not universally, 

selectively favoured (Belinky, et al. 2018). This is probably owing in large part to 

selective avoidance of translational read-through (TR). During TR, the stop codon is 
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missed by its cognate release factor (Rodnina, et al. 2020) due to the mis-binding of a 

near-cognate tRNA (Roy, et al. 2015; Beznoskova, et al. 2016), leading to the 

erroneous translation of the 3’ UTR and the generation of potentially-deleterious 

protein products (Rodnina 2016). Each stop codon has a distinct intrinsic error rate 

such that TGA>TAG>TAA in bacteria (Roth 1970; Strigini and Brickman 1973; 

Ryden and Isaksson 1984; Parker 1989; Meng, et al. 1995; Sanchez, et al. 1998) and 

eukaryotes (Geller and Rich 1980; Parker 1989) (including humans (Cridge, et al. 

2018)). TR rate reduction in any given gene might thus be achieved by selection for 

TAA.  

 

Evocation of such selection presumes that TR is usually deleterious (Arribere, et al. 

2016; Li and Zhang 2019). This is likely as the formation of C-terminal extensions 

cause energetic wastage (Wagner 2005) as well as problems with protein stability 

(Clegg, et al. 1971; Namy, et al. 2002; Pang, et al. 2002), aggregation (Vidal, et al. 

1999; Vidal, et al. 2000), and localisation (Falini, et al. 2005; Hollingsworth and Gross 

2013). Alternatively, in the absence of another 3’ in-frame stop codon, both the read-

through transcript and nascent protein are likely to be degraded when the translational 

machinery reaches the polyA+ tail (Dimitrova, et al. 2009; Klauer and van Hoof 2012). 

In addition to reducing TR costs, TAA also has several other benefits: there may be 

selection for fast release of the ribosome to prevent ribosomal traffic jams (Tuller, et 

al. 2010) and it is robust to two mistranscription events (TAA→TGA, TAA→TAG) 

while the two other stop codons are resilient to just one (TGA→TAA, TAG→TAA). 

 

It is then noteworthy that stop codon usage in mammals is different to that seen 

elsewhere (McCaughan, et al. 1995; Belinky, et al. 2018): TGA is more often 

conserved than TAA (Seoighe, et al. 2020) and, unusually, the substitution rate of 

TAA→TGA is higher than the reverse (Belinky, et al. 2018). Despite the fact that in 

humans TAA is disproportionately employed in highly expressed genes (Trotta 2016), 

this signal of conservation has been interpreted as evidence that purifying selection is 

operating to preserve TGA in mammals (Seoighe, et al. 2020). Gene conversion would 

however oppose fixation of TGA→TAA mutations (while also favouring 

TAA→TGA) and hence mimic purifying selection on TGA, even if selection were 

operating in the opposite direction. Biased gene conversion, thought to be especially 
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influential in humans (Halldorsson, et al. 2016), could thus resolve the exceptionalism 

of TGA conservation in mammals.  

 

Here we evaluate this suggestion. Duret and Galtier (2009) provide a series of tests for 

differentiating gBGC from selection noting that the trend to the higher GC state should 

be correlated with recombination and common to all sites regardless of functional 

status. We consider several analyses to examine these predictions finding all to be 

robustly supported. However, to be confident that TAA underusage at the focal stop 

codon is indeed maladaptive, we also need confidence that TAA is the optimal stop 

codon. We consider several tests all of which support this. Finally, we resolve that 

complex mutational biases cannot fully explain the TAA/TGA usage trends and 

confirm a general pattern for GC-rich trinucleotides to reside at frequencies far above 

their mutational equilibria in GC-rich (high recombining) domains. The latter results 

are consistent with broadscale patterns of conservation of GC-rich residues owing to 

gBGC. The same analysis resolves the trinucleotide usage in domains not likely to be 

subject to gBGC is as expected from a model of complex mutation bias. Indeed, these 

models predict higher TGA usage than TAG usage in these domains. However, 

different trinucleotides of same nucleotide content (as with TGA and TAG), have 

repeatable differences in the extent to which they are subject to fixation bias in GC 

rich isochores. The cause of these previously unknown complex fixation biases is 

unresolved. 

 

Results 

 

Bias towards TGA usage is also evident in the 5’ and 3’ UTR 

 

The gBGC hypothesis predicts that, because the AT→GC bias in the mismatch repair 

process is non-specific to terminating stop codons, stop codon usage at the focal stop 

need not be greatly different to usage of the same trinucleotides seen elsewhere in the 

genome. To address this, we analyse “stop” codon usage at the focal termination site 

and in human 5’ and 3’ UTR sequences irrespective of reading frame. This controls 

for effects of transcription coupled mutational bias. A model supposing that TGA is 

optimal in mammals predicts the patterns of stop codon usage as a function of GC 

content should not be seen in 5’ and 3’ UTR sequence.  



 150 

 

We first establish how intronic GC, as a proxy for isochore GC, covaries with stop 

codon usage at the focal termination codon. Consistent with the observations of 

Seoighe et al. (Seoighe, et al. 2020) and Belinky et al. (Belinky, et al. 2018), we find 

TGA to be the most common stop in the primate lineage (Fig 1). Not only is TGA the 

most common stop, it also significantly and positively covaries with intronic GC 

content in humans when both metrics are calculated in 10% percentile bins (n = ~1000 

genes) (Spearman’s rank; p < 2.2 x 10-16, rho = 0.99, n = 10). TAG usage is also 

correlated with intronic GC content (Spearman’s rank; p = 0.0014, rho = 0.89, n = 10). 

TAA frequency is negatively correlated with intronic GC content Spearman’s rank; p 

< 2.2 x 10-16, rho = -0.99, n = 10). As predicted by a gBGC model, we see the same 

trends in non-coding sequences. TAA frequency is negatively correlated with intronic 

GC content in both 5’ and 3’ UTR sequence (Spearman’s rank; both p < 2.2 x 10-16, 

both rho = -0.99, n = 10). TGA is positively correlated with intronic GC content in 

both 5’ and 3’ UTR sequence (Spearman’s rank; both p < 2.2 x 10-16, both rho = 1, n 

= 10). TAG is uncorrelated with intronic GC content in both 5’ (Spearman’s rank; p = 

0.10, rho = 0.55, n = 10) and 3’ UTR sequence (Spearman’s rank; p = 0.61, rho = 0.19, 

n = 10). Analysis on a gene-by-gene basis (instead of using binned data) using linear 

regression models supports these conclusions and the same trends in stop codon usage 

can be seen in intronic sequence against GC3 (GC3 being used in this circumstance as 

intronic stop usage predicted by intronic GC would be non-independent; S1 Table). 

This is strong evidence that the trends in canonical stop usage are approximately the 

same as the trends in stop usage outside of the canonical termination context.  

 

 
Fig 1. Stop codon frequencies (relative to the usage of all stops) at the canonical stop 

site, in the 5’ UTR, and in the 3’ UTR at ten equal sized bins of various intronic GC 
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contents in the genome. TAA frequency is negatively correlated with intronic GC 

content in all three sequences (Spearman’s rank; all p < 2.2 x 10-16, all rho = -0.99, n 

= 10). TGA is positively correlated with intronic GC content in all three sequences 

(Spearman’s rank; all p < 2.2 x 10-16, rho = 0.99 for CDS, rho = 1 for both UTRs, n = 

10). TAG usage is positively correlated with intronic GC content at the canonical stop 

site (Spearman’s rank; p = 0.0014, rho = 0.89, n = 10) but is uncorrelated with intronic 

GC content in both 5’ (Spearman’s rank; p = 0.10, rho = 0.55, n = 10) and 3’ UTR 

sequences (Spearman’s rank; p = 0.61, rho = 0.19, n = 10). Standard error bars 

calculated within each bin are extremely small and hence not shown. 

 

High TGA usage is strongly predicted by high recombination rate 

 

Biased gene conversion can explain a strong correlation between the local 

recombination rate and substitution-derived GC* in primates (Meunier and Duret 

2004; Duret and Arndt 2008), GC* here being the predicted fixation bias determined 

equilibrium value rather than a non-equilibrium observed value. Similarly, such a 

model could predict high TGA usage in domains of high recombination. If TAA is 

optimal, the selection would not predict this as Hill-Robertson interference predicts 

more efficient selection with higher recombination rates.  

 

To consider the effect of recombination on stop codon usage we consider both local 

instantaneous measures of recombination (from the HapMap 2 project, see methods) 

and broader scale analysis. The disadvantage of the former is that local recombination 

rates are not stationary over evolution time so current estimates need not reflect the 

past-history that influences stop codon usage. One problem with the latter is low 

samples size. Indeed, genome segments with consistently high recombination rates 

that could make for an ideal test are the pseudoautosomal regions (PAR1 and PAR2). 

However, there are few pseudoautosomal genes. As predicted by the gBGC model 

these regions have high GC content relative to the chromosome average, reportedly 

48% in PAR1 compared to 39% in the rest of the X chromosome (Blaschke and 

Rappold). In support of the gBGC model explaining high TGA usage, we also find 

that TGA is used much more often in PAR1 genes (71.4%, using one candidate 

transcript per gene annotated in this region) compared to the genome wide average 

(52.4%). Statistical comparison of TGA usage between these two values is, however, 
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underpowered due to there being a low number of annotated genes which we may 

extract (n = 14). 

 

A better “gross” scale analysis is to consider chromosome size as smaller 

chromosomes are associated with higher recombination rate per bp (Pessia, et al. 

2012). As predicted by the gBGC model in the human genome, we find autosomal 

size (bp length) to be negatively associated with GC content (Spearman’s rank; p = 

0.0078, rho = -0.56, n = 22) and TGA usage (Spearman’s rank; p = 0.0094, rho = -

0.55, n = 22) (S1 Fig).  

 

To test whether local recombination rate is predictive of stop codon usage in humans 

we employ logistic regression modelling considering all genes, using local 

recombination rate as the independent variable. Here we consider the recombination 

rate which for humans is valid as gBGC associated non-crossover and crossover events 

are highly correlated (Williams, et al. 2015). We find that high recombination rate is 

significantly predictive of higher TGA usage (coefficient = 0.017, p = 0.023) and 

lower TAA usage (coefficient = -0.046, p = 1 x 10-6), these being the directions 

predicted by the gBGC hypothesis. Indeed, we find the same trends in non-CDS 

sequences when using linear models to predict trinucleotide frequencies as TAA, 

TGA, and TAG may appear more than once (unlike at the canonical stop). High 

recombination rate significantly predicts higher TGA trinucleotide frequency in the 5’ 

UTR (coefficient = 0.0032, p = 0.012), in the 3’ UTR (coefficient = 0.0053, p < 2.2 x 

10-16), and in intronic sequence (coefficient = 0.0054, p < 2.2 x 10-16). It also 

significantly predicts lower TAA trinucleotide frequency in the 3’ UTR (coefficient = 

-0.0050, p = 3.5 x 10-14) and in intronic sequence (coefficient = -0.0043, p < 2.2 x 10-

16), but not in the 5’ UTR where the regression coefficient is negative but not 

significant (coefficient = -0.0011, p = 0.28). These results are all consistent with gBGC 

promoting TGA over TAA in domains of high recombination both at the focal stop 

codon and elsewhere. 

 

Net flux to TGA stop codons is highest in GC rich and highly recombining genes 

 

(i) Increased TAA→TGA substitution in GC-rich regions is common to 

mammalian and avian lineages, but not lineages that possess weak gBGC 
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The above considers observed patterns of usage. We can also consider evidence from 

recent substitution events. Here we consider flux, meaning the substitution rate from 

state A to state B (e.g. TAA→TGA) per occurrence of state A in the ancestral 

sequence. To calculate flux rates we consider species trios, assign an ancestral state to 

the internal node by maximum likelihood and calculate rates of change from this 

ancestral state to a derived state per incidence of the ancestral state. This is comparable 

to a prior method (Belinky, et al. 2018), excepting for our use of likelihood instead of 

parsimony.  

 

The gBGC hypotheses predicts that TAA→TGA flux in the mammalian lineage 

should be highest in GC-rich isochores. More generally, it predicts that in species with 

gBGC strong and regionalised enough to cause high variation between genes in GC 

content, that the TAA→TGA flux should be especially accentuated in GC-rich 

domains. By contrast, species less influenced by gBGC should not show similar 

accentuation of TAA→TGA flux. We thus test whether the intragenomic difference 

in TAA<→TGA flux between the highest and lowest by GC is greater when the 

difference between the mean GC of the two partitions (high GC, low GC) is itself 

greater or when the intragenomic variance in GC is higher.  

 

From the TAA→TGA and TGA→TAA flux rates, we may then adapt the formulae 

proposed by Long, et al. (2018) to calculate TGA content from these flux rates alone, 

pTGA (see methods). This provides a single metric of the relative substitution rate 

between the two stop codons. This we do for the top (GC-rich) and bottom (GC-poor) 

50% of genes by GC content, assayed by calculating the intronic GC content of each 

orthologue from one candidate species from the trio, to determine whether the 

TAA→TGA rate increases with GC pressure.  

 

We calculate the difference in pTGA between GC-rich and GC-poor genes for 4 

mammalian set of species trios (within primates, mice, dogs, and cows) and 4 non-

mammalian species trios (birds, nematodes, flies, and plants) (see 

https://github.com/ath32/gBGC for species lists). To assay the extent of pTGA 

deviation we calculate (O-E)/E where O is pTGA of the GC rich set and E is that for 

the GC poor set of genes. To assign significance, we compare observed pTGA 
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deviation scores to null simulations that calculate pTGA for two null groups of genes 

according to the net genomic TAA→TGA and TGA→TAA rates (see methods). 

 

Consistent with the hypothesis that gBGC drives high TGA usage in GC rich 

isochores, pTGA is higher in GC-rich genes than GC-poor genes across the four 

mammalian lineages. The difference between the gene groups is greater than expected 

by chance in all four cases (primates: p = 0.014, dog: p = 0.040, cow: p < 0.0001, 

mouse: p < 0.0001). Of the non-mammalian lineages, pTGA in GC rich genes exceeds 

pTGA in GC poor genes in birds (p = 0.174), flies (p = 0.427), and nematodes (p = 

0.231) but none of the observed differences are significantly different to null. Probably 

due to the selfing biology of Arabidopsis (Marais, et al. 2004), pTGA is lower in GC-

rich genes than GC-poor genes (nevertheless, p = 1 using the same test as the other 

lineages, Fig 2h).  

 

 
Fig 2. Predicted TGA usage (pTGA) derived from TAA→TGA and TGA→TAA flux 

for the top 50% of genes by GC content and bottom 50% of genes by GC content in 

four mammalian (a-d) and four non-mammalian (e-h) lineages. pTGA is calculated as 

1/(1+(TGA→TAA/TAA→TGA)) and hence represents the balance between the two 

dominant stop codon flux events. Bootstrapped 95% confidence intervals are 

miniscule and hence not shown. 
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The prediction of the gBGC model is that the between-species variation in 

intragenomic flux difference should be predicted by the extent of GC variation within 

the genome. For this analysis, we calculate GC variation as the difference in mean 

intronic GC content between the two sets of genes analysed in Fig 2 and call this DGC. 

We also estimate the variance in GC3 between all genes. Consistent with the gBGC 

hypothesis for explaining TGA usage trends, analysing our eight lineages we find 

pTGA deviation is significantly correlated with both DGC (Spearman’s rank; p = 

0.046, rho = 0.74, n = 8) and genomic variance in coding sequence GC3 (Spearman’s 

rank; p = 0.028, rho = 0.79, n = 8) (Fig 3). 

 

 
Fig 3. Predicted TGA usage (pTGA) deviation between the top 50% and bottom 50% 

of genes by GC content as a function of (a) the difference in GC content between the 

two gene bins, “delta GC”, and (b) coding sequence GC3 content variance across a 

sample of four mammalian and four non-mammalian lineages. pTGA is calculated as 

1/(1+(TGA→TAA/TAA→TGA)) and hence represents the balance between the two 

dominant stop codon flux events. pTGA deviation is calculated as (O-E)/E where O is 

the pTGA score of GC rich genes and E is the pTGA score of GC poor genes. pTGA 

deviation is positively correlated with both delta GC (Spearman’s rank; p = 0.046, rho 

= 0.74, n = 8) and GC3 variance (Spearman’s rank; p = 0.028, rho = 0.79, n = 8). 

Bootstrapped error bars on the x and y axes are miniscule and not shown. 
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This suggests that species with pronounced TAA→TGA flux in their GC-rich domains 

(mammals) also tend to have more variation between their GC richest and GC poorest 

genes. Broadly these results accord with what is known about gBGC across these 

species. The (O-E)/E values are higher in mammals (primates = 0.221, cows = 0.365, 

dogs = 0.213, mice = 0.700) and birds (birds = 0154) than in invertebrates (nematodes 

= 0.015, fly = 0.097) and plants (Arabidopsis = -0.318). Birds are expected to resemble 

mammals as they too have pronounced gBGC (Duret and Galtier 2009; Smeds, et al. 

2016). However, small chromosomes and associated high recombination rates 

probably mean that most genes in birds are subject to considerable gBGC, it being 

notable that the predicted pTGA is high for both gene groups (Fig 2e). Non-isochore-

containing genomes of invertebrates may possess AT→GC biased gene conversion, 

albeit with much weaker (Harrison and Charlesworth 2011; Robinson, et al. 2014; Liu, 

et al. 2018) or less regionalised effects. Arabidopsis being an almost obligate inbreeder 

is expected to be most affected by mutation bias and least affected by gBGC (Marais, 

et al. 2004).  

 

(ii) TAA→TGA flux is higher in highly recombining genes than lowly 

recombining genes 

 

Just as gBGC predicts TAA→TGA flux to positively covary with GC content, as 

gBGC is coupled tightly to recombination it also predicts a positive relationship with 

recombination rate. To assess this, using data from the HapMap2 project, we first 

define highly recombining genes (HRGs) as the top 50% of genes by recombination 

rate and lowly recombining genes (LRGs) as the bottom 50%. Adapting our stop 

codon flux methodology, we then calculated the flux rates for TAA→TGA and 

TGA→TAA for HRGs and LRGs and used these rates to calculate pTGA for both 

groups (Fig 4). Significance was once again determined by comparing the observed 

pTGA deviation to those observed in null simulations that assume uniform genomic 

TAA→TGA and TGA→TAA rates. Consistent with the hypothesis that gBGC drives 

high TGA usage in highly recombining regions, pTGA is higher in HRGs than LRGs, 

(p=0.049). The pTGA deviation score between HRGs and LRGs is 0.172, slightly less 

than observed between GC rich and GC poor genes in the same genome (0.221). 
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Fig 4. Predicted TGA usage (pTGA) derived from TAA→TGA and TGA→TAA flux 

for the top 50% of genes by recombination rate (HRGs) and bottom 50% of genes by 

recombination rate (LRGs) in the human genome. pTGA is calculated as 

1/(1+(TGA→TAA/TAA→TGA)) and hence represents the balance between the two 

dominant stop codon flux events. Bootstrapped confidence intervals are miniscule and 

hence now shown. 

 

No evidence to support TGA optimality in eukaryotes 

 

The evidence from non-termination sites supports the hypothesis that, whatever causes 

unusual TGA usage trends in most mammals, it cannot be explained by selection on 

the focal termination codon alone. Also, as predicted by the gBGC model, the 

TAA→TGA flux is stronger in domains of high GC/high recombination. Nonetheless, 

to have a case that gBGC acts against the direction of selection we need also to be able 

to confident that selection does not prefer TGA. Outside of the focal termination codon 

this is hard to assay but at the focal stop codon we can gather further evidence.  
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First, selection on any genic feature is classically assumed to predict that usage of that 

feature will be most common in highly expressed genes (Xu and Zhang 2018; Li and 

Zhang 2019; Xu, et al. 2019) as selection is strongest in highly expressed genes. Over-

usage of “optimal” codons in highly expressed genes is a case in point (Duret 2002; 

de Oliveira, et al. 2021). In the current context, the opportunity for deleterious read-

through (or other stop codon error) should scale linearly with the amount of protein 

product, so protein levels are a good metric for assaying strength of selection on the 

stop codon. Hence, if TGA usage were to be explained by selection, TGA usage is 

predicted to positively correlate with expression level. Prior data appeared to 

contradict this, suggesting that human highly expressed genes (HEGs, the opposite 

being LEGs) preferentially use TAA stop codons (Trotta 2016). However, possible 

covariation between expression level and GC content (Lercher, et al. 2003; Kudla, et 

al. 2006; Mordstein, et al. 2020) could disturb the ability to make correct inference. 

We ask whether TAA or TGA are over employed in highly expressed genes 

controlling for GC content.  

 

Second, the efficiency of both selection (Ohta 1992; Lynch 2007) and gBGC (Weber, 

et al. 2014; Galtier 2021) are expected to vary with the effective population size (Ne), 

both being more effective when Ne is high. The gBGC effect is however complicated 

by the fact that selection may also modify the effect of gBGC, reducing its impact if 

deleterious (Galtier 2021), such selection in turn also being dependent on Ne. Most 

evidence suggests that gBGC is more influential when Ne is high (but see also (Galtier, 

et al. 2018)). However, we know the direction of gBGC, and it must act against TAA. 

Thus, across eukaryotes our expectation is that if TAA is optimal (and gBGC relatively 

less important), its usage will increase with Ne. However, if gBGC is unexpectedly 

important outside of mammals or if TGA is optimal then TGA will increase with Ne. 

We previously observed this not to be the case, with TAA increasing with Ne (Ho and 

Hurst 2020). However, the possibility remains that for lowly expressed genes TGA 

might be optimal and causing the focal termination codon trends (despite similar 

behaviour in 3’ UTR). We test this extension. 

 

(i) High expression level strongly predicts high TAA usage controlling for GC 

 



 159 

To test the predictive power of expression level on stop codon usage, we consider a 

series of logistic regression models. Each gene was assigned a 1 (present) or 0 (absent) 

in three different columns, TAA, TGA and TAG, depending on its stop codon identity. 

These scores were included as the dependent variable in several logistic regression 

models, with protein abundance (as a proxy for gene expression, for which we employ 

the natural log to promote a normal distribution) an independent predictor. We control 

for GC content by fitting multivariate models that include GC3 content (Table 1). 

Collinearity between GC content and protein abundance need not be a concern as the 

computed variance inflation factors are very low (less than 1.1 for all models).  

 

Table 1. Results from multivariate logistic regression analysis that assess the extent 

to which gene expression and gene coding sequence GC content can predict stop 

codon usage in mammalian genes.  

 

 
 

Consistent with prior observations of stop codon covariance with GC content 

(Korkmaz, et al. 2014; Trotta 2016), we find TAA usage to be negatively (indicated 

by the sign of the coefficient), and TGA to be positively, correlated with GC3 in all 

four species trios tested. By the same coefficient analysis, we find that high TAA stop 

codon usage is predicted by high expression level in all four mammalian lineages 

(Trotta 2016), contra to the possibility that TGA has become the favoured stop codon 

in mammals. Both protein abundance and GC3 are consistently significant predictors 

of stop codon usage in our three mammalian lineages. In 8/8 models, the coefficients 

of protein abundance are consistent with TAA preference over TGA in highly 

expressed genes. Assuming that gene expression levels in orthologous genes are 

stable, stop codon usage reliably informs us of the stop that is preferred by selection.  

 

(ii) Across taxa, lowly expressed genes also prefer TAA over TGA 

 
Stop Parameter Primates Dog Cow Mouse 

Coef. Std. 

Error 

p-

value 

Coef. Std. 

Error 

p-

value 

Coef. Std. 

Error 

p-

value 

Coef. Std. 

Error 

p-

value 

TAA Log(PxAbund

ance) 

0.023 0.007 6E-4  0.071 0.014 4E-7 0.071 0.008 2E-16 0.013 0.006 0.039 

GC3  -0.038 0.001 2E-16 -0.033 0.002 2E-16 -0.040 0.002 2E-16 -0.034 0.002 2E-16 

TGA Log(PxAbund

ance) 

-0.015 0.006 0.009 -0.039 0.012 0.001 -0.050 0.007 3E-13 -0.006 0.005 0.273 

GC3 0.019 0.001 2E-16 0.018 0.002 2E-16 0.022 0.001 2E-16 0.019 0.001 2E-16 
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While the above analyses provide support for the hypothesis that TAA, and not TGA, 

is preferred in highly expressed genes there is however, a further possibility, namely, 

that while TAA may well be preferred by HEGs, TGA may be optimal in LEGs. If 

this were to be the case, TGA might increase in genome-wide usage if most genes are 

not “highly” expressed. This we test by phylogenetically generalized least squares 

(PGLS) regression analysis that compares TGA enrichment (at the primary stop codon 

compared to downstream, to remove any GC covariance) in LEGs to effective 

population size (Ne) for several eukaryotic species controlling for phylogenetic 

topology (see PGLS in methods).  

 

We find Ne to be a significant negative predictor of TGA enrichment in LEGs (PGLS; 

estimate = -0.060, p = 0.012). By contrast, TAA enrichment in LEGs is positively, if 

not significantly, associated with Ne (PGLS; estimate = 0.073, p = 0.078). When we 

consider HEGs, Ne positively and significantly correlates with TAA enrichment 

(PGLS; estimate = 0.059, p = 0.0014) but is negatively, if not significantly, associated 

with TGA enrichment (PGLS; estimate = -0.044, p = 0.17). These results are not 

consistent with a selective preference for TGA stop codons at any expression level. 

These same results also indicate that gBGC is not an important force in most of the 

species examined as gBGC should also be more influential when Ne is high and force 

increased usage of TGA (Weber, et al. 2014).  

 

TAA→TGA flux cannot be explained by mutation bias in humans 

 

The above evidence indicates that whatever causes TGA conservation it is neither 

specific to the termination site nor explained by selection for termination efficiency at 

the termination site. In principle the trends we have seen could be explained by 

mutation bias. However, mutation bias tends to be GC→AT biased so should favour 

TAA not TGA (Smith and Eyre-Walker 2001; Lynch, et al. 2008; Hershberg and 

Petrov 2010; Long, et al. 2018; Smith, et al. 2018). Nonetheless the possibility remains 

either that some more complex k-mer bias might exist or that mutation bias varies by 

isochore. Indeed, nucleotide pools can vary through the cell cycle potentially altering 

local mutation bias (Wolfe, et al. 1989). Moreover, CpG to TpG rates are high in 

humans (Duncan and Miller 1980; Sved and Bird 1990; Fryxell and Moon 2005; 
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Roberts and Gordenin 2014) and thus creation of new stop codons away from the focal 

stop (e.g. within 3’ UTR) via CpGA to TpGA could be common. We could imagine 

for example that focal stop codons commonly mutate to a sense codon this being 

rescued by a 3’ UTR pre-existing stop. If so, stop codon usage could be determined 

by mutational processes away from the focal termination codon. The same model does 

not however predict TAA→TGA flux at orthologous termination sites. That CpG 

deamination rate may also correlate negatively with GC content (Fryxell and Moon 

2005) also renders this an unlikely explanation.  

 

We consider the relative rates of human germline de novo mutations derived from 

family trio data (Jonsson, et al. 2017). From the mutation rate of each class of 

mutational event we calculate rates per occurrence of the ancestral nucleotide and 

generate a mutational matrix. From this we calculate the neutral equilibrium 

frequencies of all nucleotides (denoted N*), dinucleotides, or codons (see methods). 

From N* predictions we may predict the equilibrium GC frequency (GC*). Under the 

assumption that nucleotide contents are stationary, deviation of the observed 

nucleotide content from predicted equilibrium provides an indication of the direction 

of any fixation bias (Long, et al. 2018). However, equilibrium status is disputed (Sun, 

et al. 2019) and the predicted equilibrium can vary with complexity of the mutational 

model (mono-nucleotide, di-nucleotide etc).  

 

Consistent with previous analyses (Smith and Eyre-Walker 2001; Lynch, et al. 2008; 

Hershberg and Petrov 2010; Long, et al. 2018; Smith, et al. 2018), from a dataset of 

108,778 observed de novo mutations we find an overall GC→AT skewed mutational 

profile that hence fails to predict observed stop usage (S2 Table). Might, however, 

variation in mutation bias between isochores explain increasing usage of TGA and 

decreasing usage of TAA as domains become more GC-rich? To assay whether the 

above mutational profile covaries with intronic GC in a similar way to stop codon flux, 

we first repeat the above analysis for mutations found in different isochore GC 

contents (see also Smith et al. Smith, et al. (2018)). For each mononucleotide change, 

the local GC content (10kb window) was calculated. Mutations were then ordered by 

GC and split into 10% percentile bins of equal size (~10,000 mutations each). From 

each of these bins and their associated mutational spectra and nucleotide contents, we 

recalculate GC* and TGA* (Fig 5, orange points). We find our GC* and TGA* 
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predictions for each bin to be consistent between isochores of different GC content, 

indicating that mutation bias is not driving the trends we see in TGA usage nor 

TAA→TGA stop codon flux – and see also Smith et al. Smith, et al. (2018). If 

anything, mutation bias is increasingly GC→AT biased at high GC as the local GC 

content around de novo mutations is negatively correlated with their predicted GC* 

(Spearman’s rank; p = 0.024, rho = -0.72, n = 10) and TGA* (Spearman’s rank; p = 

0.035, rho = -0.68, n = 10). 

 

 
Fig 5. Predicted GC equilibrium (GC*) and relative TGA equilibrium (TGA*) 

frequencies across isochore GC contents derived from mononucleotide (orange) and 

dinucleotide (purple) mutational matrices. Standard deviations for the datapoints are 

minuscule and hence error bars are not shown (~0.5% for mononucleotide estimates 

of TGA* and GC*, ~0.5% for dinucleotide estimates of TGA* and ~0.1 for 

dinucleotide estimates of GC*). 

 

The above approach makes no allowances for more complex dinucleotide effects nor 

the possibility that some stop codons might be generated by mutations within CDS or 

within 3’ UTR sequences when the focal stop mutates. Given that there is 

hypermutability at CpG residues, leading to TpG residues (Duncan and Miller 1980; 

Sved and Bird 1990; Fryxell and Moon 2005; Roberts and Gordenin 2014) that are 

likely to affect the mutation-drift equilibrium frequency of TGA, we expand our 

analysis to consider the 16x16 dinucleotide mutational matrix. We also apply a model 
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in which we generate null sequences from the equilibrium mutational matrix in a 

Markov process, hence allowing for within UTR mutational events. We consider the 

relative frequencies of the three stop codons in such sequence and how they vary by 

local GC. Consistent with the mononucleotide results, we find dinucleotide-derived 

GC* and TGA* to be lower than observed in the genome (40.9% and 52.4% 

respectively) and, importantly, flat across GC contents (Fig 5, purple points). While 

TGA* derived from the dinucleotide matrix exceeds TGA* derived from the 

mononucleotide matrix this is probably as a consequence of permitting CpG 

hypermutation generating potentially premature stop codons. We conclude that the 

absence of evidence for increasing GC* with GC content strongly argues against 

mutation bias as an explanation for higher TAA→TGA flux and higher TGA usage in 

GC-rich isochores.  

 

Mutation bias predicts trinucleotide usage in GC poor domains and TAG rarity 

 

Above we have generated a mutational expectation for all trinucleotides but focused 

on TGA. This allows us to ask a series of further questions. For example, for all 

trinucleotides might a mutational null match what we see in GC poor domains, as 

expected if these are less subject to gBGC? In addition, can mutation explain any 

trends in stop codon usage in GC poor domains, for example the observation that TAG 

is underused compared with TGA?  

 

We find that observed trinucleotide frequencies from GC poor sequences (the bottom 

20% of genes by GC content) are accurately predicted by a GC poor mutational matrix 

(derived from the bottom 20% of de novo mutations by surrounding 10kb GC content) 

for all sequence that isn’t CDS (r2 > 0.9; Figure 6). This strongly supports the 

hypothesis that mutation bias alone may explain trinucleotide trends in GC poor 

domains outside of the coding context. In addition, while one can always consider 

more complex k-mer dependent mutational models, our extension from dinucleotides 

rates appears to be robust. Importantly, in such GC poor isochores TAG equilibrium 

is lower than TGA equilibrium (S2 Fig). This indicates mutation bias operates 

differently on the two, going some way to explain why TAG and TGA behave 

differently. 
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Figure 6. Observed (a) CDS, (b) 5’ UTR, (c) 3’ UTR, (d) intronic, (e) ncRNA, (f) 

cis regulatory element (CRE) trinucleotide frequencies as a function of the 

expected frequencies of the same trinucleotides derived from a dinucleotide 

mutational matrix. Expected frequencies were calculated simulated DNA sequences 

derived from dinucleotide equilibrium frequencies. Dinucleotide frequencies were 

calculated from a sample of de novo mutations taking place in the bottom 20% of 

sequences by GC content to avoid potential GC-coupled fixation biases. Expected 

frequencies accurately predict what is seen in real CDS sequence (linear regression; p 

= 7.7 x 10-15, adjusted r2 = 0.62), 5’ UTR sequence (linear regression; p < 2.2 x 10-16, 

adjusted r2 = 0.90), 3’ UTR sequence (linear regression; p < 2.2 x 10-16, adjusted r2 = 

0.91), intronic sequence (linear regression; p < 2.2 x 10-16, adjusted r2 = 0.90), ncRNA 

sequence (linear regression; p < 2.2 x 10-16, adjusted r2 = 0.90), and CRE sequence 

(linear regression; p < 2.2 x 10-16, adjusted r2 = 0.93). 

 

gBGC predicts deviations from mutational expectations for all trinucleotides 

 

The previous analysis suggests that in low GC domains k-mer trends are well predicted 

by mutation bias alone (Figure 6). By contrast, in GC rich domains, there exists a 
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substitutional bias to TGA that is incompatible with mutation bias alone (Figure 5). Is 

the TAA→TGA fixation bias in high GC domains illustrative of a broader pattern? 

Were gBGC mimicking purifying selection we expect that GC rich trinucleotides 

should be most deviant from their mutational null in GC-rich domains. We hence 

extend the above analysis to consider the extent to which all trinucleotides deviate 

from mutational equilibrium as a function of their isochore of residence. In this 

instance, however, we cannot be confident that the GC-rich residue is selectively 

deleterious (as with TGA). Moreover, even when optimal codons are known to be GC 

ending selection at exon ends can commonly be in the opposite direction to enable 

accurate splicing (Warnecke and Hurst 2007), adding complexity. 

 

Using mutational profiles from the relevant isochore, we calculate trinucleotide 

frequencies that represent our mutational null and compare these to observed 

trinucleotide frequencies in the genome. To test the hypothesis that a fixation “boost” 

in GC-rich isochores acts differently on GC-rich trinucleotides, we calculate a fixation 

boost metric. Specifically, we first calculate a (Observed-Expected)/Expected score 

for the top 20% of sequences by GC content, where expected is the mutational 

equilibrium frequency derived from the top 20% of de novo mutations assaying their 

surrounding 10kb GC content. This metric we term deviation 1, or D1 for short. We 

then repeat this for the bottom 20% of sequences by GC content using their equivalent 

set of de novo mutations, receiving D2. Given the above results (Fig 6), we expect the 

bottom 20% to be closest to mutation equilibrium, hence having a low D2 score. By 

contrast if there is a GC-correlated fixation bias, D1 should be high for the GC-rich 

trinucleotides. We thus consider, for each trinucleotide, the difference between D1 and 

D2 values, this reflecting the shift in fixation process associated with domains of high 

GC. Using this metric, trinucleotides may be ranked by the “boost” they receive from 

GC-coupled fixation bias within their GC class. Thus, we classify all trinucleotides 

into one of four classes by GC% (0%, 33%, 66%, 100%). Within the zero class are 

trinucleotides with no G or C (e.g., AAA, ATA, TTA) and within the 100% class by 

contrast are those with no A or T (e.g., GGC, GGG), for example.  

 

We find that the more GC-rich the class of trinucleotides the more they exceed their 

mutational equilibrium in high GC isochores (0% < 33% < 66% < 100%) (for statistics 

see Figure 7). This strongly supports the notion that the trinucleotide content of 
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isochores derives from a fixation bias, rather than mutation bias, favouring GC 

residues, as gBGC would predict. More generally then, we have strong reason to 

suspect the gBGC-mediated fixation bias causes false signals of purifying selection at 

GC-rich residues in GC-rich isochores that extend far beyond the specific context of 

TAA→TGA flux.  

 

We assess this possibility a second way by considering flux between all two-fold 

synonymous codon pairs, all ending G:A or C:T, in genes of increasing recombination 

rate. Considering all two-fold synonymous codon pairs en masse, we find that the flux 

to the GC-rich codons are most strongly favoured at high recombination rates, 

consistent with possible gBGC action (S3 Fig). Before Bonferroni correction, this is 

true for 10 of the 12 two-fold synonymous codon pairs individually (Binomial test 

with null probability = 0.5; p = 0.039). This too is supportive of a gBGC-mediated 

fixation bias that is much more general than the stop codon example. Unlike with TAA 

and TGA flux, however, we can’t in these examples be sure which (if either) is the 

selectively optimal state. The two exceptions are Leucine (TTA<->TTG) and 

Glutamine (CAA<->CAG) where the ratio of flux increasing GC and decreasing GC 

is invariant to recombination rate (S4 Fig). That both CAA<->CAG and TAA<->TAG 

are unrepresentative of the more general trend is noteworthy. 
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Figure 7. Deviation scores, (O-E)/E, describing the difference in GC-coupled 

fixation “boost” for the four GC classes of trinucleotides. Deviation between fixed 

and mutational equilibrium frequencies for each trinucleotide in the top 20% of 

sequences by GC content, D1, was calculated as (Observed-Expected)/Expected, 

where expected is the mutational equilibrium frequency. This was repeated for the 

bottom 20% of sequences by GC content to receive D2. As we predict GC-rich 

sequences to be subjected to stronger biased gene conversion, we predict D1 > D2. To 

compare D1 and D2 we once again calculate (Observed-Expected)/Expected, which 

we dub the GC-coupled fixation “boost”. In all sequences, GC content is positively 

correlated with this “boost” metric (Spearman’s rank; all p < 2.2 x 10-16; rho = 0.92 in 

CDS, rho = 0.94 in 5’ UTR, rho = 0.90 in 3’ UTR, rho = 0.87 in introns, rho = 0.92 in 

ncRNA, rho = 0.93 in CREs, n = 64 in all tests). 

 

Trinucleotides have stereotypical fixation biases  

 

We have observed that high TGA usage and high TAA→TGA fixation bias is 

especially common in GC-rich isochores, but TAG usage does not behave in the same 
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way. Is this difference between two GC-matched trinucleotides particular to TAG and 

TGA? The CAA→CAG result would suggest not. We can address this by considering 

within GC-class variation in the fixation “boost” scores calculated above. 

 

Not only do we find substantial variation between trinucleotides of the same class (S5 

Fig), but we find the ranking within each GC class to be remarkably consistent 

between sequence types (5’ UTR, 3’ UTR, ncRNA, cis regulatory elements (CREs), 

introns) (Fig 8). We exclude coding sequence from this analysis to negate the impacts 

of coding selection. Within the most populated classes GC classes (33% and 66%), 

ranks are significantly correlated in all comparisons (Pearson’s method; all p < 0.01). 

This supports the hypothesis of a consistent isochore dependent fixation bias that acts 

differently on different trinucleotides of the same GC content. We note that the non-

expressed CRE versus intron comparison gives exceptionally high repeatability 

indicating that transcription coupled repair/mutation probably does not explain these 

trends.  
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Fig 8. Correlation analysis of trinucleotide ranks (by their gBGC “boost” metric) 

within the four GC classes (a) 0%, (b) 33%, (c) 66%, (d) 100%. Within the 33% and 

66% GC classes, ranks are significantly correlated in all comparisons (p < 0.01). This 

is not true of the 0% and 100% GC classes, correlation analyses within which are 

underpowered (n=8 trinucleotides in each class compared to 24 in the 33% and 66% 

classes). Correlation statistics were calculated using Pearson’s method. 

 

Within the TAG/TGA case study, we find TAG to be less “boosted” than other A, G, 

T-containing trinucleotides, second only to GTA trinucleotides (S6a Fig). By contrast, 

TGA is the most promoted by fixation bias, with the one exception of AGT in the 5’ 

UTR (S6a Fig). Fixation bias correlated with GC-content hence appears to contribute 

to the differences in frequency between TGA and TAG trinucleotides outside of, and 

possibly also within, the stop codon context. That TCA also receives a consistent 

higher GC-coupled fixation boost than TAC (S6b Fig) favours that the fixation bias is 

dependent on nucleotide context rather than stop codon functionality. We also recall 

that while high recombination rate favours flux to the GC-rich state at two-fold 
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degenerate sites, Glutamine (CAA→CAG) is one exception to this rule (S4 Fig). If 

CAA→CAG is suffering a similar fate to TAA→TAG this too would be supportive 

of a general nucleotide context-dependent trend in fixation bias affecting TAG rather 

than selection for termination efficiency. 

 

Discussion 

 

The assumption that sequence conservation implies purifying selection and hence 

optimality of the preserved sequence underpins many enterprises, from medical 

diagnostics to evolutionary analyses of the proportion of sequence that is functional. 

While there has been prior consideration that tests for positive selection might be 

impacted by gBGC mimicking selection’s signatures (Nagylaki 1983; Dreszer, et al. 

2007; Berglund, et al. 2009; Galtier, et al. 2009; Ratnakumar, et al. 2010; Corcoran, 

et al. 2017; Bolivar, et al. 2018), there has been less attention paid to the problem that 

it might also explain sequence conservation, despite this being a logical necessity 

(Harrison and Charlesworth 2011). We identified the case of stop codon usage in 

mammals as a test case because prior evidence suggested a contradiction: TAA looks 

to be optimal (as elsewhere) but TGA was nonetheless conserved. We reasoned that 

gBGC might explain this and resolve the exceptionalism of mammalian stop codon 

usage. Our data strongly support this. We see TGA usage is higher in GC-rich and 

highly recombinogenic domains, with the same trends also being seen in non-coding 

sequence. Increased TAA→TGA flux is also seen in GC rich regions and regions of 

high recombination. Multiple lines of evidence suggest that at the focal termination 

codon TGA is not optimal and hence that gBGC can act against the direction of 

selection. The results satisfy all criteria proposed by Duret and Galtier (2009) for 

differentiating gBGC from selection. Across species a greater flux of TAA→TGA in 

the GC richer genes is associated with a greater intragenomic variance in GC content, 

consistent with the above trends being predicted, broadly speaking, by the extent to 

which a species is isochoric. 

 

Is the TAA/TGA enigma a special case or indicative of a more general trend? We 

observe that deviation of all trinucleotides from mutational equilibrium in GC-rich 

domains is strongly predicted by their GC content. The TAA→TGA trend in high GC 

domains can be considered a special example. More generally then, we have strong 
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reason to suspect the gBGC mediated fixation bias will cause false signals of purifying 

selection at GC-rich residues in GC-rich isochores that extend beyond the specific 

context of TAA→TGA flux. This example is however unusual in that we have 

confidence that the substitutional process at the focal termination codon context forces 

conservation of a non-optimal codon, a trend that can be partly overcome by stronger 

selection for optimality in highly expressed genes.  

 

There is, however, another possibility to explain deviation from mutational 

equilibrium in domains of high GC, this being that some form of selection favours 

GC-rich sequence. As Hill-Robertson interference (Hill and Robertson 1966) is 

reduced in domains of high recombination selection should be more effective in such 

domains, causing a fixation bias. One can imagine many possible modes of such 

selection, for example on DNA structure (Basham, et al. 1995; Vinogradov 2001; 

Babbitt and Schulze 2012) or on nucleosome positioning (Warnecke, et al. 2008; 

Babbitt and Cotter 2011; Prendergast and Semple 2011; Langley, et al. 2014). Unlike 

gBGC that predicts GC enrichment, any selection model must, after the fact, explain 

why GC-rich trinucleotides are favoured. Such models are unconvincing for several 

reasons.  

 

First, in the current context TGA is not selectively favourable at the focal termination 

codon but nonetheless conserved. This suggests we must evoke a force other than 

selection to explain TGA conservation (assuming selection on stop codon 

functionality to be the strongest mode of selection at the focal stop). Why we should 

not similarly evoke the same force outside of the termination context seems like 

special pleading. Second, that the GC biasing effect correlates with male not female 

recombination rates (Duret and Arndt 2008), suggests that the effects are not mediated 

by reduced Hill-Robertson interference (Duret and Arndt 2008).  

 

Third, the strength of selection (and associated load) in species with low Ne (mammals 

and birds) is problematic. Consider the hypothesis that TA dinucleotides could lead to 

accidental incidences of, for example, “TATA” boxes in eukaryotes and “Pribnow” 

boxes in bacteria (i.e. the TATAA motif). More generally, TA features in many key 

regulatory motifs that would be inappropriate in most DNA regions in both eukaryotic 

and prokaryotic genomes (Karlin and Mrazek 1997; Mrazek and Karls 2019). To date 
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this is probably the best (if not only) model for selection against TA in all taxa. This 

could, in principle, explain why TAG is underused compared with TGA. Indeed, 

within the trinucleotides with only A and T, ATA and TAT, the two that are core to 

TATA box, are consistently the two with the lowest “boost” (S6 Fig). In bacteria and 

archaea, the strength of selection against such spurious binding is estimated to be 

around Nes = -0.09 and thus within the range of nearly neutral mutations for these 

species (Hahn, et al. 2003). If then Escherichia coli’s Ne is of the order of 108 (Berg 

1996), then s must be ~-0.09/108 = -9 x 10-10. For a mutation to be under selection in 

humans s ~ 1/2 Ne must hold. In a species with Ne ~ 10,000 (e.g. humans) then this 

value of s (i.e. 1/20,000) is much greater than 9 x 10-10 estimated for selection against 

spurious binding. Thus, unless the selective cost of spurious binding is very much 

greater in humans than in bacteria, it is hard to see how selection can be efficient 

enough to remove point mutations that introduce spurious binding sites.  

 

We do not presume that mutation bias and selection have no role. Indeed, in GC-poor 

domains mutation bias appears to provide a robust fit to the observed trends and 

explains the differential usage of TAG and TGA. Further, highly expressed genes 

over-employ TAA. However, for a full explanation of TGA conservation, especially 

in GC-rich domains, we need to evoke some other force, of which biased gene 

conversion is a good possibility, not least because it predicts high GC trinucleotides 

should be given a fixation boost in GC-rich domains, as observed.  

 

We do not wish to claim that TAA is optimal for all genes. There could be many 

reasons that, for some genes, TGA is optimal. One possibility could be that TGA might 

be the least leaky in some contexts but as the experimental evidence contradicts this 

possibility (Cridge, et al. 2018), we don’t consider this reasonable. Alternatively, TGA 

may be TR-prone and “leaky”, but that leakiness is selectively favoured in some 

instances. High rates of TR may beneficially increase proteome diversity (Dunn, et al. 

2013). Indeed, a few examples of functional read-through have been described 

(Jungreis, et al. 2011; Schueren and Thoms 2016), though the commonality of this in 

mammals is unknown. Alternatively, read-through may be part of a gene regulatory 

mechanism (Yordanova, et al. 2018; Seoighe, et al. 2020). Indeed, the discovery of 

TGA conservation prompted speculation that TGA might be commonly optimal in 

humans as it enables novel gene expression control. Specifically, it was suggested that 
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ribosomes that read through the primary stop codon stall and form a queue from the 

next in-frame stop (or ribosome pausing factor), filling the space between the two 

stops and eventually infringing upon the 3’ end of the coding sequence itself. At this 

point, translation of this mRNA molecule is blocked (Yordanova, et al. 2018). The 

fact that readthrough occurs at a low (but not very low) rate thus allows the mRNA 

molecule to be translated a relatively tightly regulated number of times prior to 

degradation.  

 

Generally, however, it is unclear how any adaptive TR model might explain 

mammalian exceptionalism in stop codon usage. Given that TGA optimality cannot 

explain why TGA is also favoured in non-canonical stop contexts, the above 

arguments are, by Occam’s razor, not needed to explain general trends. Moreover, 

were there selection for TR, one might expect this to be common to all eukaryotes and 

therefore predict higher TGA usage in species with high Ne (not just mammals), but 

this isn’t seen (Ho and Hurst 2020). Instead TAA usage correlates positively with Ne 

(Ho and Hurst 2020), as expected if it is the optimal stop codon (although there are 

mechanisms that are rare in high Ne species but common in mammals, a high density 

of exonic splice enhancers to define intron-exon junctions being a case in point (Wu 

and Hurst 2015)).  

 

Why do trinucleotides of the same nucleotide content have different fixation 

boosts? 

 

Our evocation of gBGC to explain the general trends in GC rich domains is not a 

complete explanation. Importantly we see repeatable trends whereby GC-matched 

trinucleotides show consistent differences in levels of fixation bias “boost” in GC-rich 

isochores. For example, TAG is among the least “boosted” trinucleotides in the 33% 

GC class, compared to TGA which more highly exceeds its mutational equilibrium at 

high GC isochores. Similarly, TAG usage appears largely uncorrelated with local GC 

content. Any model (selection, mutation, or gene conversion) evoking a relationship 

between simple GC pressure and differences in nucleotide content cannot obviously 

account for a difference in boost between nucleotide matched trinucleotides (e.g. TAG 

and TGA).  
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Given the ability of our complex mutation bias model to predict trinucleotide usage in 

low GC domains (Fig 6), we assume that our mutation bias estimation in GC rich 

domains is also largely accurate. If so, complex mutation bias is unable to explain the 

repeatable boost scores (Fig 8). In principle there could be several remaining classes 

of explanation. First, selection might act differently on underlying di or trimers. For 

example, regarding TAG and TGA, selection on TA or AG residues may be different 

to that on TG or GA ones. We can find no convincing evidence for this that can explain 

the universality of TAG avoidance (see S1 Text). One also needs to evoke selection 

that is strong enough throughout the human genome, which appears unlikely for 

reasons given above. 

 

A further possibility is an interaction between complex mutation bias and gBGC 

making certain trinucleotides more liable to conversion owing to their relative 

commonality in populations. With a difference in mutational equilibria, the incidence 

of TAA/TAG meiotic heteroduplex mismatches (or sense/antisense ones to be more 

precise) is highly likely to be lower than that of TAA/TGA mismatches. Thus, gBGC 

may more commonly act on TAA/TGA. Overall, however, we see no correlation 

between our gBGC boost score and mutational equilibrium in any GC class of 

trinucleotides (Spearman’s rank; p > 0.05 for 0%, 33%, 66%, and 100% GC 

trinucleotides). Pairwise comparison of all possible trinucleotide combinations also 

indicates that the trinucleotide with the higher mutational equilibrium does not 

necessarily receive the higher boost (Binomial test with null probability = 0.5, p = 

0.17). This may reflect the fact that common trinucleotides are also more commonly 

substrates to be converted.  

 

Finally, like mutation, gBGC may be contingent on the local sequence context such 

that, for example TAG and CAG are relatively unaffected by gBGC, while TGA is 

affected. This could explain similar trends in bacteria and eukaryotes if, as is claimed, 

gBGC also operates in bacteria (Lassalle, et al. 2015). Complex specificity might be 

expected as many protein-nucleic acid interactions are contingent on local sequence 

context. For example, APOBEC3/A/B induced mutations account for many C→T and 

C→G mutations but occur predominantly in the context of TC[A/T] (Chen and 

MacCarthy 2017; Seplyarskiy, et al. 2017). More specifically, several DNA repair 

processes are known to be affected by local sequence context (Cai, et al. 2010) 
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including, at least in bacteria, mismatch repair (Mazurek, et al. 2009), the process 

underpinning gBGC. Here, sequence contexts that enhance localised DNA flexibility 

are associated with mismatch repair activation (Mazurek, et al. 2009) (see also: Isaacs, 

et al. 2002; Wang, et al. 2003). Similar evidence for a role of local DNA flexibility 

has been found in yeast (Isaacs, et al. 2002; Li, et al. 2019). The biological response 

elicited by CTG and CGG repeats in human trinucleotide repeat disorders may be 

mediated by their increased flexibility indicative of a relationship between local 

flexibility and trinucleotide content (Bacolla, et al. 1997). Evidence in humans for 

more effective repair of flexible DNA owing to local sequence context (Ruzicka, et 

al. 2019) suggests that an association between DNA mismatch repair and DNA 

flexibility may have relevance to understanding fixation biases in GC-rich domains. 

If flexibility is the core factor, then we might expect that a trinucleotide and its 

antisense should have similar boost scores as both feature in the same three base pairs 

of DNA (one on the Crick strand, the other on Watson). In our data, however, we find 

that the difference in gBGC “boost” between sense and antisense trinucleotides is no 

smaller than randomised trinucleotide comparisons (p > 0.05 regardless of the 

sequence analysed). This suggests that DNA flexibility alone cannot explain gBGC 

boost. Despite this, direct analysis of the sequence context associated with gBGC 

would be valuable. 

 

Methods 

 

General methods 

 

All data manipulation was performed using bespoke Python 3.6 scripts. Statistical 

analyses and data visualisations were performed using R 3.3.3. All scripts required for 

replication of the described analyses can be found at https://github.com/ath32/gBGC. 

While stop codons function at the mRNA level, we here analyse chromosomal DNA 

sequences and therefore refer to the three stops as TAA, TGA and TAG. 

 

Inferring stop codon switches from eukaryotic triplets 

 

Lists of one-to-one orthologous genes were downloaded for a diverse variety of 

species triplets from the main Ensembl repository (release 101), Ensembl plants 
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(release 46), or Ensembl metazoan (release 46): (1) primates; Homo sapiens, Otolemur 

garnettii, Callithrix jacchus, (2) cows; Bison bison bison, Bos grunniens, Bos taurus, 

(3) dogs; Canis lupus familiaris, Ursus americanus, Vulpes vulpes, (4) mice/rodents; 

Mus musculus, Mus spretus, Rattus norvegicus, (5) birds; Gallus gallus, Anas 

platyrhynchos platyrhynchos, Meleagris_gallopavo, (6) flies; Drosophila 

melanogaster, Drosophila pseudoobscura, Drosophila simulans, (7) nematodes; 

Caenorhabditis briggsae, Caenorhabditis remanei, Caenorhabditis elegans, (8) 

plants; Arabidopsis halleri, Arabidopsis lyrata, Arabidopsis thaliana. Orthologous 

genes were extracted from the respective genomes using whole genome sequence and 

gene annotation data downloaded from the same sources. Genes were filtered to retain 

genes with CDS length divisible by 3, no premature stop codons, and stop codons 

TAA, TGA or TAG. Genes from each species triplet that met our quality controls were 

aligned using MAFFT with the -linsi algorithm (Katoh, et al. 2005).  

 

Rather than using parsimony as done previously (Rogozin, et al. 2016; Belinky, et al. 

2018), stop codon switches were reconstructed using a maximum likelihood approach. 

For each species triplet, ancestral nucleotide states for the internal node between the 

two ingroups were inferred by maximum likelihood using IQTree v2.1.2 with the -asr 

flag (Nguyen, et al. 2015; Minh, et al. 2020). This analysis does have one limitation 

in that we do not control for the possibility of parallel substitutions, however we 

assume this effect to be small. To calculate stop codon flux rates, we compute the 

inferred ancestral stop codon state at the internal node and calculate transition from 

this ancestral state to a derived state (per incidence of the ancestral state).  

 

Predicting equilibrium TGA content using flux data 

 

The predicted TGA usage for a given lineage, pTGA, was calculated by adapting the 

formulae outlined by Long, et al. (2018). In their study, given a spectrum of de novo 

mutations, they propose the equilibrium GC content, Pn, can be calculated from the 

GC→AT mutation rate divided by the reciprocal rate, m, such that: 

𝑃! = 1 +
1
𝑚 
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We adapt this equation to the stop codon exemplar. As TAA and TGA stop codon 

usage covary in opposite directions with genomic GC content we consider their usage 

to be dependent on one another. Due to the unusual biology of TAG, not least that it 

remains lowly used irrespective of genomic GC content, we exclude fluxes involving 

TAG from this calculation. Our proposed equation for calculating equilibrium TGA 

content, pTGA, from the ratio of TGA→TAA divided by TAA→TGA, s, is: 

𝑃"#$ = 1 +
1
s	 

 

Null simulations to assign significance to observed pTGA deviation between two 

groups of genes 

 

The difference in pTGA observed between two gene groups (“A and B”, GC rich and 

GC poor genes, or highly recombining and lowly recombining genes) may be assigned 

significance by comparisons to simulated null gene groups. First, by analysing all 

genes en masse we can calculate a genomic rate of TAA→TGA per TAA and for 

TGA→TAA per TGA. For each group of genes, we may then calculate null pTGA 

scores that control for these rates.  

 

For each gene in the group, we determine the ancestral stop codon (of which we are 

only interested in TAA or TGA) and record the number of each. If the ancestral stop 

codon is TAA we generate a random number between 0 and 1 and if equal to or below 

the genomic TAA→TGA rate we record a null TAA→TGA flux event. If the ancestral 

stop codon is TGA we generate a random number between 0 and 1 and if equal to or 

below the genomic TGA→TAA rate, we record a null TGA→TAA flux event. By this 

method we thus receive null counts of TAA→TGA and TGA→TAA which may be 

divided by the ancestral counts of TAA and TGA to receive null flux rates. From these 

rates we may calculate null pTGA, and thus by repeating this process 1,000 times we 

create a null distribution of pTGA for the gene group. Repeating this method for both 

gene groups, we have a distribution for gene group A and gene group B.  

 

Next, we randomly sample with replacement one pTGA score from each of the two 

distributions, receiving a random pair. For each random pair we calculate the deviation 

between that sampled from group A and group B and repeat this process 10,000 times 
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to create a null distribution of differences. We then compare the observed difference 

between the real gene groups to this distribution, asking how many simulants have as 

high a difference as the observed one (n). The significance of the observed difference 

beyond null may be represented as p = n / m where m is the number of random pairs 

considered. 

 

Intronic GC as a proxy for isochore GC content 

 

Under the assumption that intronic GC reflects isochore GC content, intronic 

nucleotide sequences were extracted from one candidate genome within a species trio 

(e.g., the human genome was used as a representative of the primate triplet) using the 

appropriate GFF and WGS files downloaded from Ensembl (release 101). From the 

resulting spectrum of intronic GC contents, 10% percentiles were calculated, and 

genes were binned accordingly. The stop switch method described above was applied 

to each bin to measure changes in stop switch frequencies across intronic GC contents. 

 

This binning method is effective to segregate genes evenly across intragenomic GC 

contents but does not allow comparisons between eukaryotic groups. To plot the stop 

codon switches of multiple different species on the same axis requires a GC-matching 

methodology. To achieve this, genes were binned at 5% intronic GC content intervals 

(e.g. genes of GC content between 27.5% and 32.5% would be allocated to the 30% 

bin). As this method does not use percentiles, the resulting bins are not pre-designated 

to be equal in size. Bins of insufficient size (n < 50) were discarded. As before, the 

stop switch method was then applied to the GC-matched bins to measure changes in 

stop switch frequencies. 

 

Calculating mutational equilibria  

 

The equilibrium content of all four nucleotides (indicated N*) may be estimated using 

the full mutational spectrum (Charneski, et al. 2011; Rice, et al. 2020). A full spectrum 

of 108,778 de novo mutations (from 1,548 Icelandic human family trios) was 

downloaded from the supplementary material of Jonsson, et al. (2017). Knowing the 

rate of flux between every nucleotide (normalised to the occurrence of each 

nucleotide), we calculate the mutational equilibrium states of all nucleotides and GC 
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content exactly as outlined in Rice at al. (2020). The same theory can be applied to the 

three stop codons to predict their equilibrium frequencies as follows, where TAA’ 

indicates the frequency of TAA after some period of time: 

 

TAA′ = TAA (1 − TAA→TGA − TAA→TAG) + TGA (TGA→TAA) + TAG 

(TAG→TAA) 

 

TGA′ = TGA (1 − TGA→TAA − TGA→TAG) + TAA (TAA→TGA) + TAG 

(TAG→TGA) 

 

TAG′ = TAG (1 − TAG→TAA − TAG→TGA) + TAA (TAA→TAG) + TGA 

(TGA→TAG) 

 

For equilibrium calculation, these simultaneous equations are solved such that TAA’ 

= TAA, etc. We are solving for gain = loss for each stop codon: 

 

TAA (TAA→TGA + TAA→TAG) = TGA (TGA→TAA) + TAG (TAG→TAA) 

 

TGA (TGA→TAA + TGA→TAG) = TAA (TAA→TGA) + TAG (TAG→TGA) 

 

TAG (TAG→TAA + TAG→TGA) = TAA (TAA→TAG) + TGA (TGA→TAG) 

  

Note that in these equations we ignore the possibility of mutations from stop codons 

to sense codons. These we assume to be very rare and, should they occur, highly 

deleterious via the creation of C-terminal extensions. To constrain the results such that 

all equilibrium frequencies sum to 1, we replace one arbitrarily chosen stop codon 

frequency with 1 – the sum of the other two. While this would be achieved most 

accurately using precise mutational flux data between TAA, TGA, and TAG this is 

not captured within the Jonsson (Jonsson, et al. 2017) dataset. Instead, we estimate 

flux between the three stops using null frequencies proposed by Belinky et al. 

(Belinky, et al. 2018). In their paper, they suggest the substitution control for 

TAA>TGA and TAA>TAG is A>G, for TGA>TAA and TAG>TAA is G>A, and for 

TGA>TAG and TAG>TGA is 2 x A>G x G>A.  
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The full spectrum of 108,778 de novo mutations may also be analysed using a 16x16 

dinucleotide mutation matrix by tracing each mutation back to the reference genome 

and inferring dinucleotide changes. From the resultant matrix we estimate the 

equilibrium frequencies of each dinucleotide by adapting the simultaneous equations 

above to consider flux into and away from each dinucleotide. An estimated GC* may 

then be calculated from the 16 dinucleotide equilibria, whereas TGA* (and other 

trinucleotide equilibrium frequencies) may instead be estimated by incorporating the 

16 equilibria into Markov models, simulating null sequences, and calculating 

trinucleotide frequencies from these (see “Markov models for simulating null 

sequences”). 

 

Gene expression metrics 

 

To assess the role of gene expression in mammalian stop codon evolution we consider 

experimentally derived protein abundance data downloaded for H. sapiens, B. taurus, 

C. familiaris, and M. musculus from PaxDb (Wang, et al. 2015). As selection acts on 

protein activity, not mRNA levels, we consider this a robust measure. For species 

where multiple datasets are available, we employ the whole organism integrated set 

for maximum coverage of the proteome (see https://github.com/ath32/gBGC for 

accessions list). 

 

Pseudo-autosomal regions, chromosome size, and local recombination rates 

 

To assay the impact of recombination we employed a) chromosome size as a proxy of 

long-term recombination rate per bp, b) pseudoautosomal localization, this being 

known to be highly recombinogenic, and c) estimated recent recombination rates.  

 

For the latter, we employed recombination rates generated by the HapMap2 project 

(Frazer, et al. 2007) using coordinates lifted to the hg19/GRCh37 human genome build 

by Adam Auton (available: ftp://ftp-

trace.ncbi.nih.gov/1000genomes/ftp/technical/working/20110106_recombination_ho

tspots/). For this analysis we hence use the GRCh37 human genome build and 

annotations, downloaded from NCBI and available at: 

https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.13/ (last accessed 24 
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September 2020). For logistic regression modelling, each gene was assigned an 

estimated recombination rate equal to the average recombination rate of all its internal 

SNPs from the genetic map.  

 

To assess the possible correlation between equilibrium GC content and recombination 

rate (see S7 Fig), we instead employ recombination rate bands directly assayed from 

15,257 parent offspring pairs at 10kb resolution. This we consider to be the better data 

to use for this analysis as de novo mutations may be reasonably assigned the 

recombination rate of the 10kb band it falls within. The data were downloaded from 

https://www.decode.com/addendum/ (last accessed 14 September 2020) (Kong, et al. 

2010). 

 

Coordinates of the two regions (PAR1 and PAR2) were downloaded from NCBI 

(https://www.ncbi.nlm.nih.gov/grc/human, last accessed 14 September 2020). 

Chromosome sizes employed are base pair lengths derived from human genome build 

hg38.  

 

Assessing the predictive abilities of gene expression and recombination rate 

 

To determine whether expression and recombination rate can correctly predict the 

observed trends in stop codon usage we employ logistic regression. Stop codon usage 

and GC3 content was captured alongside gene expression data or recombination data 

(depending on the feature to be examined). Models were fit and examined using the 

glm function in R with the ‘family = binomial’ parameter. This produces a coefficient 

for each independent feature and associates a p-value for its predictive significance. 

We control for GC content by including GC3 content in a multivariate model when 

assessing expression level metrics. For the analysis of stop codon usage in null 

sequences we instead use linear regression, also using glm in R, as more than one ‘stop 

codon’ may be present in each sequence. 

 

PGLS analysis of TGA enrichment and effective population size (Ne) 

 

A phylogenetically-controlled test of correlation between Ne and TGA enrichment in 

lowly expressed genes (“LEGs”, lowest 25% of genes by protein abundance - see 
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“gene expression metrics” above) were facilitated by PGLS using the “caper” R 

package (https://CRAN.R-project.org/package=caper). Ne estimates are from species 

with well resolved estimates of mutation rate and well described polymorphism data, 

and are the same as used in Ho and Hurst (Ho and Hurst 2020). Pagel’s lambda (λ) 

was predicted by maximum likelihood. Species used in this analysis were the same as 

published in our previous analysis (Ho and Hurst 2020), with the input phylogenetic 

trees generated using TimeTree (Kumar et al. 2017) and available in our GitHub 

repository along with the data required to repeat this analysis. TGA enrichment scores 

in LEGs were calculated such that: 
 

𝑇𝐺𝐴	𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 = 	
𝑇𝐺𝐴	𝑢𝑠𝑎𝑔𝑒	𝑎𝑡	𝑡ℎ𝑒	𝑝𝑟𝑖𝑚𝑎𝑟𝑦	𝑠𝑡𝑜𝑝 −𝑚𝑒𝑎𝑛(𝑇𝐺𝐴	𝑢𝑠𝑎𝑔𝑒	𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚)

𝑚𝑒𝑎𝑛(𝑇𝐺𝐴	𝑢𝑠𝑎𝑔𝑒	𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚)  

 

where mean TGA usage downstream is calculated from downstream codon positions 

+1 to +6. “Usage” refers to the relative frequency of TGA compared with the other 

stop codons TAA and TAA at position n, such that: 

 

𝑇𝐺𝐴	𝑢𝑠𝑎𝑔𝑒 = 	
𝑇𝐺𝐴	𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑇𝐴𝐴	𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 + 𝑇𝐺𝐴	𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 + 𝑇𝐴𝐺	𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 

 

Markov models for simulating null sequences 

 

Null trinucleotide frequencies were generated from a null model that controls for 

underlying mono- or dinucleotide mutation rates. To achieve this, we first calculate 

mutational equilibrium frequencies for all mono- or dinucleotides - see “Calculating 

Mutational Equilibria” above and Rice, et al. (2020). We next simulate 10,000 

sequences (of average coding sequence length) using Markov models in a similar way 

to that outlined by Ho and Hurst (2019). The first nucleotide/dinucleotide of each 

simulant is selected at random according to equilibrium nucleotide/dinucleotide 

frequencies. The following nucleotide is selected from a second set of frequencies: 

given the prior nucleotide in the simulation, what is the probability that the next 

nucleotide should be A, C, G or T. As all trinucleotides occur in these simulated 

sequences at a rate dictated by a derived mutational matrix, trinucleotide frequencies 

in the real sequences that are deviant from the simulations indicates enrichment or 

under-enrichment beyond chance. 
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Data access 

 

Raw data used are all publicly available and accessible as outlined in the methods 

section. All data manipulation was performed using bespoke Python 3.6 scripts. 

Statistical analyses and data visualisations were performed using R 3.3.3. Scripts 

required for replication of the described analyses can be found at 

https://github.com/ath32/gBGC.  
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S1 Fig. The relationships of autosome length with GC content and TGA usage in 

the human genome. Autosomal size (bp length) is negatively associated with G+C 

content (Spearman’s rank; p = 0.0078, rho = -0.56, n = 22) and TGA usage 

(Spearman’s rank; p = 0.0094, rho = -0.55, n = 22). 
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S2 Fig. Trinucleotide frequencies in six sets of different genomic sequences 

(between 0%-36.31% GC content) compared to dinucleotide matrix-derived 

equilibrium predictions. The GC range used is the bottom 20% of genes to avoid the 

possible confounding effects of biased gene conversion. CDS refers to coding 

sequence, CREs to cis-regulatory elements. “xDinuc matrix” refers to equilibrium 

estimates of trinucleotide frequencies derived from a dinucleotide mutational matrix. 
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S3 Fig. The rate of flux increasing GC content at twofold degenerate sites divided 

by the rate of flux decreasing GC content at the same sites across 10 gene bins of 

increasing recombination rate.  Flux to the G+C-rich codons is most strongly 

favoured at high recombination rates (Spearman’s rank; p < 2.2 x 10-16, rho = 0.99), 

consistent with the possible action of GC-biased gene conversion. 
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S4 Fig. The rate of flux increasing GC content at twofold degenerate sites divided 

by the rate of flux decreasing GC content at the same sites across 10 gene bins of 

increasing recombination rate for each appropriate amino acid.  Flux increasing 

GC content are significantly favoured in regions with higher recombination rate in 10 

of the 12 amino acids before Bonferroni correction (Spearman’s rank tests; p < 0.05), 

the two exceptions to this being Leucine and Glutamine.  

 

 

 

 

 

 

 

 

0 1 2 3 4 5 6

0.
50

0.
60

0.
70

Arginine

Mean recombination rate of gene binFl
ux

 in
cr

ea
si

ng
 G

C
 / 

Fl
ux

 d
ec

re
as

in
g 

G
C

0 1 2 3 4 5 6

0.
9

1.
1

Asparagine

Mean recombination rate of gene binFl
ux

 in
cr

ea
si

ng
 G

C
 / 

Fl
ux

 d
ec

re
as

in
g 

G
C

0 1 2 3 4 5 6

0.
8

1.
0

1.
2

Aspartic Acid

Mean recombination rate of gene binFl
ux

 in
cr

ea
si

ng
 G

C
 / 

Fl
ux

 d
ec

re
as

in
g 

G
C

0 1 2 3 4 5 6

0.
9

1.
0

1.
1

1.
2

Cysteine

Mean recombination rate of gene binFl
ux

 in
cr

ea
si

ng
 G

C
 / 

Fl
ux

 d
ec

re
as

in
g 

G
C

0 1 2 3 4 5 6

1.
30

1.
40

1.
50

Glutamine

Mean recombination rate of gene binFl
ux

 in
cr

ea
si

ng
 G

C
 / 

Fl
ux

 d
ec

re
as

in
g 

G
C

0 1 2 3 4 5 6

0.
60

0.
70

0.
80

0.
90

Glutamic acid

Mean recombination rate of gene binFl
ux

 in
cr

ea
si

ng
 G

C
 / 

Fl
ux

 d
ec

re
as

in
g 

G
C

0 1 2 3 4 5 6

0.
90

1.
00

1.
10

1.
20

Histidine

Mean recombination rate of gene binFl
ux

 in
cr

ea
si

ng
 G

C
 / 

Fl
ux

 d
ec

re
as

in
g 

G
C

0 1 2 3 4 5 6

1.
1

1.
3

1.
5

Leucine

Mean recombination rate of gene binFl
ux

 in
cr

ea
si

ng
 G

C
 / 

Fl
ux

 d
ec

re
as

in
g 

G
C

0 1 2 3 4 5 6

0.
80

0.
90

Lysine

Mean recombination rate of gene binFl
ux

 in
cr

ea
si

ng
 G

C
 / 

Fl
ux

 d
ec

re
as

in
g 

G
C

0 1 2 3 4 5 6

0.
9

1.
1

1.
3

Phenylalanine

Mean recombination rate of gene binFl
ux

 in
cr

ea
si

ng
 G

C
 / 

Fl
ux

 d
ec

re
as

in
g 

G
C

0 1 2 3 4 5 6

1.
0

1.
2

1.
4

1.
6

Serine

Mean recombination rate of gene binFl
ux

 in
cr

ea
si

ng
 G

C
 / 

Fl
ux

 d
ec

re
as

in
g 

G
C

0 1 2 3 4 5 6

0.
9

1.
0

1.
1

1.
2

Tyrosine

Mean recombination rate of gene binFl
ux

 in
cr

ea
si

ng
 G

C
 / 

Fl
ux

 d
ec

re
as

in
g 

G
C



 202 

 
 

S5 Fig. Deviation scores, (O-E)/E, describing the difference in gBGC “boost” for 

each trinucleotide individually. The normalised differences, (O-E)/E, between 

estimated trinucleotide mutational equilibrium frequencies (calculated from de novo 

mutations, DNMs) and fixed trinucleotide frequencies (from 10kb sequences 

surrounding those mutations) were calculated for GC-rich (top 20%, 45.5-100%, 

“group 5”) and GC-poor (bottom 20%, 0-36.3%, “group 1”) sequences surrounding 

108,778 DNMs. As we predict GC-rich sequences to be subjected to stronger biased 

gene conversion, we predict a larger differential between fixed and equilibrium 

frequency, D, for GC-rich trinucleotides in GC-rich sequences. The extent to which a 

trinucleotide is “boosted” by biased gene conversion can hence be accessed by 

measuring the difference, (O-E)/E, in D between the GC-richest and GC-poorest 

sequences. Trinucleotides are ordered from low to high according to the extent they 

are “boosted” by biased gene conversion. 
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S6 Fig. Trinucleotides containing (a) A, G and T and (b) A, C and T within the 

33% GC-content class of trinucleotides ranked by GC-biased gene conversion 

(gBGC) “boost” scores. TGA receives a consistent higher GC-coupled fixation boost 

than TAG which performs the second worst (after GTA). TCA similarly receives a 

consistently higher GC-coupled fixation boost than TAC. Sequences analysed include 

cis-regulatory elements (cre), 5’ UTR (five), intronic (intron), ncRNA, (ncrna), and 3’ 

UTR (three). CDS sequences are excluded from this analysis as they are much more 

prone to selection and other potential fixation biases. 
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S7 Fig. Predicted G+C equilibrium (G+C*) and TGA equilibrium (TGA*) 

frequencies from de novo mutations of various recombination rates. Mutations 

were assigned a recombination rate based upon their local 10kbp environment. 

Mutations in non-recombining regions were discarded. The remaining mutations were 

split into bins of equal size (~5,000 mutations) for the calculation of GC* and TGA*. 

Recombination rate is not correlated with GC* (Spearman’s rank; p = 0.58, rho = -

0.2) nor TGA* (Spearman’s rank; p = 0.63, rho = -0.18) when estimated from de novo 

mutations. 
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S1 Table. Results of linear regression models predicting stop codon (TAA, TGA, 

TAG) trinucleotide usage as a function of intronic G+C content in 5’ and 3’ UTR 

sequences and as a function of coding sequence GC3 content in intronic 

sequences.  

 

Sequence Model Estimate P-value 

5’ UTR TAA ~ Intronic G+C -0.524365 <2e-16 

TGA ~ Intronic G+C 0.544688 <2e-16 

TAG ~ Intronic G+C -0.02032 0.116 

3’ UTR TAA ~ Intronic G+C -0.688116 <2e-16 

TGA ~ Intronic G+C 0.715928 <2e-16 

TAG ~ Intronic G+C -0.027812 3.52e-06 

Intronic TAA ~ Coding sequence GC3 -0.015645 <2e-16 

TGA ~ Coding sequence GC3 0.01354 <2e-16 

TAG ~ Coding sequence GC3 0.0007857 0.598 
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S2 Table. The 4 x 4 mutational matrix for 108,778 observed de novo mutations in 

1,548 human trios. Rates are defined as the number of observed changes per 

incidence of the nucleotide in the reference genome. 95% confidence intervals (C.I.) 

were calculated using the Poisson.test function in R under the assumption that the 

observed number of mutations is a Poisson variable. 

  

Reference allele Estimate Derived allele 
A T C G 

A Rate - 3.87 x 10-6 4.14 x 10-6 1.56 x 10-5 

Upper C.I. - 4.00 x 10-6 4.28 x 10-6 1.58 x 10-5 

Lower C.I. - 3.74 x 10-6 4.01 x 10-6 1.53 x 10-5 

T Rate 4.05 x 10-6 - 1.56 x 10-5 4.06 x 10-6 

Upper C.I. 4.18 x 10-6 - 1.59 x 10-5 4.19 x 10-6 

Lower C.I. 3.91 x 10-6 - 1.54 x 10-5 3.93 x 10-6 

C Rate 6.47 x 10-6 3.55 x 10-5 - 8.08 x 10-6 
Upper C.I. 6.67 x 10-6 3.60 x 10-5 - 8.31 x 10-6 
Lower C.I. 6.27 x 10-6 3.51 x 10-5 - 7.85 x 10-6 

G Rate 3.55 x 10-5 6.32 x 10-6 8.09 x 10-6 - 
Upper C.I. 3.59 x 10-5 6.53 x 10-6 8.32 x 10-6 - 
Lower C.I. 3.50 x 10-5 6.12 x 10-6 7.87 x 10-6 - 
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S1 Text. Possible selective explanations for TAG avoidance compared with TGA. 

 

TAG receives less of a “boost” in GC rich domains that TGA.  Why is this? As the 

metric starts by specifying the expected trinucleotide abundance given known 

mutational profiles, we can eliminate mutation bias, unless it is even more complex 

than we permitted. Instead, the data support complex fixation biases. Fixation bias 

may imply selection for or against certain k-mers. Why might TAG, and its 

dinucleotides TA and AG, be selectively avoided in the genome? A parsimonious 

rationale should explain why TA dinucleotides appear to be under-represented near-

universally (Burge, et al. 1992) and why, as we observe, the effect is seen in 

transcribed and (what we presume to be) untranscribed domains (cis-regulatory 

elements).  

 

Such generality might point to DNA’s biophysics, for example assumption of A and 

B forms. However, within the 33% trinucleotide class the two least boosted 

trinucleotides, TAG and GTA predispose to B and A form respectively (Basham, et 

al. 1995). Similarly, TAC and TAG predispose to opposite forms but have comparable 

low fixation bias and, indeed, when we correlate A-DNA propensity energy (APE) 

against our gBGC “boost” scores for each trinucleotide, we find no significant 

correlations in 5’ UTR, 3’ UTR, intronic, ncRNA, or cis-regulatory element sequences 

(Spearman’s rank tests, all p > 0.05).  

 

An alternative DNA structural hypothesis is that TA (or certain TA-containing 

oligonucleotides) might adversely affect chromatin structure (Burge, et al. 1992), 

probably because AT-rich DNA tends to be concentrated in the nucleosome-free 

regions associated with transcription start sites. However, bacteria don’t have 

nucleosomes but nonetheless avoid TAG (Korkmaz, et al. 2014; Ho and Hurst 2019). 

TA might also be avoided due to selection against UpA motifs on RNA molecules that 

are targeted by ribonucleases such as RNase L during the antiviral immune response 

(Floydsmith, et al. 1981; Wreschner, et al. 1981). However, non-transcribed domains 

show the same tends and why bacteria also avoid TAG is unexplained. A similar 

problem faces the notion of “AG exclusion zones” that are important for splicing 

accuracy (Wahl, et al. 2009; Wimmer, et al. 2020). Whether this could explain 
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genome-wide avoidance of AG dinucleotides seems unlikely given trends in non-

transcribed domains. Splicing is also of little relevance in bacteria.  

 

Perhaps the most compelling model is one proposing avoidance of transcription 

initiation motifs. TA dinucleotides could lead to accidental incidences of, for example, 

“TATA” boxes in eukaryotes and “Pribnow” boxes in bacteria (i.e. the TATAA 

motif). More generally, TA features in many key regulatory motifs that would be 

inappropriate in most DNA regions in both eukaryotic and prokaryotic genomes 

(Karlin and Mrazek 1997; Mrazek and Karls 2019). Indeed, within the trinucleotides 

with only A and T, ATA and TAT, the two that are core to TATA box, are consistently 

the two with the lowest “boost” (Supplementary fig 6). However, a TATA box is 

classically TATA[A|T]A[A|T]. Why such a motif would select against TAG but not 

TAA (in the 0% GC class TAA typically has a high boost) is not clear. We need also 

to be weary of post hoc hypothesising. Indeed, one might also predict selection against 

CAA or AAT owing to their involvement in CAAT boxes, commonly located about 

150 bp 5’ of TATA boxes. We see no evidence for either, CAA indeed being one of 

the most “boosted” of the 33% GC class and AAT being unexceptional.  

 

Perhaps the most important objection to any such model is that one must suppose 

efficient selection against a point mutation causing spurious transcription or 

sequestration of TATA-binding protein which, when population sizes are small (e.g 

mammals and birds), seems unlikely. In bacteria and archaea, the strength of selection 

against such spurious binding is estimated to be around Nes = -0.09 and thus within 

the range of nearly neutral mutations for these species (Hahn, et al. 2003). If then 

Escherichia coli’s Ne is of the order of 108 (Berg 1996), then s must be ~-0.09/108 = -

9 x 10-10. For a mutation to be under selection s ~ 1/2 Ne must hold. In a species with 

Ne ~ 10,000 (e.g. humans) then this value of s (i.e. 1/20,000) is much greater than 9 x 

10-10 estimated for selection against spurious binding. Thus, unless the selective cost 

of spurious binding is very much greater in humans than in bacteria, it is hard to see 

how selection can be efficient enough to remove spurious binding sites.  

 

More generally, in principle the fixation bias associated with high recombination 

rates could be compatible with some form of nucleotide level selection that prefers 

G+C residues.  However, a priori such selective models are hard to reconcile with 
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inefficient selection associated with low Ne, so in turn non-selective fixation biases 

appear more parsimonious. 
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Pre-amble 

 

All the preceding chapters provide new insights into the evolution of stop codon usage 

within bacterial and eukaryotic genomes. In bacteria, stop codon usage appears not to 

evolve in direct response to the cellular abundance of RF1 and RF2 but as a product 

of neutral evolutionary processes and selection for reduced translational read-through 

rates. In eukaryotes there is no RF-linked hypothesis and stop codon usage is expected 

to be influenced by the same evolutionary forces, with the possible addition of biased 

gene conversion that might be increasing TGA usage in species that possess GC-

biased mismatch repair machinery. TAA appears to be the optimal stop codon in all 

taxa, even those that are impacted by GC-biased gene conversion, as evidenced by the 

stop codon preferences of highly expressed genes and comparisons of stop codon 

usage against dinucleotide-controlled null models. 

 

With regards genomic error-proofing, my results suggest there is a preference to 

reduce TR rate rather than evolve error mitigation devices at genic level. Bacteria do 

not enrich their 3’ UTR sequences with additional stop codons to act as fail-safe 

mechanisms should the first stop codon fail, but they do prefer TAA stop codons (the 

least error prone stop variant) in their highly expressed genes. While some unicellular 

eukaryotes do appear to be enriched for ASCs, others are not, and ASC enrichment is 

no more common than chance in multicellular species. Controlling for phylogeny, in 

eukaryotes TAA enrichment correlates with effective population size (Ne) as predicted 

by nearly neutral theory, while ASC enrichment does not.  

 

More generally, my results demonstrate the utility of the stop codon exemplar for 

studying molecular evolution. That TAA, TGA, and TAG possess different TR rates 

permits the study of selective differences between three ostensibly synonymous 

codons. That TGA/TAG and TAA differ in GC content allows one to study AT- or 

GC-favoured mutation or fixation biases. That TGA and TAG are equal in nucleotide 

content allows us to control for GC content and consider more complex models of 

mutation or fixation bias. All of this I summarise here, in a commissioned review of 

stop codon usage for Genome Biology & Evolution. As this manuscript places all prior 

chapters within the stop codon literature, I present this chapter as “discussion part 1”. 

 



 213 

Appendix 6B: Statement of Authorship 
 
This declaration concerns the article entitled: 
 
Stop codon usage as a window into genome evolution: mutation, selection, biased 
gene conversion and the TAG paradox 
 

Publication status (tick one) 
Draft  

manuscript   Submitted  In 
review X Accepted  Published   

 

Publication 
details 
(reference) 

 
N/A 
 

Copyright status (tick the appropriate statement) 

I hold the copyright for this 
material X 

Copyright is retained by the publisher, but I 
have been given permission to replicate the 

material here 

  

 

Candidate’s 
contribution 
to the paper 
(provide 
details, and 
also indicate 
as a 
percentage) 

The candidate contributed to / considerably contributed to / 
predominantly executed the… 
 
Formulation of ideas: 100% 
 
Design of methodology: 100% 
 
Bioinformatic analyses: 100% 
 
Experimental work: N/a 
 
Presentation of data in journal format: 100% 
 

Statement 
from 
Candidate 

This paper reports on original research I conducted during the period of 
my Higher Degree by Research candidature.  

 
Signed 
  

 
   Date 

 
10/03/2022 

 
 

 

 



 214 

Issue section: Review 

 

Stop codon usage as a window into genome evolution: mutation, selection, 

biased gene conversion and the TAG paradox 

 

Alexander T. Ho1* and Laurence D. Hurst1 

1. Milner Centre for Evolution, University of Bath, Bath, UK 

*Author for correspondence: a.t.ho@bath.ac.uk  

 

Abstract 

 

Protein coding genes terminate with one of three stop codons (TAA, TGA or 

TAG) that, like synonymous codons, are not employed equally. With TGA and 

TAG having identical nucleotide content, analysis of their differential usage 

provides an unusual window into the forces operating on what are ostensibly 

functionally identical residues. Across genomes and between isochores within the 

human genome, TGA usage increases with GC content but, with a universal 

GC→AT mutation bias, this cannot be explained by mutation bias-drift 

equilibrium. Increased usage of TGA in GC-rich genomes or genomic regions is 

also unlikely to reflect selection for the optimal stop codon, as TAA appears to be 

universally optimal, probably because it has the lowest read-through rate. 

Despite TAA being favoured by selection and mutation bias, as with codon usage 

bias GC pressure is the prime determinant of between-species TGA usage trends. 

In species with strong GC-biased gene conversion (gBGC), such as mammals and 

birds, the high usage and conservation of TGA is best explained by a AT→GC 

repair bias. How to explain TGA enrichment in other GC-rich genomes is less 

clear. Enigmatically, across bacterial and archaeal species and between human 

isochores TAG usage is mostly unresponsive to GC pressure. This 

unresponsiveness we dub the TAG paradox as currently no mutational, selective, 

or gBGC model provides a well-supported explanation. We suggest resolution of 

the TAG paradox may provide insights into either an unknown but common 

selective preference (probably at the DNA/RNA level) or an unrecognised 

complexity to the action of gBGC.  
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Key words: Stop codon usage, translation termination, translational read-through, 

stop codon read-through, molecular evolution, genome evolution 

 

Significance statement: Between species and within genomes, codon usage is highly 

variable due to a complex interplay of evolutionary forces that include mutation bias, 

selection, and GC pressure. In this review, we consider the influence of each in 

determining the relative usage of the three stop codons (TAA, TGA, and TAG) for 

species across the tree of life. In doing so, we not only highlight the significant gaps 

in our understandings but demonstrate the utility of the stop codon exemplar for 

studying molecular evolution more generally. 

 

Introduction 

 

There has been extensive consideration of why, within coding sequence, one codon 

may be used more or less than an alternative codon specifying the same amino acid, 

this being a cornerstone of the selectionist/neutralist debate (Knight, et al. 2001). 

Analyses of synonymous codon usage biases have highlighted, amongst other things, 

the importance of the balance between mutation and selection and the role of 

translational dynamics in determining codon preferences (Andersson and Kurland 

1990; Duret 2002; Chamary, et al. 2006; Hershberg and Petrov 2008; Plotkin and 

Kudla 2011). Indeed, in many species for each amino acid there exists an optimal 

codon that commonly reflects the most abundant iso-acceptor tRNA (Sharp and Li 

1987; Bulmer 1991; Akashi and Schaeffer 1997; dos Reis, et al. 2004). This optimal 

codon is also typically enriched in the more highly expressed genes. 

 

Most organisms also have three alternative options for the stop codon (UAA, UGA, 

and UAG in mRNA or TAA, TGA and TAG in genomic sequence). Like synonymous 

codons they too share the same “meaning” (Povolotskaya, et al. 2012; Belinky, et al. 

2018). As amino-acylated tRNAs are not involved in stop codon recognition (for 

illustration of the process see Figure 1), it is less obvious why selection might prefer 

one stop codon over another. Nonetheless, we can ask a series of questions that parallel 

those asked of codon usage bias. What is the role of mutation bias and neutral, or 

nearly neutral, evolution in determining within and between species variation in stop 

codon usage? In any given species is there an optimal stop codon and, if so, why? 
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While the optimal sense codon for any synonymous group tends to vary between 

species as tRNA copy numbers vary (Duret 2002), we can also ask whether the same 

stop codon is optimal in all species. Many potential answers to these questions point 

to a role for forces that affect nucleotide content beyond the confines of stop codon 

usage. In this context, trends in TGA and TAG stop codon usage provide an unusual 

window into genome evolution as, given their identical functionality and nucleotide 

content, any differences in their usage requires explanation beyond a simple null 

model.  

 

 
 

Figure 1. The basic mechanism of stop codon recognition by class I release 

factors. (a) The translating ribosome decodes coding sequence and recruits cognate 

amino-acylated tRNAs (brown) to build the growing polypeptide amino acid chain 

(small, coloured circles). (b) The stop codon (UGA in this example, but typically 

UAA, UGA or UAG) is recognised by, and becomes bound to, a class I release factor: 

RF1 or RF2 in bacterial, eRF1 in eukaryotic, or aRF1 in archaeal genomes (orange). 

(c) The binding between the release factor and stop codon begins a cascade leading to 

polypeptide release via the action of a class II release factor (not shown). Note that 

stop codons function in mRNA and hence genomic T (thymine) is replaced by U 

(uracil). 

 

With direct determination of mutational profiles and extensive genome level analysis 

permitting analysis of both stop codon substitution rates and usage patterns, there has 

recently been some progress in understanding the determinants of stop codon usage. 

Here, we summarize recent advances in understanding the forces operating on stop 

codon usage emphasising what we do now understand but also the large (and 

profound) gaps in understandings. We consider two sorts of comparisons. One the one 

hand we have inter-species variation in usage trends where, with their extreme GC 

UGA

(a)

UGA

(b)

UGA

(c)
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contents, bacterial genomes are especially informative. On the other we make use of 

the human genome, where intragenomic extremes of GC content due to its isochores 

provide of similar utility. Analysis of the human genome is especially useful as we 

have well resolved parameters, such as the mutational profile and recent 

recombination rates, along with high quality expression data and ortholog description 

for closely related species. Intragenomic analysis also controls for possible 

mechanistic differences between taxa in stop codon recognition and release. In 

bacteria, for example, there are two class I release factors, RF1 and RF2, that are 

indispensable for stop codon recognition in all species with the standard genetic code, 

while in archaea and eukaryotes there is just one (Frolova, et al. 1994; Inagaki and 

Doolittle 2000; Jackson, et al. 2012; Kobayashi, et al. 2012; Rodnina 2018).  

 

There are numerous issues related to the stop codons that we do not here investigate. 

For example, there exist species that do not use all three of TAA, TGA, and TAG to 

terminate translation, such as bacterial genomes decoded by translation table 4 (that 

don’t use TGA) and some ciliates (e.g. Paramecium tetraurelia and Stylonychia 

mytilis use only TGA) (Alkalaeva and Mikhailova 2017). Why such species might not 

use the canonical three stop codons falls outside of our scope. It is also known that 

selection operates of stop codons outside of the canonical termination context. 

Additional in-frame stop codons (ASCs), for example, are under positive selection in 

some eukaryotes (but not bacteria) probably as an error-proofing mechanism to 

provide a second opportunity for translation to terminate should the primary stop 

codon be missed (Major, et al. 2002; Liang, et al. 2005; Adachi and Cavalcanti 2009; 

Korkmaz, et al. 2014; Ho and Hurst 2019). Similarly, out-of-frame stop codons 

(OSCs) are hypothesised to be selected to mitigate the consequences of frame-shift 

errors should the reading frame be disrupted (Seligmann and Pollock 2004; Abrahams 

and Hurst 2018). We do not broach the issues of non-canonical stop codon selection 

in this review. 

 

The TAG problem: low absolute usage and unresponsiveness to GC pressure 

 

When viewed across species, codon usage has a single strong predictor (Knight, et al. 

2001) this being what we here call “GC pressure” so as to not to prejudge its cause. A 

diagnostic of this is a correlation between GC usage at codon third sites and some 
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other (hopefully independent) measure of GC content, such as GC of introns, intergene 

spacer etc. We can ask in turn whether stop codon usage is simply explained by GC 

pressure. If so, explaining stop codon usage may be simple problem: whatever 

explains GC pressure explains stop codon usage. If we consider the proportional usage 

the three stop codons in any given genome and ask how this varies between different 

bacteria with different GC content, then we see that TAA and TGA behave 

approximately as expected: TAA usage declines with increasing GC pressure while 

TGA increases (Fig 2). The enigma is the behaviour of TAG whose usage is both low 

(~20%) and unchanging with GC pressure, even though TGA has identical nucleotide 

content (Povolotskaya, et al. 2012; Korkmaz, et al. 2014; Ho and Hurst 2020).  

 

 
Figure 2. Stop codon usage (a) between 644 bacterial genomes, (b) 106 archaeal 

genomes, (c) 21 eukaryote genomes and (d) between human isochores. TAA usage 

is negatively correlated with GC3 content in all four analyses (Spearman’s rank; p < 

2.2 x 10-16, rho = -0.92 for bacteria, rho = -0.89 for archaea, rho = -0.86 for eukaryotes, 

rho = -0.99 within the human genome). TGA usage is positively correlated with GC3 
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content in all four analyses (Spearman’s rank; p < 2.2 x 10-16 for bacteria, archaea and 

within the human genome, p = 0.011 for eukaryotes, rho = 0.88 for bacteria, rho = 

0.76 for archaea, rho = 0.55 for eukaryotes, rho = 0.98 within the human genome). 

TAG usage is uncorrelated with GC3 content in bacteria (Spearman’s rank; p = 0.48, 

rho = -0.03). TAG usage is positively correlated with GC3 content, but with lower 

absolute usage than TGA, in archaea (Spearman’s rank; p = 1.1 x 10-7, rho = 0.49), 

eukaryotes (Spearman’s rank; p = 9.5 x 10-7, rho = 0.88), and within the human 

genome (Spearman’s rank; p = 0.002, rho = 0.88). Figures adapted from (Ho and Hurst 

2021b). 

 

The TAG problem deepens when it is noticed that across archaea and between 

isochores in the human genome the same three trends in absolute stop codon usage are 

seen: TAA usage declining, TGA usage increasing and TAG usage either invariant or 

weakly responding to GC pressure. At first sight, archaea and bacteria look to be 

slightly different with TAG showing a small GC pressure response (weak positive 

slope of TAG predicted by GC pressure) in the former but not the latter. However, the 

bacterial data has more extreme values of GC content and allowing for this (by 

comparing GC-matched archaeal and bacterial samples) the trends seen in the two are 

all but identical (Ho and Hurst 2021b).  

 

By considering changes in absolute stop codon usage, one assumes that there is no 

constraint preventing TAG usage from rising from x% at 0% GC content, to x + y% 

at 100% GC content, just as TGA goes from z% at 0% GC content to z+ y% at 100% 

GC content (where z > x). By this logic, a car going from 0 to 20 miles per hour in a 

certain period of time has the same acceleration as a car going from 50 to 70 miles per 

hour - both would have identical slopes (y). If the mean value of TAG usage is lower 

than for TGA usage, however, the slopes might nonetheless be affected: a lower mean 

may be associated with a lower slope, just because the mean is low. An alternative 

approach that controls for this possibility is to ask about the proportional response, 

whereby each value is divided by the mean value for the relevant overall set of samples 

in question. Using this methodology, TAG and TGA usage still have very different 

slopes in bacteria (Fig 3) and in human 3’ and 5’ UTR sequences (Fig 4), and in both 

cases the distribution of TAG usage remains flat. However, in archaea and across 

human isochores at the focal termination site the slopes for TGA and TAG converge.  
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Figure 3. Stop codon usage normalised to the mean (a) between 644 bacterial 

genomes, (b) 106 archaeal genomes, (c) 21 eukaryote genomes and (d) between 

human isochores. Normalisation to the mean has no effect on the correlation statistics 

presented in Fig 2. Normalised TAA usage is negatively correlated with GC3 content 

in all four analyses (Spearman’s rank; p < 2.2 x 10-16, rho = -0.92 for bacteria, rho = -

0.89 for archaea, rho = -0.86 for eukaryotes, rho = -0.99 within the human genome). 

Normalised TGA usage is positively correlated with GC3 content in all four analyses 

(Spearman’s rank; p < 2.2 x 10-16 for bacteria, archaea and within the human genome, 

p = 0.011 for eukaryotes, rho = 0.88 for bacteria, rho = 0.76 for archaea, rho = 0.55 

for eukaryotes, rho = 0.98 within the human genome). Normalised TAG usage is 

uncorrelated with GC3 content in bacteria (Spearman’s rank; p = 0.48, rho = -0.03). 

TAG usage is positively correlated with GC3 content, but with lower absolute usage 

than TGA, in archaea (Spearman’s rank; p = 1.1 x 10-7, rho = 0.49), eukaryotes 
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(Spearman’s rank; p = 9.5 x 10-7, rho = 0.88), and within the human genome 

(Spearman’s rank; p = 0.002, rho = 0.88).  

 

 
Figure 4. Stop codon frequencies (relative to the usage of all stops) normalised to 

the mean at the canonical stop site, in the 5′ UTR, and in the 3′ UTR at 10 equal-

sized bins of various intronic GC contents in the genome. Normalised TAA 

frequency is negatively correlated with intronic GC content in all 3 sequences 

(Spearman’s rank; all p < 2.2 × 10‒16, rho = ‒0.99 at the canonical stop site and in 5’ 

UTR sequences, rho = -1 in 3’ UTR sequences). TGA is positively correlated with 

intronic GC content in all 3 sequences (Spearman’s rank; all p < 2.2 × 10‒16, rho = 

0.99 at the canonical stop site and in 5’ UTR sequences, rho = 1 in 3’ UTR sequences). 

TAG usage is positively correlated with intronic GC content at the canonical stop site 

(Spearman’s rank; p = 0.0014, rho = 0.89) but is uncorrelated with intronic GC content 

in both 5′ (Spearman’s rank; p = 0.61, rho = 0.19) and 3′ UTR sequences (Spearman’s 

rank; p = 0.10, rho = 0.55). Figure adapted from Ho and Hurst (2021a). 

 

It’s not immediately obvious which method is most appropriate. For the proportional 

analysis, there is also a problem. If y were constant – as would be the case if TAG 

usage went from 20% to 30% and TGA went from 50% to 60% for example – we 

would conclude that there is instead a TGA problem as TGA would now have the less 

positive slope, despite the slopes of absolute usage being identical (to refer back to the 

car analogy, the proportional acceleration of the faster car is lower). Indeed, in such 

an example where the absolute usage slopes were identical, but the means different, a 

claim of different slopes might rightly be considered highly questionable. As we are 

concerned both with the avoidance of TAG and its lack of response to GC pressure, 
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the absolute response may be the more defendable as the proportional response 

assumes the under-usage of TAG to be a given, which it need not be.  

 

We therefore conclude that the TAG problem may then be more broadly defined as 

the enigmatic difference in slope between absolute TGA usage versus GC on the one 

hand and absolute TAG usage versus GC on the other, the latter being curiously much 

shallower. That it is seen in three independent contexts adds to the problem. That it is 

not replicated in analysis across eukaryotes only adds to the perplexity.  

 

Stop codon usage and release factor diversity: a genomic red herring? 

 

A longstanding hypothesis to explain between-species stop codon usage in bacteria 

stems from the fact that bacterial translation termination at each of the three stop 

codons requires different molecular machinery. In bacteria, TAG is recognised 

uniquely by RF1 while TGA is recognised uniquely by RF2 and TAA is recognised 

either by RF1 or RF2 (Rodnina 2018). Early analysis observed (i) that TAA (with its 

broad RF binding potential) is the most common stop codon and (ii) that the 

TAG:TGA usage ratio positively correlated with the RF1:RF2 abundance ratio in a 

small sample of bacterial genomes, hence it was proposed that release factor 

abundance was a central driver of bacterial stop codon usage (Sharp and Bulmer 

1988). Indeed, subsequent larger multi-species analyses have supported the 

correlations between RF1:RF2 and TAG:TGA and similarly assumed that RF 

abundance causes stop codon usage adjustment and not vice versa (Korkmaz, et al. 

2014; Wei, et al. 2016). The notion that RF1:RF2 relative abundance determines stop 

codon usage bears obvious parallels with the idea that synonymous codon usage is 

determined by iso-acceptor differential tRNA abundance. As Wei, et al. (2016) 

identified that RF2 is exceptionally low when AT3 content is high across species, 

RF1:RF2 might also help explain the TAG problem. They argue that in GC poor 

regions or genomes, mutation bias favours the TAA, the most AT-rich stop codon, 

over both TAG and TGA. At mid-to-high GC contents, TGA is preferred over TAG 

as RF2 expression levels become increasingly dominant over that of RF1.  

 

We have since challenged this interpretation of the RF1:RF2 correlation with 

TAG:TGA, asking why the RF1:RF2 ratio shouldn’t instead be moulded to the stop 
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codon requirements of the genome (Ho and Hurst 2021b). First, we noted that in 

humans and archaea there is only one release factor. That we see the same TAG 

problem between human isochores and across archaea (Fig 2) thus indicates that some 

other forces can give the TAG anomaly. Second, if RF abundance were to cause stop 

codon usage variation, one might predict that between-species stop codon trends in 

bacteria (particularly the disconnect between TGA and TAG usage) should not be 

repeated in non-canonical stop codon contexts where RF recognition is non-important. 

We however found the relative usage of TGA, TAA and TAG in sequence 

immediately 3’ of genes have the same trends as seen at the canonical stop context 

(Ho and Hurst 2021b). This is unlikely to be owing to selection for additional stop 

codons in the 3’ non-coding sequence for two reasons. First, while there is evidence 

of selection for additional 3’ in-frame stop codons (ASCs) in some single celled 

eukaryotes (Ho and Hurst 2019), the same is not seen in multicellular eukaryotes or 

bacteria (Major, et al. 2002; Korkmaz, et al. 2014; Ho and Hurst 2019). Second, the 

same trend is also seen if we examine sequence post the first in frame stop codon (Ho 

and Hurst 2021b). All the above points of evidence strongly suggest that we need to 

evoke some force other than RF diversity to explain trends in usage of TAA, TGA and 

TAG.  

 

A further corollary of the above evidence is that the better explanation for the RF1:RF2 

correlation with stop codon usage is that RF abundance adapts to stop codon usage 

and not vice versa. This direction of the causal arrow is parsimonious for several 

reasons. As we outline in Ho and Hurst (2021b), the moulding of stop codon usage 

(particularly TGA<->TAG) to respond to the RF environment doesn’t make clear 

evolutionary sense. As the RF hypothesis itself states that TAA is optimal due to its 

dual recognition by RF1 and RF2 (of which more below), there is no selective need to 

switch from TAA→TGA or TAA→TAG. TGA and TAG usage adjustment to match 

RF1:RF2 hence must theoretically proceed via TGA<->TAG exchanges that require 

a minimum of two mutational events. This is significant as, as any genome wide shift 

in usage must involve one step that is opposed by selection. We presume that 

TAG→TGA and TGA→TAG cannot occur in one mutational step. Assuming too 

conservation of stop codon identity then there must be TAA→TGA or TAA→TAG 

either of which is deleterious. Under the RF hypothesis, then, it is unclear why 

selection should favour TGA<->TAG in any scenario.  
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With the RF hypothesis seemingly unparsimonious to explain between-species within 

bacteria, and irrelevant when we consider eukaryotes and archaea (which possess just 

one RF), arguments for stop codon usage trends being driven by RF diversity appear 

to be a red herring (i.e. a distraction from the main explanation). For the rest of this 

review, we consider the myriad of factors that likely act to shape the stop codon usage 

of all species. We consider the roles of mutation bias, selection, and biased gene 

conversion, discussing how these too might vary between species. 

 

Null mutational models cannot alone explain within- or between-genome 

variation in stop codon usage 

 

For stop codon usage, as with synonymous codon usage bias, the simplest null would 

be one of neutral evolution coupled to mutation bias. Originally the variation in GC 

content between species was indeed assumed to reflect the mutational process, 

assuming GC content at third site to be approximately neutral and reflective of 

mutational biases (Knight, et al. 2001). However, now that we can measure mutational 

biases directly the assumption that GC-rich genomes and genomic regions (such as 

the GC-rich isochores in humans) are a consequence of mutational bias alone is no 

longer defendable.  

 

From analysis of mutations seen in parent offspring sequencing, MA lines or rare 

SNPs, across both eukaryotes and prokaryotes mutation bias appears to be very 

commonly, if not universally, GC→AT biased (Smith and Eyre-Walker 2001; Lynch, 

et al. 2008; Hershberg and Petrov 2010; Hildebrand, et al. 2010; Long, et al. 2018). 

Importantly this universality applies just as much to GC rich genomes as to AT rich 

ones (Hershberg and Petrov 2010; Hildebrand, et al. 2010). Hence GC rich genomes 

sit far away from their AT biased mutational equilibrium (Long, et al. 2018). Stop 

codon usage in part reflects this deviation from mutational null. We would expect 

under a mutation bias null for TGA and TAG to be universally and equally rare and 

TAA to be the most abundant. However, the simplest null mutational model fails to 

explain either within- or between-genome variation. Notably TAA usage, while 

indeed high in GC-poor bacterial genomes, is low in GC-rich ones (Fig 2) despite the 
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profile of mutation bias being consistently GC→AT biased (Hershberg and Petrov 

2010; Hildebrand, et al. 2010).  

 

Perhaps the best current data come from humans as here, by parent offspring 

sequencing, we have an exceptional view of the mutational process. We can then for 

example ask whether in GC rich isochores (with an abundance of TGA) the mutational 

profile is more AT→GC biased than in the GC poor isochores. Strikingly, a GC→AT 

mutation bias is approximately invariant to isochore GC content (Smith, et al. 2018; 

Ho and Hurst 2021a) (Fig 5), but nonetheless TGA usage increases with local GC with 

TAA decreases (as seen in Fig 2). In this case more complex mutational biases (e.g. 

high rates of CpG→TpG (Duncan and Miller 1980; Sved and Bird 1990; Roberts and 

Gordenin 2014) which could generate new TGA stop codons) also cannot account for 

the decline in TAA usage and increase in TGA usage as local GC content increases 

(Ho and Hurst 2021a).  

 

 
Figure 5. Simulated equilibrium (a) GC content and (b) TGA usage plotted 

against the current GC content of the windows from which the mutation 

spectrum was estimated. Panel A is reproduced with permission from Smith, et al. 

(2018) (the original figure is available open access at: 

https://doi.org/10.1371/journal.pgen.1007254.g004) and shows equilibrium GC 

estimates from three sources of human de novo mutations. Panel B is reproduced with 

permission from Ho and Hurst (2021a) and illustrates equilibrium TGA usage (relative 

to TAA and TAG usage) estimated from the Jonsson, et al. (2017) dataset of human 

de novo mutations. 
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Analysis of the human mutational profile also indicates that trinucleotide frequencies 

are closer to mutational equilibrium in AT-rich isochores than GC-rich ones (Ho and 

Hurst 2021a). At AT-rich isochores we can compare equilibrium estimates of TAA, 

TGA and TAG trinucleotides to their relative usage at the canonical stop site to assess 

how well the mutational profile predicts what is seen in termination contexts. 

Deviation at the stop site from the predicted relative frequencies of TAA, TGA, and 

TAG trinucleotides would indicate the presence of non-mutational forces influencing 

stop codon usage. Using the same human dinucleotide mutational matrix as in Ho and 

Hurst (2021a), we estimate the equilibrium relative usage of TAA to be 43.0%, TGA 

to be 32.5%, and TAG to be 24.5% in the bottom 20% of human genes by GC content. 

Despite their shared nucleotide content, mutational preferences at the dinucleotide 

level appears to somewhat discriminate between TGA and TAG, perhaps because 

CpG→TpG mutations are very common (Duncan and Miller 1980; Sved and Bird 

1990; Roberts and Gordenin 2014), and hence could begin to explain the absolute 

differences in their usage. However, in the same set of AT-rich genes, the stop codon 

usage at the canonical stop site is 38.4% TAA, 42.0% TGA, and 19.5% TAG. This in 

turn suggests that in AT rich domains usages are reasonably close to, but distinct from, 

mutational expectations. 

 

While in AT-rich regions complex mutation bias takes us some way to understanding 

the lower usage of TAG, mutation bias fails to explain the differing response of TAG 

and TGA to GC pressure as mutation bias does not covary with GC content mutation. 

Consequently, the usage of all three stops is far from mutational equilibrium in GC-

rich isochores. Using the same dataset, we estimate the equilibrium relative usage of 

TAA to be 42.6% (compared to an observed usage of 13.6%), TGA to be 32.0% 

(compared to 63.5%), and TAG to be 25.4% (compared to 22.9%) in the top 20% of 

human genes by GC content. Coupled with evidence for universality of a GC→AT 

mutation bias (Smith and Eyre-Walker 2001; Lynch, et al. 2008; Hershberg and Petrov 

2010; Hildebrand, et al. 2010; Long, et al. 2018), mutation bias provides no robust 

explanation of the TAG problem or indeed why organisms differ in the GC content 

more generally.  

 

The three stop codons are not selectively equivalent  
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(i) Genomic evidence unanimously supports TAA optimality 

 

Given that a mutational neutral null appears to be insufficient in explaining within- or 

between-genome variation in stop codon usage, as with synonymous codon usage bias 

one might suspect that selection has some role in stop codon usage. Several approaches 

have been taken to determine which stop codon might be optimal. To a first 

approximation they all concur that TAA is universally optimal.  

 

The first method considers differential usage in highly expressed genes versus lowly 

expressed genes. This assumes that the costs of translational error are higher in highly 

expressed genes (see trends in synonymous codon usage). Across bacteria and in the 

human genome, TAA is relatively enriched stop codon in highly expressed genes 

suggesting a selective advantage (Korkmaz, et al. 2014; Trotta 2016; Ho and Hurst 

2020).  

 

The second method considers enrichment allowing for biases in the usage of 

dinucleotides within any given genome (note this is observed usage not the mutational 

profile). Against dinucleotide-controlled null models, it is TAA (and not TGA nor 

TAG) that is most enriched across bacteria, eukaryotes, and archaea (Ho and Hurst 

2021b). The third method consider trends in enrichment compared to nucleotide null 

as a function of effective population size (Ne), assuming that when Ne is high selection 

is more efficient and thus enables organisms to be closer to a selectively optimal state 

(Ohta 1992; Lynch 2007). Such methods come with all the necessary caveats that Ne 

is hard to estimate (but with mutation rate and polymorphism data, it is now possible). 

To date this has been done across eukaryotes in a phylogenetically controlled manner 

with, TAA enrichment correlating positively with Ne (Ho and Hurst 2020).  

 

A final method considers trends in stop codon substitution (i.e. fixation events) using 

species trios. Such a method can detect differences in relative substitution rates (e.g. 

TGA→TAA per TGA versus TAA→TGA per TAA) and so infer the conserved state 

(Belinky, et al. 2018). Note that this is not the same as the mutational analysis as that 

considers just the rates of origination not the rates of origination and fixation. This 

method finds TAA conservation near universally (Belinky, et al. 2018). However, a 
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problem we return to below, is that this method, also reports TGA conservation in 

mammals (Belinky, et al. 2018). 

 

Almost all methods hence concur on universal TAA optimality. Why then might stop 

codons have different fitness consequences and is there evidence that any such effects 

mediate within- or between-genome variation? The dominant models for TAA 

optimality all point to its resilience in the face of errors as the probable cause, the 

errors in question being either mutational, mistranscriptional or owing to 

misreading/misprocessing.  

 

(ii) TAA is more robust to mutation and mistranscription events than TGA and TAG 

 

Perhaps the most immediately noticeable difference between the three stop codons is 

the differing nucleotide compositions of TAA, TGA, and TAG. This is significant as 

any selective force that moulds stop codon usage must commonly proceed via stop 

codon switch events, i.e. TAA<->TGA, TAA<->TAG, and TGA<->TAG, as sense 

codon intermediate states at the canonical termination site are unlikely to be tolerated. 

TAA is unique in being robust to two mistranscription (or mutational) events, i.e. 

TAA→TGA or TAA→TAG (Ho and Hurst 2020). TGA→TAA and TAG→TAA 

switches are similarly resilient to mistranscription or mutation, but TGA<->TAG is 

not (apart from double mutants which are extremely rare). Not only might TAA be 

optimal for this reason, but TGA<->TAG switches must proceed via TAA regardless 

of whether TGA or TAG is optimal. Mutation is probably too rare a process to select 

for TAA via mutational robustness, however whether much more common 

mistranscription events could select for TAA is unresolved – see for example the rates 

in Escherichia coli (Lee, et al. 2012; Traverse and Ochman 2016; Meer, et al. 2020) 

and Caenorhabditis elegans (Denver, et al. 2004; Denver, et al. 2009; Gout, et al. 

2013; Meer, et al. 2020). 

 

(iii) TAA is the least, while TGA is the most, prone to molecular errors 

 

The selective hypothesis that has garnered the most attention is that stops codons differ 

in their susceptibility to mistakes during gene expression. With stop codons, the most 

associated such molecular error is the failure to terminate translation, known as either 
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translational read-through (TR) or stop codon read-through (SCR). Here we will refer 

to this phenomenon as TR. When TR occurs the stop codon is missed by the 

translational machinery, typically due to erroneous misreading of the stop codon by a 

near-cognate tRNA, leading to unintended translation of the 3’ UTR that continues 

until the next in-frame stop codon or the polyadenylation signal (Fig 6).  

 

TR is most often deleterious for several reasons. At the very least, C-terminal 

extension is an unnecessary energetic waste (Wagner 2005) and, in more severe cases, 

might lead to problems with localisation and export (Falini, et al. 2005; Hollingsworth 

and Gross 2013), aggregation (Vidal, et al. 1999; Vidal, et al. 2000), or stability 

(Clegg, et al. 1971; Namy, et al. 2002; Pang, et al. 2002) of the final protein product. 

Should translation reach the polyA+ tail, TR can also trigger degradation of both 

mRNA and protein (Dimitrova, et al. 2009; Klauer and van Hoof 2012). To mitigate 

these consequences, we expect selection to reduce TR rates. In order of decreasing TR 

susceptibility, the order appears to be TGA>>TAG>TAA across bacterial (Roth 1970; 

Strigini and Brickman 1973; Ryden and Isaksson 1984; Parker 1989; Meng, et al. 

1995; Sanchez, et al. 1998) and eukaryotic (Geller and Rich 1980; Parker 1989; 

Cridge, et al. 2018) species. Stop codon switches that lower the TR error rate 

(TGA→TAG, TGA→TAA, TAG→TAA) could hence be favoured by selection 

across taxa. 
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Figure 6. The mechanistic basis of translational read-through. (a) Canonical 

termination occurs when the stop codon is recognised by its cognate release factor. 

Only coding sequence is translated to build the polypeptide amino acid chain. (b) 

Translational read-through occurs when the stop codon is missed by the termination 

machinery, often due to the erroneous binding of a near-cognate tRNA to the stop 

codon (Roy, et al. 2015; Beznoskova, et al. 2016). This results in the translation of 3’ 

UTR sequence until the next in-frame stop codon or until the ribosome reaches the 

polyA+ tail, triggering non-stop decay. 

 

That TAA is the least error-prone stop codon variant makes it a strong candidate for 

optimality. But can we be confident that TR rather than possible other advantages of 

TAA (such as mistranscriptional robustness) is the core to its selective optimality? A 

strong clue comes from nucleotide preferences immediately proximal to the stop 

codon. The sequence involved in modulating TR rate likely extends for at least 6 
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nucleotides downstream of the stop codon for fine tuning of ribosomal interactions 

(Bossi and Roth 1980; Namy, et al. 2001; Wei and Xia 2017; Cridge, et al. 2018) and 

here we find TR-associated nucleotide combinations to be rare in highly expressed 

genes (Ho and Hurst 2020). It is the +4 nucleotide, however, that is most influential. 

It is important, therefore, that genes terminating with the most TR-prone context 

TGAC (Cridge, et al. 2018) are underrepresented in eukaryotic genomes (Cridge, et 

al. 2006). A second clue comes from sequence conservation. If TR truly does generally 

result from error, there is no reason why the sequence downstream of the stop codon 

(and before the first in-frame ASC) should be conserved. Li and Zhang (2019) tested 

this hypothesis in Drosophila and yeast by defining and comparing two regions: region 

1 being the sequence between the canonical stop and first ASC, and region 2 being the 

sequence between the first ASC and second ASC that should be untranslated except 

for rare events of double TR. In both organisms, they find no evidence to support 

region 1 sequences being more conserved than region 2 sequences (Li and Zhang 

2019).  

 

For the above reasons TAA is thought to be the optimal stop codon for all species for 

its low relative TR rate. However, one piece of evidence is, in this context, unresolved. 

In yeast there exist selectively preferred additional stop codons (ASCs) in 3’ UTR, 

enriched at codon site +3 downstream of the canonical termination codon (Liang, et 

al. 2005). This suggests that read-through happens and selects for a second stop codon. 

Curiously the conserved second stop codons are enriched for genes terminating TAA 

(Liang, et al. 2005). A priori, TAA is expected to have the lowest read through rates 

and hence not expected to be associated with conserved additional stop codons. One 

possible explanation is that these extra stop codons reflect increased read-through 

following prion upregulation that forces read-through (Wickner, et al. 1995; Liebman 

and Chernoff 2012). If such read-through were particular to TAA then the circle could 

be squared. We note too that, while TAA optimality seems universal the mechanistic 

underpinning of this is not at all clear. As described above, in bacteria this was 

ascribed to TAA binding both RF1 and RF2 (Sharp and Bulmer 1988), but the 

universality suggests that this is an unnecessary model. 

 

Just because TAA is generally optimal it does not follow that selection need favour 

TAA in all cases. There can be occasions when read-through might be employed as 
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part of a sophisticated mechanism that is favourable, not deleterious. The C-terminal 

extension of polypeptides by TR for example could theoretically add new signals and 

domains to proteins to be viewed by natural selection (Dunn, et al. 2013; Schueren 

and Thoms 2016). Situations such as these are known as functional read-through 

(FTR) and are described across the tree of life (see Schueren and Thoms (2016) for a 

thorough review). Perhaps the best example comes from viral genomes that use FTR 

to improve the coding capacity of their very small genomes (Firth and Brierley 2012). 

In tobacco mosaic virus, for example, TR of the TAG stop codon of the RNA replicase 

transcript allows the virus to yield two isoforms from one gene (Pelham 1978). In 

humans, a well described example of FTR allows a 22 amino acid extension to 

vascular endothelial growth factor A (VEGFA) to reverse its function from 

proangiogenic to antiangiogenic (Eswarappa, et al. 2014). The best studied metazoan 

with regards to FTR is the fruit fly, where ribosomal profiling has estimated ~300-350 

candidates in D. melanogaster of which 8 were experimentally confirmed (Dunn, et 

al. 2013). The C-terminal extensions in these cases included transmembrane domains, 

nuclear localisation signals, a PTS1, and a prenylation signal (Dunn, et al. 2013).  

 

If TR were to be commonly functional, however, one might expect TGA stop codons 

(the universally leakiest stop) to be selectively preferred. To date there is no evidence 

to suggest FTR is particularly common in complex organisms, perhaps because FTR 

is rather unnecessary in larger genomes which are not so constrained in their coding 

capacity (Schueren and Thoms 2016). Indeed, in silico analysis of the stop codon 

context of 200,000 human transcripts returned only 57 TR candidates (Schueren, et al. 

2014). This is not what is expected were TR to be regularly beneficial. Even in 

Drosophila, with its ~300 candidate transcripts for FTR (Dunn, et al. 2013), such 

numbers are orders of magnitude below what is needed to support genome-wide 

selection for stop codons that promote TR. 

 

There is a second, if speculative, model that proposes that TR is beneficial for reasons 

beyond extending protein ends. This states that low-level, but consistent, TR is 

required for gene regulation and mRNA quality control by controlling ribosomal 

queuing (Yordanova, et al. 2018). Under this model, translating ribosomes read past 

the stop site and eventually stall, translation being inhibited when the ribosome queue 

backs up to the stop codon (Yordanova, et al. 2018). The rate of TR coupled with the 
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length of sequence to the ribosomal stall site hence might define the number of times 

the mRNA can be translated. There is evidence for this at the AMD1 locus in humans 

(Yordanova, et al. 2018), however it remains unknown how widespread a mechanism 

like this might be. If it is common, it could theoretically affect stop codon usage due 

to their different TR rates, and hence different ribosomal queuing rates, which could 

lead to the fine tuning of TAA, TGA and TAG frequencies. It is for this reason that 

(Seoighe, et al. 2020) consider this model as a potential explanation for the apparent 

conservation of TGA stop codons in mammals. We return to the issue of mammalian 

exceptionalism later. 

 

GC-biased gene conversion acts antagonistically to selection and mutation bias 

to promote TGA usage 

 

Perhaps the most striking conclusion of the above is that, while we can discern TAA 

optimality, the effects of TAA optimality appear modest: despite TAA optimality its 

usage at the canonical termination position declines with GC pressure and TAA 

optimality appears to have little relevance to the TAG problem. Similarly, the 

enrichment of TAA in highly expressed genes is modest compared with GC pressure. 

We can detect TAA enrichment across species as a function of Ne but again the effect 

is quite modest (Ho and Hurst 2020). Perhaps this is most in evidence when comparing 

TAA abundance across species/isochores to TAA usage in locations when it cannot 

be employed as a stop codon, the trends being almost identical to those where it does 

(Ho and Hurst 2019; Ho and Hurst 2021b). This all suggests that TAA optimality is a 

sideshow (or the icing on a cake) to full understanding of trends in stop codon usage. 

It also questions what the other forces might be operating that could explain the trends 

in TAA, TGA and TAG usage.  

  

If TAA truly is universally optimal then there might be lessons to be learned in 

apparently contradictory examples. In mammals, TGA stop codons are not only high 

in frequency but appear to be highly conserved, even more so than TAG and, 

surprisingly, TAA (Belinky, et al. 2018; Seoighe, et al. 2020). Interrogation of stop 

codon usage and substitution rates has revealed this phenomenon may be primarily 

driven by highly compartmentalised TAA to TGA bias in domains of high GC content 

(Ho and Hurst 2021a) (Fig 2). This is particularly interesting given the spatially 
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structured “isochore” nature of base composition in mammalian genomes (Bernardi 

1993; Eyre-Walker and Hurst 2001). The current best explanation for isochore 

structure is GC-biased gene conversion (gBGC), a process through which mismatches 

during heteroduplex formation in meiotic recombination are resolved in a GC-

favoured manner (Galtier, et al. 2001; Duret and Galtier 2009). As gBGC is tightly 

coupled to recombination, GC-rich alleles receive the greatest fixation advantage in 

highly recombining sequences, possibly even when deleterious (Galtier, et al. 2009).  

 

Could mammalian TGA (a GC-rich stop codon) usage and compartmentalised 

TAA→TGA substitution bias be explained by gBGC? Several pieces of evidence are 

supportive such as the observation that autosomal size, which correlates negatively 

with recombination rate and GC content, predicts high TGA usage in smaller, more 

recombinogenic chromosomes (Ho and Hurst 2021a). TAA→TGA substitution rate 

also correlates positively with local recombination rate assayed from parent-offspring 

trios (Ho and Hurst 2021a). Covariance between TAA→TGA substitution rate and 

GC content also appears somewhat unique to isochore-structured genomes (including 

birds) consistent with the possibility that they share the same underlying forces (Ho 

and Hurst 2021a). Indeed, birds and mammals are unique in being known to have a 

strong AT→GC conversion bias that accords with the gBGC model. In humans for 

example ~70% of GC:AT mismatches are resolved in favour of the GC residue 

(Halldorsson, et al. 2016). The gBGC model has no problem explaining why stop 

codon trends are seen both at the focal stop and in non-coding sequences as it does not 

depend on termination functionality.  

 

Given that selective and mutational hypotheses for TGA conservation are 

unparsimonious, for mammals at least it hence appears that gBGC offers the best 

explanation for TGA conservation and its focus in high GC isochores. We note that 

this is an unusual case history as TGA is unfavoured by the mutation bias (GC→AT) 

and selection (most probably for TAA and reduced TR). Consequently, there is only 

one currently known force that can explain TGA enrichment at the focal stop codon 

in GC rich domains, this being gBGC. As TGA possesses a higher intrinsic TR error 

rate than TAA (Cridge, et al. 2018), gBGC appears also to be fixing deleterious 

mutations. 
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While gBGC could potentially explain TGA conservation in mammals, what to expect 

from the gBGC outside of this example is unclear. Is gBGC universal throughout the 

tree of life? In yeast the best evidence from tetrad sequencing suggests a very weak 

bias at best possibly even in the opposite direction (Mancera, et al. 2008; Duret and 

Galtier 2009; Liu, et al. 2018; Liu, et al. 2019). While in humans and birds the bias, 

per event, is ~60-70%, in yeast the current best estimate is a bias of 50.03, not 

significantly different from the null of 50% (Liu, et al. 2017). What about bacteria? 

Could gBGC explain trends seen between-genomes as well as within? Whether gBGC 

operates in bacteria remains an open issue (Lassalle, et al. 2015), and further work 

investigating complex gBGC preferences in these groups is needed. Arguing against 

gBGC is the finding that GC rich bacterial genomes reside above mutation equilibrium 

even if not recombining (Hildebrand, et al. 2010).  

 

Unravelling the TAG problem: a window into complex k mer trends? 

 

The sequential consideration of mutation bias, selection, and GC pressure in 

determining stop codon usage primarily focuses on TAA and TGA stop codons. The 

omission of TAG reflects its non-typical behaviour in response to GC pressure. Any 

mutational or simple fixation bias (be it gBGC or selection for higher GC content) 

predicts that TGA and TAG stop codons should be handled the same due to their 

identical nucleotide content. Across bacterial and archaeal taxa and across isochores 

within genomes this is not seen, TGA reliably correlates with GC content positively 

while TAG is underused and unresponsive to GC pressure. (Fig 2) (Korkmaz, et al. 

2014; Trotta 2016; Ho and Hurst 2019): How may we attempt to resolve this? 

 

From a mutational perspective we may utilise data from human family trios for 

scrutiny of more complex mutational profiles (as above). Analysis of a mutational 

matrix of such de novo mutations facilitates the calculation of mutational equilibrium 

frequencies for any given nucleotide, dinucleotide or trinucleotide which can then be 

compared against fixed frequencies to elucidate deviations from mutational null. 

Equilibrium TAG content in humans is indeed lower than TGA content suggesting a 

more complex mutational bias at least partially explains for its low usage (Ho and 

Hurst 2021a). Strikingly, however, TAG usage in GC-poor isochores closely 

resembles equilibrium whereas this is not true in GC-rich domains (Ho and Hurst 
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2021a). Some kind of fixation bias needs to be evoked. As TAG and TGA have the 

same mononucleotide content we seem to be left having to evoke, non-

mononucleotide (e.g. dinucleotide or trinucleotide or larger) level selection or an 

added layer of complexity to gBGC that goes beyond a simple AT→GC conversion 

bias.  

 

In our recent study we investigated the nature of the fixation bias by assigning a 

fixation bias “boost” score to each trinucleotide based upon the difference between its 

observed frequency and the predicted mutational equilibrium (derived from a 

dinucleotide mutational matrix) in GC-rich domains (Ho and Hurst 2021a). We found 

that TGA consistently receives a higher fixation boost than TAG. Indeed, 

trinucleotides may be grouped by their GC content such that completely AT-rich 

trinucleotides such as AAA may be assigned to the 0% GC group, AGA may be 

assigned to the 33% group, etc. We found that the order of trinucleotides by “GC 

boost” is highly consistent within each GC class (0%, 33%, 66%, 100%) across 

different classes of non-coding sequence (Ho and Hurst 2021a). Notably, within the 

33% GC content class (trinucleotides with two As or Ts and 1 G or C), fixed TGA 

frequencies are seen far above its mutational equilibrium in 3’ UTR, 5’ UTR, introns, 

enhancers etc, while TAG and TAC are always less affected by whatever fixation bias 

is at play (Ho and Hurst 2021a). These results support the possibility of a consistent 

trend for a fixation bias, at least in humans, that can only be evidenced at higher 

resolution than mononucleotide level.  

 

What might cause such a complex fixation bias? One possibility is some even more 

complex set of context dependencies of mutational biases not so far considered. 

However, our dinucleotide model of expected frequencies in domains of low GC very 

accurately predicts observed frequencies from mutation bias alone (Ho and Hurst 

2021a), so this seems unlikely. As regards selection, many possibilities are imaginable 

but to date none seem particularly compelling. There may for example exist selection 

against TAG’s component dinucleotides (Ho and Hurst 2021a). TA, for example, 

might be avoided to avoid transcription initiation sites (TATA in eukaryotes and 

“Pribnow” boxes in prokaryotes). Were this to be important, however, one might 

expect to see similar selection against, and low abundance of, TAA stop codons too. 

Other ideas have included more general DNA structural hypotheses such as TA being 
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avoided to protect chromatin structure as AT-rich DNA is concentrated in nucleosome 

free regions (Burge, et al. 1992). This, however, cannot explain the stop codon usage 

trends being the same in bacteria as seen across the human genome as the former don’t 

possess nucleosomes but do avoid TAG. Indeed, while any selective hypothesis must 

fit many different species (prokaryotic and eukaryotic) it must also involve selective 

coefficients that are strong enough to explain all trends.  

 

For gBGC to explain the TAG enigma requires significant amendments to the current 

assumptions. One speculative possibility is that gBGC is better at recognising 

mismatches at certain residues than others or that the form of the bias is dependent on 

the k-mer context. In the former model, an unrecognised mismatch is resolved in 

mitosis but with no bias. In the second model, all meiotic mismatches are recognised 

but the bias differs. Either way, it is possible that net TNA conversion bias would be 

different from that for TAN. If so gBGC could potentially fix more TAA to TGA 

mutations than TAA to TAG, for example. While promising, for complex gBGC to 

explain stop codon trends across taxa more generally this order of trinucleotides would 

have to be consistent between all organisms showing the TAG problem. Scrutiny of 

the across eukaryote trends (and the potential lack of TAG problem) may be a means 

to progress as gBGC seems to be variable in effect across eukaryotes. Examination of 

the context of gBGC events through tetrad sequencing or sperm typing is a high 

priority. 

 

All things considered there appears to be something profound about genome evolution 

that we do not currently understand. From analysis of the low TAG usage at the 

canonical stop we have identified the TAG problem, a more general low usage and 

one non-responsive to GC pressure in many comparisons (bacteria, archaea, human, 

at the focal stop and elsewhere). As we don’t have a coherent explanation for this, we 

suggest that this be considered the TAG paradox. Unravelling the TAG paradox, given 

its appearance throughout the tree of life, may well provide a window into a previously 

unrecognised world of unexplained trends in k-mer usage that, we suggest, must throw 

light onto currently not well understood forces behind stop codon usage and genome 

evolution more generally.  
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Summary of results 

 

That the multi-step process of gene expression is extremely prone to errors 

(Drummond and Wilke 2009), these being mostly deleterious (see for example: Xu 

and Zhang 2014; Liu and Zhang 2018a, b; Jiang and Zhang 2019; Xu and Zhang 2020, 

2021), predicts selection to minimise their consequences (Warnecke and Hurst 2011). 

Such selection may take the form of error prevention or error mitigation, both of which 

can typically be facilitated by global or local solutions (Rajon and Masel 2011). In this 

thesis, I use translational read-through (TR) as an exemplar to study the evolutionary 

dynamics of local error prevention and local error mitigation solutions. How often do 

we see local evidence for error mitigation against TR? How do local error prevention 

and local error mitigation solutions to TR co-evolve, the strength of selection for each 

being dependent on the other? How might we explain the usage of non-optimal stop 

codons that possess higher intrinsic TR rates? 

 

Stop codons are ideal sequence motifs to understand TR error control because the 

termination of translation is implicated both in TR prevention and mitigation. TR may 

be prevented at the local (genic) level by swapping the stop codon to a less error-prone 

one, TAA being universally the most reliable stop followed by TAG and TGA (Strigini 

and Brickman 1973; Geller and Rich 1980; Parker 1989; Jorgensen, et al. 1993; Meng, 

et al. 1995; Sanchez, et al. 1998; Tate, et al. 1999; Wei, et al. 2016; Cridge, et al. 

2018). TR mitigation can be facilitated locally by selection for 3’ in-frame additional 

stop codons (ASCs) which offer a second opportunity for translation to terminate 

should termination fail at the canonical stop codon site (Liang, et al. 2005; Adachi and 

Cavalcanti 2009; Fleming and Cavalcanti 2019). In Chapter 2, I show that ASC 

enrichment above dinucleotide-controlled null is common to unicellular eukaryotes, 

but not multicellular ones nor bacteria (Ho and Hurst 2019). This result raises two 

interesting questions. Why might the strength of ASC selection be different between 

multicells and unicells? Why don’t both eukaryotes and bacteria use ASCs for TR 

error mitigation?  

 

One proposed explanation for the difference in ASC enrichment between unicellular 

and multicellular eukaryotes is that phenotypic errors are more costly for unicellular 
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organisms, which do not have the luxury of cell replacement, and hence error proofing 

selection is generally stronger (Ho and Hurst 2019). Evoking nearly neutral theory, 

another possibility is that unicellular species more readily evolve local error solutions 

such as ASCs because they typically possess larger effective population sizes (Ne) (see 

Lynch, et al. 2016 for some estimates) and thus possess more efficient selection. Any 

selection for error control is complicated by the fact that selection for error prevention 

and mitigation solutions are co-dependent. In Chapter 3, I find TAA enrichment above 

nucleotide expectations (a proxy for reduced TR rate) to correlate positively with Ne, 

while no such trend exists between ASC enrichment and Ne (Ho and Hurst 2020). 

While, then, this supports the notion that unicellular eukaryotes can more readily 

evolve local solutions than their multicellular counterparts, it does not explain why 

ASCs are under selection in some species but not others. Indeed, this result implies 

error prevention via modifying stop codon usage is the preferred error control strategy 

against TR in eukaryotes.  

 

Both the covariance between TAA enrichment and Ne (Ho and Hurst 2020) and the 

observation that highly expressed genes prefer TAA stop codons (Korkmaz, et al. 

2014; Trotta 2016) support TAA being the universal optimal stop codon. How then do 

non-optimal TGA and TAG stop codons persist in populations? In Chapters 4 and 5, 

I consider how we might explain between-species TGA and TAG stop codon usage 

trends. While TGA:TAG usage ratios in bacteria have been assumed to reflect the 

relative cellular abundance of RF1 and RF2 release factors (Sharp and Bulmer 1988; 

Korkmaz, et al. 2014; Wei, et al. 2016), in Chapter 4 I show that this need not be the 

case. Stop codon usage trends against genomic GC content at the canonical stop site 

are not only consistent when looking in the +1 and +2 reading frame of 3’ UTR 

sequences (Ho and Hurst 2019; Ho and Hurst 2021), but also in eukaryotes and 

archaea who possess only one universal release factor (Ho and Hurst 2021). RF 

abundance is thus not needed to explain between-species bacterial stop codon usage 

trends. In Chapter 5, I consider the enigmatic observation of high TGA abundance and 

conservation in mammalian genomes (Seoighe, et al. 2020). Consistent with GC-

biased gene conversion (gBGC) providing a parsimonious model to explain this, I find 

TGA usage and TAA→TGA stop codon flux to be well predicted by GC content and 

recombination rate. Analysis of human de novo mutations recovered a GC→AT 

mutation bias that drives stop codon usage away from, not towards, TGA. The 
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preferences of highly expressed genes also indicates that TAA, not TGA, is the most 

optimal stop codon in mammals, ruling out a selective explanation. TGA abundance 

and conservation in mammals appears to be promoted by gBGC in a manner that 

mimics purifying selection. This provides a cautionary tale that sequence conservation 

need not imply purifying selection.  

 

The study of molecular evolution informs transgene design 

 

In the design of any transgene, there are several considerations that can impact its 

eventual success or failure (van de Sluis and Voncken 2011; Jackson, et al. 2014; 

Troesemeier, et al. 2019). One might first choose the species that the transgene will 

originate from. Is the transgene intended for prokaryotic or eukaryotic expression? 

How diverged is this species from the target organism and how might this affect 

expression levels of the transgene? Next, one might consider transgene structure. 

Which regulatory elements should be selected for optimal expression levels? How 

many introns should be included? These decisions can have significant impacts on 

transgene expression, as demonstrated by the inclusion of one intron being linked to 

significant expression boosts (Choi, et al. 1991; Aronow, et al. 1992). 

 

Many of the lessons learned about the optimisation of transgene sequences come from 

studying molecular evolution. Just as genes may be under selection to match their 

codon usage to the most abundant tRNAs in the tRNA pool to improve their expression 

(see Higgs and Ran 2008; Ran and Higgs 2010; Gingold and Pilpel 2011), so too might 

transgenes be designed with optimal nucleotides at synonymous sites to achieve the 

same goal (Foster, et al. 2008; Troesemeier, et al. 2019). Theoretically, the same logic 

could be applied to molecular evolution in response to erroneous protein synthesis. 

Just as OSCs are under selection in real genomes to protect against frameshifting 

(Seligmann and Pollock 2004; Abrahams and Hurst 2017; Abrahams and Hurst 2018; 

Seligmann 2019), transgenic coding sequences could incorporate OSCs proximal to 

“slippery” codons to minimise the consequences of ribosomal slippage. Indeed, as 

transgenes are commonly designed for high expression levels, the risks of molecular 

error may be exceptionally high. Built-in error prevention or error mitigation devices 

may thus provide great utility with little to no cost. 
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As the work described in this thesis is focused on translation termination, it is at the 

canonical stop codon site where I can make several recommendations for transgene 

design. In order of importance, transgene sequences should: 

 

(i) terminate using the optimal stop codon, TAA, which is associated with the 

lowest TR rates (Strigini and Brickman 1973; Geller and Rich 1980; Parker 

1989; Jorgensen, et al. 1993; Meng, et al. 1995; Sanchez, et al. 1998; Tate, 

et al. 1999; Wei, et al. 2016; Cridge, et al. 2018), preferred by highly 

expressed genes in bacteria and eukaryotes (Korkmaz, et al. 2014; Trotta 

2016), positively correlated with Ne (Ho and Hurst 2020), and consistently 

the most enriched stop codon above dinucleotide expectations across 

bacteria, eukaryotes, and archaea (Ho and Hurst 2021). 

(ii) incorporate extended termination motifs that improve termination fidelity, 

such as +4T in bacteria (Major, et al. 2002; Wei and Xia 2017) and longer 

motifs in eukaryotes (see Namy, et al. 2001; Cridge, et al. 2018 for 

example) to reflect those conserved in highly expressed genes. 

(iii) include 3’ in-frame additional stop codons as close to the primary stop 

codon as possible, but downstream of any extended termination motif, 

when designed for expression in a unicellular eukaryote species (such as 

yeast) or unicellular expression within a multicellular eukaryote species 

(such as germline-specific expression) (Ho and Hurst 2019). 

 

Though ASCs do not appear to be under strong selection in multicellular eukaryote 

genomes, that unicellular eukaryote genomes are often enriched for ASCs supports 

their utility as a potential fail-safe mechanism in eukaryotic systems (Ho and Hurst 

2019). Indeed, unicellular species may be the best model organisms for studying the 

evolution of phenotypic error solutions. It is in these organisms that the fitness costs 

of erroneous gene expression might be highest, multicells being able to buffer fitness 

costs by apoptosis and cell replacement, and if so we can expect error control motifs 

to be most enriched. Furthermore, unicellular organisms tend to have large Ne and thus 

can more readily evolve local error solutions that can be detected in genomic analysis. 

For these reasons I suggest that similar studies of error control within unicellular 

eukaryote genomes may be influential in elucidating other error prevention or 

mitigation solutions that might be useful inclusions in transgene design. 
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That TGA abundance and conservation in mammals cannot be explained by 

mutational models nor selective hypotheses provides a cautionary tale with regards 

transgene design. The most abundant codon need not be the most optimal, even when 

signatures of sequence conservation are present in genome-wide analysis. To include 

TGA stop codons in human transgenes for example would be detrimental due to its 

high TR rate, despite it being the most common stop codon in the human genome. The 

same logic could apply to other genomic contexts where the deleterious allele also 

happens to be the GC-rich state that is promoted by gBGC and appears conserved. 

Identifying such examples does not fall under the scope of my thesis, however this 

could indeed form some important future work. 

 

Both low effective population size and GC-biased gene conversion can be 

responsible for genomic imperfections  

 

The second broad implication of the work presented relates to understanding the 

causes of genomic imperfection. Stop codon usage across the tree of life is highly 

variable and far from perfect, but it isn’t the only example of imperfection within 

genomes. When one mentions genomic imperfection, the first thought probably relates 

to de novo mutations, the resulting alleles being able to circulate in the gene pool for 

many generations under certain circumstances. While most mutations are only mildly 

deleterious (Ohta 1992), others contribute to the genetic basis of disease, common 

examples of this including single gene disorders like cystic fibrosis and cancers with 

a strong heritable component (e.g. BRCA mutations that predispose an individual to 

developing breast cancer). These disorders are surprisingly common. In total, an 

estimated 3.5-5.9% of people suffer with rare diseases, most of which are genetic, 

equating to ~263-446 million people globally (Wakap, et al. 2020). Indeed, there also 

exists genomic imperfections that are less obvious. The human genome is extremely 

“bloated”, possessing numerous large introns (Warnecke, et al. 2008), large distances 

between our genes (Lynch and Conery 2003), and a high transposable element load 

(Lynch and Conery 2003). How do such genomic features such as these persist despite 

selection favouring improved fitness? Why aren’t genetic diseases purged from our 

populations? Why aren’t our genomes the perfect machine? 
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My investigations into the forces promoting the usage of non-optimal TGA and TAG 

stop codons provides a better understanding of the evolutionary processes that lead to 

the accumulation of deleterious sequences. The results in Chapter 3, for example, lend 

support to the nearly neutral predictions that the frequency of selectively optimal 

features of genome architecture should covary positively with Ne (Ohta 1992; Lynch 

2007). Within the stop codon exemplar, there is a positive correlation between TAA 

stop codon enrichment and Ne when controlling for underling phylogeny (Ho and 

Hurst 2020). In Chapter 5, I show this result is resilient to whether we consider all 

genes en masse or restrict analysis to just highly expressed or lowly expressed genes, 

suggesting TAA is optimal for all genes regardless of expression level. By extension, 

the nearly neutral theory also predicts non-optimal sequence to covary negatively with 

Ne. Indeed, in support of this, I find TGA enrichment to be negatively associated with 

Ne in both highly and lowly expressed genes. Ne and nearly neutral theory hence 

provide a parsimonious framework to explain much of the between-species variation 

in stop codon usage observed in eukaryotes: non-optimal TGA and TAG stop codons 

persist in low Ne species due to the absence of efficient selection to purge them and 

the increased influence of genetic drift. 

 

While Ne and nearly neutral theory can parsimoniously explain some between-species 

trends, it provides less insight into within-species trends. The high raw abundance of 

TGA stop codons in mammals might be attributable to drift, for example, but drift 

cannot explain the intragenomic covariance between TGA usage and GC content 

observed in humans (e.g. Trotta 2016). Chapter 5 provides a set of results concordant 

with gBGC driving TGA to high usage by promoting TAA→TGA flux in GC-rich 

isochores. As gBGC provides a fixation advantage to GC-rich alleles in a manner 

coupled tightly to recombination, gBGC correctly predicts (i) a positive correlation 

between TGA usage and GC content at the canonical stop codon site and outside of 

the termination context in the 5’ UTR and 3’ UTR, (ii) a positive correlation between 

TGA usage and recombination rate, and (iii) increased TAA→TGA flux in GC-rich 

and highly recombining domains of mammalian and bird genomes. Coupled with 

evidence supporting TAA optimality, gBGC in the stop codon example appears to 

promote the fixation of non-optimal sequence in a manner that mimics positive 

selection, corroborating prior suggestions of its potential to do so (Nagylaki 1983; 
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Dreszer, et al. 2007; Berglund, et al. 2009; Ratnakumar, et al. 2010; Corcoran, et al. 

2017; Bolivar, et al. 2019).   

 

The mammalian TGA enigma is particularly intriguing because TGA stops are not just 

highly abundant but highly conserved (Belinky, et al. 2018; Seoighe, et al. 2020). That 

the flux data, in addition to stop codon usage, supports gBGC as the parsimonious 

cause hence raises concerns about the reliability of assuming sequence conservation 

to equal purifying selection, as is common practice in research (see Ponting 2017 for 

discussion) and medical contexts (Cooper, et al. 2010; Sun and Yu 2019). My results 

hence advocate control for gBGC in evolutionary studies of sequences where gBGC 

may be a factor, i.e. in species with a strong AT→GC bias in their mismatch repair 

and high variance in their recombination rates. This echoes the recommendations of 

Bolivar, et al. (2019), who suggest that accounting for gBGC is important to accurately 

estimate the strength of selection. In their example, Bolivar, et al. (2019) demonstrate 

that control for gBGC in evolutionary analysis may be achieved by calculating dN/dS 

separately for substitutions that do not alter GC content (i.e. G<->C and A<->T) and 

are thus unaffected by gBGC. More generally, Duret and Galtier (2009) suggest three 

key considerations to help distinguish between gBGC and selection. If observed non-

neutral genomic patterns are (i) GC-biased, (ii) common to all loci withing a given 

region irrespective of functional status, or (iii) strongest in highly recombining 

regions, then gBGC should be considered as a possible cause. Duret and Galtier (2009) 

do note that selection can in certain scenarios favour GC-rich sequences, affect non-

coding sequences, and be linked to recombination via Hill-Robertson interference 

(Hill and Robertson 1966), but nonetheless these questions should help researchers 

come to reliable conclusions. 

 

Several questions remain 

 

There are several questions that arose during this work and have not yet been 

answered. Perhaps the most significant of these is the TAG problem. While TAA 

usage covaries negatively, and TGA usage positively, TAG usage is mostly low and 

unresponsive to GC pressure in bacteria and archaea despite having an identical 

nucleotide content to TGA (Povolotskaya, et al. 2012; Korkmaz, et al. 2014; Trotta 

2016; Ho and Hurst 2019). In eukaryotes, TAG usage correlates with genomic GC 
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content but is consistently lower in absolute terms than TGA (Ho and Hurst 2021). 

Indeed, TGA and TAG also behave differently in the intragenomic analyses of Chapter 

5. If gBGC is to explain the observed high abundance and conservation of TGA stop 

codons, why does not act equally to increase TAG usage? For this question I would 

like to point to Chapter 6, “Discussion part 1”, where I summarise the salient points 

from the preceding chapters that relate to the TAG problem highlighting plausible 

roles for mutation bias, selection, and an extended model of gBGC. Here in 

“Discussion part 2”, I will instead discuss two other unanswered questions. First, why 

don’t both prokaryotes and eukaryotes select for ASCs? Second, with high Ne and 

efficient selection to purge TGA stop codons, why do TGA stop codons dominate in 

GC-rich bacterial species?  

 

Why don’t prokaryotic genomes employ fail-safe additional stop codons? 

 

That bacterial and eukaryotic genomes promote TAA stop codon usage in their highly 

expressed genes is evidence that both are under selection to prevent TR (Korkmaz, et 

al. 2014; Trotta 2016). It is unusual, then, that we do not see evidence of TR mitigation 

in both groups. ASCs, probably acting as fail-safe mechanisms in the 3’ UTR, are 

commonly enriched beyond null nucleotide expectations in unicellular eukaryotes but 

not in bacteria (Ho and Hurst 2019). Why might this be? 

 

One possible explanation concerns differences in Ne. Relative to bacteria (Sung, et al. 

2012; Sela, et al. 2016), eukaryotes have typically smaller population sizes and less 

efficient selection (Ohta 1992) to purge leaky TGA stop codons and mould their stop 

codon usage in response to TR. With a lack of reliable TR prevention, one could argue 

that TR mitigation solutions like ASCs might then be under stronger selection in 

eukaryotes. However, there are several reasons why such a model is unconvincing. 

First, there is a logic problem. If selection is too weak to select for TAA why should 

it be strong enough to selection for ASCs? Second, if lower Ne predicts error 

mitigation instead of error prevention, why do we not see evidence of ASC enrichment 

in multicellular eukaryotes (Ho and Hurst 2019)? Such species have even smaller Ne 

than their unicellular relatives and tend to possess lower TAA usage, hence this model 

predicts error mitigation to be even more important in multicells all else being equal. 

Third, even if Ne is lower in unicellular eukaryotes than bacteria, it is still large enough 
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for selection for both high TAA usage (relative to multicellular eukaryotes) and ASC 

enrichment. With even higher Ne, why should selection in bacteria favour one (TAA) 

and not the other (ASCs)? 

 

A second possible explanation is that there are differences between prokaryote and 

eukaryote global error control mechanisms that modify the need for local solutions. 

To recap the framework of Rajon and Masel (2011), global solutions refer to cellular 

pathways that prevent or mitigate errors occurring at multiple genomic loci (as 

opposed to local solutions, like ASCs, which affect just one gene and must hence 

evolve multiple times for a genome-wide effect). For example, a global TR prevention 

solution might be a mutation that improves the binding affinity of the class I release 

factor (RF1 or RF2 in bacteria, eRF1 in eukaryotes) to the stop codon and thus lowers 

cellular TR rates. RF binding affinity, however, is unlikely to cause the difference 

between bacteria and eukaryotes as the most recent available data suggests TR rates 

are comparable between the two groups (Cridge, et al. 2018; Zhang, et al. 2020). 

Alternatively, global error TR mitigation can be facilitated by NSD pathways that 

liberate the ribosome should it reach the polyA+ tail and lead to degradation of the 

mRNA transcript (Klauer and van Hoof 2012). Unlike global prevention via RF 

binding affinity, that global mitigation by NSD degradation is mediated by the 

exosome (van Hoof, et al. 2002) in eukaryotes and RNase R in bacteria (Richards, et 

al. 2006) provides a possible difference in efficacy between the prokaryote and 

eukaryote systems. If NSD degradation were more efficient or less energetically 

expensive in bacteria than eukaryotes, this could theoretically circumvent the need for 

local TR mitigation (via ASCs) in bacteria. A similar, speculative, possibility is that 

there exists an additional global mitigation pathway unique to bacterial systems that 

removes the need for local mitigation by ASCs. No such pathway however exists to 

the best of my knowledge. 

 

To further investigate this problem computationally is difficult without more 

experimental data. Elucidation of TR rates for a wider range of bacteria and eukaryotes 

would be beneficial to determine whether rates are consistent between the two groups 

as is currently the expectation, or if TR occurs at a lower rate in bacteria and thus 

ASCs are not needed for error control in these species. More generally, the preferred 

error control strategies of both groups might be best examined by experimental 
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evolution. I imagine one could optimise a transgene for high expression with a 

particularly leaky translation termination signal, a TGA stop codon with a TR-

associated nucleotide context, and express the construct in a model organism for each 

group (E. coli and S. cerevisiae). Growth of these organisms over many generations 

with sequencing at several time points should provide a clue as to which mutations are 

preferentially fixed in populations for error control. Modifications to the termination 

motif would indicate a preference towards error prevention whereas mutations 

increasing ASC density in the 3’ UTR would indicate a preference for error mitigation. 

I note that it’s possible selection could instead opt to reduce the expression level of 

the transcript, rather than directly manage the TR problem, if the transgene is not 

essential for survival and growth. This might be avoided by modifying the termination 

motif of an existing essential gene, using CRISPR for example, rather than expressing 

an exogenous transgene. 

 

How can we explain high TGA usage in GC-rich bacteria? 

 

Stop codon usage between bacterial genomes is highly variable (Korkmaz, et al. 2014; 

Ho and Hurst 2021). Just as TGA stop codons dominate in some eukaryotes, so do 

they dominate in some bacteria, not least those with high genomic GC content. Given 

bacteria possess large Ne (Sung, et al. 2012; Sela, et al. 2016), explaining high TGA 

usage in these species within the framework of nearly neutral theory is unclear as non-

optimal TGA stops should be reliably purged. What, then, are the other hypotheses for 

TGA abundance in GC-rich bacteria? 

 

As outlined in Chapter 4, the release factor (RF) hypothesis provides one possible 

framework for explaining TAG (recognised by RF1) and TGA (recognised by RF2) 

usage trends (Sharp and Bulmer 1988). This received support from observations that 

the TAG:TGA usage ratio is correlated with RF1:RF2 abundance ratios (Korkmaz, et 

al. 2014; Wei, et al. 2016). Most notably, Wei, et al. (2016) notice that RF2 abundance 

is low in species with low GC3 content and thus provide a possible explanation for the 

positive covariance between TGA usage and genomic GC content. They propose that 

the unresponsiveness of TAG to GC pressure is caused by a myriad of factors: TAA 

usage is high at low GC due to the mutation bias, TAA is preferred at mid-GC by 

selection for low TR, and TGA is highly abundant at high GC due to high RF2 levels 
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relative to RF1 (Wei, et al. 2016). The results presented in Chapter 4, however, argue 

RF biology is not needed to explain stop codon usage trends. Bacterial stop codon 

usage trends against genomic GC content are the same at the canonical stop site as 

seen (i) downstream in the 3’ UTR, (ii) in archaeal (and to a lesser extent eukaryotic) 

genomes that lack RF diversity, and (iii) between human isochores where the RF 

environment is the same for all genes (Ho and Hurst 2021).  

 

A few studies to date have proposed gBGC may be widespread across bacterial taxa 

and this in theory could go some way to explaining variation in TGA usage, not least 

its positive covariance with GC content. Most evidence for bacterial gBGC comes 

indirectly from either observed correlations between recombination and GC content 

or the analysis of intergenic regions that are free from coding constraints (Touchon, et 

al. 2009; Lassalle, et al. 2015). Across a broad sample of 21 bacterial clades, Lassalle, 

et al. (2015) observe consistent positive relationships between GC content and 

recombination rate both within genes and within intergenic regions. This, they argue, 

is unlikely to be driven by increased selection by Hill-Robertson interference, as there 

is a depletion of optimal AU-ending codons in highly recombining genes (Lassalle, et 

al. 2015). Indeed, the observations of Lassalle, et al. (2015) meet all three of criteria 

of Duret and Galtier (2009) that suggest gBGC should at the very least that be 

considered a possible cause. Combined with recombination rates being highly variable 

between bacterial species (Vos and Didelot 2009), gBGC theoretically could explain 

between-species variation in GC content and TGA usage across the whole group. This 

might indeed be more parsimonious than evoking selective reasons to explain why 

many intergenic regions, free of coding or expression constraint, sit at higher GC 

content than mutational equilibrium (Hershberg and Petrov 2010; Lassalle, et al. 

2015). 

 

The notion of widespread gBGC influencing nucleotide composition in bacteria isn’t 

without its controversy, however. Hildebrand, et al. (2010) and Yahara, et al. (2016) 

for example report only a modest relationship between recombination rate and GC 

content. More generally, such analysis has its limitations due to the difficulty in 

accurately estimating recombination rates at high resolution (e.g. at specific sites and 

not for kilobase windows). To circumvent this issue, Bobay and Ochman (2017) took 

a site-by-site approach to analyse only alleles for which there is strong direct evidence 
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for recombination. Contra to the gBGC hypothesis, they found recombinant alleles to 

be subjected to stronger purifying selection than those resulting from de novo mutation 

and biased towards AT, not GC (Bobay and Ochman 2017). These results clearly do 

not support that the strength of recombination and gBGC may counteract the AT-

biased nucleotide composition introduced to bacterial genomes by the mutation.  

 

At present, it seems the extent to which gBGC can explain between-species bacterial 

trends in GC content and TGA usage remains an open question. What about the other 

hypotheses for GC content variation in bacteria? As TGA usage positively correlates 

with GC content, it’s likely that the same forces are responsible for both. With the 

broad acceptance that the mutation bias is universally in the direction of GC->AT 

(Smith and Eyre-Walker 2001; Lynch, et al. 2008; Hershberg and Petrov 2010; 

Hildebrand, et al. 2010; Long, et al. 2018), the alternative hypotheses for bacterial GC 

content variation are selective. Elucidating the key selection pressures is difficult 

though, not least because genomic GC content covaries with many intrinsic and 

extrinsic factors (Foerstner, et al. 2005). While GC content positively correlates with 

genome size (Heddi, et al. 1998; Moran 2002; Rocha and Danchin 2002), it is also 

proposed, controversially (Marashi and Ghalanbor 2004), to correlate with growing 

temperature (Musto, et al. 2004) and the ability to fix nitrogen (McEwan, et al. 1998). 

If robust, these observations may provide some clues to the underlying selection 

pressures that influence genomic GC content. The robustness of these trends is 

however unclear as some groups (including Lassalle, et al. (2015) in their endorsement 

of bacterial gBGC) find the trends between GC content and ecology to be weak.  

 

How to further investigate this problem is not trivial. That GC content covaries with 

ecological niche is not only a difficult problem for selective hypotheses, but also for 

the bacterial gBGC hypothesis. In Chapter 5, I find that GC3 variance within a species’ 

genome to be a good predictor of the strength of gBGC. A simple experiment, then, 

could test for correlation between GC3 variance and the aforementioned intrinsic and 

extrinsic factors related to ecological niche. If a correlation were to be recovered, this 

could be considered new evidence in favour of gBGC causing bacterial GC content 

and TGA usage variation. I note that no matter what the force is that is shaping 

bacterial GC content and nucleotide composition, the stop codon exemplar suggests 

that it must be rather strong. The effect of GC pressure on TGA usage must be 
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balanced with concurrent selection to minimise TR rates. In AT-rich bacteria, both 

low GC content and low TR rates are facilitated by AT-rich TAA stop codons. In GC-

rich bacteria, however, GC pressure must be greater than selection against TR such 

that the net effect is towards TGA stop codons, at least outside of highly expressed 

genes (Korkmaz, et al. 2014). 

 

Summary, limitations, and outlook 

 

In this thesis I have presented a series of manuscripts that develop our understanding 

of stop codon usage and its role in error control. Through the systematic analysis of 

prokaryotic, eukaryotic, and archaeal genomes, I have elucidated the stop codon 

preferences of each group, corroborating prior suggestions that TAA is universally 

optimal (Povolotskaya, et al. 2012; Korkmaz, et al. 2014; Trotta 2016; Belinky, et al. 

2018). Rather than different species having different optimal stop codons, much of the 

variation in stop codon usage between taxa may instead be explained by differences 

in the interplay of mutation bias, selection against TR, genetic drift, and gBGC. TR 

may be locally prevented by mutations that switch the stop codon or locally mitigated 

by selection for ASCs (Rajon and Masel 2011). As both involve stop codons, this 

provides a unique framework to study the co-evolution of error prevention and error 

mitigation strategies. My results suggest that error prevention is the preferred solution 

to TR in bacteria and eukaryotes. With the publication of these chapters, I hope to 

provide an interesting account of stop codon evolution throughout the tree of life. With 

the opportunity to write an invited stop codon usage review at a respected journal, I 

hope to re-energise interest in the field by highlighting the significant gaps in our 

understandings.  

 

All the analyses presented in this thesis were conducted computationally. On the one 

hand, I believe this has demonstrated the robustness of bioinformatic methods and the 

utility of such methods for improving our understanding of molecular evolution. On 

the other, I acknowledge that the lack of experimental data may be considered a 

limitation. Indeed, experimental validation of some of my results would be influential 

in providing a molecular basis to support them. In Chapter 5, for example, my proposal 

of an extended gBGC model that allows for context dependency to treat GC-equivalent 

trinucleotides differently would benefit from tetrad analysis that directly records the 
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sequence context at gBGC loci as well as the GC bias. This could be influential work 

with wide implications for molecular evolution, not just for the field of stop codon 

usage where validation of the extended gBGC model has the potential to explain the 

TAG problem. 

 

My computational investigations into stop codon usage are also limited by some 

important assumptions. It is assumed, for example, that TR is common and deleterious 

in all species. That TR is common enough to be opposed by selection in all species 

seems reasonable as TR rates are consistent between model species of eukaryotes (e.g. 

humans (Cridge, et al. 2018)) and prokaryotes (e.g. Escherichia coli (Zhang, et al. 

2020)). Experimentally derived TR rates are however not available for many other 

species and the elucidation of TR rates across the tree of life would thus be greatly 

informative to the design of future bioinformatic analyses. Indeed, any observed TR 

rates that are significantly deviant from the existing data would oppose the assumption 

that TR rates may be generalised to large species datasets such as those analysed here. 

The second assumption that TR is deleterious for all genes and in all species also 

seems reasonable given the support from the best available data (Li and Zhang 2019). 

Nevertheless, it should be noted that functional TR (FTR) has now been described in 

a few species (e.g. Jungreis, et al. 2011; Schueren and Thoms 2016; Zhang, et al. 

2020). For most species, the impact of FTR on genome-wide selection against TR 

should be minimal as FTR is most often unique to a small subset of genes (Jungreis, 

et al. 2011; Schueren and Thoms 2016) or specific conditions of environmental stress 

(Zhang, et al. 2020). Some viral genomes, which must maximise the coding capacity 

of their small genomes (Firth and Brierley 2012), might be exceptions to this rule but 

are not analysed in any of the above chapters. Viruses do, however, demonstrate the 

possibility that genome-wide TR can be net beneficial not deleterious for some 

species. I am not aware of any prokaryotes or eukaryotes where this is the case, but 

this is nonetheless a limitation of between-species analysis in the absence of more TR 

rate data. 

 

Related to the above is the methodological limitation of estimating a species’ selective 

preferences by averaging selective effects across all genes in its genome. For example, 

in Chapter 3, when calculating “TAA enrichment” and “ASC enrichment” metrics I 

first calculate the genome-wide frequencies of each and compare these to a null model. 
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Such calculation assumes all genes are equally subjected to the same selection 

pressures and thus gives equal weighting to each gene. This crucially ignores more 

localised selection pressures like FTR for individual genes. More generally, the 

averaging across genes is also sensitive to local nucleotide composition preferences. 

TAA stop codons may occur commonly in GC-poor sequences while TGA and TAG 

stop codons might occur in GC-rich sequences due to chance alone. I have attempted 

to control for such regionalised effects by performing nucleotide or dinucleotide-

matched controls, however I acknowledge the limitations of calculating such genome-

wide “enrichment” metrics.  

 

I would like to conclude with the sentiment that, while computational methods such 

as those used in this thesis come with assumptions and limitations, they have been 

instrumental in developing my understanding of stop codon usage, TR, and molecular 

evolution more generally. We now find ourselves with a wealth of publicly available 

genomic datasets waiting for bioinformatic analysis, and extracting the maximum out 

of these datasets will be integral to science in the 21st century. Not only does 

computational analysis provide new insights, it also can be used to advise the design 

of experimental procedures to optimise time and save resources. With sequencing now 

happening at an unprecedented scale, exemplified by the ongoing sequencing effort in 

response to the ongoing SARS-CoV-2 pandemic, this opportunity looks set to 

continue for many years to come.  
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