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Simple models are used throughout the physical sciences as a means of developing intuition, cap-
turing phenomenology, and qualitatively reproducing observations. In studies of microswimming,
simple force-dipole models are commonplace, arising generically as the leading-order, far-field de-
scriptions of a range of complex biological and artificial swimmers. Though many of these swimmers
are associated with intricate, time varying flow fields and changing shapes, we often turn to mod-
els with constant, averaged parameters for intuition, basic understanding, and back-of-the-envelope
prediction. In this brief study, via an elementary multi-timescale analysis, we examine whether the
standard use of a priori-averaged parameters in minimal microswimmer models is justified, asking if
their behavioural predictions qualitatively align with those of models that incorporate rapid tempo-
ral variation through simple extensions. In doing so, we find that widespread, seemingly innocuous
choices of parameters can give rise to qualitatively incorrect conclusions from simple models, with
the potential to alter our intuition for swimming on the microscale. Further, we highlight and
exemplify how a straightforward asymptotic analysis of the non-autonomous models can result in
effective, systematic parameterisations of minimal models of microswimming.

I. INTRODUCTION

In the physical sciences, simple mathematical models are often used as a means of developing intuition and capturing
phenomenology for complex systems. Whilst more complex, faithful models might require computational methods
or advanced analytical techniques to study them, simple models are commonly amenable to succinct pen-and-paper
analysis, frequently provide insight, and can sometimes yield dynamical predictions that agree with those of more
intricate representations, at least qualitatively. This minimalistic approach is readily exemplified in the study of
microswimmers, where minimal models of complex, shape deforming swimmers on the microscale are used in a range
of settings, from back-of-the-envelope calculation and undergraduate teaching through to state-of-the-art, application-
driven research contributions [1–11].

A common, if not ubiquitous, hydrodynamic representation of a microswimmer is the force dipole model, wherein
the flow field generated by a swimmer is taken to correspond simply to that of a force dipole. This approximate
representation is valid in the far field of a microswimmer, with force-free swimming conditions being appropriate in
the inertia-free limit of low-Reynolds-number swimming that applies to many microswimmers, including the well-
studied spermatozoa and the breaststroke-swimming algae Chlamydomonas reinhardtii. Invariably, the force dipole is
assumed to be aligned along a swimmer-fixed axis and taken to be of constant signed strength. Swimmer parameters
can be estimated from experimental measurements and hydrodynamic simulations [12–19], and typically involve
averaging out rapid temporal variations that can be present in biological swimmers. This leads to a minimal model of
a microswimmer: instead of studying a complex, shape-deforming swimmer and the associated time-varying flow field,
we can consider the motion of a constant-strength force dipole in the same environment. With this approximation,
one can often derive surrogate equations of motion for the swimmer [11, 20], which can then be analysed with ease,
at least when compared to models that capture the intricate, time-dependent details of the microswimmer and the
flow that it generates. However, it is important to note that the shape of a swimmer can still play a key role even
in the simplest of models of hydrodynamic interaction, a observation that is perhaps unsurprising given the breadth
of research that establishes the importance of shape on the dynamics of hydrodynamically coupled bodies, including
the phenomenon of synchronisation [21–24].

Though many of the assumptions associated with a minimalistic modelling approach are well understood, such as
the limitations of the far-field approximation when studying near-field interactions, the impact of assuming a constant
dipole strength on the validity of a model is less clear. More generally, the impact of adopting constant, a priori -
averaged parameters in simple models of temporally evolving microswimmers has not been thoroughly investigated,
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to the best of our knowledge. However, it is clear that employing rapidly varying parameters can have significant
consequences for the predictions of simple models. For example, the work of Omori et al. [10] recently explored
a simple model of shape-changing swimmers, explicitly including rapid variation in the parameters that describe
the swimmer shape and its speed of self propulsion. The subsequent analysis of Walker et al. [25] highlighted,
amongst other observations, that the fast variation in the parameters was key to the behavioural predictions of the
model, which were found to align with the experimental observations of Omori et al. [10]. Hence, the study of the
effects of employing time-dependent parameters in even simple models, in comparison to adopting constant, averaged
parameters, is warranted.

Thus, the primary aim of this study will be to explore minimal models of microswimming, incorporating fast varia-
tion in model parameters. To do this, motivated by a number of recent works in a similar vein [25–27], we will employ
a multiple scales asymptotic analysis [28] to systematically derive effective governing equations from non-autonomous
models. In particular, we will incorporate the effects of rapid variation by exploiting the separation of timescales often
associated with microswimming, yielding leading-order autonomous dynamical systems. In what follows, we will focus
on three example scenarios: the interaction of a dipole swimmer with a boundary, the hydrodynamic interaction of two
mirror-symmetric dipole swimmers, and the angular dynamics of two hydrodynamically interacting dipoles that are
pinned in place, each parameterised by both the swimmer shape via the Bretherton parameter [29] and the flow field
via the dipole strength. Through our analysis, which will be simple, if not elementary, we will compare the dynamics
of multi-timescale models with the predictions of the simplest, constant-parameter models, seeking to ascertain both
if qualitative differences arise and if they can be systematically corrected for by informed parameter choices.

II. A DIPOLE NEAR A NO-SLIP BOUNDARY

A. Model equations

Consider a swimmer moving in a half space that is bounded by an infinite no-slip plane, with the swimmer moving
in a plane perpendicular to the boundary. We parameterise the orientation of the swimmer by the angle θ between a
swimmer-fixed director d and the boundary normal, and parameterise its position by the distance h from its centre to
the boundary, as illustrated in Fig. 1. With all quantities dimensionless, a minimal model for the swimmer dynamics
is presented in part by Lauga [9] as

dh

dt
=

3p

16h2
(1 + 3 cos 2θ) + u cos θ , (1a)

dθ

dt
=

3p sin 2θ

64h3
[4 +B(3 + cos 2θ)] , (1b)

where u is the speed of self propulsion and we have shifted Lauga’s definition of θ by π/2. In this minimal model, the
flow generated by the swimmer in the absence of the boundary is assumed to be purely that of a force dipole with
vector strength p = pd, aligned along the body fixed director that defines θ, and the swimmer shape is captured only
through the Bretherton parameter B [29]. This scalar function of shape encodes how a background flow modifies the
rate of rotation of the swimmer and, in essence, corresponds to a measure of elongation. In particular, spherical bodies
give rise to B = 0, whilst prolate and oblate spheroids are associated with B ∈ (0, 1) and B ∈ (−1, 0), respectively,
with the limit of infinite aspect ratio giving |B| → 1. This overall modelling approach can be justified by considering
a far-field limit of a swimmer, though here we focus on analysing the model of Eq. (1) rather than on its origin and
motivation. In particular, we focus on the angular dynamics contained within Eq. (1b).

The standard approach to modelling this system would be to assume that p, u, and B are constant in time, as is
the case in the textbook of Lauga [9]. This can be interpreted as averaging away any time dependence of the three
parameters, which one would generically expect to be present for a multitude of shape-changing microswimmers, for
instance. Here, we do not perform this a priori averaging of the parameters, and will instead suppose that p, u, and
B are indeed functions of time. In particular, we suppose that p = p(ωt), u = u(ωt), and B = B(ωt) are periodic
functions of ωt, where ω ≫ 1 is a large dimensionless frequency of oscillation and we assume that p, u, and B share a
period, in line with the rapid shape changes undergone by many microswimmers. For later convenience, we make the
additional assumption that the average of p over a period is non-zero, and will impose the minimal restriction that
B ∈ (−1, 1), which holds for all but the most elongated of objects [29]. Hence, we study the non-autonomous system

dh

dt
=

3p(ωt)

16h2
(1 + 3 cos 2θ) + u(ωt) cos θ , (2a)

dθ

dt
=

3p(ωt) sin 2θ

64h3
[4 +B(ωt)(3 + cos 2θ)] , (2b)
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FIG. 1. Geometry and parameterisation of a minimal model of a swimmer above a no-slip boundary. The swimmer is
parameterised by the angle θ between the vector dipole strength p and the separation h of its centroid from the boundary. The
velocity due to self-propulsion is assumed to be along the direction of p, shared with swimmer-fixed director d.

with ω ≫ 1 and all other quantities being O(1) as ω → ∞.

B. Multi-scale analysis

We will attempt to exploit the large frequency ω ≫ 1 in order to make progress in analysing the non-autonomous
system of Eq. (2), employing the method of multiple scales [28]. Following this approach, we introduce the fast
timescale T := ωt, so that p = p(T ) etc., and formally treat t and T as independent. The proper time derivative d/dt
accordingly transforms as

d

dt
7→ ∂

∂t
+ ω

∂

∂T
, (3)

transforming our non-autonomous system of ordinary differential equations (ODEs) into a system of partial differential
equations (PDEs). We now seek asymptotic expansions of h and θ in inverse powers of ω, which we write as

h ∼ h0(t, T ) +
1

ω
h1(t, T ) + · · · , θ ∼ θ0(t, T ) +

1

ω
θ1(t, T ) + · · · . (4)

Transforming Eq. (2) via Eq. (3) and inserting these asymptotic expansions gives the O(ω) balance simply as

∂h0

∂T
= 0 ,

∂θ0
∂T

= 0 =⇒ h0 = h0(t) , θ0 = θ0(t) , (5)

so that the leading-order solutions are independent of the fast timescale T . This should be expected, as the forcing
of the system is strictly O(1), so that the dominant contribution to the evolution occurs on the long timescale t.
At the next asymptotic order, we pick up the O(1) forcing and we have

dh0

dt
+

∂h1

∂T
=

3p(T )

16h2
0

(1 + 3 cos 2θ0) + u(T ) cos θ0 , (6a)

dθ0
dt

+
∂θ1
∂T

=
3p(T ) sin 2θ0

64h3
0

[4 +B(T )(3 + cos 2θ0)] , (6b)

writing t-derivatives of h0 and θ0 as proper due to their established independence from T . The appropriate solvability
conditions for this first-order system are obtained by averaging the equations over a period in T and imposing
periodicity in T , equivalent to the Fredholm Alternative Theorem for this system [28]. To do so, we assume, without
loss of generality, that the period of the fast oscillations is 2π, defining the averaging operator · via

a =
1

2π

∫ 2π

0

a(T ) dT . (7)

Computing the average of Eq. (6) and factoring out p ̸= 0 from the angular evolution equation, we arrive at

dh0

dt
=

3p

16h2
0

(1 + 3 cos 2θ0) + u cos θ0 , (8a)

dθ0
dt

=
3p sin 2θ0
64h3

0

[
4 +

pB

p
(3 + cos 2θ0)

]
, (8b)
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β < −2 −2 < β < −1 β > −1

(a) (b) (c)x = 0

π
2

π

3π
2

FIG. 2. Steady states and stability of angular evolution for the autonomous system of Eq. (10) are shown as dynamics on a
circle, for α > 0 fixed and for three values of β. Swimming parallel to the boundary corresponds to states with x = π/2, 3π/2,
whilst x = 0, π corresponds to swimming aligned with the normal to the boundary. (a) With β < −2, the system evolves to a
steady state with x = nπ, n ∈ Z. (b) For −2 < β < −1, x = nπ/2 are stable for all n ∈ Z, with unstable configurations present
between these attractors. (c) For β > −1, the system evolves to a steady state with x = π/2+ nπ, for n ∈ Z. Stable states are
shown as solid points, whilst unstable points are shown hollow. Stabilities for α < 0 are obtained by reversing the illustrated
dynamics.

with the imposed periodicity eliminating the fast-time derivatives. Comparing these leading-order differential equa-
tions with those of Eq. (2), we see that we have essentially replaced the parameters p, u, and B with the effective
parameters p, u, and pB/p, the precise forms of which have arisen through our brief, systematic analysis. Whilst the
modifications to p and u are as might be naively expected, the effective shape constant pB/p is somewhat less obvious
at first glance, with one perhaps expecting the average parameter B. Indeed, these authors have previously been
guilty of utilising simply p, u, and B in place of the rapidly oscillating quantities in back-of-the-envelope calculations.
We will refer to such a model as an a priori-averaged model, here given explicitly by

dha

dt
=

3p

16ha2
(1 + 3 cos 2θa) + u cos θa , (9a)

dθa

dt
=

3p sin 2θa

64ha3

[
4 +B(3 + cos 2θa)

]
, (9b)

using a superscript of a to denote the solutions of this a priori -averaged system.
Though an elementary observation, it is worth highlighting that, without any additional assumptions on p(T ) and

B(T ), it is in general not the case that pB/p = B, so that we should expect to observe differences between the
systematically determined, leading-order dynamics of Eq. (8) and those of the a priori -averaged model of Eq. (9). In
what follows, through a brief consideration of the angular evolution equations, we will highlight how these differences
can be more than simply quantitative. However, it is worth highlighting that pB/p = B if either of p(T ) and B(T )
are in fact constant, so that a necessary condition for differences in behaviour is the presence of oscillations in both
the dipole strength and the swimmer shape.

Focussing on the angular dynamics, we specifically consider the abstracted scalar autonomous ODE

dx

dt
= f(x;α, β) , (10)

where

f(x;α, β) :=
3α sin 2x

64h3
[4 + β(3 + cos 2x)] , (11)

so that (α, β) = (p,B) corresponds to the a priori -averaged model, whilst (α, β) = (p, pB/p) gives the leading-order,
systematically averaged dynamics. Note that, for the purposes of a stability analysis of the angular dynamics, we can
treat the swimmer separation from the boundary as a positive parameter, abusing notation and generically writing h
in the denominator of Eq. (11), without materially modifying a steady state analysis of the angular dynamics.

C. Exploring the autonomous dynamics

The fixed points of Eq. (10) are readily seen to be x = nπ, x = π/2 + nπ, and solutions of 4 + β(3 + cos 2x) = 0
(if they exist), for n ∈ Z. Notably, if β ∈ (−1, 1), as is the case in the a priori -averaged model, then the only steady
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states are at integer multiples of π/2. Focussing on these steady states, their linear stability is given by

x =

{
nπ is stable ⇐⇒ α(1 + β) < 0 ,
π/2 + nπ is stable ⇐⇒ α(2 + β) > 0 .

(12)

Hence, for β ∈ (−1, 1), the stability of the steady states is determined solely by the sign of α, with α > 0 giving rise to
unstable states at x = nπ and stable states at x = π/2 + nπ. Identifying α with the averaged signed dipole strength,
this is precisely in line with the classical analysis of pusher and puller swimmers via the a priori -averaged model, as
summarised by Lauga and Powers [11], with pushers and pullers corresponding to α > 0 and α < 0, respectively.

However, if β < −1, the profile of stability can change significantly. Bifurcations at β = −1 and β = −2 see the
creation and destruction of additional steady states (the solutions of 4 + β(3 + cos 2x) = 0) accompanied by changes
in stability of the steady states at x = nπ and x = π/2 + nπ, respectively. When they exist, the additional states
have the opposite stability to the other steady states, so that they are stable for α < 0. For β < −2, the equation
defining the additional steady states admits no real solutions, so that these steady states cease to exist and the angular
equilibria are the same as for β > −1, though with opposite linear stabilities. Each of these dynamical regimes is
illustrated in Fig. 2 for α > 0, highlighting a strong dependence of the dynamics on β. The linear stability of each
state is flipped upon taking α < 0.

D. Comparing the emergent dynamics

The elementary analysis of the previous section highlights how qualitative changes in the globally attractive be-
haviour of the model depend strongly on the parameter β. However, the predictions of the a priori -averaged model
are simple: if the swimmer is a pusher, with α = p > 0, then the states θa = nπ are unstable, and the swimmer
instead evolves to a state where θa = π/2 + nπ and swims parallel to the boundary. If the swimmer is a puller, with
α = p < 0, then the swimmer instead evolves to θa = nπ, thereafter moving perpendicular to the boundary.
However, the predictions of the systematically averaged model are more complex. Whilst switching the sign of

p still switches the stability of each steady state, the value of β = pB/p, which need not be smaller than unity in
magnitude, can materially alter both the steady states in existence and the stability of the states that correspond
to parallel and perpendicular swimming. For instance, if α = p > 0 and β ∈ (−2,−1), both the θ0 = nπ and the
θ0 = π/2+nπ states are linearly stable, accompanied by four steady states in the range θ0 ∈ (0, 2π) that are unstable;
for α = p < 0, the stability of each state is swapped. Hence, swimmers with p < 0 and pB/p ∈ (−2,−1) will evolve to
a steady state that is not a multiple of π/2; in other words, they will neither align parallel nor perpendicular to the
boundary, a behaviour that is never predicted by the a priori -averaged model in any admissible parameter regime.

As an explicit illustration of how the two models can qualitatively differ, we take p(T ) = 4A sinT + 1 and B(T ) =
sin (T )/2, so that p = 1, B = 0, and pB/p = A. The a priori -averaged model predicts the dynamics shown in Fig. 2c
for all values of A, whilst the systematically averaged dynamics follow Fig. 2b for A ∈ (−2,−1) and Fig. 2a for
A < −2. Fixing A = −3/2, the temporal evolution of both of these models is shown in Fig. 3, along with a numerical
solution to the angular dynamics of the full system of Eq. (2). Here, we have fixed h > 0 as a parameter, recalling that
the swimmer separation serves only to modify the rate at which the angular dynamics approach a steady state. In
agreement with our analysis, the a priori -averaged model incorrectly predicts the qualitative evolution of the model
swimmer, whilst the leading-order, systematically averaged model is in agreement with the full numerical solution.

Despite these general qualitative differences, it should be noted that there are parameter regimes in which the
dynamics are qualitatively indistinct between the models. For instance, suppose that we are in a regime where
β = pB/p ̸∈ (−2,−1), so that the only steady states are those given in Eq. (12). Then, if p(T ) is of fixed sign for all T ,

so that the swimmer is unambiguously a pusher or a puller, it is simple to note that p+pB =
∫ 2π

0
p(T )[1+B(T )] dT/2π

has the same sign as p, recalling that B ∈ (−1, 1). Similarly, 2p + pB has the same sign as p, so that the long-time
behaviour is completely determined by the sign of p, noting the conditions from Eq. (12).

Returning to the dynamics of swimmer separation, and in contrast to the angular dynamics, we note the equations
governing the evolution of h0 and ha both make use of the same parameters, which follows from the linearity of the
governing equation of Eq. (2a) in the rapidly oscillating parameters. However, as the evolution depends non-trivially
on the swimmer orientation, systematic averaging of rapid oscillations is still required to determine the long-time
separation dynamics, even though only a priori -averaged parameters appear explicitly in the governing equation of
Eq. (8a) at leading order. Further, due to the simple dependence of the angular evolution equations on the swimmer
separation, one can effectively treat the system as being partially decoupled, with the effective parameters of the
angular equations determining an angular steady state to which the system evolves, a state that then determines the
long-time behaviour of the separation dynamics.
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FIG. 3. Angular evolution of a swimmer at fixed separation from a no-slip boundary. The prediction of the a priori-averaged
model can be seen to not align with the prediction of the systematically averaged model of Eq. (8) or the dynamics of the
full model of Eq. (2), with qualitatively distinct steady configurations from the same initial condition. Rapid oscillations in
the solution full dynamics are not visible at the resolution of this plot. Here, we have fixed h = 1, ω = 100, and taken
p(T ) = −6 sin (T ) + 1 and B(T ) = sin (T )/2. Schematics of the long-time configurations are shown inset.

FIG. 4. Geometry and parameterisation of interacting dipole swimmers undergoing mirror-symmetric motion, equivalent to
the motion of one dipole in the presence of a free-slip boundary. The orientation of the swimmers is described by an angle θ
between the vector dipole strength p and the boundary normal, with the separation between each swimmer and the plane of
mirror symmetry being denoted by h. As in the previous section, the swimming velocity of each particle is assumed to align
with the vector dipole strength.

III. MIRROR SYMMETRIC DIPOLES AND A FREE-SLIP BOUNDARY

A. Model equations

Consider the parameterised dipole swimmer of the previous section, with the same set-up and parameterisation as
before, and modify the no-slip boundary condition to be that of a free-slip interface. This no-shear-stress boundary
condition is well-known to be equivalent to imposing a symmetry condition on the flow and geometry, so that we can
instead cast this problem in the context of two dipoles moving in a shared domain in a mirror-symmetric way. In this
scenario, as illustrated in Fig. 4, the evolution of h and θ is governed by the ODE system

dh

dt
=

p

8h2
(1 + 3 cos 2θ) + u cos θ , (13a)

dθ

dt
=

3p sin 2θ

32h3
[2 +B(1 + cos 2θ)] , (13b)

following the description of Spagnolie and Lauga [30] and qualitatively resembling the governing equations of Section II.
Here, p, u, and B are once again the signed dipole strength, the signed swimming speed, and the Bretherton parameter
associated with the swimmer.

As with the previous model, a standard approach would be to characterise the dynamics of a dipole swimmer by
assuming that the three quantities p, u, and B were constant in time. Here, we will consider the case where these
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parameters oscillate rapidly in time, studying the non-autonomous dynamical system

dh

dt
=

p(ωt)

8h2
(1 + 3 cos 2θ) + u(ωt) cos θ , (14a)

dθ

dt
=

3p(ωt) sin 2θ

32h3
[2 +B(ωt)(1 + cos 2θ)] , (14b)

for ω ≫ 1 and all other quantities O(1) as ω → ∞. We will continue to assume that B ∈ (−1, 1) and that the average
of p is non-zero.

B. Multi-scale analysis

As Eq. (14) differs from the non-autonomous system of Eq. (2) only through the simple modification of constants,
the structure of the problem and a subsequent multi-scale analysis is entirely similar to the previous case. Following
the approach taken in Section II B with only trivial alterations leads to the systematically derived, leading-order
system

dh0

dt
=

p

8h2
0

(1 + 3 cos 2θ0) + u cos θ0 , (15a)

dθ0
dt

=
3p sin 2θ0
32h3

0

[
2 +

pB

p
(1 + cos 2θ0)

]
, (15b)

where h0 and θ0 are the leading-order terms in expansions of h and θ, respectively, and · denotes averages taken
over the shared period of fast oscillation of p, u, and B. Again, we see that this resembles the original dynamical
system, with parameters replaced by their appropriately averaged counterparts. As before, though perhaps now less
surprising, the Bretherton parameter B has been replaced by pB/p, which need not align with B in general. In
order to explore the effects that this change of parameterisation can have on the predicted dynamics, we continue to
interpret a model with constant parameters as an a priori -averaged model of a temporally varying dipole swimmer,
which can be stated explicitly as

dha

dt
=

p

8ha2
(1 + 3 cos 2θa) + u cos θa , (16a)

dθa

dt
=

3p sin 2θa

32ha3

[
2 +B(1 + cos 2θa)

]
, (16b)

adopting pre-averaged parameters in Eq. (13) and denoting the solutions by ha and θa.
Noting that the separation from the boundary acts only as a timescale in the angular evolution equations of both

the systematically averaged dynamics and the a priori -averaged model, we treat the separation h as a parameter and
consider only the angular dynamics, defining

f(x;α, β) :=
3α sin 2x

32h3
[2 + β(1 + cos 2x)] (17)

and the autonomous scalar ODE

dx

dt
= f(x;α, β) . (18)

In this setting, the a priori -averaged model corresponds to taking (α, β) = (p,B), whilst the systematically averaged
dynamics correspond to (α, β) = (p, pB/p).

C. Exploring the autonomous dynamics

The autonomous dynamics of Eq. (18) closely resemble those of the no-slip case. The fixed points of the dynamics
are given by x = nπ, x = π/2 + nπ, and solutions of 2 + β(1 + cos 2x) = 0, for n ∈ Z and solutions to the latter
relation existing precisely when β ≤ −1. Hence, for the a priori -averaged model, where β ∈ (−1, 1), the only steady
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β < −1 −1 < β

(a) (b)x = 0

π
2

π

3π
2

FIG. 5. Steady states and stability of angular evolution for the autonomous system of Eq. (18) are shown as dynamics on a
circle, for α > 0 fixed and for various values of β. Swimming parallel to one another corresponds to states with x = π/2, 3π/2,
whilst x = 0, π corresponds to swimming towards or away from the other swimmer. (a) For β < −1, x = nπ/2 are stable for
all n ∈ Z, with unstable configurations present between these attractors. (b) For β > −1, the system evolves to a steady state
with x = π/2 + nπ, for n ∈ Z. Stable states are shown as solid points, whilst unstable points are shown hollow. Stabilities for
α < 0 are obtained by reversing the illustrated dynamics.

states are integer multiples of π/2, as was the case for the no-slip dynamics. The linear stability of these states is
given by

x =

{
nπ is stable ⇐⇒ α(1 + β) < 0 ,
π/2 + nπ is stable ⇐⇒ α > 0 .

(19)

If β ∈ (−1, 1), we again see that the sign of α determines the stable configuration, with α = p > 0 corresponding to
the prediction that classically described pusher swimmers will swim alongside one another, with x = π/2 + nπ being
the only steady states of the angular dynamics. Analogously, puller swimmers are predicted to stably align along the
axis of their dipoles, swimming directly away from or towards one another.

However, if β < −1, the stability of the x = nπ steady states switches. For α < 0, these states become unstable as
β crosses −1 from above, with their stability lost to the now-real solutions of 2 + β(1 + cos 2x) = 0. The stability of
the parallel-swimming states, with x = π/2+nπ, is unaffected by β, so that α > 0, β < −1 corresponds to a regime in
which both x = nπ and x = π/2+nπ are linearly stable, separated by the unstable solutions to 2+β(1+cos 2x) = 0.
Unlike in the analysis of the no-slip problem in the previous section, this regime in which all possible steady states
coexist persists for all β < −1, so that the full range of dynamics can be captured using only two portraits, as shown
in Fig. 5 for the case with α > 0. As before, the stability of all steady states is switched upon changing the sign of α,
whilst changes in β enact qualitative changes in the profile of stability.

D. Comparing the emergent dynamics

The above analysis highlights how the parameter β again plays a key role in the dynamics, with changes in β able
to qualitatively alter the swimming behaviour. As in the previous case, the a priori -averaged model predicts simply
that pusher swimmers, with α = p > 0, will swim stably with θa = π/2 + nπ, whilst puller swimmers swim with
θa = nπ, so that pullers are predicted to align perpendicular to free-slip boundaries.

The predictions of the systematically averaged model are more complex, with β = pB/p no longer constrained to
be of magnitude less than unity. For example, in the case where β < −1, Fig. 5a highlights that pusher swimmers,
with α = p > 0, can evolve any configuration with θa = nπ/2, so that they can in fact be stable both parallel and
perpendicular to a free-slip boundary. This prediction is clearly at odds with that of the a priori -averged model,
evidencing the potential unreliability of the simplest microswimmer models when inappropriately parameterised.
Puller swimmers, on the other hand, exhibit somewhat more interesting behaviour for β < −1, evolving to a state
neither perpendicular nor parallel to the boundary, in contrast to the perpendicular configuration predicted by the a
priori -averaged model. This example is illustrated numerically in Fig. 6.

As before, there are classes of p(T ) and B(T ) for which the qualitative predictions of both models align. Specifically,
if p(T ) is of fixed sign for all T , then it is the case that p and p+pB have the same sign, so that the stability conditions of
Eq. (19) depend only on α = p, which is the same in both models. Additionally, the dynamics of swimmer separation
are again much simpler than those of orientation, being modified by the rapidly varying parameters only via the
angular dynamics.
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FIG. 6. Angular evolution of a swimmer at fixed separation from a free-slip boundary. The prediction of the a priori-averaged
model can be seen to not align with the prediction of the systematically averaged model of Eq. (15) or the dynamics of the full
model of Eq. (14), with qualitatively distinct steady configurations from the same initial condition. Here, we have fixed h = 1,
ω = 10, and taken p(T ) = 6 sin (T )− 1 and B(T ) = sin (T )/2. Schematics of the long-time configurations are shown inset.

FIG. 7. Geometry of fixed-position dipole rollers. Each roller is pinned in place at its centre, but is free to rotate, driven by
the dipolar flow generated by the other. Their orientation is captured by their directors d1 and d2, parameterised by θ1 and
θ2, respectively. The axis of each roller’s dipolar flow field is assumed to be directed along their orientation vector.

IV. INTERACTING DIPOLE ROLLERS

A. Model equations

As a minimal model of flow-generating particles that captures their interactions without imposing an explicit
symmetry constraint, consider a pair of particles in the plane that are instead pinned in place in the laboratory frame,
so that they are free to rotate in the plane but unable to translate. The particles, which we term rollers, are assumed
to interact through dipolar flow fields, with vector dipole strengths p1 and p2, respectively, which are both assumed
to lie in the plane containing the particles. Taking {ex, ey} to be an orthogonal basis for the laboratory frame that
spans this plane, we define the orientation of the ith particle, i ∈ {1, 2}, via the angle θi between a body-fixed axis and
ex, so that the direction of the roller can be captured as di = cos θiex+sin θiey. Analogously to the previous sections,
we assume that the vector dipole strength of each particle is aligned with di, so that we can write pi = pidi, where pi
is the scalar dipolar strength and may take any sign. We further assume that p1 = p2, so that the dipoles are of equal
strength, though we remark that retaining generality is straightforward but notationally cumbersome. Without loss
of generality, we assume that the displacement of particle 1 from particle 2 is rex, where r > 0 is the distance between
them. In this setting, illustrated in Fig. 7 and following Lauga [9, p. 295], the effects of each particle’s dipolar flow
on the orientation of the other particle are captured by the following dimensionless coupled system of ODEs:

dθ1
dt

= f(θ1, θ2; p,B) , (20a)

dθ2
dt

= f(θ2, θ1; p,B) , (20b)

where

f(x, y;α, β) := −3α

r3
(
sin y cos y + β

[
sinx cosx

(
1− 5 cos2 y

)
+ cos y sin (2x− y)

])
. (21)

Here, B is once again the shape-capturing parameter of Bretherton [29], and we assume that both of the particles
are associated with the same shape parameter. This further assumption can be relaxed at the expense of notational
convenience.

The standard approach would be to assume that p and B are constant, so that the above system is autonomous.
Here, we take p = p(T ) and B = B(T ), interpreting the constant-parameter model as the a priori -averaged model,
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as above. Hence, we study the non-autonomous system

dθ1
dt

= f(θ1, θ2; p(ωt), B(ωt)) , (22a)

dθ2
dt

= f(θ2, θ1; p(ωt), B(ωt)) , (22b)

with ω ≫ 1 and all other quantities being O(1) as ω → ∞. It should be noted that, whilst we study this system as
a simple extension of an established model, these equations can be rigorously derived by considering the dynamics
of shape-changing spheroids, subject to the far-field approximation and the assumption that their instantaneous
deformation is both force- and torque-free. This derivation is somewhat elementary and follows the approach given in
Gaffney et al. [31], from which this model can also be extended to accommodate more general deformations through
the addition of uncomplicated terms. Here, seeking simplicity and clarity, we pursue the model given in Eq. (22).

B. Multi-scale analysis

The multi-scale analysis of this problem proceeds entirely analogously to that of the previous two examples, but is
reproduced here in detail in the interest of clarity. As in Section II, we formally introduce the fast timescale T = ωt,
transforming the proper time derivative as

d

dt
7→ ∂

∂t
+ ω

∂

∂T
. (23)

We seek an asymptotic expansion of θ1 and θ2 in inverse powers of ω, which we write as

θ1 ∼ θ1,0(t, T ) +
1

ω
θ1,1(t, T ) + · · · , θ2 ∼ θ2,0(t, T ) +

1

ω
θ2,1(t, T ) + · · · . (24)

Transforming Eq. (22) via Eq. (23) and inserting the expansions of Eq. (24), at O(ω) we have

∂θ1,0
∂T

= 0 ,
∂θ2,0
∂T

= 0 =⇒ θ1,0 = θ1,0(t) , θ2,0 = θ2,0(t) , (25)

so that the leading-order solutions for θ1 and θ2 are independent of the fast timescale and, thus, are functions only
of t. As in Sections II and III, this arises due to the forcing of the ODEs being O(1), so that the forcing does not
contribute at O(ω). At O(1), we have

dθ1,0
dt

+
∂θ1,1
∂T

= f(θ1,0, θ2,0; p(T ), B(T )) , (26a)

dθ2,0
dt

+
∂θ2,1
∂T

= f(θ2,0, θ1,0; p(T ), B(T )) , (26b)

using the fact that θ1,0 and θ2,0 are independent of T to write their time derivatives as total derivatives. As in
Sections II and III, imposing periodicity and averaging over a period in T closes the system of PDEs at this order.
Without loss of generality, we assume that the period of oscillations of p and B is 2π, and we recall the averaging
operator · from Eq. (7) as

a =
1

2π

∫ 2π

0

a(T ) dT . (27)

To compute the average of Eq. (26) in T , it is instructive to consider the dependence of f on its arguments explicitly.
To that end, we explicitly compute the average of Eq. (26a) as

dθ1,0
dt

= − 3

r3
(
p sin θ2,0 cos θ2,0 + pB

[
sin θ1,0 cos θ1,0

(
1− 5 cos2 θ2,0

)
+ cos θ2,0 sin (2θ1,0 − θ2,0)

])
(28)

with the average of Eq. (26b) following similarly. Comparing the right-hand side of Eq. (28) with the definition of f
in Eq. (21), we identify the systematically averaged governing equations with those of the original system:

dθ1,0
dt

= f(θ1,0, θ2,0; p, pB/p) , (29a)

dθ2,0
dt

= f(θ2,0, θ1,0; p, pB/p) . (29b)
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(x, y) Classification

(0, 0)
stable node β < −1

saddle −1 < β < 1/3

unstable node β > 1/3

(0, π/2)

(π/2, 0)

unstable node β < −2/
√
5

unstable spiral −2/
√
5 < β < 0

center β = 0

stable spiral 0 < β < 2/
√
5

stable node β > 2/
√
5

(π/2, π/2)
stable node β < −1/2

saddle β > −1/2

±
(
arccos

√
2β+1
5β

, arccos
√

2β+1
5β

)
saddle

β < −1/2

β > 1/3

±
(
arccos

√
−1
β
,− arccos

√
−1
β

)
saddle β < −1

TABLE I. The classified fixed points and linear stabilities of the autonomous system of Eq. (30), up to periodicity and symmetry.
All stated stabilities assume that α > 0, with stability of all nodes and all spirals switching for α < 0.

Hence, in order to understand the leading-order behaviour of the non-autonomous system of Eq. (22), it is sufficient
to explore the autonomous system

dx

dt
= f(x, y;α, β) , (30a)

dy

dt
= f(y, x;α, β) , (30b)

identifying x and y with the leading-order solutions for θ1 and θ2, respectively.
As noted in Section IVA, the commonplace model presented by Lauga [9] makes use of constant parameters in place

of p and B in Eq. (20), which we interpret as the a priori averages of p(T ) and B(T ) for flow-generating particles.
In symbols, when interpreted in this way, the model of Lauga [9] is equivalent to taking (α, β) = (p,B) in Eq. (30).
The corresponding a priori -averaged model is then given by

dθa1
dt

= f(θa1 , θ
a
2 ; p,B) , (31a)

dθa2
dt

= f(θa2 , θ
a
1 ; p,B) , (31b)

with the superscript of a distinguishing the solution from that of the full system of Eq. (22). In contrast, we have
seen that the leading-order behaviour actually corresponds to taking (α, β) = (p, pB/p), with pB ̸= pB in general.
As we have seen throughout our analysis, this difference in parameters results directly from the employed processes
of averaging: one is performed independent of the dynamical systems, whilst the other systematically determines the
appropriate averaged parameters for this particular dynamical system. In the next two sections, we seek to determine
if these differences in employed parameters between the systematically averaged equations and the a priori -averaged
model can result in differences in behaviour, which we establish through an elementary exploration of the autonomous
dynamical system of Eq. (30).

C. Exploring the autonomous dynamics

First, we identify and classify the fixed points of Eq. (30) in terms of α and β, before returning to consider the
particular parameter combinations of the previous section. The dynamical system of Eq. (30) can be explored via
standard methods with relative ease, so we refrain from providing a full and detailed account of the analysis. It is
worth noting that, due to the periodicity of the trigonometric functions in f , the forcing of the dynamics is periodic
with period π in both x and y, so that we only need to characterise the dynamics up to multiples of π. This periodicity,
along with a visual summary of the analysis that follows, is illustrated in Figs. 8 and 9.

It is simple to identify fixed points along the manifolds x = y and x = −y, seeking solutions of

3α

2r3
sin 2x

(
1 + β

[
2− 5 cos2 x

])
= 0 and

3α

2r3
sin 2x

(
1 + β cos2 x

)
= 0 , (32)



12

(a) (b)

(c) (d)

FIG. 8. Fixed points of the two-roller system. Up to symmetry and π-periodicity, the identified fixed points correspond to four
distinct configurations whose stability depend on α and β nontrivially. Here, we report the stability for α > 0, corresponding
to a swimmer with p > 0 in Eq. (29), which we might refer to as pusher-type particle. The dynamics of a puller-type particle,
with α < 0, correspond to reversing the direction of motion from α > 0, swapping the stability of non-saddle fixed points. (a)
Parallel alignment along the direction of separation is stable if β < −1 and unstable for β > −1. (b) Orthogonal alignment,
with one particle pointing directly towards the other, is stable only if β > 0. (c) Parallel alignment that is perpendicular to
the relative displacement is only stable if β < −1/2. (d) Steady parallel alignment that is neither parallel nor perpendicular to
the relative displacement is unstable when it exists, which is for β < −1/2 and β > 1/3.

respectively. For non-zero α, these both admit solutions x = nπ/2, n ∈ Z, whilst the former admits the additional
solutions of 1+β

[
2− 5 cos2 x

]
= 0 whenever β ≤ −1/2 or β ≥ 1/3. There are additional steady states on the x = −y

manifold that satisfy 1 + β cos2 x = 0, which exist whenever β ≤ −1. Further, we note the existence of additional
fixed points on the manifold x + y = π/2, which again correspond to x = nπ/2 for n ∈ Z. Hence, fixed points of
the system are given by (x, y) ∈ {(0, 0), (π/2, 0), (0, π/2), (π/2, π/2)}, up to periodicity, in addition to solutions of
1 + β

[
2− 5 cos2 x

]
= 0 on the x = y manifold and solutions of 1 + β cos2 x = 0 on the x = −y manifold. These

fixed points and their readily computed linear stabilities are summarised in Table I, with the steady configurations
interpreted in terms of the particles in Fig. 8. Numerical exploration suggests that we have in fact identified all the
fixed points of this system.

We illustrate the overall dynamics in various parameter regimes through phase portraits in Fig. 9, capturing the
full range of qualitatively distinct behaviours that emerge from Eq. (30). Noting that α plays only a simple role in
the dynamics, with changing the sign of α simply reversing the direction of evolution, we fix α > 0 in Fig. 9, focussing
instead on the impact of varying β. From these portraits, it is clear that changing the value of β can have a drastic
effect on the dynamical system. For instance, β crossing the thresholds of −1/2 and 1/3 modifies the character of the
phase plane through the emergence or destruction of saddle points and nodes, accompanied by qualitative changes
in phase-plane trajectories. Though there are multiple further bifurcations, a notable switch in stability occurs when
crossing β = 0, with β = 0 corresponding to an integrable system with truly closed orbits [32] that bifurcate into
stable and unstable spirals either side of the bifurcation point.

These local bifurcations, though effecting changes in linear stability, also give rise to changes in the globally
attracting dynamics of the system. This drastic alteration to the overall behaviour is illustrated via the sample
trajectories highlighted in blue in Fig. 9, which either approach closed, heteroclinic connections in Fig. 9d or the fixed
point at the centre of stable spirals in Fig. 9f and Fig. 9g, for instance.

D. Comparing the emergent dynamics

From the above exploration of the autonomous system of Eq. (30), it is clear that changes to the parameter
β can have significant qualitative impacts on the emergent dynamics. In this section, we showcase how adopting
(α, β) = (p,B) in the a priori -averaged model can give rise to predictions that are wholly different to those of the
systematically motivated parameters (α, β) = (p, pB/p).
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 9. Diverse phase portraits of the autonomous system of Eq. (30). Varying β, we illustrate the qualitatively distinct
portraits of the autonomous dynamics, with stable and unstable fixed points shown as solid and empty circles, respectively.
Moving from (a) to (b), we identify the transition of (0, 0) from a stable node to a saddle point via the coalescence of two
saddles on the x = −y manifold; following this transition, the parallel alignment of Fig. 8c is the globally attracting state.
Moving from (b) to (c) and from (h) to (g) transitions stable/unstable nodes at (0, π/2) and (π/2, 0) to spirals of the same
stability. Significant qualitative changes occur through bifurcations of the saddles at (0, 0) and (π/2, π/2), each into a node
and two saddles, visible between panels (c) and (d) and panels (f) and (g). The blue trajectories in each panel, which have a
common initial condition, highlight the qualitative change in behaviour that can result from changing β, potentially altering
the dynamics from the almost-heteroclinic orbits of panel (d) to the distinct stable attractors of panels (c) and (f), for instance.
Here, we have fixed α > 0, noting that α < 0 corresponds purely to a reversal of the dynamics.

Before we exemplify such cases, it is worth highlighting that certain classes of p(T ) and B(T ) trivially result in
pB/p = B, so that the dynamics associated with the a priori and systematically averaged models are identical to
leading order. As noted above, constancy of at least one of p(T ) or B(T ) yields precise agreement between pB/p
and B. Hence, if the rollers can be associated with a constant dipole strength, or if their Bretherton parameters do
not change in time, then we can naively average any remaining fast-time dependencies before inserting them into
the model and achieve the correct leading-order behaviour. Further, if we are concerned only with the eventual
configuration of the rollers, and not the details of any transient dynamics, we can identify additional p(T ) and B(T )
that can be a priori -averaged without consequence. For instance, if p(T ) > 0 and B(T ) > 0 for all T , then we have
pB/p > 0 and B > 0, so that β > 0 in both cases and the configuration shown in Fig. 8b is globally attracting, up to
symmetry, as can be deduced from Fig. 9f-h. These particular constraints are compatible, for example, with requiring
that the particle be spheroidal, always prolate, and consistently generating dipolar flow fields that can be associated
with a hydrodynamic pusher.

For more general p(T ) and B(T ), however, it is clear that we cannot guarantee that the dynamics predicted by the
a priori -averaged model of Eq. (31) will be at all reminiscent of the leading-order, systematically averaged dynamics
of Eq. (29). Seeking a minimal example in order to highlight this general observation, we take p(T ) = 8A sinT + 1
and B(T ) = (sinT )/4+D. Clearly, p = 1 and B = D, so that the choice of D uniquely determines the panel of Fig. 9
that corresponds to the dynamics of the a priori -averaged model. However, computing pB/p = A+D highlights that
we can choose A so that the systematically averaged dynamics occupy any given panel of Fig. 9.

To illustrate this concretely, we take A = −10/8 and D = 1/2 and numerically solve Eqs. (20), (29) and (31) from
the same initial condition, taking ω = 200, with the solutions shown in Fig. 10. The a priori -averaged system shown
in Fig. 10a corresponds to β = 1/2, so follows the dynamics of Fig. 9g, with the numerical solution approaching
the (0, π/2) steady state, in which the rollers are perpendicular to one another. In contrast, the systematically
averaged dynamics of Fig. 10b correspond to β = −3/4 and the portrait of Fig. 9c, evolving to the parallel steady
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(a) (b)

FIG. 10. Comparing the results of a priori and systematic averaging. With fixed initial conditions of (π/8, 0), numerical
solutions of (a) the a priori-averaged system of Eq. (31), (b) the systematically averaged dynamics of Eq. (29), and the full
system of Eq. (22) are shown as solid curves. (a) With p(T ) = −10 sinT +1 and B(T ) = (sinT )/4+1/2, the a priori-averaged
dynamics approach the (0, π/2) steady state, following the dynamics illustrated in Fig. 9g, as β = B = 1/2. (b) The leading-
order, systematically derived dynamics evolve to a distinct steady state, with θ1,0 = −θ2,0 = π/2, following the dynamics shown
in Fig. 9c, as β = pB/p = −3/4. The corresponding steady state configurations of the rollers are illustrated in the lower right
corner of each panel, highlighting the qualitatively distinct behaviours predicted by the models. Here, we have taken ω = 200.

state (π/2, π/2). The numerical solution to the full problem of Eq. (20) is also shown in Fig. 10b, highlighting good
agreement with the asymptotic solution and evidencing the potential for disparity between the predictions of the a
priori -averaged model and the dynamics of temporally evolving bodies.

V. DISCUSSION AND CONCLUSIONS

The use of a priori -averaged parameters in minimal modelling approaches can be appealing, seemingly commen-
surate with seeking the simplest possible model of a given setting. However, through the simple examples presented
in this study, we have seen how such model-agnostic averaging can result in behavioural predictions that differ qual-
itatively from those of models that incorporate fast-timescale parameter oscillations, which are common to many
microswimmers. Hence, the key conclusion of our simple analysis is that the use of a priori -averaged parameters can
be unreliable even at the level of back-of-the-envelope calculations, with the intuition gained from such explorations
potentially rendered invalid. This observation is expected to hold somewhat generically across such simple models,
with our approach extending to a range of employed minimal swimmer representations. This general conclusion is
also expected to hold in other contexts, such as in simple models of hydrodynamically coupled non-linear oscillators
[33–36], where it has the potential to affect predictions of synchronisation in a variety of biological contexts.

Given the widespread use of minimal models in the literature, the relevance of conclusions drawn from models
that employ a priori -averaged parameters is uncertain. Whilst it is possible in principle to confirm or refute the
validity of any such result, in practice this is inhibited by a general absence of temporally resolved data, such as flow
fields, swimmer shapes, and other time-dependent properties of microscale swimming. Hence, the simple analysis of
this study highlights the importance of measuring and reporting not only the averages of quantities of interest but
also their temporal variations. In particular, through the examples explored in this work, we have seen how these
measurements can significantly impact on key behavioural predictions that are the focus of sustained research activity,
such as the stability of interfacial swimming, for instance.

Though one might interpret the conclusions of this study as an argument against the use of minimal models
of microswimming, in fact, asymptotic analysis of these models revealed that they can capture the leading-order
dynamics, but only with appropriate parameterisation. In particular, our analysis highlights that it is the use of a
priori -averaged parameters, rather than the use of constant parameters more generally, that gives rise to inaccurate
predictions. Hence, this study supports the use of minimal models in developing intuition and understanding of
microswimmer systems, though only when used with systematically derived, effective parameters. In future work, we
hope to extend this analysis to consider systems with multiple frequencies of fast oscillation, enabling more faithful
study of biological and biophysical contexts.

Further, we have seen how an asymptotic analysis can show that, in certain parameter regimes, one can reliably
employ a priori -averaged parameters without qualitatively affecting the predictions of the model. However, the
explorations of Sections II to IV revealed that such robust parameter regimes are far from being universal; on the
contrary, we have seen that they depend strongly on the model in question. Hence, in general, a bespoke analysis is
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required for any given model in order to determine these regimes of serendipitous agreement.
The analysis presented in this study is simple, even elementary, relying on the commonplace method of multiple

scales and the basic observation that the average of a product need not be the product of individual averages. Despite
this simplicity, we have identified potential missteps in the use of the simplest models of microswimming, of which
these authors have previously been guilty. Further, we have demonstrated how a straightforward, multi-timescale
analysis can inform reliable, systematic parameterisation of minimal models, such that they recover their marked
utility in the generation of intuition, basic understanding, and back-of-the-envelope predictions.
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