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Abstract— Motivation: Magnetic-Inertial Measurement
Units (MIMUs) and flexible sensors are widely used in
the wearable measurement system for human motion
monitoring, clinical gait detection, and robotics motion
control. However, MIMUs demonstrate measurement
error due to magnetic disturbance in the indoor
environment, and flexible sensors usually have low
performance on linearity and accuracy. Objective: This
paper is intended to eliminate the low-accuracy problem
caused by magnetic disturbances and improve the
measurement accuracy of MIMUs- flexible sensor based
wearable systems. Approach: (1) a three-stage real-time data fusion (RT-ADF) algorithm is proposed, which contains an
anti-disturbance filter based on a double Mathony filter along with a state observer, a signal holder for sensors’ data
transmit synchronously, and a data fusion based on an adaptive Kalman filter. (2) The proposed algorithm is utilized
and validated its performance on a designed MIMUs- flexible sensor wearable system. (3) 10 groups of knee motions
(flexion/extension), 10 groups of hip motions (adduction/abduction), and 10 groups of elbow motions(flexion/extension)
have been done by 7 subjects in the experiments. Main Results: The designed multi-sensor wearable system based
on the presented data fusion algorithm demonstrates a high-accuracy performance under the magnetic disturbance
environment, and the maximum root mean square error (RMSE) of the measured continuous three-dimensional motion
angle of the knee, hip, and elbow cross all the experiments were 1.23◦1.23◦1.23◦, 1.15◦1.15◦1.15◦, 3.67◦3.67◦3.67◦ for each axis.

Index Terms— multi-sensor systems, magnetic disturbance, adaptive data fusion, wearable sensors

I. INTRODUCTION

JOINT angle measurement systems are widely applied in
human motion monitoring, clinical gait detection, and

robotics motion control [1]–[3]. Compared with other joint
angle measurement systems, such as the optical motion cap-
ture system, cameras, and joint angle encoders, the wearable
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measurement system is more flexible, portable, and easy to use
in human daily life, therefore it becomes a promising candidate
for human motion monitoring and analysis [4]–[6].

Due to the advantages above, several researchers have
successfully designed various types of wearable systems which
consist of microsensors or flexible sensors for daily behavior
monitoring [7], [8] and medical rehabilitation assessment [9],
[10]. Among all the sensors, Magnetic-Inertial Measurement
Units (MIMUs) and flexible sensors are widely used and
irreplaceable [8], [9], [11], [12]. However, imperfections from
both MIMUs and flexible sensors in wearable systems for
human daily life are supposed to be addressed. for example,
MIMUs are easily affected by a magnetic field [13], especially
in the indoor environment with ferromagnetic objects or elec-
trical appliances. The disturbances of the local magnetic field
will result in systematic errors when identifying the global
north [14], which will thereby disturb the heading (yaw angle)
of MIMUs. Flexible sensors usually have low performance
on linearity and accuracy. Therefore, research on exploiting
the potentialities of microsensors/flexible sensors, as well as
improving the measurement accuracy and spatial dimension of
these wearable joint angle systems have attracted the interest
of many researchers.
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Fig. 1. Construction diagram of the proposed wearable system.

Some researchers employed treble flexible sensors to set
up a coupling measurement system, aiming at getting three-
dimensional angles of should joints [15]. This system is
potable to use, however, its accuracy (average about 10◦ for
each axis) is quite low [7], [15], [16] due to decoupling
methods and the low accuracy of the flexible sensor itself;
Some researchers have developed fusion algorithms based on
the noise model [14], [17], [18] in the presence of magnetic
disturbances. These methods compensating the attitude data
according to the established noise model could improve the
measurement accuracy of MIMUs and make orientation data
reliable shortly [13], [19]–[21] under random magnetic dis-
turbances, for instance, the complementary Filter has been
utilized to improve the accuracy of knee/ hip/ ankle motion
detection and its accuracy of x/y/z reaches to 2.7◦, 3.3◦ and
7.8◦ respectively [22], but the noise could not match up with
the random disturbances and the cumulative error could cause
the gyro drift problem [23], [24]; Multi-sensor systems [25],
[26] have also been designed in recent research, for example,
the Kalman Filter was used to realize data fusion of IMUs
and FSRs in a wearable system for knee motion detection and
its accuracy was improved to 11.9◦ [27]. Salvatore et al. [28].
developed an embedded fusion method to predict the angle of
knee motion in the IMUs and EMG based wearable system.
The RMSE of the predicted knee angle was between 5.5◦ and
10.4◦. Both attitude data from MIMUs and position data from
cameras have been used to predict the orientation of an object.
These data fusion algorithms based on the vision-MIMUs
system have been widely used in obstacle-free environments
[29] and have achieved good results with a relative error of
less than 7% in the 3-DOF rotation and 8% in the 1-DOF
translation.

In summary, state of art of wearable joint angle measure-
ment systems, especially those based on MIMUs or flexi-
ble sensors, can be concluded as below: many researchers
have designed types of multi-sensor wearable systems and
proposed various data fusion algorithms, however, orientation
error caused by magnetic disturbance [13] and the sampling
synchronization problem has not been taken into consideration
deeply.

To deal with these mentioned issues, (1) this paper proposes
a three-stage data fusion algorithm for joint angle measure-
ment, which reduces the cumulative measurement error and
improves the accuracy under magnetic disturbances. The first
stage employs a double Mathony Orientation Filter [19] and
a designed real-time observer to describe the measurable dis-
turbance of the magnetic field. The second stage uses a signal

holder to make the flexible sensor and MIMUs of different
sample rates to generate angle data synchronously. The third
stage establishes a data fusion model based on a designed
joint motion model and Kalman Filter, where joint data arrives
from the second stage; (2) A FS-MIMUs(flexible sensor and
MIMUs) based wearable system, which is embedded with
the proposed three-stage data fusion algorithm, have been
designed and validate to various human motions by 7 subjects,
including the knee motion (flexion/extension), hip motion
(adduction/abduction), and elbow motion (flexion/extension)

The paper is organized as follows. Section II introduces
the FS-MIMUs Based wearable system. Section III describes
a self-adaptive anti-magnetic disturbance algorithm in detail
and then an online data fusion algorithm is proposed as well.
Experimental procedures are listed in Section IV. In Section
V, experimental results are discussed. Finally, Section VI
concludes this paper.

II. FLEXIBLE SENSOR AND MIMUS BASED
MULTI-SENSOR WEARABLE SYSTEM

A. The Hardware of FS-MIMUs Based Wearable System

To realize higher accuracy, multi-axis measurement, and
anti-disturbance performance for joint angle measurement, A
wearable multi-sensor system (see Fig. 1) was designed and
developed. The system consists of sensors of two types (see
Table I), one type is the nine-axis attitude sensor MPU9250
(WITMOTION Corporation, China), which consists of triaxial
gyroscopes (±2000◦/s), triaxial accelerometers (±16 g), and
triaxial magnetometers (±200 µT), another is the flexible sen-
sor ESSB (ELASTECH Corporation, China), which is a type
of capacitive strain sensor chosen by us, and its measurement
range and sensitivity has been listed in Table I.

TABLE I
THE SPECIFICATIONS OF COMPRISED SENSORS IN THE PROPOSED

MULTISENSOR SYSTEM

Sensor Linear Range Accuracy/Sensitivity Limits

two MIMUs
gyroscopes: ±2000◦/s
accelerometers: ±16g

magnetometers: ±200uT

gyroscopes: ≤ 0.1(%F · S)
accelerometers: ≤ 0.1(%F · S)
magnetometers: ≤ 0.1(%F · S)

high accuracy but poor
performance under disturbance

one flexible sensor 0◦ − 120◦ 1.1pF/◦
low accuracy but good

performance under disturbance

The entire data acquisition flow was described as below: The
flexible sensor was connected to a commercial capacitance
measurement module PCAP02 (ACAM Corporation, Ger-
many), and the measurement value of the flexible sensor was
transmitted to the master chip STM32F0 (STMicroelectronics
Group, Switzerland) by I2C protocol digitally, meanwhile,
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orientation data from two MPU9250 modules were sent to
the master chip STM32F0 by the same I2C protocol. After
the data processing and computing, the collected data, which
was transmitted from the master chip STM32F0, will be up-
loaded to a laptop by the Bluetooth chip ESP32 (ESPRESSIF
SYSTEMS Corporation, China).

B. Preparations and Calibration

In the subsection above, we introduced the design block dia-
gram and basic hardware composition of the wearable system.
Before this system comes into use, we first need to test the
flexible sensor repeatedly and calibrate it. This part of the work
has been described in detail in another article of our team [30],
[31]. Work flow can be described as calibrating the flexible
sensor by using high-precision MIMU (MTw Awinda-MTW2-
3A7G6, XSENS b.V. Technologies, Enschede, Netherlands) to
obtain the function relationship between the joint angles and
the collected analog signals. The calibration process will not
be described in detail here. According to calibration results,
the functional relationship between changble capacitance ∆C
and joint angle θ can be expressed as: ∆C/C0 = f(θ).

It is noting that MIMU generally has a better response rate
and sampling frequency, and its sampling frequency is set as
100Hz generally, which is due to the advantages brought by
MEMS manufacturing characteristics. the flexible sensor has
better interactive performance, whereas its sampling frequency
is common about 50Hz commonly. We select MIMU data of
100Hz in real-time and use a signal holder to synchronize the
data of 50Hz flexible sensors. The detailed description and
equation derivation could be seen in section II.

III. ALGORITHM

To eliminate the low-performance problem caused by the
magnetic disturbance [13], we propose this three-stage algo-
rithm for the flexible and MIMUs based multi-sensor wearable
system. Compared with previous research, we design a real-
time state observer according to the triaxial magnetic data
from magnetometers, whose flow diagram is shown in Fig. 2.
The first stage improves the anti-magnetic performance in a
short time by using a double Mathony Orientation Filter [19].
The second stage uses a signal holder to make the flexible
sensor and MIMUs of different sample rates to generate angle
data synchronously. The third stage establishes a joint model
with noise to describe the human joint motion, data generated

from both flexible sensor and MIMUs are put into data fusion
based on an adaptive Kalman filter to improve the system’s
measurement accuracy and anti-magnetic performance.

A. Architecture of the Proposed Algorithm
We first developed a three-dimensional orientation filter

utilizing double Mathony orientation filters. This filter has
shown a good anti-magnetic effect in a short time orientation
estimation with a minimum 0.47◦ error and has been widely
used in lots of similar research on MIMU [19], [20], [32], but
it works less effective in a long-term magnetic environment
[13], [32]. As a result, the accuracy of orientation data will be
reduced, which is due to its three-axis data coupling with each
other and the magnetometer failure; Therefore, in preference
of a long-term magnetic environment, we designed an observer
based on three-dimensional magnetic field data to get the
real-time condition of the local magnetic field. The output
of this observer is utilized for parameters adjusting both in
double Mathony orientation filters and an adaptive Kalman
filter (see Fig. 2), which reduces the variables by using a single
parameter ‖ mmess,k‖2 to improve computing efficiency of this
algorithm.

Considering that the goal of our algorithm is to take differ-
ent types of sensors of a multi-sensor measurement system into
account, proposed flexible sensors have low accuracy, but they
have stable performance and interactive performance [31] in
a magnetic environment because of their materials character-
izations. To improve the accuracy of the whole measurement
system, we establish an adaptive Kalman filter as a data
fusion to improve the system measurement performance under
a long-time magnetic disturbance. Till now, the algorithm’s
architecture has been explained, three stages of this algorithm
will be described in detail.

B. A Preliminary Anti-disturbance Algorithm for MIMUs
Taking noise or environment disturbance into account, the

ideal MIMU model (see Equation (1)) could be set as by
adding bias bbb and noise parameter µµµ. The Mathony orientation
filter is a common method [19], [20], [32] to deal with a
short-time disturbance situation, so only key equation would
be described here. Ω̂

â
m̂

 =

 Ω + bΩ + µΩ

RT (a− g0) + ba + µa

RTh+ bm + µm

 (1)
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In Equation (1), the instantaneous algebratic rotation R was
built in equation (2) .

R = arg min

2∑
i=1

λi|v∗x −Rvx|
2 (2)

wehere R ∈ SO(3), when i = 1, vx = a · |a|−1; when
i = 2, vx = m · |m|−1. v∗x is the referential direction. the
orientation quaternion reprensentation in SO(3) was:

q̇ =
1

2
qP (Ω) (3)

where q =
(
qw qvqvqv

)
=
[
qw qx qy qz

]
, q represents

unit quaternion, P (Ω) =
(

0 Ωx Ωy Ωz

)
Take (1) into (3) and we could get the equation below:

˙̂q =
1

2
q̂P (Ω− b̂̂b̂b+ kpwmes) (4)

Where b̂̂b̂b = −kIwmes, wmes =
2∑

i=1

kivi ⊗ v̂i, wmes is the sum

of the results of two cross products, which are measurement
value vi and the prediction value v̂i. kp and kI are common
parameters to be set in designed system. wmes shows the
differences between prediction value and measurement value,
˙̂q now represents a prediction quaternion. As a result, the
discrete quaternion could be represented as:

q̂t = q̂t−1 + ˙̂qt∆t (5)

Equation (5) could be utilized as an iterator, ˙̂qt is computed
by Equation (4) as the present cumulative items and ∆t is the
sample time and in our system its value is set as 0.1s.

C. A Real-time State Observer Based on Triaxial
Magnetometers

This part describes the flow of real-time state observing. v̂i
(in Equation (4)) could be computed as a prediction value, and
vi is the real measurement value. In order to get the differences
between prediction value and measurement value , the observer
was designed and normalized as below:

mmess,k = ei ⊗ êref (6)

Where ei = m · |m|−1, ˆeref = ˆmref · | ˆmref |−1. If the predic-
tion vector of a magnetic field is similar to the measurement
vector, em,k comes into a zero vector, or the result (mmess,k)
of cross products will be a unit vector. In order to simplify
the result of state observer, we choose ‖ mmess,k‖2 as the final
the result of state observer.

D. Signal Holding and Synchronizing for Flexible Sensor

In the proposed multi-sensor measurement system, there
are two types of sensors, MIMUs and flexible sensor, whose
sampling periods are represented as τ and T respectively.
Their relationship could be listed as τ · T−1 = N . If the
last update timing of MIMU to the target state is (k−1)τ , the
next update timing is due to k = (k−1)τ+NT ; On the other
hand, the last update timing of flexible sensor is (k − 1)T ,
and the next update time of it is due to kT , which means

that flexible sensor has N times measurements between two
consecutive updates of the target state.

Considering flexible sensor as a low-accuracy measurement,
it would be less effective to use interpolation approches [33]
to make data redundant. Use a signal holder is a easy and fast
method to keep signal of flexible sensor as real as possible,

let θk =

{
θk tk = tupdate

θk−1 tk 6= tupdate
, and H =

[
0 0 1

]T
,

so zflexible,k is represented as below.

zflexible,k = Hθk (7)

E. Joint Angle Predict Model
A real-time data fusion based on adaptive Kalman filter

[32] was been established, so the state-space representation
to describe the joint angle is modeled as below:{

xk = Axk−1 +Buk + wk−1

zk = Cxk + vk
(8)

In Equation (7), wk−1 is the process
noise, vk−1 is the measurement noise. xk =[
xpitch,k xroll,k xyaw,k

]T
, A = I3, B = I3 (∆t),

C = I3, wk−1 =
[
wpitch,k wroll,k wyaw,k

]T
,

vk−1 =
[
vpitch,k vroll,k vyaw,k

]T
. The measurement

noise wk−1 represents the original measurement accuracy of
sensors, and the process noise vk−1 could be used to show
the disturbance of the environment. The measurement noise
wk−1 could be set as a constant vector , whereas the process
noise vk−1 is supposed to be changeable with the different
disturbance.

Result of state observer could be applied for this part, a
function was designed to relate ‖mmess,k‖2 with the process
noise vk−1 as below.

vk−1 = g(‖mmess,k‖2) = 20(1 + e−10(2‖mmess,k‖2−1))−1

(9)
Data fusion based on adaptive Kalman filter is applied

here to make use of different sensors’ values. Some variables
including x̂k−1, P−k , kk, x̂k, pk are very common parameters
in Kalman filter and will be described in the next subsection.
Other variables, such as R and Q, are both covariance ma-
trix, and could be represented as Q = E[ wk−1 wT

k−1 ],
R = E[ vk−1 vTk−1 ] . Combing with Equation 9, R is
represented as:

R = E[ g(‖mmess,k‖2) gT (‖mmess,k‖2) ] (10)

F. Adaptive Data Fusion and Algorithm Flow Design
After resolving the results (q̂t) of the Mathony filter from

the nine-axis attitude sensor and the angel zflexible,k, a data
fusion was designed here based on the real-time state observer
proposed before.

ẑk = x̂k + ‖mmess,k‖2 · (ẑflexible,k − x̂k) (11)

The whole process of the proposed iterative algorithm,
which is decribed as a real-time adaptive anti-disturbance data
fusion (RT-ADF), is shown in Table 1. In the first step, 8 model
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parameters are supposed to be initialized. In the second step,
all the variables, including joint angle q̂t from MIMUs, the
prior probability P−k , the prior coefficient kk, the posterior
probability pk, joint angle zflexible,k in z-axis from the flexible
sensor, and the joint angle ẑk from proposed system, need to
be computed according to mentioned formulas. In the third
step, particular variables are updated here. The output of state
observer mmess,k is updated to gain the real-time magnetic
disturbance, and so is the noise matrix R. In the end, this
iterative algorithm will end with the stop command.

Algorithm 1 RT-ADF
1: Initialization:A,B,C,Q,R, x̂k−1, Pk−1, θk
2: repeat
3: q̂t = q̂t−1 + ˙̂qt∆t
4: P

−
k = APk−1A

T +Q
5: kk = P

−
k CT · (C P−k CT +R)−1

6: x̂k = x̂−k +kk(zk − C x̂−k )
7: pk = (I − kkC)P

−
k

8: zflexible,k = Hθk
9: ẑk = x̂k + ‖mmess,k‖2 · (ẑflexible,k − x̂k)

10: Update mmess,k based on Equation (6)
11: Update R based on Equation (10)
12: until Shut down the system
Output: Real-time joint angles ẑk

IV. EXPERIMENTAL PREPARATIONS AND PROCEDURES

After designing the algorithm flow design, it is necessary
to evaluate the performance of the proposed algorithm based
on the multisensor system. Traditional data fusion methods
towards multisensor systems [34]–[37] do not fully take dis-
turbance into account, which means their model could have
low accuracy under disturbance situation. We have conducted
experimental verification of the proposed algorithm in this
section, and given an intuitive demonstration of real-time angle
measurement.

Main Board

BLE

Laptop

X2
Z2

Y2

Fig. 3. The experimental set-up for data collection .

A. Experimental Preparations
The wearable multi-sensor system was arranged and fixed

on the subjet’s leg, waist, and hand respectively to detect
knee motion, hip motion, and elbow motion. Meanwhile, The
body motions motioned above were recorded with an optical
motion capture system (VICON, UK), with markers attached
to the posterior arm (PA), forearm, waist, thigh, shank, elbow
joint, hip joint, and knee joints (see Fig. 4). Electromagnetic

signals were released to disturb the MIMUs by activating
electronic equipment at a particular time which was held
in the subjet’s hands. Measured data from the multi-sensor
system and VICON system were synchronized by a laptop.
All the experiments data were collected on a laptop through
the Bluetooth communication (see Fig. 3)

Seven subjects (6 males and 1 female, age: 25.14 ±
3.33years, body height: 1.73± 0.05 m, body mass: 65± 9.33
Kg) were recruited to participate in this study. The experimen-
tal procedure was approved by the Medical Ethics Committee
of the School of Medicine, Zhejiang University (No.2018-
005). Anthropometric data included length of upper leg and
lower leg.

B. Experimental Procedures and Data Collection
The first experiment was conducted to get an initial insight

into the proposed algorithm based on the multi-sensor system
and verify the performance of system’s measurement stability
under different types of magnetic disturbance in our study. In
the first 10 s, no disturbance was released. From 10 s to about
20 s, random dynamic disturbance signals were released. In
the last 10 s, static disturbance signals were released around
the system.

1

(a)

Optical cameras

2
3 4

5 6

X3

Y3

Y2

X2

X1

Y1
X2

Y2

Y3
X3

X1

Y1 Y3

X3

X2

Y2
X1

Y1

Marker1:Thigh
Marker2:Knee Joint
Marker3:Shank

Marker1:Waist
Marker2:Hip Joint
Marker3:Thigh

Marker1:Posterior Arm
Marker2:Elbow Joint
Marker3:Forearm

(b) (c)

Fig. 4. Introduction of experiment equipment. (a): Experiment setup
and knee motion experiments. (b): hip motion experiments. (c): elbow
motion experiments

The second experiment was conducted to get results on
the accuracy and performance of the proposed multi-sensor
system with/without magnetic disturbance. In this experiment,
10 groups of tests were carried out to verify the algorithm
based on the FS-MIMUs system, and each experiment, which
contained several joint movements, was about 30s. To test the
system within a wide range of angles, the subject was ordered
to sit on a seat and to wiggle their legs as large as possible.
Due to the limited number of cameras, the subject was required
to seat with hands across their chests to avoid covering the
markers on the leg. All data, which included results of the
state observer ‖ mmess,k‖2, joint angle zk from the proposed
system, the data from MIMUs, and the data from the flexible
sensor, were collected thoroughly.

The third experiment was carried on to further validate
the response of the system to other human motions, includ-
ing the knee motion (flexion/extension), hip motion (adduc-
tion/abduction), and elbow motion (flexion/extension). In this
experiment, subjects were asked to wear tight clothes for fewer
distractions. 10 groups of knee motions, 10 groups of hip
motions, and 10 groups of elbow motions had been done by
7 subjects. Data ‖ mmess,k‖2 from the state observer and joint
angle data zk from the multi-sensor system were gotten.
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observer under various disturbances. (d): The posterior probability pk
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V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Data Processing

Data from the VICON system were processed offline with
customized PYTHON programs. Collected Joint angles were
filtered with a low pass Butterworth filter with a cut-off
frequency of 10 Hz. Parameter settings of the filter are
demonstrated in Table IV, the order N of the filter is set
as 2, and the normalized cut-off frequency wn is computed
by: wn = 2 · (wc/ws). All motion data has been divided into
segments by motion cycles for efficient analysis.

TABLE II
THE PARAMETERS OF LOW PASS BUTTERWORTH FILTER

Mode Cut-off frequency wc Sampling frequency ws Normalized cut-off frequency wn Order N

low pass 10 Hz 100 Hz 0.2 2

B. Verification of System’s Measurement stability under
different types of magnetic Disturbance

As is shown in Fig. 6, in the first 10s, the MIMUs, the
flexible sensor, and the proposed system can measure the
joint angles accurately. In this period of the experiment, the
original data from magnetometers (see Fig. 5(a)) reflected
the situation of the regular environmental magnetic field.
Similarly, the value ‖ mmess,k‖2 from the designed state
observer represented a no disturbance moment (see Fig. 5(b))
and the environmental noise parameter vk was set to zero
in yaw orientation (see Fig. 5(c)). From 10s to 20s, when
dynamic disturbance signals were detected, the data fusion
algorithm set a bigger trust weight to the flexible sensor in
the z-axis (see Equation (11)) and the proposed system could
still get correct joint angles, whereas others failed. In the last
10s, when static disturbance signals occur, the state could still
detect the static magnetic disturbances, and set a high noise
parameter vyaw,k (see Fig. 5(c)).

Although MIMUs were inaccurate under magnetic distur-
bance [13], the results (see Fig. 6(b)(c)) showed that the
Mathony filter was a good choice to decouple roll and pitch
orientation with yaw orientation. In addition, the flexible
sensor supplied low-accuracy but stable angle data during the
entire experiment. From this perspective, a single-axis flexible
sensor compensated for the errors and played a significant role
in the data fusion part when it came to measurements of z-axis
angle. The posterior probability [38], [39] was commonly uti-
lized for stability analysis in the adaptive Kalman filter-based
method.the convergence condition for the posterior probability
under different types of disturbances was demonstrated in Fig.
6(d). On the no disturbance condition, the posterior probability
decreased and converged to a stable value within about ten
iterations; On the dynamically random disturbance condition,
the posterior probability changed adaptively according to the
magnitude of the external disturbance; On the static distur-
bance condition, increased and also converged to a stable
value.
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C. Verification of System’s Measurement Accuracy
with/without magnetic Disturbance

Fig. 7(a)-(d) showed the results of the proposed system
under the regular environmental magnetic field. The response
of the system under random magnetic disturbance was demon-
strated in the rest part of Fig. 7. The state observer ‖ mmess,k‖2
reflected the field strength of surrounding magnetic distur-
bance signals.

Fig. 7(a)-(d) showed the results of the proposed system
under the regular environmental magnetic field. The response
of the system under random magnetic disturbance was demon-
strated in the rest part of Fig. 7. The state observer ‖ mmess,k‖2
reflected the field strength of surrounding magnetic distur-
bance signals. The average three-dimensional joint motion data
of the knee flexion/extension angle without disturbance were
1.08 ± 0.27◦, 2.21 ± 0.36◦ and 43.17 ± 9.24◦, another knee
motion test with disturbance demonstrated that the proposed
algorithm could ensure the stable and precise measurement
with random magnetic disturbance, and the average joint
motion data was 1.03±0.38◦, 1.08±0.41◦ and 41.22±10.14◦.
The maximum root mean square error (RMSE) between the
Vicon system and the proposed system with/without distur-
bance were 0.76◦/0.88◦/1.26◦, respectively. Although double
Mathony Orientation filters and a state observer have been
utilized for better anti-disturbance performance, the maximum
joint angle error across the task was still from the z-axis.
Considering the huge impact of the magnetic disturbance
(see Fig. 6(a) ), measurement accuracy has been effectively
improved .

In the second experiment, we verified the system mea-
surement accuracy with/without magnetic disturbance and the
proposed real-time adaptive anti-disturbance data fusion (RT-
ADF) was verified to improve the accuracy of the multi-sensor
system under a random disturbance environment.

D. Verification of System’s Measurement Accuracy with
magnetic Disturbance for multiple human motions

A real-time state observer based on triaxial magnetometers
manifested that our multi-sensor system was in operation in
a random magnetic disturbance. Fig. 8(b)-(d) showed one
example of the knee motion for the multi-sensor system to
detect. Our system could measure the entire process of knee
motion accurately and the maximum error is 2.32◦ in the z-
axis. Elbow motions detection’s maximum error was 1.24◦ in
the y-axis and showed a similar result (Fig. 8 (f)-(h)) with
the knee motion experiment. Both elbow motion and knee
motion were mainly about joint flexion/extension movements,
so the maximum error came from the main motion axis. The
maximum measurement error of hip motion is 4.86◦ (Fig. 8(i)-
(k)) and the response of the wearable system to hip motion
is slightly inferior. The hip joint was more complex than the
knee and elbow joint, so if the wearable system was not fixed
in the correct position, the bias between the human body’s
coordinates and the sensor’s coordinates might reduce the
accuracy slightly.

In the third experiment, we validated the measurement
performance of the system in the multi-axis joint motion,

our system was tested for the knee, hip, as well as elbow
motions, and shows high precision measurement character-
istics under random magnetic disturbance. As is shown in
Table III, the overall average measured joint motion data of
the knee flexion/extension angle across the experiment were
41.17± 9.24◦, 2.26± 0.33◦ and 1.08± 0.27◦, the average hip
adduction/abduction angle across all tasks were −5.24±7.13◦,
3.16±4.25◦ and −12.18±11.31◦, and the average the elbow
flexion/extension angle across all tasks were 0.94 ± 0.26◦,
0.34 ± 0.36◦ and 41.34 ± 10.15◦. Besides, the root mean
square error (RMSE) of the three-dimensional motion data
was 0.98◦/1.15◦/1.67◦ for knee motion, 1.23◦/0.47◦/3.67◦

for hip motion, and 0.66◦/0.31◦/1.08◦ for elbow motion. The
maximum error was from the knee motion and the hip motion,
the complex hip joint as well as the bias between coordinates
were supposed to cause this problem.

In addition, the computational results from the third ex-
periment were compared with other previously reported data
(see Table IV). Compared with other single-sensor systems,
our multi-sensor system performs better. Angle data in the
z-axis of MIUMs was affected by the magnetic disturbance,
the MIMUs and flexible sensor based measurement system
and data fusion strategy in our study could help improve the
accuracy of the wearable joint angle measurement system.

VI. CONCLUSION AND FUTURE WORK

Accurate measurement is a significant performance factor in
the wearable measurement system. To eliminate the magnetic
disturbance and the signal synchronization problem [13], [28],
this paper proposed a three-stage data fusion algorithm firstly,
in which a real-time state observer was designed and two filters
(Mathony filter and Kalman filter) were utilized respectively
to set up a data fusion. Second, a MIMUs and flexible sensor
based multi-sensor system was designed for joint angle mea-
surement. Finally, experiments were carried on respectively
to verify the algorithm with equipment fixed on the subject’s
knee/ elbow/ hip joint. As a result, the multi-sensor wearable
system can accurately measure the knee/hip/elbow joint angle
under random disturbance environments and the accuracy was
improved to 1.23◦1.23◦1.23◦ (x-axis), 1.15◦1.15◦1.15◦ (y-axis) and 3.67◦3.67◦3.67◦ (z-axis)
respectively under the magnetic disturbance environment.

Moreover, the proposed data fusion algorithm makes it
possible for a multi-sensor system to realize accurate measure-
ment and friendly interaction. In our paper, we take advantage
of two types of sensors, the designed state observer and the
double Mathony filter play a crucial role to solve the magnetic
disturbance problem, which is a common indoor environment
issue for MIMUs. Though this work was developed with
the joint angle measurement application for MIMUs and
flexible based wearable systems in the original idea, a similar
architecture can also be realized for MIMUs and other types of
sensors to achieve a high-accuracy joint angle measurement.

In the immediate future, we anticipate this wearable system
based on the proposed algorithm being applied in the areas
of activity recognition, long-term monitoring of rehabilitation
progress, and telemedicine (or mHealth), which is relevant to
current needs in the joint health space [40]. The convenient
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TABLE III
THE MEAN, SD, AND RMSE(DEG) OF THE VERIFICATION EXPERIMENTS

Accuracy verification experiments The three-dimensional angle

Mean ± SD RMSE

Knee motion
with/without disturbance

without disturbance 1.08± 0.27; 2.21± 0.36; 43.17± 9.24 0.76; 0.87; 1.02
with disturbance 1.03± 0.38; 1.81± 0.41; 41.22± 10.14 0.71; 0.88; 1.26

Multiple human motions
under disturbance

knee motion (flexion/extension) 41.17± 9.24; 2.26± 0.33; 1.08± 0.27 0.98; 1.151.151.15; 1.67
hip motion (adduction/abduction) −5.24± 7.13; 3.16± 4.25; −12.18± 11.31 1.231.231.23; 0.47; 3.673.673.67
elbow motion (flexion/extension) 0.94± 0.26; 0.34± 0.36; 41.34± 10.15 0.66; 0.31; 1.08

1 The column “Mean ± SD and RMSE” presents the mean ± standard deviation and root mean dquare error repectively of x/y/z angles
for each experiment.

TABLE IV
COMPARISION OF THE PROPOSED SYSTEM TO MEASURE JOINT ANGLE WITH OTHER WEARABLE SYSTEMS

Studies Sensors Methods/Filters Joint angle1 Human motion Synchronism/ Anti-disturbance

Hyosany et al.2016 [15] flexible sensors Least Square Method about10◦/ about10◦/ about10◦ shoulder motion −
Karinal et al.2017 [22] MIMUs Complementary Filter 2.7◦/ 3.3◦/ 7.8◦ knee/ hip/ ankle motion Anti-disturbance

Mohamed et al.2016 [27] IMUs/FSRs Kalman Filter −/−/ about11.9◦ knee motion −
Salvatore et al.2019 [28] IMUs/EMG Embedded Fusion Method −/−/ 10.4◦ knee motion Synchronism/ Anti-disturbance
The Proposed System MIMUs/flexible sensor The Proposed Algorithm 1.231.231.23◦/ 1.151.151.15◦/ 3.673.673.67◦ knee/hip/elbow motion Anti-disturbance

1 The column “Joint angle” presents the maximum RMSEs of x/y/z angles between all the motions.

wearable system can be rapidly deployed by physiotherapists
with access to large clinical users and their associated medical
data. Such studies may improve an understanding of joint
motions, as knowledge of human motion data and their prop-
erties are still developing [41], [42], largely due to a lack
of high-accuracy measurement systems and cross-sectional
databases. Ultimately, we envision this work will serve as
the fundamental algorithm construction for future multi-sensor
wearable systems, thus deepening the understanding of precise
joint angle measurement and broadening its applications.
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