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OPERATOR-NORM RESOLVENT ASYMPTOTIC ANALYSIS OF
CONTINUOUS MEDIA WITH HIGH-CONTRAST INCLUSIONS

KIRILL D. CHEREDNICHENKO, ALEXANDER V. KISELEV, AND LUIS O. SILVA

ABSTRACT. Using a generalisation of the classical notion of the Weyl m-function and the related
formulae for the resolvents of boundary-value problems, we analyse the asymptotic behaviour of
solutions to a “transmission problem” for a high-contrast inclusion in a continuous medium, for
which we prove the operator-norm resolvent convergence to a limit problem of “electrostatic” type.
In particular, our results imply the convergence of the spectra of high-contrast problems to the
spectrum of the limit operator, with order-sharp convergence estimates. The approach developed in
the paper is of a general nature and can thus be successfully applied in the study of other problems
of the same type.

1. Introduction

Parameter-dependent problems for differential equations have traditionally attracted much interest
within applied mathematics, by virtue of their potential for replacing complicated formulations
with more straightforward, and often explicitly solvable, ones. This drive has led to a plethora
of asymptotic techniques, from perturbation theory to multi-scale analysis, covering a variety of
applications to physics, engineering, and materials science. It would be an insurmountable task
to give a comprehensive review of the related literature. Notwithstanding the classical status of
this subject area, problems that require new ideas continue emerging, often motivated by novel
wave phenomena. One of the recent application areas of this kind is provided by composites and
structures involving components with highly contrasting material properties (stiffness, density,
refractive index). Mathematically, such problems lead to boundary-value formulations for classical
operators (such as the Laplace operator), but with parameter-dependent coefficients. For example,
problems of this kind have arisen in the study of periodic composite media with high contrast (or
“large coupling”) between the material properties of the components, see [15], [32], [8].

In the present work, we consider a prototype large-coupling transmission problem, posed on
a bounded domain Q@ C R? d = 2,3, see Fig. 1, containing a “low-index” (equivalently, “high
propagation speed”) inclusion Q_, located at a positive distance to the boundary 9. Mathematically,
this is modelled by a “weighted” Laplacian —a+A, where ay = 1 (the weight on the domain
O, =0\ Q_), and a_ = a (the weight on the domain £2_) is assumed to be large, a_ > 1. This is
supplemented by the Neumann boundary condition du/0n = 0 on the outer boundary 0f2, where n
is the exterior normal to 02, and “natural” continuity conditions on the “interface” I := 9€2_. For
each a, we consider time-harmonic vibrations of the physical domain represented by €2, described by
the eigenvalue problem for an appropriate operator in L?(2).

A formal asymptotic argument using expansions in powers of a? suggests that convergent
eigenfunction sequences for the above eigenvalue problems should converge (as a — 00) to either a
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FIGURE 1. Domain with a “stiff” inclusion.

constant or a function of the form

1
V- v,
Q[ Ja,
where v satisfies the spectral boundary-value problem (BVP)
1 ov
—szz(v— v) inQy, =0, —| =0. (1.1)
9 Ja, Mg

Here the spectral parameter z represents the ratio of the size of the original physical domain to the
wavelength in its part represented by 2.

The problem (1.1) is related to the so-called “electrostatic problem” discussed in [33, Lemma 3.4],
see also [2] and references therein, namely the eigenvalue problem for the self-adjoint operator @
defined by the quadratic form

q(u,u) = . Vo - Vo, u=v+c, UEH&F ={ve H' (Qy), v[r =0}, ceC (1.2)
+
on the Hilbert space L?(Q2) 4 C, treated as a subspace of L?(12).

Indeed (see [33] for details), it is easily seen that the eigenvalue problem Qu = zu is solvable
either when z = 0, in which case u = ¢, or for z > 0 such that the problem (1.1) admits a non-trivial
solution. Thus, the formal asymptotic argument suggests that the limiting spectrum is precisely
that of the electrostatic problem.

Denote by AZ the Laplacian —A on €, subject to the Dirichlet condition on T' and the Neumann
boundary condition on 02 and write the function v in (1.1) in the form of an eigenfunction series

v=>Y d;¢],
j=1

where )\j, gb}“, j=1,2,..., are the eigenvalues and the corresponding orthonormal eigenfunctions,
respectively, of Al. Noticing that the function 14 (z) =1, € Q, can be written as

o0

h—Z(/Qﬁj)w,

Jj=1
2



we obtain

S =gl 0,7

o=, )Z 20 (f,, ) =

and therefore

as long as z # )\;-", j =1,2,.... Taking the integral over {2, on both sides of (1.3) and assuming
that the integral of v over {24 does not vanish yields, by incorporation of z = 0 into the answer,

00 2
. ]Q\—i—zZ(Aj—z)’l/ o
=1 2t

Thus, the spectrum of the electrostatic problem is the union of two sets: a) the set of z solving
the equation (1.4) and b) the set of those eigenvalues )\;F for which the corresponding eigenfunction

] = 0. (1.4)

qﬁj has zero mean over €, .

The main result of the present paper, which is the norm-resolvent asymptotics for the operator of
the BVP introduced above, yields in particular the description (1.4) for the limiting spectrum of
the problem, together with an order-sharp estimate on the rate of the convergence, as a — +oc.

Relations similar to (1.4) appear in the analysis of periodic problems with micro-resonances
(“metamaterials”) [8], where they provide zeros of the functions describing the dispersion of waves
propagating through media modelled by such problems.

The present paper is a development of the recent study [6, 7, 9, 8] aimed at implementing the
ideas of the boundary triples theory as proposed by Ryzhov [24] (in its turn, this analysis heavily
draws upon the celebrated Birman-Krein-Visik theory [3, 16, 17, 31]) in the context of problems of
materials science and wave propagation in inhomogeneous media. Our recent papers cited above
have shown that the language of boundary triples is particularly fitting for the analysis of composite
media, as one of the key difficulties in their analysis stems from the presence of interfaces (i.e.,
boundaries between individual material components) through which an exchange of energy between
different components of the medium takes place. We point out that the papers [10, 11, 12] further
demonstrate that an additional value of using the boundary triples approach is that the framework
of functional models and the approach to scattering theory based thereupon (][22, 19]) can be
formulated in the most natural terms of Dirichlet-to-Neumann maps pertaining to the interfaces.

An asymptotic analysis of the static (or “equilibrium”) version of the above problem, where
z =0 and a forcing term is added to the right-hand side, has been carried out in [2], in the context
of isotropic elasticity (which additionally implies that two material parameters are present, the
so-called Lamé coeflicients). The authors of [2], using the representation of solutions in terms of
boundary layers, prove “strong” resolvent convergence of the original problem to the resolvent
version of the “electrostatic” problem (1.1) (albeit framed in the context of linearised elasticity),
still with z = 0. In the work [23] different methods were used to obtain the spectral convergence;
however, neither the effective operator of the “limiting” medium nor the norm-resolvent convergence
to it were discussed. We argue that the approach we present here allows one to improve such
results in two respects: a) the new estimates are of the operator-norm resolvent type, implying, in
particular, the control of the convergence of the associated spectra and the exponential groups; b)
our estimates are uniform with respect to the “contrast” parameter a and are order-sharp, i.e. the
rate of convergence in terms of a — 0 cannot be improved further.

We briefly outline the contents of the paper. In Section 2, we recall the main points of the abstract
construction of [24] and introduce the key tools for our analysis. These include a representation
for the resolvents of a class of boundary-value problems in terms of the M-operator. Using these
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general formulae, in Section 3 we study the asymptotic behaviour of the operators corresponding to
transmission problems for two-component media with contrasting material properties, as described
above. The asymptotic approximation of the spectra is discussed at the end of the paper, leading to
the characterisation (1.4).

2. Ryzhov triples for boundary-value problems

In this section we follow [24] in outlining an operator framework suitable for dealing with
boundary-value problems.

2.1. The boundary triple framework. The starting point of our construction is a self-adjoint
operator Aj in a separable Hilbert space H with 0 € p(Ag), where p(Ap), as usual, denotes the
resolvent set of Ag. Alongside H, we consider an auxiliary Hilbert space £ and a bounded operator
II: £ — H such that
dom(Ap) Nran(Il) = {0} and ker(II) = {0}.
Since II has a trivial kernel, there is a left inverse II™!, so that II"'II = Ic. We define
dom(A) := dom(Ap) + ran(II),
AA f+Tlg— f,  feM,peE,
dom(Ty) := dom(Ay) + ran(II),
To: Ayt f + o — ¢, feH,pek,

where neither A nor I'y is assumed closed or indeed closable. The operator given in (2.1) is the null
extension of Ag, while (2.2) is the null extension of II-!. Note also that

ker(I'g) = dom(Ap) .
For z € p(Ap), consider the abstract spectral BVP

Au = zu,
{ 3)
FOu = Qb, ¢ € 57

(2.1)

(2.2)

where the second equation is seen as a boundary condition. As it is asserted in [24, Thm. 3.1], there
is a unique solution u of the BVP (2.3) for any ¢ € £. Thus, there is an operator (clearly linear)
which assigns to any ¢ € £ the solution u of (2.3). This operator is called the solution operator for
A and is denoted by! ~,. An explicit expression for it in terms of A and II is obtained as

Vot (I+2(Ao — 2I) 1o (2.4)

for any z € p(Ap). Note that
T+ 2(Ag— 20" = (I— 24171
and that (2.2) and (2.4) immediately imply
Pove = I
By (2.4) and a simple calculation, one has
ran~y, = ker(A — zI).

We remark that, since A is not required to be closed, ran -y, is not necessarily a subspace. This is

precisely the kind of situation that commonly occurs in the analysis of BVPs.

IThe function v is sometimes referred to as the ~y-field.
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In what follows, we consider (abstract) BVPs of the form (2.3) associated with the operator A,
with variable boundary conditions. To this end, for a self-adjoint operator A in £, define

dom(T'1) := dom(Ap) + ITdom(A),

2.5
Ty Ayt f + e TT* f + Ao, f€H,¢edom(A). 25)

The operator A can thus be seen as a parameter for the boundary operator I'y.
On the basis of (2.4), one obtains from (2.5) (see [24, Eq. 3.7]) that

’yg* = Fl(AO — ZI)il .
Also, according to [24, Thm. 3.2], the following Green’s type identity holds:
(Au,v)y — (u, Av)y, = (T1u, Tov)g — (Dou, T'1v)ge u,v € dom(I'y).

The above framework for triples (Ag, A, IT) stems from the Birman-Krein-Visik theory [3, 16, 17, 31],
rather than the theory of boundary triples [14]. We employ it next to introduce the notion of an
M-operator, generalising the well-known notion of a Dirichlet-to-Neumann map in the context
of BVPs. This generalisation helps us achieve two goals: on the one hand, it allows us to treat
a transmission (rather than a boundary-value) problem, and on the other hand, it enters the
formulae for operators resolvents that we will use for obtaining operator-norm error estimates in
the large-coupling asymptotic regime.

2.2. Definition and properties of the M-operator. Based on the notion of a triple, we now

define the mentioned abstract version of the Dirichlet-to-Neumann map.

Definition 1. For a given triple (Ag, A, II), define the operator-valued M-function associated with
Ay as follows. For any z € p(Ap), the operator M (z) in & is defined by

M(z): ¢ — T'1v.0, ¢ € dom (M (z)) := dom(A).

A detailed description of how one casts in the language of boundary triples classical boundary-
value problems, such as the Dirichlet problem for the Laplace operator on a bounded domain with
sufficiently regular boundary, can be found in [24, 12].

Taking into account (2.5), one concludes from Definition 1 that

M(z) = A+ 2IT°(1 — zA;H) ML (2.6)
Also, due to the self-adjointness of A, one has
M*(z) = M(Z).

Moreover, it is checked that M is an unbounded operator-valued Herglotz function, i.e., M (z) — M (0)
is analytic and M (z) > 0 whenever z € C4. It is shown in [24, Thm. 3.3(4)] that

M(z)Tou, =T'u, Vu, € ker(A — zI) Ndom(I'y).
In this work we consider extensions (self-adjoint and non-selfadjoint) of the “minimal” operator
A= Aglier(ry) (2.7)

that are restrictions of A. It is proven in [24, Sec. 5] that A is symmetric with equal deficiency

indices. Moreover, [24, Prop. 5.1] asserts that A does not depend on the parameter operator A,
contrary to what could be surmised from (2.7).
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2.3. Resolvent formulae for general boundary-value problems. Still following [24], we let «
and [ be linear operators in the Hilbert space £ such that dom(a) D dom(A) and S is bounded on
£. Additionally, assume that o + SA is closable and denote 3 := o + SA. Consider the linear set

Hg = {Aglf TI¢:feH, ¢ dom(ﬁ)} (2.8)
Following [24, Lem. 4.1], the identity
(aFO + Brl)(Aalf + qu) = BH*f + (Oé =+ BA)¢7 f € Ha ¢ € dom(A),

implies that al'g + ST is correctly defined on dom(Ap) + ITdom(A). The assumption that o + SA
is closable is used to extend the domain of definition of al'g + SI'1 to the set (2.8). Moreover, one
shows that Hg is a Hilbert space with respect to the norm

lullf = 113 + 0Nz + [BolE,  w=Ag'f +1Io.

It follows that the constructed extension al'y 4+ SI'1 is a bounded operator from Hg to &.
According to [24, Thm.4.1], if the operator a + M (z) is boundedly invertible for z € p(Ay),
then, on the one hand, the spectral BVP

(A—2lyu=7,
(QFO+BF1)U:¢, fG’H,quE,

has a unique solution u € Hg, where, as above, al'g + 5I'1 is a bounded operator on Hg. On the
other hand, it follows from [24, Thm. 5.1] that the function

(Ag — 27 — (I — 2Ag ) Mo+ BM (2)] ' BIT* (I — 2A451) 7! (2.9)

is the resolvent of a closed operator A,z densely defined in H. Moreover, AcC Ayp C A and
dom(Ayg) C {u € Hg: (al'g+ BT'1)u = 0}.

3. Large-coupling asymptotics for a transmission problem

The aim of this section is to translate a problem familiar to the application-minded reader into
the language of boundary triple theory presented above and obtain new results for this problem.

3.1. Problem formulation. Suppose that €2 is a bounded C*! domain, and I' C Q is a closed
CY1 curve, so that T' = 9Q_ is the common boundary of domains €2, and ©_, where Q_ is strictly
contained in , such that Q, UQ_ =, see Fig. 1.

For a > 0, z € C we consider the “transmission” eigenvalue problem (cf. [25])

—Auy = zuy in Q4

—aAu_ =zu_ in Q_,

Uy = U_, g:iiJragZ:O on I, (3.1)
% =0 on 09,

a’l’l+

where ny denotes the exterior normal (defined a.e.) to the corresponding part of the boundary.?
The above problem is understood in the strong sense, i.e. u+ € H?(2), the Laplacian differential
expression A is the corresponding combination of second-order weak derivatives, and the boundary

2The Neumann boundary condition on 952 can be replaced by a Robin condition with an arbitrary coupling constant
without affecting the analysis of this section.
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values of u+ and their normal derivatives are understood in the sense of traces according to the
embeddings of H?(Q4) into H*(T'), H*(0)), where s = 3/2 or s = 1/2.

3.2. A reformulation in the language of triples. In order to make our framework applicable to
(3.1), we first consider its weak formulation. We then apply the regularity theory for elliptic BVPs,
see e.g. [25], to show that its solutions are in fact the solutions to (3.1). Indeed, the results of [24],
see also (2.9), show that the problem (3.1) in the weak formulation is the eigenvalue problem for a
self-adjoint operator of an appropriate class A, introduced in Section 2.3, and thus its solutions
are in the domain of this operator. Then the result of [25] is used to show that these solutions have
higher regularity, as required for the solvability of (3.1) in the strong sense.
We define the Dirichlet-to-Neumann map?

Ou ou_
A:op— s ag—,
where u4 are the harmonic functions in €4 subject to the above boundary condition on 992 and the
condition u = ¢ on I'. Clearly A = A* 4+ aA~, where AT, A~ are the Dirichlet-to-Neumann maps
on each side of the interface I', which are self-adjoint operators in L?(I"), with domain H'(T"). For
sufficiently large values of a, the operator A has the same properties as AT and A~, see [8, Lemma
2.1].

Translating the spectral BVP (3.1) into the language of the abstract framework developed in
Section 2.1, we define A as the “Dirichet decoupling” A ®a A, , corresponding to the decomposition
L*(Q4) @ L?(Q-) = L*(Q) =: H, where AJ is the Laplace operator with Dirichlet condition on
I' and Neumann condition on 0f2, and A is the Dirichlet Laplacian on €2_. Furthermore, in the
context of the transmission problem (3.1), the boundary space is given by L?(I') =: £ and the
abstract operator II of Section 2.1 is simply the Poisson operator of harmonic lift from & to H
(subject to the Neumann condition on 9€2), while its left inverse is the operator of trace on I' for
functions that are harmonic on €2_ and €1, possessing square summable boundary values on I,
and T'g is the null extension of the latter to (H*(2-) N Hy(Q-)) 4+ (H*(Q4) N Hg p(Q24)) +TILA(T),
where H&7F<Q+> consists of functions in H'(Q,) with zero trace on T, ¢f. (1.2).

The problem (3.1) is then written in the form A,gu = zu with a = 0, f = I, equivalently

¢ € H(I),

Au = zu, Iu=0,

where A is defined by (2.1) and I'; is defined by (2.5).
Finally, the operator M (z) of Definition 1 is the mapping

M(z):¢p— —— —a— e H'(T
(Z) ¢ 8n+ aan_ Y ¢ ( )7
where uy, u_ solve
—Aug = zug in Qg
—aAu_ = zu_ in Q_,
Uy =u_=¢ onl,
% =0 on 09,
8n+

and the formula (2.6) expresses M(z) in terms of A and the decoupling AJ @ aAg . Recall (Section
2.2) that M(z) is an (unbounded) operator-valued Herglotz function, analytic in C \ R so that

SFor convenience, we define the Dirichlet-to-Neumann map via —0u/9n|sq instead of the more common du/0n|sq.
As a side note, we mention that this is obviously not the only possible choice for the operator A. In particular, the
trivial option A = 0 is always possible. Our choice of A is motivated by our interest in the analysis of classical
boundary conditions.
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M(z) = M*(z), z € C\ R. In addition, for all values z outside a discrete set of points, M(z) is
invertible and its inverse is compact. Similarly, Definition 1 yields the M-operators M* corresponding
to the components €4, so that
8U+ ou_
M*T(2):¢— ———, M= (2):¢— —a—o0, e HYD),
()6~ ()¢ —as'=, e H\D)
where uy4 and u_ are as above.
By a similar argument to the one of [24, Theorem 3.3, Theorem 5.1], the following statement
holds, ¢f. [5].

Proposition 3.1. The spectrum of (3.1), i.e. the set of values z for which (3.1) has a nonzero
solution in the strong sense as described above, coincides with the set of z to which the inverse of
a+ BM(z) = M(z) does not admit an analytic continuation.

The representation (2.6) applied to M ~(z) implies that
M~(2) = ah™ + 211" (I —a~"2(A7) ") "'l = aA™ + 2II* I + O(a™ ), (3.2)
where A, is as above the Dirichlet Laplacian on €2_, and II_ is the harmonic lift from I' to Q_.

3.3. Asymptotic analysis and the main result. In what follows we analyse the resolvent
of the operator A, of the transmission problem (3.1), which coincides with the resolvent of the
operator Agr, in terms of the notation of Section 2. In particular, the spectrum of A, coincides with
the spectrum of (3.1). Our approach is based on the use of the Krein formula (2.9) with a = 0,
B = I, where for the asymptotic analysis of M(z)~! we employ (3.2) and separate the singular and
non-singular parts of A™.
To this end, note first that the spectrum of A~ consists of the values p (“Steklov eigenvalues”)

such that the problem

Au=0, ue H*Q),

gz =—pu on I,
has a non-trivial solution. The least (by absolute value) Steklov eigenvalue is zero, and the associated
normalised eigenfunction (“Steklov eigenvector”) is 1, := |I'|~/21p € £ = L*(T). Introduce the
corresponding orthogonal projection P := (-, 1, )g., which is a spectral projection relative to A~
and decompose the boundary space &:

£ = PE® PLe, (3.3)

where P+ := I — P. This yields the following matrix representation for A~ :

/0 0
\o A7)

where A := PTA~ Pt is treated as a self-adjoint operator in P€.

We write the operator M (z) as a block-operator matrix relative to the decomposition (3.3),
followed by an application of the Schur-Frobenius inversion formula, see [30, Theorem 2.3.3]. To
this end, notice that for all 1) € dom A one has Pty € dom A, and therefore PLAP is well defined on
dom A. Similarly, Pty = ¢ — Py € dom A, and PAP" is also well defined. Furthermore, by the
self-adjointness of A, one has PAPLy = (P11, A, )1, and therefore ||PAPLH€_)5 < ||Asle. Tt
follows that PAP" is extendable to a bounded mapping on P+E. A similar calculation applied to
PLAP and PAP shows that these are extendable to bounded mappings on PE. Therefore, for each

z € p(Af) N p(Ay) the operator M(z) admits the representation
8



A B
M(z) =
E D
For evaluating M (z)~! we use the Schur-Frobenius inversion formula [26], [30, Theorem 2.3.3]
A BV (A4 AIBSIEA! —A-IBS!
(E D) B —STIEA"! S

Using the fact that S™' = (I — D'EA~'B)~!D~!, where |[D7!|| < Ca~!, and therefore S is
boundedly invertible with a uniformly small bound, we obtain (see [8] for details)

—1 _
M(z)™t = (g ﬁ) = (Aol 8) +O0(a™). (3.5)

Theorem 3.2. Fiz 0 > 0 and a compact set K C C, and denote K, := {z € K : dist(z,R) > o}.
There exist C,ag > 0 such that for all z € K,, a > ag one has

[(Aa —2)7" = (Aprp—=2

) , A, B, E bounded.

) ,  S:=D-EA'B. (3.4)

-1 -1
) ||L2(Q)—>L2(Q)§Ca .

Proof. We use (2.9) with a = 0, 8 = I for the resolvent (4, — z)~! and with a = P+, § = P for
(ApLp— z)_l. In the former case we use (3.5) and in the latter case we write

(PT+ PM(z)) 'P=P(PM(z)P) 'P,
by the Schur-Frobenius inversion formula [30, Section 1.6], see (3.4).* The claim follows by comparing
the obtained expressions for the two resolvents. ]

We now rewrite the result of Theorem 3.2 in a block-matrix form relative to the decomposition
H=PHDPH=L*Q)® L*Q,), where P_, P, are orthogonal projections from L?(f2) to
L2(2_), L?(€2y), respectively. This allows us to express the asymptotics of (A, — 2)~! in terms of
the generalised resolvent [20, 21] Ry(2) := Py (A, — 2) 71 P4, analysed next.

Proposition 3.3. One has
_ — -1 X
Ra(2) = (Af —2) 7' =7 (MF(2) + M~ () ()",

z

where v : ¢ — w is the solution operator of the BVP

—Au—zu=0, uc€ domAa' +ranIly,

ulr = ¢, (3.6)
;TZ =0 on 09.
Proof. By the definition of M+, M~ and a direct application of (2.9), as in [8, Lemma 3.2]. O
A comparison of the latter result with (2.9) taking into account (2.4) yields:
Corollary 3.4. The generalised resolvent R,(z) is the solution operator for the BVP
~Au—zu=f, feL?*Q),
Ifu=-M"(2)§u,

ou
— =0 on 9.
87’L+
4We remark that P+ + PM(z) is triangular (A = PM(z)P, B = PM(z)P*, E =0, D = I in (3.4)) with respect to
the decomposition & = PE @ P*E.
9



Theorem 3.2 now implies an operator-norm asymptotics for the generalised resolvents R, as
a — 0.

Theorem 3.5. For all z € K, the operator Ry(z) admits the asymptotics Ry(2) = Reg(2) +O(a™1),
as a — 0o, in the operator-norm topology, where Reg(2) is the solution operator for the BVP

—Au—z2u=f, feL*Q),

a(2)Lfu+ prfu=0, (3.7)
ou

gu 0

an; 0 on 99,

with a(z) = P+ + PM~(2)P and 3 = P.
Proof. On the one hand, by Theorem 3.2, the resolvent (4, — z)~! is O(a~!)-close to
(Apip—2)" = (Ao —2)" =7 (P +PM(z) " P,
and therefore
Ra(2) = P(Ag — 2) 7' Py — Py (PL+ PM(2)) ' PyiPy + O(a™)
= (A5 =) = 2f (PT+ PM(2)) " P()" + 0(a™) (3:8)
= (A5 — =)' =T P(PM(2)P) "P(1})" + O(a™).
On the other hand, by (2.9) and applying the inversion formula (3.4), we obtain
Re(2) = (A§ = =) =~ (PL+ PM-(2)P + PM*(2)) ' P(:7)°

3.9
— (4 =) = F P(PM* ()P + PM~()P) ' P(32 )" .

Comparing the right-hand sides of (3.8) and (3.9) completes the proof. O

Theorem 3.5 can be further clarified by considering the “truncated” boundary space® £ := PE.
Introduce the truncated harmonic lift by II; := II;|s and Dirichlet-to-Neumann map A* := PAT|s.

Theorem 3.6. Denote M™T(z) := PM*(z2) &= AT+ 2T (1 — Z(Aar)_l)_lﬁ+. The formula

Rea(2) = (A —2)7 =5 (M*(2) + PM™()P) " (55)° (3.10)
holds, where ¥ : ¢ — uy is the solution operator of the problem
—Aug — zup =0, ug € dom AZ + ran ﬁ+,
F(J)ru(b =¢, @€ é

Note that here PM~(z)P, as opposed to M *(z), is attributed the meaning of an operator defining
nonlocal boundary conditions in the BVP.

Proof. By the definition of 77, one has

v == 2(A5) ™)L, (3.11)
and therefore 51 = 4|z It follows that (3.9) is equivalent to (3.10), whence the assertion of
Theorem follows. U

5In what follows we consistently supply the (finite-dimensional) “truncated” spaces and operators pertaining to
them by the breve overscript.
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Corollary 3.7. The operator Reg(2) is the solution operator of the problem
—Au—zu=f, felL?), uecdomAl +ranll,
PI'fu=—-PM~(2)PTJu.
Equipped with Theorems 3.5 and 3.6, we provide a more convenient representation for the
asymptotics of (4, — z)~! of Theorem 3.2.

Theorem 3.8. Denote &, := T | (v+p) % € Cx. For the resolvent (Aq — 2)7 " one has

( Reft(2) (8:[Rerr(2) — (A7 —2)7'])" T2

(Aq — Z)_l =
I8 [Re(2) — (Af —2)7']  TLR.(8R:[Rer(2) — (A5 —2)7']) I~

) +0(a™h),

where the operator matriz is written with respect to the decomposition L*(Q) = L*(Q4) @ L*(Q_).

Proof. First, we note that since ran(vy; P) is one-dimensional, the operator &, is well defined as
a bounded linear operator from ran(v;” P) to £, where the former is equipped with the standard
norm of L?(2,) . We proceed by representing the operator (Apr p— z)~! see Theorem 3.2, in a
block-operator matrix form relative to the orthogonal decomposition H = L?(2) ® L?*(Q_). The
upper left matrix entry Py(Ap. p —2)” ' Py due to Theorem 3.5 is O(a™!)-close to Reg(z). Next
we consider the lower left matrix entry:

P (Aprp—2) Py ==, P(PM*(2)P+ PM(:)P) ' P(y})’
=~ i P(PMY ()P + PM™(:)P) ' P(41)"
=7 5 [Renr(2) = (A — 2)7'] = 77 Ke[Ren(2) — (A5 —2)7'],
where 7. : ¢ — uy is the solution operator of the BVP (cf. (3.6))

Lyug = 9.

Here in the second equality we use the fact that I‘('bej = I, and in the third equality we use (2.9),
see also (3.9). Passing over to the top-right entry, we write

Py(Apsp—2)" P =—FP(PM*(2)P+ PM~()P)”
= (R:[Renr(2) — (A7 = 2) ') (22 )"
= (R:[Rex(2) = (A§ = 2)7') T (1 —a '2(45) ™) 7,

and the claim pertaining to the named entry follows by a virtually unchanged argument. Finally,
for the bottom-right entry we have

P_(Apip—2)" Po=(ady —2)7" +9; K (8 [Re(2) — (AF —2) ) (02)",
which completes the proof taking into account the equality (cf. (3.11))
Vr = (- al2(45) )L =T+ 0(aY).

{—aAu¢ —zup =0, up € domA; +ranll_,

'P(yz)

0

The representation for Reg(z) given by Theorem 3.6 allows us to further simplify the asymptotics
of (A, — 2)7!, using the fact that

PM™(2)P=PA P+ zPII*II_P + O(a™") = 2II"II_ + O(a™"), I_:=1I|
11



As a result, one has®
Reit(2) = Rer(2) + O(a™"),  Rei(2) 1= (Af — 2)7" =5 (M (2) + 21T01) 7 (357,
and hence the following result holds.
Theorem 3.9. The resolvent (A, —2)~1 has the following asymptotics in the operator-norm topology:
Regr(2) (Rz[Re(2) — (Ag — 2)71])"II=
( ) +0(a™),

(Aq — Z)il =1 - . - .
I8 [Ren(2) — (Af —2)7'] TR (8[Rer(2) — (A5 —2)7']) 11~

(3.12)
where the operator matrix is written with respect to the decomposition L*(Q) = L*(Q4) @ L*(92_).

3.4. An out-of-space extension and the “electrostatic” problem. Consider the space
Heog = L?(924) @ C and the following linear subset of L?() :

8U+

dom A = {<UJ> € He : up € H*(Qy), uylr = |?2 |]lr,

where u|r is the trace of the function w and 1 is the unity function on I'. On dom A.g we set the
action of the operator A.g by the formula

= 0}, 3.13
o (3.13)

—A’LL+
Aeﬁ <u1;F> = 1 8U+
A/ ‘Q_‘ Iy 8n+

Remark 1. Note that the resolvent of Aeg is the so-called Strauss dilation [28, 29] of the generalised
resolvent Reg(z).

Next we use [8, Theorem 4.4], which in view of Theorem 4.6 implies the following theorem.

Theorem 3.10. The resolvent (Aeg — 2)~! is unitary equivalent to the block operator matriz on
the right hand side of (3.12), , treated as an operator in L*(y) @ TI_E.

We remark that as it is easily seen the block operator matrix on the right hand side of (3.12) is
equal to zero in the orthogonal complement to the subspace L*(Q) @ TI_E.

Together with the spectral theorem for self-adjoint operators, the result obtained in Theorem
3.10 immediately yields (see, e.g., [4]) the following corollary.

Corollary 3.11. The spectra of the operators A, converge in the sense of Hausdorff, as a — oo,
with an order O(a™1) error estimate, uniformly on compact subsets of C, to the spectrum of the
operator Aeg.

An explicit representation for the spectrum of Aqg, i.e. the set of z € C for which the problem

At (“’77*) =2 (“’n*) : (3.14)

has a nontrivial solution (u4,n)", can be obtained as follows. We represent u, € H?(2y) in the
form uy = v + ¢, where ¢ € C is related to n by the formula ¢/|Q2_| =, ¢f. (3.13), and v solves
the problem —Av = z(v + ¢) subject to the Neumann boundary condition (0v/0n4)|ga = 0 and the
Dirichlet boundary condition v|r = 0, or equivalently v = zc(AJ — 2)"!1gq ., Where 1g_ is the unity

6We remark that the generalised resolvent ﬁeﬁ‘(z) is thus the solution operator of a spectral BVP of a special class.
Namely, the dependence of its boundary condition on the spectral parameter is linear with respect to the latter. Such
spectral BVPs were considered e.g. in [34].
12



function on Q. Therefore, in terms of the pair (v,c)' the eigenvalue problem (3.14) admits the

form:
—Av

1 B :z<”+c>, (3.15)
T s Vie

and so its solvability is easily seen to be equivalent to the boundary equation appearing in the
second component of (3.15): 1 P
v

VIO L ony

zey/ 19— (3.16)

Suppose first that ¢ # 0.
Denoting as in Introduction above by )\;r, 7=12...,and <Z>j, j=1,2,... the eigenvalues and

the corresponding normalised eigenfunctions of the operator A7, the relation (3.16) is reduced to
c=—]Q|7! Jo, v+ using the Green’s formula and the equality —Av = z(v + ¢). Therefore, based
on the calculation contained in Introduction, the solvability of (3.14) turns out to be equivalent to
(1.4). Alternatively, if ¢ = 0, which corresponds to the case when n = 0, the function u4 is clearly
an eigenfunction of A(J{ , and it can easily be shown to have zero mean” over €.

Remark 2. It has been conjectured [27] (and established rigorously in the case of the Dirichlet
Laplace operator in two dimensions [13]) that the eigenfunctions of a BVP on a sufficiently
regular bounded domain 2 can be “nearly extended” (see [13] for rigorous details) to generalised
eigenfunctions of the whole-space problem, corresponding to the same eigenvalue. This can be
interpreted as an effect of “transparency” of the domain ) to the waves of certain wavelengths. The
set of values described by (1.4) can therefore be interpreted as the set of wavelengths at which a
similar effect of transparency occurs for problems (3.1), as a — oo, in other words for problems
with low-index dielectric inclusions. A rigorous proof of this observation requires the development
of scattering theory for high-contrast transparent obstacles, and it will be addressed in a separate
publication.

Remark 3. The spectrum of ASr , contrary to what would seem from Theorem 3.9, in the generic
case does not enter the spectrum of (3.14). The mechanism for this is described in [18].
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