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Abstract: Establishing an accurate mathematical model is fundamental to managing, 
monitoring, and protecting the battery pack in electric vehicles (EVs). The application 
of the deep learning algorithm-based state estimation method can significantly improve 
the accuracy and stability of the battery model but is hindered by the great demand for 
training data. This paper addresses the challenge of health-conscious battery modeling 
by utilizing multi-source data based on a novel deep transfer learning method. Firstly, 
a cloud-based battery management framework is designed, which is able to collect and 
process battery operation data from various EVs and provide a foundation for deploying 
the transfer learning method. Battery healthy state information in the collected dataset 
is labeled by a generic perception model, which can be commonly used to quantify the 
aging state of different battery packs and facilitate the knowledge transfer process. 
Additionally, a deep transfer learning method is developed to boost the training process 
of the battery model, where the operation data from different types of EVs can be used 
for establishing state estimators. The method is verified by the battery operation data 
collected from two types of electric buses. With the developed healthy state perception 
model and transfer learning method, battery model error can be limited to 2.43% and 
1.27% in the whole life cycle. 

Keywords: Transportation electrification, electric vehicles, battery energy storage, 
deep transfer learning, battery management system, battery state estimation. 

 

1. Introduction 
Vehicle is an essential part of modern transportation and energy system, and the 

improvement of its efficiency is of great significance to alleviate global warming and 
achieve carbon-neutral ambition [1, 2]. Electrification, intelligence, and networking 
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have been recognized as the three most important development directions of future 
transportation systems [3, 4]. The adoption of electric vehicles (EVs) makes it possible 
to reduce greenhouse gas emissions and fossil fuel consumption fundamentally, while 
the promotion of intelligent connected vehicles can further boost the operational 
efficiency of integrated transportation and energy system. As the main energy storage 
device, the lithium-ion battery pack is one of the most important and expensive devices 
in EVs [5]. The establishment of an accurate mathematical model is fundamental to 
managing, monitoring, and protecting the battery [6, 7]. Kalman filters are the most 
commonly used method to estimate battery state. In [8], the model-adaptive Kalman 
filter is used to estimate the State of Charge (SoC) of lithium-ion batteries; experimental 
results validate the accuracy and robustness of the established battery model. However, 
the lithium-ion battery is a complex electrochemical system and its characteristics 
change with capacity degrades [9-11]. The accuracy and stability of conventional 
model-based and data driven battery state estimation methods can no longer satisfy data 
quality requirements from advanced vehicle control and intelligent transportation 
systems [12, 13]. 

Recently developed internet of vehicle and artificial intelligence technologies bring 
a bright perspective to improve the performance of battery models. Many research has 
been conducted to study big-data-driven battery modeling and healthy estimation 
methods [14-17]. A deep belief network-based battery model is established in [18], and 
the model is trained by battery historical operation data with SoC as output. 
Experimental results indicated that the deep learning model has good estimation 
accuracy under vehicle dynamic working conditions. Paper [19] proposes an intelligent 
battery State of Health (SOH) estimation method based on fast impedance 
measurements. The data analysis and clustering method are used in their study to 
establish the battery SOH estimation model, and the experimental results validate the 
accuracy and real-time performance of the developed method. The big data analysis 
methods and artificial intelligence technologies are further employed in [17] to monitor 
the operation state and detect the fault and defect of the vehicle battery system. 

With big data technology and deep learning algorithms, the performance of the 
established battery model can be significantly improved compared to conventional 
onboard battery modeling methods [20, 21]. However, the training and calibration of 
the model need a large volume of data, which burden the data collection and preparation 
process [22-25]. According to [26], feature engineering, which means constructing 
features and data representations from raw data, is the main reason why deep learning 
algorithms outperform other data driven methods. Nevertheless, the training of feature 
extractors needs a large volume of high-quality data that can evenly cover the definition 
domain of all independent and dependent variables. For example, technology 
corporations such as Google, YouTube, and Uber usually use exabyte or larger datasets 
to establish deep learning-based recommender systems to achieve the best performance. 
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Similar to recommender systems, the establishing of the battery model also needs a 
large volume of high-quality training data [27, 28]. On the one hand, the battery is a 
complex electrochemical system that contains multi-features: the single cell is already 
an independent system with its own chemical and electrical features, each of them has 
a completed unique mathematical model; while the battery pack contains thousands of 
cells with non-uniform characteristics (e.g., SoC, state of power, and temperature) [29-
32]. On the other hand, the degradation phenomenon and the capacity change make the 
situation even worse: the battery owns different external characteristics at different 
healthy states [33-35]. The complex group effect and aging mechanism make the 
modeling process hard. Without sufficient training data, the established model always 
shows limited extrapolation capability for cases that are out of the prescribed dataset. 
According to [14], machine learning algorithm-based battery models own better 
performance under battery stable working conditions. However, model accuracy 
decreases greatly under high current working conditions because of the underfitting 
phenomenon caused by lacking training data. Therefore, it is difficult to guarantee the 
reliability of derived model under complex dynamic working conditions. 

However, it is hard to collect a comprehensive dataset that can reflect the overall 
battery characteristics, which introduces challenges for model training. Different 
vehicle types are with different battery packs that consist of varying numbers and types 
of battery cells. In conventional artificial intelligence-based methods, the establishment 
of the battery model in these vehicles needs independent datasets, which means that 
several large battery datasets are required to guarantee the model performance [36, 37]. 
Nevertheless, collecting the battery operation data for various EVs throughout the life 
cycle is hard and costly, especially for some of the latest models. In recent years, the 
development of transfer learning brings a bright perspective to boost the performance 
and reduce the training cost of deep learning algorithm-based battery models [38-40]. 
Transfer learning algorithms are designed for applying knowledge and skills learned in 
previous tasks to novel domains and have been proved effective in reducing the size of 
the training dataset in many fields, such as intelligent translator [41], visual tracking 
[42], and image classification [43]. However, to the best of the author's knowledge, no 
published works have studied the use of deep transfer learning methods in vehicle 
battery state estimation. 

This paper addresses the challenge of accurate battery modeling by utilizing multi-
source data based on a novel deep transfer learning method. A cloud-based health-
conscious battery modeling and management framework is designed to collect and 
process the operation data from different EVs, which provides a foundation for 
deploying the transfer learning method. Furthermore, on the basis of the established big 
data platform, an easily transferred battery healthy state estimation model is established 
to label the collected battery data with aging information for improving the performance 
of the battery model. Additionally, since establishing and training the health-conscious 
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battery model for new EVs is impractical due to the significant data volume requirement, 
we propose a deep transfer learning method to boost the battery modeling process by 
using a multi-resources dataset. The main contribution of this paper is summarized as 
follows: 
1) To the authors' best knowledge, this paper is the first effort to study the reduction 

of training dataset size when establishing battery state estimation models by the 
deep transfer learning method. 

2) A cloud-based health-conscious battery modeling and management framework is 
designed, which is able to collect and process the battery operation data. The 
collected and processed battery operation data can be flexibly used for training 
battery state estimators in different EVs. 

3) A novel generic battery healthy state perception model is established, which can 
automatically extract and analyze the irregular battery aging cycles in the collected 
battery dataset. The battery healthy state label can be universally used for analyzing 
the aging state of different battery packs, which facilitates the establishment of the 
transfer learning model. With the developed health-conscious method, battery 
model error can be limited to 2.43% in the whole life cycle. 

4) A deep transfer learning method is developed for boosting the training process of 
the battery model, where the operation data from different types of EVs can be 
universally used for establishing state estimator for new type EVs. With the 
developed transfer method, the battery model can be further limited to 1.27% by 
only utilizing operation data of three EVs. 

The rest of the paper is organized as follows: The developed cloud-based health-
conscious battery modeling and management platform are described in Section 2. 
Section 3 presents the established generic battery healthy state perception model. The 
proposed deep transfer learning method for battery state estimation is in Section 4. The 
performance of the developed battery modeling method is illustrated in Sections 5, 
followed by concluding remarks in Section 6. 

2. Cloud-based health-conscious battery modeling and management 
platform 

A cloud-based health-conscious battery modeling and management framework 
(CHBMF) is built to collect, process, integrate, and analyze the operation data from 
various EVs, providing a foundation for deploying the transfer learning battery 
modeling method. As shown in Fig. 1, the whole CHBMF consists of two parts: the 
onboard battery management system and the cloud battery management platform. 
 Onboard battery management system 

The battery pack of EVs consists of hundreds of battery cells with different 
characteristics, so it is necessary to monitor and manage these battery cells and the 
battery pack in real-time. The onboard battery management system (OBMS) is one of 
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the most commonly used battery management devices in conventional EVs [44, 45]. 
However, the battery pack is a complex electrochemical system and its characteristics 
change with the healthy state, and a mass of operation data is indispensable for 
establishing an accurate and stable model. It is hard to establish an accurate health-
conscious battery model just by utilizing the data provided by OBMS. Therefore, on 
the basis of conventional vehicle configuration, a data transmission module that enables 
the bi-directional linkage between the OBMS and the cloud data center is installed. The 
OBMS still works to manage the battery pack in EVs directly but can also upload its 
data to cloud data center for further analysis. As shown in Fig. 1 (down), a vehicle 
battery information communication network is built within the EVs cluster, and the 
battery operation data of different EVs can be sharing in the cloud battery center. 

 
Fig. 1. Cloud-based health-conscious battery modeling and management framework. 

 Cloud battery data center 
The developed transfer learning algorithm-based health-conscious battery modeling 

method is deployed in the cloud battery management platform. 
As shown in Fig. 1, the whole platform can be divided into three parts: battery 

operation database, battery healthy state perception model, and the transfer learning-
based battery model. The battery database is built to collect and process the battery 
operation data of various EVs uploaded by the OBMS, and the battery operation from 
the same EVs is aggregated together for analyzing its healthy states. Meanwhile, a 
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generic battery healthy state estimation model is used to extract the battery number of 
cycles (NOC) and depth of discharge (DOD) information from the collected battery 
data. The generated battery healthy state labels are stored back in the database for 
further data mining process. At last, based on the collected battery operation data with 
healthy state indexes, a transfer learning algorithm-based battery model is established 
in the cloud platform. Benefiting from the knowledge transfer process, the battery 
model can be built under the data-scarce condition by sharing using the operation data 
from various EVs. The established cloud battery model can work jointly with OBMS 
as the battery state estimator to monitor and manage the operation of EVs, such as 
energy management, route planning, and fault detection, which has been studied in our 
previous work [46]. 

The communication network is a bridge between the OBMS and the cloud data center 
in the developed CHBMF. The onboard battery management system and the vehicle 
communication network has been well studied in previous literature. Accordingly, this 
paper mainly focuses on the cloud battery management platform, including the 
establishment of the generic battery health state perception model and the transfer 
learning method. 

3. Generic battery healthy state perception model 
On the basis of the built cloud-based battery management platform, the battery 

operation data from various vehicles can be collected and stored. The battery health 
state changes with EV usage, and the battery data is collected under different aging 
states. Perceiving the healthy state in the collected battery dataset is of great 
significance for improving the accuracy of the established battery model. Conventional 
battery aging models, including equivalent circuit models [47] and electrochemical 
models [48], are specifically designed for a type of EVs and cannot adapt to different 
EVs or battery types. To facilitate the deployment of transfer learning method, it is 
necessary to unify the used battery healthy state index. In this section, a generic battery 
healthy state perception model is developed. Sum number of cycles and depth of 
discharge, the two most remarkable battery aging performance indexes that are in 
common use for all types of battery, are used to label the healthy state of the collected 
data. Firstly, the SoC trajectory is got out from the established cloud battery database: 

[ ]1i t nS SoC SoC SoC=                   (1) 

[ ]1 2 3S S S S=                       (2) 

Where: iS  is the battery SoC profile of an EV in thi  travel, S  is the complete 
battery SoC trajectory in the whole life cycle. The rain-flow cycle-counting (RCC) 
algorithm [49] is usually used for analyzing the fatigue data and was firstly used in 
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metal fatigue estimation. In this research, this method is used to extract the irregular 
charging and discharging cycles from the EVs' SoC trajectory.  

Basically, the cycle counting can be achieved by analyzing the adjacent points in SoC 
profiles, as shown in Fig. 2. Firstly, the data (for the battery data is the SoC profile that 
presents the charging/discharging cycles) is pre-processed by searching for adjacent 
data points with the reverse polarity. The difference between local maxima and minima 
values found in adjacent searching are labeled as sub-cycle. Secondly, battery full 
cycles are composed by analyzing the turning points and summing up the amplitudes 
of each sub-cycle. The extracted battery number of full cycles and DoD are recorded as 

C
iN  and iDC . Then, the remaining adjacent points in the battery SoC profile, which 

cannot form full cycles, are further labeled as half-cycles. The extracted battery number 
of half-cycles and the corresponding DoD are recorded as HC

iN  and iDHC . Based on 
the extracted battery cycles and DoD information, the following functions are built to 
reflect aging states of the battery of EV in n  times travel: 

1
1

n
C HC
i i

i
f N N

=

= +∑                          (3) 

2
1

n

i i
i

f DC DHC
=

= +∑                         (4) 

 
Fig. 2. Extracted number of cycles and depth of discharge from battery SoC trajectory. 

4. Deep transfer learning method for battery state estimation 
A large volume of data is usually indispensable for establishing an accurate battery 

model. The more the training data is available, the higher the model accuracy can be 
achieved. The situation may be even worse when the healthy state is considered in 
battery models. This section develops a health-conscious battery modeling method by 
utilizing multi-sources data based on a novel deep transfer learning method. 

The knowledge transfer between two EVs labeled A-type and B-type is studied in 
this paper. As shown in Fig. 3, two learning models are established in the developed 
transfer learning framework: the original learning model, which is trained by the 
operation data of A-type EVs that has been put into use for a long time and the training 
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dataset is sufficient; and the transfer learning model, which is trained with operation 
data from B-type EVs that has just been put into use and the dataset is poor.  

 
Fig. 3. Deep transfer learning algorithm-based battery modeling method by utilizing multi-
sources data. 

The training objective of the original learning model is to extract the common 
features within the battery dataset. Based on the sufficient battery dataset from the A-
type EV, an unsupervised feature extractor is established. The battery operation data in 
the whole life cycle of A-type EVs, including terminal voltage, SoC, current, 
temperature, and healthy labels 1f  and 2f , are used to train the SBRM model. The 
model training input can be derived as: 

[ ]1 2( ) ( ) ( )Tp t f t f t=Tr(t) SoC I U             (5) 

Where: Tr(t)  is the training input vector; SoC , I , and U  are the battery SoC, 
current, and terminal voltage series; ( )Tp t  is the battery temperature at t; 1( )f t  and 

2 ( )f t  are the sum of NOC and DOD at t, which is used to represent battery healthy 
state. The Restricted Boltzmann Machine (RBM) [50] is used to learn the common 
features between different battery datasets, and the training process can be derived as: 

1 1 1 1
( , )

n m m

i i j j i ij j
j i

n

i j
E v h a v b h v w hθ

= = ==
= ∑ − ∑ −∑∑∣                (6) 

( , )

( , )

,

e( , )
e

E v h

E v h

v h

p v h
θ

θθ
−

−=
∑

∣

∣
∣                       (7) 

( ) ( )
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∣                   (8) 



Applied energy, FOR PEER REVIEW    9 of 18 

( ) ( )
11 ,

1
i ij j

j
i a W hp v h

e
θ − +∑= =

+
∣                   (9) 

( )( )( )

1 1

,log ( ) ( ( , ))
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T T

t t

E v hP v E v h∂ θ∂ θ ∂ θ
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− −
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Equation (6) gives the energy function of RBM network, which is used to evaluate the 
feature extraction ability. v  and h  are the state of visible and hidden layers of RBM, 
which is relevant to training data. { }, ,ij i jw a bθ =  is the RBM parameters, including 
weights and biases of network units.  

With the sufficient data set from A-type EVs, the established feature extractor can 
fully expose the hidden features in the dataset, including battery internal and aging 
characteristics after the training. Meanwhile, the unsupervised training mechanism 
employed in the SRBM model enhances its robustness and compatibility to batteries 
with different sizes, group structures, and even types. Therefore, when the new B-type 
EV is put into use, whose available training dataset is relatively poor, the knowledge 
carrier neurons in the SRBM model are directly transferred used for establishing its 
external characteristics simulation models. As shown in Fig. 3, the weights and biases 
in the SRBM model are directly used to form a feed-forward neural network (FFNN), 
which served as a data feature analyzer for B-type EV.  

The FFNN transferred from the SRBM model can analyze the common features of 
the battery packs without any training process, which will help boost the battery model 
training process. However, the SRBM model is not able to simulate battery external 
characteristics because no definite outputs are defined during the training process. In 
this study, a regression layer (RL) is put on the top layer of the FFNN model in the 
transfer learning process to simulate external characteristics of the B-type batteries, as 
shown in Fig. 3. The battery terminal voltage is used as the output to fine-tune model 
parameters, and the Error Back Propagation method [51] is used to fine-tune the 
parameters of the whole network: 

( )
1

21
2

P

p p
p

E t y
=

= ∑ −                        (11) 

0

j
ji ji ji

iji j ji j ji j

nnetE E E Ew x x
w net w net w net

∂∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂=

 = = ∑ = 
 

       (12) 

Where: E is the network feedback error vector, which is calculated based on network 
output py  and observation value pt , as described in equation (11). The error 
backpropagation process is given in equation (12), where the network weights w  are 
adjusted based on the output errors. It is worth noting that benefiting from the battery 
common features provided by the knowledge transfer process, only a small volume of 
data is required to fine-turn the parameters in FFNN-RL model to achieve the best 
model performance.  
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With the above transfer learning framework, an accurate battery model can be easily 
established by utilizing multi-source data. The built FFNN-RL model can be used to 
directly model the battery of B-type EVs.  

5. Results and discussion 
5.1. Model training data preparation 

The real battery operation data of electric buses in Zhengzhou, China, which is 
collected by the cloud-based battery monitoring platform established in our previous 
work [46], is used here to verify the performance of the proposed methods. In this study, 
we prepare the operation data from two types of electric buses to verify the 
effectiveness of the developed transfer learning method. The detailed vehicle and 
battery system parameters of the studied buses are provided in Table I. Type-A electric 
buses weigh 13750 kg with a driving range of 220 km, while Type-B buses weigh 
18000 kg with an extended range of 240 km. The battery pack in both EVs consists of 
Lithium iron phosphate cells. The rated capacity and voltage of the battery system in 
Type-A buses are 260 kWh and 480 V, and its maximum discharging current reaches 
400 A. Compared with Type-A buses, Type-B buses' battery pack has higher capacity 
and voltage. The rated capacity and voltage of the battery system are 304 kWh and 580 
V, and the maximum current reaches 480 A for satisfying the power requirement of 
vehicle driving systems. To fully train the established feature extractor, battery 
operation data in the whole life cycle of the A-type fleet, which consists of 50 buses, 
are collected and served as the source dataset to train the initial learning model. 
Benefiting from knowledge transfer process, only a small volume of data is required to 
establish battery models for B-type fleet. Therefore, the target dataset, which is used to 
fine-turn the parameters, consists of only operation data from three electric buses in the 
B-type fleet. 

Table I. Vehicle and battery system parameters of the studied buses. 

Parameters Type-A Type-B 

Vehicle mass 13750 kg 18000 kg 
Range 220 km 240 km 

Fleet size 50 3 
Battery cell type Lithium iron phosphate Lithium iron phosphate 
Rated capacity 260 kWh 304 kWh 
Rated voltage 480 V 580 V 

Maximum current 400 A 480 A 

Battery operation data for training the initial learning model and transfer learning 
model in one discharging cycle are shown in Fig. 4 as a typical example. Terminal 
voltage under different SoC levels of Type-A battery is illustrated in (a) and (c). Battery 
terminal voltage drops from 480 V to 465 V with the decrease of SoC value in the 
discharging cycle. Under the same SoC level, the higher the discharging current, the 
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lower the battery terminal voltage level. A large amount of operation data from Type-
A buses are used to train the unsupervised learning model by learning the common 
features and the relationship between SoC state, current state, temperature state, SoH 
state, and terminal voltage. B-type batteries show different characteristics compared to 
A-type batteries, and their voltage fluctuates within the range of 575 V to 555 V when 
the SoC value drops from 95% to 25%. The corresponding terminal voltage data under 
different SoC levels are provided in (b) and (d), which are used to train the transfer 
learning model. The terminal voltage is selected as the output of the model to evaluate 
and compare the performance of different methods.  

 
Fig. 4. Battery operation data for model training in one complete discharging cycle. (a, c) 
battery terminal voltage and SoC profile of A-type buses; (b, d) battery terminal voltage and 
SoC profiles of B-type buses. 

5.2. Model performance evaluation 

The performance of the developed battery state estimation method in one complete 
discharging cycle is compared with the conventional Radial Basis Function Neural 
Network (RBF-NN) method [52] in Fig. 5. As shown in (a) and (b), battery SoC value 
decreases from 85% to 40% in the studied operation cycle. Battery discharging current 
varies from 0 A to 480 A according to vehicle power requirement, and the 
corresponding terminal voltage estimation errors are shown in (c). Under large 
discharging current states, battery external characteristics cannot be accurately 
simulated by the RBF-NN model because of lacking training data. As shown in Area 
A, the average estimation error reaches 3.74% in this period. The developed transfer 
learning method can excavate the hidden battery model features by utilizing datasets 
from different types of EVs. The estimation error can be limited to 1.62% after the 
transfer learning mechanism is deployed, which validates that the accuracy of the 
established battery model is significantly improved. Meanwhile, the developed method 
can also enhance battery model accuracy under stable working states. As shown in Area 
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B, battery static characteristics can hardly be accurately simulated by the conventional 
RBF-NN method, and the average estimation error is still as high as 2.24%. With the 
developed method, the above number is successfully reduced to 0.53%, which validates 
the effectiveness of the transfer learning method in improving model accuracy under 
low current states. In summary, the established transfer learning algorithm-based 
battery model can simulate battery external characteristics accurately and stably under 
dynamic working conditions.  

 
Fig. 5. Accuracy of battery model in one complete discharging cycle. (a) current profile; (b) 
terminal voltage and SoC profiles; (c) estimation errors. 

Fig. 6 further compares the performance of different methods under various battery 
SoH states. Battery healthy state is divided into five stages: 97%~100% (high), 94%~97% 
(medium-high), 91%~94% (medium), 88%~91% (medium-low), and 85%~88% (low) 
in its whole life cycle. Battery external characteristic change caused by aging cannot be 
reflected in the RBF-NN-based method, thus model performance under high and low 
SoH ranges is unsatisfactory. The average model errors reach 4.71% and 4.32% under 
high and low battery SoH states, respectively. Compared to the RBF-NN method, the 
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generated battery healthy state index significantly improves model accuracy under the 
whole life cycle. Under high and low SoH states, battery terminal voltage estimation 
error can be reduced to 2.84% and 2.75%, which indicates that the influence of aging 
on battery external characteristics can be successfully learned by the developed method. 
The transfer learning method further improves model performance in the whole life 
cycle. Compared to the health-conscious method, battery model accuracy can be further 
reduced by 45.4% on average. As a result, the average battery terminal voltage 
estimation error can generally be limited to 1.3% under different SoH ranges, which 
validates the effectiveness of the developed method. 

 
Fig. 6. Performance comparison of different battery modeling methods under various SoH 
states. 

The performance of different battery modeling methods in the whole life cycle is 
quantitively compared in Table II. RBF-NN method shows limited capability when 
simulating battery external characteristics. The mean absolute error (MAE) and mean 
absolute percentage error (MAPE) are as high as 1.16 V and 3.31%. Meanwhile, the 
RBF-NN model also shows limited stability under the variety of battery SoH states and 
working conditions. The maximum percentage error (MPE) and prediction error 
standard deviation (STD) reach 12.44% and 1.5421, respectively. The developed 
healthy state perception method significantly improves battery model accuracy. 
Compared with the conventional RBF-NN method, model MAPE and MPE are reduced 
by 26.6% and 14.4%, respectively. Furthermore, estimation error STD can also be 
reduced by 30.5%, which validates that model stability is significantly enhanced by the 
developed health-conscious method. The deployment of the transfer learning 
mechanism further improves battery model performance by utilizing datasets from 
different types of EVs. In the battery's whole life cycle, terminal voltage estimation 
MAPE and MPE can be limited to 1.27% and 8.83%, respectively. Meanwhile, 
estimation error STD can also be limited to 0.7461, which validates the stability of the 
developed transfer learning method. 

Table II. Quantitative performance comparison of different battery modeling methods. 
Methods MAE(V) MAPE (%) MPE (%) STD 
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RBF-NN method 1.16 3.31 12.44 1.5421 

Health-conscious method 0.85 2.43 10.65 1.0752 

Transfer learning method 0.45 1.27 8.83 0.7461 

6. Conclusion 
The transfer learning method is employed in the paper to address the challenge of 

accurate battery modeling issues by utilizing multi-sources data. A cloud battery 
management framework is established to collect and process the battery operation data 
of various EVs in the whole life cycle. The battery operation data collected from two 
types of electric buses are downloaded to verify the developed transfer learning battery 
modeling method. Through extensive simulations, the key findings are as follows: (1) 
The generic battery health state estimation model can provide a label to reflect the 
battery aging state in the battery dataset. With the battery healthy state label, the 
accuracy of the established battery model can be improved by 26.6% on average. (2) 
The transfer learning method can effectively boost the training process of the deep 
learning algorithm-based battery model by utilizing the operation data from other types 
of EVs. The model accuracy can be improved by 47.7% after the transfer learning 
technology is adopted. In summary, with the developed knowledge transfer method, the 
battery model can be established under data-scarce conditions, which is more practical 
in reality. The mean absolute battery terminal voltage estimation error can be limited 
to 1.27% in the whole life cycle under different working conditions. 
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