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C1 and G1 continuous rational motions using a

conformal geometric algebra

Ben Cross, Robert J. Cripps

School of Mechanical Engineering, University of Birmingham, Birmingham, UK

Glen Mullineux∗

Department of Mechanical Engineering, University of Bath, Bath, UK

Abstract

Traditional rational motion design describes separately the translation of a
reference point in a body and the rotation of the body about it. This means
that there is dependence upon the choice of reference point. When consid-
ering the derivative of a motion, some approaches require the transform to
be unitary. This paper resolves these issues by establishing means for con-
structing free-form motions from specified control poses using multiplicative
and additive approaches. It also establishes the derivative of a motion in the
more general non-unitary case. This leads to a characterization of the mo-
tion at the end of a motion segment in terms of the end pose and the linear
and angular velocity and this, in turn, leads to the ability to join motion
segments together with either C1- or G1-continuity.

Keywords: Motion design, geometric algebra, geometric continuity,
rational motion, quaternions, dual quaternions

1. Introduction

Techniques in computer aided geometric design (CAGD) for handling
free-form curves are relatively mature when compared with free-form rigid-
body motion design. Take for example the concept of geometric continu-
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ity which has been employed to interpolate important geometric informa-
tion, eliminating parameterization-dependent features, improving the overall
shape characteristics of fitted curves [1, 2]. Similar concepts are now being
applied to rigid-body motion design [3]. However many of these approaches
have undesirable shortcomings.

Rigid-body motion design requires the definition of an object’s position
as well as its orientation in space. Early techniques used homogeneous 4× 4
transformation matrices for this purpose [4]. Constructing a motion passing
between two rigid-body transforms requires the development of interpolation
techniques between matrices. Linear interpolation is not possible, due to the
property that these matrices are not closed under addition, and hence other
techniques have had to be developed [5, 6].

An approach different to matrices, using quaternions to represent ro-
tations, has been established [7]. By considering rotation and translation
separately, linear methods, and later derivative interpolation methods, have
been developed yielding a rational representation for motions. More recently,
parameterization independent motions have been produced [3]. Such inter-
polation however is dependent on coordinates, through a possibly ambiguous
choice for the reference point with which to define the centre of rotation [8].

In a seminal paper on rigid-body motion design, Röschel [9] identified
three desirable features. Basis functions for the rigid-body transformations
should be rational functions (here referred to as rational motions) and in-
dicated how a representation using dual quaternions can be obtained. Dual
quaternions are now widely used in representing motions [10, 11, 12, 13, 14].
Secondly, interpolation should be Euclidean displacement invariant, that is
it should be independent of the coordinates: an equivalent definition based
on coordinate invariance is also available [15]. Thirdly, motion construction
should be invariant with respect to the parameterization, an idea analogous
to that of geometric continuity with curves [16].

Using dual quaternions and geometric algebra, it is possible to combine
rotational and translational information. Dual quaternions are equivalent to
an even-grade subalgebra of a larger geometric algebra. Furthermore, linear
interpolations of these even-grade elements have an additional property of co-
ordinate invariance. Derivative interpolation however requires an additional
level of complexity.

Many derivative interpolation techniques that use geometric algebra re-
quire the even-grade elements to be “unitary” [16]. Additional complexity
is thus required to insist that the results of interpolation through combi-

2



nations of even-grade elements remain unitary. Using geometric algebra, a
distinction appears between the use of multiplicative and additive combina-
tions. Multiplicative combinations preserve the unitary form of the results,
whereas additive combinations, by themselves, do not.

Multiplicative operations over the unitary even-grade elements form a Lie
group, SE(3), and derivative interpolation can be achieved with considera-
tion of its Lie algebra, se(3), through exponential and logarithmic operations
[6]. This increases the complexity of a representation and differs from tradi-
tional curve design, such as Bézier and B-spline curves, which are generated
through repeated additive combinations of control points. Furthermore this
representation does not admit a desirable rational polynomial basis.

Recent research has shown that free-form motions can be constructed
through additive combinations of even-grade elements [17] and end-conditions
for such additive motions have been investigated geometrically [18]. Many
of the existing techniques from curve design, such as interpolation, naturally
move over into motion design. However a theory for motion derivative inter-
polation, using additive combinations, has not been presented. This paper
addresses this issue by establishing a framework for derivative interpolation
on non-unitary even-grade elements. To begin, the theoretical foundations of
derivative motion interpolation using geometric algebra are presented. The
restriction that elements must be unitary is relaxed, enabling derivative inter-
polation using additive motions. Furthermore the familiar CAGD notion of
geometric continuity, through parameter invariance, is derived. This results
in new techniques for derivative interpolation using rational motion design,
improving upon existing techniques, with the additional desirable property
of coordinate invariance.

A recent publication [8] has considered C1-continuous coordinate invari-
ant rigid-body interpolation using the multiplicative approach. The pur-
pose of this paper is to investigate similar results for multiplicative motions
through an independent approach using geometric algebra, and to general-
ize beyond the multiplicative case so eliminating the requirement of using
exponential and logarithmic expressions, yielding true polynomial rational
motions in the additive case (without any unitary requirement). Motions
are considered as varying rigid-body transforms of the whole of the moving
body, thus removing any dependence upon the choice of a reference point in
the body.

The next section presents the mathematical preliminaries for motion rep-
resentation using geometric algebra, based on the conformal geometric alge-
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bra (CGA) [19]. It is shown how even-grade elements in the algebra can be
used to generate linear transforms of projective and Euclidean space. Condi-
tions under which two even-grade elements generate the same transform are
identified.

A variable even-grade element generates a variable transform which when
applied to a body creates a motion. Section 3 considers the linear and angular
velocities of the body. This leads to the idea of the velocity bivector, and to
its extension in the non-unitary case, the velocity indicatrix.

In Section 4, motions are constructed from control poses using the de
Casteljau algorithm in both the multiplicative and additive cases. Means for
finding the derivatives of such motions are obtained. The approach does not
assume that the motion is unitary. This leads to conditions for first order
continuity (both C1 and G1) between motion segments and these represent
the main results of the paper.

Section 5 demonstrates applications of the theory through examples. The
first compares the multiplicative and additive motion segments determined by
a given set of end conditions. The second considers the effect of changing the
“shape factors” (as might be done with G1-continuity) for a planar motion.
The third considers the construction of a motion through a given set of
precision poses using Hermite interpolation with cubic motion segments.

Finally, some conclusions are drawn. The contribution of this work is that
conditions are established for joining together motion segments with C1- and
G1-continuity. Parameters (shape factors) which can be freely chosen are
identified. While other researchers have considered these issues for multi-
plicative motions, the results for additive motions are new. They require
the introduction of the velocity indicatrix as a generalization of the concept
of the velocity bivector. The significance of these ideas is that they allow
free-form motion design to be undertaken with the additive form which is
inherently computationally less demanding than the multiplicative form.

2. Geometric algebra

There are various forms of geometric algebra which have been investigated
in the literature [20, 21, 22]. As it is widely used, the presentation here is
based on the conformal geometric algebra (CGA) [19]. This is formed by
starting with a real vector space with five basis vectors labelled: e0, e1, e2,
e3, e∞.
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This is extended to a space of dimension 32 whose basis elements are
eσ where σ is an ordered subset of the set {0, 1, 2, 3,∞} of subscripts. The
typical element of the algebra is then a linear combination of the form

a =
∑
σ

aσ eσ (1)

where the aσ are real coefficients.
A multiplication on the space is defined in stages. Firstly eσ is given as

eσ =
∏
i∈σ

ei

where the product is in the order in which the subscripts appear in the
ordered subset σ. Secondly, the product of two different basis vectors is
defined by

−ejei = eiej = eij for i < j and {i, j} 6= {0,∞},

and, in the exceptional case, by

e∞e0 = −2− e0e∞ = −2− e0∞. (2)

The squares of the basis vectors are defined by the following

e21 = e22 = e23 = 1, e20 = e2∞ = 0.

Finally the product of two elements of the form of (1) is obtained by
forming the sum of all products between the two sets of summands.

The basis element corresponding to the empty subset acts as a unity
element for the multiplication and is identified with the real number 1: e∅ =
1.

The grade of a basis element eσ is the size of the subset σ. If the coef-
ficients in the expression for a in (1) are zero except for basis elements of
a particular grade, then that is also the grade of the element a. Thus an
element of grade 1, that is a vector, is a linear combination of e0, e1, e2, e3,
e∞. A bivector is an element of grade 2. The idea extends to saying that an
element has odd or even grade.

The reverse of a basis element is obtained by reversing the order of its
subscripts. The reverse of general element is obtained by reversing all the
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basis elements in (1). The reverse is denoted by an over-bar. Thus, for
example,

e12 = e2e1 = −e12
e1 + e123 + 2e0123∞ = e1 − 5e123 + 2e0123∞.

An inner product and an outer product are defined as follows [17] for any
elements x and y

x · y = 1
2
(xy + yx)

x ∧ y = 1
2
(xy − yx).

With this notation, the exceptional case of (2) can be rewritten as

e0 · e∞ = −1.

Figure 1: Subalgebras of G0123∞

There are certain subalgebras which are identified: G123 is the one gen-
erated by e1, e2, e3; G0123 is the one generated by e0 and the elements of
G123; similarly G123∞ is generated by e∞ and G123. In the same vein, G0123∞ is
used to denote the full algebra. These subalgebras are illustrated in Fig. 1.
Additionally a superscript of a plus sign on any of these subalgebras denotes
the subalgebra of even-grade elements within it. Thus G+123 is the subalgebra
of all combinations of the form

a12e12 + a13e13 + a23e23.
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One particular basis element of G0123∞ is given special notation

ω = e123∞ ∈ G123∞,

and it has the following properties

ω2 = 0, ω = ω.

Three-dimensional Euclidean space R3 can be regarded as lying within
G123 by use of the correspondence

a = (a1, a2, a3) ←→ a1e1 + a2e2 + a3e3. (3)

With this correspondence and using bold letters to denote vectors in R3

the following result relates the above outer product in G123 to the vector
product of three-dimensional space [17].

Lemma 2.1. With the correspondence (3), for a,b ∈ R3,

a× b ←→ −(a ∧ b)e123.

To be able to deal with (projective) geometry, there is a need to embed
the projective space RP3 into the geometric algebra [17]. This is achieved
with the map E : RP3 → G0123 given by

E : (W,X, Y, Z) 7→
{
Xe1 + Y e2 + Ze3 if W = 0
e0 + (X/W )e1 + (Y/W )e2 + (Z/W )e3 if W 6= 0

and there is a similar map E : R3 → G0123 given by

E : (x, y, z) 7→ e0 + xe1 + ye2 + ze3.

A projection map [17] P : G0123∞ → RP3 is defined by

P : a =
∑
σ

aσeσ 7→ (a0, a1, a2, a3)

and a similar map P : G0123∞ → R3 is given by

P : a =
∑
σ

aσeσ 7→ (a1/a0, a2/a0, a3/a0)
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assuming that a0 is non-zero.
If S ∈ G+123∞ is an even-grade element, then a map fS of G0123∞ to itself

is defined by
fS : x 7→ SxS.

If x is a vector, then fS(x) has odd grade. It follows [17] that the com-
position

FS = PfSE

is a map from RP3 to itself, and it can be restricted to a map of R3 to
itself; FS and its restriction are rigid-body transforms. The form of SxS
is required for later work and is given by the following result. It can be
proved by multiplying out the various terms. As this is not in itself very
illuminating, the proof is given separately in the appendix 1.

Lemma 2.2. (i) If S ∈ G+123∞ is an even-grade element and x ∈ G0123∞ is
a vector, then SxS takes the form

SxS = v + λσ

where v is a vector, λ is a real number, and

σ = e0 · ω = −e123 + e0123∞.

(ii) The product SS has the form α+βe123∞, where α, β are real numbers,
and the coefficient of e0 in SxS is α times the coefficient of e0 in x.

(iii) Further, σ commutes with every element of G0123∞ so that equivalently
σ ∧ x = 0 for all x ∈ G0123∞.

The term transform is now used to refer to the linear transform of RP3

or R3 generated by a map of the form FS for S ∈ G+123∞.
Since

(UV )x(UV ) = V (UxU)V,

the following result follows.

Lemma 2.3. For U, V ∈ G+123∞, FUV = FV FU .

If a ∈ G123 is a unit vector (that is one whose length
√

[aa] is unity), and
b = ae123 ∈ G123 is the corresponding unit bivector, then the element

R = (cos 1
2
φ) + (sin 1

2
φ)b ∈ G123 ⊂ G123∞
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generates a transform FR which is a rotation of R3 through angle φ about an
axis through the origin in the direction of a.

Similarly, if v ∈ G123 is a vector then the element

T = 1 + 1
2
ve∞ ∈ G123∞

generates a transform FT which is a translation of R3 along the vector v.
Further, both R and T are unitary in the sense that

RR = 1 = TT.

Any element of the form
c = a+ bω

where a and b are real coefficients is called a pseudoscalar. The set of all
pseudoscalars is a subalgebra of G123∞. The above pseudoscalar c is said to
be non-singular if a is non-zero. The following result holds [17].

Lemma 2.4. Suppose that c = a+ bω is a non-singular pseudoscalar. Then

(i) c has a multiplicative inverse which is a non-singular pseudoscalar,
namely (a− bω)/(a2);

(ii) if a > 0, then c has square roots which are non-singular pseudoscalars,
namely ±(2a+ bω)/(2

√
a).

If c ∈ G123∞ is a pseudoscalar, then it generates a transform Fc. The next
result identifies what this transform is.

Lemma 2.5. A pseudoscalar c ∈ G123∞ generates a transform Fc. This is the
identity transform if c is non-singular, and otherwise is the zero transform
(that is, it maps everything to zero).

Proof. Suppose that c = a + bω and consider its action on a typical vector
v = e0 + d ∈ G0123 where d ∈ G123:

cvc = (a+ bω)v(a+ bω)

= (a+ bω)(av + bvω)

= a2v + ab(vω + ωv) + b2ωvω

= a2v + 2ab(v · ω) + b2ωe0ω

= a2v + 2ab(v · ω) + 2b2e∞

= a2v + 2ab(e0 · ω) + 2b2e∞

= a2v + 2ab(e0123∞ − e123) + 2b2e∞

9



since d · ω = 0 = ωdω. Hence

P (cvc) = a2v.

If a is non-zero, then a2v is projectively equivalent to v and the transform
is the identity. If a = 0, then it is the zero transform.

The typical element S ∈ G+123∞ has the form

S = S∅ +S12e12 +S13e13 +S23e23 +S1∞e1∞+S2∞e2∞+S3∞e3∞+Sωω. (4)

By multiplying out, it is seen that

SS = (S2
∅ + S2

12 + S2
13 + S2

23) + 2(S∅Sω − S12S3∞ + S13S2∞ − S23S1∞)ω (5)

Se1S = (S2
∅ − S2

12 − S2
13 + S2

23)e1

+2(S∅S12 − S13S23)e2 + 2(S∅S13 + S12S23)e3

+2(S∅S1∞ + S12S2∞ + S13S3∞ + S23Sω)e∞ (6)

Se2S = −2(S∅S12 + S13S23)e1

+(S2
∅ − S2

12 + S2
13 − S2

23)e2 + 2(S∅S23 − S12S13)e3

+2(S∅S2∞ − S12S1∞ − S13Sω + S23S3∞)e∞ (7)

Se3S = −2(S∅S13 − S12S23)e1

−2(S∅S23 + S12S13)e2 + (S2
∅ + S2

12 − S2
13 − S2

23)e3

+2(S∅S3∞ + S12Sω − S13S1∞ − S23S2∞)e∞ (8)

and the vector part of the product Se0S is given by

vec(Se0S) = (S2
∅ + S2

12 + S2
13 + S2

23)e0

+2(S∅S1∞ − S12S2∞ − S13S3∞ + S23Sω)e1

+2(S∅S2∞ + S12S1∞ − S13Sω − S23S3∞)e2

+2(S∅S3∞ + S12Sω + S13S1∞ + S23S2∞)e3

+2(S2
1∞ + S2

2∞ + S2
3∞ + S2

ω)e∞. (9)
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Here (5) shows that SS is a pseudoscalar in G+123∞. It is singular if and
only if S∅ = S12 = S13 = S23 = 0. In this case, (6), (7), (8), (9) show that
vec(SpS) is a scalar multiple of e∞ for any vector p ∈ G0123. This becomes
zero under the projection map P and so the map FS generated by S is the
zero transform.

Thus if S generates a non-zero transform, SS is non-singular and has a
square root which is also a non-singular pseudoscalar. Set

|S| =
√

[SS].

Conversely, (9) shows that if S is non-singular, then S generates a non-zero
transform.

Lemma 2.6. For an element S ∈ G+123∞, SS is a pseudoscalar which is non-
singular if and only if S generates a non-zero transform FS. Further, if SS
is non-singular, then

(i) U = S/|S| ∈ G+123∞ is unitary and generates the same transform as S;

(ii) V = S/|S|2 is such that SV = 1 so that V = S−1.

Proof. The various parts follow from the above discussion and Lemmas 2.3
and 2.5.

Lemma 2.7. If an element S ∈ G+123∞ generates the identity transform, then

(i) S is a pseudoscalar;

(ii) if S is unitary, S is ±1.

Proof. By Lemma 2.6(i), S = γU where γ is a pseudoscalar and U is unitary.
Hence it is sufficient to prove part (ii), as part (i) then follows.

So assume S is unitary, so that from (5),

S2
∅ + S2

12 + S2
13 + S2

23 = 1.

Consider S(e0 +ei)S, for i = 1, 2, 3. From (6), (7), (8), (9), the coefficient
of e0 is unity in each case. Hence the coefficient of ei is also unity in each
case, so that

S2
∅ − S2

12 − S2
13 + S2

23 = 1

S2
∅ − S2

12 + S2
13 − S2

23 = 1

S2
∅ + S2

12 − S2
13 − S2

23 = 1.
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These three equations and the previous one show that

S2
∅ = 1, S12 = S13 = S23 = 0.

Consideration of the coefficient of ω in (5) shows that Sω = 0. Finally,
consideration of the coefficients of e1, e2, e3 in (9) shows that

S1∞ = S2∞ = S3∞ = 0.

Hence S = S∅ = ±1.

A non-singular element S ∈ G+123∞ generates a transform FS which acts
on R3 as a rigid-body transform. A body is transformed by transforming all
the points within it. This results in a new position and orientation of the
body and this is called a pose. The term is also applied to the element S
itself.

Suppose the pose S can change so that, for example, it is a function
S(t) ∈ G+123∞ of some parameter t. Then as the parameter varies the pose of
the body changes and the result is a motion of the body.

Two poses or two motions are said to be equivalent if one is the product
of the other and a non-singular pseudoscalar: in the case of motions, the
pseudoscalar is a function of the parameter. Since the pseudoscalar has a
multiplicative inverse (Lemma 2.4), this is an equivalence relation.

Theorem 2.8. Two poses or motions generate the same non-zero transforms
of RP3 and R3 if and only if they are equivalent.

Proof. If they are equivalent, then they generate the same transforms by
Lemma 2.3 and 2.4.

Conversely, suppose U, V ∈ G123∞ generate the same non-zero transforms.
By Lemma 2.6, U has a multiplicative inverse. So by Lemma 2.3, if I is the
identity transform, then

I = FU−1FU = FU−1FV = FV U−1 .

By Lemma 2.7, V U−1 = γ is a pseudoscalar, so that V = γU , and U and
V are equivalent.

The next section considers the velocity associated with a motion.
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3. Velocity bivector

Consider an odd-grade element of the form

r = r(t) = We0 +Xe1 + Y e2 + Ze3 +Ke∞ + λσ ∈ G0123∞
where W , X, Y , Z, K, λ are functions of a parameter t which is regarded as
time and σ = e0 ·ω as in Lemma 2.2. Then, differentiating with respect to t,

ṙ = Ẇe0 + Ẋe1 + Ẏ e2 + Że3 + K̇e∞ + λ̇σ.

After use of the projection map P , the element r(t) represents a moving
point with cartesian coordinates(

X

W
,
Y

W
,
Z

W

)
.

In cartesian coordinates its velocity is

(v1, v2, v3) =

(
WẊ − ẆX

W 2
,
W Ẏ − ẆY

W 2
,
WŻ − ẆZ

W 2

)
which is represented in G0123 by the vector

v = v1e1 + v2e2 + v3e3.

Since σ commutes with every element (Lemma 2.2), the following outer
product holds

r ∧ ṙ = (WK̇ − ẆK)

+ (WẊ − ẆX)e01 + (WẎ − ẆY )e02 + (WŻ − ẆZ)e03

+ (WK̇ − ẆK)e0∞

+ (XẎ − ẊY )e12 + (XŻ − ẊZ)e13 + (Y Ż − Ẏ Z)e23

+ (XK̇ − ẊK)e1∞ + (Y K̇ − Ẏ K)e2∞ + (ZK̇ − ŻK)e3∞

and gives the next result.

Lemma 3.1. If a moving point is represented by

r(t) = W (t)e0 +X(t)e1 + Y (t)e2 + Z(t)e3 +K(t)e∞ + λ(t)σ ∈ G0123∞
then

r ∧ ṙ = k + W (t)2 e0 v(t) + µe0∞ + C(t) (10)

where k, µ are scalars, v(t) ∈ G123 is the velocity of the point, and C(t) ∈
G123∞ is a bivector.
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Suppose that S(t) ∈ G+123∞ is an element generating non-zero transforms
forming a motion of some body. By Lemma 2.6, it has an inverse. Define
the velocity indicatrix as the following:

Ψ(t) = 2S(t)−1 Ṡ(t). (11)

Set

ν = 1
2
(Ψ−Ψ)

γ = 1
2
(Ψ + Ψ)

so that γ is the pseudoscalar part of the velocity indicatrix with (say) γ =
α + βω, and ν is its bivector part and is called the velocity bivector.

Suppose that p̂ is a point fixed in the moving body, and r̂(t) is its image
under FS(t). There are corresponding vectors

p = E(p̂) ∈ G0123, r = r(t) = fS(t)(p) ∈ G0123∞,

with
r(t) = SpS.

In order to relate the motion of the point to the velocity indicatrix, the
product r∧ ṙ is now considered with the aim of extracting the component of
the form e0v where v ∈ G123 so that Lemma 3.1 can be applied. Firstly ṙ is
considered.

Applying Lemma 2.2, as the transform is non-zero, SS is non-singular
and the coefficient W of e0 in r(t) is non-zero, and r has the form

r = W (e0 + q + λe∞ + µσ)

where λ, µ are real numbers, q ∈ G123 is a vector, and σ = e0 · ω.
It is seen that

S
−1
r = pS, rS−1 = Sp

and

ṙ = ṠpS + SpṠ

= ṠS
−1
r + rS−1Ṡ

= 1
2
Ψr + 1

2
rΨ

= 1
2
(γ − ν)r + 1

2
r(γ + ν)

= 1
2
(γr + rγ) + 1

2
(rν − νr)

= (γ · r) + (r ∧ ν).
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Substituting for γ gives

ṙ = αr + β(ω · r) + (r ∧ ν)

= αr + βWσ + βWµe∞ + (r ∧ ν). (12)

Next consider r ∧ ν. As ν ∈ G123∞ is a bivector, it can be written as

ν = ae123 + be∞

where a, b ∈ G123 are vectors. Hence, using Lemma 2.2 and noting that
e0 ∧ (ae123) = e∞ ∧ (ae123) = 0,

r ∧ ν = W [e0 ∧ (be∞) + q ∧ (ae123) + q ∧ (be∞)]

= W [b+ 1
2
(qae123 − ae123q) + 1

2
(qbe∞ − be∞q)]

= W [b+ 1
2
(qae123 − aqe123) + 1

2
(qbe∞ + bqe∞)]

= W [b+ (q ∧ a)e123 + (q · b)e∞].

Now consider r∧ ṙ and in particular its components of the form e0v where
v ∈ G123 is a vector. From (12)

r ∧ ṙ = βWµ(r ∧ e∞) + r ∧ (r ∧ ν).

Here in the first term on the right

r ∧ e∞ = W (e0 ∧ e∞ + q ∧ e∞)

= W (1 + e0∞ + qe∞)

which has no component of the required form.
Since r ∧ ν does not involve e0, the required component derived from the

second term is the contribution from

W 2e0 ∧ [b+ (q ∧ a)e123 + (q · b)e∞]

= W 2e0[b+ (q ∧ a)e123] +W 2(q · b)(e0 ∧ e∞)

= W 2e0[b+ (q ∧ a)e123] +W 2(q · b)(1 + e0∞)

and the second term on the right makes no contribution. Comparison of this
with (10), allows the deduction that

v = b+ (q ∧ a)e123 = b + (a× q)
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where the bold terms are regarded as vectors in R3 and use is made of Lemma
2.1.

With vectors in R3, if point A in a rigid body has velocity vA then the
velocity of another point B in the body is [23]

vB = vA + Ω× rBA (13)

where Ω is the angular velocity of the body and rBA is the position of B
relative to A.

Comparing this with the previous equation gives the following result.

Theorem 3.2. Suppose that S(t) is a motion of a rigid body. Then its
velocity bivector ν(t) and velocity indicatrix Ψ(t) can be written as

ν(t) = Ω(t)e123 + u(t)e∞

Ψ(t) = γ(t) + ν(t)

where γ(t) ∈ G123∞ is a pseudoscalar, and Ω(t), u(t) ∈ G123 are vectors.
Further, Ω(t) is the angular velocity of the body, u(t) is the linear velocity

of that point in the body instantaneously at the global origin, and the velocity
vQ of the point Q at the position (instantaneously, relative to global axes)
e0 + q with q ∈ G123 is given by

vQ = u+ (q ∧ Ω)e123. (14)

Proof. Most of this has already been established. The nature of u follows by
taking q = 0 in (14), so that Q is (instantaneously) at the global origin. In
this case, u = vQ.

The velocity bivector is an element with six components, three of which
correspond to linear velocity and three to angular velocity. It corresponds to
“twist” in space kinematics [24]. Appendix 2 gives the equivalent result for
the velocity indicatrix when dual quaternions are used to represent motions.

Corollary 3.3. Under the conditions of the Theorem 3.2, if a point is (in-
stantaneously) at point r ∈ G123 relative to the global origin and has velocity
v, then

ν = Ωe123 + ve∞ + (Ω ∧ r)ω.
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Proof. The velocity of the point is related to the velocity of the point instan-
taneously at the origin by

v = u + (Ω× r)

v = u− (Ω ∧ r)e123.

Substituting into the expression for ν(t) in the theorem completes the
proof.

There is the special case when a motion is unitary for all values of the
parameter.

Lemma 3.4. If S(t) is a motion which is unitary for all values of t, then its
velocity indicatrix is the same as its velocity bivector.

Proof. If S(t)S(t) = 1 for all t, then

S−1 = S, and ṠS + SṠ = 0.

The velocity indicatrix is now Ψ = 2SṠ, and

Ψ = 2ṠS = −2SṠ = −Ψ.

Hence Ψ ∈ G+123∞ is a bivector and so is the same as the velocity bivector.

4. Motion construction

A motion can be created between given poses A and B by generating
a function S(t) which interpolates them. This function then generates a
motion segment between the two poses. There are (at least) two ways in
which this can be done. The first is the slerp (spherical linear interpolation)
[7] construction given by

S(t) = Φ(A,B; t) = A (AB)t for 0 ≤ t ≤ 1. (15)

If A and B are both unitary, then so is S(t), and S(0) = A and S(1) = B,
so that the given poses are indeed interpolated.

If α and β are pseudoscalars, then these commute with even-grade ele-
ments of G123∞ and so

Φ(αA, βB; t) = α1+tβtA (AB)t = α1+tβtΦ(A,B; t). (16)
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Figure 2: de Casteljau tableau starting with control poses S0, S1, S2, S3

which is a pseudoscalar times the motion in (15). By Lemmas 2.3 and 2.5 the
actual transforms generated are the same, and so, by Lemma 2.6(i), A and
B could be replaced by their unitary versions, although it is not necessary
so to do. In general, S(0) and S(1) generate the same transform as A and
B respectively and, in this sense, S(t) is an interpolation of the two given
poses.

The slerp construction is said to be multiplicative since this is form of (15).
To evaluate the non-integer power, it is necessary to use the exponential and
logarithm functions.

The other form of interpolation is additive and this is given by

S(t) = Φ(A,B; t) = (1− t)A+ tB for 0 ≤ t ≤ 1. (17)

Again S(0) = A and S(1) = B. Since non-integer powers are avoided,
(17) is easier to deal with. However, since the corresponding transform be-
comes the zero transformation if S(t) becomes a singular pseudoscalar, it
either needs to be assumed that this does not happen or special steps taken
if it does occur.

Both (15) and (17) represent motions which are the combination of a pair
of poses A and B. Using the de Casteljau algorithm [25] and starting with
four control poses S0, S1, S2, S3, the tableau shown in Fig. 2 is formed, in
which each new entry is a pairwise combination of the two terms to its left.

More generally, starting with n+1 poses, Si, for 0 ≤ i ≤ n, and using the
additive combination results in the familiar Bézier combination of degree n

18



[25],

S(t) =
n∑
i=0

(
n
i

)
Si (1− t)n−i ti. (18)

This is an additive Bézier motion. The result of combining n + 1 poses
using the multiplicative combination is also said to have degree n: the result
is of course far from being a polynomial but is nonetheless called a multi-
plicative Bézier motion.

By introducing knots, it is straightforward to generate additive and mul-
tiplicative B-spline motions with the de Casteljau algorithm by extension of
the construction of B-spline curves [25]. However, for brevity only Bézier
motions are considered here.

Note that the motions constructed here are in terms of a variable rigid-
body transform for the whole body. An alternative (perhaps more common)
approach is to define a motion in terms of the (translational) path traced
by a specific reference point in the body and the (rotational) motion of the
body about that point (cf. Jaklič et al. [3] Počkaj [26], Krajnc [27]). This
has the potential disadvantage that the motion is dependent upon the choice
of reference point: if a different point for a given motion is selected then
its path is not necessarily of the same form as the original. Working with
the transform of the whole body means that there is no reference point (and
hence no dependency).

Lemma 4.1. If S(t) is the multiplicative motion generated by a set of con-
trol poses, then the motion generated by a set of equivalent control poses is
equivalent to the original motion and hence generates the same transform.

Proof. Repeated use of (16) shows that each entry in the tableau with the
new control poses is simply a pseudoscalar times the corresponding entry
in the tableau for the original motion. Hence the new motion itself is a
pseudoscalar times the original motion and so is equivalent to it. Theorem
2.8 shows that the new motion creates the same transform.

In order to be able to join motion segments together smoothly, it is nec-
essary to know the derivative of a motion at the ends of its segment. This is
straightforward and well-known for an additive Bézier segment as in (18).

Lemma 4.2. If S(t) is the additive Bézier motion of degree n defined by the
control poses Si, for 0 ≤ i ≤ n, then

Ṡ(0) = n(S1 − S0),

19



and hence
S(t) = S(0) + nt(S1 − S0) +O(t2).

The following two lemmas deal with what happens for a multiplicative
Bézier segment: this is complicated by the fact that the multiplication is not
commutative.

Lemma 4.3. For non-singular elements X, Y ∈ G+123∞ and a real parameter
t

[X + tY ]t = 1 + tlog(X) +O(t2).

Proof. Using Lemma 2.6,

[X + tY ]t = exp[tlog(X + tY )]

= 1 + tlog(X + tY ) +O(t2)

= 1 + tlogX + tlog(1 + tX−1Y ) +O(t2)

= 1 + tlogX +O(t2).

Lemma 4.4. If S(t) is the multiplicative Bézier motion of degree n defined
by the control poses Si, for 0 ≤ i ≤ n, then

S(t) = S0[1 + ntlog(S0S1)] +O(t2).

Proof. Define the following two functions

Φ
(0)
k (t) = Φ(S0,1,...,k−1, S1,2,...,k; t)

Φ
(1)
k (t) = Φ(S1,2,...,k, S2,3,...,k+1; t)

so that the Φ
(0)
k are the functions along the topmost sloping row of the de

Casteljau tableau, and the Φ
(1)
k are those of the next sloping row.

The lemma is proved if it can be shown that

Φ
(0)
k (t) = S0[1 + ktlog(S0S1) +O(t2)] (19)

for all k with 1 ≤ k ≤ n.
The proof is by induction on k. In the case when k = 1,

Φ
(0)
1 (t) = Φ(S0, S1; t) = S0(S0S1)

t
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and then, by Lemma 4.3 (with Y = 0),

Φ
(0)
1 (t) = S0[1 + tlog(S0S1) +O(t2)]

which is (19) in this case.
So now assume that (19) holds for k and prove it for k + 1.

Since Φ
(1)
k (t) is defined by a tableau based on a sequence of control poses

starting with S1, the inductive hypothesis says that also

Φ
(1)
k (t) = S1[1 + ktlog(S1S2) +O(t2)]

and then

Φ
(0)
k (t)Φ

(1)
k (t) = [(1 + ktlog(S0S1))S0 +O(t2)][S1(1 + ktlog(S1S2)) +O(t2)]

= S0S1 +O(t)

so that

[Φ
(0)
k (t)Φ

(1)
k (t)]t = 1 + tlog(S0S1) +O(t2)

using Lemma 4.3.
By definition from the full tableau,

Φ
(0)
k+1(t) = Φ

(0)
k (t) [Φ

(0)
k (t)Φ

(1)
k (t)]t

= S0[1 + ktlog(S0S1) +O(t2)][1 + tlog(S0S1) +O(t2)]

= S0[1 + (k + 1)tlog(S0S1) +O(t2)]

as required.

Putting these results for additive and multiplicative motions together
gives the following theorem.

Theorem 4.5. If S(t) is a Bézier motion of degree n defined by the control
poses Si, for 0 ≤ i ≤ n, then

(i) in the additive case, the derivatives at the ends of the segment are given
as

Ṡ(0) = n(S1 − S0), Ṡ(1) = n(Sn − Sn−1);

(ii) in the multiplicative case, the derivatives at the ends of the segment are
given as

Ṡ(0) = nS0log(S0S1), Ṡ(1) = −nSnlog(SnSn−1).
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Proof. For the end of the segment at t = 0, the theorem follows from Lemmas
4.2 and 4.4. The result for the end at t = 1 is proved by noting that by
reordering the control poses in the de Casteljau tableau

S0,1,...,n(t) = Sn,n−1,...,0(1− t).

The result can also be expressed in terms of values of the velocity indica-
trix.

Corollary 4.6. If S(t) is a Bézier motion of degree n defined by the control
poses Si, for 0 ≤ i ≤ n, then

(i) in the additive case, the velocity indicatrices at the ends of the segment
are given by

Ψ(0) = 2nS−10 (S1 − S0),

Ψ(1) = 2nS−1n (Sn − Sn−1); (20)

(ii) in the multiplicative case, the velocity indicatrices at the ends of the
segment are given by

Ψ(0) = 2nlog(S0S1),

Ψ(1) = −2nlog(SnSn−1). (21)

Proof. This follows from the definition of the velocity indicatrix in (11).

Two motion segments are said to join with C1-continuity if the motions
and the linear and angular velocities are continuous across the join. A nec-
essary and sufficient condition for the constraint on velocities is that the
velocity indicatrix is either continuous across the join or only suffers a jump
discontinuity which is a pseudoscalar.

If a motion segment is to be joined with C1-continuity to the end of a
given segment, then the first control pose S0 of the new segment must be the
final pose of the given segment. The final velocity indicatrix Ψ of the given
segment determines the second control pose S1 of the new segment via (20)
or (21).

By analogy with free-form curves, the join has G1-continuity if the motion
itself is continuous and the linear and angular velocities on either side are
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the same multiple of each other. If a second segment is joined to an existing
one, so that the velocity indicatrix Ψ0 at the existing end is known, then the
relation determining S1 becomes the following. The corresponding relation
for Sn−1 at the other end of the segment is also given; it is assumed that S0

and Sn are both unitary

additive: S1 = S0[1 + 1
2n

(λ0Ψ0 + γ0)],

Sn−1 = Sn[1− 1
2n

(λnΨn + γn)], (22)

multiplicative: S1 = S0 exp
(

1
2n

(λ0Ψ0 + γ0)
)
,

Sn−1 = Sn exp
(
− 1

2n
(λnΨn + γn)

)
. (23)

The scalar factor λ0 and the pseudoscalar γ0 introduce additional choice
for the control poses at the start of a motion segment. A similar factor λn
and pseudoscalar γn can be used at the other end. Such factors maintain
the intrinsic derivative constraints of the motion in a manner equivalent to
geometric shape factors in curve design [16], although C1-continuity is lost.

This section concludes with an example to illustrate some of the ideas,
particularly for additive motions. The top part of Fig. 3 shows a planar
motion formed of two additive cubic segments: one is around a quadrant of
a circle; the other is along a straight line. The poses of a cuboidal block
during the motion are shown, together with the path traced by the centre of
the block. The control points for the arc are

U0 = 0.7071 + 0.7071e12

U1 = 0.8047 + 0.4714e12 + 0.6667e1∞ + 0.6667e2∞

U2 = 0.9024 + 0.2357e12 + 1.3333e1∞ + 1.3333e2∞

U3 = 1.0000 + 2.0000e1∞ + 2.0000e2∞

and those along the straight line

V0 = 1.0000 + 2.0000e1∞ + 2.0000e2∞

V1 = 1.0000 + 3.0472e1∞ + 2.0000e2∞

V2 = 1.0000 + 4.0944e1∞ + 2.0000e2∞

V3 = 1.0000 + 5.1416e1∞ + 2.0000e2∞.

The distances travelled by the centre of the block in the two parts of the
motion are the same. Each part is over an interval of size 1 for the parameter
t, so that the complete motion is over the interval 0 ≤ t ≤ 2.
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The graphs in Fig. 3 show the linear (for the centre of the cuboid) and
angular speeds during the motion. These are not constant over the the
quadrant since the additive motion is not at constant speed there. Naturally,
both graphs are discontinuous where the motion changes form.

The velocity indicatrix at the end of the quadrant is

Ψ = 0.5858− 1.4142e12 + 5.6569e2∞.

Continuity of velocity can be achieved by replacing control pose V1 by

V1 = V0[1 + 1
6
(Ψ + γ)]

where γ is a pseudoscalar.
Fig. 4 shows the effect of taking γ to be zero, ±5, and ±10. In each case,

the motion remains planar. The upper part of the figure shows the path of
the centre of the cuboid, and the graphs show the corresponding linear and
angular speeds. The positive values have the effect of “straightening” the
curve around the join but this is at the expense of making the speeds less
smoothly varying. Negative values distort the path considerably.

Fig. 5 compares the case γ = 0 with when γ = ±20ω, and γ = ±40ω.
The main effect is to take the motion out of the plane. The top part of the
figure shows the paths viewed along the y-axis; the views along the z-axis
are identical to the γ = 0 case in Fig. 4. This increases the linear speed as
shown in the graph in Fig. 5; the angular speed in all cases is the same as
that for γ = 0 in Fig. 4.

5. Examples

Three examples of motions are discussed in this section.

5.1. Motion construction from given end-conditions

The following constraints are taken from Belta and Kumar [4] where
motions are constructed using matrix-based techniques. The end poses are
specified in terms of: the position vector r of the reference point in the
moving body, a unit vector a giving the direction of the axis of rotation,
and the angle θ (in radians) of the rotation about that axis. The speeds are
specified by the velocity v of the reference point and the angular velocity
vector Ω of the body. Subscripts 0 and 3 are used for the start and finish of
the motion.

24



0 2 4 6 8 10

x

4

2

0

y

0 1 2

t

|v|

0 1 2

t

|Ω|

Figure 3: Motion formed of quadrant and straight line with linear and angular velocity
graphs
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Figure 4: Modified motion and velocity graphs with γ real
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Figure 5: Modified motion and linear velocity graph with γ a multiple of ω = e123∞

r0 = (0, 0, 0) r3 = (8, 10, 12)
a0 = (0, 0, 1) a3 = (0.267, 0.535, 0.802)
θ0 = 0 θ3 = 1.959
v0 = (1, 1, 1) v3 = (1, 5, 3)
Ω0 = (1, 2, 3) Ω3 = (2, 1, 1)

A cubic motion segment is formed with control poses S0, S1, S2, S3, and
the parameter in the interval 0 ≤ t ≤ 1. The end poses can be constructed
by applying an appropriate rotation followed by a translation.

S0 = R0T0, S3 = R3T3,

where

R0 = 1

T0 = 1

R3 = cos(1
2
1.959) + sin(1

2
1.959)[0.267e23 + 0.535e31 + 0.802e12]

T3 = 1 + 1
2
[8e1∞ + 10e2∞ + 12e3∞].
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Now (14) is used to determine the velocity u of the point in the body
instantaneously at the origin (in particular, u0 = v0) and the rest of Theorem
3.2 gives the velocity bivector at the ends of the segment. The velocity
indicatrix is taken to be the same as the velocity bivector.

For a multiplicative motion, (23) determines poses S1, S2.
The resultant control poses are as follows

S0 = 1.000

S1 = 0.812 + 0.468e12 − 0.312e13 + 0.156e23

+0.147e1∞ + 0.138e2∞ + 0.129e3∞ + 0.156ω

S2 = 0.763 + 0.413e12 − 0.497e13 − 0.013e23

+1.683e1∞ + 1.508e2∞ + 6.308e3∞ + 4.363ω

S3 = 0.557 + 0.666e12 − 0.444e13 + 0.222e23

+2.895e1∞ + 1.456e2∞ + 4.010e3∞ + 7.101ω.

The cubic multiplicative motion obtained is shown in Fig. 6. Poses are
shown using an L-shaped block.

For an additive motion, (21) determines poses S1, S2; poses S0, S3 remain
unchanged.

S1 = 1.000 + 0.500e12 − 0.333e13 + 0.167e23

+0.167e1∞ + 0.167e2∞ + 0.167e3∞

S2 = 0.816 + 0.462e12 − 0.536e13 − 0.001e23

+1.934e1∞ + 1.764e2∞ + 6.877e3∞ + 4.707ω.

The cubic additive motion obtained is shown in Fig. 7.
It is worth noting the additive motion appears similar to that of multi-

plicative interpolation. This property has been identified previously [17, 28]
and suggests non-unitary motions can be utilised as effectively as unitary mo-
tions. Two potential advantages of non-unitary motions are the possibility
of a simplified representation (polynomial expressions) and further possible
degrees of freedom in the form of pseudoscalar modifications to the velocity
indicatrices at the ends of a motion.

5.2. Scaling the velocity indicatrix

This example considers the effect of shape factors modifying the velocity
indicatrix at either end of a motion segment. A planar motion is considered
whose end conditions are based on the following constraints.
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r0 = (0, 0, 0) r3 = (0, 10, 0)
a0 = (1, 0, 0) a3 = (1, 0, 0)
θ0 = 0 θ3 = −π

2

v0 = (0, 0, 8) v3 = (0, 4, 0)
Ω0 = (−π

4
, 0, 0) Ω3 = (π

8
, 0, 0)

A cubic motion segment is again used with control poses S0, S1, S2, S3,
with the parameter satisfying 0 ≤ t ≤ 1.

As with the last example, the end poses are constructed as products of a
rotation and a translation.

Using (14), the end constraints give the following values for the velocity
bivector at the ends of the segment

ν0 = −0.785e23 + 8.000e3∞

ν3 = 0.393e23 + 4.000e2∞ − 3.927e3∞.

The values for the velocity indicatrix at the ends of the segment are taken
to be

Ψ0 = λ0(ν0 + γ0), Ψ3 = λ3(ν3 + γ3),

where λ0, λ3 are scalar shape factors, and γ0, γ3 are pseudoscalars. The
values used for the latter are arbitrarily chosen as

γ0 = 1
2

+ 1
2
ω, γ3 = 1− 1

2
ω.

Control poses S1, S2 can then be determined using (22) and (23).
The cubic multiplicative motion obtained is shown in Fig. 8 for the shape

factors λ0 and λ3 taking the values 1 and 4 (where 1 is the default choice
and 4 is an arbitrary alternative value). The control pose S1 is given by
(22) in which the variables are fixed apart from λ0. Hence, as λ0 varies,
S1 represents an additive Bézier motion of degree 1. Generally when such
a motion is applied to a body, each point in the body moves around the
surface of a circular cylinder (with a common axis) along a planar path
which is therefore an ellipse [29]. This is a vertical Darboux motion [13, 30].
This also applies to S2. As this example is planar, the movements related
to the middle control poses are along circular arcs, shown as dashed curves
in the figure. The effect of changing the shape factor is comparable to the
familiar effect in curve design where moving the second control point of a
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Figure 8: Multiplicative cubic motion varying shape factors
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curve along the line joining it to the first control point leaves the direction
of the end-tangent to the curve unchanged.

The numerical values for the control poses are as follows. In all cases, the
end poses are

S0 = 1.000

S3 = 0.707− 0.707e23 + 3.536e2∞ + 3.536e3∞.

The other control poses depend upon the corresponding shape factor.

λ0 = 1 : S1 = 1.078− 0.142e23 + 0.012e1∞ + 1.445e3∞ + 0.090ω

λ0 = 4 : S1 = 1.209− 0.698e23 + 0.233e1∞ + 7.108e3∞ + 0.403ω

λ3 = 1 : S2 = 0.558− 0.636e23 + 0.053e1∞ + 2.392e2∞ + 2.783e3∞ + 0.047ω

λ3 = 4 : S2 = 0.257− 0.445e23 + 0.148e1∞ + 0.326e2∞ + 1.266e3∞ + 0.086ω.

The corresponding cubic additive motion is given in Fig. 9 for the same
shape factors. These have the same effect as in the multiplicative case.

Note that there is now a greater difference between the additive and
multiplicative motions for a given set of control poses than there is in the
previous example. This is due to choosing non-zero pseudoscalars γ0 and γ3.

The end control poses are as before. The other two poses take the fol-
lowing values.

λ0 = 1 : S1 = 1.083− 0.131e23 + 1.333e3∞ + 0.083ω

λ0 = 4 : S1 = 1.333− 0.524e23 + 5.333e3∞ + 0.333ω

λ3 = 1 : S2 = 0.543− 0.636e23 + 0.059e1∞ + 2.243e2∞ + 2.706e3∞ + 0.059ω

λ3 = 4 : S2 = 0.051− 0.421e23 + 0.236e1∞ − 1.633e2∞ + 0.218e3∞ + 0.236ω.

5.3. Hermite interpolation

This example is based on a motion considered by Jaklič et al. [3]. It is
specified in terms of the path traced by a reference point in the moving body
given, using the geometric algebra notation, by

c(t) = e0 + [3 log(t+ 1) cos t]e1 + [3 log(t+ 1) sin t]e2 + 3(t+ 1)e3,

and the rotation of the body about this point given by the following quater-
nion (again expressed in geometric algebra form)

q(t) = t+ [t+ cos π
4
t]e23 + [sin π

4
t]e31 + [cos π

10
t]e12.
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shape factors 1.0

shape factors 1.5shape factors 0.5

Figure 10: Hermite interpolation of an additive cubic motion through nine precision poses
with different (common) values for the shape factors
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The motion [3] is considered between t = 1 and t = 9, splitting it into
eight segments with the divisions at integer values of t. The above relations
allow the pose (position and orientation) to be found at each division along
with the linear and angular velocities (treating the parameter t as time).

What is done here is to use Theorem 3.2 to form the velocity bivector
and indicatrix (taking the pseudoscalar γ(t) to be zero) at each division. A
motion for each segment is then formed as a cubic segment using the known
end poses as the first and last control poses and (22) or (23) to form the
other two control poses.

The resultant additive motion is shown in the upper part of Fig. 10. This
is taking all the shape factors as unity. The shaded blocks are the poses at
the ends of the segments. The construction ensures C1-continuity between
the segments.

The figure also shows the additive motions when the shape factors remain
all the same but with different common values. When that value is 0.5, the
effect is that the motion moves more quickly away from the segments ends
making the motion turn more sharply at each join and be flatter between
the joins. When the common value is 1.5, the reverse is true: the motion is
flatter across the joins and turns sharply in the middle of each segment.

The construction ensures that the motion remains C1-continuous in both
of these two revised cases. Other motions can be created by taking any
combination of segments from the three cases. Such combinations are G1-
continuous across the joins.

6. Conclusions

This paper has considered free-form motions created via the use of geo-
metric algebra. The conformal geometric algebra (CGA) has been used but
similar approaches can be adopted with other versions of geometric algebra.
A motion is constructed as a parametric function from a number of specified
control poses using the de Casteljau algorithm. Its definition is independent
of any choice of reference point in the body.

The construction requires the ability to combine two poses to produce
another pose. One combination makes use of the slerp (spherical linear in-
terpolation) operation. This forms the product of powers of poses and the
resultant motion is here called multiplicative. If the original control poses are
all unitary then each pairwise combination is also unitary including there-
fore the resultant motion itself. In the unitary case, forming the derivative
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of the motion with respect to the parameter allows the velocity bivector to
be formed and this holds information about the linear and angular velocities
of a body undergoing the motion.

An alternative form of combination has been seen to be possible, one that
uses linear interpolation between two poses. The result is an additive motion.
This is no longer necessarily unitary and the theory regarding the derivative
has been extended. The previous construction now yields the velocity indi-
catrix which is the sum of the velocity bivector and a pseudoscalar.

Two motion segments join together with C1-continuity if the motion itself
is continuous and the velocity bivector is also continuous. It is G1-continuous
if the velocity bivector at one side of the join is a scalar multiple of the velocity
bivector on the other side. If pose and velocity conditions for the end of a
segment are specified, then the end control pose is determined and so is the
next pose along. If the interest is in gaining G1-continuity between segments
then there is some additional freedom in selecting that next pose. If additive
motions are used, then there is still more freedom with the ability to adjust
the pseudoscalar in the velocity indicatrix while leaving the velocity bivector
unchanged.

This means that a range of motions that interpolate given precision poses
can be obtained using Hermite cubic segments provided the linear and an-
gular velocities at the precision poses are specified or can be selected in a
suitable way.
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Appendix 1: proof of Lemma 2.2

One of the difficulties in dealing with the algebra G0123∞ is that the rule
“the reverse of a product is the product of the reverses in the other order”
does not apply. However, it does apply for the algebra G123∞. So if the vector
x in the statement of Lemma 2.2 lies in G123∞, then SxS is an element of
odd grade which is equal to its own reverse. Hence it is a vector and this
proves part (i) of the lemma (with λ = 0).

More generally, x has the form γe0 + v where γ is a real coefficient and
v ∈ G123∞ is a vector. Then

SxS = γSe0S + SvS.

Hence by the previous remark, it is sufficient to prove part (i) when x = e0.
The form of the even-grade element S is

S = ξ + ae∞ + b+ ηω

where ξ, η are real numbers, and a, b ∈ G123 are a vector and a bivector
respectively. Then

S = ξ − ae∞ − b+ ηω

e0S = ξe0 + e0ae∞ + e0b+ ηe0ω.

Now consider the products of each of the summands forming S with e0S,
making use of (2) which is

e∞e0 = −2− e0∞

and the following relation derived from it

ωe0 = −2e123 + e0123∞.
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ξe0S = ξ2e0 + ξe0ae∞ + ξe0b+ ξηe0123∞,

−ae∞e0S = −ξae∞e0 − ae∞e0ae∞ − ae∞e0b− ηae∞e0ω
= 2ξa+ ξae0e∞ + 2a2e∞ + ae0e∞ae∞

+2ab+ ae0e∞b+ 2ηaω + ηae0e∞ω

= 2ξa− ξe0ae∞ + 2a2e∞ + 2ab− e0abe∞ + 2ηaω,

−be0S = −ξe0b− e0bae∞ − e0b2 − ηe0bω,

ηωe0S = ξηωe0 + ηωe0ae∞ + ηωe0b+ ηωe0ω

= −2ξηe123 + ξηe0ω − 2ηe123ae∞ + ηe0ωae∞

−2ηe123b+ ηe0ωb− 2η2e123ω + η2e0ω
2

= −2ξηe123 + ξηe0123∞ − 2ηaω − 2ηbe123 + ηe0bω + 2η2e∞.

Adding these, and noting that ab = (a · b) + (a ∧ b), gives

Se0S = (ξ2 − b2)e0 + 2ξa− 2ηbe123 + 2(a ∧ b) + 2(a2 + η2)e∞

+2(a · b)− e0(ab+ ba)e∞ − 2ξηe123 + 2ξηe0123∞

= [(ξ2 − b2)e0] + 2[ξa− ηbe123 + (a ∧ b)] + 2[(a2 + η2)e∞]

+2[(a · b)− ξηe123]− 2e0[(a · b)− ξηe123]e∞.

The inner product a · b is a scalar multiple of e123. Suppose that λ is the
real number such that

2[(a · b)− ξηe123] = −λe123

and then, with σ = −e123 + e0123∞,

Se0S = [(ξ2 − b2)e0] + 2[ξa− ηbe123 + (a ∧ b)] + 2[(a2 + η2)e∞] + λσ. (24)

Here, the first three terms in square brackets are all vectors. Hence Se0S
has the required form.

For part (ii), multiplying out the terms shows that

SS = (ξ2 − b2)− 2(a · b)e∞ + 2ξηω
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and hence has the required form with α = ξ2− b2. This is also the coefficient
of e0 in the expression of Se0S in (24) and the latter part of (ii) follows.

It is sufficient for part (iii) to show that σ commutes with the basis
vectors. This is immediate for e1, e2, e3 as these commute with each of the
summands of σ. So consider the outer products of σ with e0 and e∞.

e0 ∧ σ = 1
2
e0 ∧ (e0ω + ωe0)

= 1
4
(e0e0ω + e0ωe0 − e0ωe0 − ωe0e0)

= 0,

e∞ ∧ σ = 1
2
e∞ ∧ (e0ω + ωe0)

= 1
4
(e∞e0ω + e∞ωe0 − e0ωe∞ − ωe0e∞)

= 1
4
(e∞e0ω − ωe0e∞)

= 1
4
((−2− e0e∞)ω − e123(−2− e0e∞)e∞)

= 1
4
(−2ω + 2e123e∞)

= 0.

This completes the proof.

Appendix 2: velocity indicatrix and dual quaternions

The purpose of this appendix is to convert the result of Theorem 3.2 and
hence provide an equivalent expression in dual quaternion form. This is to
allow comparison of the work here with the dual quaternion approach used
by other researchers [11, 12, 13, 14].

An isomorphism between the even-grade elements of G123∞ and the dual
quaternions is defined by the following pairings of basis elements.

1 ←→ 1 ω ←→ ε
e12 ←→ −k e1∞ ←→ εi
e13 ←→ +j e2∞ ←→ εj
e23 ←→ −i e3∞ ←→ εk

An outer product can be defined between any two dual quaternions d1
and d2 with

d1 ∧ d2 = 1
2
(d1d2 − d2d1).
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In particular

i ∧ j = k, j ∧ k = i, k ∧ i = j.

Then for dual quaternions, Theorem 3.2 says that the velocity indicatrix
is given by

Ψ(t) = γ(t) + ν(t)

where

γ = α + εβ

ν = ε(u1i+ u2j + u3k)− (Ω1i+ Ω2j + Ω3k).

Here α and β are scalars, u1, u2, u3 are the components of the linear velocity
of the point in the moving body instantaneously at the global origin, and Ω1,
Ω2, Ω3 are the components of the angular velocity vector, and all these are
functions of t.

If q = 1 + ε(q1i+ q2j + q3k) represents the point Q in the body instanta-
neously at the point (q1, q2, q3) (relative to global axes) then its velocity from
equation (14) is

vQ = ε(u1i+ u2j + u3k)− q ∧ (Ω1i+ Ω2j + Ω3k)

= ε(u1i+ u2j + u3k) + ε(Ω1i+ Ω2j + Ω3k) ∧ (q1i+ q2j + q3k)

and this is immediately comparable with (13).
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