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Abstract

Computation of derivatives (gradient and Hessian) of a fidelity function is one of the most crucial steps in many optimization
algorithms. Having access to accurate methods for computing these derivatives is even more desirable where the optimization
process requires propagation of these computations over many steps, which is particularly important in optimal control of spin
systems. Here we propose a novel numerical approach, ESCALADE (Efficient Spin Control using Analytical Lie Algebraic
Derivatives), that offers the exact first and second derivatives of the fidelity function by taking advantage of the properties of
the Lie group of 2 × 2 unitary matrices, SU(2), and its Lie algebra, the Lie algebra of skew-Hermitian matrices, su(2). A full
mathematical treatment of the proposed method along with some numerical examples are presented.
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1 Introduction

Controlling quantum spin dynamics using time-
dependent Hamiltonians via optimal control theory
is an increasingly popular approach in many areas of
science from spectroscopy and quantum metrology to
quantum information processing and computing [1].

Two of the main challenges in the field of optimal con-
trol of spin systems are the controllability of the dy-
namics and the convergence rate of the control process.
In principle, three main approaches can be considered
when optimal control has been applied to spin systems:
1) derivative-free techniques [2, 3] which are especially
important when due to experimental requirements not
many iterations or function evaluations by the optimi-
sation protocol can be allowed, 2) gradient-based tech-
niques like GRAPE [4, 5] and KROTOV [6, 7], and 3)
Newton–Raphson method [8, 9] where in addition to the
gradient (first derivative), the Hessian (second deriva-
tive of the objective function with respect to the con-
trol parameters) is also utilized. Although the latter ap-
proach results in quadratic convergence rate, it suffers
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from numerical complexity due to computation and up-
date of a dense Hession matrix in the course of opti-
mization. Additionally, computation of derivatives using
finite differences can be expensive, inaccurate and po-
tentially unstable when the objective function involves
numerical propagators with limited accuracy [10, Chap-
ter 8]. Therefore having access to the exact form of these
derivatives is of great interest, in particular in the op-
timal control of spin systems, where the optimization
process requires propagation of these computations over
many steps, and inaccurate estimations of derivatives
can result in a large accumulated numerical error.

The objective of this paper is to present a novel ap-
proach that facilitates the optimal control of spins using
Newton–Raphson utilizing an analytical computation of
derivatives. Control of dynamical systems using proper-
ties of Lie groups and their algebras covers a surprisingly
wide range of applications from controlling of landing
a plane, rotations of rigid bodies in robotics and esti-
mation of camera poses in computer vision, to the time
evolution of quantum systems [11–19]. In these appli-
cations, the underlying geometric structure is described
by a Lie group. Finite difference methods suffer from a
further disadvantage here since they do not respect the
Lie group structure and result in derivatives that do not
live in the tangent space (the Lie algebra) [20].
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Here we propose ESCALADE (Efficient Spin Control us-
ing Analytical Lie Algebraic Derivatives), a novel numer-
ical approach that harnesses the exact first and second
derivatives of the fidelity function. These derivatives are
computed by exploiting the properties of the Lie group
of 2×2 unitary matrices, SU(2), and its Lie algebra – the
Lie algebra of skew-Hermitian matrices, su(2). Since the
Lie groups, SU(2) and SO(3) are closely related (see [21,
Chapter 5] and [22, Chapter 6]), there is a close paral-
lel between some of the properties exploited here to the
Rodrigues rotation formula [23], which is utilized widely
in computer vision and robotics applications for compu-
tation of rotation matrices in SO(3) [19, 20, 24, 25].

Although here we present the technique on the optimal
control of the dynamic of non-interacting qubits, this is
a general approach and can be applied to spin systems
with more diverse Hamiltonian structures. It has the po-
tential to find applications in a variety of areas where
taking advantage of Lie algebra for efficient optimal con-
trol of spins is beneficial. Examples include geometric
[11, 26–29] and adiabatic optimal control [30–33] meth-
ods.

2 Theory

2.1 Optimal Control of spin-1⁄2

The state of a single spin-1⁄2 particle is described by the
Hermitian density matrix ρ(t), i.e. iρ(t) ∈ su(2), and its
dynamics are governed by the Liouville–von Neumann
equation,

∂tρ(t) = −i[H(t), ρ(t)], ρ(0) = ρ0, (1)

where
H(t) = h(t) · σ, (2)

h(t) = (f(t), g(t),Ω)> ∈ R3, σ = (σx, σy, σz)
>, (3)

and

σx =
1

2

(
0 1

1 0

)
, σy =

1

2

(
0 −i

i 0

)
, σz =

1

2

(
1 0

0 −1

)

are the normalized Pauli matrices. Ω describes the offset
frequency of a spin.

Remark 1 In the case of multiple non-interacting spin-
1⁄2 particles, the kth spin evolves under the influence
of Hk(t) = hk(t) · σ, where the offset Ωk in hk(t) =
(f(t), g(t),Ωk) varies with the particle but f(t) and g(t)
are common across all spins.

In a numerical solution of equation (1), we compute ρ at
time intervals t0, t1, . . . tN , with the unitary numerical
propagation being described by

ρn = Unρn−1U†n, Un = e−isn·.σ. (4)

We restrict our attention to a piecewise constant
approximation of the pulse, f and g, where sn =
(∆t) (f(tn−1), g(tn−1),Ω)>.

By using equation (4), one can see that the final density
matrix is given by

ρN = UNUN−1 . . .U2U1︸ ︷︷ ︸
Utot

ρ0 U†1U†2 . . .U
†
N−1U†N︸ ︷︷ ︸

U†
tot

. (5)

Typically we want to maximize the fidelity functional,

F = 〈%|ρN 〉 := Tr(%†ρN ) ∈ [0, 1],

to have maximum overlap (i.e. F = 1) with the (nor-
malized) target state %, which is also Hermitian.

In a gradient-based optimization scheme one needs to
compute the gradient of the fidelity function F ,

∂F
∂θn,k

= Tr

(
%†
∂ρN
∂θn,k

)
, (6)

while a Newton–Raphson optimization scheme also re-
quires the Hessian,

∂2F
∂θm,j∂θn,k

= Tr

(
%†

∂2ρN
∂θm,j∂θn,k

)
. (7)

Here n,m ∈ {1, . . . , N} and j, k ∈ {1, 2}, and

θn,1 = f(tn−1), θn,2 = g(tn−1)

are the control parameters that solely affect the nth
propagator, Un.

In the computation of the gradient of the fidelity function
(6), we require the gradient of the final state ρN . Since
θn,k only affects the nth propagator,

∂ρN
∂θn,k

= 2Re

(
Ln+1

∂Un

∂θn,k
Rn−1ρ0U†tot

)
, (8)

Ln = UNUN−1 . . .Un, (9)

Rn = UnUn−1 . . .U1, (10)

where Ln and Rn for all n = 1, . . . , N can be computed
in O(N) time.

Here we present a method for computing the gradient
∂Un/∂θn,k, and therefore the gradient of the fidelity
function, analytically using Lie algebraic techniques.
This approach is also extended for computing the Hes-
sian analytically.
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2.2 Computation of gradient

In this section we present the analytic approach for com-
puting the derivative of the nth unitary propagator (4),
Un = exp(−isn(θn,k) · σ), with respect to a control pa-
rameter θn,k. Here we write sn(θn,k) to highlight the fact
that sn depends on θn,k.

In general, the derivative of the exponential ofX(θ) with
respect to a control parameter θ can be expressed as
[34, 35]

∂

∂θ
exp(X(θ)) = exp(X(θ)) dexpX(θ)X

′(θ), (11)

where the dexp function,

dexpXX
′ =

∞∑
p=0

(−1)p

(p+ 1)!
adpX(X ′), (12)

is expressed as a power series of the adjoint operator, ad.
The powers of ad are given by

ad0
X(X ′) = X ′, adn+1

X (X ′) = [X, adnX(X ′)].

Equations (11) and (12) allow us to express the deriva-
tive of Un,

∂Un

∂θn,k
=

∂

∂θn,k
e−isn(θn,k)·σ

= Un

( ∞∑
p=0

(−1)p

(p+ 1)!
adp−isn·σ

)(
−i

∂sn
∂θn,k

· σ
)
.

Remark 2 For ease of notation, we suppress the depen-
dence of s on the control parameters, θ.

An explicit formula can be derived for the dexp series
when X(θ) ∈ su(2). To see this, we introduce the map
∼ which maps vectors in R3 to matrices in su(2),

s̃ = −is · σ, s ∈ R3.

It is easy to verify that ad−isn·σ(r̃) = [s̃n, r̃] = S̃nr and

adp−isn·σ(r̃) = S̃pnr = −i(Spnr) · σ, p ≥ 0,

where Sn is the matrix,

Sn =


0 −sn,z sn,y

sn,z 0 −sn,x
−sn,y sn,x 0

 . (13)

Consequently,

∂Un

∂θn,k
= −iUn


( ∞∑
p=0

(−Sn)p

(p+ 1)!

)
︸ ︷︷ ︸

3×3

(
∂sn
∂θn,k

)
︸ ︷︷ ︸

3×1

 · σ.

Using S3
n = −‖sn‖2 Sn, We can further simplify the

dexp series as

Dn =

∞∑
p=0

(−Sn)p

(p+ 1)!
= I + c1Sn + c2S

2
n, (14)

c1 =
cos(‖sn‖)− 1

‖sn‖2
, c2 =

‖sn‖ − sin(‖sn‖)
‖sn‖3

. (15)

For a piece-wise constant pulse,

sn = (∆t) (f(tn−1), g(tn−1),Ω)>,

and the control parameters are θn,1 = f(tn−1) and
θn,2 = g(tn−1). Consequently,

∂sn
∂θn,1

= (∆t) (1, 0, 0)>,
∂sn
∂θn,2

= (∆t) (0, 1, 0)>. (16)

To summarise, the analytic derivative of Un is given by

∂Un

∂θn,k
= −iUn

([
Dn

∂sn
∂θn,k

]
· σ
)
, (17)

and the derivative of Utot by

∂Utot

∂θn,k
= −iLn

([
Dn

∂sn
∂θn,k

]
· σ
)

Rn−1. (18)

Using the definition of Ln and Rn in equations (9) and
(10) it is evident that LnRn−1 = Utot and consequently
we may write

Ln = UtotR
†
n−1, Rn−1 = L†nUtot. (19)

Therefore (18) can be re-written as:

∂Utot

∂θn,k
= −iLn,kUtot, (20)

where for any pulse segment n and any control parameter
k:

Ln,k = Ln

([
Dn

∂sn
∂θn,k

]
· σ
)

L†n, (21)

In a practical implementation, Ln is given by equa-
tions (9), and we compute Dn using equation (14).
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Combining equations (6), (8) and (20), the final form of
the analytical gradient of the fidelity is:

∂F
∂θn,k

= 2ImTr(Ln,kρN%†). (22)

This completes the description of the analytic gradients.
Note that ρN is required in computation of the fidelity
F and is assumed to be available already. The 2N matri-
ces Ln,k are computed along with Ln and Dn in O(N)
time, following which the full gradient involves 2N com-
putations of (22), bringing overall cost to O(N).

2.3 Computation of Hessian

In the computation of the Hessian of the fidelity function
(7) we require the Hessian of the final state,

∂2ρN
∂θm,j∂θn,k

= 2Re

(
∂2Utot

∂θm,j∂θn,k
ρ0U†tot

+
∂Utot

∂θn,k
ρ0
∂Utot

∂θm,j

†
)
. (23)

An analytic form for the gradient of Utot with respect
to control parameters θn,k and θm,j has already been
obtained in equation (20). In this section, we derive an
analytic form for ∂2Utot/∂θm,j∂θn,k.

2.3.1 Off-diagonal entries (n > m) of the Hessian

When n > m, the Hessian is typically computed as

∂2Utot

∂θm,j∂θn,k
= Ln+1

∂Un

∂θn,k
Mn−1,m+1

∂Um

∂θm,j
Rm−1.

Mn,m = UnUn−1 . . .Um−1Um. (24)

Similarly, we can derive the corresponding expression
for m > n. Overall, since n and m range between 1 and
N , the various values of Mn,m are typically computed in
O(N2) time in such a procedure.

Here we introduce an alternative approach for comput-
ing ∂2Utot/∂θm,j∂θn,k that does not require the compu-
tation of Mn,m. Since Ln+1 and Rm−1 are unitary,

L†n+1Ln+1 = I, R†m−1Rm−1 = I, (25)

we can express Mn,m as

Mn,m = L†n+1UtotR
†
m−1.

Thus, Mn,m can be replaced in the computation of the
Hessian and equation (24) can be written in the form

∂2Utot

∂θm,j∂θn,k
= Ln+1

∂Un

∂θn,k
L†nUtotR

†
m

∂Um

∂θm,j
Rm−1. (26)

By substituting (17) in (26), combining it with (21) and
(19) we have,

∂2Utot

∂θm,j∂θn,k
= −Ln,kLm,jUtot. (27)

2.3.2 Diagonal entries (m = n) of the Hessian

For the case m = n we have,

∂2Utot

∂θn,j∂θn,k
= Ln+1

∂2Un

∂θn,j∂θn,k
Rn−1. (28)

Differentiating equation (17) with respect to θn,j ,

∂2Un

∂θn,j∂θn,k
=

−Un

{[(
Dn

∂sn
∂θn,j

)
· σ
] [(

Dn
∂sn
∂θn,k

)
· σ
]

+i

(
∂Dn

∂θn,j

∂sn
∂θn,k

+Dn
∂2sn

∂θn,j∂θn,k

)
· σ
}
, (29)

where ∂2sn/∂θn,j∂θn,k vanishes due to (16). The deriva-
tive of Dn (14) can be computed explicitly,

∂Dn

∂θn,j
= c′1

∂ ‖sn‖
∂θn,j

Sn + c1
∂Sn
∂θn,j

(30)

+ c′2
∂ ‖sn‖
∂θn,j

S2
n + c2(Sn

∂Sn
∂θn,j

+
∂Sn
∂θn,j

Sn),

where

c′1 =
−2 cos(‖sn‖)− ‖sn‖ sin(‖sn‖) + 2

‖sn‖3
, (31)

c′2 =
3 sin(‖sn‖)− ‖sn‖ cos(‖sn‖)− 2 ‖sn‖

‖sn‖4
, (32)

∂ ‖sn‖
∂θn,j

=
sn · ∂sn∂θn,j

‖sn‖
, (33)

and ∂Sn/∂θn,j is obtained directly by differentiation of
the matrix S in (13).

With a similar approach as in 2.3.1, using (19) and (21)
we can rewrite (28) as

∂2Utot

∂θn,j∂θn,k
= − (Ln,jLn,k + iDn,j,k) Utot, (34)

where

Dn,j,k = Ln

[(
∂Dn

∂θn,j

∂sn
∂θn,k

)
· σ
]

L†n. (35)

4



2.3.3 General description of the full Hessian

The complete description of the Hessian of the fidelity
is obtained by combining equations (7), (23), (27), and
(34). The general form of the diagonal elements of the
Hessian matrix will be:

∂2F
∂θn,j∂θn,k

= 2ReTr(Ln,kρNL†n,j%
†

− (Ln,jLn,k + iDn,j,k)ρN%
†), (36)

and the general form of the upper-diagonal elements of
the Hessian matrix can be written as

∂2F
∂θm,j∂θn,k

= 2ReTr(Ln,kρNL†m,j%
† − Ln,kLm,jρN%†).

(37)
L andD can be precomputed inO(N) time along with L.
The factorization (21) reduces the computational effort
by a factor of three since only two matrix multiplications
are required for each entry of the Hessian. Note that the
lower-diagonal elements (n < m) can be easily obtained
using the symmetry of the Hessian matrix and do not
need to be computed separately. Equation (37) for these
entries can be written as

∂2F
∂θm,j∂θn,k

= 2ReTr(Ln,kρNL†m,j%
† − Lm,jLn,kρN%†).

(38)
Finally, using equations (36), (37) and (38), a general
form of all Hessian entries can be expressed as a single
equation,

∂2F
∂θm,j∂θn,k

= 2ReTr(Ln,kρNL†m,j%
†

− (Ln,kLm,j︸ ︷︷ ︸
Lm,jLn,k

if m>n

+ iDn,j,k︸ ︷︷ ︸
0

if n6=m

)ρN%
†). (39)

3 Numerical demonstrations

3.1 Optimization routines

The proposed approach is very flexible, and once the
analytic gradients (22) and Hessians (39) are available,
they can be used in a variety of optimization routines.
For instance, the gradients can be used in the context
of gradient descent or quasi–Newton optimization tech-
niques such as BFGS, while the Hessians can be used in
any Newton type methods.

A numerical implementation of the proposed method in
Matlab along with additional functions for optimiza-
tion and visualization of the performance are freely avail-
able via the following DOI: 10.17632/8zz84359m5.1.

In our implementation, we have used Matlab’s con-
strained optimization function fmincon with the default
algorithm interior-point for gradient-only optimiza-
tion, and the trust-region-reflective algorithm
when computing both gradients and Hessians. These
can equally be used in the context of unconstrained opti-
mization such as Matlab’s fminunc, and regularization
using penalty functions can also be easily incorporated.

Similarly, the method can be combined, straight-
forwardly, with a range of algorithms in Python,
e.g. via scipy.optimize.minimize including BFGS,
L-BFGS-B, and variants of trust-region algorithm
(dogleg, trust-ncg, trust-krylov, trust-exact, and
trust-constr).

3.2 Comparison with finite difference method

Finite difference approximation of the gradient of nu-
merical propagators Un requires computing Un for mul-
tiple values of θn,k differing by a ‘finite difference step’.
Figure 1 demonstrates that while the finite difference
step size must be kept sufficiently small for accuracy, the
approximations become unstable for very small steps.
Thus the suitability of a finite difference step may prove
difficult to asses a-priori. This balance between accu-
racy and stability becomes more precarious when (i) the
time step of the numerical propagator (∆t) is large, (ii)
the numerical propagator is of limited accuracy or (iii)
higher derivatives are required.

In addition to respecting the Lie algebraic structure and
being relatively inexpensive, the proposed approach for
computing analytic derivatives does not suffer from such
instability. It should be noted that the accuracy of the
computed derivatives using the proposed approach is en-
tirely independent of size of the time step ∆t.

3.3 Example for pulse design in magnetic resonance

In NMR and ESR, designing radiofrequency (RF) and
microwave (MW) pulses for robust excitation of signals
over a very wide range of frequencies and reduced sen-
sitivity to instrumental imperfections is still among the
most challenging areas of method design and is of great
interest. The development of methods for pulse design in
these applications generally follows one or more of three
distinct routes: composite pulse design [36–41], evolu-
tionary numerical methods like optimal control theory
(OCT) [4, 42–48], and design of swept-frequency pulses
[30, 49–58].

Here we demonstrate one of the applications of the pro-
posed method for the design of broadband excitation
pulses in NMR spectroscopy. The simplest case would be
control of an ensemble of non-interacting spin-1⁄2 parti-
cles. Conventional instantaneous radio-frequency pulses
have limited bandwidth due to high power requirements

5



Fig. 1. Accuracy and stability of forward differences
and central differences approximation to (a) the gradient
(∂Un/∂θn,k), and (b) the Hessian (∂2Un/∂θ

2
n,k) of a single

step propagator Un. The `2 error in approximation of deriva-
tives is shown for two different propagation time steps (dis-
tinct from the finite difference step size): ∆t = 10−6 (forward
difference [solid blue], central difference [dotted purple], an-
alytic [solid green with circles]) and ∆t = 10−4 (forward dif-
ference [dashed orange], central difference [densely dashed
yellow], analytic [solid light blue with crosses]).

that cannot be afforded on most instruments; therefore
they can only satisfy the desired state manipulation in
a rather limited range of frequencies close to the trans-
mitter offset of the pulse, i.e. they are only effective for
spins with relatively small frequency offsets; addition-
ally, the performance of these pulses can be considerably
affected by instrumental imperfections or instabilities.
The goal here is to circumvent these problems by design-
ing a pulse propagator that satisfies certain objectives
for all spins within the desired frequency range, with a
robust performance that does not depend on frequency
offset of spins or instrumental imperfections.

The example here demonstrates an excitation pulse de-
signed using the proposed method to bring all spins in
the ensemble from z to y. Figure 2 (a) shows the final
state of spin across the frequency range of interest (50
kHz here), and figure 2 (b) shows variations of one of
the components, y, for five different offset frequencies
during the 200 µs pulse. Additionally, we can incorpo-
rate an additional optimization step that significantly

Fig. 2. (a) calculated excitation profiles for different compo-
nent of density operator, x (blue), y (red), and z (orange) at
ω1 = ω0

1 (20 kHz) for a 200 µs pulse acting on 101 non-inter-
acting spin-1⁄2 over a 50 kHz frequency range; (b) variations
of y component of spin trajectories during the pulse for five
different frequencies.

reduces the sensitivity of the pulse to instrumental im-
perfections. Here we consider reducing the sensitivity
of the pulse performance to unknown variations of the
RF amplitude. Figure 3 (a) shows corresponding graphs
for the variations of the target state, y, versus RF field,
B1. One common example of such imperfection is the
position-dependent B1 field across an RF coil used to
generate the pulse. These variations introduce position-
dependent phase of the signal across the ensemble of
spins and therefore results in significant signal loss and
non-uniform excitation profile of the pulse. Here an ad-
ditional objective is to minimize the variation of signal
phase with respect to the variation of B1 field ( dφ

dB1
), fig-

ure 3 (b) shows that for a given nominal RF amplitude

with ±20% variations in the amplitude of B1 field, dφ
dB1

is zero for all frequencies in the desired range.

4 Conclusions

In the present work, we have introduced a new ap-
proach, ESCALADE, for computation of derivatives of
the cost function in optimal control of spin systems. We
demonstrated that using the proposed mathematical
framework, derivatives (gradient and Hessian) can be
computed analytically using Lie algebraic techniques.
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Fig. 3. (a) 3D plot and projection showing the
y-magnetization excited as a function of relative resonance
offset ( Ω

ω0
1

) and relative RF amplitude ω1

ω0
1

; (b) Sensitivity of

signal phase to field strength ( dφ
dB1

) as a function of relative

field strength (B1

B0
1

).

The proposed method is general and can be adapted to
and used in many potential applications where efficient
optimal control of spin systems is required. These in-
clude high-resolution magnetic resonance spectroscopy
and imaging [4], terahertz technologies [59, 60], and con-
trol of trapped ions [61], cold atoms [62] and NV-centers
in diamond [63, 64].
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