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A B S T R A C T

The characterisation of the quantum states of light and their subse-
quent realisation is thought to be an indispensable step to bring in
quantum technologies to the real world. The emergence of quantum
cryptography, quantum security protocols or quantum computers,
among others, demand implicitly or explicitly trustworthy tools and
components to carry through the research in its first stages. A deter-
ministic or on-demand single-photon source and, more recently, an
N-photon emitter, seem to play a crucial role. Nevertheless, even the
correct characterisation of the former is still a source of discussion
and there exist several criteria to do so. The identification of the latter
is, as expected, a challenging task.

With the emergence of multiphoton physics, the horizon of quan-
tum light sources is wider. The tools to identify and classify multi-
photon emission are still in development. We present the methods
to study the dynamics and correlations of some candidate systems
that have been proposed, focusing on the analytical solutions through
perturbative methods, valid, for instance, for weakly driven or weakly
coupled systems. In particular, the frequency-resolved correlations
can be exactly obtained in this way. We also consider the effect of
detection on the correlations. The noisy apparatus and their finite
time resolution can modify the photon statistics. Some photons may
be left undetected or misplaced (in time), additional counts may be
recorded as well.

We revisit the photon counting formula, that was popular in the
birth of Quantum Optics, to obtain the counting probabilities in con-
tinuously driven (CW) systems and we focus then on the spontaneous
emission of N photons. We observe, for probability distributions of
CW systems, a clear deviation from Poissonian statistics in both the
short and long time regimes. We find how such a behaviour is inher-
ited from the photon correlations. A good starting point to study the
bundler—the N-photon emitter—is the spontaneous emission of N
photons. The counting probabilities are computed without and with
spectral filtering, making emphasis on how the kind of filter affects
the detection. Then, the full structure of the bundle is completely
captured by the probability functions of the emission time of the
individual photons. The results are ultimately compared with the
actual bundler, showing qualitative and quantitative agreement.
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A brief introduction is given to spatial correlation induced by the
ensemble statistics. Some clarifying examples reveal how the statistics
are manifested depending on the kind of states. On the other hand,
a dynamical model introducing a space dependent sensor method
is provided for the scattering and how the spatial distribution is
modified by the time resolution limitation. Interestingly, the wave
packet before and after the scattering get effectively admixed and
interfere with itself displaying characteristic fringes.

The main objective of this Thesis is to make an exhaustive charac-
terisation of multiphoton emission, starting with the usual treatment
in terms of the luminescence spectrum and the second-order photon
correlation function g(2), considering mechanisms that can take place
in the detection process such as spectral filtering or contamination of
the signal due to time jitter and noise. We develop tools to facilitate
and speed up the computation of these quantities, either analytically
or numerically, within the range of validity of the Born–Markov ap-
proximation and highlighting situations in which perturbation theory
is applicable. Finally, we go beyond and take into account other statis-
tical quantities such as the waiting time distribution or higher order
correlators and eventually compute counting statistics, which results
in a good and promising procedure to characterise and subsequently
classify multiphoton emission.
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T H E S I S S T R U C T U R E

The Electromagnetic field, light, is presented in Chapter 1, starting
from the light quanta, the photons, describing the quantum states of
light and the physical observables and all the statistical quantities
which comprise the scaffolding that bear the weight of the original
research contained in the Thesis. In particular, Section 1.1 is dedicated
to discussing the structure of the Hilbert space of a photonic mode by
means of the observables g(n) (Article [Z1]). The next Section describes
the statistical treatment of the photon and in Subsection 1.2.1. We
introduce and extend the theory of frequency-resolved correlators to
include new families of spectral filters (from Article [Z4]) and, later
on, an analysis of the noise sources and time detection limitations can
be found in Subsection 1.2.2 (Article [Z6]).

The missing ingredient is the matter, that couples to the electromag-
netic field to produce interesting states of light (Chapter 2). The most
fundamental and simple case is a 2-level system, the single-photon
emitter par excellence. Even being a long-standing and apparently
well-understood system, as of today, we still discover puzzling and
astonishing new properties. The quantum theory of light-matter inter-
action, Quantum Electrodynamics, is presented from the Quantum
Optics perspective and, after that, a brief derivation of quantum open
systems is done. The lossy and non-Hamiltonian dynamics are re-
quired to successfully explain the spontaneous emission, dephasing
and other dissipative processes and are described through the marko-
vian Lindblad-like master equation. The next Sections are dedicated
to solving the dynamics of the 2-level system under different types
of excitation, introducing more methodology followed all along the
Thesis and then we derive and further characterise the single-photon
emission (Article [Z6]). The last Section includes the theoretical and
experimental realisation of a scheme for single-photon generation
based on semiconductor Quantum Dots, which goes beyond the 2-
level system description (Article [Z5]).

We present a new technique in Chapter 3, a perturbational theory to
resolve the dynamics of any light-matter system provided that there
is at least one perturbation parameter in the Master Equation (Article
[Z7]). The theory is followed by a series of examples to show the
versatility of the method. We compute the correlations of light-matter
system under weak driving such as the Dicke or Jaynes-Cummings
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2 thesis structure

model. Additionally, the sensor method to compute the frequency-
filtered photon statistical quantities is formally justified and then
applied to the 2-level system (with either coherent or incoherent
excitation), finding analytical expressions for the frequency-resolved
correlators (Article [Z6]). For Resonance Fluorescence, we also provide
the theory that support the experimental evidences. This also verifies
the validity of the theoretical results (Article [Z2]).

In Chapter 4, we derive and discuss more statistical properties of
light using the theory of photon detection providing exact and ap-
proximated results comparing the dynamics of the 2-level system, a
single-photon emitter, and a cavity, potentially a multi-photon genera-
tor, in the Continuous Wave regime. Following Sections are focused
on characterising the Spontaneous Emission of a N-photon bundle,
finding exact expressions for the photon-counting probabilities for
the bare and filtered emission (Articles [Z3] and [Z4]), as well as
the probability distributions of the k photons forming the bundle.
Ultimately the results are compared to the CW full quantum model
of the bundler.

Finally, we address the spatial correlations in simple light-matter
systems induced by the intrinsic collective statistical properties of
indistinguishable particles (Chapter 5). We generalise, using the Re-
duced Density Matrix formalism, the well-known case of 2-body
antisymmetric or symmetric wavefunction exhibiting larger or smaller
mean distance than the distinguishable case, firstly, to N-particle Fock
states and, later on, to multi-particle Gaussian states such as the co-
herent or thermal states. In the last part of the Chapter, we studied the
evolution of a (polariton) wave packet undergoing a scattering pro-
cess and how its spatial distribution is modified by frequency-filtered
measurements and the resulting interference between the past and
future contributions of the same packet.

Throughout the text, margin notes are inserted that, in my opinion,
summarize some of the most original and important results derived
in this text. A broader overview is given in the conclusions and, of
course, the eventual extent and value of the results are left to the
consideration of the reader.



1
Q UA N T U M L I G H T

1.1 Q UA N T U M S TAT E S O F L I G H T A N D P H O T O N S TAT I S -
T I C S

Since the quantization of light by Glauber [1, 2] (see Appendix A.1
for a brief overview of the key quantities), it is understood that its
description is best made in terms of correlators of the type:

G(n) = ⟨a†nan⟩ , (1.1)

as well as their normalised version

g(n) =
⟨a†nan⟩
⟨a†a⟩n , (1.2)

as defined in the Appendix A.1. The full Hilbert space is of course
extremely complex, and one typically refers to very particular cases
only, such as the coherent, thermal and Fock states. Here, we will take
a more general view trying to describe all the states in terms of the
Glauber correlators (1.2).

1.1.1 the truncated hilbert space

We precise the connection between the quantum states, their number
distribution Pn and the Glauber correlators, both G(n) and g(n), which
are the main results of Ref. [Z1]. Conveniently, we will start defining
the truncated Hilbert spaces Hn, restricting the number of excitations
to at most N. In turn, they are subspaces of the (infinite-dimensional)
Hilbert space H∞:

HN =

{
N

∑
k=0

ck |k⟩ ;
(

αk ∈ C
)
∧
( N

∑
k=0

|ck|2 = 1
)}

. (1.3)

This approach is inspired by the work of Pegg and Barnett [3], where
they defined a phase operator. Working in a truncated space of maxi-
mum particle-number N allows us to get access to physical properties
that become pathological in the infinite-dimensional space. In the
same manner, we will consider truncated spaces to subsequently take
the limiting process, in which case H∞ ≡ ⋃∞

N=0 HN.

3



4 quantum light

The portrayal of the truncated Hilbert space HN given by Eq. (1.3),
however, hides a convoluted structure which we shall attempt to
clarify via its visualization in terms of g(n) observables. The urge
for this study is motivated by the recent interest in exciting optical
targets with quantum light [4, 5] carried through by the progress
in quantum sources engineering [6]. The accessible states when the
harmonic oscillator is driven by means of a quantum light source fall
outside the fair amount of particular cases mentioned above.

In most cases, the classifications follow from a particular scheme
that allows one to engineer the corresponding states. As such, they
do not provide a picture of the Hilbert space that is both simple and
comprehensive and that would be practical to survey which regions
of the Hilbert space have already been covered, are the most easy of
access, which are its boundaries, if any, and what areas remain to be
explored. This is such a picture that is provided below based on the
particles joint-correlation properties.

We split the state

ρ =
N

∑
k=0

Pk |k⟩ ⟨k|+
N

∑
k,l=0
k ̸=l

ρl,k |k⟩ ⟨l| , (1.4)

with ρk,l ∈ C in general but Pk ∈ R and select only the diagonal
part (the first term). From Eqs. (A.3)–(A.5) we can see that any state
with fixed diagonal terms Pk and distinct off-diagonal terms ρl,k (with
l ̸= k) is indistinguishable for G(n) from another one whose choice
of ρk,k′ is completely different. That is, all states that share the same
photon-number distribution Pk, either pure or mixed states, have the
same G(n) and g(n).

For instance, cn = exp
(
−|α|2

)
αn/

√
n! can be both the genuine co-

herent state or a random-phase coherent state [7] (whose off-diagonal
elements are all zero). The two versions exist for the thermal distribu-
tion cn =

√
(1 − θ)θn (for 0 ≤ θ ≤ 1), being either the thermal state,

which has zero off-diagonal elements, or the pure state version that is
the eigenstate of the Susskind-Glogower phase operator (aa†)−1/2a [8],
in which case it is known as the “coherent phase state” [9] (for its
resemblance with the coherent state, eigenstate of a). Thus, our explo-
ration is focused on the diagonal part of the state while the rest, the
off-diagonal part, is characterised by the purity or of degree coherence
of the state.



1.1 quantum states of light and photon statistics 5

More formally, in HN where the total number of excitations is
truncated, PN+m = 0 for m ≥ 1 in Eq. (1.4), therefore, computing the
correlators (A.4) on the states (1.4) yields the linear system:

1 =
N

∑
n=0

Pn , (1.5a)

n0 =
N

∑
n=0

nPn , (1.5b)

G(2) =
N

∑
n=0

n(n − 1)Pn , (1.5c)

...

G(N) =
N

∑
n=0

n(n − 1) . . . (n − N + 1)Pn . (1.5d)

In this case, there is a bijection between the allowed G(n) correlators
and the states uniquely defined through the first sum in Eq. (1.4). The
system is also represented in matrix form as

G⃗ = MP⃗ (1.6)

between the vectors of (N + 1) elements P⃗ = (P0, · · · , PN)
T and

G⃗ = (1, n0, G(2), ..., G(N))T with:

M =


1 1 1 . . . 1 1
0 1 2 . . . N − 1 N
0 0 2 . . . (N − 2)(N − 1) N(N − 1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 N(N − 1) · · · 1

 , (1.7)

where, by definition:

1 =
N

∑
n=0

Pn , (1.8)

which, being upper-triangular, allows us to solve Eq. (1.6) by Gaus-
sian elimination:

PN−k =

1
(N − k)N−k

{
G(N−k) −

N

∑
k′=N−k+1

(N − k)k′Pk′

}
, (1.9)

where (n)k = ∏k−1
p=0(n − p) is the falling factorial. Expanding all the

coefficients explicitly, we find



6 quantum light

Pi =
N

∑
j≥i

(−1)i+j G(j)

i!(j − i)!
, (1.10)

This useful connection
between the probabilities
(diagonal elements of the
density matrix) and the

Glauber correlators is
well-known only in its

inverse formulation (G(j) as
a function of Pi). In fact, we
know no mention of it in the

literature.

for 0 ≤ i ≤ N. This is exactly the inverse relation of Eq. (1.5).
This result is always true for any N and does hold when N → ∞.

An alternative way to obtain Eq. (1.10) is through the factorial moment
generating function [10]. The connection between Pk and G(n) is set-
tled, we shall now proceed to map the space via the g(n) observables.
To do so, we consider how a distribution of states from HN is mapped
into the space charted by g(n). To tell the different descriptions of
the space apart will call the latter space GN. Given the inequalities
0 ≤ Pn ≤ 1 for all n together with the normalisation condition, the
anticipated correlator space might be full of complex constraints.

Figure 1.1: The mapping of the two-particle Hilbert space H2 in terms of Pk,
the probabilities for the Fock state |k⟩ corresponds to an equilateral triangle
or non-standard 2-simplex (yellow). The blue surface is spanned by all the
states of constant g(2) (namely, here g(2) = 1.3). The intersection of both
surfaces, shown as the red line, captures all the (normalised) quantum states
with the corresponding g(2). The total length of the red curve correspond
to their density in the space. Reproduced from [Z1], with the permission of
AIP Publishing.

Regarding the particular state distribution, we consider as a fair
representation of HN a distribution where each element of the space
HN has the same probability to be sampled, this is, the distribution is
uniform over the whole space.



1.1 quantum states of light and photon statistics 7

As an example, the Hilbert space H2 is described by a 2D equi-
lateral triangle in the 3D space (P0, P1, P2) (see Fig. 1.1). All the
physical quantum states of at most two excitations are represented
by the uniform distribution over this geometry. That is, the proba-
bility distribution is constant in all the triangle area. Outside this
triangular region, the probability turns to zero. The correlator space
spanned by c0 |0⟩+ c1 |1⟩+ c2 |2⟩, with the normalisation constraint
P0 + P1 + P2 = 1, reaches its maximum population n0 = 2 when
P2 = 1. G(2) is likewise maximised when the state is |2⟩ (with
G(2) = 2). The lower bound is obviously zero, the vacuum |0⟩ is
the unique state that minimises both the population and the 2-photon
Glauber correlator G(2). The limits are therefore n0 ≥ 0, G(2) ≥ 0. The
rest of correlators are zero since Pk>2 = 0. The normalised correlator
g(2) is also positive but unbounded. This two-particle extreme super-
bunching behaviour was already known in the context of bosonic
cascades [11].

Given a certain population n0 or g(2), the normalised states with
those correlator fixed are generated by the intersection of the trian-
gle and the plane P1 + 2P2 − n0 = 0 or the surface (P1 + 2P2)

2 −
2P2/g(2) = 0, respectively. In figure (1.1), the red curve corresponds
to states with fixed g(2). The length of this curve is proportional to the
number of states with constant observable n0 or g(2). The density of
states is associated to arc length (for 1D), area (for 2D) or, in general,
the hypersurface of the subspace. The measure of the surface is inde-
pendent of the choice of the parametrisation or the metric of the space.
In differential geometry, the area element of the surface is described
by the First Fundamental Form F, that provides the trajectory in one
space that is parametrically defined in the other. It is defined as

Fk,k′ = ∂G(k) P⃗ · ∂G(k′) P⃗ , (1.11)

where 1 ≤ k, k′ ≤ N and · is the scalar product between the ∂P⃗
vectors. Since the transformation Eq. (1.6) is linear, the elements of F

are constant, given by Fk,k′ = ∑i≤k,k′(−1)k+k′/[i!2(k− i)!(k′− i)!
]
. The

area element of (hyper)surface in HN is related to the corresponding
element in GN by PGdn0 · · · dG(N) = (

√
|F|/AN)dP0 · · · dPN with PG

the density of probability, AN is the volume of the Hilbert space HN,
that, being a N-simplex (of side

√
2 and dimension N + 1), reads:

AN =

√
N + 1
N!

, (1.12)
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and |F| the determinant of F is computed from Eq. (1.11) and ex-
pressed in terms of the superfactorial sf(N) = ∏N

i=0 i! as:√
|F| =

√
N + 1

sf(N)
. (1.13)

While the computation is conveniently performed with G⃗, we are
eventually interested in the space of normalized correlators g(n), that
we will call gN. A summary of the spaces involved and the notations
to identify them is given in Table (1.1). There is another bijection from
GN to gN , that simply dilates or shrinks each coordinate by the powers
of n0 as (n0, G(2), ..., G(N)) = (n0, n2

0g(2), ..., nN
0 g(N)). The change of

variables and its subsequent transformed hypersurface element is
given by the Jacobian

J =

∣∣∣∣∣∂G(i)

∂g(j)

∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 . . . 0
2n0g(2) n2

0 0 0 . . . 0
3n2

0g(3) 0 n3
0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
NnN−1

0 g(N) 0 0 0 . . . nN
0

∣∣∣∣∣∣∣∣∣∣∣∣
=

N

∏
p=2

np
0 = n(N2+N−2)/2

0 . (1.14)

The joint density of probability in the space gN is then Pg
(
n0, . . . , g(N)

)
.

Particularly, a randomly chosen infinitely small region from HN
whose corresponding correlators are n0, . . . , g(N) in the hypervolume
element dn0 · · · dg(N) has the associated probability Pg dn0 . . . dg(N).

This provides the distribution
of quantum states in the

Hilbert space charted by the
Glauber correlators.

The density of probability is found as

Pg

(
n0, g(2), . . . , g(N)

)
=

n(N2+N−2)/2
0
sf(N − 1)

Θ(gN) , (1.15)

where Θ(gN) is the support for the image of HN through the succes-
sive bijections (from HN to GN and, after that, to gN). It is 1 only if
exists a state with joint-correlators n0, g(2), . . . , g(n) and is 0 other-
wise. We still need to identify the explicit shape of this bijection in
the correlator space. It is remarkable that for physical states, Pg is
independent of the correlators except for the population n0.

We now show some particular cases to illustrate these results. In all
cases, the boundaries can be found from Eqs. (1.10) by imposing the
conditions Pk ≥ 0 and Pk ≤ 1. As a result, the analogue inequalities for
the correlations are obtained. Following this, the marginal probability
distributions in the projected subspaces are provided though these
boundary equations.
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Subspace Probability

HN P(P0, P1, . . . , PN) = (1/AN)Θ (HN)

GN PG(n0, G(2), . . . , G(N)) = (
√
|F|/AN)Θ (GN)

gN Pg(n0, g(2), . . . , g(N)) = (J
√
|F|/AN)Θ

(
gN
)

Table 1.1: Summary of notations for the various spaces introduced. HN

is the Hilbert space truncated to N ∈ N particles in the Fock basis, GN

is the corresponding space in the basis of unnormalized correlators G(N),
and gN in the space of Glauber correlators g(n). The original probability
distribution (uniform) are AN , the volume of the Hilbert space HN . F is the
first fundamental form and J the Jacobian of the transformation between
the unnormalised and normalised correlators. The expressions are given in
Eqs. (1.12) and (1.13). Θ is the indicator function, which is nonzero only if
exists there a physical state with such correlators.

1.1.2 the two-particle hilbert space

We skip the discussion of the Hilbert space truncated to N = 1 here,
which has already been completely characterised in the literature [12]
and moreover it will be briefly revised in Chapter 2. The next simplest
is the two-particle space H2. The basis of this space is given by |0⟩,
|1⟩ and |2⟩, so that the dimension is 3 (see the triangle or 2-simplex of
side

√
2 in Fig. 1.1). Equations (1.10) that connect Pk and g(k) read in

this case

P0 = 1 − n0 +
n2

0g(2)

2
, (1.16a)

P1 = n0(1 − n0g(2)) , (1.16b)

P2 =
n2

0g(2)

2
, (1.16c)

with 0 ≤ Pk ≤ 1. As we discussed above, each point (state) on the
simplex (Hilbert space) can be generated by the intersection of the
plane and constant n0 and g(2). In vector form, each state is described
by

{
P0, P1, P2

}
=
{

1 − n0 +
n2

0g(2)

2
, n0 − n2

0g(2),
n2

0g(2)

2

}
(1.17)

The joint probability Pg, i.e., the probability of finding a state with
given (n0, g(2)) from a uniform sampling in the Hilbert space is:

Pg(n0, g(2)) = n2
0 Θ

(
g2
)

, (1.18)
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Figure 1.2: (a) Joint probability distribution Pg of finding a quantum state
with mean population n0 and g(2) from uniform distribution in H2. Both
lower and upper boundaries are found. (b) Marginal distribution Pg(n0) after
integrating over g(2) and (c) Marginal distribution Pg(g(2)) after averaging
over n0. Reproduced from [Z1], with the permission of AIP Publishing.

where the indicator Θ
(
g2
)

vanishes if
(

n0, g(2)
)

/∈ g2. There is no

explicit dependency of Pg on g(2). However, the function Θ(g2) is
zero in some regions of the correlator space and hence there must
be some implicit dependency that induces the geometry of gN. The
inequalities Pk that shape H2 give rise to upper and lower boundaries
for the (n0, g(2)) space:

g(2) ≤ 1
n0

, (1.19a)

g(2) ≥ ⌊n0⌋(2n0 − ⌊n0⌋ − 1)
n2

0
. (1.19b)

The lower boundary for g(2) in Eq. (1.19b) was already obtained in
Ref. [5] and it is general for any HN. Here, in addition, an upper
boundary is found (1.19a). This one is however particular for H2 and
it varies as the truncation of the space grows. The constraints and
the induced probability distribution Pg are shown in Fig. 1.2. For
vanishing population n0 → 0, g(2) can reach arbitrary high values but
the probability vanishes as it gets diluted in the g(2) axis due to the
huge number of states. This is, the lesser the population, the greater
the maximum g(2) can be. When the population is exactly zero, the
only state is the vacuum |0⟩. On the opposite side, the probability
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density is maximised around the vertex (2, 1/2), given by the state
|2⟩. The range of possible values of g(2) is hugely reduced and thus
the density is extremely high. In intermediate cases, namely n0 = 0.5,
there are states with both antibunching and bunching. For n0 > 1, all
the states necessarily have g(2) > 0, meaning that the contribution of
|2⟩ is different from zero above that population. On the other hand,
for the most likely value of g(2), 1/2, n0 can run from 0 to 2 and, in the
middle, values of g(2) < 1/2 are allowed to have population greater
than one. We already mentioned that for such population P2 has to
be non-zero. The (pure) states that lie on both the lower and upper
boundaries are a superposition of two (out of three) Fock states√

1 − n0

2
|µ⟩+

√
n0

2
eiθ |ν⟩ , (1.20)

where µ, ν = 0, 1, 2 and µ ̸= ν. The phase θ can be any real number.
For instance, the superposition of |0⟩ and |1⟩ correspond to the hori-
zontal axis from n0 = 0 and n0 = 1 (the qubit states). For n0 > 1, the
states defined in the lower boundary are superposition of |1⟩ and |2⟩.
The upper boundary, when g(2) = 1/n0, has the states generated by
|0⟩ and |2⟩.

The boundaries in H2 can also be written as:

n0 ≤
1 −

√
1 − 2g(2)θ(1 − 2g(2))

g(2)
, (1.21)

where θ(x) is the Heaviside function. Regarding the upper bound, for
a given allowed population, 0 ≤ n0 ≤ 2, i.e.,

g(2) ≤ 1
n0

. (1.22)

Both marginal distributions, Pg(n0) and Pg(g(2)), are obtained
by integrating over the other observable. The first one provides the
population distribution

Pg(n0) =

n0 if 0 ≤ n0 ≤ 1

2 − n0 if 1 < n0 ≤ 2
, (1.23)

and the other one provides the g(2) distribution

Pg(g(2)) =


√

8
9
(1−

√
1−2g(2)−g(2))

3
2

(g(2))3 if 0 ≤ g(2) ≤ 1
2

1
3(g(2))3 if g(2) > 1

2

. (1.24)
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These two distributions are piecewise functions, and are shown in
Fig. 1.2(b-c). A randomly picked state will most likely have a popula-
tion equal to one (exclusively looking at this observable), whereas the
most likely value for g(2) (examinating Pg(g(2))) is 1/2. In the joint
space (n0, g(2)), however, the maximum value is located at the edge
(2, 1/2). So that the most probable states are around the Fock state
|2⟩.

1.1.3 the three-particle hilbert space
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Figure 1.3: (a) Marginal probability distribution Pg(n0, g(3)) (averaging
over g(2)) of finding a quantum state with the corresponding population
and g(3) (starting with an uniform distribution in H3). The subspace has both
lower and upper boundaries resembling g2. (b) Distribution Pg(g(2), g(3))
after averaging over n0. This subspace is defined by the possible choices of
(g(2), g(3)). (c) Distribution Pg(n0, g(2)) after averaging over g(3). The single-
parameter distributions are (d) Pg(g(2)), (e) Pg(g(3)) and (f) Pg(n0). (g) The
joint distribution for H3 is defined in a region of the 3D space, shown here
through its upper boundary (together with the three projected subspaces, in
2D). Reproduced from [Z1], with the permission of AIP Publishing.

The underlying ideas discussed for H2 also apply to the 3-particle
space H3. The main difference is that, since we are adding a fourth
coordinate P3, the natural representation requires a 4D space which
entails a great difficulty when trying to visualise the whole space.
From the correlators side, a new quantity is necessary: the 3-particle
Glauber correlator g(3). It is thus displayed in a 3D space whose
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coordinates are now (n0, g(2), g(3)). The geometrical representation
issue is partially surpassed in this context.

Equations (1.10) read in this case

P0 = 1 − n0 +
n2

0g(2)

2
−

n3
0g(3)

6
, (1.25a)

P1 = n0 − n2
0g(2) +

n3
0g(3)

2
, (1.25b)

P2 =
n2

0g(2)

2
−

n3
0g(3)

2
, (1.25c)

P3 =
n3

0g(3)

6
. (1.25d)

We can easily check that H2 is a subspace of H3 by taking g(3) to zero
(which automatically leads to P3 = 0). The distribution of states is
found to be

Pg(n0, g(2), g(3)) =
n5

0
2

Θ
(
g3
)

, (1.26)

and as before, it is explicitly depends only on the population n0, while
the implicit dependence on g(2) and g(3) remains encoded within
the indicator function Θ(g3). The boundaries for (n0, g(2), g(3)) are
complex and can be expressed as constraints on one variable as a
function of the two others. For g(2) as a function of n0 and g(3):

g(2) ≤ n0g(3)

2
+

1
n0

, (1.27a)

g(2) ≥ max

(
n0g(3),

n0g(3)

3
+

2
n0

− 2
n2

0

)
, (1.27b)

and, for g(3) as a function of n0 and g(2):

g(3) ≤ min

(
g(2)

n0
,

3g(2)

n0
− 6

n2
0
+

6
n3

0

)
, (1.28a)

g(3) ≥ max

(
0,

2g(2)

n0
− 2

n2
0

)
, (1.28b)

with 0 ≤ n0 ≤ 3 in both cases and g(2), g(3) ≥ 0. The system of in-
equalities holds for pairs of coordinates that are allowed, i.e., they
are inside the space g . Providing a pair that lies outside will produce
unphysical boundaries such as g(3) < 0. The valid combinations, in
turn, produce the boundaries for the projected spaces, e.g., (n0, g(2))
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or (n0, g(3)) subspaces. Additionally, these (n0, g(n)) (n ≥ 2) bound-
aries are general for any subspace of HN and will be provided later,
derived from more general equations (see Appendix A.3). In particu-
lar, the upper boundary for g(2) is always proportional to 1/n0 which
allows to have arbitrarily large superbunching when the population
is vanishing.

The remaining (upper) boundary condition for n0 as functions of
g(2) and g(3) is condensed in the following expression

0 ≤ n0 ≤ U(g(2), g(3)) . (1.29)

The equation looks simple, but requires the definition of auxiliary
functions f1(g(2), g(3)) and f2(g(3)), that can be found in the Ap-
pendix A.2 (cf. Eqs. (A.6)–(A.8)). With this, the function U(g(2), g(3))
reads

U(g(2), g(3)) ≡

f1(g(2), g(3)) if g(3) ≤ 2
9 and g(2) < f2

(
g(3)

)
,

g(2)−
√

(g(2))2−2g(3)

g(3)
if g(3) ≤ 2

9 and g(2) ≥ f2

(
g(3)

)
,

min[ f1, g(2)

g(3)
] if g(3) ≥ 2

9 and g(2) <
√

2g(3) ,

g(2)−
√

(g(2))2−2g(3)

g(3)
if g(3) ≥ 2

9 and g(2) ≥
√

2g(3) .

(1.30)

and the natural lower boundary is n0 ≥ 0. The a priori arbitrary
value 2/9 actually comes from the g(3) of the Fock state |3⟩. The full
space (up to three particles) is completely characterized through these
boundaries (as shown in Fig. 1.3) although the structure is still compli-
cated to visualise. A simpler and usually more suitable representation
is the projection into the pairwise subspaces, e.g., (n0, g(2)). They can
be obtained by integrating over one of the three observables. We com-
pute the exact expressions for the marginal probability distribution
but they are bulky and not specially insightful (cf. Appendix A.2).
The boundaries are also realized by states of the form of Eq. (1.20),
this time with 0 ≤ µ, ν ≤ 3 (still with µ ̸= ν). This is true as well for
the new projected spaces (n0, g(3)).

From Fig. 1.3, we see that the Hilbert space is bounded for the pop-
ulation but is not for the rest of the correlators. Normalised intensity
correlations of all orders are independent from the population and,
as a result, one can find states with antibunching at the two-particle
level but extreme Super-Poissonian three-particle fluctuations. The
reciprocal scenario, g(2) ≫ 1 and g(3) ≪ 1, is likewise possible. Of
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course, as the population grows, the region of (g(2), g(3)) that is ac-
cessible to physical states is reduced (the boundary is provided in
terms of the function U). Near the vacuum (n0 → 0), on the contrary,
any combination is allowed. In the vicinity, we can study in detail
the behaviour of the boundary function U in the limits of small or
huge arguments of the correlators. All the combinations are shown
in the Table (1.2). The density of probability for this subspace, that
quantifies the relative occurrence of all possible combinations, reads

Pg(g(2), g(3)) =
1
12

[
U(g(2), g(3))

]6
, (1.31)

and is shown in Fig. 1.3(b).

U(g(2), g(3)) g(2) → 0 g(2) → ∞

g(3) → 0, 1 +
g(2)

2
− g(3)

6
1

g(2)
+

2g(3)

(g(2))3

g(3) → ∞
g(2)

g(3)

i)
1

g(2)
+

2g(3)

(g(2))3

ii)
g(2)

g(3)

Table 1.2: Limiting cases of the population upper bound U(g(2), g(3)) for all
the possible combination of vanishing and diverging g(2) and g(3). In the
bottom right cell, case i) applies to (g(2))2 > 2g(3) while case ii) applies to
(g(2))2 < 2g(3). All cases except g(2) → 0 and g(3) → 0 lead to vanishing
populations n0.

Integrating a second time, the marginal probability distribution
for n0 in H3 can be computed from either equation (A.9) or (A.10)
and yields

Pg(n0) =


n2

0
2 if 0 ≤ n0 ≤ 1 ,

− 1
2

(
2n2

0 − 6n0 + 3
)

if 1 < n0 ≤ 2 ,
1
2

(
n2

0 − 6n0 + 9
)

if 2 < n0 ≤ 3 ,

(1.32)

that is plotted in panel (f) of Fig. 1.3. Similarly, the reduced proba-
bility distribution for g(2) is obtained and, again, the corresponding
expression is bulky (cf. Eq. (A.11)) and has piecewise form. The an-
alytical expression for Pg(g(3)) could not be obtained so that the
one displayed in panel (e) comes from numerical integration. The
whole family of marginal probability distribution (for all 2D and 1D
subspaces) are shown in Fig. 1.3. The 2D cases are also displayed as
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Figure 1.4: Distributions of states in the projected subspace (n0, g(2)) as
obtained from Monte Carlo uniform sampling in HN for 2 ≤ N ≤ 5. The
cases N = 2 and 3 do match with the aforementioned analytical solutions.
Reproduced from [Z1], with the permission of AIP Publishing.

projections on their respective planes in the full 3D space, showing in
full detail the convoluted structure of the three-particle Hilbert space
H3.

1.1.4 the N -particle hilbert space

The extension of the previous calculations, already intricate for N = 3,
to higher dimensional spaces becomes hard to deal with and the
complexity scales swiftly, making their interpretation difficult. For
N ≥ 4, the inequalities involve polynomials of degree greater than
3 and the roots cannot be obtained analytically (the method is, in
principle, still applicable for quartic polynomials but these results are
intractable). Nonetheless, some general results can be obtained for the
projected subspaces and the marginal distributions.

For instance, all the marginal distributions for the population Pg(n0)
follow Irwin-Hall distributions (i.e., the distribution for the sum of N
independent random variables with a uniform distribution):

Pg(n0) =
1

2(N − 1)!

N

∑
k=0

(−1)k
(

N
k

)
(n0 − k)n−1sgn(n0 − k) , (1.33)

which, in the limit of large N, tends to a normal distribution. Other
generalisations to all N (and subsequently to H∞) are the boundaries
of gN in the projected subspaces (n0, g(n)). Their expressions are (the
proofs are given in Appendix A.3 and Ref. [5]):These boundaries, both from

above and below, for the k-th
order Glauber correlator, give

the most general constrains
that exist for the correlations
of the quantum states. There
is no upper boundary in the

full Hilbert space, while there
is a lower boundary as

shown in Fig. 1.5.

g(k) ≤ (N − 1)!
(N − k)!

1
nk−1

0

,

g(k) ≥ ⌊n0⌋!
(⌊n0⌋ − k)!nk

0

(
1 +

k(n0 − ⌊n0⌋)
⌊n0⌋+ 1 − k

)
.

(1.34a)

(1.34b)

The equations (1.34) are indeed the necessary conditions for N =
3 to provide physical upper boundaries to Eqs. (1.27)–(1.28). As a



1.1 quantum states of light and photon statistics 17

straightforward consequence, from the boundaries (1.34) we can find
the minimum and maximum values for g(n) for a given population n0
in any truncated space HN. We have checked these results through
numerical calculations. For several truncation numbers, N, we have
performed Monte Carlo simulations, making random sampling on
the N − 1-simplex following a uniform distribution. In Figure 1.4,
the projections in the (n0, g(2)) subspaces are shown. In all cases, the
numerical results are in accordance with the analytical formulae. The
marginal density probabilities Pg(n0, g(2)) for H2 and H3 also agree
with the expressions shown above.

The behaviour of the upper and lower boundaries is different as we
increase the truncation number N. The upper one grows ceaselessly
with N, meaning that, in the full harmonic oscillator space (without
restrictions in the number of excitations), all g(k) are unbounded and
can have arbitrary large values for any choice of the population n0
which has no upper bound as well. Conversely, the lower bound does
not depend on N. As a result, it remains after the limiting process
N → ∞ has taken place. The (pure) states that lie on the border are su-
perpositions of consecutive Fock states

√
p |n⟩+

√
(1 − p)eiθ |n + 1⟩)

(for 0 < p < 1). It is particularly interesting to see that this boundary
allows to have states with n0 > 1 and g(2) < 1/2 (shaded region
in Fig. 1.5). Along the discussion, we already have mentioned that
any state with n0 > 1 implies that at least one of the probabilities
Pk>1 is different from zero. This contradicts the popular criterion for
single-photon emission g(2) < 1/2 [13–18], used to identify quantum
states with single-particle contributions only. What g(2) < 1/2 actu-
ally indicates is that the state has on average less than two particles.
In the wake of this contradiction, more sophisticated criteria were
proposed to properly bound the presence of the one-particle Fock
state [19]. Amending the former criterion, a single-particle state must
have g(2) = 0, which is virtually impossible to reach in a experiment.
Other alternative single-photon criteria are contemplated in Ref. [20].

Regarding the independence of any pair of Glauber correlators,
although we find that all possible combinations are allowed, any par-
ticular choice limits the accessible values for the rest of the correlators.
An illustrative case is when we take g(k) = 0. From (1.5), we find that
all the probabilities Pn≥k are then necessarily equal to zero. Hence,
all g(k+n) (with 0 ≤ n ≤ N − n) also vanish. The exact cancellation of
g(k) automatically locates the state in the subspace gk−1. A dramatic
case was already pointed out when discussing the 2-particle space
H2. If n0 = 0, then all g(k) are zero, exhausting any possible state
except for the vacuum |0⟩. In fact, the probability density is exactly
zero if n0 = 0. In truncated spaces, extremely large values of g(k)
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Figure 1.5: Structure of the harmonic oscillator Hilbert space in the (n0, g(2))
subspace. It displays a lower boundary but no upper boundary. The dashed
lines are remainder of successive upper boundaries that exist in the N-
truncated spaces HN . The shaded region shows the states with g(2) < 0.5
and n0 > 1. Reproduced from [Z1], with the permission of AIP Publishing.

indicate that the vacuum prevails over all the other states since the
space

This insightful mapping of
all the quantum states in the

Hilbert space was
surprisingly overlooked,

despite the importance of g(2)

and the population. It shows
in particular that quantum

states do exist in the shaded
region, thereby invalidating a

popular criterion used by
experimentalists that

g(2) < 1/2 identifies a
single-photon source.

is bounded from above and only states with vanishing mean
population can access that region of the space. In the whole space H∞,
this statement does not always hold. We can devise states with both n0
and g(k) as large as desired. For instance, the state (1 − p) |0⟩+ p |n⟩
has population n0 = np and g(2) = (n − 1)/(np). Fixing the product
np = m and with m as large as we want and taking n much greater
than unity, then g(2) ≈ 1/p = n/m, which can return a big number
too. In that case, of course, p is small and the state is dominated by
the vacuum but on average the number of particles is large (because
n is large enough). In such an infinite space, trying to narrow down
the kind of state from few observables may produce misleading con-
clusions. This is epitomised by the states with g(2) < 1/2, which do
not guarantee the so sought single-photon generation.

To finish with the discussion about the general quantum states of
light, we can extend the Hilbert space to allow multimode states. For
a general number of modes, the complete Hilbert space is given by
the tensor product of an infinite number of copies of H∞. Any Fock
state is then written as∣∣n1 n2 . . . np

〉
= |n1⟩ ⊗ |n2⟩ ⊗ . . .

∣∣np
〉

, (1.35)

where nq are the number of photons in the q-th mode. All the pure
states are superposition of the Fock states. In terms of the creation
operators, the state (1.35) is created from vacuum as

∣∣n1 n2 . . . np
〉
=

p

∏
q=1

a†nq
q√
nq!

|0⟩ , (1.36)
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where the vacuum state is indeed |0⟩ = ⊗q
∣∣0q
〉
, i.e., the tensor prod-

uct of q-mode vacuum states. A similar analysis can be done to link
multimode correlators, for instance, ⟨a†

1a†
2a2a1⟩ to the diagonal ele-

ments of the two-mode density matrix Pn1,n2 , that is, the probability of
being in the state |n1 n2⟩ but this goes beyond the scope of the Thesis.

1.2 T I M E - R E S O LV E D P H O T O N S TAT I S T I C S

So far we have discussed the inherent properties of the states, in
particular, the set of correlators g(k), the k-photon fluctuations of
the photon-number distribution. To study the photon emission in
more detail, however, we also need the dynamics of the field. The
following gives an overview of results already known in the literature
but that we need to survey so as to be able to extend them later
on. Firstly, we now allow the single time correlators to vary in time
G(k)(t) = ξ−k⟨: (I(t))k :⟩, where I(t) is the intensity field operator
defined as

I(t) = ϵ
∫

V
E(−)(x⃗, t)E(+)(x⃗, t)dx⃗ , (1.37)

where V is the volume of the detection region, ϵ is a normalisation
constant to ensure that the operator has the proper dimensions, all
the additional constants after integrating are gathered up in ξ and
:: indicates normal ordering. For our purposes, we can restrict the
discussion to single-mode fields, unless otherwise indicated. The
intensity operator thus reduces to I(t) = ξ a†(t)a(t). In that case,
G(k) = ⟨a†k(t)ak(t)⟩ recovers the same shape that we have already dis-
cussed but including the variation in time. We do not show examples
yet because we would need the equations of motion that will remain
undefined until the next Chapter. The meaning of the correlators
is general enough to be described without particular cases. G(k)(t)
is the direct generalisation of G(k)(0) for ρ(t), the instant k-photon
fluctuations of the photon-number distribution Pk(t) = ρk,k(t).

A more general kind of correlator is multi-time k-photon Glauber
functions

G(k)(t1, t2, . . . , tk) = ξ−k⟨: I(t1)I(t2) . . . I(tk) :⟩ , (1.38)

where we have not any particular order for times ti (with k = 1, . . . , k).
We introduce the canonical time ordering, choosing the times ti ∈
(0, T) to satisfy the following order

0 < t1 < t2 < . . . < tk < T . (1.39)
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After unravelling and ordering the operators in (1.38) such that a†(ti)
grow in time from left to right, e.g., a†(t1)a†(t2), and a(ti) grow from
right to left, i.e., a(t2)a(t1), we got

G(k)(t1, t2, . . . , tk) = ⟨a†(t1) . . . a†(tk)a(tk) . . . a(t1)⟩ . (1.40)

In the context of the photo-detection theory, these time-ordered
Glauber correlators are closely related to the coincidence or non-
exclusive probability function P (t1, t2, . . . tk) = ξkG(k)(t1, t2, . . . , tk).
They measure how likely is to detect k photons in the interval (0, T),
one at each time ti, while other counts can take place between suc-
cessive times. In this sense, G(2)(t1, t2) = ⟨a†(t1)a†(t2)a(t2)a(t1)⟩ mea-
sures how likely is to detect a pair of photons, one at t1 and the
other at t2, no matter how many photons are detected in between t1
and t2. Another associated function is the elementary or exclusive
probability function Q (t1, t2, . . . tk). Having the same time interval
and time instants, Q (t1, t2, . . . tk) gives the probability of counting
k photons, one at each ti, without having any other count between
time intervals, that is, the consecutive counts correspond to successive
photons. The computation of this function is typically more compli-
cated than the non-exclusive one. However, it can be seen that both
distributions are linked. For the moment, we define the symmetrised
version of P and Q , namely P̃ and Q̃ , where we have taken into
account the k! possible permutations of the instants ti. For example,
P̃ (t1, t2) = θ(t2 − t1)P (t1, t2) + θ(t1 − t2)P (t2, t1), where θ(x) is the
Heaviside step function. These symmetrised functions do not change
when we exchange any pair of times (ti ↔ tj). The non-exclusive
distribution is naturally written in terms of the exclusive distributions
as

P̃ (t1, . . . , tn) =
∞

∑
s=n

1
(s − n)!

∫ T

0
. . .
∫ T

0
Q̃ (t1, . . . , tn, τn+1, . . . , τs)

s

∏
p=n+1

dτp.

(1.41)

The inversion of the previous formula is possible and the details can
be found in Ref. [21]. We can then write Q̃ as

Q̃ (t1, . . . tk) =
∞

∑
s=k

(−1)k−s

(s − k)!

∫ T

0
. . .
∫ T

0
P̃ (t1, . . . tk, τk+1, . . . τs)

s

∏
p=k+1

dτp.

(1.42)

and, in terms of the intensity operator, we have

Q̃ (t1, . . . tk) =

〈
: I(t1) . . . I(tk) exp

(
−
∫ T

0
I(τ)dτ

)
:
〉

, (1.43)
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whereas the unsymmetrical case, with the ordering (1.39), is

Q (t1, . . . tk) = θ(t1 < t2 < . . . tk) Q̃ (t1, . . . tk) , (1.44)

where θ(t1 < t2 < . . . < tk) = ∏k
p=1 θ(tp − tp−1) is the multi-time

version of the Heaviside function and t0 is the initial time of the time
window, namely t0 = 0. Finally, if we are interested in the probability
of detecting k photons in the time window (0, T), this is, p(k, 0, T), we
shall integrate over the time instants ti

p(k, 0, T) =
∫ T

0

∫ tk

0
. . .
∫ t2

0
Q (t1, . . . tk)dt1 . . . dtk−1dtk , (1.45)

or, using the symmetrised function,

p(k, 0, T) =
1
k!

∫ T

0

∫ T

0
. . .
∫ T

0
Q̃ (t1, . . . tk)dt1 . . . dtk−1dtk . (1.46)

Introducing the time-integrated intensity operator Ω =
∫ T

0 I(τ)dτ, we
can expressed the photon-counting probability as it usually appears in
the literature under the name of Mandel’s photon-counting formula

p(k, 0, T) =
1
k!

〈
: Ωk exp(−Ω) :

〉
, (1.47)

that we will fully develop in Chapter 4.

The usual measurements regarding the Glauber correlator functions
involve interferometry schemes. For instance, using a Mach-Zehnder
interferometer (scheme shown in Fig. 1.6), the amplitude-amplitude
or field-field correlations, i.e.,

g(1)(t, τ) =
⟨E(−)(t)E(+)(t + τ)⟩
⟨E(−)(t)E(+)(t)⟩

, (1.48)

can be measured. The setup has got two beams splitters. The signal
is split in two (if the BS is balanced, the signal is distributed 50:50),
then the light travels along the two paths. If the total length of each
path is different, there will be a time delay τ = ∆l/c between the
split signal. The fields are admixed in the second beam splitter and
finally the intensity is recorded at one of the output arms. If the signal
is stationary, then the correlation functions will depend only on τ.
After many measurements or/and long time integration, we average
the intensity and from there infer the amplitude-amplitude or first-
order coherence correlation function g(1)(τ) for fixed τ. Repeating the
process for different values of τ, g(1)(τ) can, a priori, be reconstructed.
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Figure 1.6: Typical scheme for the Mach-Zehnder interferometer. The input,
namely Ein, is split in two and suffer a π/2 phase change. One of the
signals travels across a delayed line and both merge and admix at the second
beam splitter. After that, the output Eout is recorded at the detector and
subsequently analysed to infer g(1)(τ).

Through the Wiener-Khinchin theorem we can connect the nor-
malised spectrum of the light S(ω) and the first-order coherent func-
tion g(1)(τ) via the Fourier transform. It reads

S(ω) =
1

2π

∫ ∞

−∞
g(1)(τ)eiωτdτ , (1.49)

since, by definition, g(1)(−τ) = (g(1)(τ))∗, we can rewrite (1.49) as

S(ω) =
1
π

Re
{∫ ∞

0
g(1)(τ)eiωτdτ

}
. (1.50)

We can check the normalisation by integrating over all the frequencies

∫ ∞

−∞
S(ω)dω =

1
2π

∫ ∞

−∞

∫ ∞

−∞
g(1)(τ)eiωτdτdω , (1.51)

remembering that
∫ ∞
−∞ eiωτdω = 2πδ(τ), we finally get∫ ∞

−∞
S(ω)dω =

∫ ∞

−∞
g(1)(τ)δ(τ)dτ = g(1)(0) = 1 . (1.52)

For a single mode and assuming that the system has reached the
steady-state – implying that the signal is stationary – g(1)(τ) =
⟨a†(0)a(τ)⟩ss/⟨a†a⟩ss (the subscript ss denotes that the average is
performed on the steady-state solution). Then, the spectrum is recast
as

S(ω) =
1

π⟨a†a⟩ss
Re
{∫ ∞

0
⟨a†(0)a(τ)⟩ss eiωτdτ

}
. (1.53)

A second popular setup is the Hanbury Brown-Twiss interferometer
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Figure 1.7: Scheme of the Hanbury Brown-Twiss intensity-intensity inter-
ferometer. The signal is split and the photon clicks (counts) are recorded at
both outputs. Computing the cross-correlation of the intensities, the photon
coincidences at multiple delay times τ are obtained, which are proportional
to the second-order Glauber correlator g(2)(τ).

(shown in Fig. 1.7). The measurements here are intensity-intensity
correlations rather than amplitude-amplitude correlations. Therefore,
they are associated to the second-order coherence g(2)(τ) instead.
The same setup as the Mach-Zehnder is used but it is not necessary
to induce any delay between the two signals so that τ = 0 within
the interferometer. Splitting the signal and recording the counts at
both arms, we can measure the coincidences separated by a given
delay time τ. The second-order coherence is associated to the Glauber
correlator [2]

g(2)(t, τ) =
⟨E(−)(t)E(−)(t + τ)E(+)(t + τ)E(+)(t)⟩
⟨E(−)(t)E(+)(t)⟩⟨E(−)(t + τ)E(+)(t + τ)⟩

. (1.54)

For a single-mode and stationary fields, the photon autocorrelation
function reduces to

g(2)(τ) =
⟨a†(0)a†(τ)a(τ)a(0)⟩ss

⟨a†a⟩2
ss

, (1.55)

which is the two-time 2-photon Glauber correlator, the straightfor-
ward generalisation of Eq. (A.3). This function is also symmetric
when we change the sign of τ, i.e., g(2)(−τ) = g(2)(τ) since the co-
incidences at previous times are exactly the same as the succeeding
times, just exchanging the order of the photons (this may not be
true for cross-correlations). It is closely related to the coincidence
probability function P̃ (t, t + τ), however, it is normalised so that it
will not depend on the average population (intensity) of the signal.
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The interpretation is indeed the same. Having emitted a photon at
t = 0, the probability of detecting a second photon on the interval
(τ, τ + dτ), without specifying what happens in between, is given by
g(2)(τ)dτ. For τ → ∞, any correlation is washed out and the pho-
tons are uncorrelated, then, ⟨a†(0)a†(τ)a(τ)a(0)⟩ss → ⟨a†a⟩ss⟨a†a⟩ss
and therefore g(2)(τ → ∞) → 1. We shall properly define photon
antibunching as g(2)(0) < g(2)(τ). This is a stronger condition than
simply g(2)(0) < 1, which indicates the photon-number distribution
has Sub-Poissonian fluctuation. As such, g(2)(τ) cannot be understood
as a proper probability density given that it is a non-normalisable
function (this follows immediately from g(2)(τ → ∞) → 1) but we
will show that it is closely related to exclusive probability distribution
w(τ), called the Waiting Time Distribution (WTD), that provides the
probability density for the inter-arrival time τ between successive pho-
tons, that is, how long the second photon takes to be finally emitted.
Kim at al. derived in Ref. [22] a relation between both, which is easily
formulated in the Laplace space and reads

g̃(2)(s) =
1
R

w̃(s)
1 − w̃(s)

, (1.56)

where the tilde denote the Laplace-transformed function g̃(2)(s) =∫ ∞
0 g(2)(τ)e−sτdτ (and the same for w(τ)) and R is the emission rate

(probability per unit time to emit a photon). The inverse relation is

w̃(s) =
g̃(2)

1/R + g̃(2)
. (1.57)

We then transform w̃(s) back to the time domain. If the emission
is uncorrelated then g(2) = 1, which in the Laplace transform is
g̃(2) = 1/s. The WTD is then

w(τ) = R e−Rτ , (1.58)

where the emission rate is usually written as R = γn0, where γ is
one-photon decay rate and n0, the mean number of photons, plays
the role of the mean intensity. The WTD for an uncorrelated source
is, expectedly, an exponential distribution, which is a characteristic
feature of the Poisson process. Successive photons, though, remain
always uncorrelated and will be emitted closer together on average
as the photon rate grows. Later on, in the next Chapter, we present
physical examples of g(2)(τ) and then use Eq. (1.57) to obtain the
corresponding w(τ), which were not computed before.
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1.2.1 frequency-resolved correlations

The spectral properties of the light emitted by any dynamical system
could bring precious information about the internal mechanisms that
entangle or correlate the emission of pairs of photons (not necessarily
successive) or more generally n-photons. Apparently this was already
achieved studying the n-order Glauber correlators g(n)(t1, . . . tn) but,
aside from the luminescence spectrum (1.50), we could not deduce
how photons of frequencies ωi (from 1 to n) correlated. In 1977, Eberly
and Wódkiewicz proposed a theory to compute what they called the
physical spectrum [23], that accounts for the spectral limitations of the
photodetectors. This was subsequently applied to solve the frequency-
filtered correlations of the Resonance Fluorescence by Knöll [24, 25],
amongst other. We define the frequency-filtered field operator (for
negative frequencies)

E(+)
F (x⃗, t) ≡

∫ t

−∞
F(t − t1)E(+)(x⃗, t1) dt1 , (1.59)

that is the quantum counterpart of a filtered quantity in Signal Anal-
ysis where the original signal is convolved with the filter response
F, here in time but it could be in space too. For the purpose of our
analysis, we disregard the spatial dependence of the field and focus on
the temporal resolution. The final results shall not vary dramatically
for the cases of interest. Only the photon collection may be decreased
which is translated into a worse detection efficiency ξ. Ultimately, the
photon statistics are not affected by the amount of signal because g(n)

are normalised quantities. Aside from these details, the frequency-
resolved operator, namely ςF, has the following form in term of the
bare or (frequency) blind operator a:

ςF(t) =
∫ t

−∞
F(t − t1)a(t1)dt1 . (1.60)

and the adjoint operator is

ς†
F(t) =

∫ t

−∞
F∗(t − t1)a†(t1)dt1 , (1.61)

As yet, we have not introduced any particular filter response function
F(t). In the frequency domain, the Fourier transform of the filter
response is F̌(ω), given by

F̌(ω) =
∫ ∞

−∞
F(t)eiωtdt , (1.62)

or, inversely,

F(t) =
1

2π

∫ ∞

−∞
F̌(ω)e−iωtdω . (1.63)
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Figure 1.8: Possible scheme for the successive filters, represented here as
Fabry-Perot etalons. The signal is split after impinging each interference filter,
the transmitted (associated with the filtered operators ς) and the reflected
(identified with the complementary filtered operators ς̄) parts, assuming
there are no losses.

This defines the spectral shape of the filter which could come from a
wide range of families. The response is expected to be causal if the
filter only holds information about the past. Any realistic dynamical
system must behave in this way. The arrival of a photon towards the
filter cannot precede its emission. There are however some excep-
tions when we model the time uncertainty of the detector [26]. For
frequency-resolved correlators, each filter will be causal and then we
can extend the upper limit of the integral (1.60) to infinity.

The Lorentzian band-pass filter, for instance, has the response func-
tion

FL(t) =
Γ
2

e−(Γ/2+iω1)tθ(t) , (1.64)

where Γ is the Full Width at Half Maximum (FWHM), ω1 is the fre-
quency corresponding to the maximum position and θ(t) is the Heav-
iside step function. In the frequency domain, the filter response reads

F̌L(ω) =
Γ/2

Γ/2 + i(ω − ω1)
. (1.65)

In this case, the prefactor in (1.65) is chosen so that in the case of
an infinitely broad filter (Γ → ∞), we recover F̌L(ω) → 1, the Dirac
delta in the time domain. Then, the filtered operator converges to the
unfiltered one. Nevertheless, from the point of view of the transferred
energy, the filter can absorb and emit an infinite amount of energy
if the width Γ grows to infinity. The power spectrum is given by the
modulus squared of the filter function |F̌L(ω)|2, which reads

|F̌L(ω)|2 =
(Γ/2)2

(Γ/2)2 + (ω − ω1)2 . (1.66)

From (1.66) we find that the power spectrum is bounded between
0 and 1. We shall understand this as a measure of the probability
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to accept a photon with frequency with frequency ω. As such, any
photon with energy ω = ω1 would never be rejected (F̌L(ω1) = 1).
The main issue is that |F̌L(ω)|2 is not normalised. After integrating
over the frequencies, we find (2π)−1

∫ ∞
−∞ |F̌L(ω)|2dω = Γ/4. As the

width Γ increases, the total transferred energy (or the filtered intensity)
becomes larger and larger. An alternative choice of the prefactor is√

Γ instead of Γ/2. Then, the power spectrum is normalised but the
infinitely-wide filter goes to zero rather than yielding the unfiltered
operator back. We will keep the first definition (amplitude-normalised)
for the filter response. Another useful filter is the Lorentzian band-
stop filter. It can be seen as the complementary filter of (1.65). Its
expression is

F̌CL(ω) = 1 − F̌L(ω) =
i(ω − ω1)

Γ/2 + i(ω − ω1)
, (1.67)

and, in time domain, is

FCL(ω) = δ(t)− FL(t) . (1.68)

If we assume that the amplitude normalisation rule can be applied
for a particular

The introduction of such a
complementary field was not,
to the best of our knowledge,
previously considered in the
terms that we will now
present and that will allow
us to describe easily
stop-band filters.

filter F̌, then we are able to define the complementary
filter 1 − F̌. For such family of filters, we have the following operator

ς̄F =
∫ ∞

−∞

[
δ(t − t1)− FL(t − t1)

]
a(t1)dt1 = a(t)− ςF(t) , (1.69)

that we will call complementary-field operator. This identification makes
possible to compute not only the filtered emission, that was already
addressed by many authors, but also the rejected emission that, in
some physical situations can be useful (as we devise in Ref. [Z4]). Both
fulfil the identity a(t) = ςF(t) + ς̄F(t), that is, the total number of
photons, either accepted or rejected by the filter, is conserved. Like the
Fourier integral in Optics, the sum of the fields diffracted by an object
and a slit with the complementary shape does return the incident field.
In other words, the identity follows from the conservation of energy
and could be useful to obtain the correlators of the complementary fil-
ter F̄ from the bare and filtered correlators. This description naturally
appears in the context of the frequency-resolved Monte Carlo [27]. In
this scheme, the usual quantum-optical Monte Carlo method [28] is
extended to include the frequency-resolved dynamics. In such scheme,
one channel is clearly associated to the bare emission a and another
one to the filtered emission ςF. However, there is a third channel
identified in Ref. [27] as mixed emission. This one indeed corresponds
to the complementary-field emission ς̄F. Therefore, performing the
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Monte Carlo simulations automatically allows to simulate experimen-
tal realisations of photon detection for the bare or filtered emission,
either the Lorentzian or the complementary Lorentzian.

If we substitute in Eq. (1.60) the operator a(t) by another filtered
one ςF′ , we can obtain the doubly or second-order filtered operator
that we will call ς(2)

ς(2)(t) =
∫ ∞

−∞
F(t − t1)ςF′(t1)dt1 . (1.70)

Substituting ςF′ and inserting the Fourier integral (1.63) for both filters,
we end up with the following expression

ς(2)(t) =
∫ ∞

−∞

(
1

2π

∫ ∞

−∞
F̌(ω)F̌′(ω)e−iω(t−s)dω

)
a(s)ds . (1.71)

That is, the effective response function of the second-order filter is the
product of the filters responses in the frequency domain. For n consec-
utive filters, the same idea applies. In the Fourier space, the spectral
response is the product of the functions F̌i (for i = 1, . . . , n). However,
if the function has to be amplitude-normalised (so that it converges
to the Dirac delta), an additional prefactor has to be included. This
may lead to unphysical situations if we understand the filter response
as a physical target (such as a Fabry-Perot interferometer, also called
etalon) that accepts photons from the source. In a series of n identical
etalons (see Fig. 1.8), each one would reject or reflect some fraction
of the signal (quantified by the reflectivity 1 ≥ R ≥ 0) and then the
transmitted signal will be proportional to (1 − R)n (in absence of
absorption). The amount of filtered signal will always be less than
the incoming or unfiltered signal and is limited by the overlapping
among the spectral functions. In the context of engineering, however,
we can exploit the benefits of concatenating simpler filters to design a
higher-order filter, in particular, using Lorentzian functions (each one
with its width Γi and characteristic frequency ωi). For instance, the
non-Lorentzian filter

F̌N(ω) =

(
Γ/2

Γ/2 + i(ω − ω1)

)2

, (1.72)

that decays like ω−4, much faster than a simple Lorentzian, and is the
product of two identical Lorentzians. In this case, we shall consider
two consecutive Lorentzian filters and then we would multiply the
corresponding operator by the suitable normalisation constant and
changing their width Γ → Γ/

√√
2 − 1 so that the effective FWHM

remains Γ/2 (same as the Lorentzian). Another well-known filter is
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Figure 1.9: Squared amplitude of the four filters in question: Lorentzian (in
blue), complementary (notch) Lorentzian (in orange), double Lorentzian
(in green) and the second-order Butterworth filter (in red). The widths are
chosen so that the FWHM is identical for all of them and the filter response
at centered at zero for the sake of simplicity (ω1 = 0).

the second-order Butterworth filter

F̌B(ω) =
(Γ/2)2

(Γ/2)2 + i
√

2Γ/2(ω − ω1)− (ω − ω1)2
, (1.73)

which also decays like ω−4 but is much flatter around the maximum,
as it can be seen in Figure 1.9. The FWHM is exactly Γ/2 so it can be
compared to Lorentzian filter right away. This filter can be generated
by multiplying two Lorentzians, F̌1,L and F̌2,L, with width Γ′ = Γ/

√
2

and center frequencies ω′
1 = ω1 + Γ′/2 and ω′

2 = ω1 − Γ′/2. After
the computation, we find that there is only a missing factor 2 which
comes from the overlapping between the Lorentzian. The normalised
operator associated to F̌B is then twice the doubly-integrated operator
ς(2)(t) (choosing F̌ = F̌1,L and F̌′ = F̌2,L).

1.2.2 detected photon statistics

The properties of the photon statistics may be modified when we
include in the detection picture detrimental effects such as, for in-
stance, the time jitter and noise typical of detectors. In this Subsection,
we derive the novel theory to include both sources of uncertainty
in the detected emission (that appears in the publication [Z6]). For
instance, an antibunched signal (ideally with g(2)(0) = 0) would have
its detected photon correlations lessened if an additional count takes
place close to another one or if the timing jitter places two photons
in the same time bin. These are, in fact, unavoidable issues in most
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of the cases. In any detection scheme, typically the Hanbury Brown-
Twiss, when photon coincidences are being recorded, the detection
device plays a crucial role. The collection of single photons, with such
low intensity, requires extremely-sensitive detectors. The most used
ones in these situations are photomultiplier tubes but they have a
low quantum efficiency. For this reason, avalanche photodiodes (in
Geiger mode) are more suitable in this case. The main issue are their
slow response and their large time jitter. Another drawback that limits
the count rate is the noise contamination due to the afterpulsing,
caused by the feedback following a previous count. Alternatively, a
streak camera provides a direct observation of the series of photons
impinging on the apparatus, allowing to measure not only 2-photon
correlations but to perform real-time photon-number measurements
(improved with novel techniques such the transition edge sensors).

The first source of contamination that we under study is the noise.
The detector can indeed record counts even when there are no pho-
tons arriving to the detector. These are the well-known dark counts.
Obviously, the correlations are affected by the dark counts and can
spoil an antibunching measurement and thus thwart the true char-
acterisation of the photon source. In the same way, the origin of the
additional counts could come from the excitation source of the system,
e.g., the laser light may arrive to the detector and contaminate the
photon correlations.

We consider the total intensity operator as the sum of the source
intensity I(t) and the noise intensity I′(t) (we will not specify the
nature of the noise),

I∗(t) = I(t) + I′(t) , (1.74)

and then the 2-photon Glauber correlator is

g∗(2)(t, τ) =
⟨: I∗(t)I∗(t + τ) :⟩
⟨I∗(t)⟩⟨I∗(t + τ)⟩ , (1.75)

which for stationary signals (in the steady-state) reduces to

g∗(2)(τ) =
⟨: I∗(0)I∗(τ) :⟩

⟨I∗(0)⟩2 . (1.76)

This expression allows one to
describe exactly the impact of

uncorrelated noise, of any
type, to a quantum signal,

which is a problem of great
experimental relevance that

is otherwise dealt with
approximately.

Since the noise and the source remain uncorrelated at all times, we
can split ⟨: I(0)I′(τ) :⟩ (and the rest of the terms in the numerator) as
⟨I(0)⟩⟨I′(0)⟩. Defining the noise-to-signal ratio η ≡ ⟨I′(0)⟩/⟨I(0)⟩, we
find the noise-contaminated photon statistics in terms of the original
signal and noise correlations and the ratio η as

g∗(2)(τ) =
g(2)(τ) + 2η + η2g

′(2)(τ)

(1 + η)2 , (1.77)
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where g
′(2)(τ) = ⟨: I′(0)I′(τ) :⟩/⟨I′(0)⟩2. If the source is perfectly

antibunched, that is, g(2)(0) = 0, then the effective g∗(2) is clearly
different from zero for η > 0. For Poissonian noise (g

′(2) = 1), for
instance, g∗(2)(0) = 0.5 is reached when η =

√
2 − 1 ≈ 0.42 and tends

monotonically to one as the noise intensity increases. The random
counts due to shot noise spoils, as expected, the antibunching and
turns the total signal into a Poisson-distributed (uncorrelated) noise.
Likewise, for any bunched signal g∗(2)(0) converges to one for strong
enough noise ratios. Another kind of noise is thermal noise which
has g

′(2)(0) = 2. The correlations worsen even faster, g∗(2)(0) reaches
0.5 when η = 1/3 and make the signal uncorrelated (at the 2-photon
level) for η = 1 and get bunched for greater values. The overall effect
is more detrimental than the Poisson noise.

We can extend the computation of the total signal correlations to
the n-photon level. The zero-delay n-Glauber correlator reads

g∗(n)(0) =
n

∑
k=0

(
n
k

)
ηn−k

(1 + η)n g(k)(0) g
′(n−k)(0) , (1.78)

which, if g(n>1)(0) = 0, simplifies to

g∗(n)(0) =
ηng

′(n)(0)
(1 + η)n +

n ηn−1g
′(n−1)(0)

(1 + η)n . (1.79)

The antibunching, of course, is destroyed as the noise intensity grows.
However, Poissonian and thermal noises behave in a different way
when we go to higher orders. We compute the value of η for which
g∗(n)(0) = n!/nn (g(n) of the n-Fock state). The Poisson noise has
no analytical solution for n > 2, whereas the thermal does, it is
η = (n

n
n−1 − 1)−1. In Table 1.3 are shown some cases. Comparing both

kinds of noise, we observe that the correlators resemble (indepen-
dently of the rest) the n-photon Fock state for growing (although with
slow-paced rate) values if the noise is uncorrelated, while the thermal
noise displays the opposite trend, the antibunching gets worse, faster
as n is greater.

We consider now the time uncertainty in the detector. The cause
can be either the dead time, which is the time gap after a count in
which the detector cannot record a second one as a separated event,
or a timing jitter effect. The resulting effect is that a photon that
arrives at time t0 is recorded by the detector at t0 + t. The probability
distribution that follows time t is D2

Γ(t), where Γ is the width of the
distribution, proportional to inverse of characteristic jitter time (this is,
how long t deviates from perfect time arrival). Even though the photon
arrival time is not completely determined, we are assuming that each
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n η (poisson) η (thermal)

2 0.412 0.333

3 0.439 0.238

4 0.455 0.187

5 0.468 0.154

Table 1.3: Numerical values for the noise-to-signal ratio η that are solution of
g∗(n)(0) = n!/nn, this is, when the total signal (perfectly-antibunched signal
+ noise) reaches the g(n) of the n-photon Fock state. Two types of noise are
shown: Poissonian, with g

′(n)(0) = 1, and thermal, with g
′(n)(0) = n!.

photon is eventually detected. As a consequence, the probability
distribution must fulfil∫ ∞

−∞
D2

Γ(t)dt = 1 . (1.80)

Even if the photons are always reported, the temporal structure of the
emission is affected by the time uncertainty. We can evaluate its effect
through the spectrum of emission, as provided in Ref. [23],

S(1)
Γ (ω, T) =

1
2π

∫ ∞

−∞

∫ ∞

−∞
DΓ(T − t1)DΓ(T − t2)eiω(t2−t1)×

× ⟨a†(t1)a(t2)⟩dt1dt2 , (1.81)

where ω and T are the frequency and time at which the photons
are being detected. In the next Chapter, we will consider a particular
case, the two-level system (2LS). For the moment, we will retain the
theory as general as possible, so actually a(t) can be any single-mode
operator. We now integrate over all the frequencies Equation (1.81),
yielding

S(1)
Γ (T) =

∫ ∞

−∞
D2

Γ(T − t1)⟨a†a⟩(t1)dt1 , (1.82)

where we have used the property 2πδ(t1 − t2) =
∫ ∞
−∞ eiω(t1−t2). The

detected population is then the convolution of the jitter probability
function and the bare population. If the system has reached the steady-
state, the bare population does not depend on time, i.e., ⟨a†a⟩(t) = n0.
In that case, the detected intensity is exactly n0, which is a result
that follows from the perfect detection assumption (remembering the
normalisation of DΓ) we made. In the same way, we can apply this
formalism to the 2-photon correlator. We expect however that the
correlator is affected even in the steady-state, since it is a measure of
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the inter-arrival time between photons. The second-order correlator
of the detected signal is then

S(2)
Γ1Γ2

(ω1, T1; ω2, T2) =
1

(2π)2

∫
DΓ1(T1 − t1)DΓ1(T1 − t4)×

DΓ2(T2 − t2)DΓ2(T2 − t3)eiω1(t4−t1)eiω2(t3−t2)×
⟨T [a†(t1)a†(t2)a(t3)a(t4)]⟩dt1dt2dt3dt4 (1.83)

where the time-ordering operator T ensures that all annihilation oper-
ators are ordered in increasing time from right to left and, conversely,
the creation operators in increasing ordered from right to left and
we omitted the integration limit (from −∞ to ∞) for simplicity. Since
we might look upon photon coincidences from distinct detectors, the
widths Γ1 and Γ2 can be different. We however assume that both detec-
tors are identical so Γ1 = Γ2 = Γ for the sake of simplicity. Integrating
over the frequencies ω1 and ω2 equation (1.83), we get S(2)

Γ (T1; T2),
which reads now

S(2)
Γ (T1; T2) =

∫ ∫
D2

Γ(T1 − t1)D2
Γ(T2 − t2)×

⟨T [a†(t1)a†(t2)a(t2)a(t1)]⟩dt1dt2 . (1.84)

Notice that the correlation function that appears within the previous
integral is indeed another way to express the symmetrised version
of G(2)(t1, t2). There are two possible orderings, t1 > t2 and t2 > t1,
and we can rewrite them as a single term G(2)(t, τ) = ⟨a†(t)a†(t +
τ)a(t + τ)a(t)⟩, where t ≡ min(t1, t2) and τ ≡ |t1 − t2|, the latter
being the time delay between the photons. The detected time-resolved
second-order correlator is then written as

S(2)
Γ (T1; T2) =

∫ ∞

−∞

∫ ∞

0
G(2)(t1, τ1)[D2

Γ(T1 − t1)D2
Γ(T2 − t1 − τ1)+

D2
Γ(T1 − t1 − τ1)D2

Γ(T2 − t1)]dτ1dt1 . (1.85)

The corresponding normalised correlator simply reads

g(2)Γ (T1; T2) =
S(2)

Γ (T1; T2)

S(1)
Γ (T1)S

(1)
Γ (T2)

. (1.86)

This expression allows one to
describe exactly the impact of
jitter, of any type, to a
quantum signal, which is a
problem of great
experimental relevance that
is otherwise dealt with
approximately in terms of
simplified (Gaussian)
deconvolution. Analytical
results for the cases of most
interest are given below.

In the steady-state, time t1 is completely irrelevant and the function
does depend only on the time delay τ, i.e., G(2) = G(2)(τ). The
detected (jittered) 2-photon, consequently, would not be a function of
T1 and T2 but of the time difference τ. Finally, the jittered g(2)Γ (τ) as
function of the original g(2)(τ) and the jitter function DΓ reads

g(2)Γ (τ) =
∫ ∞

0
g(2)(τ′)

∫ ∞

−∞

[
D2

Γ(−t′ − τ′)D2
Γ(τ − τ′)+

D2
Γ(−t′)D2

Γ(τ − t′ − τ′)
]
dt′dτ′ . (1.87)
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The jittered Glauber correlator is, therefore, the original Glauber
correlator weighted by the function that only depends on DΓ and
this is completely general as long as the solution corresponds to the
steady-state. The jitter function DΓ can be, in principle, any function
describing the timing jitter response. We include now four possibilities
together with a brief discussion on their physical origin. In order to
compare them on equal footing, all the distributions must have the
same variance so that the width Γ is common to the four cases (shown
in Fig. 1.10).

(i)

(ii)

(iii)

(iv)

Heaviside

Exponential

Laplace

Gaussian

420-4 -2
0.0
0.4
0.8

0.0
0.4
0.8

0.0
0.4
0.8

0.0
0.4
0.8

Figure 1.10: The four jitter functions discussed in the text, which are (i)
Heaviside, (ii) one-sided exponential, (iii) two-side exponential (Laplace)
and (iv) Gaussian. They describe the fluctuations distribution for the detected
photon arrival time. Reproduced with permission from [Z6]. Copyright (2022)
by the APS.

First, we consider the Heaviside-like function. This describes a de-
vice which has undefined time resolution within a fixed time window,
that might correspond to a pixel of a CCD camera. It would randomly
assign any value of the time window. The jitter function in this case
reads

DΓ(t) =

√
Γ√
12

θ

(
1 − 2Γt√

12

)
θ

(
1 +

2Γt√
12

)
, (1.88)

where the nonzero region is (−
√

3/Γ,
√

3/Γ).
Another possible function is the one-sided exponential, that corre-

sponds to devices with memoryless dead time. After the collection
(when the photodetector gets excited), the triggered signal could occur
at any following time with the same probability per unit time. The
jitter function is

DΓ(t) =
√

Γθ(t)e−Γt/2 . (1.89)
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If both the triggered signal and the excitation time have memoryless
dead time, then the jitter function has to be a two-sided exponential
(also known as the Laplace distribution), which reads

DΓ(t) =

√
Γ√
2

e−Γ|t|/
√

2 . (1.90)

Unlike the previous case, the recorded arrival time can be either
greater or smaller than the original one.

Finally, we consider the normal or Gaussian distribution. There are
multiple reasons to choose this function since this type of fluctuations
may arise in several steps of the detection process, e.g, noise in the
electronics or a side effect after the photon arrival. The function has
the following expression

DΓ(t) =

√
Γ√
2π

e−(Γt/2)2
. (1.91)

To follow with the discussion we would need to specify a g(2)(τ).
The simplest example is a coherent source, such as an ideal laser,
which emits uncorrelated photons. As such, g(2)(τ) = 1 for any τ. The
resulting jitter autocorrelation functions are, in all cases, g(2)Γ (τ) = 1.
Since the photons are uncorrelated, shuffling them randomly will
not induce any additional correlations. If the 2-photon Glauber cor-
relator can be written as a sum of exponentials, this is, g(2)(τ) =
1 + ∑p lp e−λpτ (such that Re

{
λp
}

> 0), then, due to the linearity
of the integral (1.87), we can express the jitter correlator as sum
g(2)Γ (τ) = 1 + ∑p lp Ip(τ), where

Ip(τ) =
∫ ∞

0
e−λdτ1

∫ ∞

−∞

[
D2

Γ(−t1 − τ1)D2
Γ(τ − τ1)+

D2
Γ(−t1)D2

Γ(τ − t1 − τ1)
]
dt1dτ1 . (1.92)

The particular values for both the coefficients lp and the complex
exponents λp have to be computed for each system but knowing
the general expressions (1.92) beforehand allows us to automatically
obtain the jitter counterpart of g(2)(τ).

For the Heaviside jitter function (1.88), the integral (1.92) yields

I (i)
p (τ) =−Γ2e−λp τ

6λ2
p

+ θ(Γτ −
√

12)
Γ2 e−λpτ cosh

(√
12λp/Γ

)
6λ2

p
+

θ(
√

12 − Γτ)

[
e−

√
12λp/Γ Γ2 cosh

(
λpτ

)
6λ2

p
+

Γ√
3λp

−Γ2 τ

6λp

]
,

(1.93)
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while for the one-sided exponential (1.89) it is

I (ii)
p (τ) =

Γ
Γ2 − λ2

p

(
Γe−λp τ − λp e−Γ τ

)
, (1.94)

whereas the two-sided exponential (1.90) has the following expression

I (iii)
p (τ) =

1

2
(
λp +

√
2Γ
)2(

λ2
p − 2Γ2

)2{
8Γ4(2Γ2 + 2

√
2Γλp + λ2

p) e−λpτ−

Γλp
[
8Γ5τ + 4

√
2Γ4(2λpτ + 3) + 24Γ3λp−

4
√

2Γ2λ2
p(λpτ − 1)−2Γλ3

p(λpτ + 2)−
√

2λ4
p
]
e−

√
2Γτ
}

,

(1.95)

and, finally, for the Gaussian function (1.91), we have

I (iv)
p (τ) =

1
2

eλ2
p/Γ2−λpτ erfc

(
λp

Γ
−Γτ

2

)
+

1
2

eλ2
p/Γ2+λpτ erfc

(
λp

Γ
+

Γτ

2

)
,

(1.96)

where erfc(x) = 2√
π

∫ ∞
x e−t2

dt is the complementary error function.
These integrals have much simpler expressions if the delay time is
zero (τ = 0), which are

I (i)
p (0) =

√
12Γλp − Γ2(1 − e−

√
12λp/Γ)

6λ2
p

, (1.97a)

I (ii)
p (0) =

Γ
Γ + λp

, (1.97b)

I (iii)
p (0) =

Γ(4Γ +
√

2λp)

2(
√

2Γ + λp)2
, (1.97c)

I (iv)
p (0) = eλ2

p/Γ2
erfc(λp/Γ) . (1.97d)

From these last equations, we find that in the limit Γ → 0, all the cases
go to zero, that is, Ip(0) → 0. Then, the jittered Glauber correlator

simply reads g(2)Γ (0) = 1. For large time jitter 1/Γ, all the photons are
scrambled and the correlations are lost, resulting in a uncorrelated
stream of photons. On the opposite limit (Γ → ∞), when the time jitter
vanishes, all the integrals (1.97) tend to one. Therefore, as expected,
we recover the bare photon correlations.

In the next Chapter, we compute the correlations of a single-photon
emitter under for different regimes of excitation. In all the cases, the
antibunching is perfect (g(2)(0) = 0). We will then apply this theory
and discuss the effect on the antibunching induced by the time jitter.



2
L I G H T- M AT T E R I N T E R A C T I O N S

2.1 T W O - L E V E L S Y S T E M : S I N G L E - P H O T O N E M I T-
T E R

Let us introduce a system consisting of two levels, also called qubit.
The lower state is often called ground state and we identify it as
|0⟩. The corresponding energy of the ground state is ω0, however, in
order to simplify further computations, we will take this energy as
a reference for the next ones. As such, we assume, unless noticed
otherwise, that ω → ω − ω0. The excited state, denoted as |1⟩, nat-
urally has a greater energy ω1 > ω0. We define the transition or
lowering/rising operators σ = |0⟩ ⟨1| and σ† = |1⟩ ⟨0|, respectively.
Together with n̂σ = σ†σ = |1⟩ ⟨1|, which provides the probability of
being in the excited state, the state is completely specified. These three
elements form an algebra equivalent to that of the spin one half and
is often referred to as a pseudo-spin algebra (and not a spin algebra
because fermion statistics may not be obeyed among different qubits).
The transition between these two states has characteristic frequency
or energy ωσ = ω1 − ω0 and can be mediated by many different
mechanisms, which we can classify in two categories, radiative or
non-radiative. If any electromagnetic field is involved and photon
absorption or emission is taking place, then the process is radiative. If
not, it is non-radiative. The backbone of the present work is studying
the generation of light, thus, we are especially interested in the first
kind of processes. Nevertheless, neglecting the non-radiative processes
sometimes leads to inaccurate or plainly mistaken results.

A non-interacting qubit has the following Hamiltonian:

H0 = ωσσ†σ , (2.1)

and the most general description of the quantum state of the qubit is
given in terms of its density matrix

ρ = ρ00 |0⟩ ⟨0|+ ρ01 |1⟩ ⟨0|+ ρ10 |0⟩ ⟨0|+ ρ11 |1⟩ ⟨1| . (2.2)

Since the density matrix is hermitian ρ† = ρ, its matrix elements
fulfil ρji = ρ∗ij. In particular, the diagonal elements are necessarily
real. Since the probability of being in the i-th state ρii = Pi, they must

37
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be positive and the sum has to be equal to one, tr(ρ) = ∑i Pi = 1.
Alternatively, the state is represented using a regular matrix

ρ =

(
ρ00 ρ01

ρ10 ρ11

)
. (2.3)

The correlation functions that can be computed are just three and the
rest of them are zero, since σn = 0 and

(
σ†σ

)n
= σ†σ, for n > 1:

⟨σ⟩ = tr(ρσ) = ρ01 , (2.4a)

⟨σ†⟩ = tr
(

ρσ†
)
= ρ10 = ⟨σ⟩∗ , (2.4b)

⟨σ†σ⟩ = tr
(

ρσ†σ
)
= ρ11 , (2.4c)

which, together with the trace norm tr(ρ) = 1, allow us to rewrite ρ

as

ρ =

(
1 − ⟨σ†σ⟩ ⟨σ⟩∗

⟨σ⟩ ⟨σ†σ⟩

)
. (2.5)

The same kind of substitution or mapping applies to more general and
interesting systems such as qudits (with more than one excited state)
or even to infinite dimensional systems as the harmonic oscillator (see
Chapter 1).

The temporal evolution of the qubit state is given by the Liouville-
Von Neumann equation, quantum counterpart of the Liouville equa-
tion [29] or, equivalently, the Heisenberg equation [30] for the density
matrix ρ

ρ̇(t) = −i[H0, ρ(t)] , (2.6)

where ρ̇(t) is the time derivative of ρ(t). The formal solution of this
equation is ρ(t) = e−iH0tρ(0)eiH0t. This exponential factor is called
then evolution operator U(t) = e−iH0t. Applied to the matrix elements,
we get U(t) |µ⟩ ⟨ν|U†(t) = e−iωσ(µ−ν)t |µ⟩ ⟨ν| (for µ, ν = 0, 1). The
free evolution of the state adds an unitary exponential to the ket
|µ⟩ → e−iωσµt |µ⟩. In the same manner, the correlation functions have
the following expressions:

⟨σ⟩(t) = tr(ρ(t)σ) = ρ10(0) eiωσt , (2.7a)

⟨σ†⟩(t) = tr
(

ρ(t)σ†
)
= ρ01(0) e−iωσt , (2.7b)

⟨σ†σ⟩(t) = tr
(

ρ(t)σ†σ
)
= ρ11(0) . (2.7c)

As expected, without any interaction, the probabilities Pi(t) = Pi(0)
remain equal at all time t. The next step is to include interactions,
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that is, to couple the qubit (matter) to the Electromagnetic (EM) field
(light). In our level of approximation, the light-matter interaction is
well described by the dipole interaction Hamiltonian [31]. Defining

the electric dipole moment operator ˆ⃗d and the quantity d⃗ = ⟨0| ˆ⃗d |1⟩
– the dipole moment associated to this transition – we can write the
interaction Hamiltonian as

Hint = −
[
E⃗(t) · d⃗

]
σ −

[
E⃗(t) · d⃗∗

]
σ† , (2.8)

where E⃗(t) = E⃗0e−iωt + c.c is the electric field of a monochromatic
EM waves with (complex) amplitude E⃗0 and frequency ω. The next
approximation is to assume that the frequencies of the transition and
wave are close enough, i.e., ω ≈ ωσ, so that none of the remaining
levels are excited. In the interaction picture the hamiltonian is

UHintU† = −
[
E⃗(t) · d⃗

]
e−iωσtσ −

[
E⃗(t) · d⃗

]
eiωσtσ† . (2.9)

After expanding the electric field, it reads

UHintU† = −
[
(E⃗0 · d⃗) e−i(ω+ωσ)t + (E⃗∗

0 · d⃗) ei(ω−ωσ)t
]
σ + h.c. . (2.10)

The exponential with sum ω + ωσ oscillates rapidly as compared to
the other one with the difference ω − ωσ ≈ 0. Thus, we can neglect
the first term and change ωσ by ω. This approximation is known as
the Rotating Wave Approximation (RWA). Then, keeping only the term
proportional to e−iωt is E⃗(t) ≈ iωA⃗0e−iωt = E⃗0e−iωt.

With all this, the final form of the interaction Hamiltonian is

Hint ≈ −
(
E⃗0 · d⃗∗

)
e−iωtσ† −

(
E⃗∗

0 · d⃗
)
eiωtσ , (2.11)

or, introducing the abbreviated notation Ωσ = −
(
E⃗0 · d⃗∗

)
, we finally

get

Hint = Ωσe−iωtσ† + Ω∗
σeiωtσ . (2.12)

This is the light-matter interaction Hamiltonian in the electric dipole
and RWA and we assume these two approximations to be valid
all along this Thesis. In general, this Hamiltonian has the form

Hint = −E⃗(x⃗0, t) · ˆ⃗d for each emitter, placed at the position x0, that is
coupled to the EM field at this same point. The effective coupling Ωσ

is treated as a c-number instead of a quantum operator, so the theory
is semiclassical. Within the fully-quantised model, the electric field is
treated as an operator, i.e., E⃗(t) → ˆ⃗E(t) = E⃗0 a(t) + h.c., where a is a
bosonic operator associated to a specific EM mode. The full quantum
interaction Hamiltonian is then

Hint = g a†σ + g∗ σ†a , (2.13)
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where g is the coupling strength between the EM mode and the qubit.
The full system Hamiltonian, the free evolution and the interaction,
reads

H = ωa†a + ωσσ†σ + g a†σ + g∗ σ†a . (2.14)

If the operator a corresponds to a cavity mode, i.e., the system is
confined, rather than a free space mode, the model is known as the
Jaynes–Cummings model [32], that was first introduced to study
the differences between the semiclassical and quantum theories of
light-matter interactions.

With the semiclassical theory, it is only possible to explain the stimu-
lated emission and absorption of photon by atoms, nuclei or any other
matter system. It was not until the quantum nature of light was con-
sidered that the spontaneous emission was well understood. However,
some apparent contradictions may arise when combining irreversible
processes such as losing photon forever and quantum mechanics,
where the unitarity, and therefore reversibility, is a cornerstone of
the theory. A proper formulation and treatment of the problem was
correctly tackled when the open quantum system formalism [33, 34]
was introduced and subsequently applied in the quantum-optical
context. The derivation and further explanations of the formalism
can be found in Refs. [21, 35, 36]. The outline of the formalism is
that the system and the environment (reservoir), described by the
corresponding density matrix ρ, are split into parts and then the reser-
voir degrees of freedom are averaged and explicitly eliminated for
the dynamics. To simplify the computations some approximations
are usually made. For our kind of systems – the quantum-optical
ones – there are two main assumptions or approximations. Firstly,
we assume that the system and reservoir interaction is weak so that
they are disentangled at all times. This strong statement is known
as the Born approximation. In other words, the correlations between
system and reservoir are small enough to be neglected. The second
major assumption is the Markov approximation. The equation of motion,
the master equation, is then memoryless and simplifies to a regular
differential operator equation. The justification of this simplification
is similar to the previous one. The time scale of the bath-system corre-
lations compared to the dynamics of the system are short enough to
disregard any memory effect.

The master equation of a Two-Level System (2LS) coupled to a
photonic bath in thermal equilibrium is given by

ρ̇ = −i[Hσ, ρ] +
γσ

2
N̄Lσρ +

γσ

2
(N̄ + 1)Lσ† ρ , (2.15)
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where γσ is the decay rate of the emitter and N̄ is the mean number
of photons of the thermal bath. We have also introduced here the
popular notation in open quantum systems [37], the Lindblad terms
Lcρ = 2cρc† − c†cρ − ρc†c (where c is the suitable operator). The first
term represents the Hamiltonian or coherent evolution of the system.
The remaining ones, given by the Lindblad terms, are associated
to the incoherent or non-hermitian evolution. They represent the
losses and gains (or other processes) that cannot be described through
the Hamiltonian formalism. The Lindbladian Lσρ unidirectionally
connects the excited state |1⟩ to the ground state |0⟩. It explains
the irreversible decay of the qubit in presence of the environment.
Conversely, the Lindbladian Lσ† ρ links the ground state with the
excited state in the opposite direction. The thermal reservoir, like
in classical Thermodynamics, can transfer energy in both ways. A
thermal photon can be absorbed by the system and therefore get
excited. This excitation process is known as incoherent pumping.

Now, we would like to remark a few points. In the first place,
as mentioned at the beginning of the Section, the system could be
coupled not only to the EM field. The total bath could be more general.
For instance, emitters embedded in crystals usually couple to the
vibrational degrees of freedom, known as phonons. The steps can
be repeated with these different baths so that new Lindblad terms
may appear. In particular, the total decay and pumping rates may
not be γσ(N̄ + 1) and γσN̄ but something more generic. We shall
define the arbitrary rates γσ and Pσ that are not restricted by the
inequality Pσ < γσ (unlike for a free cavity mode, where Pa > γa
leads to a divergence). Anther incoherent process is pure dephasing,
given by γϕ

2 Lσ†σρ. Rather than destroy or create excitations, the effect
of dephasing is the loss of coherence, turning a pure state into a mixed
state.

In a similar way, a master equation can be derived for a cavity
mode (with bosonic operators a and a†) coupled to free-space EM field
with minimal changes. Other possibilities are exciton states in semi-
conductors, light-matter hybrid systems such as exciton-polaritons,
qubits embedded in cavities (Jaynes-Cummings or Dicke models) or
opto-mechanical systems, etc. For all of them, we end up, within the
Born-Markov approximation, with a master equation of the type

ρ̇ = Lρ = −i[H, ρ] + ∑
c

γc

2
Lcρ . (2.16)

where the superoperator L is called Liouvillian, which shapes the
evolution of the density matrix.

In the next Section, we proceed to solve the master equation,
whether looking at the elements of the density matrix or through
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the correlations between operators computed from tracing them over
the density matrix. In Chapter 1, we find that there is a complete
correspondence between the space of correlations and the Hilbert
space. Solving the problem in one basis allows us to have access to
the other.

Before continuing this discussion, an important caveat has to be
addressed. The correlation functions and the subsequent photon statis-
tics thereof all along the text refer to the bare system. Technically, the
measured quantities in an experiment comes from the detected in-
coming EM field Edet (whether the free-space field, an optical fibre
or any other device that sends the light towards the detectors). How-
ever, this alarming issue is overcome by analysing the source-field
dynamics which, in our Born-Markov approximation scenario, simply
reduces the source-field correspondence to Edet(t) = ε σ(t − r/c) [38,
39], where r is the source-detector distance and ε is a constant which
depends on the light-matter coupling and the specific geometry of
the problem, among other. So, in the end, the detected field is propor-
tional to the source delayed signal. If the distance between source and
detector is small, we can also neglect the time delay. We assume this
approximation holds hereafter.

2.2 S O LV I N G S I N G L E - P H O T O N C O R R E L AT I O N S

Under many circumstances, the dynamics of a qubit are well described
by the family of master equations presented in this previous Section.
We will use this first example to conclude our discussion about the
quantum nature of spontaneous decay of the emitter. In absence of
pumping, the master equation reads

ρ̇ = −iωσ[σ
†σ, ρ] +

γσ

2
Lσρ . (2.17)

There are several ways to proceed now. Typically, one would write
down the equations for the density matrix coefficients ρij or for the cor-
relators ⟨σ†µσν⟩ = tr

(
ρσ†µσν

)
. Taking the second path, the equations

of motion for the correlators are

d
dt
⟨σ†µσν⟩ = −

[
(µ + ν)γσ/2 − i(µ − ν)ωσ

]
⟨σ†µσν⟩ , (2.18)

whose solution is

⟨σ†µσν⟩(t) = e−
[
(µ+ν)γσ/2−i(µ−ν)ωσ

]
t⟨σ†µσν⟩(0) . (2.19)

The conservation of the trace implies that ⟨σ†0σ0⟩ = tr(ρ) = 1. The
initial condition for the correlators depend on the initial state ρ(0).
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Taking the state ρ(0) = |1⟩ ⟨1|, the initial conditions are ⟨σ†µσν⟩(0) =
δµ,ν. Then, the solution is

⟨σ†σ⟩(t) = e−γσt , (2.20)

and the rest are zero. Remembering the relations (2.4), we can recon-
struct the density matrix.

ρ(t) =

(
1 − e−γσt 0

0 e−γσt

)
. (2.21)

This is in accordance with the prediction of the semi-classical model.
The probability of being excited at any time t decays exponentially.
Ultimately, the qubit gets inevitably de-excited. The characteristic time
of the decay is inversely proportional to γσ, which is the linewidth of
the transition. In presence of pumping, either coherent or incoherent,
the final state (t → ∞) would be different. The qubit continuously
emits and absorbs photons. Thus, the system has a non-zero average
population when reaching the steady-state. The state at t → ∞ is not
ρ(t → ∞) → |0⟩ ⟨0|. We now derive what it is.

2.2.1 steady-state solution : spectra and photon statis-
tics

The most general master equation that includes losses, both coherent
(2.12) and incoherent pumping and dephasing is

ρ̇ = − i[ωσσ†σ + Ωσσ†e−iωLt + ΩσσeiωLt, ρ]+

γσ

2
Lσρ +

Pσ

2
Lσ† ρ +

γϕ

2
Lσ†σρ , (2.22)

The explicit time dependence can be removed by transforming the
system into its Rotating Frame, giving

ρ̇ = −i[∆σσ†σ + Ωσσ† + Ωσσ, ρ] +
γσ

2
Lσρ +

Pσ

2
Lσ† ρ +

γϕ

2
Lσ†σρ ,

(2.23)

where ∆σ = ωσ − ωL is the detuning between the emitter and the
laser. The correlator equations read

d
dt
⟨σ†µσν⟩ =−

[
(µ + ν)Γσ/2 − i(µ − ν)∆σ−

(µ − ν)2γϕ/2
]
⟨σ†µσν⟩+ µνPσ⟨σ†(1−µ)σ1−ν⟩+

iΩσ

[
µ + 2ν(1 − µ)

]
⟨σ†(1−µ)σν⟩−

iΩσ

[
ν + 2µ(1 − ν)

]
⟨σ†µσ1−ν⟩ , (2.24)
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where Γσ = γσ + Pσ is the effective linewidth. The incoherent pump-
ing broadens the transition. The set of linear differential equations
can be handled using vector notation. We arrange the correlators as
c⃗ = (1, ⟨σ⟩, ⟨σ†⟩, ⟨σ†σ⟩)T. Now the system of differential equations
is written as

d
dt

c⃗ = M c⃗ , (2.25)

where the matrix M is called the regression matrix and has the fol-
lowing shape

M =


0 0 0 0

−iΩσ −(Γσ + γϕ)/2 − i∆σ 0 2iΩσ

iΩσ 0 −(Γσ + γϕ)/2 + i∆σ −2iΩσ

Pσ iΩσ −iΩσ −Γσ

 .

(2.26)

The first element of c⃗ is always one and can be eliminated from the
vector. However, there are correlators connected to it. In order to
preserve this matrix element, we can include an additional vector b⃗ to
the equation. The new system of equations is then

d
dt

c⃗ = M c⃗ + b⃗ , (2.27)

with

M =

−(Γσ + γϕ)/2 − i∆σ 0 2iΩσ

0 −(Γσ + γϕ)/2 + i∆σ −2iΩσ

iΩσ −iΩσ −Γσ

 , (2.28)

and

b⃗ =

−iΩσ

iΩσ

Pσ

 . (2.29)

This kind of equation, an inhomogeneous matrix differential equa-
tion with constant coefficients, can always be formally solved as
c⃗(t) = −M−1⃗b + eMt (⃗c(0) + M−1⃗b), where M−1 denoted the matrix
inverse (we have assumed that it exist), c⃗(0) is the initial condition and
eMt is the matrix exponential. The way to deal with eMt is explained
in Chapter 3. Assuming that it vanishes at t → ∞, we find that the
steady-state correlators are given by

c⃗ss = c⃗(t → ∞) = −M−1⃗b . (2.30)
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Another and faster approach is to take the time derivative to zero
(equilibrium condition) in Eq. (2.27), which yields the algebraic linear
system Mc⃗ss + b⃗ = 0. The solution is straightforward if the matrix M
has inverse, hence, c⃗ss = −M−1⃗b.

Now we turn to computing correlators that depend on multiple
times. Although the following procedure is quite general, we will
focus on steady-state solutions (non-equilibrium scenarios fulfil the
same equations). In this regime, the initial or first time t does not
play any role given that in the steady-state there is no origin, only
time differences matter. We shall use the time intervals τi between the
i-th and (i + 1)-th events instead. The cornerstone of the following
computations is the Quantum Regression Theorem [40, 41]. Any two-
time (or n-time) correlator can be computed from the same equations
of motion for the density matrix or, equivalently, from the correlator
equations (as long as the system is coupled to Markovian baths).

As proved in Ref. [36], given a master equation (ρ̇ = Lρ), any
two-time correlator evolves in time τ as

⟨O1(0)O2(τ)O3(0)⟩ = tr
{

O2(0)eLτ
[
O3(0)ρss O1(0)

]}
, (2.31)

where ss denotes steady-state and we have fixed the initial time
at t = 0. The operators Oi are chosen so that the average (2.31) is
in fact normal-ordered. For instance, with O1 = σ†, O2 = σ and
O3 = 1, we compute G(1)(τ) = ⟨σ†(0)σ(τ)⟩. Another useful quantity
is the second-order Glauber correlator, for which we have O1 = σ†,
O2 = σ†σ and O3 = σ. Alternatively, if we identified a set of operators
ci such that their respective correlators follow the equations of motion

d
dt
⟨ci(t)⟩ = ∑

j
Mi,j⟨cj(t)⟩ , (2.32)

then, any 2-time correlator ⟨O1(0)ci(τ)O3(0)⟩ satisfies the following
equation

d
dτ

⟨O1(0)ci(τ)O3(0)⟩ = ∑
j

Mi,j⟨O1(0)cj(τ)O3(0)⟩ . (2.33)

Building a vector c⃗ = (c1, c2, . . .)T, we can rewrite Eq. (2.33) as

d
dτ

⟨O1(0)⃗c(τ)O3(0)⟩ = M⟨O1(0)⃗c(τ)O3(0)⟩ , (2.34)

where M is, again, the regression matrix. The formal solution of (2.34)
is succinctly expressed in terms of the matrix exponential as

⟨O1(0)⃗c(τ)O3(0)⟩ = eMτ⟨O1(0)⃗c(0)O3(0)⟩ . (2.35)
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The generalisation for n times immediately follows from this. For
instance, for three times, we have

⟨O1(0)O2(τ1)⃗c(τ1 + τ2)O3(τ1)O4(0)⟩ . (2.36)

Since only c⃗ depends on τ2, the rest of the correlators can be treated
constant (in time τ2). Then, the equation of motion is formally identical
to (2.34) and, mutatis mutandis, the formal solution is the same

⟨O1(0)O2(τ1)⃗c(τ1 + τ2)O3(τ1)O4(0)⟩ =
eMτ2⟨O1(0)O2(τ1)⃗c(τ1)O3(τ1)O4(0)⟩ , (2.37)

and, in turn, ⟨O1(0)O2(τ1)⃗c(τ1)O3(τ1)O4(0)⟩ has its own set of equa-
tions. Renaming c⃗ ′ = O2 c⃗ O3, then

d
dτ1

⟨O1(0)⃗c ′(τ1)O3(0)⟩ = M′⟨O1(0)⃗c ′(τ1)O3(0)⟩ . (2.38)

The matrices M and M′ are not necessarily the same because some
elements of c⃗ ′ might not be in c⃗ and vice versa. The procedure is to
start from the end, the last time τn, back-propagate to τn = 0 and
repeat for the previous time τn−1 and so on.

The two-level system is completely described by the three corre-
lators σ, σ† and σ†σ (plus the trace 1). We have already defined the
averaged correlators c⃗ = ⟨⃗c⟩ = (⟨σ⟩, ⟨σ†⟩, ⟨σ†σ⟩)T and the equation of
motion (2.27). Then, applying the Quantum Regression Theorem, we
get the equation for ⟨σ†(0)⃗cσ(0)⟩ as

d
dτ

⟨σ†(0)⃗c(τ)σ(0)⟩ = M⟨σ†(0)⃗c(τ)σ(0)⟩+ ⟨σ†σ⟩⃗b , (2.39)

which is a variant of the previous equation when there is an inhomo-
geneous term. Remembering that σ2 = σ†2 = 0, then σ†⃗cσ = 0 and
the solution of the differential equation reads

⟨σ†(0)⃗c(τ)σ(0)⟩ = −⟨σ†σ⟩
(
1− eMτ

)(
M−1⃗b

)
= ⟨σ†σ⟩

(
1− eMτ

)⃗
css .

(2.40)

One remarkable feature of this solution is that ⟨σ†(0)⃗c(0)σ(0)⟩ =
0, hence G(2)(0) = 0 for any possible matrix M. This may not be
surprising given that any state spanned by |0⟩ and |1⟩ has all g(n)(0) =
0. The non-zero delay Glauber correlators is given by

⟨σ†(0)σ†(τ)σ(τ)σ(0)⟩ =
[
⟨σ†σ⟩

(
1 − eMτ

)⃗
css

]
3
=

= ⟨σ†σ⟩2 − ⟨σ†σ⟩
[
eMτ c⃗ss

]
3

(2.41)
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where []i denotes the i-th element of the vector. Assuming that the
matrix M has an eigenvalue decomposition, i.e., M = EDE−1, where
E is a matrix whose columns are the eigenvectors and D is a diagonal
matrix with the eigenvalues λi. The matrix exponential then has
simple form eMτ = EeDτE−1. After expanding the matrix product, we
can rearrange the equation, now yielding

⟨σ†(0)σ†(τ)σ(τ)σ(0)⟩ = ⟨σ†σ⟩2 + ⟨σ†σ⟩
3

∑
p=1

lp eλp (2.42)

where lp = ∑3
q=1(E)3,p(E−1)p,q(−c⃗ss)q. Therefore, we find

g(2)(τ) =
⟨σ†(0)σ†(τ)σ(τ)σ(0)⟩

⟨σ†σ⟩2 = 1 +
1

⟨σ†σ⟩

3

∑
p=1

lp eλpτ . (2.43)

In a similar way, we obtain g(1)(τ)

g(1)(τ) =
⟨σ†(0)σ(τ)⟩

⟨σ†σ⟩ =
|⟨σ⟩|2
⟨σ†σ⟩ −

1
⟨σ†σ⟩

3

∑
p=1

lp eλpτ , (2.44)

where lp = ∑3
q=1(E)1,p(E−1)p,q (⃗vss)q and

v⃗ss = ⟨σ†⃗c⟩ − ⟨σ† ⟩⃗css =

⟨σ†σ⟩ − |⟨σ⟩|2

−⟨σ†⟩2

−⟨σ†⟩⟨σ†σ⟩

 . (2.45)

The spectrum (1.53) is then

S(ω) =
1

π⟨σ†σ⟩ Re

{∫ ∞

0

(
|⟨σ⟩|2 +

3

∑
p=1

lp eλpτ
)
eiωτdτ

}
. (2.46)

If we split lp and λp into their real and imaginary part as lp = Lp + iKp
and λp = −γp/2 − iωp (the real part gives the width of the transition
γp and the imaginary part, the frequency of the transition), then the
spectrum reads [42]

S(ω) =
|⟨σ⟩|2
⟨σ†σ⟩δ(ω) +

1
π⟨σ†σ⟩ ∑

p

(
Lp

γp/2
(γp/2)2 + (ω − ωp)2−

Kp
ω − ωp

(γp/2)2 + (ω − ωp)2

)
, (2.47)

The spectrum is split into two parts, the coherent (Rayleigh) scattering
that has an infinitely narrow shape and the incoherent (fluorescence)
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part which consists of the sum of Lorentzian profiles (proportional
to Lp) and, secondly, the dispersive parts (proportional to Kp). The
origin of these are different. The first one corresponds to the elastic
scattering by the emitter of the laser (if there is any). Since the photons
are not absorbed, the lineshape is inherited from the source (an ideal
laser would have an infinitely narrow linewidth). The second one,
conversely, comes from the absorption and subsequent emission of the
photons. It depends on the dynamics of the emitter and its interaction
with the EM field. Since we are in the Rotating Frame of the laser,
the Fourier transform is rigidly displaced as ω → ω − ωL. Then, the
Dirac delta is actually centered at ω = ωL.

Having the regression matrix (2.26), the steady-state of the 2LS
system is

c⃗ss =



2i(2Pσ − Γσ)(Γσ + γϕ − 2i∆σ)Ωσ[
Γσ(Γσ + γϕ)2 + 4∆2

σ

]
+ 8(Γσ + γϕ)Ω2

σ

−
2i(2Pσ − Γσ)(Γσ + γϕ + 2i∆σ)Ωσ[

Γσ(Γσ + γϕ)2 + 4∆2
σ

]
+ 8(Γσ + γϕ)Ω2

σ

Pσ

[
(Γσ + γϕ)2 + 4∆2

σ

]
+ 4(Γσ + γϕ)Ω2

σ[
Γσ(Γσ + γϕ)2 + 4∆2

σ

]
+ 8(Γσ + γϕ)Ω2

σ


, (2.48)

which is the most general solution within our level of approximation.

We however consider two special cases, the incoherent 2LS (Ωσ =
∆σ = γϕ = 0) and the coherent 2LS (Pσ = γϕ = 0). For the first case,
the correlators reduce to

c⃗ss =

 0
0
Pσ
Γσ

 , (2.49)

and the regression matrix is completely diagonal with eigenvalues
λ = (−Γσ/2,−Γσ/2,−Γσ). The computation of the spectrum and
g(2)(τ) is straightforward. The coefficients lp are

l1,2 = 0 , l3 =
Pσ

Γσ
, (2.50)

so that it yields

g(2)Pσ
(τ) = 1 − e−Γσ τ . (2.51)

The Glauber correlator displays perfect antibunching since g(2)(0) = 0
and g(2)(0) < g(2)(τ). The coherence time, that is, the characteristic
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time in which the anticorrelation is still strong, is proportional to
1/Γσ. For huge values of Pσ, the intensity ⟨σ†σ⟩ grows but, on the
contrary, the coherence time decreases and photons are more likely to
be emitted closer in time.

On the other hand, the coefficients lp are

l1 =
Pσ

Γσ
, l2,3 = 0 . (2.52)

Hence, the luminescence spectrum of the incoherent 2LS is

SPσ(ω) =
1
π

Γσ/2
(Γσ/2)2 + ω2 . (2.53)

The spectrum is simply a Lorentzian centered at the frequency of the
emitter. Its effective width is Γσ = γσ + Pσ, so the incoherent pumping
is broadening the emission (as compared to spontaneous emission).

The next case is the two-level system driven by a laser (of frequency
ωL). The regression matrix is not diagonal any more. We obtain the
eigenvalues from the characteristic polynomial which is cubic in this
case. The roots with detuning ∆σ are given in Appendix A.5. We
reproduce here the case when the emitter is driven at resonance
∆σ = 0. Then, the eigenvalues are

λ1 = −γσ , λ2,3 = −3γσ

4
∓ γM , (2.54)

where γM = 1
4

√
γ2

σ − 64Ω2
σ. Unlike the incoherent 2LS, depending on

the range of parameters, the behaviour of the correlators qualitatively
change. The eigenvalues undergo a transition when Ωσ = γσ/8.
For Ωσ < γσ/8, all eigenvalues are real while, conversely, above
this threshold two of the roots have non-zero imaginary part since
γM = iΩ+ where Ω+ = 1

4

√
64Ω2

σ − γ2
σ and which, as compared to

the Rabi case, can be called Mollow splitting. In Appendix A.5, a more
general condition for the transition is given together with the general
Mollow splitting. The steady-state solution is

c⃗ss =


− 2iΩσ

γ2
σ+8Ω2

σ
2iΩσ

γ2
σ+8Ω2

σ
4Ω2

σ

γ2
σ+8Ω2

σ

 . (2.55)

The coefficients lp are

l1 = 0 , l2,3 = − 2Ω2
σ

γ2
σ + 8Ω2

σ

(
1 ∓ 3γσ

8γM

)
, (2.56)
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so the second-order Glauber correlator is

g(2)Ωσ
(τ) = 1 − e−

3γσ
4 τ

[
cosh(γMτ) +

3γσ

24γM
sinh(γMτ)

]
. (2.57)

The coefficients lp are

l1 =
2Ω2

σ

γ2
σ + 8Ω2

σ
, l2,3 = ±γ2

σΩ2
σ(γσ ∓ 4γM)∓ 8Ω4

σ(4γM ∓ 5γσ)

4γM(γ2
σ + 8Ω2

σ)
2 .

(2.58)

After computing the coefficients Lp and Kp, we obtain for both regimes
the following spectrum

SΩσ
(ω) =

γ2
σ

γ2
σ + Ω2

σ
δ(ω)+

1
π

32γσΩ2
σ(γ

2
σ + 2Ω2

σ + ω2)

(γ2
σ + 4ω2)

[
γ4

σ + γ2
σ(5ω2 + 16Ω2

σ) + 4(ω2 − 4Ω2
σ)

2
] .

(2.59)

This is the spectrum of resonance fluorescence, that was first provided
by Mollow [43].

Now that we have the emission spectrum and the 2-photon Glauber
correlator in our hands, we can analyse both regimes and find the
differences. The spectrum in the limit of weak driving (Ωσ ≪ γσ) can
be approximated as

SΩσ
(ω) ≈

(
1 − 8Ω2

σ

γ2
σ

)
δ(ω) +

8Ω2
σ

γ2
σ

4γ3
σ

π(γ2
σ + 4ω2)2 , (2.60)

and g(2)(τ) as

g(2)Ωσ
(τ) ≈ (1 − e−γσ/2 τ)2 . (2.61)

On the other hand, when the driving strength is large (Ωσ ≫ γσ), we
find

SΩσ
(ω) ≈ 1

π

(
γσ

γ2
σ + 4ω2 +

3γσ

9γ2
σ + 16(ω − 2Ωσ)2+

3γσ

9γ2
σ + 16(ω + 2Ωσ)2

)
, (2.62)

and

g(2)Ωσ
(τ) ≈ 1 − e−

3γσ
4 τ cos(2Ωσ τ) . (2.63)



2.2 solving single-photon correlations 51

Another property derived from the autocorrelation function g(2)(τ)
is the waiting time distribution w(τ), already defined in Eq. (1.57).
We start by computing w(τ) for the incoherent 2LS. The emission rate
is then R = γσnσ = γσPσ/Γσ (where nσ = ⟨σ†σ⟩). After inverting the
Laplace transform, we get the WTD for the incoherently-driven 2LS as

Although immediate results
from Eq. (1.57), the waiting
time distributions for the
2LS system under coherent
and incoherent drivings, and
their derived results like
Eqs. (2.66), appear to be
original results not found in
the literature.

winc(τ) =
γσPσ

γσ − Pσ

(
e−Pστ − e−γστ

)
, (2.64)

while the coherent counterpart, with counting rate R = 4γσΩσ

γ2
σ+8Ω2

σ
, is

wcoh(τ) =
γσΩ2

σ

γ2
M

e−γτ/2 sinh2(γMτ) . (2.65)

As a consequence of the antibunching the initial value of the WTDs
is w(0) = 0 (as we can see in Fig. 2.1). The most likely value is
around γστ ≈ − log

(
np

σ

)
, where p = 1 for the incoherent case and

p = 2 for the coherent one, that becomes exact for nσ → 0. For
stronger intensities, above the transition, wcoh(τ), like g(2)(τ), exhibits
oscillations due to the laser-atom dressing. From these distributions

0 10 20 30 40 50 60 70
0.00

0.01

0.02

0.03

0.04

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0 (i)

inc
coh

inc

coh

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5

(ii)

inc

coh

coh
inc

(iii)

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

(iv)

Figure 2.1: Pairwise photon correlations, non-exclusive (g(2)(τ)) on the first
row and exclusive (w(τ)) on the second one, for different types of pumping
(incoherent driving in blue and coherent driving in red). Pumping rates
are fixed so that in both cases the amount of photons per unit time is
identical. On the left-hand side, the emission rate is low (nσ = 0.05) while
the remaining column correspond to the high population (nσ = 0.45).
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we can compute the mean and variance of inter-arrival time, ⟨τ⟩ and
(∆τ)2 = ⟨τ2⟩ − ⟨τ⟩2, respectively. The mean time is then

⟨τ⟩inc =
1
Pσ

+
1

γσ
= (γσnσ)

−1 , (2.66a)

⟨τ⟩coh =
2

γσ
+

γσ

4Ω2
σ
= (γσnσ)

−1 , (2.66b)

(2.66c)

which are both equal to the inverse of the emission rate as expected.
In order to compare both cases, incoherent and coherent 2LS’s, we
parametrise the pumping rates Pσ and Ωσ in terms of the population
nσ, i.e.,

Pσ =
γσnσ

1 − nσ
, (2.67)

where the population runs from 0 to 1 in this case and

Ωσ =

√
γ2

σnσ

4(1 − 2nσ)
, (2.68)

where the population has to fulfil 0 < nσ < 1/2. The time variance is

(∆τ)2
inc = ⟨τ⟩2

inc
[
1 + 2nσ(nσ − 1)

]
, (2.69a)

(∆τ)2
coh = ⟨τ⟩2

coh
[
1 + 6nσ(2nσ − 1)

]
. (2.69b)

The photon arrival time variance, conveniently normalised to the
mean squared, shows two maxima at the (open) boundaries that
would correspond to (∆τ)2 = ⟨τ⟩2. For nσ → 0, the excited level has
very small chances to get populated, entailing that the photon flux is
extremely small so the mean time between them is huge compared
to the correlation time (proportional to γσ). The second limit nσ → 1
implies an infinite amount of energy and cannot be approached. In
between, we find a minimum, which is located exactly at the midpoint
of interval, nσ = 1/2 for (∆τ)2

inc and nσ = 1/4 for (∆τ)2
coh. At half

the available population, the deviation from the Poisson process is
maximum.

Since we have the expressions for the 2-photon correlations for
the 2LS under incoherent (2.51) and coherent (2.57) excitation, we
are able to apply the detection theory (excluding frequency filtering,
that will be addressed later on) and discuss the photon statistics of
a single-photon emitter. We take the corresponding exponents λp

and coefficients lp and compute the sum g(2)Γ (τ) = 1 + ∑p lpI (i)
p (τ)
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Figure 2.2: Detected photon correlations for the incoherently driven 2LS.
(a) Time dependent 2-photon Glauber correlator considering the four jitter
functions discussed in the text: (i) Heaviside, (ii) Exponential, (iii) Laplace
and (iv) Gaussian. The black contours represent the isolines g(2)Γ,Pσ

(τ) = 0.9.
(b) Zero delay correlation as a function of jitter characteristic time width. The
pumping rate is taken to be vanished (Pσ → 0). Adapted with permission
from [Z6]. Copyright (2022) by the APS.

for any of the jitter functions: (i) Heaviside, (ii) One-sided exponen-
tial, (iii) Two-sided exponential or Laplace and (iv) Gaussian, whose
expressions are found in the previous Chapter. The immediate and
most noticeable effect of the time jitter is the spoilt photon statistics,
which results in g(2)Γ ̸= 0. When the time width is small (1/Γ → 0),
the jitter disappears and perfect antibunching recovered. For big jitter
(1/Γ → ∞) the effective photon statistics are Poissonian (uncorre-
lated), as the large time uncertainty completely randomises the arrival
time of the photons. In Figs. 2.2 and 2.3 the incoherent and coherent
cases (both the weak and strong driving regimes) are shown, respec-
tively. The more detrimental functions are the Heaviside and Gaussian
functions, followed by the Laplace distribution and, lastly, the one-
sided exponential. It turns out that the flatness of these distributions,
which scrambles more photons in a short time scale, affects more
the statistics than the fatter tails of exponential distributions, that are
more likely to return larger deviations. The Heitler regime is more
resilient to losing its statistical properties than the Mollow regime. In
the middle we find the incoherently-driven 2LS. The coherence time
of the first one is the greatest of the three, so it is less likely to find
photons in the same time interval than the incoherent case (even with
the same intensity). The Mollow case, on the other hand, displays not
only shorter coherence times but has laser-induced oscillations. This
explain its fragility under time disordering.
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Figure 2.3: Detected photon correlations for the coherently driven 2LS. Zero
delay correlation as a function of jitter characteristic time width for the
Heitler case (solid bluish lines) and the Mollow regime (dashed reddish lines),
superimposed with the incoherently driven 2LS (shown in the previous
figure). Adapted with permission from [Z6]. Copyright (2022) by the APS.

The behaviour and shape of all these quantities is completely dif-
ferent in these limits.

This calculation of the impact
of jitter on the emission of a
2LS highlights at least two
important results:

i the availability of
closed-form formulas
(obtained in the
previous chapter) to
describe the loss of
antibunching exactly
as opposed to
approximate
deconvolution
procedures.

ii the fundamental
differences brought by
the type of driving,
with the Heitler
regime being the more
robust one.

For weak intensities (Heitler regime, studied in
Ref. [44]), the spectrum is dominated by the coherent scattering and
the incoherent contribution has a non-Lorentzian profile (it decays as
ω−4 and is thus narrower). Although the resonance fluorescence (inco-
herent) fraction seems to be negligible compared to the scattered laser
light, it is the interplay (interference) between these processes what
actually yields the properties of the two-level system [45] (extended
to detuning and dephasing in Ref. [46]). As devised in Ref. [45], we
can split the two components of the signal (coherent + incoherent)
directly at the operator level, that is, σ = ⟨σ⟩+ δσ (mean field and
fluctuations). The absence of either contribution results in photon
statistics different from g(n)(0) = 0, for n ≥ 2. The fluctuations com-
prise photon processes of all orders due to the non-linear nature of
the emitter. At low intensities, however, the two-photon scattering is
dominant. This is confirmed by inspecting the squeezing properties
of the fluctuations. In fact the Wigner representation of the state is
well approximated by a displaced squeezed thermal state [47]. We
can see that by first computing the exact expression. The Wigner
representation [48–50] applied to any photonic state generated by the
2LS yields

Wσ(x, p) = ρ0,0W0,0(x, p) + ρ0,1W0,1(x, p)+
ρ1,0W1,0(x, p) + ρ1,1W1,1(x, p) , (2.70)
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where x and p are the average values of the electric field operators
x̂ = (a† + a)/

√
2 and p̂ = i(a† − a)/

√
2. In terms of the correlators it

is written as

Wσ(x, p) =
(
1 − ⟨σ†σ⟩

)
W0,0(x, p) + ⟨σ⟩W0,1(x, p)+

⟨σ⟩∗W1,0(x, p) + ⟨σ†σ⟩W1,1(x, p) , (2.71)

where the functions Wn,m are the Wigner representation of the matrix
elements |m⟩ ⟨n| corresponding for the Harmonic Oscillator (equiv-
alent to a single bosonic mode), as defined in [49], whose explicit
expressions are

W0,0(x, p) =
1
π

e−(x2+p2) , (2.72)

W1,0(x, p) =
1
π

√
2(x + i p)e−(x2+p2) =

[
W0,1(x, p)

]∗ , (2.73)

W1,1(x, p) =
1
π
(2x2 + 2p2 − 1)e−(x2+p2) , (2.74)

(2.75)

and the correlators are given in Eq. (2.55). As shown in Fig. 2.4,
the Wigner function starts being a Gaussian distribution slightly
displaced from the center (the displacement is precisely

√
2 Im{⟨σ⟩})

and exhibiting a small degree of squeezing, so that the resulting shape
of the distribution is elliptical rather than round (symmetrical). We
can then compare the state with the Gaussian displaced squeezed
thermal state [51]. The approximate parameters, expanding W up to

second order, are α = − 2
√

2Ωσ
γσ

and r = − 4Ω2
σ

γ2
σ

(the minus sign indicates
that the squeezing angle as to be θ = π rather than θ = 0). Around
the transient regime, the shape is asymmetric and non-convex, that
are characteristics of non-Gaussian states which, in turn, is linked to
the non-classicality of the state [52]. Far above the threshold, the state
is centered again and displays a ring-like shape. The state is in fact a
balanced mixture of |0⟩ and |1⟩, that is, ρ ≈ 1

2

(
|0⟩ ⟨0|+ |1⟩ ⟨1|

)
.

We can also compare the Heitler regime with the incoherent case
when Pσ → 0. The dynamics of the incoherent 2LS when the pumping
is small resembles the spontaneous emission. The reloading time after
the first photon is emitted, is much longer than the decay time, so
each photon does not get disturbed by the others. In contrast, in
the Heitler regime, photons result from the two processes and it is
the interference between both that produces the antibunching for
the the total emission. The luminescence spectrum is much richer.
The incoherent part has got a non-Lorentzian profile considerably
narrower than for the incoherent case. The coherence time of g(2)(τ)



56 light-matter interactions

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Figure 2.4: Wigner representation of the coherently-driven 2LS for low (left),
intermediate (center) and strong (right) driving. The white dashed curves
correspond to the isolines Wσ = 0.05.

is longer too. It takes τ ≈ 0.69/γσ for the incoherent 2LS to reach
g(2)(τ) = 1/2, while this same point is reached at τ ≈ 2.45/γσ for the
coherent case. The regime when Ωσ > γσ/8 can be called the Mollow
regime. The spectrum displays the distinctive triplet shape, one cen-
tral peaks (with the greatest intensity) and two satellites or side-peaks
centered at ω = ±Ω+. The second-order coherence function does
not grow monotonically to 1 but exhibits an oscillatory behaviour
(whose characteristic frequency is Ω+). The energy level structure
that explains this transition was given by Cohen-Tannoudji and Rey-
noud [53], presenting a dressed-state picture where the eigenstates of
the system are laser-atom (laser-qubit) hybrids, that is, |±⟩. Since the
laser field has an infinite number of states, our new light-matter cou-
pled level structure is an infinite ladder of this kind of states |n, ±⟩.
The splitting between the levels of the same manifold n is precisely
Ω+. The four allowed transitions between two consecutive manifolds
are |+⟩ → |+⟩, |−⟩ → |−⟩, |+⟩ → |−⟩ and |−⟩ → |+⟩. The first two
are degenerated, i.e., the transition frequency is exactly ωL (zero in
the Rotating frame) and hence both contribute to the central peak that
has twice the intensity. The last two have the energies ωL ± Ω+ (±Ω+

in the rotating frame), respectively and they give rise to the satel-
lites. When the laser is strong enough, the elastically scattered light
is negligible and the emission is dominated by these processes. The
fluctuations is this limiting case do shown g(2)(0) = 0 without any
interference mechanism involved. In this limit, the dispersive part Kp
vanish and the spectrum is exactly represented by three Lorentzians.
More interesting underlying properties that reveal the rich and vast
landscape within this system, deceptively called simple, are found
through the study of its frequency-resolved correlations [54]. If we
directly start from the integrated filtered operators, the computa-
tion of these quantities would be incredibly hard and limited to a
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scarce amount of cases, such as the spontaneous emission of dots and
cavities free of any external driving. Although they may look irrele-
vant, we will develop an interesting theory around it which allows to
understand and apprehend the effects of frequency-filtering on the
photo-detection (see Chapter 4). For other situations, we shall follow
an alternative path. Those complicated integrals can be substituted
by a physical entity that we call a sensor and whose correlators are
equivalent to them. The sensor operators, independently of the nature
of the system (2LS or cavity), are indeed the filtered operators ς and
ς† (up to a constant, see Appendix A.4). The sensor is coupled either
though a vanishing coherent coupling (ϵ(σ†ς + h.c.), with ϵ → 0), as
originally proposed in Ref. [55], or though unidirectional coupling
(cascade formalism, employed in Refs. [5] and [56]), used to develop
the frequency-resolved Monte Carlo technique [27]. We will outline
the procedure followed in the original case that served as the main
inspiration and also as an example of the perturbational approach
that we describe in the next Chapter.

2.2.2 beyond the two-level system

Until now we have considered only the simplest but most paradig-
matic single-photon emitter: a system with just two levels. This auto-
matically ensures that bare correlations (without detection) are always
g(n)(0) = 0. However, the single photon generation is not restricted
to such types of systems or sometimes this level of approximation
is not enough to faithfully describe the dynamics. We shall update
the system to allow a more complex structure. In semiconductor
quantum dots, the excitation ladder consists of a fundamental state
with no excitons |0⟩, then single-exciton levels |Xi⟩ (i = H, V, for the
different polarisations) and, on top, the two-exciton or biexciton state
|2X⟩. More energetic states are discarded. The vertical and horizontal
exciton levels, namely |XV⟩ and |XH⟩, are slightly detuned due to
the fine structure [57] and the interaction between the two excitons
produces the biexciton bound state (whose binding energy −Eb), with
less energy than the sum of the exciton energies.

The decay processes link the biexciton |2X⟩ to intermediate states
|XH,V⟩ and these to the ground state |0⟩. We could eliminate the
degeneracy between the horizontal and vertical transitions. The biex-
citon, ignoring the small fine structure splitting, de-excites to any of
them. With an ultrafast laser pulse tuned to half the biexciton energy
(two-photon excitation) the upper level gets excited. Then, after some
free evolution, there is a second (polarised) pulse resonant with the
transition |2X⟩ ↔ |XH⟩ that allows to eliminate the other decay chan-
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Figure 2.5: (a) Level structure of an excitonic system. The decay processes
are represented by the dotted arrows while the solid arrows denote the laser-
induced transitions. (b) Numerical simulation of the system. The population
of the biexciton and exciton with the stimulation pulse starting at t = 0.2τX

(τx is the lifetime of the exciton) are given by the solid lines while the
case without the second laser pulse are represented by the dashed lines.
(c) and (d) display the time-integrated second-order coherence function
and the indistinguishability as a function of delay between the pulses (the
black dashed line corresponds to 2LS with the same pulse). Adapted with
permission from [Z5]. Copyright (2022) by the APS.

nel and populate only the desired exciton state through stimulated
de-excitation. The system then naturally decays into the ground state,
emitting a single photon in the process. The combination of the 2-
photon excitation of the biexciton and the resonant excitation brings
together two highly sought features for the single photon emission:
good single-photon purity (strong antibunching) and high indistin-
guishability, measured by the Hong-Ou-Mandel (HOM) visibility [58].
The first ensures strong suppression of more-than-one photon events,
while the second confirms the degree of monochromaticity of the
source. In addition, the resulting brightness (how likely it is to emit
and detect the photon) is much greater than in other schemes.
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The system reduces to a three level system (we drop the label H
from now on). We shall demonstrate the validity of the model by
solving the Hamiltonian dynamics (no lossy treatment is needed to
prove it). The 3-level system Hamiltonian is the following

H = ωX |X⟩ ⟨X|+ (2ωX − Eb) |2X⟩ ⟨2X|+
Ωx(t)e−iωLt(|X⟩ ⟨0|+ |2X⟩ ⟨X|) + h.c. , (2.76)

where ωX is the exciton energy, Eb the binding energy and the laser
frequency matches the condition ωL = ωX − Eb/2. We assume that
the pulse Ωx(t) is square, so it remain constant until t = T and, after
that, the laser is switched off. In the Rotating Frame, the Hamiltonian
reads, now in matrix form:

H =

 0 Ωx 0
Ωx Eb/2 Ωx

0 Ωx 0

 . (2.77)

The initial state is assumed to be |ψ(0)⟩ = |0⟩. The dynamics of the
state is given in terms of the time evolution operator U(t) yielding
|ψ(t)⟩ = U(t) |ψ(0)⟩ = e−iHt |ψ(0)⟩. Using the eigenvalue decomposi-
tion (the matrix is hermitian, therefore such a decomposition always
exists), we write the Hamiltonian matrix as H = EDE−1 and then
the evolution operator as U(t) = Ee−iDtE−1, where D is the diagonal
matrix of the eigenvalues and E the eigenvector matrix. The state is
then expressed as a superimposition of excitonic states as

|ψ(t)⟩ = c1(t) |0⟩+ c2(t) |X⟩+ c3(t) |2X⟩ , (2.78)

where the coefficients ci(t) are found by projecting the eigenvectors
of U onto the exciton states. That is, ci(t) = ∑3

p=1 ci,pe−iϵpt, where
ci,p = Ei,p(E−1c(0))p and ci(0) = δi,1. The eigenvalues are

ϵ1 = 0 , ϵ2,3 =
1
4

(
Eb ∓

√
E2

b + 32Ω2
x

)
, (2.79)

and the coefficients can be found in Table 2.1.

The population of each state, following the Born rule, is then

P0(t) = |c1(t)|2 , PX(t) = |c2(t)|2 , P2X(t) = |c3(t)|2 , (2.80)

where PX(t) has particularly a simple expression for any set of pa-
rameters:

PX(t) =
16Ω2

x

E2
b + 32Ω2

x
sin2

(
t
4

√
E2

b + 32Ω2
x

)
. (2.81)
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❍❍❍
❍❍❍❍i

p
1 2 3

1 1/2 1
4

(
1 + Eb√

E2
b+32Ω2

x

)
1
4

(
1 − Eb√

E2
b+32Ω2

x

)
2 0 − 2Ωx√

E2
b+32Ω2

x

2Ωx√
E2

b+32Ω2
x

3 −1/2 1
4

(
1 + Eb√

E2
b+32Ω2

x

)
1
4

(
1 − Eb√

E2
b+32Ω2

x

)
Table 2.1: Coefficients ci,p that appear in the expressions of ci(t), that go
together with the exponentials e−iϵpt, where ϵp are the eigenenergies of the
Hamiltonian.

Under weak driving, i.e., Ωx ≪ Eb, the population of |X⟩ goes to zero
at any time whereas the ground and biexciton states display Rabi
oscillations, with frequency Ω(2)

x ≡ 2Ω2
x/Eb, as if the intermediate

state did not exist:

P0(t) ≈ cos2
(

Ω(2)
x t
)

, PX(t) ≈ 0 , P2X(t) = sin2
(

Ω(2)
x t
)

. (2.82)

These equations justify the
two-photon approximation

for an emitter of
experimental relevance that
goes beyond the 2LS. Based

on the underlying theoretical
picture, highly

indistinguishable bright and
pure single-photon emission

could be demonstrated
experimentally.

So that with a π-pulse, that is, T = π/(2Ω(2)
x ), the higher state gets

a population equal to one. This justifies the two-photon excitation
approximation that directly couples the ground and biexciton states.
The effective Hamiltonian in the rotating frame then read

H =
[Ωe(t)]2

2Eb
(|0⟩ ⟨2X|+ h.c) +

Ωs(t)
2

(|X⟩ ⟨2X|+ h.c) , (2.83)

where Ωe,s(t) are the time-dependent amplitude of the excitation
and stimulation lasers, respectively, that define the profile of the
pulses. The excitation and stimulation times are expected to be much
smaller than the decay times of the exciton and biexciton, τX and τ2X,
respectively. Adding to the model the radiative decay of the exciton
states and performing the numerical simulation, validates the two
pulses scheme (see Figure 2.5). We find a near-unity population P2X
right after the first pulse. The biexciton starts to de-excite and the
single-exciton level contribution grows due to spontaneous emission
(the dashed lines show the natural decay in absence of the stimulation
pulse) and when the second pulse takes place, after a given time delay,
P2X goes to zero and the population is transferred to |XH⟩. Ultimately,
the exciton de-excites and emits a single photon. The purity of the
single-photon emission is quantified using the time-integrated second-
order Glauber correlator [59], that has the following expression:

g̃(2)(0) =
2
∫ T

0

∫ T
0 dtdτ⟨a†(t)a†(t + τ)a(t + τ)a(t)⟩( ∫ T

0 dt⟨a†(t)a(t)⟩
)2 , (2.84)
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Figure 2.6: Experimental realisation of the scheme. (a) Autocorrelation his-
togram of the exciton emission after th stimulation pulse took place. b)
Correlation histogram of the exciton emission measured with an unbalanced
Mach-Zehnder interferometer. (c) HOM visibility of the exciton emission as
a function of the stimulation pulse delay. The dashed line marks the HOM
visibility without the stimulation pulse. Adapted with permission from [Z5].
Copyright (2022) by the APS.

where T is the time window of integration and the indistinguishability
is measured through the HOM visibility

VHOM = |g̃(1)(0)|2 =
2
∫ T

0

∫ T
0 dtdτ|⟨a†(t + τ)a(t)⟩|2( ∫ T

0 dt⟨a†(t)a(t)⟩
)2 . (2.85)

The indistinguishability as a function of the delay between the
pulses grows from 62.0%, that is the limit arising from the two-photon
cascade (given by the ratio γ2X/(γX + γ2X), that compares decay
of the first photon to the whole two-photon cascaded emission), up
to 99.4% induced by the stimulation of the second pulse. Then, for
greater delays, the visibility decreases until it reaches a minimum
around 1.4τX. The stimulation laser backfires scheme and the biex-
citon turns out to be partially re-excited. For even longer delay, the
indistinguishability asymptotically goes to the initial value. The 2-
photon correlator g̃(2)(0) remain two orders of magnitude lower than
the 2LS threshold in the same ranges. This theoretical proposal was
experimentally confirmed with a semiconductor InGaAs quantum dot.
The measured autocorrelation function is g̃(2)(0) = (4.2 ± 2.3) · 10−4,
which is almost two order of magnitude the value reported for reso-
nant excitation [60]. The maximum HOM visibility, measured using an
unbalanced Mach-Zehnder interferometer, is VHOM = 86.4%, which
disagree with the theoretical predictions. Such deviations may be
explained by the limited stability of the studied samples and the lack
of dephasing in the theoretical model, that would reduce the pre-
dicted maximum visibility. However, the experimental results seem
to be in accordance with the theoretical curve of HOM visibility (see
Figures 2.5 and 2.6).





3
P E RT U R B AT I O N T H E O RY F O R
O P E N Q UA N T U M S Y S T E M S

3.1 T H E O RY

Under some circumstances, the Hamiltonian of a system can be sepa-
rated as H = H0 + ϵHI , where ϵ is assumed to be small. This means
that the addition of the second term, usually called perturbation,
essentially does not modify the original or unperturbed system (de-
scribed by the first term H0). Examples of this situation exsit in a fair
amount, including weakly coupled (sub)systems or low pumped light
sources. In most cases, the dynamics of the system is governed by a
master equation of the type shown in Eq. (2.16).

We can directly compute the correlators, e.g., for one 2LS and two
bosonic modes {µ, ν, m, n, p, q} ≡ ⟨σ†µσνs†m

1 sn
1 s†p

2 sq
2⟩, then the density

matrix’s dynamics is described by

∂t{µ, ν, m, n, p, q} =

∑
µ′,ν′,m′,n′,p′,q′

Mµ′,ν′,m′,n′,p′,q′
µ ,ν ,m ,n ,p ,q

{µ′, ν′, m′, n′, p′, q′}, (3.1)

where 0 ≤ µ, ν ≤ 1 and m, n, p, q ≥ 0. These multi-index (but linear)
relations are the generalization of Eq. (2.32). We can rearrange (flatten)
all the indices as a single index, then we map the multi-index structure
into a regular correlator vector c⃗ and the generalised matrix as a
regular one. So we build up a simpler linear system

d
dt
⟨⃗c(t)⟩ = M ⟨⃗c(t)⟩, (3.2)

where ⟨⃗c⟩ = ({0, 0, 0, 0, 0, 0}, . . .)T represents the correlators vector
and M is a matrix of constant values (it does not depend on time)
resulting from the reshaping of the array M as the matrix M, which
is the regression matrix introduced in Ref. [42]. As we already men-
tioned, the equation shown above is not exclusive of a particular
problem. Thus, the following method is useful in many different
situations.

These equations show that correlators are often coupled to each
other in a way that the whole set of them (an infinite number) is

63
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required to completely solve the problem, either the dynamics or
the steady-state (t → ∞). The order of approximation depends on
the truncation needed to make the solution converge. However, we
do not need the whole solution if we consider the limit of vanishing
parameters (namely, ϵ → 0). This lets us find the solution recursively,
in a expansion-like way. For this purpose, we define the subsets

Ck =
{
{µ, ν, m, n, p, q}

∣∣∣ leading order k, for k ≥ 0
}

, (3.3)

so any correlator contained in the k-th subset is proportional to ϵk

(limiting the computations to the leading order). Following this, the
full set of correlators can be split as ⟨⃗c⟩ = (⟨⃗c0⟩, ϵ ⟨⃗c1⟩, ϵ2 ⟨⃗c2⟩, . . .)T.
This manifold separation will let us solve recursively each subset Ck
from the previous one. Now we divide the full matrix M into blocks
Mi,j, where each block connects the i-th subset to the j-th one (then
the dimensions of each matrix is mi × mj, where mj is the number
of elements contained in the j-th subset). Additionally, the elements
from Ck that are linked to 1 (density matrix trace), which is usually
included as the first element of ⟨⃗c0⟩, can be gathered in the vector
b⃗k (often only b⃗0 has non-zero elements). We define c⃗ = ⟨⃗c⟩ whose
elements are the expectation values of the operators in c⃗.

.

.

.

Figure 3.1: Ladder-like structure of the perturbed correlator sets. Each set
Ck includes all the correlation functions proportional to ϵk. Whereas the
matrices Mk,k describes the internal dynamics of the k-th set, Mk,k−1 feed the
set with the previous ones.

The matrix equation can be written, for each manifold, as ˙⃗ck(t) =
Mk,k⃗ck(t) + ∑i ̸=k Mk,i⃗ci(t) + b⃗k. Nevertheless, in most cases only con-
tiguous subsets (i = k ± 1) directly contribute to c⃗k to first order.
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We discard Ci>k subsets because they are supposed to depend on
higher powers of ϵ at their leading order. Keeping only the leading
order terms for each manifold leads to the following set of equations
(schematically represented in Fig. 3.1):

ϵ0 : ˙⃗c0(t) = M0,0 c⃗0(t) + b⃗0 , (3.4a)

ϵ1 : ˙⃗c1(t) = M1,1 c⃗1(t) + M1,0 c⃗0(t) + b⃗1 , (3.4b)

ϵ2 : ˙⃗c2(t) = M2,2 c⃗2(t) + M2,1 c⃗1(t) + b⃗2 , (3.4c)
...

ϵk : ˙⃗ck(t) = Mk,k c⃗k(t) + Mk,k−1 c⃗k−1(t) + b⃗k , (3.4d)
...

The steady-state solution is reached when ˙⃗c = 0, so that each
manifold follows ˙⃗ck = 0. Starting from the zeroth manifold we find
its solution which is just: c⃗0,ss = − (M0,0)

−1 b⃗0. For higher orders, the
idea is similar so the steady-state solution can be written as:

c⃗k,ss = − (Mk,k)
−1
(

Mk−1,k c⃗k−1,ss + b⃗k

)
. (3.5)

Then, starting from the unperturbed correlations, all of them enclosed
in the 0-th order subset C0, any higher correlator can be obtained by
solving iteratively the recursive equations until reaching the desired
order.

3.1.1 correlator dynamics : non-zero delay

Even if the system has reached the steady-state, such important prop-
erties as the emission spectrum S(ω) or the non-zero delay 2-photon
correlation g(2) (τ), which are dynamical properties of the system,
need to be resolved in time (actually, the dynamics are two-time
dependent but for systems that are already in the steady-state only
the delay τ = t′ − t is relevant so we can simply choose t = 0).
The way to proceed mainly relies on the Quantum Regression Theo-
rem (3.45). Hitherto, we have tackled the time-independent problem:
the steady-state solution for c⃗. The time-dependent case requires a
more sophisticated technique. Now we must distinguish the 0-th or-
der equation from the rest since the inhomogeneous term b⃗0 does
not depend on time while for higher orders we have to deal with
time-dependent terms. For k = 0, the solution can be easily obtained
and reads:

c⃗0(t) = c⃗0,ss + eM0,0t [⃗c0(0)− c⃗0,ss] , (3.6)
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where c⃗0,ss = − (M0,0)
−1 b⃗0 now denotes the steady-state solution

and c⃗0(0) is the initial condition. To simplify computations further,
we define ∆⃗ck(t) = c⃗k(t)− c⃗k,ss where c⃗k,ss = − (Mk,k)

−1 Mk,k−1⃗ck−1,ss
for k ≥ 1 corresponds to the steady-state solution. For instance, the
previous equation can be written as

∆⃗c0(t) = eM0,0t∆⃗c0(0), (3.7)

and the equation for the k-th subset can also be rearranged to be
written in terms of ∆⃗ck:

∆ ˙⃗ck(t) = Mk,k ∆⃗ck(t) + Mk,k−1 ∆⃗ck−1(t) , (3.8)

where we assume that b⃗k(k ≥ 1) vanishes.
For k ≥ 1, as pointed out above, the equation of motion for c⃗k has to

be solved using another strategy. We apply the Laplace transform to
both sides of the equation (3.8) and taking advantage of the following
property L

{
f ′(t)

}
(s) = s f̃ (s)− f (0) ( f ′(t) is the time derivative of

f (t), L denotes Laplace transformation and f̃ (s) = L
{

f (t)
}
(s)), we

obtain:

s ∆c̃k(s)− ∆⃗ck(0) = Mk,k ∆c̃k(s) + Mk,k−1 ∆c̃k−1(s), (3.9)

where ∆c̃k(s) represents the vector of the Laplace transform for each
element of ∆⃗ck(t). This matrix equation can be formally solved for
∆c̃k(s), it gives:

∆c̃k(s) =
1

sI − Mk,k

{
∆⃗ck(0) + Mk,k−1 ∆c̃k−1(s)

}
, (3.10)

where I represents the identity matrix with the adequate dimension.
This equation is the dynamical analogous of the recursive equation
given above in the previous section. The first term gives the intrinsic
dynamics of the n-th subset while the second one additionally feeds
the correlations from lower manifolds (and eventually inherited from
the non-perturbed correlations). To get a clearer vision of the problem,
we need to develop the method in full detail. We start with the first
two manifolds. The case k = 0 was previously solved and we can
calculate its Laplace transform. Assuming that M0,0 admits eigenvalue
decomposition, equation (3.7) can be written as:

∆⃗c0(t) = E0 eD0tE−1
0 ∆⃗c0(0), (3.11)

where D0 is the diagonal matrix consisting of the eigenvalues of M0,0

({d(0)p }, for m0 ≥ p ≥ 1) and E0 is a matrix whose columns are the
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eigenvectors associated to M0,0. Therefore, the i-th element of ∆⃗c0(t)
can be expressed as:

(∆⃗c0(t))i =
m0

∑
p=1

L(0)
ip ed(0)p t, (3.12)

where the elements L(0)
ip are defined as:

L(0)
ip = (E0)ip

m0

∑
q=1

(
E−1

0

)
pq
(∆⃗c0(0))q , (3.13)

and (E0)ip is the matrix element that is located at the i-th row and
p-th column. This notation is common to every matrix that appears
in the text unless otherwise indicated. Now it is easy to compute the
Laplace transform (of course, the transform does converge only if
each eigenvalue fulfils Re {d(0)p } < 0). Applying it to (3.12) returns:

(∆c̃0(s))i =
m0

∑
p=1

L(0)
ip

1

s − d(0)p

. (3.14)

The next step is to solve the case k = 1. We assume, from now on, that
each matrix Mk,k does admit an eigenvalue decomposition. Thus, En
and Dn represent the eigenvector matrix and the eigenvalue (diagonal)
matrix of Mk,k, respectively. Its eigenvalues are denoted by d(k)p , where
p goes from 1 to mk. Then, we can write equation (3.10) as:

∆c̃1(s) = E1
1

sI − D1
E−1

1

{
∆⃗c1(0) + M1,0 ∆c̃0(s)

}
= E1

1
sI − D1

E−1
1 ∆⃗c1(0) + E1

1
sI − D1

Q1 ∆c̃0(s) ,
(3.15)

where Qk = E−1
k Mk,k−1 (for k ≥ 0). Now each contribution is clearly

differentiated, however, it is highly convenient to write down the i-th
component of this equation:

(∆c̃1(s))i =
m1

∑
p=1

L(1)
ip

1

s − d(1)p

+

m1

∑
p=1

m0

∑
q=1

m0

∑
q′=1

(E1)ip (Q1)pq′ L(0)
q′q

1

s − d(1)p

1

s − d(0)q

, (3.16)

where

L(1)
ip = (E1)ip

m1

∑
q′=1

(
E−1

1

)
pq′

(∆⃗c1(0))q′ . (3.17)
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The second term of equation (3.16) can be further simplified. Since we
expect that eigenvalues from every manifold are all different from each
other (if not, these ones can be treated separately and would appear
as extra-terms for successive manifolds), the product of fractions is
written as a sum of simple fractions, i.e.,

1

s − d(1)p

1

s − d(0)q

=
1

d(1)p − d(0)q

(
1

s − d(1)p

− 1

s − d(0)q

)
. (3.18)

Thus,

This equation provides the
general solution for the

perturbative treatment of
single-time quantum

correlations in an open
system. This is the backbone

for explicit calculations when
turning to particular cases,

as shown in Section 3.2.

after substituting this in the previous equation, (∆c̃1(s))i takes
the following form:

(∆c̃1(s))i =
m1

∑
p=1

(
L(1)

ip +
m0

∑
q=1

Ripq

)
1

s − d(1)p

+

m0

∑
q=1

(
−

m1

∑
p=1

Ripq

)
1

s − d(0)q

, (3.19)

where

R(1)
ipq = (E1)ip

m0

∑
q′=1

(Q1)pq′ L(0)
q′q

1

d(1)p − d(0)q

. (3.20)

Then, the dynamics are described by µ1 = m0 + m1 terms, µ1 eigenval-
ues and their corresponding coefficients, which we now summarize in
a compact form as λ

(1)
p (from d(0)1 to d(1)m1 ) and l (1)p (ordered in the same

way), respectively. The procedure for k > 1 is quite straightforward
following the same steps as before. The general form is:

(∆c̃k(s))i =
µk

∑
p=1

l (k)ip
1

s − λ
(k)
p

, (3.21)

or, substituting ∆c̃k and including the steady-state term,

(c̃k(s))i =
(⃗ck,ss)i

s
+

µk

∑
p=1

l (k)ip
1

s − λ
(k)
p

, (3.22)

where we have used the Laplace transform identity L{1}(s) = 1/s
and introduced the notation

λ(k) =
(

d(0)1 , . . . , d(0)m0 , d(1)1 , . . . , d(1)m1 , . . . , d(k)1 , . . . , d(k)mk

)
, (3.23)

i.e., the collection of eigenvalues from the 0-th to k-th manifold in
growing order; µk = ∑0≤j≤k mj and

l (k)ip =

−∑1≤q≤mn R(k)
iqp , 1 ≤ p ≤ µk−1

L(k)
ip′ + ∑1≤q≤µk−1

R(k)
ip′q , µk−1 + 1 ≤ p ≤ µk

, (3.24)
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where p′ = p − µk−1 and we also have defined:

L(k)
ip = (Ek)ip

mk

∑
q′=1

(
E−1

k

)
pq′

(∆⃗ck(0))q′ , (3.25)

and

R(k)
ipq = (Ek)ip

µk−1

∑
q′=1

(Qk)pq′ l (k−1)
q′q

1

d(k)p − λ
(k−1)
q

. (3.26)

Finally, after inverting the Laplace transform:

(⃗ck(t))i = (⃗ck,ss)i +
µk

∑
p=1

l (k)ip eλ
(k)
p t , (3.27)

or in vector form

c⃗k(t) = c⃗k,ss +
µk

∑
p=1

l⃗ (k)p eλ
(k)
p t , (3.28)

where the vector l⃗ (k)p is formed of the elements l (k)ip (i from 1 to mk).
For 2-time correlators the solution is obtained in the same way.

There are slight differences which, however, do not alter the essence of
the method. We introduce the short notation for the two-time averages
v⃗(τ) = ⟨O1(0)⃗c(τ)O3(0)⟩. The initial condition v⃗k(0) is given by the
steady-state solution for ⟨O1⃗ckO3⟩. Assuming that ⟨O1O3⟩ is included
in Cn, the total order in ϵ of v⃗k(0) = ⟨O1⃗ckO3⟩(∞) will be k′ = k + n.
This means that we would need to additionally compute another set of
correlators, namely c⃗′, split in subsets C′

k (up to k′ = k + n). Moreover,
c⃗′k′ and v⃗k correspond to different sets in most cases. However, aside
from these subtleties, the equations of motion are identical:

ϵ0 : ˙⃗v0(τ) = M0,0 v⃗0(τ) + b⃗′0 , (3.29a)

ϵ1 : ˙⃗v1(τ) = M1,1 v⃗1(τ) + M1,0 v⃗0(τ) , (3.29b)

ϵ2 : ˙⃗v2(τ) = M2,2 v⃗2(τ) + M2,1 v⃗1(τ) , (3.29c)
...

ϵk : ˙⃗vk(τ) = Mk,k v⃗k(τ) + Mk,k−1 v⃗k−1(τ) , (3.29d)
...

where b⃗′0 = (⟨O1O3⟩ss) b⃗0. Since b⃗′0 is not the inhomogeneous coun-
terpart of the steady-state recursive equation for c⃗′k, then we have
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∆v⃗k(τ) = v⃗k(0)− (⟨O1O3⟩ss) c⃗k,ss instead. Formally, the solution for

This equation provides the
general solution for the

perturbative treatment of
two-time quantum

correlations in an open
system.

c⃗k(t) and v⃗k(τ) are identical:

v⃗k(τ) = (⟨O1O3⟩ss) c⃗k,ss +
µk

∑
p=1

l̂ (k)p eλ
(k)
p τ , (3.30)

where the vector l̂ (k)p has the following components (l̂ (k)p )i = l̃ (k)ip

l̃ (k)ip =

−∑1≤q≤mk
R̃(k)

iqp , 1 ≤ p ≤ µk−1

L̃(k)
ip′ + ∑1≤q≤µk−1

R̃(k)
ip′q , µk−1 + 1 ≤ p ≤ µk

, (3.31)

with

L̃(k)
ip = (Ek)ip

mk

∑
q′=1

(
E−1

k

)
pq′

(∆v⃗k(0))q′ , (3.32)

and

R̃(k)
ipq = (Ek)ip

µk−1

∑
q′=1

(Qk)pq′ l̃ (k−1)
q′q

1

d(k)p − λ
(k−1)
q

. (3.33)

Sometimes, for instance, when calculating the emission spectrum, it
is more useful to directly give the Fourier transform of the correlator
⟨a†(t)a(t + τ)⟩ rather than its temporal series. By substituting s →
iω + η in equation (3.22) (here η → 0+ is a vanishing constant to
ensure convergence), the Laplace transform is turned into a Fourier
transform

(čk(ω))i =
(⃗ck,ss)i
iω + η

+
µk

∑
p=1

l (k)ip
1

iω − λ
(k)
p

. (3.34)

The constant η can be taken to zero without any trouble for the second
term since the convergence is clear (Re{λ} > 0), while for the first
one we should be careful when computing the limit:

lim
η→0+

1
iω + η

= lim
η→0+

−iω
ω2 + η2 +

η

ω2 + η2

=
1

iω
+ π δ (ω) .

(3.35)

This result is also found applying by the Sokhotski–Plemelj theorem
to the Fourier integral.
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Combining now equations (1.49), (3.34) and (3.35), and taking O1 =

a† and O2 = 1, with l (k)ip = L(k)
ip + iK(k)

ip and same for λ
(k)
p = −γp/2 −

iωp, we get

S(ω) =
|⟨a⟩ss|2
⟨a†a⟩ss

δ(ω)+

1
π⟨a†a⟩ss

µk

∑
p=1

(γp/2)L(k)
ip

(γp/2)2 + (ω − ωp)2 +
(ω − ωp)K

(k)
ip

(γp/2)2 + (ω − ωp)2 ,

(3.36)

which is the general expression for the luminescence expression (not
only for the 2LS, as computed in Eq. (2.47)). This way we naturally
separate the coherent part of the spectrum (infinite lifetime) from the
incoherent one. Of course, the delta peak corresponds to the frequency
of the coherent source ωL, that in the Rotating Frame is centered at
ω = 0 but, undoing the frame transformation, corresponds to ω = ωL.
This applies to the incoherent spectrum as well.

This method allows to calculate perturbed dynamics by substan-
tially reducing the problem complexity and saving memory space
since matrix block expansion returns much smaller matrices, which
also facilitates operations such as inversion or diagonalization. An-
other recurring issue when working with vanishing quantities is the
convergence. The parameters must be small enough to ensure good
results but still over a certain threshold to avoid numerical instabilities.
The spirit of our method is to compute the correlations as a series
expansion. In this way, the perturbation parameter, namely ϵ, does
not explicitly appear throughout the whole computation. Our choice
of the value for ϵ is completely irrelevant as long as it is small to be
perturbative and does not determine the convergence at all.

3.1.2 applicability of the method in the density matrix

basis

Although the majority of the results are obtained in the correlator
space, we can also apply this series expansion directly on the master
equation: ρ̇(t) = Lρ(t). We now separate the Liouvillian superoper-
ator as L = L0 + ϵL1 and write the density matrix as ρ = ∑k ϵkρ(k)

(for k ≥ 0). Then, we substitute this expansion in the master equation
and gather up all the terms with the same power of ϵ, yielding

ρ̇(0)(t) = L0 ρ(0)(t) (if k = 0) , (3.37a)

ρ̇(k)(t) = L0 ρ(k)(t) + L1 ρ(k−1)(t) (if k > 0) . (3.37b)
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This set of equations reproduces exactly the dynamics, however, we
are not interested in solving the whole density matrix but only get-
ting the leading order of each matrix element, for instance, ρmn,pq =
|m⟩ ⟨n| ⊗ |p⟩ ⟨q|, if we had two subsystems. To do so, we first trans-
form the matrix equation into a vector equation. We define the vec-
torized density matrix ρ⃗ and the corresponding Liouvillian matrix L.
Then, the last equations turns into:

˙⃗ρ (0)(t) = L0 ρ⃗ (0)(t) (if k = 0) , (3.38a)
˙⃗ρ (k)(t) = L0 ρ⃗ (k)(t) + L1 ρ⃗ (k−1)(t) (if k > 0) , (3.38b)

For instance, we assume the following rules ρµν ∼ ϵµ+ν ρµν for the 2LS
density matrix (so that, µ, ν = 0, 1). Then, we would like to identify all
the elements whose leading order is k = µ + ν with ρ⃗ (k), gather them

into a reduced vector ρ⃗ ′ (k) and solve their corresponding dynamics
separately. Now, in order to reduce the dimensionality of the problem,
it is useful to know the position of the non-zero matrix elements of
the vector ρ⃗ (k), that we name j(k)p (with 1 ≤ p ≤ nk, where nk is the

dimension of ρ⃗ ′ (k)). We define the projection matrices Tk, which send
the matrix elements from the full vector space to the reduced space.
That is, for ρ⃗ = (ρ00, ρ01, ρ10, ρ11)

T, we have the reduced vectors

ρ⃗ ′ (0) = T0ρ⃗ = (ρ00)
T , (3.39a)

ρ⃗ ′ (1) = T1ρ⃗ = (ρ01 ρ10)
T , (3.39b)

ρ⃗ ′ (2) = T2ρ⃗ = (ρ11)
T . (3.39c)

From these rules, we are able to find the actual shape of these matrices.
They must be nk × (N + 1)2 matrices, where N is total number of
excitations of the truncated Hilbert space. The i-th row has only
non-zero entries at its j(k)i -th position. For the case at hand,

T0 =
(

1 0 0 0
)

, T1 =

(
0 1 0 0
0 0 1 0

)
, T2 =

(
0 0 0 1

)
.

(3.40)

The opposite mapping that returns the reduced vector to the original
space is given by the transposed matrix TT

k . Additionally, we can
define the projection operator as TT

k Tk, which is a (N + 1)2 diagonal

square matrix with ones at the positions j(k)p and zeros elsewhere.
This operator leaves ρ⃗ (k) untouched while it sends to zero any other
ρ⃗ (k′). Then, we can left-multiply (3.38) by Tk and introduced TT

k Tk in



3.1 theory 73

between L0 and ρ⃗ (k)(t) and TT
k−1 Tk−1 in between L1 and ρ⃗ (k−1)(t). We

get:

T0 ˙⃗ρ (0)(t) =
(
T0 L0 TT

0
)

T0ρ⃗ (0)(t) (if k = 0) , (3.41a)

Tk
˙⃗ρ (k)(t) =

(
Tk L0 TT

k
)

Tk ρ⃗ (k)(t) + (3.41b)(
Tk L1 TT

k−1
)
Tk−1 ρ⃗ (k−1)(t) (if k > 0) ,

which, after defining Lk,k = Tk L0 TT
k and Lk,k−1 = Tk L1 TT

k−1 and

substituting ρ⃗ ′ (k) = Tkρ⃗ (k) → ρ⃗ (k) for simplicity, leads to:

˙⃗ρ (0)(t) = L0,0 ρ⃗ (0)(t) (if k = 0) , (3.42a)
˙⃗ρ (k)(t) = Lk,k ρ⃗ (k)(t) + Lk,k−1 ρ⃗ (k−1)(t) (if k > 0) , (3.42b)

that is formally equivalent to Eq. (3.4) and can be solved almost
identically as shown in the previous Subsections. From there, we find
the time evolution of the reduced vectors:

ρ⃗ (k)(t) = ∑
p

l⃗ (k)
p eλ

(k)
p t , (3.43)

where the elements of l⃗ (k)
p are l (k)

ip . The whole density matrix is
obtained applying the inverse mapping TT

k and reshaping the vector
as a matrix (which we will denote as J·K). After that, we get the final

This equation provides the
counterpart of Eq. (3.19) but
at the level of the density
matrix. While no
illustrations will be provided
here for this case, the
formalism is complete with
this formula and its
accompanying results
(cf. Eq. (3.53)).

result:

ρ(t) = ∑
k

µk

∑
p=1

JTT
k l⃗ (k)

p Keλ
(k)
p t . (3.44)

Nevertheless, there is a subtle change when solving the steady-state
case. For k = 0, the linear system is homogeneous and the matrix
cannot be inverted. One way to overcome this problem and get the
non-trivial solution is to look for the null-space of L0,0. Since the
matrix admits an eigenvalue decomposition, its kernel corresponds
to the non-trivial eigenvectors of the eigenvalue 0. For the usual
configurations, this eigenvalue is non-degenerate, i.e., the steady-state
solution is unique and its normalization must be chosen so that, after
reshaping the vector, the trace of the density matrix is 1.

Remembering that, in this basis and assuming the system has
already reached the steady-state, the Quantum Regression Theorem
takes the following form

⟨O1(0)O2(τ)O3(t)⟩ = Tr
{

O2(0)eLτ
(
O3(0)ρssO1(0)

)}
. (3.45)
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We are dropping time dependence of O1, O2 and O3 for clarity. We de-
fine vO1O3(τ) = eLτ

(
O3ρssO1

)
= eLτvO1O3(0) and calculate its deriva-

tive with respect to τ:

∂τvO1O3(τ) = L eLτvO1O3(0) = LvO1O3(τ) . (3.46)

Since vO1O3(0) is proportional to ρss, we can decompose it as a sum

vO1O3(0) = ∑k ϵkv (k)
O1O3

(0) and do the same for vO1O3(τ). After plug-
ging this into Eq. (3.46) and separating the different powers

∂τv (k)
O1O3

(τ) = L0v (k)
O1O3

(τ) + L1v (k−1)
O1O3

(τ) , (3.47)

or, vectorizing the equation (vO1O3 → v⃗O1O3 and Li → Li),

∂τ v⃗ (k)
O1O3

(τ) = L0v⃗ (k)
O1O3

(τ) + L1v⃗ (k−1)
O1O3

(τ) . (3.48)

This equation can be solved following the same procedure as Eq. (3.38).
However, we should be careful when solving this equation. It may
be the case that v (k)

O1O3
(0) = O3ρ

(k)
ss O1 = 0 for some k < k0. This

means that O1 and O3 acting on ρss are lowering indices (connecting
to lower order matrix elements). For instance, for a single cavity mode,
symbolically (aρmna†) → ρm−1,n−1, which is non zero only if m, n ≥ 1.
Then, both ρ(0) and ρ(1) do not contribute to vAB(τ) (with O1 = a†

and O3 = a) and the first term to appear is v (2)
O1O3

(τ), so k0 = 2

here. Applying the projection matrices on the vector v⃗ (2)
O1O3

(τ), only

T0v⃗ (2)
O1O3

(τ) is different from zero. As a general statement, if O1 and O3
act on the perturbed part of ρ, the first non-vanishing term of v⃗O1O3 is

v⃗ (k0)
O1O3

(k0 depends on the specific choice of O1 and O3 and usually is
the total number of operators in O1 and O3) and the reduced vectors
of v⃗(k)O1O3

are calculated as v⃗ ′(k)
O1O3

= Tk−k0 v⃗(k)O1O3
. Applying Tk−k0 on

Eq. (3.48), introducing the projection matrices TT
k−k0

Tk−k0 in between
L and v⃗O1O3 and changing k → k + k0, we get

∂τ v⃗ (k+k0)
O1O3

(τ) = Lk,kv⃗ (k+k0)
O1O3

(τ) + Lk,k−1v⃗ (k+k0−1)
O1O3

(τ)

(for k ≥ 0) . (3.49)

where we have substituted v⃗ ′(k)
O1O3

→ v⃗ (k)
O1O3

for brevity. Now the ques-
tion is how many orders are required to calculate (3.45). For τ = 0,
we have O2(O3ρssO1) inside the trace. For the single mode and using
O1 = a†, O2 = a†a and O3 = a, symbolically we have

a†a
(

aρmna†
)
→ a (ρm−1,n−1)a† → ρm−2,n−2 . (3.50)
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That is, m, n ≥ 2 is needed to find non zero elements. The operations
inside the bracket were previously considered, as k must be at least
k0 = 2. This necessarily means that O2v (k+k0)

O1O3
(τ) does not vanish only

if k ≥ K, where K = 2 in this particular case. For the general case, K
is equal to the number of operators in O2. Then, the leading order of
(3.45) is

⟨O1(t)O2(t + τ)O3(t)⟩ =
K

∑
k=0

Tr
{

O2 v (k+k0)
O1O3

(τ)
}
=

Tr
{

O2 v (K+k0)
O1O3

(τ)
}

, (3.51)

where v (K+k0)
O1O3

is expressed in terms of v⃗ (K+k0)
O1O3

(τ) and solved using
Eq. (3.30) (applied to (3.48))

v (K+k0)
O1O3

(τ) = JTT
K v⃗ (K+k0)

O1O3
(τ)K =

µK

∑
p=1

JTT
K l̂ (K+k0)

p Keλ
(K)
p τ (3.52)

and, bringing together (3.51) and (3.52),

⟨O1(t)O2(t + τ)O3(t)⟩ =
µK

∑
p=1

Tr
{

O2 JTT
K l̂ (K+k0)

p K
}

eλ
(K)
p τ . (3.53)

3.1.3 frequency-filtered correlations : the sensor method

In the Section 1.2.1, we have introduced the frequency-filtered photon
correlations. These quantities are described in terms of convolutions
of the unfiltered correlations with the spectral response of the filter.
These multi-time integrals are, generally speaking, hard to solve,
either analytically or numerically. Indeed, only a few cases can be
solved straight from these integrals. However, there is an alternative
way to compute these correlators: the sensor method.

Following the ideas established by del Valle et al. [55], we couple
the unfiltered system, namely a (it could represent any system such
as a 2LS or a cavity), to n sensors (ς j, for j = 1, ..., n). This always
allows to describe the filtered system perturbatively. The system-
sensor Hamiltonian is of the general form

H = Ha + ∑
j

[
ωjς

†
j ς j + ϵ(a†ς j + ς†

j a)
]
, (3.54)

where Ha is the system Hamiltonian (containing only system vari-
able) and the coupling constant ϵ is taken to be as little as possible
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(eventually, ϵ → 0). The sensors have got a decay rate Γ and the lossy
dynamics is described by the master equation

ρ̇ = −i[H, ρ] + ∑
c

γc

2
Lcρ +

Γ
2 ∑

j=1,2
Lς j ρ , (3.55)

with the c operators that act only in the system subspace.
In the supplemental material of Ref. [55], it is proved that solving

this dynamical system in the limit of vanishing coupling (ϵ → 0)
is equivalent to computing the photon correlations via averaged
time-convoluted field operators, which we define in Eq. (1.60) (for a
Lorentzian filter FL). An alternative justification of the method can
be found in Appendix A.4. Although notations may slightly differ,
the equivalence is clear, making the following changes: M0,0 → M,
c⃗0 → O, ⟨⃗c0ς

†µ1
1 ςν1

1 ς
†µ1
2 ςν1

2 ⟩ → [µ1ν1, µ2ν2] and Mk,k−1 combines T±
(adding a† or a to c⃗0) and subtracting ς† or ς.

The zeroth-order equation is just ∂t ⟨⃗c0⟩ = M0,0 ⟨⃗c0⟩. It is conve-
nient to write the equation separating the unity from the rest of the
correlators as ⟨⃗c0⟩ = (1 ⟨c⃗′0⟩)T, which yields the equation

∂t

(
1

⟨⃗c0⟩

)
=

(
0 0
b⃗0 M′

0,0

)(
1

⟨⃗c0⟩

)
(3.56)

which, in the steady-state regime, has the solution(
1

⟨⃗c0⟩ss

)
=

(
1

−(M′
0,0)

−1 b⃗0

)
. (3.57)

The next set is composed of ⟨⃗c1⟩ = (⟨ς†
j c⃗0⟩ ⟨⃗c0ς j⟩)T and the equation

of motion is ∂t ⟨⃗c1⟩ = M1,1⟨⃗c1⟩+ M1,0⟨⃗c0⟩. We find

∂t

(
⟨ς†

j c⃗0⟩
⟨⃗c0ς j⟩

)
=

(
M0,0 − z∗j I 0

0 M0,0 − zj I

)(
⟨ς†

j c⃗0⟩
⟨⃗c0ς j⟩

)
+

iϵ

(
⟨a†⃗c0⟩
−⟨⃗c0 a⟩

)
, (3.58)

with zj ≡ Γ/2 + i ωj. Now, we introduce the matrices T± that send
⟨⃗c0⟩ to ⟨a†⃗c0⟩ and ⟨⃗c0 a⟩, respectively. The previous equation can be
written as

∂t

(
⟨ς†

j c⃗0⟩
⟨⃗c0ς j⟩

)
=

(
M0,0 − z∗j I 0

0 M0,0 − zj I

)(
⟨ς†

j c⃗0⟩
⟨⃗c0ς j⟩

)
+(

iϵ T+

−iϵ T−

)
⟨⃗c0⟩ , (3.59)
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which has the steady-state (t → ∞)(
⟨ς†

j c⃗0⟩ss

⟨⃗c0ς j⟩ss

)
=

(
−iϵ[M0,0 − z∗j I]−1 T+ ⟨⃗c0⟩ss

iϵ[M0,0 − zj I]−1 T− ⟨⃗c0⟩ss

)
. (3.60)

For k ≥ 2, the equations are solved recursively, following the in-
structions written above, and whose expressions can be found in
Appendix. A.4. It is easy to check that these results coincide with
Ref. [55]. A change of basis or picture also allows us to solve this prob-
lem in terms of density matrix elements while maintaining the same
ladder-like structure (as shown above and in [61]), making clear the
equivalent formalism developed in [62] can be straightforwardly ob-
tained through a transformation from the correlation function frame.
In the same way, 2-time correlations are solved and proved to be
equivalent. This, together with the fact that exact perturbation value,
namely ϵ, does only appear in the expansion after the correspond-
ing algebraic manipulations, makes this approach very stable and
versatile.

3.2 I L L U S T R AT I O N S O F T H E P E RT U R B AT I O N T H E -
O RY

Having the theory presented, we turn now to illustrations of the
method by applying it to particular cases.

3.2.1 N -emitters within a cavity : dicke model

The Dicke model [63] was introduced to study the interaction of
light and matter, particularly the phenomenon of superradiance. This
concept was introduced by Dicke [64] when studying the interaction of
N 2LS with the EM field. In the initial state all of them are excited and
eventually will decay due to the presence of the field. Under certain
circumstances, the emission displays an extraordinary enhancement of
the intensity that does not correspond to N-emitters being de-excited
independently (like the radioactive decay). Instead, the ensemble
behaves as a single collective mode that emits coherently. This is
called the superrandiant phase as the system undergoes a phase
transition from the normal phase which bears many similarities with
lasing (strong coherence and intensity). The model consists of an array
of N emitters σj coupled to a cavity mode a so the Hamiltonian reads

H = ωaa†a + ωσ

N

∑
j=1

σ†
j σj + g(a† + a)

N

∑
j=1

(
σ†

j + σj

)
. (3.61)
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In our level of approximation (RWA), we can eliminate the counter-
rotating terms. The model is then usually called the Tavis-Cummings
model (an extension of the Jaynes-Cummings model). We include
coherent excitation, that is, a laser feeding the cavity mode with fre-
quency ωL and amplitude Ωa. In the Rotating Frame, the Hamiltonian
becomes

H = ∆aa†a+ ∆σ

N

∑
j=1

σ†
j σj + g

N

∑
j=1

(
a†σj + σ†

j a
)
+ Ωa

(
a† + a

)
, (3.62)

where ∆a = ωa − ωL and ∆σ = ωσ − ωL are the cavity and emitter de-
tuning with respect of the laser. The dissipative dynamics is governed
by the master equation

ρ̇ = −i [H, ρ] +
γa

2
Laρ +

γσ

2

N

∑
j=1

Lσj ρ . (3.63)

We now proceed to solve the correlators equations.
We define {m, n, µ1, ν1, . . . , µN, νN} ≡ ⟨a†mamσ

†µ1
1 σν1

1 . . . σ
†µN
N σνN

N ⟩,
where m, n ≥ 0 and µj, νj = 0, 1 (j = 1, . . . , N) whose dynamics, as
usual, are given by the equations

∂t {m, n, µ1, ν1, . . . , µN, νN} =

∑ Mm,n,µ1,ν1,...,µN ,νN
m′,n′,µ′

1,ν′1,...,µ′
N ,ν′N

{
m′, n′, µ′

1, ν′1, . . . , µ′
N, ν′N

}
(3.64)

where this multi-index array M is zero except when the following
rules are fulfilled. For N = 2, we have

Mm,n,µ1,ν1,µ2,ν2
m,n,µ1,ν1,µ2,ν2

= i∆a (m − n) + i∆σ ∑
j

(
µj − νj

)
− γa

2
(m + n)− γσ

2 ∑
j

(
µj + νj

)
, (3.65a)

M m,n,µ1,ν1,µ2,ν2
m−1,n,µ1,ν1,µ2,ν2

= iΩam , (3.65b)

M m,n,µ1,ν1,µ2,ν2
m,n−1,µ1,ν1,µ2,ν2

= − iΩan , (3.65c)

M m,n,µ1,ν1,µ2,ν2
m+1,n,1−µ1,ν1,µ2,ν2

= igµ1 (and same for µ2) , (3.65d)

M m,n,µ1,ν1,µ2,ν2
m,n+1,µ1,1−ν1,µ2,ν2

= − igν1 (and same for ν2) , (3.65e)

M m,n,µ1,ν1,µ2,ν2
m−1,n,1−µ1,ν1,µ2,ν2

= igm(1 − µ1) (and same for µ2) , (3.65f)

M m,n,µ1,ν1,µ2,ν2
m,n−1,µ1,1−ν1,µ2,ν2

= − ign(1 − ν1) (and same for ν2) , (3.65g)
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M m,n,µ1,ν1,µ2,ν2
m+1,n,µ1,1−ν1,µ2,ν2

= − 2igµ1(1 − ν1) (and same for µ2) ,

(3.65h)

M m,n,µ1,ν1,µ2,ν2
m,n+1,1−µ1,ν1,µ2,ν2

= 2igν1(1 − µ1) (and same for ν2) . (3.65i)

These equations relate the correlations in a way that an infinite num-
ber of them is needed to be solved completely. Nevertheless, in the
regime of low pumping (Ωa ≪ γa, γσ, g) these equations can be solved
recursively. We assume that ⟨a†mamσ

†µ1
1 σν1

1 . . . σ
†µN
N σνN

N ⟩ ∼ Ωk
a, where

k = m + n + µ1 + ν1 + . . . + µN + νN. For instance, the first manifold
is made up of ⟨a⟩, ⟨a†⟩, ⟨σj⟩ and ⟨σ†

j ⟩. Gathering these correlators, we
get the equations

d
dt
⟨a⟩ = − iΩa −

(γa

2
+ i∆a

)
⟨a⟩ − ig ∑

j
⟨σj⟩ , (3.66a)

d
dt
⟨σj⟩ = −

(γσ

2
+ i∆σ

)
⟨σj⟩ − ig⟨a⟩ . (3.66b)

These equations can be further simplified. Since each emitter is iden-
tical to the other, each correlator ⟨σj⟩ has to be exactly the same. We
can make the following assumption, defining the bright state operator
Σ = 1

N ∑j σj. Then, instead of having N + 1 coupled equations we
reduce the problem to just a pair. That is,

d
dt
⟨a⟩ = − iΩa −

(γa

2
+ i∆a

)
⟨a⟩ − igN⟨Σ⟩ , (3.67a)

d
dt
⟨Σ⟩ = −

(γσ

2
+ i∆σ

)
⟨Σ⟩ − ig⟨a⟩ . (3.67b)

The equations for ⟨a†⟩ and ⟨Σ†⟩ are obtained by taking the conjugate
of these equations. For higher manifold correlations, the reduced
equations are given in the Appendix A.6. Again, the rest of correla-
tors can be obtained by taking the complex conjugate of this set of
equations.

From the first manifold we obtain the mean fields

⟨a⟩ = −2iΩa(γa + 2i∆a)

4g2N + (γa + 2i∆a)(γσ + 2i∆σ)
, (3.68)

⟨Σ⟩ = −4gΩa

4g2N + (γa + 2i∆a)(γσ + 2i∆σ)
, (3.69)

while the cavity and emitters population are

⟨a†a⟩N =
Ω2

aΓ̃2
σ

16g4N2 + 8g2N (γaγσ − 4∆a∆σ) + Γ̃2
aΓ̃2

σ

, (3.70)

⟨Σ†Σ⟩N =
Ω2

ag2

16g4N2 + 8g2N (γaγσ − 4∆a∆σ) + Γ̃2
aΓ̃2

σ

, (3.71)
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Figure 3.2: 2-photon cavity autocorrelation function for zero time de-
lay for the Dicke model at vanishing driving. The overall behaviour of
g(2)a,N(0) changes as the number of emitters within the cavity increases
(N = 1, 10, 20, 50 shown here, together with the limit N → ∞). Left-hand
figure at resonance (ωa = ωσ) and strong coupling (g = 2γa), the center
one also at resonance but weak coupling (g = 0.2γa) and the right-hand
figure shows the blue-shifted emitters ωσ − ωa = 0.8γa in weak coupling.
Parameters: γa = 1, γσ = 0.01, i. e., same parameters as Ref. [65].

where Γ̃2
i ≡ γ2

i + 4∆2
i (for i = a, σ). Similarly, the 2-particle Glauber

This along with other
analytical results illustrate

the power of our perturbative
theory, by providing the

general closed-form
expressions for all N of

quantities that were
previously obtained only in

the limit N → ∞ or
numerically (using the
scattering matrix [65]).

correlator g(2)a = ⟨a†2a2⟩/⟨a†a⟩2 for zero delay time is

g(2)a,N(0) =
{ [

16g4N2 + 8g2N (γaγσ − 4∆a∆σ) + Γ̃2
aΓ̃2

σ

]
×[

16g4N2 − 8g2 (γ11γσ − 4∆11∆σ) + Γ̃2
11Γ̃2

σ

] }/
{

Γ̃2
aΓ̃2

σΓ̃2
11 + 16g4[(N − 1)2γ2

a + 2(N − 1)Nγaγσ+

4∆2
a − 8N∆a∆11 + N2(γ2

σ + 4∆2
11)
]
+

8g2[(N − 1)γ3
aγσ + γ2

a
(
[2N − 1]γ2

σ+

4∆σ[∆11 − N∆a]
)
− 4∆a(γ

2
σ∆1N + 4∆σ∆11∆N−1,N)+

γaγσ

(
4[N − 1]∆2

a + NΓ̃2
σ

)]}
, (3.72)

where we have introduced the notation γij ≡ i γa + j γσ and ∆ij ≡
i ∆a + j ∆σ (i and j being integers). Additionally, we define Γ̃2

ij ≡
γ2

ij + 4∆2
ij. For increasing number of emitters in the cavity, the col-

lective bright state is allowed to have more and more excitation and
eventually converges to a boson-like state (N → ∞) that, however,
keeps some of the intrinsic non-linearities of the emitter. This is indeed
reflected is the 2-photon correlation in the limit N → ∞, yielding

g(2)a,N→∞(0) =
[
16g4 − 8g2(γσγ11 − 4∆σ∆11)+ Γ̃2

σΓ̃2
11
]/

(Γ̃2
σΓ̃2

11) , (3.73)

instead of g(2)a (0) = 1, expected for coupled boson modes under co-
herent driving. The 2-photon correlations shows strong features for
any N, both bunching and antibunching depending on the frequency
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of the driving source (see Fig. 3.2). For weak driving, this was already
reported in the Jaynes-Cummings scenario [66] (for N = 1) and for
non-linear bosonic system (N → ∞), for instance, two coupled pho-
tonic modes with Kerr non-linearities [67] or exciton-polaritons [68,
69]. In between, we can place the Dicke model. Making reasonable
assumptions (bright state approximation) under weak driving, we are
able to replicate the results from [65]. The major asset of our method
is that we could provide analytical expressions for an arbitrary num-
ber of emitters N rather than only the limit N → ∞ (equivalent to
Eq. (3.73)) and compute, if needed, higher order corrections. Besides,
the computation of photon correlations using the scattering matrix re-
quires an exhaustive counting of all the possible one and two photon
scattering events. In the end, it turns out to be completely equivalent
to our more simple method.

3.2.2 incoherent jc model

We make here a little revision of the simplest model for light-matter
interaction, the Jaynes-Cummings model, under incoherent driving,
studied in depth in Refs. [70, 71], where the solution of the correlators
are presented as a series of recursive equations. Fixing a cut-off, one
can obtain the solution to the desired level of approximation. With
our method, we can replicate these results and even generalise some
of them keeping only the leading order without needing to unravel
the recursive equations.

The Hamiltonian has the same form as the Dicke model (3.62),
fixing N = 1 and Ωa = 0. The incoherent pumping is inserted into
the system dynamics by adding to the Liouvillian the terms Pσ

2 Lσ† ρ

and Pa
2 La† ρ. Subsequently, the effective decay rates are modified due

to the presence of the incoherent (thermal) bath: Γσ ≡ γσ + Pσ and
Γa ≡ γa − Pa.

The small parameter corresponds here to the pumping rate, either
Pσ or Pa, hence we always stay in the linear regime, following the
classification introduced in Ref. [70]. Since the results for cavity-driven
and emitter-driven cases are qualitatively different, we will present
them separately. By inspecting the correlator equations, we notice that
all the linking terms jump from k to k ± 2. Thus, some subsets may
be left unconnected and would not contribute to the dynamics. The
method has to be slightly modified to incorporate these contributions.
As pointed out above, in absence of feeding terms, the first subset
remains isolated and all the correlators vanish, therefore, the mean
fields ⟨a⟩ = ⟨σ⟩ = 0 in the steady-state. Besides this, the following
steps are the same.
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Figure 3.3: Two and three photon statistics of the light emitted by the
dot-pumped incoherent Jaynes–Cummings model at resonance (ωa = ωσ)
depending on the cavity-dot coupling strength g. Chosen parameters: γa = 1,
γσ = 0.1, Pa = 0 and Pσ = 0.01 γσ.

The first non-zero correlators are the total populations. For the
dot-driven case (Pa = 0), we have

na =
4g2PσΓ1

Γ2
1(4g2 + ΓaΓσ) + 4ΓaΓσ∆2

, (3.74a)

nσ =
4g2PσΓ1 + PσΓa(Γ2

+ + 4∆2)

Γ2
1(4g2 + ΓaΓσ) + 4ΓaΓσ∆2

, (3.74b)

where ∆ = ωσ − ωa is the detuning between the emitter and cavity
frequencies and we have defined Γk ≡ k Γa + Γσ (for k ∈ N). To make
a fairer comparison, we introduce the quantity from Ref. [70]

κσ ≡ 4g2

Γa

(
1 + 4∆2

Γ2
1

) , (3.75)

reminding that we did not include dephasing effects (so γϕ = 0) and
Γa = γa (since Pa = 0). Then, the populations (3.74) read

na =
κσ

Γ1 (κσ + Γσ)
Pσ , (3.76a)

nσ =
κσ + Γ1

Γ1 (κσ + Γσ)
Pσ . (3.76b)

In a similar way, we can obtain the correlators for the cavity-driven
case. In the low pumping regime, some correlators are symmetric
under the exchange a ↔ σ. Thus, na ↔ nσ if we change Pσ →
Pa (so Pσ = 0). However, this symmetry does not hold for higher
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Figure 3.4: Luminescence spectra from both the cavity and dot emission,
shown in blue and red, respectively. For weak driving, only the first manifold
is effectively excited and two peaks are shown in the spectrum, correspond-
ing to the transitions from the dressed states (in strong coupling, the position
of the peaks are ±Rr). When the cavity-emitter detuning is zero (∆ = 0),
both peaks are symmetric. On the other hand, the detuning (∆ = 2g here)
not only displaces the position of the peaks but unbalances the proportion
yielding an asymmetrical spectrum. Chosen parameters: g = 1, γa = 0.1,
γσ = 0.01, and the pumping rates are Pa = 0 and Pσ = 0.01 γσ for the first
row and Pa = 0.01γa and Pσ = 0 for the second.

correlators. For the dot-driven case, the 2nd and 3rd-order photon
Glauber correlator are:

g(2)a =
2Γ3[Γ2

1(4g2 + ΓaΓσ) + 4ΓaΓσ∆2]

Γ1[Γ2
3(4g2 + ΓaΓ1) + 4ΓaΓ1∆2]

, (3.77a)

g(3)a =
6Γ3Γ5[Γ2

1(4g2 + ΓaΓσ) + 4ΓaΓσ∆2]2

Γ2
1 ∏k=1,2[Γ2

2k+1(4g2 + ΓaΓk) + 4ΓaΓk∆2]
, (3.77b)

which are shown in Fig. 3.3. The counterpart of g(2)a for the cavity-
driven case, is shown in Appendix A.8. The resulting photon statistics
behave very differently depending on the pumped target as can
be seen in Fig. 3.5. While the outcoming signal from a dot-driven
system is antibunched under a wide range of parameters, the opposite
configuration always provides bunched, nearly chaotic, light. When
the system is dot driven and weakly coupled, the photon statistics
of the cavity partially resemble the emitter perfect antibunching,
displaying small values of g(2)a (0) and g(3)a (0), limited due to the
possibility of exciting higher energy levels.
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Figure 3.5: Two-photon autocorrelation functions for the cavity and the
emitter under incoherent driving as a function of the delay time τ (cavity
in blue and emitter in red). The first row corresponds to the weak coupling
(WC) regime (g = 0.01) and the second one to strong coupling (SC) regime
(g = 1). The left column shows the cases of dot excitation, whereas the
right column contains the cavity excited cases. Chosen parameters: ∆ = 0,
γa = 0.1, γσ = 0.01, and the pumping rates are Pa = 0 and Pσ = 0.01 γσ for
the first row and Pa = 0.01γa and Pσ = 0 for the second.

The luminescence spectra can be easily computed too (shown for
several cases in Fig. 3.4).

These results also illustrate
the power of our perturbative

theory, by providing the
general closed-form

expressions, now for the
τ dynamics, of important

correlations in the
Jaynes–Cumming model that

were previously only
obtained at τ = 0

(Refs. [70, 71]).

In the low pumping regime (Pi → 0), there
are only two non-zero contributions, corresponding to the eigenvalues,
split into their real and imaginary parts:

ω1,2 = ωa +
∆
2
± Rr , (3.78a)

γ1,2

2
=

Γa + Γσ

4
∓ Ri , (3.78b)

where Rr,i are the real and imaginary part of the complex Rabi splitting

R = Rr + i Ri =

√
g2 −

(
Γ−
4

+ i
∆
2

)2

, (3.79)

and Γ− ≡ Γa − Γσ. The spectrum is written as Eq. (3.36). The coeffi-
cients Lp and Kp for the cavity and dot can be found in Appendix A.8.
As expected, the spectrum only have two peaks, that correspond to
the transitions between the first manifold states to the ground state
when the system in the strong coupling regime (g ≫ γa, γσ). However,
the resonant and detuned cases have different shapes. If the detun-
ing is zero, the peaks are symmetric. Otherwise, the weight of the
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Lorentzians Lp is unbalanced. The kind of pumping, Pa or Pσ, also
changes the contribution of the dispersive part Kp, that produces a
deep dip in between the peaks. All these results are in accordance
with the ones discussed in Refs. [70, 71].

Additionally, we can obtain the non-zero delay 2nd-order correlator.
It can be written as

g(2)i (τ) = 1 + ∑
p

l(i)p e−λpτ , (3.80)

for either the cavity or the dot (i = a, σ). The eigenvalues are

λ1,2 = Γ1/2 ± i
√

2R(+) , (3.81a)

λ3,4 = Γ1/2 ± i
√

2R(−) , (3.81b)

and

R(±) =

√
g2 +

(
∆
2

)2

−
(

Γ−
4

)2

±√
χ+χ− , (3.82)

where χ± = (g ± Γ−/4)2 + (∆/2)2. In the same way as the zero
delay 2-photon correlator function, the time dependent case, i.e.,
g(2)a (τ) manifest some resemblance, in weak coupling, with the dot
emission but also incorporates its own dynamics and thus it has
less pronounced antibunching but similar coherence time. In the
strong coupling regime, however, the statistics are much closer to 1.
In the time domain we observe the oscillations in all the cases. Such
oscillations are consequence of the strong coupling between the cavity
and the emitter and remain as long as R(±) are real, that is, when the
system is in the strong coupling regime. This description is valid only
if the pumping rate are small enough. If this is not the case, like in
the regular perturbation theory, we could extend the series expansion
to higher orders and compute the corrections.

3.2.3 frequency-filtered incoherent 2ls

We solve the frequency-filtered correlations for a qubit coupled to a
bath. Then, it has a channel to decay and a second one to be pumped.
Following the sensor method, we couple a cavity mode to the emitter
and, in order to compute second-order filtered quantities, we also
coupled a second cavity to the first one. The full Hamiltonian reads

H = ωσσ†σ + ω1ς†
1ς1 + ω2ς†

2ς2 + ϵ(ς†
1σ + ς†

2ς1 + h.c.) , (3.83)
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where ωi are the frequency of the sensors. The lossy evolution of the
system is given by the master equation

ρ̇ = −i[H, ρ] +
γσ

2
Lσρ +

Pσ

2
Lσ† ρ +

Γ1

2
Lς1ρ +

Γ2

2
Lς2ρ . (3.84)

We let the filters widths be, a priori, different. In practice, the second-
order filters we choose are the double Lorentzian (1.72) and the But-
terworth filter (1.73), so we will fix Γ1 = Γ2 = Γ to build the filter
up in terms of Lorentzians. Henceforth, we choose the same width
Γ for both. Moreover the filter frequencies are parametrised as ω1 =
ω2 = ωσ + ∆1 for the double Lorentzian and as ω1,2 = ωσ + ∆1 ± Γ/2
for the Butterworth filter. We additionally consider the Lorentzian
band-stop filter (which we already referred to as the complementary
filter). From the integral (1.69), we found out that we can express its
correlator by means of the unfiltered and the Lorentzian (band-pass)
filter ones. The coefficient that connects the sensor and integrated
correlators is ζ = iΓ

2ϵ so that any correlator has its corresponding
integrated counterpart by changing ⟨ς†mςn⟩ → ζ∗mζn ⟨ς†mςn⟩. The
complementary operator will be ς̄ = a − ζς. The complementary filter
has then the mean field ⟨ς̄⟩ = ⟨a⟩ − ζ⟨ς⟩, the mean population

⟨ς̄†ς̄⟩ = ⟨a†a⟩ − ζ∗⟨ς†a⟩ − ζ⟨a†ς⟩+ |ζ|2⟨ς†ς⟩ , (3.85)

and the two-photon Glauber correlator

⟨ς̄†(0)(ς̄†ς̄)(τ)ς̄(0)⟩ =
⟨a†(0)(a†a)(τ)a(0)⟩ − ζ⟨a†(0)(a†a)(τ)ς(0)⟩−
ζ∗⟨ς†(0)(a†a)(τ)a(0)⟩ − ζ⟨a†(0)(a†ς)(τ)a(0)⟩−
ζ∗⟨a†(0)(ς†a)(τ)a(0)⟩+ |ζ|2⟨ς†(0)(a†a)(τ)ς(0)⟩+
|ζ|2⟨a†(0)(ς†ς)(τ)a(0)⟩+ ζ2⟨a†(0)(a†ς)(τ)ς(0)⟩+
ζ∗2⟨ς†(0)(ς†a)(τ)a(0)⟩+ |ζ|2⟨ς†(0)(a†ς)(τ)a(0)⟩+
|ζ|2⟨a†(0)(ς†a)(τ)ς(0)⟩ − ζ|ζ|2⟨a†(0)(ς†ς)(τ)ς(0)⟩−
ζ∗|ζ|2⟨ς†(0)(ς†ς)(τ)a(0)⟩ − ζ|ς|2⟨ς†(0)(a†ς)(τ)ς(0)⟩−

ζ∗|ζ|2⟨ς†(0)(ς†a)(τ)ς(0)⟩+ |ζ|4⟨ς†(0)(ς†ς)(τ)ς(0)⟩ , (3.86)

which, at τ = 0, has the following form

⟨ς̄†2ς̄2⟩ = ⟨a†2a2⟩ − 2ζ⟨a†2ςa⟩ − 2ζ∗⟨a†ς†a2⟩+ ζ2⟨a†2ς2⟩+
4|ζ|2⟨a†ς†ςa⟩+ ζ∗2⟨ς†2a2⟩ − 2ζ|ζ|2⟨ς†2ςa⟩−
2ζ∗|ζ|2⟨a†ς†ς2⟩+ |ζ|4⟨ς†2ς2⟩ . (3.87)
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Here, a = σ and ς = ς1. Remembering that σ2 = 0, ⟨ς̄†2ς̄2⟩ reduces to

⟨ς̄†2ς̄2⟩ = 4|ζ|2⟨σ†ς†
1ς1σ⟩+ ζ∗2⟨ς†2

1 σ2⟩ − 2ζ|ζ|2⟨ς†2
1 ς1σ⟩−

2ζ∗|ζ|2⟨σ†ς†
1ς2

1⟩+ |ζ|4⟨ς†2
1 ς2

1⟩ . (3.88)

Our assumption is again that each correlator ⟨σ†µσνς†m
1 ςn

1ς
†p
2 ς

q
2⟩ is

proportional to ϵk, with k = m + n + 2p + 2q. Gathering all the re-
quired correlators into Ck and solving the subsets up to k = 8 (to
solve ⟨ς†2

2 ς2
2⟩), the first sensor population is then

⟨ς†
1ς1⟩L =

4PσΓ̃1

ΓΓσ(Γ̃2
1 + 4∆2

1)
, (3.89)

which corresponds to the (band-pass) Lorentzian filter, whence the
subscript L. In the same way, the second sensor population is

⟨ς†
2ς2⟩ =

8Pσ

[
Γ̃1(Γ̃1Γ̃2 + 2∆2

1) + 2Γ̃1∆2
2 − 4Γ∆1∆2

]
ΓΓσ(Γ̃2

1 + 4∆2
1)(Γ̃

2
1 + 4∆2

2)
[
Γ2 + (∆1 − ∆2)2

] , (3.90)

where Γ̃k ≡ Γσ + k Γ (not to be confused with Γk from the previous
Section). For the double Lorentzian (DL) and the Butterworth (BW),
after the corresponding substitutions, the sensor population read

⟨ς†
2ς2⟩DL =

8Pσ(Γ̃2
1Γ̃2 + 4Γσ∆2

1)

Γ3Γσ(Γ̃2 + 4∆2)2
, (3.91)

⟨ς†
2ς2⟩BW = 4Pσ

[
Γ3 + Γ̃1(Γ − 2∆)2/2 − 4Γ∆2

1+

Γ̃2
1Γ̃2 + Γ̃1(Γ + 2∆1)

2/2
]/[

Γ3Γσ(Γ̃2
1 + (Γ − 2∆1)

2)(Γ̃2
1 + (Γ + 2∆1)

2)
]

. (3.92)

We can change the effective width Γ in order to have the same FWHM

for all the cases. For (3.91), we substitute Γ → ΓDL = Γ/
√√

2 − 1 and,
for (3.92), we replace Γ → ΓBW = Γ/

√
2.

From equation (3.85) we compute the complementary filter popula-
tion, that reads

⟨ς̄†
1ς̄1⟩CL =

PσΓσΓ̃1 + 4Pσ∆2
1

Γσ(Γ̃2
1 + 4∆2

1)
. (3.93)

The 2-photon correlators are already too complicated to be written
here for any frequency ∆1. Nevertheless, since the emission is char-
acterised by a single Lorentzian, the most interesting setup would
be to place the filter frequency right at the center of the spectrum,
that is, ∆1 = 0. The behaviour for another choice of ∆1 is similar to
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Figure 3.6: Filtered emission (at resonance) of the incoherently-driven 2LS.
The second-order Glauber correlator at zero delay for three different (band-
pass) filters: Lorentzian (L), double Lorentzian (DL) and second-order Butter-
worth (BW), all of them with the same FWHM Γ. In inset, the complementary
(notch) Lorentzian filter is displayed.

the resonance case. For the Lorentzian band-pass, the second-order
Glauber correlator reads

g(2)Γ,L(0) =
2Γσ

Γ̃3
, (3.94)

whereas the band-stop filter reads

g(2)Γ,CL(0) = 2Γ
(

1
Γσ

+
1
Γ̃3

)
. (3.95)

The second-order filter cases are

g(2)Γ,DL(0) = 2 +
3Γ
4

(
285
Γ̃2

− 42
Γ̃2

2
− 192Γ3

Γ̃4
3

− 224Γ2

Γ̃3
3

− 252Γ
Γ̃2

3

)
, (3.96)

and

g(2)Γ,BW(0) = 2 +
6Γ
125

(
567
Γ̃2

− 210Γ
Γ̃2

2
+

492Γ + 158Γσ

Γ2
σ + 6ΓΓσ + 18Γ2 − 200(4Γσ + 15Γ)

Γ2
σ + 6ΓΓσ + 10Γ2

)
. (3.97)

The behaviour of the three band-pass filters is similar (see Fig. 3.6). The
filtered Glauber correlator converges to 2 for small widths (Γ → 0), so
that they lead to thermalisation, while we recover perfect antibunching
when Γ → ∞. However, for intermediate values (Γ ≳ 0.1γσ), the loss of
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antibunching is slightly greater for the BW filter. The tails decay much
faster than for the Lorentzian filter and thus overlaps less with the
Lorentzian profile of the spectrum. In the middle, one has the double
Lorentzian, which also decays as ω−4 but spreads more beyond the
FWHM (see Fig. 1.9). The notch filter, on the contrary, does not follow
this description and, instead, covers the whole range of possible
values of g(2). Infinitely small widths return g(2) = 0, something
we could expect from the complementary shape of the filter. On the
other hand, a broadband notch filter rejects a massive fraction of the
signal, leading to vanishing population and therefore producing a
vacuum-induced superbunching, i.e., g(2) ≫ 1. The shape of all the
curves, however, does not qualitatively change with the pumping Pσ

and merely speeds up or slows down the loss of anticorrelation. The

This result and its
accompanying expressions
(3.99)–(3.103), as well as its
particular cases
(3.94)–(3.97), give another
illustration of the power of
the perturbative theory, by
providing exact, closed-form
expressions for how various
types of filters affect
two-photon correlations.
While the effects do not turn
out to be strong qualitative
ones in the simple cases
considered here (as seen in
Figs. 3.6 and 3.7), this shows
how exact results can be
obtained for arbitrary types
of filters.

correlation function grows, like it does for decreasing values of Γ, as
the pumping increases, since the effective width of the spectrum does
so. This is qualitatively different from what was found in Ref. [72], in
which g(2)(0) exhibits a significant depletion around Pσ = γσ.

The time dependent case can also be obtained through this method.
Both the band-pass and the band-stop Lorentzian filter are written in
terms of exponentials

g(2)(τ) = 1 + ∑
p

lp e−λpτ , (3.98)

whose the exponents are

λ1 = Γσ , λ2 = Γ̃1/2 , λ3 = Γ . (3.99)

For the Lorentzian, the coefficients that go with the exponentials are

l1,L = − Γ2

Γ2
−

, (3.100a)

l2,L = − 2ΓΓσ(Γσ − 5Γ)
Γ2
−Γ̃3

, (3.100b)

l3,L = 1 − ΓΓσ

Γ2
−

− 3Γ
Γ̃3

, (3.100c)

where we have defined Γ− ≡ Γσ −Γ. For the complementary Lorentzian,
we have

l1,CL = − Γ2

Γ2
−

, (3.101a)

l2,CL =
Γ
Γ̃3

+
Γ(5Γσ − 3Γ)

Γ2
−

, (3.101b)

l3,CL =
2Γ
Γσ

+
Γ
Γ̃3

− Γ(3Γσ − 2Γ)
Γ2
−

. (3.101c)
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The Butterworth filter, on the other hand, has the following exponents

λ1 = Γσ , λ2,3 = Γ̃1/2± i Γ/2 , λ4,5 = Γ± i Γ , λ6 = Γ , (3.102)

and the coefficients

l1,BW = − 16Γ6

(4Γ3 − 2Γ2Γσ + Γ3
σ)2

, (3.103a)

l2,BW = −
{

4(1 − i)Γ3Γσ(Γ̃1 − iΓ)
[
(34 + 66i)Γ3 + 10(2 + 3i)ΓσΓ2−

3(3 + i)Γ2
σΓ − Γ3

σ

]}/{
Γ̃2

2(Γ
2
σ + 6ΓΓ2

σ + 10Γ2)(Γ − iΓ−)

(Γ− − iΓ)2(3iΓ + Γ̃3)
}
= (l3,BW)∗ , (3.103b)

l4,BW =
1

10

{
Γσ(Γ̃1 − iΓ)

[
(40 − 32i)Γ4 + (10 − 62i)Γ3Γσ−

(2 + 24i)Γ2Γ2
σ + (5 + 7i)ΓΓ3

σ + (2 + i)Γ4
σ

]}/
{

Γ̃2
2(Γ− − iΓ)2(Γ̃3 + iΓ)(Γ̃3 + 3iΓ)

}
= (l5,BW)∗ , (3.103c)

l6,BW =
Γσ(Γ2

σ + 2ΓσΓ + 2Γ2)(5Γ3
σ + 6Γ2

σΓ − 94ΓσΓ2 − 80Γ3)

5Γ̃2
2(Γ

4
σ + 4Γ3

σΓ − 8ΓσΓ3 + 20Γ4)
.

(3.103d)

The g(2)(τ) for the remaining filter, however, cannot be written like
the rest, i.e., as a sum of exponentials. Most of the times when the
roots of the same or different sets do coincide, the eigenvectors are
linearly independent. This happens when we take some limiting cases,
e.g., if ∆1 → 0. In such cases, the coefficients lp are convergent and
stay finite after taking the limit. The double Lorentzian is a counter
example since it exhibits divergences if ∆2 → ∆1 (and Γ2 → Γ1). This
case shares the roots of Eq. (3.99). Some roots are double or triple but
they do not correspond to different eigenvectors. In the Laplace space,
if the roots have 2-fold degeneracy (like λ2 = Γ̃1/2, in this case), the
complete solution is given by

b0 + b1s
(s + λ2)2 , (3.104)

and, inverting the Laplace transform, we get[
b1 + (b0 − λ2b1)τ

]
e−λ2τ . (3.105)

If it is 3-fold degenerate (as λ3 = Γ), the solution is

c0 + c1s + c2s2

(s + λ3)3 , (3.106)



3.2 illustrations of the perturbation theory 91

0.0

0.5

1.0

1.5

2.0
L DL BW

0.0

0.5

1.0

1.5

2.0
L DL BW

0.0

0.5

1.0

1.5

2.0
L DL BW

-20 -10 0 10 20
0.0

0.5

1.0

1.5

2.0
L DL BW

Figure 3.7: Time-dependent filtered emission (at resonance) of the
incoherently-driven 2LS for three different (band-pass) filters, Lorentzian
(L), double Lorentzian (DL) and Butterworth (BW); shown for several values
of Γ.

or, in the time domain,[
c2 + (c1 − λ3c2)τ + (c0 − λ3c1 + λ2

3c2)τ
2/2)

]
e−λ3τ . (3.107)

For a general n-degenerate root (without linearly independent solu-
tions), the time-domain solution is an (n− 1)-th polynomial of τ times
the corresponding exponential. So the 2-photon Glauber correlator
for the double Lorentzian has the following form

g(2)Γ,DL(τ) = 1 + a0 e−Γστ +
[
b1 + (b0 − λ2b1)τ

]
e−Γ̃1/2τ+[

c2 + (c1 − λ3c2)τ + (c0 − λ3c1 + λ2
3c2)τ

2/2)
]
e−Γτ ,
(3.108)

where

a0 = − 4Γ6

Γ4
−Γ̃2

2
, (3.109a)
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b0 =
Γ2

486

(
530
Γ−

− 99Γ
Γ2
−

− 288Γ2

Γ3
−

+
432Γ4

Γ4
−

− 22400
Γ̃2

−

2640Γ
Γ̃2

2
+

21870
Γ̃3

+
18711Γ

Γ̃2
3

+
17496Γ2

Γ̃3
3

+
34992Γ3

Γ̃4
3

)
,

(3.109b)

b1 =
Γ

486

(
368
Γ−

+
63Γ
Γ2
−

− 288Γ2

Γ3
−

+
432Γ3

Γ4
−

+
52120

Γ̃2

− 7728Γ
Γ̃2

2
− 52488

Γ̃3
− 45927Γ

Γ̃2
3

− 40824Γ2

Γ̃3
3

− 34992Γ3

Γ̃4
3

)
,

(3.109c)

c0 =
Γ2

486

(
1215 − 661Γ

Γ−
− 81Γ2

Γ2
−

+
360Γ3

Γ3
−

− 216Γ4

Γ4
−

+
68944Γ

Γ̃2
−

10572Γ2

Γ̃2
2

− 71199Γ
Γ̃3

− 62451Γ2

Γ̃2
3

− 52488Γ3

Γ̃3
3

− 34992Γ4

Γ̃4
3

)
,

(3.109d)

c1 = 3Γ +
Γ2

972

(
− 1942

Γ−
+

72Γ
Γ2
−

+
1008Γ2

Γ3
−

− 864Γ3

Γ4
−

+
235951

Γ̃2
−

35070Γ
Γ̃2

2
− 240570

Γ̃3
− 210924Γ

Γ̃2
3

− 186624Γ2

Γ̃3
3

− 139968Γ3

Γ̃4
3

)
,

(3.109e)

c2 = 1 +
Γ

972

(
− 800

Γ−
+

18Γ
Γ2
−

+
288Γ2

Γ3
−

− 432Γ3

Γ4
−

+
103589

Γ̃2
−

15114Γ
Γ̃2

2
− 104976

Γ̃3
− 91854Γ

Γ̃2
3

− 81648Γ2

Γ̃3
3

− 69984Γ3

Γ̃4
3

)
.

(3.109f)

The first noticeable effect of the filter is the loss of antibunching. At
τ = 0, none of the filtered g(2)(0) is exactly zero any longer. Such a
feature is shared by every filter and the reason is that any information
gained in the frequency (energy) domain, namely ∆ω, does affect
the information in time of the signal. In other words, we are losing
certainty in time. In signal analysis, this is known as the bandwidth
theorem. Given a Fourier transform mainly defined in a range of
frequencies ∆ω, then, in time, the signal is spread over a range of
length ∆t ∝ 1/∆ω. The explanation is summarised in the equation
∆ω ∆t ≥ 1. In Quantum Mechanics, the generalisation of this theorem
is the Heisenberg uncertainty principle. The theorem would read
∆E ∆τ ≥ h̄, so that the more defined is the energy, the greater is
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the time uncertainty. Due to the spectral response of the detector,
each frequency is not captured with the same probability. The time
resolution is limited by the bandwidth. Then, two photons emitted
close together could be seen by the detector as if they arrived at
the same time. Thus, the antibunching is spoilt by the limited time
resolution. The time dynamics is also modified by the filtering process
(see Fig. 3.7), which is evident when inspecting the time-dependent
expressions as computed above: a single exponential turns into multi-
exponential quantities. The noticeable kink, the discontinuity of the
first derivative at τ = 0, is smoothed down in presence of the filter,
that introduces its own dynamics in the picture and also some mixed
terms, which manifest the interplay between source and filter.

3.2.4 frequency-filtered coherent 2ls

We now tackle a similar problem changing the kind of excitation.
Under coherent pumping (e.g., a laser) and after expanding the Hilbert
space to include the sensors ςi (i = 1, 2), the Hamiltonian in the
Rotating Frame reads

H = ∆σσ†σ+Ωσ(σ
† +σ)+ ∑

j=1,2
∆jς

†
j ς j + ϵ(ς†

1σ+ ς†
2ς1 +h.c.) , (3.110)

where ∆j = ωj − ωL is the detuning between the 2LS/sensors and the
laser. From Chapter (2) we already know that the coherent excitation
brings a much more complicated structure than the incoherently-
pumped case. Even the simplest filter, the Lorentzian, makes this
evident and reinforces the necessity of an accurate description through
spectral measurements of the multiphoton correlations. The filtered
spectrum is given the by sensor population (up to a constant). The
whole expression is lengthy so we show a few cases of interest. If the
system is driven at resonance (∆σ = 0), the first sensor population
reads

⟨ς†
1ς1⟩L = 16Ω2

σ

{
Γ(γ2

11 + 4∆2
1)

2(γ2
12 + 4∆2

1)
2+8Ω2

σ

[
Γγ2

11γ12

γ32 +4∆2
1(2Γ3 + 16Γ2γσ + 23Γγ2

σ + 8γ3
σ)−16∆4

1γ12̄
]
+

128Ω4
σγ11(Γ2 + 4∆2

1)
}/{

Γ(Γ2 + 4∆2
1)(γ

2
11 + 4∆2

1)

(γ2
σ + 8Ω2

σ)
[
Γ4 + 6Γ3γσ + 12Γγσ(γ

2
σ + 2∆2

1 + 8Ω2
σ)+

Γ2(13γ2
σ + 8∆2

1 + 32Ω2
σ) + 4γ4

σ + 16(∆2
1 − 4Ω2

σ)
2+

4γ2
σ(5∆2

1 + 16Ω2
σ)
]}

, (3.111)
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where γjk = j Γ + k γσ and the bar notation denotes s negative sign,
i.e., k̄ ≡ −k. The complementary filter has the following expression:

⟨ς̄†
1ς̄1⟩CL = 16Ω2

σ

{
∆2

1(γ
2
12 + 4∆2

1)(γ
2
11 + 4∆1)

2 +2Ω2
σ

[
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11γ2
12+

4∆2
1(2Γ2 + 8Γ3γσ + 17Γ2γ2

σ + 20Γγ3
σ + 8γ4
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]
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32Ω4
σ(Γ
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2
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2
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2
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+ 4γ2
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2 + 4γ2
σ(5∆2

σ + 16Ω2
σ)
]}

.
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The second-order filtered correlations are obtained, again, coupling
the first sensor to a second one. The following expressions are even
more cumbersome so we only show the filtered observables when
the filters and both at resonance (so that ∆1 = ∆2 = 0 for the Double
Lorentzian and ∆1 = −∆2 = Γ/2 for the Butterworth filter), which
are

⟨ς†
2ς2⟩DL = 64Ω2

σ

{
γ2

12(γ
2
11 + 4∆2

σ)
2 + 8Ω2

σγ12(2Γ3 + 5Γ2γσ+

5Γγ2
σ + 4∆2

σγ32) + 64Ω4
σΓγ21

}/
{

Γ4(γ2
σ + 4∆2

σ + 8Ω2
σ)
[
γ12(γ

2
11 + 4∆2

σ)+16γ11Ω2
σ

]2},

(3.113)

⟨ς†
2ς2⟩BW = 64Ω2

σ

{
(Γ2 + 2Γγσ + 2γ2

σ)
[
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γ2
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σ)
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. (3.114)
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At resonance ∆1 = 0, we get the Lorentzian filter 2-photon correlations
as

g(2)Γ,L(0) =
{
(γ2

σ + 4∆2
σ + 8Ω2

σ)
[
γ12(γ

2
11 + 4∆2
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]
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2
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2
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γ32(γ

2
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σ)+16γ31Ω2
σ

]}
,
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and the Lorentzian notch filter correlations are

g(2)Γ,CL(0) =
{
(γ2

σ + 4∆2
σ + 8Ω2

σ)
[
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2
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. (3.116)

The expressions of the 2-photon correlator for the DL and BW filters
are analytical but impossible to handle without the help of a computer.
Therefore, we only include the approximated expressions when the
driving strength is weak enough and both the 2LS and the filter are at
resonance (∆σ = ∆1 = 0). After taking the limit Ωσ → 0, they read

g(2)Γ,DL(0) ≈
γ2

σγ2
32

4γ4
11

, (3.117)

and

g(2)Γ,BW(0) ≈
γ2

σγ2
11

(Γ2 + γ2
11)

2
. (3.118)

For completeness, we also compute the limit Ωσ → 0 for Eqs. (3.115)
and (3.116), yielding

g(2)Γ,L(0) ≈
γ2

σ

γ2
11

, (3.119)

and

g(2)Γ,CL(0) ≈
γ2

σγ2
11

Ω4
σ

. (3.120)
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Figure 3.8: 2-photon correlations of the coherently-driven 2LS system in
the Heitler (left) and Mollow (right) regimes. The four kinds of filters are
shown: Lorentzian (blue), double Lorentzian (yellow), Butterworth (green)
and complementary (notch) Lorentzian (in inset, red). The weak driving
case recovers the perfect antibunching monotonously but faster for the
Butterworth filter. On the contrary, the notch filter returns extreme bunching
even for narrow filters, eliminating the Rayleigh peak. In the Mollow regime,
given the richer structure of the spectrum, the autocorrelation function
exhibits bunching for intermediate values of Γ (having a maximum around
Γ/γσ = 0.1) and have a noticeable change of slope near Γ/γσ = 10. After
the satellites are filtered in, g(2)Γ (0) moves towards zero rapidly.

When Γ → 0 so the (band-pass) filters are infinitely narrow, the
photon correlations turns to 1 because they only accepts photons
from the infinitely narrow laser. In the opposite limit Γ → ∞ and
the filters collect all the photons and the blind or unfiltered statistics
are then recovered, giving g(2)Γ→∞(0) → 0. If the filter is placed at

any other frequency ∆1 ̸= 0, g(2)Γ (0) → 2, as Γ → 0, instead of 1

because the laser light is filtered out. The complementary or notch
filter has a different behaviour as we already mentioned, nonetheless,
the situation is slightly different because of the delta peak of the
spectrum. A narrow filter, centered at the laser frequency, will let pass
all the photons except those that come from the laser. The resulting
statistics correspond to the bare fluctuations (insets of Fig. 3.8), that
is, the unfiltered light without the coherent scattered light (Rayleigh
peak). These fluctuations are indeed bunched in the weak driving
regime and turn antibunched in the Mollow regime. For broad notch
filters, most of the signal becomes blocked and eventually it is rejected
entirety and no photons are detected. Since the population goes to zero
and vacuum dominates, the normalised Glauber correlator explodes
to infinity, the same as for the incoherently-pumped case. The overall
effect that we find is, again, the partial loss of antibunching as a
consequence of the spectral resolution.



3.2 illustrations of the perturbation theory 97

-4 -2 0 2 4
0

1

2

3

4

5

Time delay (ns)

D
ec

re
as

in
g 

fil
te

r w
id

th
Figure 3.9: Actual measurements, from the group of Technische Universität
München (Ref. [Z2]), of the filtered 2-photon autocorrelation function of a
single-photon emitter in the weak driving regime for decreasing filter widths
Γi. The circles correspond to the experimental data while the theoretical
results are shown as solid lines. Adapted with permission from [Z2]. Copy-
right (2020) by the APS.

Except for the Lorentzian band-pass filter at resonance, the expres-
sions for the non-zero delay Glauber correlator are extremely lengthy
and clearly unpractical so we will not include them. These results
provide the counterparts of exact, closed-form filtered g(2)Γ of a 2LS
but now for coherent driving. The particular case of a Lorentzian filter
was used by two experimental groups to fit their data. One case [Z2]
is shown in Fig. 3.9. The exact expression of the coefficients lp for

g(2)Γ,L(τ) is found in the Appendix A.9. The weak-driving limit leads,
for the Lorentzian filter, to the following exponents

λ1 = γσ , λ2 = γσ/2 , λ3 = Γ/2 , λ4 = γ11/2 , λ5 = Γ , (3.121)

with their corresponding coefficients

l1,L ≈ Γ4

γ2
11γ2

11̄

, l2,L ≈ − 2Γ2

γ11γ11̄
, l3,L ≈ 2Γγσ

γ11γ11̄
, (3.122)

l4,L ≈ − 2Γ3γσ

γ2
11γ2

11̄

, l5,L ≈ Γ2γ2
σ

γ2
11γ2

11̄

. (3.123)
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In the same limit, the exponents and coefficient for g(2)Γ,CL(τ) are

λ1 ≈ γσ , λ2 ≈ γ11/2 , λ3 ≈ Γ , (3.124)

and

l1,CL =
γ4

σγ2
11

64γ2
11̄Ω4

σ

, l2,CL = −
Γγ3

σγ2
11

32γ2
11̄Ω4

σ

, l3,CL =
Γ2γ2

σγ2
11

64γ2
11̄Ω4

σ

. (3.125)

The time dependency of the 2-photon correlation function, as the
bare statistics, varies qualitatively from the Heitler to the Mollow but,
overall, the loss of the perfect antibunching holds in any case. We
already discussed that the origin of the antibunching depends on the
strength of the driving. For weak driving, it is the interplay between
the mean field and fluctuation what yields g(2)(0) = 0. The filtering
process affects these contributions and spoil the perfect cancellation
of not only g(2)(0) but also of all the higher order correlations, that
is, g(n)(0). The filtered statistics in the Heitler regime were indeed
measured by two different groups, [73] and [Z2]. This verifies the
loss of antibunching and the underlying mechanism that produce
the single-photon emission in resonance fluorescence, predicted by
the theory. The measurements of g(2)Γ,Ωσ

from Ref. [Z2], using an epi-
taxial quantum dot as the 2LS, together with the best fitting of the
analytical expressions of the (Lorentzian) filtered g(2)Γ,Ωσ

(τ) are shown
in Figure 3.9. The theory of frequency-resolved correlators applied to
this case is thus in agreement with the actual measurements.



4
P H O T O N C O U N T I N G

Until now, the statistical properties under study were coincidences
of n-tuples of photons or the time intervals between consecutive or
non-consecutive photons. However, it is not possible to quantify how
many photon clicks are actually recorded from those measurements.
In an experiment, the photons are sent to a photo-detector, that pro-
duces the transduction of the EM signal into electrical currents. At the
microscopic level, the photons impinging on the apparatus excite the
electrons (or other types of carriers) and produce a photo-current. In
the process, such weak signal usually has to be amplified to be finally
measured. We have briefly mentioned actual detection devices in 1.2.2
and discussed their influence on the photon statistics but, here, the
relevant point is that a priori we can assign to each quanta of light
a minimal current and thus count how many photons are arriving
to the detector. If one photon generates the same photo-current inde-
pendently of the rest, the probability to detect n photons in the time
window (t, t + T] is given by the Mandel formula [21, 36, 74]:

p(n, T; t) =
1
n!

⟨: Ωn exp(−Ω) :⟩ , (4.1)

here :: denotes normal ordering and Ω is the time-integrated intensity
operator defined as

Ω = ξγ
∫ t+T

t

(
a†a
)
(t′) dt′ , (4.2)

where ξ is a parameter that takes into account the detection efficiency
(it is bounded between 0 and 1), γ is the emission rate of the system
and a, a† are the operators related to the light field (but not necessarily
EM mode operators). If we plug this into Eq. 4.1, after unravelling the
exponential and sorting out all the operators, we get

p(n, T; t) =
(−1)n

n!

∞

∑
k=0

(−ξγ)n+k

k!
×

∫ t+T

t
...
∫ t+T

t
G(n+k)(t1, ..., tn+k)dt1...dtn+k , (4.3)

or, in a succinct form,

p(n, T; t) = (−1)n
∞

∑
k=0

(−1)n+k⟨: Ωn+k :⟩
n!k!

. (4.4)
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This last equation can be easily inverted, so we can express the time-
integrated intensity moments as

⟨: Ωk :⟩ =
∞

∑
n=k

n!
(n − k)!

p(n, T; t) , (4.5)

and from here, we can identify ⟨: Ωk :⟩ as the factorial moments of the
distribution p(n, T; t). With them, we are able to compute the central
moments such as the mean and variance,

µ = ∑
n

np(n) = ⟨: Ω1:⟩ , (4.6a)

Σ2 = ∑
n

n2p(n)− µ2 = ⟨: Ω2 :⟩+ ⟨: Ω1 :⟩ − ⟨: Ω1 :⟩2 , (4.6b)

respectively. An interesting quantity to analyse the deviations of the
emission from an uncorrelated Poissonian stream is the variance
normalised to the mean intensity, i.e., Σ2/µ. Any Poisson distribution
will return Σ2/µ = 1, no matter how dim or how strong the emission
intensity is. Moreover, as we will see, it can be computed exactly for all
the system presented below as it only requires to have knowledge of
the population and 2-photon Glauber correlator. Of course, a deeper
understanding would demand the study of all the moments and, in
the end, the probability distribution itself, but in many situations such
a goal is impossible to attain.

In order to compute these averages, we need to look into the m-time
Glauber correlators which appear above. They have the following
expression

G(m)(t1, ..., tm) = θ(t1 < t2 < ... < tm)×〈
a†(t1)...a†(tm)a(tm)...a(t1)

〉
+ (other time orderings) . (4.7)

Note that each correlator consists of m! terms since there are m!
possible orderings. However, all operators within the average are
identical and, therefore, each term will return the same result after the
integration. We are considering the time ordering t1 < t2 < · · · < tm,
unless stated otherwise. Inserting this expression into Eq. (4.3) leads
to

p(n, T; t) =
(−1)n

n!

∞

∑
k=0

(−ξγ)n+k(n + k)!
k!∫ t+T

t
...
∫ t3

t

∫ t2

t

〈
a†(t1)...a†(tn+k)a(tn+k)...a(t1)

〉
dt1dt2...dtn+k .

(4.8)
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Any multi-time correlation function, having the time ordering fixed,
can be calculated through the Quantum Regression Theorem (see
Eq. (2.33)). We then apply this idea to G(m). We choose, without loss
of generality, time origin t0 = t = 0 and define the vector

v⃗m(t1, ..., tm) ≡ ⟨a†(t1) . . . a†(tm−1) c⃗(tm) a(tm−1) . . . a(t1)⟩ , (4.9)

and it is easy to check that, if [⟨⃗c(t)⟩]i1 = ⟨a†a(t)⟩, then [⃗vm(t1, ..., tm)]i1
= G(m)(t1, ..., tm) (where [...]i denotes the i-th component of the vec-
tor within the brackets). Using the Regression Theorem, we get the
equation of motion for v⃗m(t1, ..., tm) as

∂tm v⃗m(t1, ..., tm) = M v⃗m(t1, ..., tm) . (4.10)

The formal solution of this vector differential equation, considering
the propagation of tm from the previous time tm−1, is

v⃗m(t1, ..., tm) = eM(tm−tm−1) v⃗m(t1, ..., tm−1, tm = tm−1) =

eM(tm−tm−1) ⟨a†(t1)...a†(tm−2)(a†⃗c a)(tm−1)a(tm−2)...a(t1)⟩ =
eM(tm−tm−1) C v⃗m−1(t1, ..., tm−1) . (4.11)

In the last line, we have introduced the matrix C which maps ⟨⃗c(t)⟩
into ⟨(a†⃗c a)(t)⟩. Equivalently, the dynamics of v⃗m−1(t1, ..., tm−1) are
governed by the equation

∂tm−1 v⃗m−1(t1, ..., tm−1) = M v⃗m−1(t1, ..., tm−1) , (4.12)

whose solution is formally identical to (4.11)

v⃗m−1(t1, ..., tm−1) = eM(tm−1−tm−2) C v⃗m−2(t1, ..., tm−2) . (4.13)

Inserting this in Eq. (4.11) leads to

v⃗m(t1, ..., tm) = eM(tm−tm−1) C eM(tm−1−tm−2) C v⃗m−2(t1, ..., tm−2) . (4.14)

Repeating this procedure down to v⃗1(t1) = ⟨⃗c(t1)⟩ = eMt1 ⟨⃗c (0)⟩
(solving Eq. (2.32)), we find the nested equation

v⃗m(t1, ..., tm) = eM(tm−tm−1) C eM(tm−1−tm−2) C ... C eM(t2−t1) C⟨⃗c(t1)⟩

=

( m−2

∏
k=0

eM(tm−k−tm−k−1) C
)
⟨⃗c (t1)⟩

=

( m−2

∏
k=0

eM(tm−k−tm−k−1) C
)

eMt1 ⟨⃗c (0)⟩ . (4.15)
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Thus, the m-photon Glauber correlator, given a particular time order-
ing, has the following expression

G(m)(t1, ..., tm) =

[( m−2

∏
k=0

eM(tm−k−tm−k−1) C
)

eMt1 ⟨⃗c (0)⟩
]

i1

. (4.16)

For small times,

This expression of general
validity (for a Markovian

system) provides a tractable
starting point to compute the

multi-time m-photon
correlators. that is, tk → 0, we can approximate G(m) taking

tk − tk−1 → 0. The exponentials are, in this limit, eM(tk−tk−1) ≈ 1 +
M(tk − tk−1). Substituting this in Eq. (4.16) and keeping only the
zeroth and linear terms,

G(m)(t1, ..., tm)
tk→0
≈
[
Cm−1⟨⃗c (0)⟩

]
i1
+

m−1

∑
k=1

(tk − tk−1)
[
Cm−1−k M Ck ⟨⃗c (0)⟩

]
i1

,

(4.17)

where t0 = t = 0. Then, we are able to compute the time-integrated
correlator for small time T (this necessarily implies that intermediate
time steps tk must be small as well):

⟨: Ωm :⟩ ≈ m! (ξγ)m
∫ T

0

∫ tm

0
...
∫ t2

0

[
Cm−1⟨⃗c (0)⟩+

m−1

∑
k=1

(tk − tk−1) Cm−1−k M Ck ⟨⃗c (0)⟩
]

i1
dt1...dtm =

m! (ξγ)m[Cm−1⟨⃗c (0)⟩
]

i1

( ∫ T

0

∫ tm

0
...
∫ t2

0
dt1...dtm

)
+

m! (ξγ)m
m−1

∑
k=1

[
Cm−1−k M Ck ⟨⃗c (0)⟩

]
i1
×

( ∫ T

0

∫ tm

0
...
∫ t2

0
(tk − tk−1) dt1...dtm

)
. (4.18)

The integral accompanying the zeroth term returns Tm

m! while the one
that goes with the linear terms, for any m > k > 0, gives Tm+1

(m+1)! . Mean-

while, it is easy to see that
[
Cm−1⟨⃗c (0)⟩

]
i1
= ⟨a†mam⟩(0) = G(m)(0).

So, keeping only the first term, we find that for small integration
time T

⟨: Ωm :⟩ T→0≈ (ξγ T)m ⟨a†mam⟩(0) + O(Tm+1) . (4.19)

From this result, we can calculate the photon-counting probabilities
from short integration times. Using Eq. (4.19) in Eq. (4.4)

p(n, T → 0) ≈ (−1)n

n!

∞

∑
k=0

(−ξγT)n+k

k!
G(n+k)(0) , (4.20)
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or, inversely,

(ξγT)kG(k)(0) ≈
∞

∑
n=0

(n + k)!
n!

p(k + n, T → 0) . (4.21)

These formulae resemble Equation (1.10) which relate the diagonal
elements of the density matrix Pn and the Glauber correlators G(m).
Having this in mind, it is possible to infer the m-photon correlators
from photon-counting experiments.

In the following Sections, we will derive some results for system
with Continuous Wave (CW) excitation and we will study in detail
the particular case without any kind of excitation, also known as
Spontaneous Emission (SE), emphasising the role of the spectral re-
sponse of the detector.

4.1 I N C O H E R E N T LY P U M P E D 2 L S

Now, we consider a 2LS under incoherent driving. The dynamics of
the system are governed by the master equation (2.22) with decay and
pumping rates γσ and Pσ and the rest of the parameters taken to zero.
We can easily derive the equation of motion for the correlators from
Eq. (2.24). It is interesting to reproduce them again prior to finding
the multi-time m-photon Glauber correlators. The correlator equations
are

∂t⟨σ⟩ =− (Γσ/2 + iωσ) ⟨σ⟩ , (4.22a)

∂t⟨σ†⟩ =− (Γσ/2 − iωσ) ⟨σ†⟩ , (4.22b)

∂t⟨σ†σ⟩ =− Γσ⟨σ†σ⟩+ Pσ . (4.22c)

These equations are uncoupled, thus, they can be solved indepen-
dently. We are particularly interested in the last one, which bears all
the information of the m-photon correlators.

Defining the vector c⃗ = (1 ⟨σ†σ⟩)T, the matrices

M =

(
0 0
Pσ −Γσ

)
and C =

(
0 1
0 0

)
, (4.23)

and using the Quantum Regression Theorem (4.16) for Incoherent
2LS (in the steady-state), we find that any Glauber correlator, for a
particular time ordering, can be written as:

G(m)(t1, ..., tm) = nm
σ

m−1

∏
p=0

(
1 − e−Γσ(tp+1−tp)

)
, (4.24)
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where nσ = Pσ/Γσ is the steady-state population of the system. The
normalised correlators are

g(m)=
G(m)(t1, ..., tm)

∏m
p=1 G(1)(tp)

=
m−1

∏
p=1

(
1 − e−Γσ(tp+1−tp)

)
=

m−1

∏
p=1

g(2)(tp+1 − tp).

(4.25)

This factorisation

This result connecting the
m-th order correlation of a

two-level system to
second-order ones only—that
we will find remains valid for

coherent driving—reveals a
strong feature of the 2LS,
rooting its multiphoton

emission to the dynamics of
two photons exclusively. property of the m-photon correlators is unique and

the main characteristic of single-photon emitters. Not only that, each
factor is a copy of g(2). Thus, the correlations only involve pairs of
photons separated by the time interval τ. The explanation is simple.
The system can be excited once each time so that, after emitting one
photon, the system is deterministically in the ground state. Some
reloading time is needed until it is re-excited and can emit again. If
the two-level system is excited coherently instead, the mechanism is
slightly different due to the coherent evolution but the factorization
property still holds.

To obtain the probabilities p(n, T; t), we need to solve nested inte-
grals for any order m. Fortunately, these integrals have closed-form
solutions:

Jm<2 = (nσT)m ,

Jm≥2 =
nm

σ

Γm
σ

∫ t+T

t
...
∫ t3

t

∫ t2

t
nm

σ

m−1

∏
p=1

(
1 − e−Γσ(tp+1−tp)

)
dt1dt2...dtm

=
nm

σ

Γm
σ

(
L−(2m−1)

m (−ΓσT)− e−ΓσT L−(2m−1)
m−2 (ΓσT)

)
,

(4.26)

where L(k)
m (x) are the generalized Laguerre polynomials (m are posi-

tive integers and k can be any real number). The mean and variance
are easily computed from these integrals and, in the limit T → ∞,
they yield the following normalised variance(

Σ2/µ
)
(T → ∞) → 1 − 2ξnσ(1 − nσ) , (4.27)

which clearly deviates from 1 for any possible population (excluding
the limits nσ = 0 and nσ = 1).

The probability of collecting n photons from the incoherent 2LS in
a time window of length T is therefore:

p(n, T) =
(−1)n

n!

∞

∑
k=0

(−ξγσ)n+k(n + k)!
k!

Jn+k(ΓσT) , (4.28)
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or, after making a change of notation,

p(n, T) =
(−1)n

n!

∞

∑
k=0

(−y)n+k(n + k)!
k!

J ′
n+k(x) , (4.29)

where x ≡ ΓσT, y ≡ γσξ nσ/Γσ and J ′
m(x) = (nσ/Γσ)

−m Jm(x).
Although the integrals in Eq. (4.26) have analytical solution and so
do the photon-counting probabilities, it turns out that, in this current
form, they are numerically unstable. For long integration time T, the
summation does not converge. This makes difficult to computationally
generate the probability distribution.

A way to surpass this issue or at least improve the rate of conver-
gence is to transform the expressions in Eq. (4.26) into something
more tractable. Inspecting the series expansion of Jm, we notice that
they have an easy expression. For m > 1,

J ′
m(x) = − ∑

n≥2m−1

(
n − m − 1

m − 2

)
(−x)n

n!
, (4.30)

which can be identified with a more familiar function,

J ′
m(x) =

x2m−1

(2m − 1)! 1F1(m − 1; 2m;−x) , (4.31)

the confluent hypergeometric function of the first kind 1F1(a; b; x),
also known as Kummer’s function of first kind. It is noticeable that
this formulation is also valid for limiting cases m = 0, 1. However, for
m = 0, it is preferable to substitute it by 1 straightforwardly.

Now we present the limiting cases when the integration time is
either small or very large, this is, x ≪ 1 or x ≫ 1.

If the argument x is small, then Eq. (4.31) has the following expres-
sion

J ′
m(x) ≈ x2m−1

(2m − 1)!
− (k − 1)

x2m

(2m)!
, (4.32)

which, after substituting in Eq. (4.29), yields

p(n, T → 0) ≈
√

πynx2n−1

4n+1n!

[8n − 4(n − 1)x
Γ(n + 1/2) 0F1

(
n + 1/2,−x2y

4
)
+

(x − 2)x2y
Γ(n + 3/2) 0F1(n + 3/2,−x2y

4
)
]

≈x2n−1yn

(2n)!
[2n − (n − 1)x] , (4.33)
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where 0F1(a; x) is a particular case of the generalised hypergeometric
function. Remembering that x = ΓσT and y = ξγσnσ/Γσ, then

p(n, T → 0) ≈ 1
(2n − 1)!

(ξγσnσT)n(ΓσT)n−1
(

1− n − 1
2n

ΓσT
)

. (4.34)

On the other hand, when the integration time is large enough, Eq. (4.31)
can be approximated as

J ′
m(x) ≈ xm

m!

(
1 − m(m − 1)

x

)
, (4.35)

and, plugging this in Eq. (4.29), we get

p(n, T → ∞) ≈ 1
n!
(xy)ne−xy

(
1 − n(n − 1)

x
+ 2ny − xy2

)
(4.36)

and, finally, it has the following expression

p(n, T → ∞) ≈ 1
n!
(ξγσnσT)ne−ξγσnσT

(
1 − n(n − 1)

ΓσT
+

2n
ξγσnσ

Γσ
− ξ2γ2

σn2
σT

Γσ

)
. (4.37)

If we define a Poisson distribution p0(n, T) = 1/n!λne−λ with param-
eter λ = ĪT, where Ī = ξγσnσ is the detected mean intensity, we can
rewrite Eq. (4.37) as a sum of these probabilities

p(n, T → ∞) ≈
(

1 + 2n
Ī

Γσ

)
p0(n, T)− (n − 1)

Ī
Γσ

p0(n − 1, T)−

(n + 1)
Ī

Γσ
p0(n + 1, T) . (4.38)

The distribution above, when plotted around its maximum, resembles
a regular Poisson distribution whose parameter is λ′ = βλ = β ĪT
(with 1 > β > 0) and that has been displaced such that n → n − m
(with m > 0). The mean and variance of this displaced Poisson distri-
bution are now m + β ĪT and β ĪT, respectively. Since these moments
have to coincide with the exact ones after taking the limit T → ∞, the
values for these parameters are

m = 2
Ī

Γσ
ĪT and β = 1 − 2

Ī
Γσ

. (4.39)

There is a caveat, it is important to remark that the approximation only
holds for n > m given that p0(n, T) is exclusively defined for positive
integers (including n = 0). Nonetheless, the major contributions to
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n p(n, T → 0) p(n, T → ∞)

0 1 − ĪT e− ĪT(1 − Ī2T/Γσ)

1 ĪT − 1
3 ( ĪT)2ΓσT ĪT e− ĪT(1 − 2 Ī/Γσ + Ī2T/Γσ)

2 1
3! ( ĪT)2ΓσT(1 − ΓσT/4) 1

2! ( ĪT)2e− ĪT(1 − 2/(ΓσT) + 4 Ī/Γσ + Ī2T/Γσ)

3 1
5! ( ĪT)3(ΓσT)2(1 − ΓσT/3) 1

3! ( ĪT)3e− ĪT(1 − 6/(ΓσT) + 6 Ī/Γσ + Ī2T/Γσ)

Table 4.1: Incoherently pumped 2LS’s photon-counting distribution p(n, T)
for two limiting cases T → 0 and T → ∞, respectively. The mean intensity is
Ī = ξγσnσ.

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.1: Probability of detecting n = 0 (blue), n = 1 (yellow) and n = 2
(green) in the time window (0, T) for the incoherently driven 2LS, with ξ = 1
and Pσ = 0.1γσ. The circles are obtained from Monte Carlo simulations.

this distribution are far away from this lower bound and hence they
are not affected.

As yet, only the limiting cases have been considered. In order to
find a suitable and more accessible solution, we can make use of the
Laplace transform. We will change the variable x (time) to the Laplace
space variable s. The integrals in Eq. (4.31) have a particularly simple
expression for their Laplace transform.

L
{
J ′

m
}
(s) =

1
sm+1(s + 1)m−1 − δm,0 , (4.40)

where δm,0 is the Kronecker delta. Using this result, we find the
following expression for the Laplace transform of the photon-counting
probabilities:

p̃(n, s) = L {p(n, T)} (s) = yn (s + 1)2

(s2 + s + y)n+1 − δn,0 . (4.41)

Despite this simple expression for p̃(n, s), the inversion of Laplace
transform is still very complicated. There are several ways to do that,
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which are, of course, equivalent. The simplest is to decompose the
denominator of Eq. (4.41) as a sum of fractions of k-th order. The poles
are s± = − 1

2 ±
α
2 , where α =

√
1 − 4y. The roots are always real since

y < 1/4 and are located in the negative-real half-plane of the s-space
(i.e., Re(s) < 0). After the decomposition, it yields

1
(s2 + s + y)n+1 =

n

∑
k=0

(−1)k
(

n + k
k

)[
1

αn+k+1
1

(s − s+)n+1−k+

1
(−α)n+k+1

1
(s − s−)n+1−k

]
. (4.42)

Now, the inversion of Eq. (4.42) is easy to do now since L−1{(s −
a)−(n+1)}(x) = xne−ax/n!. Thus, the inversion gives

f̃n(s) =
es+x

α2n+1

n

∑
k=1

(−1)k
(

n + k
k

)
(αx)n−k

(n − k)!
−

es−x

α2n+1

n+1

∑
k=1

(−1)k
(

n + k
k

)
(−αx)n−k

(n − k)!
. (4.43)

These sums can be further simplified and written in terms of modified
Bessel functions of the second kind Kν(x) (where ν > 0)

fn(x) =
e−x/2xn√−αx Kn+1/2 (−αx/2)

αn+1
√

π n!
−

e−x/2(−x)n√αx Kn+1/2 (αx/2)
αn+1

√
π n!

(4.44)

Now, we focus on the numerator (s + 1)2. Reminding the property
of the derivatives, L {∂x f (x)} = s f̃ (s) − f (0) and L

{
∂2

x f (x)
}

=
s2 f̃ (s)− s f (0)− f ′(0), where f̃ (s) = L{ f }. Then,

(s + 1)2 f̃n(s) = L{∂2
x fn(x) + 2∂x fn(x) + fn(x)}+

(s + 2) fn(0) + ∂x fn(0) . (4.45)

Since all the functions fn(x) and their first derivative vanish at x = 0,
with the exception of n = 0, so that fn(0) = 0 and ∂x fn(0) = δn,0, we
can

This provides the photon
counting probability of

detecting n photons in any
time window T of an

incoherently driven 2LS, for
all drivings. This shows that

strong correlations are
maintained even at large

times where one could expect
them to wash out.

simply invert the Laplace transform of p̃(n, s)

p̃(n, s) = ynL{∂2
x fn(x) + 2∂x fn(x) + fn(x)} , (4.46)

so, after computing the derivatives of fn(x), we finally get

p(n, T) =
e−x/2√π(xy)n

4αn−1(αx)3/2 n!

{
[16n2+8n(x + 1)+x(α2x+x+4)]

× In+1/2(αx/2) + 2αx(x + 2n)In+3/2(αx/2)
}

. (4.47)
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We show below some particular cases

p(0, T) = (2α)−1[(1 − 2y + α)e−(1−α)x/2−
(1 − 2y − α)e−(1+α)x/2] , (4.48a)

p(1, T) = y(2α3)−1
{
[(1 − 4y − 2αy + α)x − 4y] e−(1−α)x/2−

[(1 − 4y + 2αy − α)x − 4y]e−(1+α)x/2
}

, (4.48b)

p(2, T) = y2(4α5)−1
{
[α2(1 + α − 2y)x2 − 2(α2 + 2αy + α)x+

4 + 8y] e−(1−α)x/2 − [α2(1 − α − 2y)x2−

2(α2 − 2αy − α)x + 4 + 8y] e−(1+α)x/2
}

, (4.48c)

that are shown in Fig. 4.1 together with the Monte Carlo simulations
for the photo-counting experiment.

Another associated function which is interesting to calculate is the
probability-generating function G(z). Independently of the coordinate
space, either x or s, its definition is

G(z, x) =
∞

∑
n=0

p(n, x)zn , (4.49)

or

G̃(z, s) =
∞

∑
n=0

p̃(n, s)zn , (4.50)

and the convergence of this function is guaranteed only if |z| < 1. The
relation with the photon-counting probabilities is straightforward

p(n, x) =
1
n!

∂n
zG(0, x) , (4.51)

and formally identical for G̃(z, s). Inserting Eq. (4.41) into Eq. (4.50)
leads to

G̃(z, s) =
s + 1 − y(1 − z)
s2 + s + y(1 − z)

, (4.52)

and, after inverting the Laplace transform, yields

G(z, x) =
1

A+ − A−

(
A2
+e−A−x − A2

−e−A+x
)

, (4.53)

where A± = (1 ± α(z))/2 and α(z) =
√

1 − 4y(1 − z). Noticing that
G(z, x) is solution of the second-order linear differential equation

∂2
xG(z, x) + ∂xG(z, x) + y(1 − z)G(z, x) = 0 , (4.54)
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with initial conditions G(z, 0) = 1 and ∂xG(z, 0) = −y(1 − z), we
can identify, inspecting each term of the series of G , the equation
of motion of the photon-counting probabilities. For all n ≥ 0, p(n, x)
satisfies

∂2
x p(n, x) + ∂x p(n, x) + y p(n, x)− y p(n − 1, x) = 0 , (4.55)

with initial conditions p(n, 0) = δn,0 and ∂x p(n, 0) = y(δn,1 − δn,0).
Remembering that x = ΓσT and y = ξγσnσ/Γσ = Ī/Γσ, (4.55) is also
written as

∂2
T p(n, T) + Γσ ∂T p(n, T) + Γσ Ī p(n, T)− Γσ Ī p(n− 1, T) = 0 , (4.56)

and, at T = 0, p(n, 0) = δn,0 and ∂T p(n, 0) = Ī(δn,1 − δn,0). Solving
these equations of motion numerically, we have an alternative way to
generate the photon-counting distribution up to a fixed number of
photons.

4.2 C O H E R E N T LY P U M P E D 2 L S

We keep the same 2LS but change the incoherent pumping by coherent
source, namely a laser of frequency ωL and amplitude Ωσ. In the
Rotating Frame, the Master Equation (2.22) reduces to

∂tρ = −i[∆σσ†σ + Ωσ(σ
† + σ), ρ] +

γσ

2
Lσρ , (4.57)

Again, we show the equations of motion, which read

∂t⟨σ⟩ =− (γσ/2 + i ∆σ) ⟨σ⟩+ 2i Ωσ⟨σ†σ⟩ − i Ωσ , (4.58a)

∂t⟨σ†⟩ =− (γσ/2 − i ∆σ) ⟨σ†⟩ − 2i Ωσ⟨σ†σ⟩+ i Ωσ , (4.58b)

∂t⟨σ†σ⟩ =− γσ⟨σ†σ⟩+ i Ωσ⟨σ⟩ − i Ωσ⟨σ†⟩ . (4.58c)

From these equations, we can identify the vector ⟨⃗c⟩ = (1 ⟨σ⟩ ⟨σ†⟩ ⟨σ†σ⟩)T

and the matrices

M =


0 0 0 0

−i Ωσ −γσ/2 − i ∆σ 0 2i Ωσ

i Ωσ 0 −γσ/2 + i ∆σ −2i Ωσ

0 i Ωσ −i Ωσ −γσ

 , (4.59)

and

C =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 . (4.60)
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Then, using the Quantum Regression Theorem (4.16), we compute
the m-photon Glauber correlators. We previously found that in the in-
coherent case, they can be expressed as a product of the second-order
correlator for different time delays τp. In the coherently-driven 2LS,
this still holds. Since this factorization property is true, independently
of the nature of the Liouvillian, the m-order Glauber correlators are
also written as

G(m)(t1, . . . , tm) = nm
σ

m−1

∏
p=1

G(2)(τp) , (4.61)

where τp = tp+1 − tp and the two-photon autocorrelation function
G(2)(τ) has the following form

G(2)(τ) = n2
σ

(
1 +

3

∑
p=1

lp e−λp τ

)
, (4.62)

where the exact coefficients and exponents are in Appendix A.5 and
nσ is the steady-state total population that, for any detuning, reads

nσ =
4Ω2

σ

γ2
σ + 4∆2

σ + 8Ω2
σ

. (4.63)

The resonant case ∆σ = 0 has already been discussed in Chapter 2 and
the required formulae can be found there, that is, (2.54) and (2.56).

Despite of the significant simplification of G(m), the integration of
these quantities is hard task and we cannot deduce any closed-form
formula. We present the exact solution only for the first cases:

⟨: Ω1 :⟩ = ξγσnσT , (4.64a)

⟨: Ω2 :⟩ = (ξγσnσ)
2
[

T2 − 6γσ

γ2
σ + 8Ω2

σ
T + 2

7γ2
σ − 16Ω2

σ

(γ2
σ + 8Ω2

σ)
2−

4 e−( 3γσ
4 +γM)T 4γM − 3γσ

γM(4γM + 3γσ)2 − (γM → −γM)

]
,

(4.64b)

⟨: Ω3 :⟩ = (ξγσnσ)
3
[

T3 − 18γσ

γ2
σ + 8Ω2

σ
T2 +

6(23γ2
σ − 32Ω2

σ)

(γ2
σ + 8Ω2

σ)
2 T−

432γσ(γ2
σ − 4Ω2

σ)

(γ2
σ + 8Ω2

σ)
3 + 3 e−( 3γσ

4 +γM)T
( (4γM − 3γσ)2

2γ2
M(4γM + 3γσ)2

T+

+
(4γM − 3γσ)2(20γM + 3γσ)

2γ3
M(4γM + 3γσ)2

)
+ (γM → −γM)

]
,

(4.64c)

and the rest of the subsequent correlators have the same structure:
an k-polynomial and two exponentials (with exponents − 3γσ

4 ∓ γM)
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followed by (k − 2)-polynomials which, moreover, do transform to
each other under the exchange γM → −γM. We can compute the
asymptotic behaviour of the normalised variance, which reads(

Σ2/µ
)
(T → ∞) → 1 − 6ξnσ(1 − 2nσ) , (4.65)

that is different from 1 in any case (0 < nσ < 1/2).
Then, investigating the short and long time behaviour of the first

correlators ⟨: Ωk :⟩, we are able to figure out a closed-form solution
for both limiting cases (T → 0 and T → ∞). On one hand, in the short
integration time limit, for k ≥ 1,

⟨: Ωk :⟩(T → 0) ≈ k!( ĪT)k (Yγ2
σT2)k−1

2k−1(3k − 2)!

[
1 − 3

2
k − 1

3k − 1
γσT

]
, (4.66)

and, of course, ⟨: Ω0 :⟩ = 1. We have defined Ī = ξγσnσ which is,
again, the mean detected intensity and Y = (γ2

σ + 8Ω2
σ)/γ2

σ. Inserting
(4.68) in (4.4) and taking the limit T → 0 leads to p(0, T → 0) ≈ 1− ĪT
and, for n ≥ 1, to

p(n, T → 0) ≈ ( ĪT)n(Yγ2
σT2)n−1 2(3n − 1)− 3(n − 1)γσT

2n(3n − 1)!
. (4.67)

On the other hand,

For the coherent driving case,
we were not able to obtain
formulas valid for all time

windows, unlike the
incoherent driving case. The
limits that are obtained here

also show, however, that
strong quantum departures
are maintained also in this

case at large times.

the expression for long time integration is

⟨: Ωk :⟩(T → ∞) ≈ ( ĪT)k
(

1 − 3k(k − 1)
YγσT

)
, (4.68)

Computing the sum (4.4) using the previous equation, we find

p(n, T → ∞) ≈
(

1+6n
Ī
Y

)
p0(n, T)−3(n−1)

Ī
Y p0(n − 1, T)−

3(n + 1)
Ī
Y p0(n + 1, T) , (4.69)

where p0(n, T) is the Poisson distribution.

4.3 I N C O H E R E N T LY P U M P E D C AV I T Y

Now, we change the kind of system. We analyse the emission of a cav-
ity (harmonic oscillator), that can have an arbitrarily large number of
excitations. As a consequence, the cavity can have perfect antibunch-
ing or any positive value for g(2)(0). Under incoherent pumping, the
dynamics of the cavity are described by the master equation

∂tρ = −iωa[a†a, ρ] +
γa

2
Laρ +

Pa

2
La† ρ , (4.70)
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where the pumping and decay rates are Pa and γa, respectively. From
the master equation (4.70), we obtain the equations of motion for the
diagonal correlators G(n)(t) = ⟨a†nan⟩ are

∂tG(n)(t) = −nΓaG(n)(t) + n2PaG(n−1)(t) , (4.71)

where the effective linewidth is Γa ≡ γa − Pa. This set of coupled
equations can be exactly solved up to any order n truncating the space
of correlators. The correlator vector is c⃗ = (1, ⟨a†a ⟩, . . . ⟨a†nan ⟩)T,
with corresponding matrices

M =



0 0 0 . . . 0

Pa −Γa 0
...

0 4Pa −2Γa
... . . .

0 . . . n2Pa −nΓa


(4.72)

and

C =



0 1 0 . . . 0
... 0 1

...
. . .

0 1
0 . . . 0 0


. (4.73)

Thus, any correlator (involving up to n photons) follows from this.
For instance, single-time correlations in the steady-state follow from
c⃗(t → ∞), where c⃗(t) = eMt⃗c(0). That is, G(n) = n!(Pa/Γa)n = n! n̄n,
where n̄ = Pa/Γa is the mean photon population, and the normalised
ones are then g(n) = n!, the very same any thermal state has. Other
multi-time correlations (hereafter, we are assuming the system has
reached the steady-state) such as g(2)(t1, t2) are computed through
Eq. (4.16). In the steady state, such functions only depend on time
differences τp = tp+1 − tp rather than on the times tp themselves. Thus,
G(2)(t1, t2) can be actually written as G(2)(τ1), where τ1 = t2 − t1. The

These interesting connections
between the n-th order
photon correlations with
two-photon correlations are
to be contrasted with those
we found earlier for the
two-level system.

first multi-time correlators, for a particular time ordering, are

g(2)(τ1) = 1 + e−Γaτ1 ,

g(3)(τ1, τ2) = g(2)(τ1)g(2)(τ2) + 2 e−Γa(τ1+τ2) ,

g(4)(τ1, τ2, τ3) = g(3)(τ1, τ2)g(2)(τ3) + g(2)(τ1)g(3)(τ2, τ3)

− g(2)(τ1)g(2)(τ2)g(2)(τ3)

+ 4g(2)(τ2) e−Γa(τ1+τ2+τ3) ,

(4.74a)

(4.74b)

(4.74c)
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and the rest of correlators are computed the same way. As we can
see, the factorisation property that we found for the 2LS does not
hold for the cavity, at least for this particular case. However, we can
rearrange the Glauber functions as sum of products of the lower order
correlators. In this way, they reveal a more complicated structure that
correlates each photon not only with its first neighbours but with the
rest of them. Reminding that τp = tp+1 − tp > 0, the time-integrated
intensity operator moments, considering all the time orderings, are

⟨: Ωk :⟩ = k!(ξγa)
k
∫ T

0
· · ·

∫ t2

0
G(k)(t1, t2, . . . tk)dt1dt2 . . . dtk , (4.75)

and the first cases are

⟨: Ω0 :⟩ =1 , (4.76a)

⟨: Ω1 :⟩ = ξγan̄T , (4.76b)

⟨: Ω2 :⟩ = (ξγan̄)2Γ−2
a
(
Γ2

aT2 + 2ΓaT − 2 + 2 e−ΓaT) , (4.76c)

⟨: Ω3 :⟩ = (ξγan̄)3Γ−3
a
[
Γ3

aT3 + 6Γ2
aT2 + 6ΓaT − 24+

(18ΓaT + 24)e−ΓaT] , (4.76d)

⟨: Ω4 :⟩ = (ξγan̄)4Γ−4
a
[
Γ4

aT4 + 12Γ3
aT3 + 48Γ2

aT2 − 336+

(108Γ2
aT2 + 360ΓaT + 312)e−ΓaT + 24e−2ΓaT] , (4.76e)

from which we easily compute the variance-mean ratio when T → ∞,
that is(

Σ2/µ
)
(T → ∞) → 1 + 2ξn̄(1 + n̄) , (4.77)

which is always greater than 1 and, unlike the previous cases, the
population n̄ > 0 has no upper bound (shown together with the
rest of the cases in Fig. 4.4). Thus, from the point of view of the
photo-counting distribution, the emission is Super-Poissonian.

Although we cannot deduce a closed-form expression for any time
window T, it is possible to analyse both the short and long time
behaviour. For T → 0 and n > 1, we find that

⟨: Ωk :⟩(T → 0) ≈ k!( ĪT)k
(

1 − k − 1
6

ΓaT
)

, (4.78)

where Ī = ξγan̄ is the detected mean intensity. On the other hand, for
long time integration we can neglect the terms proportional to the
exponential e−ΓaT. That is,

⟨: Ωk :⟩(T → ∞) ≈ ( ĪT)k
[
1 +

k(k − 1)
ΓaT

]
. (4.79)
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Having these expressions in mind, the photon-counting probabilities
can be computed through Eq. (4.4). For short time T → 0, this is

p(0, T → 0) ≈ 1 − ĪT
6 + ĪT(6 + ΓaT)

6(1 + ĪT)2 ≈ 1 − ĪT , (4.80)

p(n ≥ 1, T → 0) ≈ ( ĪT)n 6 + 6 ĪT + (1 − n + 2 ĪT)ΓaT
6(1 + ĪT)n+2

≈ ( ĪT)n
[
1 − (n + 1) ĪT − (n − 1)

ΓaT
6

]
. (4.81)

The first term of Eq. (4.80) is clearly identified with a thermal distri-
bution pth(n) = (1 − θ)θn ≈ θn (for θ = ĪT ≪ 1). This means that
for short times before other dynamical effects or mechanisms gain
in significance, p(n, T) clones the probabilities Pn = ρn,n modulo the
integration factor ξγaT, which is in accordance with Eq. (4.20).

The other limit investigated is T → ∞, the probability of detecting
n photons is

p(n, T → ∞) ≈ 1
n!
( ĪT)ne− ĪT

[(
1 − 2nĪ/Γa

)
+

n(n − 1)(ΓaT)−1 + Ī2T/Γa

]
, (4.82)

or, after defining the Poisson distribution with the same mean number
of detected photons p0(n, T) = 1

n! ( ĪT)ne− ĪT, we can rewrite Eq. (4.82)
as a function of Poisson distributions

p(n, T → ∞) ≈
(

1 − 2n
Ī

Γa

)
p0(n, T) + (n − 1)

Ī
Γa

p0(n − 1, T)+

(n + 1)
Ī

Γa
p0(n + 1, T) . (4.83)

Interestingly enough, this formula bears resemblance with Eq. (4.38),
differing only in the sign of Ī/Γa. Following this, in the same manner,
we can try to approximate this distribution as a displaced Poisson
distribution. Changing n → n + m, with m ≥ 0, and ĪT → β ĪT and
making their mean and variance to match, we find that the best fit for
m and β are

m = 2
Ī

Γa
ĪT and β = 1 + 2

Ī
Γa

. (4.84)

The interpretation of this result is the following. The intensity, that
is, the mean number of photons per unit time, is proportional to the
mean number of excitations of the emitter (averaged over the time
window T too). The fluctuations of the intensity are, however, affected
by the correlations between all the photons. As such, the shape of
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Figure 4.2: Variance normalised to the mean, namely Σ2/µ for the photon-
counting probabilities for the four cases discussed as a function of the
integration time T, assuming perfect detection, i.e., ξ = 1. On the left hand
side, when the intensity (population) is small ( Ī = 0.05γ) and, on the right
when the mean intensity is greater ( Ī = 0.45γ). The decay rates are fixed
to unity, i.e., γσ = γa = 1. All the curves promptly saturate to asymptotes,
shown in Fig. 4.4.

the photon-counting

This figure summarizes the
departures from the classical

case of the various systems
studied and shows that not
only correlations survive at

long times, but they are
actually maximum there.

distribution will be strongly dependent on the
dynamical aspects of the emission. We have seen that the short-time
behaviour can be inferred from the averaged single-time correlators
n!(ξγ)n ∫ T

0 G(n)(t)dt (which simplifies to (ξγT)nG(n)(0) if the system
has already reached the steady-state). The correlations in this regime
have not been developed yet due to the scarce time intervals between
the emitted photons, compared to their characteristic time scale. This
raises another interesting question: can we infer G(n) from photon-
counting measurements? In principle, the answer is affirmative. We
barely need some apparatus that collect photons and, if possible, a way
to make all the photons to arrive at it, that is, to have good efficiency.
The actual realisation is however more problematic. Not only the
efficiency is a worrisome issue but also the response of the detector.
In the next sections we will try elucidate the effect on the counting
statistics.

Resuming the previous discussion, we have also analysed the long-
time behaviour of the photon-counting distribution. One would expect
that in this limit, correlations are washed out and do not play a role
given that g(n)(t → ∞) → 1, this is, photons separated by a long
time interval remain uncorrelated. From that, we could conclude
that any photon-counting distribution would be approximated better
and better by a Poisson distribution. However, we find out several
examples that contradict this guess. Both incoherently-driven 2LS’s
and cavity’s photon-counting distributions do resemble an ordinary
Poisson distribution but, in fact, cannot be fitted with it. The best
approach is a combination of Poisson distributions, (4.38) and (4.83),
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Figure 4.3: Photon-counting probabilities for the four cases discussed so far
in the limit of long integration time (γT ≫ 1). The mean intensity is fixed
to be Ī = 0.05γ and ξ = 1, where the decay rate is γσ = γa = 1 and the
integration time is T = 6000. In inset, a zoom displaying the behaviour of
tails of the distributions.

which are, in turn, approximated around their modes by displaced
Poisson distributions (changing the origin n → n ∓ m and the param-
eter ĪT → β ĪT). This fact immediately discards the idea of losing or
blurring the effect of correlations in the long term on the counting
statistics. Taking a simple look to the first distribution moments can
confirm this statement.

4.4 C O H E R E N T LY P U M P E D C AV I T Y

The cavity under coherent excitation, for instance, a laser with fre-
quency ωL has the following Hamiltonian (in the Rotating Frame):

H = ∆aa†a + Ωa(a† + a) , (4.85)

and the master equation

∂tρ = −i[H, ρ] +
γa

2
Laρ . (4.86)

The correlator equations are computed from the master equation (4.86)
and read

∂t⟨a†man⟩ = − [(m + n)γa/2 − i∆a(m − n)] ⟨a†man⟩+
iΩam⟨a†m−1an⟩ − iΩan⟨a†man−1⟩ . (4.87)

This set of coupled equations is usually difficult to solve if m and
n are large. However, using the ansatz a(t) = e−(γa/2+i∆a)ta(0) + α,
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where α = iΩa/(γa/2 + i∆a) and t ≥ 0, all correlators equations are
automatically satisfied. This still holds even when each operator is
evaluated at different times, for instance,

⟨a†(t1)a(t2)⟩ = e−(γa/2(t1+t2)ei∆a(t1−t2)⟨a†a⟩(0)+
α∗e−(γa/2+i∆a)t2⟨a⟩(0) + αe−(γa/2−i∆a)t1⟨a†⟩(0) + |α|2 , (4.88)

which in the limit tp → ∞ tends to ⟨a†(t1)a(t2)⟩ → |α|2. Translated to
the Fourier space, the spectrum corresponds to a Dirac delta centered
at ω = ωL (undoing the Rotating Frame Transformation). This implies
the cavity is emitting monochromatic light once it has reached the
steady-state.

Furthermore, in this limit, the cavity operator a(t) can be substi-
tuted by a c-number, i.e., a(t → ∞) → α. Then, all the correlators
G(m)(t1, . . . , tm) are simply |α|2m. Following that, the time-integrated
correlations are

⟨: Ωk :⟩ = k!(ξγa)
k|α|2k

∫ T

0

∫ tk

0
· · ·

∫ t2

0
dt1 . . . dtk , (4.89)

where the k-fold integral has already appeared in the previous sections
and it was found to be equal to Tk/k!. Then,

⟨: Ωk :⟩ = (ξγa|α|2T)k =

(
4ξγaΩ2

a
γ2

a + 4∆2
a

T
)k

= ( ĪT)k , (4.90)

where, again, Ī = (4ξγaΩ2
a)/(γ2

a + 4∆2
a) is the mean detected intensity.

With this particularly simple shape, the photon-counting probabilities
are

p(n, T) =
1
n!
( ĪT)ne− ĪT , (4.91)

which is genuinely a Poisson distribution. The normalised variance,
given the Poisson distribution, is simply Σ2/µ = 1.

The four cases, all studied under CW excitation, display different
behaviours both in the short and long integration time regimes (the
latter shown in Fig. 4.3). First, the few-photon quantities such as
the variance-mean ratio differ from the Poisson case (except for the
coherent cavity). Greater values are found for the incoherent cavity
displaying Super-Poissonian behaviour (Σ2/µ > 1) in the photo-
detection scenario, in accordance with the system observables such
as g(2) > 1. The 2LS, which has g(2)(0) = 0, exhibits Sub-Poissonian
statistics, this is, Σ2/µ < 1 from the point of view of the detection
distribution. The largest deviations are found to be when the popula-
tion reaches the midpoint of the allowed range of nσ (see Figure 4.4)
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Figure 4.4: Asymptotic long-time behaviour of the variance-mean ratio
for the four cases studied in the text. The coherently driven cavity can
display Σ2/µ = 1, while the other three cases deviate from that value.
The thermal emission of the incoherently pumped cavity exhibits Super-
Poissonian behaviour and grows without limit as the signal intensifies. On
the other hand, the single-photon emitters have Sub-Poissonian behaviours.
The maximum deviation appears when the intensity is exactly half the
maximum accessible population (0.25 for the coherent case and 0.5 the
incoherent one, assuming that ξ = 1), marked by the vertical dashed lines.

and the global minimum is Σ2/µ = 0.25 by the coherently driven

This figure gives the
optimum driving to
maximize the 2LS’s departure
from the classical
(uncorrelated) case, and
shows that the thermal state’s
long time correlations
increase without bounds with
temperature.

2LS.
These two polynomials, (4.27) and (4.65), are in fact exactly the same
as (2.69), the inter arrival time variances. Identically, this also holds
for the thermal emission. We identify (4.77) with (A.97) (making the
substitution n∞,th → n̄).

For short times, for instance, the incoherently driven 2LS has p(2, T →
0) that is proportional to T3 rather than T2 (as the cavity distribution
does). This is a direct consequence of the structure of the 2LS, that
cannot have more than one excitation at the same time. The reloading
process after the first photon breaks down the Poisson picture of the
emission in which the probability per unit time is proportional to Ī
(it would automatically lead to zero). The re-excitation, is indeed a
Poisson process whose probability per unit time goes like Pσ for the
incoherently driven case. It is then a two step procedure, the emission
is delayed until the excitation successfully takes place. That explains
the discrepancy between the 2LS and the cavity.
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4.5 N - P H O T O N S P O N TA N E O U S E M I S S I O N

Another case of interest is a cavity or M ≥ N-emitter prepared at
t = 0 to hold the state ρ(0) = |N⟩ ⟨N| and that is allowed to freely
radiate the photons out without any type of stimulation. Under these
conditions, the state evolves following the master equation:

ρ̇ = −i ωa[a†a, ρ] +
γa

2
Laρ , (4.92)

where ωa is the characteristic frequency of the cavity, γa is the decay
rate and La = 2aρa† − a†aρ − ρa†a is the Lindblad operator associated
with the cavity losses. From this master equation, we can calculate
the equation of motion for any correlator ⟨a†man⟩(t) = Tr

{
ρ(t)a†man},

that is

∂t⟨a†man⟩(t) = −
[(γa

2
− i ωa

)
m +

(γa

2
+ i ωa

)
n
]
⟨a†man⟩(t) , (4.93)

which have the following solution

⟨a†man⟩(t) = ⟨a†man⟩(0) exp {[−(m + n)γa/2 + i(m − n)ωa]t} ,
(4.94)

for t ≥ 0 and zero otherwise. Since the initial state is diagonal and has
N excitations, ⟨a†man⟩(0) vanishes if m ̸= n or m, n > N. Then, the
non-zero correlators are ⟨a†mam⟩(0) = N!/(N − m)! (for 0 ≤ m ≤ N)
and evolve in time as

⟨a†mam⟩(t) = N!
(N − m)!

e−mγat . (4.95)

For subsequent calculations, we will make use of the multi-time
correlators ⟨A†

n(t′1, . . . , t′n)An(t1, . . . , tn)⟩, where An(t1, . . . , tn) =

∏n
k=1 a(tk) is a product of time-ordered operators from right to left

(tn ≥ ... ≥ t1 ≥ 0). The conjugate operator A†
n would be ordered the

other way around. To simplify further computations, we assume that
t′m ≥ tm and tm, t′m ≥ tm−1, t′m−1 for every m.

Using the Quantum Regression theorem, for m = 1, we have

∂t′1
⟨a†(t′1)a(t1)⟩ = − (γa/2 − i ωa) ⟨a†(t′1)a(t1)⟩ (4.96)

which, fixing the initial condition at t′1 = t1 and making use of
Eq. (4.95) after that, has the solution

⟨a†(t′1)a(t1)⟩ = ⟨a†(t1)a(t1)⟩ e−(γa/2−iωa)(t′1−t1)

= ⟨a†a⟩(0) e−γat1e−(γa/2−iωa)(t′1−t1)

= ⟨a†a⟩(0) e−(γa/2−iωa)t′1e−(γa/2+iωa)t1 . (4.97)
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We would have chosen the alternative time order, the result would
been exactly the same. As we will see, this structure is maintained
throughout successive orders. For m = 2,

∂t′2
⟨a†(t′1)a†(t′2)a(t2)a(t1)⟩ =−(γa/2−i ωa) ⟨a†(t′1)a†(t′2)a(t2)a(t1)⟩

(4.98)

that, after fixing the initial condition at t′2 = t2, leads to

⟨a†(t′1)a†(t′2)a(t2)a(t1)⟩ = ⟨a†(t′1)a†(t2)a(t2)a(t1)⟩ e−(γa/2−iωa)(t′2−t2) .
(4.99)

Now we need the time evolution for t′1 and t2, using the equations

∂t′1
⟨a†(t′1)a†(t2)a(t2)a(t1)⟩ =

− (γa/2 − i ωa) ⟨a†(t′1)a†(t2)a(t2)a(t1)⟩ , (4.100)

∂t2⟨a†(t1)a†(t2)a(t2)a(t1)⟩ = −γa⟨a†(t1)a†(t2)a(t2)a(t1)⟩ (4.101)

and (4.95) too, we can finally find

⟨a†(t′1)a†(t′2)a(t2)a(t1)⟩ =
⟨a†2a2⟩(0) e−(γa/2−iωa)(t′1+t′2)e−(γa/2+iωa)(t1+t2) . (4.102)

This procedure may be repeated for successive k and lead to the
general form for 0 ≤ k ≤ N

⟨a†(t′1)...a
†(t′m)a(tm)...a(t1)⟩

= ⟨a†mam⟩(0)
(

m

∏
k′=1

e−(γa/2−iωa)t′k′

)(
m

∏
k=1

e−(γa/2+iωa)tk

)

=
N!

(N − m)!

(
m

∏
k′=1

e−(γa/2−iωa)t′k′

)(
m

∏
k=1

e−(γa/2+iωa)tk

)
, (4.103)

or, as a rule of thumb, each time we have an operator a(t), we do
the substitution a(t ≥ 0) → e−(γa/2+i ωa)t a(0). This fact allows to to
calculate (4.2) very easily

Ω(0; T) = ξγa

∫ T

0
(a†a)(t)dt = ξγa

(∫ T

0
e−γatdt

) (
a†a
)
(0)

= ξ
(

1 − e−γaT
) (

a†a
)
(0) , (4.104)
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or, any (normal-ordered) average of Ω up to k = N

⟨: Ωk :⟩ = ξk
(

1 − e−γaT
)k

⟨a†kak⟩(0) = ξk
(

1 − e−γaT
)k N!

(N − k)!
.

(4.105)

Then, the probability of detecting n out of N photons in the time
window

This result, that provides the
photon-counting from SE as

a binomial distribution,
thereby identifies the

time-resolved quantum
efficiency of the detection

process. This is further
generalized by Eq. (4.113).

(0, T] is

p(n; T) =
1
n!

∞

∑
k=0

(−1)k ⟨: Ωn+k :⟩
k!

=
N−n

∑
k=0

(−1)k

n!k!
N!

(N − n − k)!

[
ξ
(

1 − e−γaT
)]n+k

=

(
N

N − n

)[
ξ
(

1−e−γaT
)]n[

1−ξ
(

1−e−γaT
)]N−n

. (4.106)

This probability distribution is a binomial distribution and corresponds
to the probability of accepting n out of N independent events with
probability T (T) = ξ

(
1 − e−γaT), that we call the one-photon detec-

tion probability. In other words, the photon-counting process in the
SE regime can be understood from a classical point of view where
each event, accepting or rejecting a photon, is independent from the
others but whose detection probability follows the rules of quantum
mechanics.

4.5.1 filtered emission

In the presence of a non-ideal and time-limited detector, whose best
efficiency is reached at ω = ω1 and has got a characteristic range of
detection around it (also known as filter frequency width Γ), the total
number of photons collected by the detector differs from the blind
(non frequency-resolved) detection. The probability of detecting all
the photons will not reach 100% (assuming perfect efficiency) even
if the integration time T goes to infinity. To take into account this
detrimental effect, we model the detector as a Lorentzian filter (with
half-width Γ and centred at ω1). For a Lorentzian filter FL(t) (1.64)
and the operator a(t) associated with the cavity, we have the filtered
operator (1.60)

ς(t) =
(∫ ∞

−∞
FL(t − t1)θ(t1)e−(γa/2+i ωa)t1 dt1

)
a(0)

=Ξ(t)a(0) , (4.107)
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where Ξ(t) codifies the frequency-resolved time evolution. After inte-
grating, it yields

Ξ(t) = Γ
e−(γa/2+i ωa)t − e−(Γ/2+i ω1)t

Γ− + 2i∆
θ(t) , (4.108)

where ∆ ≡ ω1 − ωa is the detuning between the cavity and the filter
and where Γ± ≡ Γ ± γa. The time-integrated intensity operator from
(0, T] is

Ω(T; Γ, ∆) = ξ γa

∫ T

0
ς†ς(t) dt =

(
ξ γa

∫ T

0

[
Ξ(t)

]∗ Ξ(t) dt
)

a†a

= ξ ΓA(T) a†a , (4.109)

and the function A(T) is defined as

A(T) =
Γ+

Γ2
+ + 4∆2

− Γ e−γaT + γa e−ΓT

Γ2
− + 4∆2

+

4Γγae−Γ+T [Γ+ cos(∆T)− 2∆ sin(∆T)](
Γ2
− + 4∆2

) (
Γ2
+ + 4∆2

) , (4.110)

and when integration time T → ∞, it gives

A(T → ∞) =
Γ+

Γ2
+ + 4∆2

. (4.111)

If the detection does not start at t = 0 but at a later time t > 0, the
previous function is modified to:

A(T, t) =
Γe−γat + γae−Γt

Γ2
− + 4∆2

− Γ e−γa(t+T) + γa e−Γ(t+T)

Γ2
− + 4∆2

+
4Γγae−Γ+(t+T) [Γ+ cos(∆(t + T))− 2∆ sin(∆(t + T))](

Γ2
− + 4∆2

) (
Γ2
+ + 4∆2

)
− 4Γγae−Γ+T [Γ+ cos(∆T)− 2∆ sin(∆T)](

Γ2
− + 4∆2

) (
Γ2
+ + 4∆2

) . (4.112)

The probability of detecting n photons from the N-photon SE in the
time window of length T is:

p(n; T) =
1
n!

N−n

∑
k=0

(−1)k

k!
⟨: (a†a)n+k :⟩ (ξ ΓA(T))n+k =

1
n!

N−n

∑
k=0

(−1)k

k!
N!

(N − n − k)!
(ξ ΓA(T))n+k =(

N
N − n

)
(ξ ΓA(T))n (1 − ξ ΓA(T))N−n . (4.113)
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As said before, the filtered emission loses some photons that are
left undetected. The one-photon detection probability is, in this case,
T (T) = ξΓA(T) and does not reach 1 even if T → ∞. However, due
to energy conservation, the rest of the emission must go elsewhere.
This is reflected in the field decomposition a(t) = ς(t) + ς̄(t). Having
fixed the filter response F(t), it is easy to see that ς̄(t) should be in
this case

ς̄(t) =
∫ ∞

−∞
(δ(t − t1)− F(t − t1)) a(t1) dt1

=

(∫ ∞

−∞
(δ(t − t1)− F(t − t1)) θ(t)e−(γa/2+iωa)t1 dt1

)
a(0)

= Ξ1−F(t)a(0) . (4.114)

In these last steps, we are considering the case of SE and we include
the time evolution of ς̄ in Ξ1−F(t). Now, we could proceed exactly the
same as we did before. However, it is useful to derive the next result
via an alternative way. If we look again the definition of Ξ1−F(t),
the (complementary) filter response is being convoluted with the
SE unfiltered evolution. If we take the Fourier transform of Ξ1−F(t),
due to the Convolution Theorem, we get the product of the Fourier
transforms

Ξ̌1−F(ω) = [1 − F̌(ω)]
1

γa/2 − i(ω − ωa)
. (4.115)

Similarly, the time evolution of ς(t) on the Fourier space looks the
same just by changing 1 − F̌ → F̌. We can reverse the transformation

ΞF(t) =
1

2π

∫ ∞

−∞
Ξ̌F(ω)e−iωt dt

=
1

2π

∫ ∞

−∞

F̌(ω)

γa/2 − i(ω − ωa)
e−iωt dt . (4.116)

From this, the time-integrated intensity operator for T → ∞ is

ΩF = ξγaa†a
∫ ∞

0
(ΞF(t))∗ΞF(t) dt

=
ξγaa†a
(2π)2

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
(Ξ̌F(ω

′))∗Ξ̌F(ω)e−i(ω−ω′)t dωdω′dt .

(4.117)

If we make the reasonable assumption that the filter response F is
causal, i.e., only exist for t > 0, then ΞF(t) will only be non-zero for
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t > 0 and we can extend the integration limit of t to −∞. Exchanging
the order of the integrals and integrating on t leads to

ΩF = ξγaa†a
1

2π

∫ ∞

−∞

∫ ∞

−∞
(Ξ̌F(ω

′))∗Ξ̌F(ω)δ(ω − ω′) dω′dω

= ξγaa†a
1

2π

∫ ∞

−∞
(Ξ̌F(ω))∗Ξ̌F(ω) dω , (4.118)

where we have used
∫ ∞
−∞ e−i(ω−ω′)dt = 2π δ(ω − ω′). Substituting the

expression for Ξ̌F(ω)

ΩF = ξγaa†a
(

1
2π

∫ ∞

−∞

|F̌(ω)|2
(γa/2)2 + (ω − ωa)2 dω

)
= ξγa IF a†a , (4.119)

where the
This provides the general
form of the one-photon
detection probability TF for
an arbitrary filter F.

integral

IF =
1

2π

∫ ∞

−∞

|F̌(ω)|2
(γa/2)2 + (ω − ωa)2 dω (4.120)

allows us to obtain the one-photon detection probability as TF = ξγa IF.
Inserting this expression into the photon-counting formula

pF(n; T → ∞) =
1
n!

N−n

∑
k=0

(−1)k

k!
N!

(N − n − k)!
(TF)

n+k

=

(
N

N − n

)
(TF)

n (1 − TF)
N−n . (4.121)

With this general result, we are able to compute the probability dis-
tribution for a wide variety of filters. In particular, we are interested
in concatenated filters. We consider the possibility of redirecting the
fraction of the undetected emission (that the first detector did not
collect) to a second detector and, then, repeat the same process up
to n filters. In terms of operators, the second-order filter ς(2)(t) is
constructed filtering the complementary field ς̄(t)

ς(2)(t) =
∫ ∞

−∞
F(t − t1)ς̄(t1) dt1 , (4.122)

and, after inserting Eq. (4.114),

ς(2)(t) =
(∫ ∞

−∞
F(t − t1)Ξ1−F(t1) dt1

)
a(0) = Ξ(2)

F (t)a(0) . (4.123)

Expressing the time evolution Ξ(2)
F (t) in the Fourier space, we have

Ξ̌(2)
F (ω) = F̌(ω) Ξ̌1−F(ω) =

F̌(ω)
(
1 − F̌(ω)

)
γa/2 − i(ω − ωa)

=
F̌(2)(ω)

γa/2 − i(ω − ωa)
,
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(4.124)

where F̌(2)(ω) = F̌(ω)(1 − F̌(ω)) is the effective second-order filter
response. If we repeat this process of filtering the k-order complemen-
tary emission up to n times, it is straightforward to show that the
n-th order effective response is F̌(n)(ω) = F̌(ω)[1 − F̌(ω)]n−1. If we
introduce this result into IF, in Eq. (4.119), we get the integral

I(n)F =
1

2π

∫ ∞

−∞

|F̌(ω)|2|1 − F̌(ω)|2(n−1)

(γa/2)2 + (ω − ωa)2 dω . (4.125)

If we choose a Lorentzian filter, so that F̌L(ω) = Γ/2 [Γ/2 − i(ω −
ω1)]

−1, now I(n)F takes the form

I(n)L =
1

2π

∫ ∞

−∞

(Γ/2)2(ω − ω1)
2(n−1)

[(γa/2)2 + (ω − ωa)2][(Γ/2)2 + (ω − ω1)2]n
dω .

(4.126)

In order to solve this integral for any n ≥ 1, we should write it in a
more suitable way,

I(n)L = (Γ/2)2 1
2π

∫ ∞

−∞

(ω − ω1)
2(n−1)

(ω − za)(ω − z∗a)(ω − z1)n(ω − z∗1)
n dω ,

(4.127)

where za ≡ ωa − i γa/2 and z1 ≡ ω1 − i Γ/2. In this form, the integral
is equivalent to the contour integral (choosing the half-circle on the
upper complex plane as the contour C):

I(n)L = (Γ/2)2 1
2π

∮
C

(z − ω1)
2(n−1)

(z − za)(z − z∗a)(z − z1)n(z − z∗1)
n dz . (4.128)

Using Cauchy’s integral formula [75], we find

I(n)L = i(Γ/2)2
(

g1(z∗a) +
1

(n − 1)!
dn−1

dzn−1 ga(z∗1)
)

, (4.129)

with

g1(z) =
(z − ω1)

2(n−1)

(z − za)(z − z1)n(z − z∗1)
n , (4.130)

and

ga(z) =
(z − ω1)

2(n−1)

(z − za)(z − z∗a)(z − z1)n . (4.131)
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Figure 4.5: In (a), the full representation of the 2-photon joint distribution
ϕ(2)(t1, t2) together with the marginal distributions, ϕ

(2)
1 (t1) and ϕ

(2)
2 (t2),

in the projected spaces. In (b), the N = 5 marginal non- and conditional
distributions, ϕ

(5)
k (t) and φ

(5)
k (t), for several filter widths. For Γ/γa = 1, the

analytics are superimposed with the numerical simulations. On the bottom
the mean times for each photon as a function of Γ is displayed (solid for φ

and dashed for ϕ).

As an application of this formula, we show the time-integrated inten-
sity operator Ω(n) = ξγa I(n)a†a for a few cases

n = 1 : Ω(1) = ξ Γ
𭟋11

𭟋2
11 + 4∆2

(a†a) , (4.132a)

n = 2 : Ω(2) =
ξ Γ
2

γa𭟋2
11 + 4∆2𭟋21

(𭟋2
11 + 4∆2)2

(a†a) , (4.132b)

n = 3 : Ω(3) =
ξ Γ
8
[
γa𭟋3

11𭟋13 + 24γa∆2𭟋11𭟋21+

16∆4𭟋83
][
𭟋2

11 + 4∆2]−3
(a†a) , (4.132c)

where 𭟋jk ≡ jΓ + kγa and, of course, the photon-counting probability
for the m-order filter is

p(m)
L (n; T → ∞) =

(
N

N − n

)(
ξγa I(m)

L

)n (
1 − ξγa I(m)

L

)N−n
. (4.133)

If the filter-emitter detuning is zero (∆ = 0), the efficiency is perfect
(ξ = 1) and if we take the first-order Lorentzian filter, the probability
distribution simplifies to

P(n, N) ≡ pL(n, T → ∞) =

(
N

N − n

)
γN−n

a Γn

𭟋N
11

. (4.134)

By inspecting this last expression, we can already see that the prob-
ability of detecting all the photons, N out of N, is not one (un-
less Γ → ∞). The chances of accepting each photon is Γ/(Γ + γa)
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rather than unity, which clearly explains the origin of the distribu-
tion P(n). We can delve into the temporal structure of the SE pho-
ton emission, that is, how the arrival times of each photon tk (with
N ≥ k > 0) are distributed. The probability of the k-th photon of
being detected at time tk is measured through the joint probabil-
ity distribution ϕ(N)({tk}). This distribution is linked to the photon
counting distribution p(t1, . . . , tN), the probability of detecting the k
photon up to tk, as p({tk}) =

∫ t1
0 . . .

∫ tN
0 ϕ(N)({τk})d⃗τ. Using the fun-

damental theorem of calculus, we can obtain the inverse relation, i.e.,
ϕ(N)(t1, . . . , tN) =

∂N

∂t1...∂tN
p(t1, . . . , tN). The function can be expressed

in terms of the one-photon detection probability T , which is then,
p(t1, . . . , tN) = N! T (t1)∏N−1

k=1 (T (tk+1) − T (tk)). With this, we are
ableThis provides the joint

probability distribution for
the spontaneous emission of
N photons, from which one

can derive all statistical
quantities of interest, as
illustrated through, e.g.,

Eq. (4.138).

to compute ϕ(N) for the filtered emission:

ϕ
(N)
Γ ({tk}) = N!γN

a

(
Γ

𭟋11̄

)2N N

∏
i=1

(e−Γti/2−e−γati/2)2I[ti−1,ti+1]
(ti),

(4.135)

where IT(t) is the indicator function which is one if t ∈ T and zero
everywhere else. The marginal distribution for the k-th photon, that
describes the emission of a single photon, is found by integrating over
all the times tp ̸=k and yields

ϕ
(N)
Γ,k = −(Γ/𭟋11̄)

2NγN
a k
(

N
k

)
g(tk)

N−k(g(0)− g(tk))
k−1g′(tk) ,

(4.136)

where g(t) = γ−1
a e−γat + Γ−1e−Γt − 4𭟋−1

11 e−𭟋11t/2 and its derivative is
g′(t) = −(e−Γt/2 − e−γat/2). The mean arrival time and other higher-
order moments are simply computed as ⟨(t(N)

k )n⟩ =
∫ ∞

0 tn
k ϕ

(N)
k (tk)dtk.

This distribution, however, is only valid if all the photons are ulti-
mately detected, that is, it describes the temporal structure of the
N-photon emission. Then, we shall define the conditional k-th pho-
ton probability φ

(N)
k (t), valid for any size of the final photon bundle

(whether all the photons are detected or not). The expression is writ-
ten in terms of the probabilities P(k, N) and the marginal distributions
ϕ
(n)
Γ,k (where n ≤ N). Using the law of total probability, we find

φ
(N)
k (tk) =

N

∑
n=k

P(n, N)

P(n, n)
ϕ
(n)
Γ,k (tk) , (4.137)

where the normalisation of the conditional distribution is not one but
N (k, N) ≡ ∑N

n=kP(n, N) = ΓkγN−k
a /𭟋N

11(
N
k )2F1(1, k − N, k + 1,−Γ/γa).
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In the same way, we have defined the moments of tk for the full
or unbroken bundle emission, we can compute their counterparts
for the conditional distribution, taking into account the broken bun-
dles too. In Figure 4.5 is shown the full distribution for N = 2 (the
only case that can be represented in 3D) together with its marginal
distributions and the marginal distributions, ϕ

(n)
k and φ

(n)
k , for the

5-photon bundle. Besides the theoretical curves, the distributions
are numerically obtained from frequency-resolved Monte Carlo sim-
ulations of the SE. The expressions for the mean time are enough
complicated so we only include first-order properties here. Prior
to writing down the equation, we have to define the summation
∑{ki} ≡ ∑k1+k2+k3=N−k ∑k1+...+k9=k−1 ∑k10+k11=2 over the 11 indices.
Then,

⟨t(N)
k ⟩ = 2N!

(
γaΓ𭟋11

𭟋2
11̄

)N

∑
{ki}

11

∏
j=1

1
k j!

× (−1)k3+k6+k7+k8+k11

γΣ1
a ΓΣ2(𭟋11/4)Σ3

[
γaΣ4 + ΓΣ5 +𭟋11/2(k3 + k9)

]2 ,

(4.138)

where Σ1 ≡ k1 + k4 + k7, Σ2 ≡ k2 + k5 + k8, Σ3 ≡ k3 + k6 + k9, Σ4 ≡
k1 + k7 + k11/2 and Σ5 ≡ k2 + k8 + k10/2. In the unfiltered limit
(Γ → ∞), we recover ⟨t(N)

k ⟩ → (HN − HN−k)/γa, where HN is the
N-th Harmonic number (assuming H0 = 0). Within the same limit, the
(time) size of the bundle, that is, the time elapsed between the arrival
of the first and last photon is ⟨τ⟩N = ⟨t(N)

N ⟩ − ⟨t(N)
1 ⟩ = HN−1/γa

(already reported in Refs. [6, 76]). Furthermore, the mean delay of the
k-th photon tends to ⟨t(N)

k ⟩ − ⟨t(N)
k−1⟩ → 1/(kγa) (that also has been

measured in Refs. [77, 78]). On the other hand, for very narrow filters
(Γ → 0), the bundle structure is dominated by the filter dynamics so
that ⟨t(N)

k ⟩ → (HN − HN−k)/Γ and therefore the bundle size goes to
⟨τ⟩N → HN−1/Γ.

Sticking to 2-photon bundle, we obtain the WTD from the joint
distribution ϕ

(2)
Γ (t1, t2). The delay time of the second is τ = t2 − t1

or, inverting the relation, t2 = t1 + τ. Then, the distribution reads

The waiting time distribution
for the SE of 2 photons is the
most exotic case study of our
list and serves as an
interesting reference point for
multiphoton emission.

w(τ) =
∫ ∞

0 ϕ
(2)
Γ (t1, t1 + τ)dt1 and, after substituting, we get

w(τ) =
Γγa𭟋11

𭟋2
11̄𭟋31𭟋13

(
Γ𭟋31e−γaτ+γa𭟋13e−Γτ−8Γγae−𭟋11τ/2). (4.139)

This quantity is especially interesting because it allows direct compar-
ison of 2-photon emission in SE, which we have thoroughly analysed,
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with more complex systems with multiphoton emission such as the
bundler [6], a source of N-photon bundles (actually with N = 2),
realised as a 2LS coupled to a cavity (Jaynes–Cummings) and the toy-
model of Continuous Wave Spontaneous Emission (CWSE) (see [Z3]),
in which the stream of photons is generated by randomly triggered
2-photon SE bundles that emulates the CW uncorrelated emission of
bundles, including the broken ones induced by the spectral filtering.
We gather information about filtered emission of the former perform-
ing a Monte Carlo simulation [27]. In Fig. 4.6, we show the waiting
time distribution and the bundle purity π2, i.e., the percentage of
pristine or unbroken bundles, of both CWSE model and the actual
bundler. The main features of the emission qualitatively agrees if the
purity π2 is equal for both CW models (thus we do not display both
curves with the same purity for the sake of clarity). However, the
CWSE model fails to reproduce the exact bundler purity curve as a
function of the filter width Γ. The bundler emission has actually a
greater number of unbroken bundles for each filter width than the
CWSE case. This could be due to a dynamical effect between each
N-Fock state collapse that slows down the emission but, nevertheless,
prevents the photon bundle from breaking.

Other typical cases of multiphoton emission is the thermal state. We
have discussed the thermal emission of an incoherently-driven cavity
in Section 4.3 and obtained the multiphoton correlators g(n) (⃗τ). We
complement the description computing the waiting time distribution.
Using (1.57) applied to (4.74a) and inverting the Laplace transform,

This waiting time
distribution for the thermal

state completes our list of
analytical results for the most

important and fundamental
types of photon emission.

we find

wth(τ) =
2γaPa

Qa(γa − Pa)
exp

[
− γ2

a + P2
a

2(γa − Pa)

]
[
Qa cosh

(
Qaτ

2(γa − Pa)

)
−2Paγa sinh

(
Qaτ

2(γa − Pa)

)]
, (4.140)

where Qa =
√
(γa − Pa)4 + 4P2

a γ2
a . This distribution behaves simi-

lar by to the rest of the WTDs in the unfiltered limit but differs
qualitatively under filtering. For instance, the average mean time
⟨τΓ⟩th is also completely different (see Appendix A.10). Inspecting
the limit Γ → ∞, we obtain ⟨τ∞⟩th = (γa − Pa)/(Paγa), which is
bounded between 0 and 1 (in units of γ−1

a ), whereas the SE emission
is quantised. The effective state of the filtered thermal emission is not
thermal any more (the resulting dynamics is different). Only in the
limit of narrow filters, in which any kind of emission is effectively
thermalised, we recover the thermal state, although the effective tem-
perature is different from θ = Pa/γa, as we will see. In fact, we find
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Figure 4.6: Dynamical description of the multiphoton emission. The waiting
time distribution for the CWSE toy-model (in purple), the actual bundler
(in blue) and the thermal state (in green) showed in (a). In all the cases,
the distributions display a multiphoton peak on top of the background CW

emission tail. With same purity π2, bundler and toy-model curves would
perfectly overlap. In (b), mean time of the multiphoton peak as a function of
the filter width Γ for the pure multiphoton emission ⟨τ̃⟩N (N from 2 to 5).
Both the bundler (blue dots) and the toy-model (purple diamonds) agrees
with this description. The thermal emission, however, always conserves
contributions of all orders and hence ⟨τΓ⟩th is not quantised. In the narrow
and wide filter limit, the filtered thermal mean time is shown in the inset
as function of the reduced temperature θ = Pa/γa. In (c), the two-photon
purity for the SE (dashed and solid lines, where the decay rates are γ/2 and
γ, respectively), the toy-model (diamonds) and the bundler (circles). The
latter exhibits greater purity and fits the dashed line (with decay rate γa/2).

that γa⟨τ0⟩th = ⟨τ∞⟩th(1 − θ)/Γ. In contrast, when the multiphoton
emission is filtered, a family of fragmented bundles of several sizes is
produced. This is reflected in the WTD shape, which is decomposed
in the multiphoton peak (closer to zero) and the background (CW)
emission (from different bundles) that survives for longer times.

The multiphoton peak contribution can be detached from the whole

This figure shows that the
dynamical emission of
photon bundles differs
qualitatively from the SE of a
photon Fock state. This
suggests that important
dynamical aspects intervene
in the general problem of
multiphoton emission.

WTD and has a characteristic mean time

⟨τ̃⟩N =
N

∑
k=2

(⟨t(N)
k ⟩ − ⟨t(N)

1 ⟩)
k − 1

P(k, N)/
N

∑
k=2

P(k, N) , (4.141)

taking into account broken bundles of different sizes, and behaves
differently from the filtered thermal emission, that keeps multiphoton
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events of all the orders (for finite filter widths and unfiltered cases).
The narrow filter, however, leads to thermalisation no matter the origin
of the state. The thermal field, in particular, displays an interesting
feature. For Γ → 0, the emission stays thermal but, at the same
time, is monochromatic. The effective temperature of the state is
θΓ = Paγa/[P2

a + (γa + Γ)(γa − Pa)], which is greater than θ if Γ < Pa.
This effect is induced by the filter dynamics that have a much longer
time scale and clump the photons together.

Another important aspect we would like to investigate is how
photon detection, that ultimately depends on the one-photon kernel
TΓ, is affected by the shape of the filter and not only its width (which
we have discussed above). We already have concluded that N-photon
bundle could break when filtering it. So the question turns out to
be which kind of filter is less detrimental, which one rejects, on
average, less photons. A possible way to resolve this issue is to use the
rejected light and redirect it towards a second filter. Then, we would
expect a larger fraction of accepted photons. Repeating the process
(depicted in Fig 4.7) n times should enlarge the one-photon detection
probability even more, given that we are increasing the chances of
a rejected photon to be eventually accepted. For an infinite chain of
filters (n → ∞), we are confident that every photon eventually arrive.

We define the joint or total probability distribution ptot(n; T → ∞),
that is, the probability distribution if we take into account the n
detectors. To find this, we need to know the total intensity Ωtot to
generate the correct distribution. Since each detector records its signal
independently (this statement does not imply that the signals are
independent), the total intensity is just the sum of the intensities,
i.e., Ωtot = ∑n

k=1 Ωk (where Ωk is the intensity of the k-th detector).
For the case of interest, this yields Ωtot = ξγa(∑n

k=1 I(k)F )(a†a), which

effectively looks like a single filter. We may solve each integral I(k)F
separately and then gather all the contributions or make the following
sum

n

∑
k=1

I(k)F =
n

∑
k=1

1
2π

∫ ∞

−∞

|F̌(ω)|2|1 − F̌(ω)|2(k−1)

(γa/2)2 + (ω − ωa)2 dω

=
1

2π

∫ ∞

−∞

|F̌(ω)|2
(

∑n
k=1 |1 − F̌(ω)|2(k−1)

)
(γa/2)2 + (ω − ωa)2 dω , (4.142)

where the sum in the integrand is a geometric sum and can be rewrit-
ten as

S(n)
F (ω) =

n

∑
k=1

|1 − F̌(ω)|2(k−1) =
1 − |1 − F̌(ω)|2n

1 − |1 − F̌(ω)|2
, (4.143)
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Figure 4.7: Possible filter setup to build the composite filter S(n). The light
in sent to an interference (Lorentzian) filter and the transmitted light is
subsequently detected. The rejected (reflected) fraction is directed to a second
filter and collected by a detector. The procedure is repeated up to n filters.
Eventually, considering the collective action of the n detectors is effectively
identical to a single filter with spectral response S(n).

and then we turn the sum of integrals into a single integral

J(n)F =
n

∑
k=1

I(k)F =
1

2π

∫ ∞

−∞

|F̌(ω)|2S(n)
F (ω)

(γa/2)2 + (ω − ωa)2 dω . (4.144)

Again, if we select the Lorentzian case, the sum of filters S(n)
F (ω) is

then

S(n)
F (ω) =

1 −
[

(ω−ω1)
2

(Γ/2)2+(ω−ω1)2

]n

1 − (ω−ω1)2

(Γ/2)2+(ω−ω1)2

, (4.145)

and the effective filter within the integrand J(n)F reads

|F̌(n)
L (ω)|2 = |F̌L(ω)|2S(n)

F (ω) = 1 −
(

(ω − ω1)
2

(Γ/2)2 + (ω − ω1)2

)n

,

(4.146)

and if we take the limit n → ∞, we find

S(∞)
F (ω) =

1

1 − (ω−ω1)2

(Γ/2)2+(ω−ω1)2

=
(Γ/2)2 + (ω − ω1)

2

(Γ/2)2 =
1

|F̌L|2
,

(4.147)

so that |F̌(∞)
L (ω)|2 = S(∞)

F (ω)|F̌L(ω)|2 = 1. This means that an infinite
series of filters with fixed width Γ leads to a white spectrum and thus
each photon will be detected. The composite filter becomes flatter
around its top as the order n increases. The FWHM turns out to be
Γn = Γ(21/n − 1)−1/2, that grows like Γ

√
2n/ log(2). Knowing that,

we can build up a filter that retains this shape but has FWHM equal
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Figure 4.8: Butterworth filter (B(n)) shape for different orders compared to
the Lorentzian (L(1)) shown in the upper plot. The left-hand side of the plot
is in linear scale, whereas the right-hand side is in log scale. The lower plot
displays the composite filters (L(n)) with the same FWHM, equal to Γ.

to Γ. It is achieved by substituting the filter width Γ → Γ
√

21/n − 1.
Interestingly, an infinite chain of filters having this width will converge
to the following filter

|F̌(∞)
L (ω)|2 = 1 − 2−(Γ/2)2/(ω−ω1)

2
. (4.148)

which is non-analytic at its maximum.
Other types of filters that we can include in this comparison are the

Butterworth filters (see Fig. 4.8),

|F̌(n)
BW|2 =

(Γ/2)2n

(Γ/2)2n + (ω − ω1)2n , (4.149)

which, in the case ω1 = ωa, the one-photon kernel integral IF yields

I(n)BW =
1

1 + (−β2)n

(
1 − β

n

n−1

∑
p=0

(−β2)n−1−p

sin[ π
2n (2p + 1)]

,

)
(4.150)

where β ≡ γa/Γ. Another possible filter is the square filter

|F̌(n)
Sq |2 = θ(ω − ω1 + Γ/2)θ(Γ/2 − ω + ω1) , (4.151)

that is not zero around when Γ/2 < ω − ω1 < −Γ/2. Assuming that
ω1 = ωa, the integral has the following expression

ISq =
2
π

arctan(Γ/γa) . (4.152)
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Figure 4.9: One-photon detection probability for different kinds of filters as a
function of the filter width. Lorentzian and composite filters (L(n)) are shown
in blue while the Butterworth filters (B(n)) have different shades of red. The
artificial squared filter that optimises the one-photon detection probability,
obtained from Eq. (4.153), corresponds to the black dotted line. In the right
hand side there is a comparison of the two families of filters with fixed
width Γ = 10γa for increasing order. For flatter filters, the photon collection
improves and eventually saturates to the square filter (Butterworth) and the
non-analytical filter (composite).

Lastly, we consider the optimum filter that fulfil the FWHM criterion.
It is trivial to see that this filter consists of two parts: around ω1,
in a frequency window with width Γ, a square top with value 1

and, outside this region, the filter has value 1/2. In such a case, the

No filtering scheme is perfect
and improvements from the
family of filters widely
available are fairly modest.
This makes the simplest
Lorentzian type of filter of
great use for qualitative
studies.

single-photon detection probability is

IOpt =
1
2
+

1
π

arctan(Γ/γa) . (4.153)

Despite of how unrealistic this filter is, it provides an upper bound
for the one-photon detection probability for a fixed FWHM, shown
in Fig. 4.9 as the black dotted line and grows from 0.5 to 1. The
composite filters keep more signal than the Butterworth ones for
widths less than the natural linewidth of the cavity because of the fat
tails (it decays like ω−2), which have greater overlap (better for higher
order n). However, for Γ > γa we have the opposite situation. The
flatter top of the Butterworth filters within the region |ω − ωa| < Γ
increases the chances of accepting the photons. For increasing order,
all the filters are flatter around the maximum, which increases the
chances of detecting the photon. However, both the Butterworth and
the composite filter rapidly converge to the square filter (4.151) and
the non-analytical filter (4.148), respectively. The probability is never



136 photon counting

equal to one although they reach values closer to one, so the filters
maintain, in the end, the bundle structure mostly untouched.

With such results, the next step, which is beyond scope of this
Thesis, would be to apply these filters to the actual bundle emission.
In Ref. [79] is shown that the spectral filtering seems to increase the
bundle purity rather than destroying the bundle integrity. The bundler
is system under excitation and beside the N-photon bundle, other
kinds of transitions are taking place and contaminate the emission.
Filtering around the desired transition should eliminate or, at least,
reduce the appearance of these unwanted photons. However, what
we find in this work is that narrow filters, below the linewidth of the
emitter, have a noticeable detrimental effect on the bundle. Then, it
has to exist an optimum filter width Γ that, on one hand, keeps the
secondary or non-bundling emission away and, on the other hand,
is wide enough to retain the bundle structure. As well, the type
of filter could play an important role. Flatter filters, like high-order
Butterworth filters, seem to have better overlapping (in the region
where Γ > γa) than Lorentzian filters. So the prospects of designing a
reliable source of N-photon bundles could be aimed to follow these
ideas.



5
S PAT I A L C O R R E L AT I O N S I N
L I G H T- M AT T E R S Y S T E M S

In general, continuous variable systems, i.e., when position or mo-
mentum are spread all over a dense set (it could be finite or infinite)
present difficulties to be faithfully described. Some frequency cut-off
is needed or the wave-function has to be discretised. However, some-
times solving the whole many-particle problem is not mandatory. For
instance, to know the mean number of particles and how they are dis-
tributed in space or in momentum (this is usually called the particle
density ρ(1)(x)), only a particular set of correlators is required. If we
want to compute, e.g., the mean distance between particles, which
involve two body measurements, then finding two point correlations
suffices.

In the second quantisation formalism, the family of n-particle den-
sity distributions is written in terms of the field operator

Ψ†(x) = ∑
m

ϕ∗
m(x)a†

m , (5.1)

where ϕm(x) is the one-particle wavefunction corresponding to the
m-th state |m⟩ and a†

m is the creation operator of this state (we have
not set the statistics of the particles as yet). The functions ϕm(x)
have to comprise a complete set of orthonormal functions, so that,
⟨m|m′⟩ =

∫
ϕ∗

m(x)ϕm′(x)dx = δm,m′ , where δm,m′ is the Kronecker
delta function. Here, x may stand for the position coordinates in any
dimension and the domain, the region of integration, can be either
finite or infinite. For continuous sets of quantum numbers, the sum
over the states and the Kronecker delta are substituted by an integral
and the Dirac delta, respectively.

The physical meaning of the operator in Eq. (5.1) is easy to un-
derstand when applied on the vacuum state |0⟩ and projected in the
position basis:

⟨x|Ψ†(x′) |0⟩ = ∑
m
⟨x| ϕ∗

m(x′)a†
m |0⟩ = ∑

m
ϕ∗

m(x′) ⟨x|m⟩

= ∑
m
⟨x|m⟩

〈
m
∣∣x′〉 = ⟨x|

(
∑
m
|m⟩ ⟨m|

) ∣∣x′〉 . (5.2)

137
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Since |m⟩ is part of a complete set of states, we can make use of the
identity 1 = ∑p |p⟩ ⟨p| to finally get

⟨x|Ψ†(x′) |0⟩ =
〈

x
∣∣x′〉 = δ(x − x′) . (5.3)

That is, the field operator creates or locates a particle at the position
x = x′. For the moment, we have not included times, namely t and
t′, in this description and incorporating them requires some extra
steps. We would like that Ψ†(x′, t′) places a particle at space-time
coordinates (x′, t′). In the Schrödinger picture, for instance, replacing
ϕ∗

p(x′) by ϕ∗
p(x′, t′) (and |p⟩ by |p(t)⟩ as well) will work if t > t′ but

not the other way around since the creation of this particle must not
affect the past. Later on, we will complete the explanations and define
the field operator properly.

For the moment, timeless (or same time t = t′) field operators are
enough to describe particle density operators and, after them, their
density functions. We present here the 1-particle density operator

n̂(1)(x) = Ψ†(x)Ψ(x) . (5.4)

In order to find its position representation, we first need to know if
n̂(1)(x) conserves the total number of particles. If so, n̂(1)(x) has a
very simple expression for each N-particle subspace HN. This is the
case since the commutator [N̂, n̂(1)(x)] = 0, where N̂ = ∑i a†

i ai is the
number operator. When it is applied on the N-particle Hilbert space

⟨x| n̂(1) |x⟩ = n(1)(x) =
N

∑
i=1

δ(x − xi) , (5.5)

which has exactly the same expression as the classical case. From this
definition (5.5), we can derive the expression of the particle density
for a general many-body quantum state ρ (not necessarily a pure
quantum state |ψ⟩). Let us start with a pure state. For a general state,
we can split it into a sum of states with the same quantum number
for the operator N̂ [80]

|ψ⟩ =
∞

∑
n=0

c(n) |ψn⟩ , (5.6)

such that ∑∞
n=0 |c(n)|2 = 1 and each subspace only contains states with

n particles. For instance, |ψ0⟩ = |0⟩ and |ψ1⟩ = ∑p c(n)p a†
p |0⟩ = |ψ1⟩ =

∑p c(n)p
∣∣1p
〉
. For the n-particle state

|ψn⟩ = ∑
p⃗n

c(n)p⃗n
| p⃗n⟩ , (5.7)
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where p⃗n is a n-vector with the quantum numbers that occupies each
particle. If the system allows two or more particles to be in the same
quantum state, this number will appear repeated as many times as
needed in the quantum state vector p⃗. The sum over the squared
modulus of the coefficients c(n)p⃗ must return |c(n)|2, naturally. This

implies that the global coefficient c(n) is defined by its constituents up
to a global phase which has to be chosen as an independent parameter.

We can define an extended family of states through the density
matrix formalism. Besides these pure states, namely ρ = |ψ⟩ ⟨ψ|, mixed
states are also possible:

ρ =
∞

∑
m,n=0

ρm,n |n⟩ ⟨m| , (5.8)

where |n⟩ (⟨m|) represents the quantum states with n particles (m
particles in the adjoint space) and the elements ρm,n is an abbreviated
way of representing the matrix coefficients. Expanding this further,

ρ =
∞

∑
m,n=0

χ( p⃗n, q⃗m) | p⃗n⟩ ⟨⃗qm| , (5.9)

where the coefficients χ( p⃗n, q⃗m) are the matrix elements. Therefore, the
probability of each state is given by the diagonal elements χ( p⃗n, p⃗n).
With this, we are able to calculate n-particle density matrices [81]. For
one particle, the diagonal part of the matrix is

ρ(1)(x) = ⟨n̂(1)(x)⟩ =
∫

dx ⟨x| ρ n̂(1)(x) |x⟩ . (5.10)

In the same manner, the 2 particle diagonal density matrix is

ρ(2)(x, x′) = ⟨: n̂(1)(x)n̂(1)(x′) :⟩ =
∫

dx ⟨x| ρ (: n̂(1)(x)n̂(1)(x′) :) |x⟩ .

(5.11)

In term of the field operators,

ρ(1)(x) = ∑
p,q

tr
{

ρa†
paq

}
ϕ∗

p(x)ϕq(x) = ∑
p,q
⟨a†

paq⟩ ⟨x|q⟩ ⟨p|x⟩ , (5.12)

and

ρ(2)(x, x′) = ∑
p,p′,q,q′

tr
{

ρa†
pa†

p′aq′aq

}
ϕ∗

p(x)ϕ∗
p′(x′)ϕq′(x′)ϕq(x) =

∑
p,p′,q,q′

⟨a†
pa†

p′aq′aq⟩ ⟨x|q⟩
〈

x′
∣∣q′〉 〈p′

∣∣x′〉 ⟨p|x⟩ , (5.13)
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and so on.
Since Eq. (5.13) is written in term of one-particle wavefunctions,

the overall reduced density matrix has the same symmetry than
particles. For fermions, ⟨a†

pa†
p′aqaq′⟩ = −⟨a†

pa†
p′aq′aq⟩ and the same

change of sign for interchanging p and p′. Then, fixing an order for
the indices, the summation over (p, p′) and (p′, p) ((q′, q) and (q, q′)
too) will give ⟨a†

pa†
p′aq′aq⟩(ϕ∗

p(x)ϕ∗
p′(x′)−ϕ∗

p′(x)ϕ∗
p(x′))(ϕq(x)ϕq′(x′)−

ϕq′(x)ϕq(x′)). Now, the wavefunction is explicitly antisymmetric. The
same idea applies for bosons, changing the minus sign for a plus one.
In addition, when p = p′ (or q = q′), the fermionic correlators give
zero while the bosonic ones get magnified by a factor

√
2.

The integration of ρ(1)(x) and ρ(2)(x, x′) over the space x and x′

leads, as expected, to ⟨N̂⟩ and ⟨: N̂2 :⟩, respectively. Therefore, they do
not represent a probability distribution per se. However, normalising
the reduced density matrices by the factor ⟨: N̂n :⟩ achieves this. Any
one and two-body properties can be computed from these normalised
reduced density matrices. For instance,

⟨ f1(x̂)⟩ =
tr
{

ρ̂(1) f1(x̂)
}

tr
{

ρ̂(1)
} =

∫
ρ(1)(x) f1(x)dx

⟨N̂⟩
, (5.14)

or, for two-body quantities,

⟨ f2(x̂, x̂′)⟩ =
tr
{

ρ̂(2) f2(x̂, x̂′)
}

tr
{

ρ̂(2)
} =

∫
ρ(2)(x, x′) f2(x, x′)dxdx′

⟨: N̂2 :⟩
. (5.15)

We will consider some general kind of states for fermions, bosons
and classically indistinguishable particles. First, finite combinations
of Fock states, e.g., n − k particles in the state 0 and k in the state 1
(where labels 0 and 1 do not necessarily correspond to the ground
and first excited states, respectively). After that, for bosons, we study
Gaussian states with contribution from all number of particles such
as coherent and thermal states. We will focus on the mean squared
distance between two particles, that is, ⟨(x − x′)2⟩ in some particular
systems like the 1D harmonic oscillator or the infinite square well. We
also assume that particles do not interact with each other.

5.1 F O C K S TAT E S W I T H F I X E D n

Hereafter, we denote fermion operators as cp and c†
p. They fulfil the

anticommutation rules

{cp, c†
q} = δp,q and {cp, cq} = 0 . (5.16)
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Likewise, bosonic operators are indicated as ap and a†
p and follow the

commutation rules

[ap, a†
q ] = δp,q and [ap, aq] = 0 . (5.17)

Restricting the description to two different states that, without loss
of generality, we label as 0 and 1, we can define the next possible
states

|ϕF⟩ = c†
1c†

0 |0⟩ = |1 , 1⟩F , (5.18)

and

|ϕB⟩ =
1√

(n − k)! k!
a†k

1 a†(n−k)
0 |0⟩ = |n − k , k⟩B . (5.19)

The fermionic case only admits one possible configuration because
only one particle can occupy each state. Then, with two states we
have two particles at most. The bosons, on the contrary, can share the
same quantum number, so that with n particles, k on them can be in
the second state. The corresponding correlators are, for the fermionic
state,

⟨c†
pcq⟩F = δp,0δq,0 + δp,1δq,1 , (5.20)

and

⟨c†
pc†

p′cq′cq⟩F =
(

δp,1δp′,0 − δp,0δp′,1

) (
δq,1δq′,0 − δq,0δq′,1

)
. (5.21)

Then, substituting these in Eqs. (5.12) and (5.13), we find the 1-particle
and 2-particle reduced density matrix associated to |ϕF⟩

These provide the density
matrices, here for the
Fermion case, from which
one can derive spatial
correlations of multi-particle
observables. This is to be
compared with the
expressions for ρB,C below.

as

ρ
(1)
F (x) = |ϕ0(x)|2 + |ϕ1(x)|2 , (5.22)

and

ρ
(2)
F (x, x′) = |ϕ0(x)ϕ1(x′)− ϕ1(x)ϕ0(x′)|2 = 2|ϕ(−)

01 (x, x′)|2 , (5.23)

where ϕ
(−)
01 (x, x′) = (ϕ0(x)ϕ1(x′)− ϕ1(x)ϕ0(x′))/

√
2 is the antisym-

metrised wavefunction with one particle in each state.
On the other hand, the bosonic counterparts give

⟨a†
paq⟩B = (n − k)δp,0δq,0 + kδp,1δq,1 , (5.24)

and

⟨a†
pa†

p′aq′aq⟩B = k(k − 1)δp,0δp′,0δq′,0δq,0+

(n − k)k
(
δp,1δp′,0 + δp,0δp′,1

)(
δq,1δq′,0 + δq,0δq′,1

)
+

(n − k)(n − k − 1)δp,1δp′,1δq′,1δq,1 . (5.25)
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Hence, inserting these results in (5.12) and (5.13), we find

ρ
(1)
B (x) = (n − k)|ϕ0(x)|2 + k |ϕ1(x)|2 , (5.26)

ρ
(2)
B (x, x′) = (n − k)(n − k − 1)|ϕ0(x)ϕ0(x′)|2+

(n − k)k |ϕ0(x)ϕ1(x′) + ϕ1(x)ϕ0(x′)|2+
k(k − 1)|ϕ0(x)ϕ0(x′)|2

= (n − k)(n − k − 1)|ϕ(+)
00 (x, x′)|2+

2(n − k)k |ϕ(+)
01 (x, x′)|2+

k(k − 1)|ϕ(+)
11 (x, x′)|2 , (5.27)

where ϕ
(+)
pq (x, x′) are the symmetrised wavefunctions with two par-

ticles (with quantum numbers p and q). Hence the reduced density
matrix is written in term of the 2-particle states as

ρ̂
(2)
B = (n − k)(n − k − 1) |2 , 0⟩B ⟨2 , 0|B +

2(n − k)k |1 , 1⟩B ⟨1 , 1|B + k(k − 1) |0 , 2⟩B ⟨0 , 2|B . (5.28)

Then, the effective 2-particle state is a mixed state containing the three
possible states, i.e., |2 , 0⟩B (two particles in the first state), |0 , 2⟩B
(two particles in the second state) and |1 , 1⟩B (one particle in each
state). The weights are the number of combinations to obtain those
states, accounting for the two possible orders (due to the two spaces
coordinates x and x′). For instance, if n = 4 and k = 2, there are 2

ways to get two particles in the state 0. The fermionic case, however,
consists of only the single possible combination |1 , 1⟩F.

So far we have not considered the third possibility mentioned
before, the classically indistinguishable case. The particles is this situ-
ation do not obey any particular statistics so that, from the quantum-
mechanical point of view, these are distinguishable. However, when
measuring we are not able to tell apart which particle is being detected.
Therefore, classically speaking, they are indistinguishable.

Such state with n − k particles in the state 0 and k in the second one
is ϕ(C)(x1, . . . , xn) = ∏n−k

p=1 ϕ0(xp)∏n
p=n−k+1 ϕ1(xq), i.e., the product of

single-particle wavefunctions. Applying the density operator n̂(1)(x)
to the density matrix ρC(x⃗) = |ϕ(C)(x1, . . . , xn)|2 yields

ρ
(1)
C (x) =

∫
ρC(x⃗)

( n

∑
p=1

δ(x − xp)
)

dx1 . . . dxn =

(n − k)|ϕ0(x)|2 + k|ϕ1(x)|2 . (5.29)
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The one-particle density matrix is therefore the same as the bosonic
case (5.26) and, if n = 2 and k = 1, both are identical to the fermionic
one (5.22). Therefore, it is not possible to resolve the statistics from
single-body measurements.

For two-body correlations, we need to find out the two-particle
reduced density matrix for the distinguishable case. The two-particle
density operator is n̂(2)(x, x′) =: n̂(1)(x)n̂(1)(x′) : which in the position
basis is

n(2)(x, x′) =
n

∑
p=1

n

∑
q ̸=p

δ(x − xp)δ(x′ − xq) . (5.30)

Counting how many ways we have to obtain the reduced states (|0 0⟩,
|1 1⟩, |1 0⟩ and |0 1⟩), we obtain the same coefficients as (5.27). The
2-particle reduced density matrix is then

ρ
(2)
C (x, x′) =

∫
ρC(x⃗)

( n

∑
p=1

n

∑
q ̸=p

δ(x − xp)δ(x′ − xq)
)

dx1 . . . dxn

= (n − k)(n − k − 1)|ϕ0(x)ϕ0(x′)|2+
(n − k)k

(
|ϕ0(x)ϕ1(x′)|2 + |ϕ1(x)ϕ0(x′)|2

)
+

k(k − 1)|ϕ1(x)ϕ1(x′)|2 . (5.31)

The main difference here is in the state with different quantum num-
bers, since |0 1⟩ and |1 0⟩ do not have any exchanging (anti)symmetry
and thus they are different states. However, the overall state is in-
deed symmetric under the exchange x ↔ x′. We have found that the
particle density ρ(1)(x), having the same configuration, is identical
for all the ensembles (fermions, bosons and classical indistinguish-
able). The 2-particle density matrices are a mixture of the all possible
two-particle states.

5.1.1 infinite square well

We have not specified neither the system nor its eigenstates as yet.
Let us begin with the infinite square well of length L. The set of
eigenfunctions are

ϕn(x) =

√
2
L

sin
(

nπ
x
L

)
, (5.32)

for 0 < x < L and zero elsewhere. The quantum numbers n are all
the positive integers. We choose 0 and 1 states to be n = 1 and n = 2
for simplicity. Then, the mean square distance is computed as

⟨(x − x′)2⟩S =

∫
ρ
(2)
S (x − x′)2 dxdx′∫

ρ
(2)
S dxdx′

, (5.33)
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Figure 5.1: Mean squared distance ⟨(x − x′)2⟩ as a function of the mixing
parameter y for a Fock state of n = 10 particles, displayed as green points,
and Gaussian multi-particle states (coherent in blue and thermal in red).
The phase of the coherent state is chosen to minimise (θ = 0, solid line) and
maximise (θ = π/2, dashed line) the MSD for any value of y.

where S indicates the statistics of the ensemble (fermions, bosons or
none of both). With only two different states, the total number of
particles is not the same for the three cases since the fermions cannot
have more than two due to the Pauli exclusion principle. A way to
compare them on equal footing is to fix n = 2 and k = 1 and take
these results as a reference for the remaining cases. Choosing n = 2
and k = 1, the mean squared distance (MSD) in units of L2 is

⟨(x − x′)2⟩F =
1
6
− 5

8π2 +
512

81π4 , (5.34a)

⟨(x − x′)2⟩B =
1
6
− 5

8π2 − 512
81π4 , (5.34b)

⟨(x − x′)2⟩D =
1
6
− 5

8π2 . (5.34c)

Even from this simple result, we can clearly see the effect of statistics
on the correlations. This is a well-known behaviour in atomic and
molecular Physics. Depending on the spin coordinates, the spatial
wavefunction is either symmetric or antisymmetric. The electronic
repulsion is greater when orbital overlapping is big or, in other words,
when the mean distance between electrons is small. This is translated
into an excess of Coulomb electrostatic energy which is usually iden-
tified in some tight-binding models, like the Hubbard model, as the
U terms in the Hamiltonian.
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The bosonic and classically indistinguishable cases can be extended
to include more particles of both species:

⟨(x − x′)2⟩B =
1
6
− 1

π2 +
3k

4π2n
− 1024(n − k)k

81π4n(n − 1)
, (5.35a)

⟨(x − x′)2⟩C =
1
6
− 1

π2 +
3k

4π2n
. (5.35b)

There is an obvious difference between the two ensembles. While
⟨(x − x′)2⟩D grows linearly with k, meaning that the minimum of
MSD is always at k = 0, when all the particles are in the ground
state, ⟨(x − x′)2⟩D has a region 0 < k ≤ ⌊k0⌋ (where k0 = 243π2

4096 + (1−
243π2

4096 )n) with its MSD below that minimum. The global minimum is
around k0/2, so it could be either k = ⌊k0/2⌋ or k = ⌊k0/2⌋+ 1. The
minimum MSD depends on the number of particle n and reaches its
lowest value when n = 2 (as shown in Fig. 5.1) and increases as n
enlarges.

In the limit of an infinite number of particles (n → ∞), we can
define the continuous variable y ≡ k/n and equations (5.35) reduce
to

⟨(x − x′)2⟩B =
1
6
− 1

π2 +
3y

4π2 − 1024(1 − y)y
81π4 , (5.36a)

⟨(x − x′)2⟩D =
1
6
− 1

π2 +
3y

4π2 , (5.36b)

which reveal the linear and parabolic behaviour of the MSD. Even
in this limit, it is possible to find a minimum below the value at
y = k = 0. Deriving with respect to y and solving the equation for the
extrema, we find ymin = k0/2 and

⟨(x − x′)2⟩B(n → ∞, k0/2) =
30581
196608

− 256
81π4 − 5

8π2 . (5.37)

5.1.2 1-d harmonic potential

Another relevant example which brings analytical results is the one-
dimensional harmonic potential, with parameter m ω. The eigenfunc-
tions are

ϕn(x) =
1√
2nn!

(mω

πh̄

)1/4
e−

mωx2
2h̄ Hn

(√
mω

πh̄
x
)

, (5.38)

where Hn(u) are the Hermite polynomials and n are natural numbers
including 0. We choose again the ground and the first excited states,
i.e., n = 0, 1. In this system, the position x is not bounded and can
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Figure 5.2: Mean squared distance ⟨(x − x′)2⟩ as a function of the mixing
parameter y for n = 10 Fock states, displayed as green points, and Gaussian
multi-particle states (coherent in blue and thermal in red). The phase of
the coherent state is chosen to minimise (θ = 0, solid line) and maximise
(θ = π/2, dashed line) the MSD for any value of y.

take any value x ∈ R. The characteristic length of the oscillator is

x0 =
√

h̄
mω and we thus write the MSD in units of x2

0. We start
calculating the case n = 2 and k = 1 for fermions, bosons and
classically indistinguishable particles:

⟨(x − x′)2⟩F = 3 , (5.39a)

⟨(x − x′)2⟩B = 1 , (5.39b)

⟨(x − x′)2⟩C = 2 . (5.39c)

Again, the MSD is bigger for fermion and smaller for bosons com-
pared to the distinguishable case, which is in the middle. The exten-
sion to more particles is straightforward:

⟨(x − x′)2⟩B = 1 +
2k(k − 1)
n(n − 1)

, (5.40a)

⟨(x − x′)2⟩D = 1 +
2k
n

, (5.40b)

From these equations we find that the distance is always greater for
the classically indistinguishable case unless k = 0 or k = n given
that when all the particles are in the same state, the collective wave-
functions are identical. There are two minima for ⟨(x − x′)2⟩B, one
at k = 0 and a second one at k = 1. Both return the same result
⟨(x − x′)2⟩B = 1. For greater values of k, unlike the previous case, the
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distance grows monotonically. In the limit n → ∞, we can define the
coordinate y ≡ k/n, which goes from 0 to 1 and approximate (5.40)
as 1 + 2y and 1 + 2y2, respectively.

5.2 G AU S S I A N S TAT E S

So far, we have only dealt with quantum states with the number of
particles N well-defined. With a few extra steps, we can extend these
results to other kind of states, especially the Gaussian coherent and
thermal states. The multi-mode version of them are easy to obtain
due to the factorisation properties that they enjoy. The displacement
operator is defined as

D(⃗α) = exp
(

∑
k

αka†
k − α∗k ak

)
. (5.41)

where αk = |αk|eiϕk are complex numbers. Having the commutation
rules (5.17) and making use of the Baker-Campbell-Hausdorff lemma,
we can factor out the single-mode displacement operators

D(⃗α) = ∏
k

eαka†
k−α∗k ak = ∏

k
Dk(αk) , (5.42)

Moreover, we can exchange the order of the displacement operators,
since each one do commute with the rest. The similarity transforma-
tions work identically. For f a function of the operators ai and a†

i , that
is, f = f (a1, a†

1 . . . , an, a†
n), transforms as

D† (⃗α) f (a1, a†
1 . . . , an, a†

n)D(⃗α) = f (a1+α1, a†
1+α∗1 . . . , an+αn, a†

n+α∗n) .
(5.43)

The multi-mode coherent state is defined as

|⃗α⟩ = D(⃗α) |0⟩ . (5.44)

Then, the one-body correlations are

⟨a†
paq⟩ = ⟨⃗α| a†

paq |⃗α⟩ = ⟨0| D† (⃗α)a†
paqD(⃗α) |0⟩

⟨0| (a†
p + α∗p)(aq + αq) |0⟩ = α∗pαq . (5.45)

From the first to the second line, we used the property in Eq. (5.43).
In the same manner, we get the two-body correlations as

⟨a†
pa†

p′aq′aq⟩ = α∗pα∗p′αq′αq . (5.46)
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The reduced density matrices are

ρ(1)(x) = ∑
p

∑
q

α∗pαq ϕ∗
p(x)ϕq(x)

=
(

∑
p

α∗pϕ∗
p(x)

)(
∑
q

αqϕq(x)
)
=
∣∣∣∑

q
αqϕq(x)

∣∣∣2 . (5.47)

This result shows that a coherent state remains a pure state (up to
a normalisation constant) which is a linear combination of the one-
particle eigenfunctions. Moreover, this behaviour is inherited for the
two-body reduced density matrix too.

ρ(2)(x, x′) = ∑
p

∑
p′

∑
q′

∑
q

α∗pα∗p′α
′
qαq ϕ∗

p(x)ϕ∗
p′(x)ϕq′(x′)ϕq(x)

=
∣∣∣∑

q
αqϕq(x)

∣∣∣2∣∣∣∑
q′

αq′ϕq′(x′)
∣∣∣2 = ρ(1)(x)ρ(1)(x′) .

(5.48)

As a general statement, the n-particle reduced density matrix is a
product of one-particle matrices with all the chosen coordinates x(i).

Another popular Gaussian state is the thermal state

ρth =
exp

(
−∑k βka†

k ak
)

Z
= ∏

k

e−βka†
k ak

Zk
= ∏

k
ρth,k , (5.49)

where βk are the reduced temperatures and Zk = tr
(

e−βka†
k ak
)

. The

mean population of each state is n̄k = (eβk − 1)−1, which is the Bose-
Einstein distribution. Inversely, we can write the exponential weights
as e−βk = n̄k/(n̄k + 1) and, therefore, the density matrix as

ρth = ∏
k

1
n̄k + 1

∞

∑
nk=0

( n̄k
n̄k + 1

)nk
|nk⟩ ⟨nk| , (5.50)

Given the structure of this state, only the correlators with diagonal
operators do not vanish:

⟨a†
paq⟩ = δp,q n̄p , (5.51a)

⟨a†
pa†

p′aq′aq⟩ =
(
δp,qδp,q + δp,q′δp′,q

)
n̄pn̄p′ . (5.51b)

Then, substituting these in Eq. (5.12),

ρ(1)(x) = ∑
p

n̄p|ϕp(x)|2 , (5.52)

and, in Eq. (5.13),

ρ(2)(x, x′) = ∑
p,p′

n̄pn̄p′
(
|ϕp(x)|2|ϕp(x′)|2 +ϕ∗

p(x)ϕp(x′)ϕ∗
p′(x′)ϕp′(x)

)
,
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(5.53)

The most noticeable difference between the coherent and thermal cases
is the behaviour of ρ(1)(x). While the coherent state consists of the sum
of amplitudes, that is, the coherent superposition of eigenfunctions,
the thermal state cancels out the crossed terms and involves the
incoherent sum of the squared amplitudes. Additionally, the second
term in (5.53) is the bosonic counterpart of the exchange term in
electronic systems. The thermal state keeps some correlations at the
two-body level.

Then, we can compute the MSD for these states. First, we take
αp>1 = 0 and n̄p>1 = 0. We also need to fix the mean number of
particles N̄. Integrating ρ(1)(x) all over the domain, we get N̄ =
|α0|2 + |α1|2 for the coherent state and N̄ = n̄0 + n̄1 for the thermal
states. Parametrising the coherent coefficients as α0 =

√
n(1 − y) and

α1 = eiθ√ny, where 0 ≤ y ≤ 1 and n is a positive integer, the mean
population is always n. Likewise, for the thermal state, n̄0 = n(1 − y)
and n̄1 = ny. This allows us to compare directly the results with the
Fock states. For the infinite square well

⟨(x − x′)2⟩coh =
1
6
− 1

π2 − 8192 cos2(θ)− 243π2

324π4 y+

2048 cos2(θ)

81π4 y2 ,

⟨(x − x′)2⟩th =
1
6
− 1

π2 − 1053π2 − 4096
648π4 +

486π2y − 243π2 − 4096
648π4(y2 − y + 1)

,

(5.54)

(5.55)

while, for the quantum harmonic

This shows how two particles
correlate in space when they
originate from different
quantum states, in different
potentials. This is to be
compared to the Fock case
(Eqs. (5.34) & (5.39)). Such
results could be
experimentally implemented
by near-field imaging of
polaritons.

oscillator,

⟨(x − x′)2⟩coh = 1 + 2y2 + 2 cos(2θ)y(y − 1) ,

⟨(x − x′)2⟩th = 1 +
2y2

y2 − y + 1
.

(5.56)

(5.57)

The phase difference θ plays an important role. The interference
between the particles in each state affects the overall spatial configu-
ration and it can modulated by the fraction y and the phase, in the
same manner that two wave are admixed. The optimum phase that
minimises the MSD for all the values of the mixing parameter y is
θ = 0 (or ϕ = π), that is shown in Fig. 5.2, while the orthogonal
phase ϕ = π/2 maximises the MSD and, in fact, coincides with the
classically indistinguishable when y = k/n. The values of the phase ϕ

between 0 and ϕ/2 produce intermediate results between these two
curves.
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5.3 U N C O N F I N E D PA RT I C L E S I N F R E E S PA C E

Having in mind these ideas and their corresponding results, we
could try to generalise them to continuum energy spectra, as it is
the case of particles in free space. We assume that the particle can be
anywhere without restrains, i.e., its coordinate x can take any real
value. Otherwise, if there is a confinement like the infinite square well,
the reasoning would be similar, changing the integrals by discrete
sums.

Any state is built up from elements of the chosen basis as a superpo-
sition or linear combination of them. The number of different of bases
is infinite, so the number of ways we can represent a particular state is
countless. In free space, there are two paradigmatic cases to start with:
the position and momentum bases. An element from the first one
places a particle at a fixed position x0, ⟨x|x0⟩ = φx0(x) = δ(x − x0).
The momentum basis, conversely, describes particles with a defined
momentum k0. Represented in this space, which is the Fourier space,
this state is ⟨k|k0⟩ = φ̌k0(k) = δ(k − k0). Both representations are
linked by the defined momentum state written in the position basis
⟨x|k0⟩ = φk0(x) = eik0x, which is a plane wave. Any state in the posi-
tion basis ϕ(x) has its corresponding image in the momentum basis
via the Fourier transform:

ϕ̌(k) =
∫ ∞

−∞
ϕ(x)e−ikxdx , (5.58)

or, inversely,

ϕ(x) =
1

2π

∫ ∞

−∞
ϕ̌(k)eikxdk . (5.59)

Then, any state |ϕ⟩ can be written in terms of plane waves

|ϕ⟩ = 1
2π

∫ ∞

−∞
ϕ̌(k) |k⟩ dk . (5.60)

In the language of second quantisation, the boson operators that
create and annihilate particles with defined momentum k are a†

k
and ak, respectively. The commutation relations are [ak, aq] = 0 and
[ak, a†

q ] = (2π)δ(k − q) (in d dimensions, the normalisation factor
would be (2π)d). For fermions, the operators c†

k and ck have to fulfil
the anticommutation rules {ck, cq} = 0 and {ck, c†

q} = (2π)δ(k − q).
In terms of the second quantisation operators, we have |k⟩ = a†

k |0⟩ or
|k⟩ = c†

k |0⟩. Then, we can define a generalised operator that creates a
particle in the state |ϕ⟩ as

A†(ϕ) =
1

2π

∫ ∞

−∞
ϕ̌(k)a†

k dk , (5.61)



5.3 unconfined particles in free space 151

such that |ϕ⟩ = A†(ϕ) |0⟩. For fermions, the operator C†(ϕ) has
exactly the same shape replacing a†

k by c†
k .

Having two arbitrary states, namely ϕ and ψ, we ask if the order
when applying this operator to the vacuum affects the resulting state.
The commutation relations of A(ϕ) and A†(ψ) are, remembering that
the commutation is linear in its two entries,

[A(ϕ), A(ψ)] =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
ϕ̌∗(k)ψ̌∗(q)[ak, aq] dkdq = 0 , (5.62)

given that [ak, aq] = 0. The missing rule is

[A(ϕ), A†(ψ)] =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
ϕ̌∗(k)ψ̌(q)[ak, a†

q ] dkdq =

1
2π

∫ ∞

−∞

∫ ∞

−∞
ϕ̌∗(k)ψ̌(k) dk = ⟨ϕ|ψ⟩ = S(ϕ, ψ) ,

(5.63)

where S(ϕ, ψ) = S∗(ψ, ϕ) is the overlap between the wavefunctions.
When ϕ = ψ, then S(ϕ, ϕ) = 1 because of the normalisation. In other
case, the modulus of overlap is less than one due to the Cauchy-
Schwarz inequality.

The multiparticle generalised coherent state is Dϕ(α) |0⟩, where
the exponential map is now Dϕ = eαA†(ψ)−α∗A(ψ). The description of
the creation operator as a sum of plane waves allows to write the
displacement operator Dϕ as Dϕ = exp

{∫ dk
2π αka†

k − α∗k ak

}
, where

αk = α ϕ̌(k), that is, it is a (continuous) superposition of displacement
operators, so the rules (5.43) still apply and the state is a limiting case
of (5.44) where αk are not only an infinite set of parameters but a
continuous one. The summation turns into a integral over the k-space.
The reduced density matrices are then

ρ(1)(x) =
∣∣∣∣∫ ∞

−∞

dk
2π

αkeikx
∣∣∣∣2 =

∣∣∣∣α ∫ ∞

−∞

dk
2π

ϕ̌(k)eikx
∣∣∣∣2 = |α|2|ϕ(x)|2 ,

(5.64)

and

ρ(2)(x, x′) = ρ(1)(x)ρ(1)(x′) . (5.65)

The main result is that a coherent state of a specific state ϕ keeps
the same expression as the canonical n-particle description (up to a
constant |α|, which is the population). Such a result may be seen as
obvious but it justifies the one-particle description. A coherent state
can be generated by a short laser pulse with a given profile ϕ(x), the
consequent evolution is provided by the Schrödinger equation or by
the dissipative Gross-Pitaevskii equation.
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5.4 T I M E A N D S PAT I A L C O R R E L AT I O N S

In this Section, we study a dynamical situation. The spatial correla-
tions, such as the density profile ρ(1), evolve with time. The problem
we solve can describe, for instance, a polariton wavepacket propa-
gating in one dimension steered towards a defect (fixed at x = 0 for
the sake of simplicity). The simplest way to represent this scattering
process with a single defect is a Dirac delta potential, that also have
analytical expressions which, in turn, simplify all the computations.

In absence of dissipation or self-interaction, the wavefunction evolves
following the Schrödinger equation

i∂tψ(x, t) =
(
− 1

2m
∂2

xx + V0δ(x)
)

ψ(x, t) . (5.66)

The simplest solution, which can be consulted in Quantum Mechanics
textbooks [30, 82], is a combination of plane waves with the same
energy k2

2m . An incident wave (coming from the left hand side) reaches
the defect and scatters back and forward. For our purpose, we use
the time-independent Schrödinger equation (we substitute ih̄∂t → E)
and split the space in two regions, before and after the barrier (region
I for x < 0 and region II for x > 0). Solving the equation gives the
following well-known solution

ψ(x) =

Aeikx + Be−ikx, x < 0

Ceikx, x > 0
, (5.67)

where we have discarded the backward solution in the region II
because we assume that there are no incoming waves from the
right-hand side. Now, we need the matching conditions at x = 0.
The wavefunction should be continuous everywhere. This leads to
ψ(0−) = ψ(0+) or, after substituting the wavefunction, A + B = C.
The second condition requires to take into account the delta potential.
Integrating around x = 0, for instance, taking the region (−ϵ,+ϵ)
(with ϵ → 0+), leads to

ψ′(0+)− ψ′(0−) = 2β0ψ(0) ⇒ A − B =

(
1 − i

2β0

k

)
C , (5.68)

where β0 = mV0
h̄2 . We can express the reflected and transmitted waves

coefficients in terms of the incoming one, i.e., B/A = r and C/A = t.
Finally, the two conditions allow us to obtain the coefficients

r(k) =
iβ0

k − iβ0
, t(k) =

k
k − iβ0

. (5.69)
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Figure 5.3: Time evolution of the Gaussian wave packet scattered by the
Delta potential (marked as a dashed red line) for two different initial widths
σ0. Brighter regions indicate higher probability of detecting the particle. For
narrow widths, the distribution of momenta is wide and the packet spreads
faster so after the scattering the interference pattern (between the incoming
and scattered fractions) is visible along a wide region comparable to x0.
The transmitted fraction travels towards infinity without interacting. For
wider widths, the packet retains its shape for much longer times, even after
the interaction with the potential. The interference effect lasts only in the
intermediate region where the incoming and scattered waves overlap.

The whole solution can then be written as

ψ(x) = θ(−x)
(

eikx + r(k)e−ikx
)
+ θ(x)t(k)eikx . (5.70)

From this simple solution for a standing plane wave, any other config-
uration can be computed at all times as a superposition of well-defined
k states. We choose as an initial condition a Gaussian wavepacket, cen-
tred at x0 < 0, with mean momentum k0 > 0 and space uncertainty
σ0:

ψ(x, 0) =
1

(πσ2
0 )

1/4
exp

[
ik(x + x0)−

(x + x0)2

4σ2
0

]
. (5.71)

In the previous equation we have made explicit the sign of x0, i.e.,
x0 → −x0. The evolution of the wavepacket is given by the sum of
two terms:

ψ (x, t) = ψ0 (x, t) + ψI (x, t) . (5.72)

The first term is the free evolution of the initial packet that reads

ψ0 (x, t) =
(

σ2
0

2πα(t)

)1/4

exp
{
− (x + x0)

2

4α(t)
+

iσ2
0

α(t)
[
k0(x+ x0)−ω0t

]}
,

(5.73)
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where we have defined the following parameters

α(t) = σ2
0 +

ih̄t
2m

, ω0 =
h̄k2

0
2m

. (5.74)

The remaining term is, then, the back- and forward-scattered wave due
to the potential. The computation of this one is not straightforward
and was already tackled in Ref. [83], so we will omit the details and
present the solution

ψI (x, t) = A(x, t)
{ ∫ ∞

−∞

e−u2
du

u + z(x, t)
− 2πiθ[− Im z(x, t)]e−z(x,t)2

}
,

(5.75)

where θ(x) is the Heaviside function and we have used the following
auxiliary functions

A(x, t) =− iβ0

√
α(t)

π
ψ0(|x|, t) , (5.76a)

z(x, t) =(α(t))1/2 (κ(x, t) + iβ0) , (5.76b)

κ(x, t) =
k0σ2

0
α(t)

+ i
|x|+ x0

2α(t)
. (5.76c)

The probability of detection is proportional to the probability distri-
bution |ψ(x, t)|2. We observe in the time evolution (see Fig. 5.3) how
the initial wave packet impinges the Delta potential and scatters some
fraction to the right (backwards) and some other to the left (forwards).
For intermediate times, we find a characteristic fringe pattern due
to the interference between the incoming and reflected (scattered)
waves. The region of visibility of those fringes (their periodicity de-
pends on the mean momenta k0) changes with the width of the packet
σ0: the narrower the packet, the faster the spreading. The potential
strength V0 determines the reflected and transmitted fractions. In
Fig. 5.3, we show the evolution of the wavefunction for narrow and
wide initial widths σ0. The interference pattern is more visible when
the wave packet is spread. In some way, we can understand these two
contributions (incoming and scattered waves) as the past and future
of the particle, that is, before and after the scattering. A beautiful
example of this (self-)interference in a more complex situation was
actually measured by Suárez-Forero et al. [84], where the evolution of
a single-polariton wave that travels (in 2D) towards a cylindrical de-
fect displays an interference pattern composed of the incoming plane
wave and the scattered radial s-wave. The resulting image resembles
the hydrodynamic flow of a fluid surrounding an obstacle.
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However, as we have discussed and characterised all throughout
the text, the observations may be critically affected by the temporal
and spatial resolutions of the detectors. The first issue is ubiquitous
along this Thesis in the form of spectral response and we already
know how to approach this problem. Up to now, only time resolu-
tion limitations have been taken into account but we could expect
that spatial resolution limitations can be modelled in a similar way.
The most general spatially- and spectrally-resolved operator or, in
our case, wave-function has to be a convolution of the bare system
operator (wavefunction) with the detection kernel K(y, τ; x, t). Our
first simplification is to assume that K is homogeneous both in space
and time, so that it does only depend on the differences x − y and
t − τ. The filtered version of the wavefunction is

ψK(x, t) =
∫ ∞

−∞

∫ ∞

−∞
K(x − y, t − τ)ψ(y, τ)dτdy , (5.77)

where we fix that ψ(x, t < 0) = 0, that is, the wavefunction is
created at t = 0. If the time resolution is limited but the spatial
one is not, we can settle on, for instance, the Lorentzian kernel
KL(y, τ) = δ(y) Γ

2 θ(τ)e−(Γ/2+ω1)τ. The previous double integral turns
into

ψL(x, t) =
∫ t

0

Γ
2

e−(Γ/2+ω1)(t−τ) ψ(x, τ)dτ . (5.78)

Then, we can compute the convolved wavefunction forthwith or make
use of the equivalent sensor equation, that we obtain by deriving
ψL(x, t) with respect to time,

∂tψL(x, t) = −
(
Γ/2 + iω1

)
ψL(x, t) +

Γ
2

ψ(x, t) , (5.79)

with the initial condition ψL(x, 0) = 0 which assures that the solution
is exactly the integral (5.78). In order to optimise the interference
effect in the detector, we chose ω1 = ω0, the energy corresponding to
the incident mean momentum k0 or, if we want to retain the shape
of the wave packet, then we shall fix ω1 = 0. Even if the spatial
resolution is assumed to be perfect, selecting some frequencies over
others undoubtedly changes the contribution from different k wave
vectors, given that ω(k) = k2/(2m) or, inversely, k = ±

√
2mω. For

wide filters (Γ ≫ 1), as expected, the filtered wavefunction resembles
the unfiltered case. As the filter width shrinks, the wavefunction starts
to blur at short times, before the scattering takes place, and fringes
appear right after. The visibility, compared to the unfiltered case, is
much greater and the orientation of the pattern is not slanted but



156 spatial correlations in light-matter systems

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

-5 -4 -3 -2 -1 0 1 2-5 -4 -3 -2 -1 0 1 2-5 -4 -3 -2 -1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(a) (b) (c)

(d) (e) (f)

Figure 5.4: Time-filtered evolution of the wave packets in the case ω1 = ω0.
In the first row the parameters corresponds to the wide case of Fig. 5.3
(with σ0 = 0.5) and the bottom row to the narrow packet of the same figure
(with σ0 = 0.2). The filter’s width is chosen to maximize the visibility of the
interference fringes. In both cases, the filtering induces the appearance of a
standing wave before the defect. The normalisation, namely AΓ, changes for
different widths Γ and we have chosen the most suitable to compare all the
cases. Fixed parameters: β0 = 10, k0 = 10 and x0 = 4.

vertical. In Fig. 5.4, for the intermediate case (second column), not
only does the wave packet seem to be wider but interferences stay,
more or less, in the same spot and have a better definition for the
wide packet. We can also differentiate a dim echo of the incident and
transmitted

This shows how detection
settles the wave-particle
duality of a propagating

single polariton: long
integration times manifest a

compelling interference
phenomenon. While it is

always resolved even at small
integration times—as it
would be from the naked
Schrödinger equation in

absence of space
resolution—fringes only

occur in a small are of
spacetime and the dynamics

is overall that of a
propagating wavepacket.

waves packet in the lower plot that appears as a series of
beatings resembling the unfiltered propagation of the packet at longer
times. In the narrowest case (right column), the region between −x0
and 0 contains an undefined cloud that turns into a standing wave
after the time when the center of the packet reaches its minimum
distance with the Delta potential. The extent of the echoes is larger
and they stand as secondary oblique pattern in the narrow packet
case. The overall effect is the loss of time order since we cannot
distinguish past (incident wave) and future (scattered wave). If we
fix ω1 = 0, see Fig. 5.5, we do not find the vertical standing wave
pattern but some of the original features are enhanced. For instance,
the angled lines fringes in Fig. 5.3(a) have a greater relative intensity.
The transmitted packet spreads in time but does not display beatings
(that we called echoes). If the time scale of the filter (τ ∝ 1/Γ) is much
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Figure 5.5: Time-filtered evolution of the wave packets in the case ω1 = 0. In
the first row the parameters corresponds to the wide filter case of Fig. 5.3 and
the bottom row to the narrow packet of the same figure. The filter maximum
is ω1 = 0, which retain low k features such as the envelope of the packet.

longer than the characteristic time of the packet (corresponding to
the right column), there is a static contribution that comes from the
initial state. When the outcoming wave reaches the initial position
again, a second interference process occurs. In the upper row, there
is a noticeable dark spot. The origin seems to be an interference
too. Through the control of the filtering process, we can make the
system interfere with itself and hence we modify its effective dynamics
and, in principle, we can engineer new patterns without convoluted
non-linear processes and, ultimately, change the spatial and time
correlations of the observed particle. The main drawback of this
procedure is that it is only valid for non-stationary signals. Moreover,
we are implicitly assuming that the system is not undergoing any
incoherent process and that self-interaction and subsequent many-
body correlations are completely negligible. We can also make a CW
version, in which case we need to add dissipation and a driving source
to obtain the stationary solution.

5.4.1 spatial dissipative model

The previous theory applies when we know the exact initial condi-
tions for the incoming packet. We make some modifications in the
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Figure 5.6: Parabolic dispersion of the polariton. The frequency of the laser
has to match ωL = ϵ(k0) so that the system is driven in branch. Notice that
the laser excites two different points in-branch (marked by the red points):
±k0.

Schrödinger equation to include dissipation and external excitation.
The lossy version of the equation reads [85]

i∂tψ (x, t) =
[

ω0 −
h̄

2m
∂2

xx + Voδ(x)− i
γ

2

]
ψ (x, t)+ i E (x, t) , (5.80)

where ω0 is the energy of the polariton at k = 0, γ is the polariton
decay rate and E(x, t) represents the driving term (e.g., the laser
beam). Assuming that the source is in CW regime and monochromatic,
we can write it as E(x, t) = E(x)e−iωLt (ωL is the frequency of the
laser). For the sake of simplicity, we remove the explicit temporal
dependence of the driving term by transforming the wavefunction
ψ(x, t) → ψ(x, t) e−iωLt (rotating frame transformation). Plugging this
into Eq. (5.80) leads to

i∂tψ (x, t) =
[

∆ − h̄
2m

∂2
xx + Voδ(x)− i

γ

2

]
ψ (x, t) + i E (x) , (5.81)

with, here, ∆ = ω0 − ωL the detuning between the zero-k polariton
energy and the laser.

We are interested in the steady-state solution of the system. This
regime is reached when t → ∞ or, in other words, ∂tψ(x, t) = 0.
To make a distinction between the time-dependent and steady-state
solutions, we name the latter ϕ(x). After that change, the equation to
solve is[

− h̄
2m

d2

dx2 + Voδ(x) + ∆ − i
γ

2

]
ϕ (x) = −i E (x) . (5.82)
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From this equation, we can calculate the Fourier transform, which
after substituting is just

ϕ̌(k) = − V0ϕ(0)
h̄k2

2m + ∆ − i γ
2

− iĚ(k)
h̄k2

2m + ∆ − i γ
2

= −V0ϕ(0)ϕ̌0(k) + ϕ̌1(k) .

(5.83)

Equation (5.83) is implicit since it does depend on the value of the
solution at x = 0. Nevertheless, after inverting the Fourier transform,
we find that it is possible to write it down explicitly. The first term
ϕ̌0 represents the scattered contribution due to the potential while
the second one ϕ̌1 is the steady solution for the particular beam
E(x) exciting the system in absence of potential. The inversion of the
scattering term gives us

ϕ0(x) =

√
2πim/h̄
γ + 2i∆

exp

(
−
√

γ + 2i∆
ih̄/m

|x|
)

. (5.84)

The remaining one can be expressed, in accordance with the Convolu-
tion Theorem, as

ϕ1(x) =
∫ ∞

−∞
E(x − y)ϕ0(y)dy. (5.85)

Thus, the solution in real space is:

ϕ(x) = −V0ϕ(0)ϕ0(x) + ϕ1(x) . (5.86)

Fixing x = 0 in the previous equation let us solve ϕ(0), giving as a
result:

β0 ≡ −V0ϕ(0) = − V0ϕ1(0)
1 + V0ϕ0(0)

, (5.87)

which is completely determined by the two already known contribu-
tions to the whole solution. So both representations of the solution
(space and momentum) are complete now:

ϕ(x) =β0ϕ0(x) + ϕ1(x) , (5.88a)
ϕ̌(k) =β0ϕ̌0(k) + ϕ̌1(k) . (5.88b)

Of course, the solution is not always analytical, depending on the
shape of the beam (given by the function E(x)). In the case of a
Gaussian beam, centred at x = −x0 < 0, with width σ0, carrying
mean momentum k0 and intensity |E0|2:

E(x) = −i
E0(

πσ2
0
)1/4 exp

[
ik0(x + x0)−

(x + x0)
2

2σ2
0

]
, (5.89)
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there is a solution, but it is quite bulky so we do not show it here.
To excite in-branch, we need that the laser frequency and the energy
of the polariton at k = k0 match (as shown in Fig. 5.6). Then, the

relation must be ∆ = ω0 − ωL = − h̄k2
0

2m . Since the steady-state is not
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Figure 5.7: Example showing the solution given by Eq. (5.88a) for the case
of a Gaussian beam. The left figure shows the space representation of the
solution for two different values of σ0 (the rest of the parameters are fixed).
In the right hand side figure, the absolute value of the Fourier transform of
the two cases shown above are represented (solid lines) together with their
counterparts without any interaction (dashed lines, red for the first case and
yellow for the second one). Parameters: h̄ = 1, m = 0.48, k0 = 0.15, V0 =

10, γ = 0.01, E0 = 1 and x0 = 50.

changing in time, we cannot study the time resolution. Our detector
only collects light from a single point x, that would correspond to ϕ(x)
and therefore the probability of collecting photons from that point is
proportional to the squared modulus |ϕ(x)|2. Figure 5.7 shows, as the
time-dependent case did, an interference pattern. However, this time it
is not transient but forms a standing pattern when the system reaches
equilibrium. In k-space, the effect of interference is well understood.
The positive and negative momenta are superimposed and, as a result,
the fringe pattern is displayed. In absence of the delta potential, there
is no scattered wave and we do not find such a characteristic shape.
We find that the visibility and effective range of the fringes improve
as the ratio of the waves travelling to the left (positive k) and the one
moving back (negative k) goes to one. For a perfect standing wave,
we would need infinitely narrow peaks at k = ±k0.

The fringes shown in the previous figure 5.7 are not homoge-
neously distributed and their profile is not constant, so we can-
not apply the classical formula to calculate the contrast [86]: C =
(Imax − Imin)/(Imax + Imin)) (these quantities being the maximum and
minimum values of the intensity). Instead of that, we compute the
upper and lower envelopes, Imax(x) and Imin(x), which enclose the
interference pattern and define the contrast as a function of both,
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which is essentially the same expression as the usual contrast but
changing along space, that is,

C =
Imax(x)− Imin(x)
Imax(x) + Imin(x)

. (5.90)

After this, we can compute the averaged contrast ⟨C⟩:

-150 -100 -50 0 50 100 150

8

6

4

2

0

0.1 1 10 100

0.5

0.6

0.7

0.8

0.9

Figure 5.8: Left: the shadowed region indicates the range of integration (black
line of the right panel) for the mean contrast (beam width: σ0 = 10, 50, blue
and green, respectively). Right: Mean contrast for several beam widths. The
range of integration also changes the resulting contrast but the dependence in
σ0 is similar for all the selected cases. As a general trend, the contrast grows
as the beam widens. This corresponds to a smaller spread in k-space. Only
the case a0 = x0 displays a small for intermediate widths, possibly because
the region of integration covers not only the interference pattern. Parameters:
h̄ = 1, m = 0.48, k0 = 0.15, V0 = 10, γ = 0.01, E0 = 1 and x0 = 100.

⟨C⟩ = 1
a0

∫ 0

−a0

C(x)dx , (5.91)

where the mean value is taken over a finite interval (−a0, 0), so that
we only consider the region where the interference is effectively taking
place. It is not exact but we can study how contrast is affected by the
choice of a0. The optimum range appears to be around the center of
the laser spot but there is no perfect method to determine it given that
the spreading of the interference pattern may not depend only on the
effective width of the beam, i.e., σ0 but also on the potential effective
strength β and the mean transferred momentum k0. In Figure 5.8,
we compute the contrast ⟨C⟩ and found that, even though it varies
with the choice of a0, the three cases (red, blue and black) do agree
qualitatively. The visibility of the fringes improves when the laser
beam covers a range of space between −0.75x0 and the Delta potential
barrier. Unlike the transient situation considered previously, the time-
resolution is not a problem since the system is in a steady-state,
where photon gains and losses completely compensate each other.
The pattern changes with the external parameters of the laser and can



162 spatial correlations in light-matter systems

modulate the fringes to a certain degree. The main limitation is the
effective scattering strength β, which depends on the effective mass m
and the potential constant V0, that eventually saturates the solution
and then the maximum contrast.



6
C O N C L U S I O N S

We have addressed in detail the quantum nature of light, tackling in
the first place its quantum state description and its connection to the
observables such as the n-photon coherence functions g(n), which are
the heart of Quantum Optics and provide information about the sta-
tistical properties of the photons. Then, the dynamical aspects of the
emission were included in the picture, for instance, the luminescence
spectrum, the time-dependent Glauber correlators or the Waiting Time
distribution. The latter seems to have been overlooked for decades
and, in fact, provides very useful information. We identified in such
distributions at short times the multiphoton peak and found a quali-
tative and quantitative agreement between the N-photon SE and the
actual bundler.

We have presented an analysis of the epitome of the single-photon
generation: the 2-level system. Making particular emphasis in the in-
coherently and coherently driven (resonance fluorescence) cases. With
the perturbation method we are able to obtain analytical expressions
of the frequency-resolved correlators for several types of filters. For
Resonance Fluorescence, these results were confirmed experimentally
by two independent groups [73] and [Z2], which reinforces the va-
lidity of the theory. Furthermore, an analysis of the possible sources
of error when measuring, such as the noise and time jitter of the
detectors, were discussed. After providing general expressions for
both the time jitter and noise contamination, the loss of antibunching
can be quantified. In addition to the 2LS, we described an alternative
scheme of on-demand single-photon source based on semiconductor
Quantum Dots that combines two techniques: two-photon cascade
and resonant excitation. Through the use of two laser pulses, sepa-
rated by a fixed time delay, the system yields single photons with
near-unity purity and high indistinguishability (experimentally up to
86%).

With the perturbation tools, we demonstrated how to solve photon
correlations in the low pumping regime both analytically and numer-
ically. For instance, we could address many-body problems such as
the Dicke model without the necessity of using complicated methods
such as the scattering matrix [65] and provide analytical expression
valid for any number N of emitters. The Dicke model exhibits in-
teresting properties, depending on the system parameters such as
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the frequency of the laser or the cavity-emitter coupling strength,
the photon statistics modulate from bunching to antibunching, so it
could be a good candidate for both single-photon and multiphoton
sources. We could also solve a similar problem, the Jaynes-Cummings
model, this time under incoherent driving. With this approach, we
could reproduce and extend the low-driving linear behaviour of the
light-matter system [70, 71]. Then, we can conclude that the range of
applicability of the perturbation theory is wide. Other cases of interest
can be, for instance, higher order corrections of the correlators, needed
when the strength of the pumping increases and the first order is not
a good approximation any more.

We derived analytical expressions for the photon-counting formula
for CW systems and then for SE. In the process, we have derived a
procedure to compute multi-time correlations of arbitrarily large m
order, successively applying the Quantum Regression Theorem. We
highlighted the factorisation property of the 2LS, that allows to write
the m-photon correlation functions G(m)(t1, . . . , tm) as the product of
2-photon Glauber correlators of successive times. Although all the
orders of the correlation functions are required to obtain the complete
counting distribution, we found out that they are dominated by the
few-photon correlations. In particular, the long term behaviour of the
variance-mean ratio Σ2/µ depends on the time-integrated G(2). We
compared the 2LS and the cavity, which show very different results,
the first is always Sub-Poissonian (Σ2/µ < 1) while the second can
be either Poissonian (Σ2/µ = 1) or Super-Poissonian (Σ2/µ > 1). The
counting distribution of the SE of N photons turns to be a binomial
distribution. This means that each photon is detected independently
of the rest with the same probability, the single-photon detection
probability T . Even if the emission undergoes any type of filtering,
this result is still true. The single-photon detection is less efficient
given that the photon can be eventually rejected. The kind of filter and
its overlapping with the spectral shape of the emission determines, in
average, the fraction of photons that is ultimately detected. Therefore,
when the circumstances require spectral filtering, we will be able to
choose the optimum filter that maximises the photon collection. As
a consequence of filtering, the N-photon bundle may arrive partially
broken. Then, we could derive the probability distribution of the
arrival time of the k-th photon (out of N), excluding or not the broken
bundles, and compute the average size of the bundle (how long it
takes to emit the last photon) or the mean arrival time of each photon.
Theses results obtained from a simple case such the free decay of
a emitter, i.e., SE agree with the bundler, described by the Jaynes-
Cummings model (cavity + 2LS) under CW excitation. Thus, it let us
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better comprehend the underlying mechanism that drives the bundler,
a very promising source of quantum multiphoton states.

Lastly, we studied the effect of statistics on the observables in con-
tinuous variable systems. The spatial correlations change depending
on the particle symmetry (fermion, bosons or classically indistin-
guishable). We focus on the one- and two-particle reduced density
matrices, ρ(1) and ρ(2), that we use to compute the particle density or
the average distance between pairs of particle for different kinds of
states, for instance, Fock states (with defined number of particles) or
the Gaussian coherent and thermal states. The two confined systems
under study reveal that while fermions repel each other, exhibiting
then a greater mean interparticle distance, bosonic particles do the
opposite and have a smaller average distance, both compared to the
classical indistinguishable case, that lays in the middle of these two.
Then, we turn to investigate the scattering of a particle by a delta
potential, the simplest 1D system that includes this kind of interaction.
We discuss the effect of interference between the past and future of
the wavepacket, i.e., the incoming and backscattered contribution of
the wavefunction. Through spectral filtering, using the sensor method
adapted to include space coordinates, we are able to modify the de-
tected spatial distribution of the packet. For instance, a standing wave
pattern appears if the filter width is small enough. Finally, we investi-
gated this pattern formation in steady-state situation including both
excitation and losses. The visibility of the fringes increases when the
spatial spreading of the beam profile is large and the contributions
from the positive and negative momenta have ratio close to one.

Overall, this thesis brought together various themes of study re-
lated to the correlations between multiple quantum systems (states,
particles, etc.), deriving on several occasions results of a surprising
fundamental character, with an emphasis on the possibility to obtain
exact, analytical and closed-form expressions. The cases highlighted
in the text have been chosen chiefly for their illustrative character
and/or special importance, and several related considerations have
been published in the literature instead (see the list of publications
on page vii); in contrast, other results are to be found exclusively in
the current text. Regardless of these specific cases, the concepts and
formalism developed here are of general importance and constitute
the substance of this text (several key ideas and results have been
highlighted in the margins for illustration). This description of such
correlations and of its emitters should become increasingly relevant
with the emergence of multiphoton physics.





A
A P P E N D I C E S

a.1 B R I E F R E M I N D E R O F Q UA N T U M O P T I C S

We associate to a single-mode EM field the boson operators a and
a†, which has identical shape to the harmonic oscillator ones. The
natural basis are the Fock or number states |n⟩ with n ≥ 0, being the
natural numbers. This basis is orthonormal, that is, ⟨n|m⟩ = δn,m. In
the second quantisation context, the interpretation of |n⟩ is different
from that for harmonic oscillator. Rather than one particle in the n-th
state, |n⟩ represents a state with n particles in the same mode, in this
case, n photons in a single mode. They are Fock or number states and
can be generated from the vacuum |0⟩ as |n⟩ = a†n

√
n!

.
For the moment, only states with a well-define number of photons

have been defined. However, the family of quantum states of light are
much larger than that. Number states are belong to the canonical basis
which allows to build any quantum state |ψ⟩ = ∑n cn |n⟩ with the
coefficients cn ∈ C. The normalisation of the state imposes a restraint
∑n |cn|2 = 1 over the set of coefficients. The interpretation that Born
gave to the coefficient cn or more precisely its squared modulus is as
the probability of finding the n-th state Pn = |cn|2. The necessity of
normalising is then naturally explained is the context of probability
theory (the total probability is always one). Any state defined as a
superposition of the elements of any basis is called a pure state.

An alternative and more general way to describe the quantum states
is the density operator ρ. Using this formalism, any pure state has the
form of an dyad operator |ψ⟩ ⟨ψ|. Expanding ρ in the Fock basis, we
get

ρ = ∑
m,n

c∗ncm |m⟩ ⟨n| . (A.1)

More generally, we could have any state

ρ = ∑
m,n

ρn,m |m⟩ ⟨n| (A.2)

where the density matrix elements ρn,m have to satisfy tr(ρ) = ∑n ρn,n =
1 and 0 ≤ |ρn,m| ≤ 1, where tr() denotes the matrix trace. It is
clear that the meaning of the diagonal elements ρn,n is the same as
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Pn = |cn|2. With this description, the set of quantum states that span
the Hilbert space grows considerably and is complete. Excluding the
pure states that fulfil ρn,m = c∗ncm, any other is classified as a mixed
state and the transformation from ket to density matrix cannot be
reverted. Therefore, the mixed states are not linear combinations of
the basis states any more but statistical ensembles of states. An ex-
treme example are the thermal states ρ = (1 − θ)∑n θn |n⟩ ⟨n|, with
0 < θ < 1, which are completely diagonal. A simple test to distinguish
the kind of family of ρ is to compute the purity tr

(
ρ2). This quantity,

for infinite dimensional Hilbert spaces, is bounded between zero and
one and it only reaches one if ρ is a pure state. It is a measure of how
close to a pure state the current state is [87]. For instance, the thermal
states have purity tr

(
ρ2) = (1 − θ)/(1 + θ), that goes from 1 to 0 as

the parameter θ grows.
The observables associated to quantum states is what is actually

measured in an experiment and not the matrix elements themselves.
From these measurements, only if the set of quantities is large enough,
we could infer or reconstruct the state. In Quantum Optics, these
observables are quantities derived from the statistical properties of
light, which are nowadays described in terms of the Glauber correlators
(also known as the nth-order quantum coherence functions):

g(n) ≡ ⟨a†nan⟩/⟨a†a⟩n . (A.3)

The Glauber correlators are normalised functions obtained from the
ratio of the observables:

G(n) ≡ ⟨a†nan⟩ . (A.4)

The first-order Glauber correlator g(1) is always equal to unity. Instead,
we will use the mean population (average number of quanta)

n0 ≡ G(1) = ⟨a†a⟩ . (A.5)

Then, this set of observables provides an essentially comprehensive
description of the quantum states of an harmonic oscillator, through
its n-particle fluctuation properties.

For instance, G(1)(τ) ≡ ⟨a†(0)a(τ)⟩ becomes an important corre-
lator given that its Fourier transform is related to the luminescence
spectrum (frequency distribution of the photons emitted). In the con-
text of photon-number distributions, g(n) provide information about
the fluctuations concerning n particles. Among them, the most widely
used is g(2). Written as (⟨N2⟩ − ⟨N⟩)/⟨N⟩2 (where N = a†a is the
photon-number operator), we straightforwardly see that it is related
to the variance of the photon-number distribution. For Poisson dis-
tributions, Var(n0) = n0 and, as a result, g(2) = 1. The photons are
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emitted following a Poisson process, this is, each of them is emit-
ted independently. As it was established by Glauber, the modern
definition of coherence is described by means of g(n). An idealised
monochromatic laser would have a quantum state corresponding to
the coherent state [88] theorised by Sudarshan [89] and Glauber [1].
For values g(2) < 1, the fluctuations are Sub-Poissonian and they are
characteristic of genuine non-classical quantum states of light, such
as the Fock states [90]. They do not have classical analogue due to the
Cauchy-Schwarz inequality that forbids any classical field to have g(2)

less than unity. By contrast, chaotic light such as the black-body radi-
ation has greater variance than the Poisson distribution, with g(2) = 2.
The underlying quantum state is the thermal density matrix [1].

a.2 E X A C T E X P R E S S I O N S F O R T H E M A R G I N A L D I S -
T R I B U T I O N S O F 3 - PA RT I C L E H I L B E RT S PA C E

We list some of the exact and closed-form (but bulky) expressions for
quantities discussed or plotted in the main text. They are obtained
from the methods explained therein.

These are the auxiliary functions introduced to define the bound-
aries for the population in the Hilbert space H3 ( f0 is used in f1):

f0(g(2), g(3)) =
[
6(g(2))3(g(3))2 − 3(g(2))2(g(3))2−

18g(2)(g(3))3 + 9(g(3))4 + 8(g(3))3]1/2 , (A.6)

f1(g(2), g(3)) = −
3
√
−(g(2))3 + f0(g(2), g(3)) + 3g(2)g(3) − 3(g(3))2

g(3)
+

18g(3) − 9(g(2))2

9g(3) 3
√
−(g(2))3 + f0(g(2), g(3)) + 3g(2)g(3) − 3(g(3))2

+
g(2)

g(3)
, (A.7)

f2(g(3)) = Re


3

√
−8748(g(3))2 − 4860g(3) + 8748

(
g(3) − 2

9
)3/2

√
g(3) + 54

18 3
√

2

− −324g(3) − 9

9 × 22/3 3

√
−8748(g(3))2 − 4860g(3) + 8748

(
g(3) − 2

9
)3/2

√
g(3) + 54

+

1
6

. (A.8)
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These are reduced probability distribution in H3:

Pg(n0, g(2)) =

3n2
0 − 3n3

0 +
3
2 g(2)n4

0 if g(2) < 3
n0

− 3
n2

0
g(2) ≤ 1

n0
,

3n2
0 − 2n3

0 +
g(2)n4

0
2 if g(2) < 3

n0
− 3

n2
0

and g(2) > 1
n0

,

g(2)n4
0

2 if g(2) ≥ 3
n0

− 3
n2

0
and g(2) < 1

n0
,

n3
0 −

g(2)n4
0

2 if g(2) ≥ 3
n0

− 3
n2

0
and g(2) ≥ 1

n0
,

(A.9)

Pg(n0, g(3)) =
n5

0
2
×

2
n2

0
− 1

n0
+ n0g(3)

6 if g(3) < 6−6n0
n3

0−3n0
,

− g(3)
n0

+ 1
n0

+ n0g(3)
2 if g(3) ≥ 6−6n0

n3
0−3n0

and n0 ≥
√

3 ,

2
n2

0
− 1

n0
+ n0g(3)

6 if g(3) ≥ 6−6n0
n3

0−3n0
and n0 <

√
3 .

(A.10)

Pg(g(2)) = (g(2))−4

1
60

(
2g(2)

[
(−12A1 + 16A2 + 75) g(2)+

63A1 − 56A2 − 190
]
−

81A1 + 48A2 + 195
)

if 0 ≤ g(2) ≤ 1
2 ,

1
60

(
2g(2)

[
− 3 (4A1 − 16A3 + 75) g(2)+

63A1 − 224A3 + 370
]
−

81A1 + 256A3 − 271
)

if 1
2 < g(2) ≤ 2

3 ,

1
10
[
2A1(21 − 4g(2))g(2) − 27A1 + 5

]
if 2

3 < g(2) ≤ 3
4 ,

1
2 if g(2) > 3

4 .

(A.11)

where A1 =
√

9 − 12g(2), A2 =
√

1 − 2g(2) and A3 =
√

4 − 6g(2).

a.3 U P P E R B O U N D A R I E S F O R T H E N - PA RT I C L E H I L B E RT
S PA C E

Proposition A.3.1. Given some HN, for every pair G(k−1) and G(k) with
k ≤ N, the inequality (N − k + 1)!G(k−1) ≥ (N − k)!G(k) is satisfied.
Subsequently, it holds that 0!G(N) ≤ 1!G(N−1) ≤ · · · ≤ (N − 3)!G(3) ≤
(N − 2)!G(2).
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Since these observables can be expressed as:

G(k−1) =
N

∑
n=k−1

n!
(n − k + 1)!

Pn , (A.12a)

G(k) =
N

∑
n=k

n!
(n − k)!

Pn , (A.12b)

it follows that:

G(k−1) − (N − k)!
(N − k + 1)!

G(k) = (k − 1)!Pk−1 +

N

∑
n=k

(
1

(n − k + 1)!
− (N − k)!

(N − k + 1)!(n − k)!)

)
n!Pn .

(A.13)

The term between parentheses in the summation is always greater
than 0 and is equal to zero only if n = N. Therefore, the right side of
the last equation is greater than 0 as well:

G(k−1) − (N − k)!
(N − k + 1)!

G(k) ≥ 0 , (A.14)

i.e., (N − k + 1)!G(k−1) ≥ (N − k)!G(k).

Proposition A.3.2. In every Hilbert space HN , g(2) admits an upper bound-
ary, that is given by N−1

n0
.

From the definition for n0 = ∑N
n=0 nPn and G(2) = ∑N

n=0 n(n − 1)Pn
in HN, we find, multiplying n0 by N − 1:

N

∑
n=0

n(N − 1)Pn = (N − 1)P1 + · · ·+ N(N − 1)PN . (A.15)

Subtracting G(2) from expression (A.15) leads to ∑N
n=0 n(N − n)Pn.

This is always greater than 0 and only equal if every term of the
summation is null since all of them are positive (remembering that
1 ≥ Pn ≥ 0). Therefore:

(N − 1)n0 ≥ G(2) , (A.16)

or, since G(2) = n2
0g(2):

g(2) ≤ N − 1
n0

. (A.17)

Finally, g(2) can reach its upper boundary only if every Pn vanishes
excepting P0 and PN, i.e., when the corresponding state is a “Coin
state”, cf. Eq. ((1.20)). Assuming both propositions, we can infer that:

G(k) ≤ (N − 2)!
(N − k)!

G(2) . (A.18)
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Furthermore, as G(k) can be written as nk
0g(k) and from Eq. ((A.17)),

we obtain:

g(k) ≤ (N − 2)!
(N − k)!

g(2)

nk−2
0

≤ (N − 1)!
(N − k)!

1
nk−1

0

. (A.19)

a.4 E Q U I VA L E N C E B E T W E E N C O R R E L AT O R E Q UA -
T I O N S A N D I N T E G R A L S

a.4.1 correlator equations

We prove now the equivalence between the equations of motions
for the filtered correlators and the direct expressions of the filtered
field. The n sensors dynamics, with associated operators ς j, centre
frequencies ωi and widths Γ, relays on the Hamiltonian:

H = Ha +
n

∑
j=1

ωj ς†
j ς j + ϵ

(
ς†

j a + a†ς j

)
= H0 + ϵ

n

∑
j=1

(
ς†

j a + a†ς j

)
(A.20)

where Ha corresponds to the unfiltered dynamics, a is any annihilation
operator associated to the unperturbed system and the coupling
constant ϵ must be infinitely small (ϵ → 0). The dissipative dynamics
are governed by the master equation:

∂tρ = −i [H, ρ] + ∑
d

γd
2
Ldρ +

Γ
2

n

∑
j=1

Lς j ρ , (A.21)

where d are operators which act on the unperturbed Hilbert space
and Ldρ = 2dρd† − d†dρ − ρd†d is the Lindbladian operator.

From the master equation, we can obtain equations of motion for
the correlators ⟨⃗c⟩, as described in the main text: ∂t ⟨⃗c (t)⟩ = M⟨⃗c (t)⟩.
In particular, the unperturbed set ⟨⃗c0⟩ follows ∂t ⟨⃗c0(t)⟩ = M0,0⟨⃗c0(t)⟩
(here c⃗0 includes the unity as the first element). Continuing the proce-
dure, we get the subsequent set ⟨⃗c1⟩ which consists of the collections
⟨ς†

j c⃗0⟩ and ⟨⃗c0ς j⟩. From the regression matrix elements shown in A.7,
we see that any element of the set ⟨⃗c1⟩, also represented by {m, n, 1, 0}
(and {m, n, 0, 1}), is connected to {m + 1, n, 0, 0} (and {m, n + 1, 0, 0}),
to itself and other elements {m′, n′, 1, 0}. Knowing that, it is easier to
visualize that M1,0 links ⟨⃗c0ς j⟩ to ⟨⃗c0a⟩ (and ⟨ς†

j c⃗0⟩ to ⟨a†⃗c0⟩) while
M1,1 returns M0,0 plus the sensor free contribution −(Γ/2 ± i ωj) I. Of
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course, both ⟨⃗c0a⟩ and ⟨a†⃗c0⟩ are contained in ⟨⃗c0⟩ by definition. We
explicitly show the equations right below

∂t ⟨⃗c0ς j⟩ =
[
M0,0 −

(
Γ/2 + i ωj

)
I
]
⟨⃗c0ς j⟩ − iϵ⟨⃗c0a⟩ , (A.22a)

∂t⟨ς†
j c⃗0⟩ =

[
M0,0 −

(
Γ/2 − i ωj

)
I
]
⟨ς†

j c⃗0⟩+ iϵ⟨a†⃗c0⟩ . (A.22b)

For brevity, we did and will omit the time dependency of all variables.
These equations can be rewritten using matrix notation as shown in
the main text.

The next set of equations are:

∂t ⟨⃗c0ς jςk⟩ =
[
M0,0 −

(
Γ + i(ωk + ωj)

)
I
]
⟨⃗c0ς jςk⟩−

iϵ
(
⟨⃗c0aς j⟩+ ⟨⃗c0aςk⟩

)
, (A.23a)

∂t⟨ς†
j c⃗0ςk⟩ =

[
M0,0 −

(
Γ + i(ωk − ωj)

)
I
]
⟨ς†

j c⃗0ςk⟩−

iϵ
(
⟨ς†

j c⃗0a⟩ − ⟨a†⃗c0ςk⟩
)

, (A.23b)

∂t⟨ς†
j ς†

k⃗c0⟩ =
[
M0,0 −

(
Γ − i(ωk + ωj)

)
I
]
⟨ς†

j ς†
k⃗c0⟩+

iϵ
(
⟨ς†

j a†⃗c0⟩+ ⟨ς†
ka†⃗c0⟩

)
, (A.23c)

Or, using the matrix notation introduced in the main text,

∂t


⟨ς†

j ς†
k⃗c0⟩

⟨ς†
j c⃗0ςk⟩

⟨⃗c0ς jςk⟩

 = M2,2


⟨ς†

j ς†
k⃗c0⟩

⟨ς†
j c⃗0ςk⟩

⟨⃗c0ς jςk⟩

+ M(j)
2,1

(
⟨ς†

j c⃗0⟩
⟨⃗c0ς j⟩

)
+ M(k)

2,1

(
⟨ς†

k⃗c0⟩
⟨⃗c0ςk⟩

)
,

(A.24)

where

M2,2 =


M0,0 − (z∗j + z∗k )I 0 0

0 M0,0 − (z∗j + zk)I 0

0 0 M0,0 − (zj + zk)I

 ,

(A.25)

and

M(j)
2,1 =

 iϵT+ 0
−iϵT− 0

0 −iϵT−

 and M(k)
2,1 =

iϵT+ 0
0 iϵT+

0 −iϵT−

 . (A.26)
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The steady-state solution is found using Eq. (3.5), leading to

⟨ς†
j ς†

k⃗c0⟩ss =
[
M0,0 − (z∗j + z∗k )I

]−1(− iϵ T+⟨ς†
j c⃗0⟩ss + (j ↔ k)

)
,

(A.27)

⟨ς†
j c⃗0ςk⟩ss =

[
M0,0 − (z∗j + zk)I

]−1(iϵ T−⟨ς†
j c⃗0⟩ss − iϵ T+ ⟨⃗c0ςk⟩ss

)
,

(A.28)

⟨⃗c0ς jςk⟩ss =
[
M0,0 − (zj + zk)I

]−1(iϵ T− ⟨⃗c0ς j⟩ss + (j ↔ k)
)

,
(A.29)

where (j ↔ k) indicates that the previous expression is taken with
indices j and k exchanged. Note that choosing k = j and keeping only
the first element of the vector equation (A.23b) leads to the equation
for nj ≡ ⟨ς†

j ς j⟩, this is, the j-th sensor population (proportional to the

1-photon spectrum s(1)Γ
(
ωj
)
).

⟨ς†
j ς j⟩ =

{[
M0,0 − (z∗j + zj)I

]−1(iϵ T−⟨ς†
j c⃗0⟩ss − iϵ T+ ⟨⃗c0ς j⟩ss

)}
1

(A.30)

=
[(

M0,0 − ΓI
)−1 Re

{
2iϵ T−⟨ς†

j c⃗0⟩ss

}]
1

, (A.31)

here the terms in round brackets are conjugate each other.
Then, moving up to the third order,

∂t⟨ς†
j ς†

k⃗c0ς j⟩ =
[

M0,0 −
(

3
2

Γ − iωk

)
I
]
⟨ς†

j ς†
k⃗c0ς j⟩+

iϵ
(
⟨ς†

j a†⃗c0ς j⟩+ ⟨ς†
ka†⃗c0ς j⟩ − ⟨ς†

j ς†
k⃗c0a⟩

)
, (A.32a)

∂t⟨ς†
j c⃗0ςkς j⟩ =

[
M0,0 −

(
3
2

Γ + iωk

)
I
]
⟨ς†

j c⃗0ςkς j⟩+

iϵ
(
⟨a†⃗c0ςkς j⟩ − ⟨ς†

j c⃗0aς j⟩ − ⟨ς†
j c⃗0aςk⟩

)
, (A.32b)

These ones, written in matrix form, are

∂t

⟨ς†
j ς†

k⃗c0ς j⟩
⟨ς†

j c⃗0ς jςk⟩

 = M3,3

⟨ς†
j ς†

k⃗c0ς j⟩
⟨ς†

j c⃗0ς jςk⟩

+ M(j)
3,2

 0
⟨ς†

j c⃗0ς j⟩
0

+

M(k)
3,2


⟨ς†

kς†
j c⃗0⟩

⟨ς†
k⃗c0ς j⟩

⟨⃗c0ςkς j⟩

 , (A.33)

where

M3,3 =

M0,0 − (zj + z∗j + z∗k )I 0

0 M0,0 − (zj + zk + z∗j )I

 (A.34)
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and

M(j)
3,2 =

(
0 iϵT+ 0
0 −iϵT− 0

)
and M(k)

3,2 =

(
−iϵT− iϵT+ 0

0 iϵT+ −iϵT−

)
.

(A.35)

which have the solution

⟨ς†
j ς†

k⃗c0ς j⟩ss =
[

M0,0 −
(3Γ

2
− iωk

)]−1(
iϵT−⟨ς†

j ς†
k⃗c0⟩ss−

iϵT+⟨ς†
j c⃗0ς j⟩ss − iϵT+⟨ς†

k⃗c0ς j⟩ss
)

, (A.36)

⟨ς†
j c⃗0ς jςk⟩ss =

[
M0,0 −

(3Γ
2

+ iωk

)]−1(
iϵT−⟨ς†

j c⃗0ς j⟩ss+

iϵT−⟨ς†
j c⃗0ςk⟩ss − iϵT+ ⟨⃗c0ς jςk⟩ss

)
, (A.37)

And, finally, we reach the fourth order set of equations. However, we
only display the first component (corresponding to (⃗c0)1 = 1) which
yields

∂t⟨ς†
j ς†

kςkς j⟩ =− 2Γ ⟨ς†
j ς†

kςkς j⟩+ iϵ
(
⟨ς†

j a†ςkς j⟩+ ⟨ς†
ka†ςkς j⟩−

⟨ς†
j ς†

kaς j⟩ − ⟨ς†
j ς†

kaςk⟩
)

=− 2Γ ⟨ς†
j ς†

kςkς j⟩+ 2 Re
{

iϵ ⟨ς†
j a†ςkς j⟩

}
+ (j ↔ k) ,

(A.38)

Its steady-state solution, using the matrix notation, is

⟨ς†
j ς†

kςkς j⟩ss =
1
Γ

[
Re
{

iϵ T+ ⟨ς†
j c⃗0ςkς j⟩ss

}
+ (j ↔ k)

]
1

, (A.39)

The correlator G(2)
Γ (ωi, ωk) ≡ ⟨ς†

j ς†
kςkς j⟩ is proportional to the

2-photon spectrum s(2)Γ
(
ωj, ωk

)
. These equations do completely de-

terminate evolution of G(2)
Γ (ωi, ωk).

In the same way, the 2-time correlations v⃗A,B(t, τ) = ⟨A(t)⃗c(t +
τ)B(t)⟩ can be calculated through the equation ∂τ v⃗A,B(t, τ) =
M v⃗A,B(t, τ) (A(t) and B(t) are properly normal ordered) and identi-
cally solved using the stratified equations shown above just by making
the substitution c⃗(t) → A(t)⃗c(t + τ)B(t) . For instance, in order to
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compute G(2)
Γ
(
ωj, ωk; t, t + τ

)
≡ ⟨T [ς†

j (t)(ς
†
kςk)(t + τ)ς j(t)]⟩ (where

T denotes time ordering), we need the sequence of equations

∂τ⟨A(t)(⃗c0)(t + τ)B(t)⟩ = M0,0⟨A(t)(⃗c0)(t + τ)B(t)⟩ , (A.40a)
∂τ⟨A(t)(⃗c0ςk)(t + τ)B(t)⟩ =
[M0,0 − (Γ/2 + i ωk) I] ⟨A(t)(⃗c0ςk)(t + τ)B(t)⟩−
iϵ⟨A(t)(⃗c0a)(t + τ)B(t)⟩ , (A.40b)

∂τ⟨A(t)(ς†
k⃗c0)(t + τ)B(t)⟩ =

[M0,0 − (Γ/2 − i ωk) I] ⟨A(t)(ς†
k⃗c0)(t + τ)B(t)⟩+

iϵ⟨A(t)(a†⃗c0)(t + τ)B(t)⟩ , (A.40c)

∂τ⟨A(t)(ς†
kςk)(t + τ)B(t)⟩ = −Γ ⟨A(t)(ς†

kςk)(t + τ)B(t)⟩ +
iϵ
(
⟨A(t)(a†ςk)(t + τ)B(t)⟩ − ⟨A(t)(ς†

ka)(t + τ)B(t)⟩
)

, (A.40d)

where A and B would be replaced by ς†
j and ς j, respectively. To solve

the system, we assume that the system is in the steady-state, so t → ∞
and the correlators will only depend on τ.

∂τ⟨ς†
j (⃗c0)(τ) ς j⟩ = M0,0⟨ς†

j (⃗c0)(τ) ς j⟩ , (A.41a)

∂τ⟨ς†
j (⃗c0ςk)(τ) ς j⟩ = [M0,0 − zk I] ⟨ς†

j (⃗c0ςk)(τ) ς j⟩−
iϵT−⟨ς†

j (⃗c0)(τ) ς j⟩ , (A.41b)

∂τ⟨ς†
j (ς

†
kςk)(τ) ς j⟩ =− Γ ⟨ς†

j (ς
†
kςk)(τ) ς j⟩ +

Re
[
2iϵT+⟨ς†

j (⃗c0ςk)(τ) ς j⟩
]

1
, (A.41c)

As explained in the text, we do the following change ⟨ς†
j c⃗(τ) ς j⟩ →

∆⟨ς†
j c⃗(τ) ς j⟩ = ⟨ς†

j c⃗(τ) ς j⟩ − ⟨ς†
j ς j⟩ss ⟨⃗c⟩ss to simplify further calcu-

lations. This step is not strictly necessary and can be absorbed in
the eigenvector and their inverse matrices. For instance, where this
change is made the off-diagonal blocks of M0,0 disappear. Then, it
turns into

M0,0 =

(
0 0
0 M′

0,0

)
=

(
1 0
0 E′

)(
0 0
0 D′

)(
1 0
0 E′−1

)
= E D E−1 ,

(A.42)

where the matrix eigenvalue decomposition is shown in the second
term, the diagonal matrix D = diag(λ(0)) = diag(0, d1, ..., dm) has a
total amount of m + 1 eigenvalues. This decomposition is also valid
for M0,0 − aI, the eigenvector remain untouched while the eigenvalues
get rigidly displaced, i.e., Da = D − aI = diag(λ(0) − a). Following
this, the solution of A.41 are:

∆⟨ς†
j (⃗c0)(τ) ς j⟩ =

m+1

∑
p=1

l⃗ (0)p eλ
(0)
p τ , (A.43)
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where the vector elements are l (0)ip = (E)ip ∑q(E−1)pq(∆⟨ς†
j c⃗0 ς j⟩ss)q.

∆⟨ς†
j (⃗c0ςk)(τ) ς j⟩ =

2(m+1)

∑
p=1

l⃗ (1)p eλ
(1)
p τ , (A.44)

where λ(1) includes λ(0) and, subsequently, λ(0) − zk and l (1)ip follows
Eq. (3.31). Developing the last expression

∆(⟨ς†
j (⃗c0ςk)(τ) ς j⟩)i =

m+1

∑
q=1

(
−∑

p
R(1)

ipq

)
eλ

(0)
q τ+

m+1

∑
p=1

(
L(1)

ip + ∑
q

R(1)
ipq

)
e(λ

(0)
p −zk)τ , (A.45)

being L(1)
ip = (E)ip ∑q(E−1)pq(∆⟨ς†

j c⃗0ςk ς j⟩ss)q and, reminding that
Q1 = −iϵE−1T− in this case,

R(1)
ipq = −iϵ (E)ip ∑

q′
(E−1T−)pq′L

(0)
q′q

1

λ
(0)
p − zk − λ

(0)
q

=

− iϵ ∑
q′,k,l

(E)ip(E−1)pk(T−)kq′(E)q′q(E−1)ql

λ
(0)
p − λ

(0)
q − zk

(∆⟨ς†
j c⃗0 ς j⟩ss)l ,

(A.46)

And, applying this to Eq. (A.41c),

∆⟨ς†
j (ς

†
kςk)(τ) ς j⟩ =

[
∆⟨ς†

j ς†
kςkς j⟩ss + 2 Re

{
2(m+1)

∑
q=1

R(2)
q

}]
e−Γτ+

2 Re

{
−

2(m+1)

∑
q=1

R(2)
q eλ

(1)
p τ

}
, (A.47)

where

R(2)
q = −iϵ ∑

i
(T+)1i

l (1)iq

Γ + λ
(1)
q

. (A.48)
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Rearranging (A.47) to show the equivalence with the expression
shown in the Supplemental Material of [55],

∆⟨ς†
j (ς

†
kςk)(τ) ς j⟩ = ∆⟨ς†

j ς†
kςkς j⟩ss e−Γτ+

2 Re

{
−

2(m+1)

∑
q=1

R(2)
q (eλ

(1)
q τ − e−Γτ)

}
= ∆⟨ς†

j ς†
kςkς j⟩ss e−Γτ+

2 Re

iϵ ∑
i
(T+)1i

m+1

∑
q=1

−∑p R(1)
ipq

Γ + λ
(0)
q

(eλ
(0)
q τ − e−Γτ)

+

2 Re

iϵ ∑
k
(T+)1i

m+1

∑
p=1

L(1)
ip + ∑q R(1)

ipq

Γ + λ
(0)
p − zk

[e(λ
(0)
p −zk)τ − e−Γτ]

 ,

(A.49)

Now, isolating the term proportional to L(1)
ip inside the real part and

substituting zk = Γ/2 + iωk

iϵ ∑
i,p,q

(T+)1i e−Γτ(E)ip
e(λ

(0)
p +Γ/2−iωk)τ − 1

λ
(0)
p + Γ/2 − iωk

(E−1)pq(∆⟨ς†
j c⃗0ςk ς j⟩ss)q =(

iϵT+ e−ΓτE
e(D−iωk+Γ/2)τ − 1

D − iωk + Γ/2
E−1∆⟨ς†

j c⃗0ςk ς j⟩ss

)
1

=

(iϵ T+ F (τ)∆⟨ς†
j c⃗0ςk ς j⟩ss)1 , (A.50)

where we have gather all matrix products and identified the factor
form

F (τ) = e−Γτ e[M0,0+(−iωk+Γ/2)I]τ − I
M0,0 + (−iωk + Γ/2)I

, (A.51)

In the same, adding the terms proportional to R(1)
ipq

iϵ ∑
i,p,q

(T+)1i e−ΓτR(1)
ipq

 e(λ
(0)
p +Γ/2−iωk)τ − 1

λ
(0)
p + Γ/2 − iωk

− e(λ
(0)
q +Γ)τ − 1

λ
(0)
q + Γ

 =

ϵ2 ∑
i,p,q,q′,k,l

(T+)1i

[
e−Γτ

(E)ip(E−1)pk(T−)kq′(E)q′q(E−1)ql

λ
(0)
p − λ

(0)
q − iωk − Γ/2(

e(λ
(0)
p −iωk+Γ/2)τ − 1

λ
(0)
p − iωk + Γ/2

− e(λ
(0)
q +Γ)τ − 1

λ
(0)
q + Γ

)]
(∆⟨ς†

j c⃗0 ς j⟩ss)l =(
ϵ2 T+ Z(τ) ∆⟨ς†

j c⃗0 ς j⟩ss

)
1

, (A.52)
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where we have substituted (A.46) and the elements of the matrix Z(τ)
are

Zi,j(τ) = e−Γτ ∑
p,q,k,l

(E)ip(E−1)pk(T−)kl(E)lq(E−1)qj

λ
(0)
p − λ

(0)
q − Γ/2 − iωk

× e(λ
(0)
p −iωk+Γ/2)τ − 1

λ
(0)
p − iωk + Γ/2

− e(λ
(0)
q +Γ)τ − 1

λ
(0)
q + Γ

 , (A.53)

Finally, inserting these results in Eq. (A.49), we obtain

∆⟨ς†
j (ς

†
kςk)(τ) ς j⟩ =∆⟨ς†

j ς†
kςkς j⟩ss e−Γτ+

2 Re
{

iϵ T+ F (τ)∆⟨ς†
j c⃗0ςk ς j⟩ss

}
1
+

2 Re
{

ϵ2 T+ Z(τ) ∆⟨ς†
j c⃗0 ς j⟩ss

}
1

. (A.54)

Aside the change ∆⟨ς†
j c⃗(τ) ς j⟩ = ⟨ς†

j c⃗(τ) ς j⟩ − ⟨ς†
j ς j⟩ss ⟨⃗c⟩ss, this ex-

pression is formally equivalent to Eq. (47) from Supplemental [55].

a.4.2 integrals

On the other hand, the filtered operator can be described as the
following integral:

ς j(ωj, Γ; t) = ξ
Γ
2

∫ ∞

−∞
θ(t − t′)e−zj(t−t′)a(t′)dt′ , (A.55)

where zj ≡ Γ/2 + i ωj, θ(x) is the Heaviside step function and ξ is
a complex constant that would be properly chosen to match both
approaches. Henceforth, we omit the filter frequencies and widths for
brevity.

Following Eq. (A.55), G(2)
Γ
(
ωj, ωk; t, t + τ

)
(for τ > 0) can written

as:

⟨ς†
j (t)(ς

†
kςk)(t + τ)ς j(t)⟩ = |ξ|4

(
Γ
2

)4 ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
d⃗t

θ(t − t1)θ(t + τ − t2)θ(t + τ − t3)θ(t − t4)

× e−z∗j (t−t1)e−z∗k (t+τ−t2)e−zk(t+τ−t3)e−zj(t−t4)×
⟨T [a†(t1)a†(t2)a(t3)a(t4)]⟩ . (A.56)
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Now, we derive last expression with respect to τ using Leibniz integral
rule, which allows to differentiate under the integral sign, and we
also use the fact ∂xθ(x − y) = δ(x − y):

d
dτ

⟨ς†
j (t)(ς

†
kςk)(t + τ)ς j(t)⟩ = |ξ|4

(
Γ
2

)4 ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
d⃗t

∂

∂τ

[
θ(t − t1)θ(t + τ − t2)θ(t + τ − t3)θ(t − t4)

× e−z∗j (t−t1)e−z∗k (t+τ−t2)e−zk(t+τ−t3)e−zj(t−t4)×
⟨T [a†(t1)a†(t2)a(t3)a(t4)]⟩

]
=

|ξ|4
(

Γ
2

)4 ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
d⃗t
[
δ(t + τ − t2)θ(t + τ − t3)+

θ(t + τ − t2)δ(t + τ − t3)− (z∗k + zk)θ(t + τ − t2)θ(t + τ − t3)
]

× θ(t − t1)θ(t − t4)e
−z∗j (t−t1)e−z∗k (t+τ−t2)e−zk(t+τ−t3)e−zj(t−t4)×

⟨T [a†(t1)a†(t2)a(t3)a(t4)]⟩ , (A.57)

which, after some simplification and rearrangement, yields

d
dτ

⟨ς†
j (t)(ς

†
kςk)(t+ τ)ς j(t)⟩ =−(z∗k + zk)⟨ς†

j (t)(ς
†
kςk)(t+ τ)ς j(t)⟩+

ξ∗
Γ
2
⟨ς†

j (t)(a†ςk)(t + τ)ς j(t)⟩+ ξ
Γ
2
⟨ς†

j (t)(ς
†
ka)(t + τ)ς j(t)⟩ ,

(A.58)

Last two terms are easily obtained by straight application of Dirac
delta properties and Eq. (A.55). We define the next quantities:

⟨ς†
j (t)(⃗c0ςk)(t + τ)ς j(t)⟩ = ξ|ξ|2

(
Γ
2

)3 ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
d⃗t

θ(t − t1)θ(t + τ − t2)θ(t − t3)e
−z∗j (t−t1)e−zk(t+τ−t2)e−zj(t−t3)

× ⟨T [a†(t1)⃗c0(t + τ)a(t2)a(t3)]⟩ , (A.59)

and

⟨ς†
j (t)(ς

†
k⃗c0)(t + τ)ς j(t)⟩ = ξ∗|ξ|2

(
Γ
2

)3 ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
d⃗t

θ(t − t1)θ(t + τ − t2)θ(t − t3)e
−z∗j (t−t1)e−z∗k (t+τ−t2)e−zj(t−t3)

× ⟨T [a†(t1)a†(t2)⃗c0(t + τ)a(t3)]⟩ . (A.60)
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Differentiating with respect to τ both (A.59) and (A.60) and remember-
ing that Eq. (A.40a) is valid for higher multi-time cases immediately
leads to:

d
dτ

⟨ς†
j (t)(⃗c0ςk)(t + τ)ς j(t)⟩ =

(M0,0 − zk I) ⟨ς†
j (t)(⃗c0ςk)(t + τ)ς j(t)⟩+

ξ
Γ
2
⟨ς†

j (t)(⃗c0a)(t + τ)ς j(t)⟩ (A.61)

d
dτ

⟨ς†
j (t)(ς

†
k⃗c0)(t + τ)ς j(t)⟩ =

(M0,0 − z∗k I) ⟨ς†
j (t)(ς

†
k⃗c0)(t + τ)ς j(t)⟩+

ξ∗
Γ
2
⟨ς†

j (t)(a†⃗c0)(t + τ)ς j(t)⟩ (A.62)

Ultimately, we find that, by straight differentiation, ⟨ς†
j (t)⃗c0(t+ τ)ς j(t)⟩

fulfils the differential equation.

d
dτ

⟨ς†
j (t)⃗c0(t + τ)ς j(t)⟩ = M0,0⟨ς†

j (t)⃗c0(t + τ)ς j(t)⟩ . (A.63)

Reminding that zk = Γ/2 + i ωk and choosing ξ = −2iϵ/Γ let us
compare (A.58)-(A.63) to Eqs. (A.40) and we determine that both will
lead to the same solution. This enables to claim that both methods
are equivalent. In the same manner, single time dynamics are derived
from the integral expression of the correlators, albeit we omit explicit
calculations for conciseness of the proof.

a.5 G E N E R A L M O L L O W S P L I T T I N G I N R E S O N A N C E
F L U O R E S C E N C E A N D G E N E R A L E X P R E S S I O N S
O F S P E C T R U M A N D g ( 2 ) C O E F F I C I E N T S

The eigenvalue decomposition of the regression matrix M for the
detuned case has the following eigenvalues −zi/2, where zi (i = 1, 2, 3)
are the roots of the cubic polynomial

z3 + 4γσz2 +
[
5γ2

σ + 4(4Ω2
σ +∆2

σ)
]
z+ 2γσ(γ

2
σ + 4∆2

σ + 8Ω2
σ) , (A.64)

Since the coefficients of the polynomial are real, the zeros thereof
have to be either all real or one real and the remaining two complex
conjugate of each other. The quantity that tells the two possibilities
apart is the discriminant

ζ =
γ4

σ∆2
σ

16
+ (∆2

σ + 4Ω2)3 +
γ2

σ

2
(∆4

σ − 10∆2
σΩ2

σ − 2Ω4
σ) . (A.65)
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If ζ > 0, then we are in the second situation. One solution, namely z1,
is real so that ω1 = − Im{z1}/2 = 0 and the corresponding peak is
always at the center. The other two, z2 and z3, are mutual complex
conjugate (z3 = z∗2) and therefore the position of one peak is always
the specular image of the other, this is, ω2 = −ω3 = − Im{z2}/2.
These two, when ∆σ = 0, contribute to the sidepeaks of the Mollow
triplet shape of the resonance fluorescence spectrum. The condition
ζ > 0 simplifies to 64Ω2

σ − γ2
σ > 0 when the detuning is exactly zero.

Similarly, for weak driving (Ωσ ≪ γσ), the inequality is approximated
as γ2

σ∆2
σ − 16Ω4

σ > 0. The splitting of the sidepeaks or satellites is
twice Ω+ = ω2 which, for arbitrary detuning, reads

Ω+ =
{

48Ω2
σ + 12∆2

σ − γ2
σ +

[
36γ4

σ(5∆2
σ − 4Ω2

σ)−

1728
√

3ζγσ(∆2
σ − 2Ω2

σ)+

432γ2
σ(−32∆2

σΩ2
σ + 5∆4

σ + 8Ω4
σ)− 48

√
3ζγ3

σ + γ6
σ+

1728(∆2
σ + 4Ω2

σ)
3]1/3

}/{
4
√

3
[
γ6

σ + 36γ4
σ(5∆2

σ − 4Ω2
σ)−

48
√

3ζγ3
σ + 432γ2

σ(5∆4
σ − 32∆2

σΩ2
σ + 8Ω4

σ)−

1728
√

3ζγσ(∆2
σ − 2Ω2

σ) + 1728(∆2
σ + 4Ω2

σ)
3]1/6

}
(A.66)

This lengthy expression collapses to Ω+ =
√

4Ω2
σ − γ2

σ/16 if the
excitation is resonant (∆σ = 0). Whether Ωσ or ∆σ are much greater
than γσ, the splitting can be approximated as Ω+ ≈

√
∆2

σ + 4Ω2
σ, this

is twice the effective Rabi splitting induced by the laser predicted by
the Hamiltonian dynamics. For the detuned case, the coefficients lp

and lp for g(2)(τ) and the luminescence spectrum, respectively, are

lp =
⟨σ†σ⟩

∏k ̸=p(zp − zk)

[
(zp + γσ − 2i ∆σ)(Z − zp + γσ − 2i ∆σ)+

(γσ + 2i∆σ)Z
8Ω2

σ

]
, (A.67)

and

lp = ⟨σ†σ⟩
(zp + 2γσ)(zp + γσ − 2i∆σ) + 8Ω2

σ

8Ω2
σ(γ

2
σ + 4∆2

σ + 8Ω2
σ)

∏
k ̸=p

[
γ2

σ + 4∆2
σ + 8Ω2

σ + zk(γσ + 2i∆σ)
]

/(zp − zk) , (A.68)

where Z = z1 + z2 + z3 and Z = ∏k(zk + γσ − 2i∆σ).
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a.6 D I C K E M O D E L S E C O N D M A N I F O L D C O U P L E D
E Q UAT I O N S

We give here the second set of equations coupling each correlator
with other same subsets elements and fed by the previous first order
ones:

d
dt
⟨a2⟩ = − 2iΩa⟨a⟩ − (γa + 2i∆a) ⟨a2⟩ − 2igN⟨aΣ⟩ , (A.69a)

d
dt
⟨a†a⟩ = iΩa

(
⟨a⟩ − ⟨a†⟩

)
− γa⟨a†a⟩+ igN

(
⟨Σ†a⟩ − ⟨a†Σ⟩

)
,

(A.69b)
d
dt
⟨a†Σ⟩ = iΩa⟨Σ⟩ −

[
γa + γσ

2
− i (∆a − ∆σ)

]
⟨a†Σ⟩+

ig
(

N⟨Σ†Σ⟩ − ⟨a†a⟩
)

, (A.69c)

d
dt
⟨a†Σ†⟩ = iΩa⟨Σ†⟩ −

[
γa + γσ

2
− i (∆a + ∆σ)

]
⟨a†Σ†⟩+

ig
(
⟨a†2⟩+ (N − 1)⟨Σ†2⟩

)
, (A.69d)

d
dt
⟨Σ†Σ⟩ = − γσ⟨Σ†Σ⟩+ ig

(
⟨a†Σ⟩ − ⟨Σa†⟩

)
, (A.69e)

d
dt
⟨Σ†2⟩ = − (γσ − 2i∆σ) ⟨Σ†2⟩+ 2ig⟨a†Σ†⟩ , (A.69f)

and the rest of the equations are obtained by taking the conjugate of
the previous ones. The equation that correspond to the third order
correlators are

d
dt
⟨a†a2⟩ = iΩa

(
⟨a2⟩ − 2⟨a†a⟩

)
−
(

3γa

2
+ i∆a

)
⟨a†a2⟩+

igN
(
⟨Σ†a2⟩ − 2⟨a†aΣ⟩

)
, (A.70a)

d
dt
⟨a†aΣ⟩ = iΩa

(
⟨aΣ⟩ − ⟨a†Σ⟩

)
−
(

2γa + γσ

2
+ i∆σ

)
⟨a†aΣ⟩+

ig
[

N
(
⟨Σ†Σa⟩ − ⟨a†Σ2⟩

)
− ⟨a†a2⟩

]
, (A.70b)

d
dt
⟨Σ†a2⟩ = − 2iΩa⟨Σ†a⟩ −

(
2γa + γσ

2
+ i (2∆a − ∆σ)

)
⟨Σ†a2⟩−

ig
(

N⟨Σ†Σa⟩+ ⟨a†a2⟩
)

, (A.70c)
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d
dt
⟨Σ†Σa⟩ = − iΩa⟨Σ†Σ⟩ −

(
γa + 2γσ

2
+ i∆a

)
⟨Σ†Σa⟩+

ig
(
−N⟨Σ†Σ2⟩+ ⟨a†aΣ − ⟨Σ†a2⟩⟩

)
, (A.70d)

d
dt
⟨Σ†Σ2⟩ = −

(
3γσ

2
+ i∆σ

)
⟨Σ†a2⟩+ ig

(
⟨a†Σ2⟩ − 2⟨Σ†Σa⟩

)
,

(A.70e)
d
dt
⟨a†Σ2⟩ = iΩa⟨Σ2⟩ −

(
γa + 2γσ

2
− i (∆a − 2∆σ)

)
⟨a†Σ2⟩+

ig
(

N⟨Σ†Σ2⟩ − 2⟨a†aΣ⟩
)

, (A.70f)

and the rest of the equations can be computed in the same way.

a.7 R E G R E S S I O N M AT R I X E L E M E N T S F O R T H E I N -
C O H E R E N T J AY N E S – C U M M I N G S M O D E L

The regression matrix elements M m,n,µ,ν
m′,n′,µ′,ν′

, in the case of a coupled

cavity-2LS, are given by:

Mm,n,µ,ν
m,n,µ,ν

= −Γa

2
(m + n)− Γσ

2
(µ + ν) + i(m − n)∆a + i(µ − ν)∆σ

(A.71a)

M m,n,µ,ν
m,n,1−µ,ν

= iΩσ[µ + 2ν(1 − µ)] , (A.71b)

M m,n,µ,ν
m,n,µ,1−ν

= −iΩσ[ν + 2µ(1 − ν)] , (A.71c)

M m,n,µ,ν
m−1,n,µ,ν

= iΩam , M m,n,µ,ν
m,n−1,µ,ν

= −iΩan , (A.71d)

M m,n,µ,ν
m−1,n−1,µ,ν

= Pa mn , M m,n,µ,ν
m,n,1−µ,1−ν

= Pσ µν , (A.71e)

M m,n,µ,ν
m,n−1,µ,1−ν

= −ig(1 − ν)n , M m,n,µ,ν
m−1,n,1−µ,ν

= ig(1 − µ)m ,

(A.71f)

M m,n,µ,ν
m,n+1,µ,1−ν

= −igν , M m,n,µ,ν
m+1,n,1−µ,ν

= igµ , (A.71g)

M m,n,µ,ν
m,n+1,1−µ,ν

= 2iνg(1 − µ) , M m,n,µ,ν
m+1,n,µ,1−ν

= −2iµg(1 − ν) ,

(A.71h)

and zero everywhere else. We introduce the notation for the effective
linewidth Γa = γa − Pa and Γσ = γσ + Pσ. Here, m, n ≥ 0 are indeces
associated to bosons (cavity mode) and µ, ν = 0, 1 are bound to
2LSs (emitters). In the main text, we discuss first the case of filtered
resonance fluorescence, which corresponds to having one 2LS coupled
to two detectors/cavity modes si (taking g → 0, Ωsi = Pi = 0 here).
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On the other hand, we solve the N-emitters Jaynes–Cummings model
(also known as Dicke model) with a single cavity weakly driven by
a coherent source, which corresponds to setting Ωσi = Pi = 0 and
Ωa → 0 here. Other combinations are considered latter, for instance,
JC model with incoherent pumping.

These matrix elements applied for each pair of emitter or cavity
indeces, i.e., µi, νi or m, n, respectively. Any connection between two
different emitters or cavities is not allowed in these examples, hence
there are not any extra matrix element to be referred.

a.8 I N C O H E R E N T J C C O R R E L AT O R S

Second-order Glauber correlator for Cavity-driven JC

g(2)a =
{

2Γ2
1(4g2 + ΓaΓσ)

[
48g4Γ1Γ3 + ΓσΓ1(Γ2

1 + 4∆2)(Γ2
3 + 4∆2)+

4g2(Γ2
1Γ2

3 + 4∆2[Γ2
a + 10ΓaΓσ] + 5Γ2

σ)
]}/

{[
Γ2

3(4g2 + ΓaΓ1) + 4ΓaΓ1∆2][4g2Γ1 + Γσ(Γ2
1 + 4∆2)

]2},

(A.72)

where we remember that Γk ≡ k Γa + Γσ as defined in the main text.
The spectrum coefficients for Pa = 0 are

n−1
a L(a)

1,2 =
Γ1
[
4R2

r + Ri(4Ri ± Γ1)
]
± 2Rr∆Γ−

8Γ1(R2
r + R2

i )
, (A.73a)

n−1
a K(a)

1,2 = ±
RrΓ2

1 − 2Ri∆Γ−
8Γ1(R2

r + R2
i )

, (A.73b)

n−1
σ L(σ)

1,2 =
{

8g2Γ1
[
Ri(4Ri ± Γ−) + 2Rr(2Rr ± ∆)

]
+

Γa
[
± 16R3

i Γ1 ± RiΓ1(16R2
r + Γ−Γ3 + 4∆2)+

2Rr(4RrΓ2
1 ± ∆[16R2

r + Γ2
+ + 4Γ2

σ] + 16Rr∆2 ± 4∆3)+

8R2
i (Γ

2
1 + 4∆[∆ ± Rr])

]} /
[
16(R2

r + R2
i )(4g2Γ1 + Γa[Γ2

1 + 4∆2])
]

, (A.73c)

n−1
σ K(σ)

1,2 = ±
{

8g2Γ1(RrΓ− − 2Ri∆) + Γa
[
− 16R2

i RrΓ1 + 32R3
r ∆−

2Ri∆(−16R2
r + Γ2

1 + 4Γ2
σ + 4∆2)+

RrΓ1(−16R2
r + Γ−Γ3 + 4∆2)

]} /
[
16(R2

r + R2
i )(4g2Γ1 + Γ2[Γ2

1 + 4∆4])
]

, (A.73d)
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and, for Pσ = 0, are

n−1
a L(a)

1,2 =
{

4g2[Γ1(4R2
r + Ri[4Ri ∓ Γ1])∓ 2Rr∆(Γa + 3Γσ)

]
+

Γσ(Γ2
1 + 4∆2)

[
Ri(4Ri ∓ Γ−) + Rr(2Rr ∓ ∆)

]} /
[
8(R2

r + R2
i )(4g2Γ1 + Γσ[Γ2

1 + 4∆2])
]

, (A.74a)

n−1
a K(a)

1,2 = ∓
{

4g2[RrΓ2
1 − Ri∆(Γa + 3Γσ)

]
+ Γσ(Γ2

1 + 4∆2)

(RrΓ−−2Ri∆)
} / {

8(R2
r + R2

i )(4g2Γ1 + Γσ[Γ2
1 + 4∆2])

}
,

(A.74b)

n−1
σ L(σ)

1,2 =
{

8g2Γ1
[
Ri(4Ri ± Γ−) + Rr(2Rr ± ∆)

]
± Γσ

[
Γ1Ri(Γ2

− − 16R2
r − 16R2

i ) + 2Rr∆(Γ−[Γa + 3Γσ]−

16R2
r − 16R2

i ) + 4Ri∆2(Γa − 3Γσ) + 8Rr∆3]} /[
64g2Γ1(R2

r + R2
i )
]

, (A.74c)

n−1
σ K(σ)

1,2 =±
{

8g2Γ1(RrΓ−−2Ri∆)+Γσ

[
RrΓ1(16R2

r+16Ri+Γ2
−)−

2Ri∆(16R2
r + 16Ri + Γ1[Γa + 3Γσ])+

4Rr∆2(Γa − 3Γσ)− 8R∆3]} / [64g2Γ1(R2
r + R2

i )
]

.

(A.74d)

Coefficients of g(2) for the resonant case ∆ = 0 and Pσ = 0:

l(a)
1,2 =−

{
2048g8[Γ1Γ3Γ−Γσ±

√
2iR(+)(9Γ3

a + 37Γ2
aΓσ+

51ΓaΓ2
σ + 15Γ3

σ)
]
+Γ4

1Γ2
3ΓaΓ2

σ(±i2
√

2R(+)+Γ−)(Γ2
σ − χ)+

4g2Γ2
1Γ2

3Γσ

[
Γ1Γ−(2Γ3

a + Γ2
aΓσ − 4ΓaΓ2

σ + Γ3
σ − Γ2χ)±

2i
√

2R(+)(2Γ4
a + 5Γ3

aΓσ + 9Γ2
aΓ2

σ − ΓaΓ3
σ + Γ4

σ−
χ[2Γ2

a + 5ΓaΓσ + Γ2
σ])
]
+ 64g6[Γ1Γ3Γ−(3Γ3

a + 19Γ2
aΓσ+

29ΓaΓ2
σ+5Γ3

σ−3Γaχ−5Γσχ)±2i
√

2R(+)(45Γ5
a + 227Γ4

aΓσ+

538Γ3
aΓ2

σ + 526Γ2
aΓ3

σ + 137ΓaΓ4
σ − Γ5

σ − χ[9Γ3
a + 37Γ2

aΓσ+

51ΓaΓ2
σ + 15Γ3

σ])
]
+ 16g4Γ1

[
Γ1Γ3Γ−(3Γ4

a + 13Γ3
aΓσ+

13Γ2
aΓ2

σ − 9ΓaΓ3
σ − 4Γ4

σ − Γaχ[3Γa + 7Γσ])±
2i
√

2R(+)(9Γ6
a + 105Γ5

aΓσ + Γ4
a[336Γ2

σ − 9χ]−
2Γ4

σ[Γ
2
σ + χ] + 17Γ3

a[26Γ3
σ − 3Γσχ] + Γ2

a[137Γ4
σ − 89Γ2

σχ]−

3Γa[Γ5
σ + 11Γ3

σχ])
]}

×[
4Γ1Γ2

3Γ−χ(4g2 + Γ1Γa)(4g2 + Γ1Γσ)
2]−1 , (A.75a)
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l(a)
3,4 =

{
2048g8[Γ1Γ3Γ−Γσ ± i

√
2R(−)(9Γ3

a + 37Γ2
aΓσ+

51ΓaΓ2
σ + 15Γ3

σ)
]
+ Γ4

1Γ2
3ΓaΓ2

σ(±i2
√

2R(−) + Γ−)(Γ2
σ − χ)

+ 4g2Γ2
1Γ2

3Γσ

[
Γ1Γ−(2Γ3

a + Γ2
aΓσ − 4ΓaΓ2

σ + Γ3
σ + Γ2χ)±

i2
√

2R(−)(2Γ4
a + 5Γ3

aΓσ + 9Γ2
aΓ2

σ − ΓaΓ3
σ + Γ4

σ+

χ[2Γ2
a + 5ΓaΓσ + Γ2

σ])
]
+ 64g6[Γ1Γ3Γ−(3Γ3

a+

19Γ2
aΓσ + 29ΓaΓ2

σ + 5Γ3
σ + 3Γaχ + 5Γσχ)±

i 2
√

2R(−)(45Γ5
a + 227Γ4

aΓσ + 538Γ3
aΓ2

σ + 526Γ2
aΓ3

σ+

137ΓaΓ4
σ − Γ5

σ + χ[9Γ3
a + 37Γ2

aΓσ + 51ΓaΓ2
σ + 15Γ3

σ])
]
+

16g4Γ1
[
Γ1Γ3Γ−(3Γ4

a + 13Γ3
aΓσ + 13Γ2

aΓ2
σ − 9ΓaΓ3

σ−
4Γ4

σ + Γaχ[3Γa + 7Γσ])± i 2
√

2R(−)(9Γ6
a + 105Γ5

aΓσ+

Γ4
a[336Γ2

σ + 9χ]− 2Γ4
σ[Γ

2
σ − χ] + 17Γ3

a[26Γ3
σ + 3Γσχ]+

Γ2
a[137Γ4

σ + 89Γ2
σχ]− 3Γa[Γ5

σ − 11Γ3
σχ])

]}
×
[
4Γ1Γ2

3Γ−χ(4g2 + Γ1Γa)(4g2 + Γ1Γσ)
2]−1 , (A.75b)

l(σ)1,2 =
[
1024g4R(+)Γ1Γ3Γ−χ(4g2 + Γ1Γa)

]−1×{
4096g8Γ−

[
ΓaΓσ(16R(+)±i 3

√
2Γσ)±

√
2i(Γ3

σ−Γ2
aΓ3)

]
∓

√
2iΓ2

1Γ3ΓaΓ2
σ(8R(+)2 + Γ2

−)(Γ
2
− − χ)2+

256g6[± i 32
√

2ΓaΓσR(+)2(Γ2
− − χ)∓

√
2iΓ1Γ2

−(9Γ3
a + 31Γ2

aΓσ − ΓaΓ2
σ − 7Γ3

σ + 3Γ1χ)+

4R(+)Γ−(3Γ4
a − 2Γ3

aΓσ − 38ΓaΓ3
σ − 11Γ4

σ − Γ1Γ3χ)
]
+

32g4[±16
√

2iΓσR(+)2(Γ2
−−χ)(Γ3

a−Γ2
aΓσ−9ΓaΓ2

σ−3Γ3
σ−Γaχ)+

4Γ3Γ−R(+)(2Γ5
a + Γ4

aΓσ − 10Γ2
aΓ3

σ − 26ΓaΓ4
σ + Γ5

σ−
2Γ2

1Γaχ − Γσχ2)∓ i
√

2Γ1Γ2
−(−6Γ5

a + 11Γ4
aΓσ + 38Γ3

aΓ2
σ−

20Γ2
aΓ3

σ − 24ΓaΓ4
σ + Γ5

σ + 2Γ1χ[3Γ2
a + 9ΓaΓσ − Γ2

σ] + Γσ χ2)
]
+

4g2Γ1Γσ(Γ2
σ−χ)

[
±
√

2iΓ1Γ2
−(6Γ3

a+15Γ2
aΓσ−4ΓaΓ2

σ−Γ3
σ+Γ6χ)+

8R(+)(Γ3ΓaΓ−[Γ2
− + χ]∓ i

√
2R(+)Γσ[−7Γ3

a + 23Γ2
aΓσ+

15ΓaΓ2
σ + Γ3

σ − χΓ5])
]}

, (A.76a)
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l(σ)3,4 =
[
1024g4R(−)Γ1Γ3Γ−χ(4g2 + Γ1Γa)

]−1×{
4096g8Γ−

[
ΓaΓσ(16R(−) ± i 3

√
2Γσ)±

√
2i(Γ3

σ − Γ2
aΓ3)

]
∓

√
2iΓ2

1Γ3ΓaΓ2
σ(8R(−)2 + Γ2

−)(Γ
2
− − χ)2+

256g6[±32
√

2iΓaΓσR(−)2(Γ2
−−χ)∓

√
2iΓ1Γ2

−(9Γ3
a+31Γ2

aΓσ−
ΓaΓ2

σ − 7Γ3
σ + 3Γ1χ) + 4R(−)Γ−(3Γ4

a − 2Γ3
aΓσ − 38ΓaΓ3

σ−
11Γ4

σ − Γ1Γ3χ)
]
+ 32g4[± i 16

√
2ΓσR(−)2(Γ2

− − χ)

(Γ3
a − Γ2

aΓσ − 9ΓaΓ2
σ − 3Γ3

σ − Γaχ) + 4Γ3Γ−R(−)(2Γ5
a+

Γ4
aΓσ − 10Γ2

aΓ3
σ − 26ΓaΓ4

σ + Γ5
σ − 2Γ2

1Γaχ − Γσχ2)∓
i
√

2Γ1Γ2
−(−6Γ5

a + 11Γ4
aΓσ + 38Γ3

aΓ2
σ − 20Γ2

aΓ3
σ−

24ΓaΓ4
σ + Γ5

σ + 2Γ1χ[3Γ2
a + 9ΓaΓσ − Γ2

σ] + Γσ χ2)
]
+

4g2Γ1Γσ(Γ2
σ − χ)

[
± i

√
2Γ1Γ2

−(6Γ3
a + 15Γ2

aΓσ − 4ΓaΓ2
σ−

Γ3
σ + Γ6χ)8R(−)(Γ3ΓaΓ−[Γ2

− + χ]∓ i
√

2R(−)Γσ×
[−7Γ3

a + 23Γ2
aΓσ + 15ΓaΓ2

σ + Γ3
σ − χΓ5])

]}
, (A.76b)

where χ ≡ √
χ+χ−.

For ∆ = 0 and Pa = 0 :

l(a)
1,2 =

{
128g4[Γ1Γ3ΓaΓ− ∓ i

√
2R(+)(11Γ3

a+3Γ2
aΓσ+ΓaΓ2

σ+Γ3
σ)
]
+

4g2[Γ1Γ3Γ−(9Γ3
a + 17Γ2

aΓσ − ΓaΓ2
σ − Γ3

σ − χΓ−)∓
i2
√

2R(+)(31Γ5
a + 53Γ4

aΓσ − 26Γ3
aΓ2

σ − 6Γ2
aΓ3

σ+

11ΓaΓ4
σ + Γ5

σ − χ[11Γ3
a + 3Γ2

aΓσ + ΓaΓ2
σ + Γ3

σ])
]
+

Γ1Γa
[
Γ1ΓaΓ−(3Γ3

a + 13Γ2
aΓσ + ΓaΓ2

σ − Γ3
σ − χ[3Γa − Γσ])∓

i2
√

2R(+)(9Γ5
a + 37Γ4

aΓσ − 30Γ3
aΓ2

σ − 22Γ2
aΓ3

σ + 5ΓaΓ4
σ+

Γ5
σ − χ[9Γ3

a − Γ2
aΓσ − ΓaΓ2

σ + Γ3
σ])
]}

×[
4Γ1Γ2

3Γ−χ(4g2 + Γ1Γa)
]−1 , (A.77a)

l(a)
3,4 =

{
128g4[−Γ1Γ3ΓaΓ−±

√
2iR(−)(11Γ3

a+3Γ2
aΓσ+ΓaΓ2

σ + Γ3
σ)
]
+

Γ1Γa
[
Γ1Γ3Γ−(−3Γ3

a−13Γ2
aΓσ−ΓaΓ2

σ+Γ3
σ−χ[3Γa − Γσ])±

2
√

2iR(−)(9Γ5
a + 37Γ4

aΓσ − 30Γ3
aΓ2

σ − 22Γ2
aΓ3

σ+

5ΓaΓ4
σ + Γ5

σ + χ[9Γ3
a − Γ2

aΓσ − ΓaΓ2
σ + Γ3

σ])
]
+

4g2[Γ1Γ3Γ−(−9Γ3
a − 17Γ2

aΓσ + ΓaΓ2
σ + Γ3

σ − χΓ−)±
2i
√

2R(−)(31Γ5
a + 53Γ4

aΓσ − 26Γ3
aΓ2

σ − 6Γ2
aΓ3

σ+

11ΓaΓ4
σ + Γ5

σ + χ[11Γ3
a + 3Γ2

aΓσ + ΓaΓ2
σ + Γ3

σ])
]}

×[
4Γ1Γ2

3Γ−χ(4g2 + Γ1Γa)
]−1 , (A.77b)
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l(σ)1,2 =
{
− 4096g8Γ−

[
±R(+)Γ2

a +
√

2iΓ1Γ3Γ−
]
+ Γ2

1Γ3Γ−[Γ2
−−χ][

− 8i
√

2(R(+))2(ΓaΓ− + 7Γ−Γσ − χ)±
8R(+)Γ−(Γ2

a+6ΓaΓσ+Γ2
σ−χ) + i

√
2Γ2

−([Γa + 3Γσ]
2−χ)

]
+

256g6[32
√

2iΓ2
a(R

(+))2(χ − Γ2
−)− i

√
2Γ1Γ2

−(23Γ2
a + 57Γ2

aΓσ+

17ΓaΓ2
σ − Γ3

σ + Γ1χ)∓ R(+)Γ−(33Γ4
a + 66Γ3

aΓσ − 8Γ2
aΓ2

σ−
10ΓaΓ3

σ−Γ4
σ + Γ1Γ3χ)

]
+32g4Γa

[
− i

√
2Γ1Γ2

−(17Γ4
a+146Γ3

aΓσ+

192Γ2
aΓ2

σ + 38ΓaΓ3
σ − 9Γ4

σ + 8Γ1Γaχ + 10Γ1Γσχ − χ2)±
R(+)Γ3Γ−(−3Γ4

a − 44Γ3
aΓσ − 26Γ2

aΓ2
σ + 36ΓaΓ3

σ+

5Γ4
σ − 6Γ2

1χ + χ2) + 16
√

2i(R(+))2(Γ2
− − χ)×

(−10Γ3
a − 14Γ2

aΓσ + 2ΓaΓ2
σ + 2Γ3

σ + Γaχ)
]
+ 4g2Γ1Γ2

a×[
8
√

2i(R(+))2(Γ2
−−χ)(−21Γ3

a−47Γ2
aΓσ+21ΓaΓ2

σ + 15Γ3
σ+

Γ9χ)± 16R(+)Γ3Γ−(2Γ4
a − 4Γ3

aΓσ − 12Γ2
aΓ2

σ + 12ΓaΓ3
σ + Γ4

σ−
3Γ2

1χ + χ2) + i
√

2Γ1Γ2
−(3Γ4

a − 48Γ3
aΓσ + [23Γ2

σ − 2χ]×
[Γ2

σ − χ]− 6Γ2
a[35Γ2

σ + χ]− 24Γa[Γ3
σ + 2Γσχ])

]}
×[

64R(+)Γ1Γ3Γ−χ(4g2 + Γ1Γa)
3]−1 , (A.78a)

l(σ)3,4 = l(σ)1,2 (R(+) → R(−), χ → −χ) . (A.78b)

a.9 E X A C T E X P R E S S I O N O F g ( 2 ) ( τ ) F O R F I LT E R E D
R E S O N A N C E F L U O R E S C E N C E

If both the filter and 2LS are at resonance (∆σ = ∆1 = 0), then the
exact exponents are

λ1,2 = (3γσ ± 4γM)/4 , λ3 = Γ/2 , λ4 = γ11/2 , (A.79)
λ5,6 = (γ23 ± 4γM)/4 , λ7 = Γ , (A.80)

and the coefficients are

l1 = 512Γ2γ11Ω2
σ(γ11γ12 + 16Ω2

σ)
{

Γγ12̄γ11̄(4γM + γσ)+

8Ω2
σ[14Γ2 + 2γσ(4γM + γσ)− Γ(28γM + 17γσ)]− 512Ω4

σ

}{
γ11γ12γ21[Γ(4γM − 3γσ) + 2γσ(4γM − γσ)]+

8Ω2
σ[8Γ3 + 32Γγ2

σ − 2γ2
σ(4γM − 7γσ) + Γ2(4γM + 25γσ)]+

256ΓΩ4
σ

}/
[4γM(4γM − Γ)(4γM − γσ)(4γM + γσ)

2

(4γM + γσ − 2Γ)(4γM + 3γσ − 4Γ)(4γM + 3γσ − 2Γ)

(γ11γ21 + 8Ω2
σ)(γ

2
11γ12 + 8ΓΩ2

σ)
2] , (A.81)
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l2 = l1 (with γM ↔ −γM) , (A.82)

l3 = 2Γγσγ11[γ12̄γ3
11γ2

21γ2
12 + 8γ2

11γ12Ω2
σ(17Γ3 + 12Γ2γσ+

6Γγ2
σ + 4γ3

σ) + 256γ2
11Ω2

σ(5Γ2 + 6Γγσ + 4γ2
σ)+

2048Γ2Ω6
σ]
/
[γ12(γ11γ21 + 8Ω2

σ)(γ12̄γ11̄ + 16Ω2
σ)

(γ2
11γ12 + 8ΓΩ2

σ)
2] , (A.83)

l4 = 4Γ3[(γ2
σ + 8Ω2

σ)(γ11γ12 + 16Ω2
σ)(γ

2
11γ2

12γ31 + 48Γγ2
11Ω2

σ−
256γσΩ4

σ)]
/
[γ11̄γ31(16γ2

M − γ2
21̄)(γ11γ21 + 8Ω2

σ)

(γ2
11γ12 + 8ΓΩ2

σ)
2] , (A.84)

l5 = − 2048Γ2γ11Ω4
σ

{
γ2

11γ2
12γ21γ31γ32[2Γ2(4γM − 3γσ)−

Γγσ(4γM + 3γσ)− 2γ2
σ(4γM − γσ)] + 8γ11γ12Ω2

σ

[−108Γ6+Γ5(860γM−1203γσ) + 3Γ4γσ(956γM−1081γσ)+

Γ3γ2
σ(4204γM − 3947γσ) + Γ2γ3

σ(3212γM − 2465γσ)+

10Γγ4
σ(124γM − 77γσ) + 48γ5

σ(4γM − 2γσ)] + 128Ω4
σ[6Γ6+

Γ5(524γM − 227γσ) + Γ4γσ(2184γM − 776γσ)+

Γ3γ2
σ(3556γM − 933γσ) + Γ2γ3

σ(2896γM − 488γσ)+

Γγ4
σ(1184γM − 96γσ) + 192γMγ5

σ] + 2048Ω6
σ[74Γ4+

2Γ3(24γM + 109γσ) + 5Γ2γσ(12γM + 61γσ)+

2Γγ2
σ(−4γM + 103γσ)− 4γ2

σ(4γM − 13γσ)]+

131072Γγ21Ω8
σ

}/
[4γ21γM(4γM + Γ)(4γM − γσ)

(4γM + γσ)
2(4γM − γ23̄)(γ11γ21 + 8Ω2

σ)

(γ2
11γ12 + 8ΓΩσ)

2(γ31γ31 + 16Ω2
σ)] ,

l6 = l5 (with γM ↔ −γM) , (A.85)

l7 =
{

32Γ2γ11(γ
2
σ + 8Ω2

σ)[(γ11γ12 + 16Ω2
σ)(γ11γ12γ2

21γ2
31γ32

γ11̄γ12̄γ21̄) + 8γ31Ω2
σ(142Γ7 + 239Γ6γσ − 241Γ5γ2

σ−
677Γ4γ3

σ + 77Γ3γ4
σ + 832Γ2γ5

σ + 580Γγ6
σ + 128γ7

σ)+

64Ω4
σ(219Γ6 + 386Γ5γσ + 565Γ4γ2

σ + 344Γ3γ3
σ−

98Γ2γ4
σ − 208Γγ5

σ − 56γ6
σ) + 1024Ω6

σ(15Γ4−
11Γ3γσ − 4Γ2γ2

σ − 16Γγ3
σ − 8γ4

σ)− 16384Ω8
σγσγ21]

}/
[γ21γ31γ11̄(16γ2

M − γ2
23̄)(16γ2

M − γ2
43̄)(γ11γ21 + 8Ω2

σ)

(γ11γ12 + 8Ω2
σ)(γ31γ32 + 16Ω2

σ)] , (A.86)
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a.10 F I LT E R E D T H E R M A L E M I S S I O N

The filtered emission of a thermal cavity is governed by the master
equation

ρ̇ = −iωa[a†a+ ς†ς, ρ]− iϵ[a†ς+ ς†a, ρ] +
γa

2
Laρ+

Pa

2
La† ρ+

Γ
2
Lςρ ,

(A.87)

which, in the steady-state, leads to effective population

nΓ,th = Γ2/(4ϵ2)⟨ς†ς⟩ = ΓPa

(γa − Pa)(Γ + γa − Pa)
, (A.88)

while the 2-photon autocorrelation at zero delay is

g(2)Γ,th(0) = 2 , (A.89)

and for non-zero delay is

g(2)Γ,th(τ) = 1 +
Γ2

(Γ − γa + Pa)2 e−(γa−Pa)τ−

2Γ(γa − Pa)

(Γ − γa + Pa)2 e−(Γ+γa−Pa)τ/2 +
(γa − Pa)2

(Γ − γa + Pa)2 e−Γaτ ,

(A.90)

The corresponding waiting time distribution wΓ,th(τ) cannot be di-
rectly compute inverting (1.57) because of the complexity of g(2)Γ,th(τ).
However, the very Laplace transform w̃Γ,th(s) is closely related to the
moment generating function. Indeed, the moments of the distribution
wΓ,th(τ) are ⟨τn

Γ ⟩th = (−1)n dnw̃(s)
dsn

∣∣
s=0. Computing the first derivative

of w̃Γ,th(s) leads to the filtered thermal mean time

⟨τΓ⟩th =
(γa − Pa)(Γ + γa − Pa)

ΓγaPa
. (A.91)

Taking both the wide and narrow filter limits leads to

⟨τ∞⟩th =
γa − Pa

γaPa
, (A.92)

⟨τ0⟩th =
(γa − Pa)2

ΓγaPa
= ⟨τ∞⟩th

γa − Pa

Γ
. (A.93)

To compute the variance of τ, (∆τΓ)
2
th = ⟨τ2

Γ⟩th − ⟨τΓ⟩2
th, we need

the second-order moment ⟨τ2
Γ⟩th = d2w̃(s)

ds2

∣∣
s=0 and thus the second

derivative of w̃(s) and, after all, we find that

(∆τΓ)
2
th =

P4
a − 2P3

a𭟋11 + P2
a (Γ2 + 2P2

a )− 2Paγ3
a + γ2

a𭟋2
11

P2
a Γ2γ2

a
, (A.94)
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which, in the same limits as before, leads to

(∆τ∞)2
th =

γ2
a + P2

a
γ2

a P2
a

, (A.95)

(∆τ0)
2
th =

(γa − Pa)2γ2
a + P2

a
Γ2γ2

a P2
a

= (∆τ∞)2
th

(
γa − Pa

Γ

)2

. (A.96)

The bare time variance can be written in terms of the population n∞,th
and the mean ⟨τ∞⟩th as

(∆τ∞)2
th = (⟨τ∞⟩th)

2[1 + 2n∞,th(1 + n∞,th)
]

. (A.97)
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Single-Photon Turnstile Device.” In: Science 290 (2000), p. 2282.
doi: 10.1126/science.290.5500.2282.

[14] S. Dong, T. Huang an Y. Liu, J. Wang, Liantuan Xiao G. Zhang,
and S. Jia. “Fast recognition of single molecules based on single-
event photon statistics.” In: Phys. Rev. A 76 (2007), p. 063820.
doi: 10.1103/PhysRevA.76.063820.

[15] V. B. Verma, M. J. Stevens, K. L. Silverman, N. L. Dias, A. Garg,
J. J. Coleman, and R. P. Mirin. “Photon antibunching from a
single lithographically defined InGaAs/GaAs quantum dot.”
In: Opt. Express 19 (2011), p. 4182. doi: 10.1364/OE.19.004182.

[16] G. Di Martino, Y. Sonnefraud, S. Kéna-Cohen, M. Tame, Ş. K.
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A little spark, a little patience.

It fills all Space, and what It fills, It is. What It thinks, that It utters;
and what It utters, that It hears; and It itself is Thinker, Utterer, Hearer,

Thought, Word, Audition; it is the One, and yet the All in All.
Ah, the happiness, ah, the happiness of Being!

— A. Square, Flatland: A Romance of Many Dimensions
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