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Abstract
The structures of the isomeric 2,5-dihydrothiophene 1,1-dioxide [orthorhombic, a = 11.340(2), b = 7.0887(15), c = 6.2811(13) 
Å, space group Pnma] and 2,3-dihydrothiophene 1,1-dioxide [orthorhombic, a = 6.3903(13), b = 7.2783(16), c = 11.075(2) 
Å, space group Pnma] have been determined and show perfectly planar rings with the expected bond lengths and angles. 
In contrast, the halogenated derivatives 3,3,4,4-tetrachlorotetrahydrothiophene 1,1-dioxide [monoclinic, a = 11.8716(8), 
b = 6.5579(4), c = 11.4802(8) Å, β = 97.705(17), space group P21/c] and 2,3-dibromotetrahydrothiophene 1,1-dioxide 
[orthorhombic, a = 5.2502(3), b = 11.3561(6), c = 24.9802(17) Å, space group Pbca] both show twisted conformations. The 
degree of planarity is compared with that in the structures of comparable 5-membered ring cyclic sulfones and C–H…O 
hydrogen bonding patterns are discussed for all four structures.

Graphical Abstract
The two isomericsulfolenes are perfectly planar while tetrachloro- and dibromo-derivativesadopt twisted structures.
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Introduction

Some time ago we described the X-ray structures of a 
range of ten symmetrical and unsymmetrical sulfones [1]. 
Although these included diaryl, aryl alkyl and dialkyl sul-
fones they were all acyclic. In studies related to the ther-
mal extrusion of  SO2 from cyclic sulfones, we and others 
have recently reported structures for various cyclic sulfones 
(Fig. 1) [2–5]. A survey of the structural data for simple 
cyclic sulfones, particularly those containing a five-mem-
bered ring, led to the realisation that the structures of several 

key compounds have not yet been determined. In this paper 
we report the crystal and molecular structures for 2,5-dihy-
drothiophene 1,1-dioxide (butadiene sulfone, 3-sulfolene) 1, 
its isomer 2,3-dihydrothiophene 1,1-dioxide (2-sulfolene) 2 
and the halogenated derivatives 3,3,4,4-tetrachlorotetrahy-
drothiophene 1,1-dioxide 3 and 2,3-dibromotetrahydrothio-
phene 1,1-dioxide 4 (Scheme 1).

Experimental

Compound 1 was obtained commercially and converted into 
the isomer 2 by base-induced isomerisation using the pub-
lished method [6]. Photochemical chlorination of 1 gave 3 [7, 
8] while addition of bromine to 2 gave the trans-dibromide 4 
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[9, 10]. All four compounds had melting points and spectro-
scopic data in agreement with published values.

Data were collected on Rigaku XtalLAB P200 (1,2,4) 
or Rigaku SCX Mini (3) diffractometers using graphite 
monochromated Mo Kα radiation λ = 0.71075 Å and are 
summarised in Table 1. The data can be obtained free of 
charge from the Cambridge Crystallographic Data Centre 
via http:// www. ccdc. cam. ac. uk/ getst ructu res. The structures 
were solved by direct methods and refined by full-matrix 
least-squares against  F2 (SHELXL, Version 2018/3 [11]).

Results and Discussion

The structures of 3-sulfolene 1 and 2-sulfolene 2 are shown 
in Fig. 2 and both are perfectly planar with equivalent oxy-
gen atoms located equidistant above and below the plane 
containing the ring atoms. The bonds lengths and angles 
(Table 2) are as expected and in good agreement with 
those observed for acyclic sulfones [1] and the average 
bond lengths of 1.786 Å for C–S and 1.436 Å for S=O 
for sulfones in general [12]. The structure of 1 was in fact 
investigated at a very early stage (Ref Code ZZZGBM) 
[13], but the methods of that time only allowed some rough 
information on the unit cell dimensions to be obtained. 
There is a more recent structure determination, which 
for some reason is not included in the CSD, that gives a 
very similar result to ours (space group Pnma, a = 11.484, 
b = 7.262, c = 6.316Å) [14]. Whilst wishing to give full 
credit to this earlier determination, we feel it is important 

to finally document the structure of this fundamental com-
pound in the CSD.

For comparison a range of simple analogues of 1 
(Fig. 3) [15–22] and 2 (Fig. 4) [15, 23–26] that have been 
crystallographically characterised are shown with CSD 
reference codes, literature references and, as a measure 
of planarity, the sum of the five in-ring torsion angles. 
As compared to the structures of 1 and 2 which have all 
torsion angles zero, we can see that introducing a sub-
stituent has a range of effects on the degree of planarity 
from no effect (IPRNSO) to small (GAMKEK), moder-
ate (BAHQEG, MIXYUN, XOJFUX, WASBOI) and 
fairly large (BAHQIK, VUFKIS, XUTVUF, VAGXAC). 
However the presence of a ring double bond in all these 
compounds limits the possible degree of non-planarity. 
As might be expected, coordination of the oxygen of 1 
to  MoCl5 results in significant lengthening of that S–O 
bond and movement of sulfur out of the plane of the ring 
carbons [22].

The structures of both 1 and 2 show a range of weak 
C–H…O hydrogen bonds and these are listed in Table 3. As 
shown in Fig. 5, the different position of the double bond 
between 1 and 2 leads to different higher level motifs with 1 
forming R2

2(8) dimers while 2 displays R2
1(4) interactions.

The structures of halogenated derivatives 3 and 4 are 
shown in Fig. 6 and, in contrast to those of 1 and 2, these 
are significantly twisted with C(3) 0.432 Å above and 
C(4) 0.261 Å below the plane defined by S(1), C(2) and 
C(5) in 3. In the case of 4 there is again a twisted con-
formation with C(3) 0.489 Å above and C(4) 0.249 Å 
below the plane defined by S(1), C(2) and C(5), although 

Fig. 1  Some recently deter-
mined cyclic sulfone struc-
tures with CCDC Ref Codes, 
literature references and sum of 
in-ring torsion angles
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Scheme 1  Structures and synthetic routes for compounds 1–4 
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in this case there is a small torsion angle of − 9.6(2) for 
C(2)–S(1)–C(5)–C(4) and it is perhaps more accurate to 
describe it as an envelope conformation with C(3) at the 
flap. With no double bond present, the deviation from 
planarity can be much larger and the sum of in-ring tor-
sion angles is 149.07° for 3 and 160.96° for 4. These 
values can be compared to the four values between 172° 

and 190° that occur in the structure of ZUFWIG (Fig. 7), 
the isomer of 4.

The parent tetrahydrothiophene dioxide (Ref. Code 
BUGHOA), although solid at room temperature, forms a 
plastic phase with disorder from which no detailed infor-
mation on the conformation can be gained [27], however 
the isomeric trans-3,4-dibromodihydrothiophene diox-
ide (Ref Code ZUFWIG) obtained by reaction of 1 with 

Table 1  Summary of crystallographic data obtained for compounds 1–4 

Compound 1 2 3 4

CCDC deposit no. 2225717 2225718 2225722 2225720
Empirical formula C4H6O2S C4H6O2S C4H4Cl4O2S C4H6Br2O2S
Formula weight 118.15 118.15 257.95 277.96
Crystal system Orthorhombic Orthorhombic Monoclinic Orthorhombic
Space group Pnma (No. 62) Pnma (No. 62) P21/c (No. 14) Pbca (No. 61)
Temperature (K) 93 93 173 93
Crystal form Colourless prism Colourless prism Colourless prism Colourless prism
Size (mm) 0.10 ⋅ 0.05 ⋅ 0.05 0.10 ⋅ 0.05 ⋅ 0.05 0.25 ⋅ 0.10 ⋅ 0.07 0.12 ⋅ 0.03 ⋅ 0.03
Unit cell Dimensions (Å, °) a = 11.340(2) a = 6.3903(13) a = 11.8716(8) a = 5.2502(3)

b = 7.0887(15) b = 7.2783(16) b = 6.5579(4) b = 11.3561(6)
c = 6.2811(13) c = 11.075(2) c = 11.4802(8) c = 24.9802(17)

β = 97.705(17)
Volume (Å3) 504.91(17) 515.19(18) 885.70(11) 1489.36(15)
Z 4 4 4 8
Dc (g  cm–3) 1.554 1.523 1.934 2.479
Absorption coefficient 0.512  mm–1 0.502  mm–1 1.514  mm–1 11.122  mm–1

 F(000) 248.00 248.00 512.00 1056.00
θ range 3.593–25.315° 3.349–25.310° 1.731–27.522° 1.630–28.708°
Limiting indices –13 ≤ h ≤ 13,

–8 ≤ k ≤ 8,
–7 ≤ l ≤ 7

–7 ≤ h ≤ 7,
–8 ≤ k ≤ 8,
–13 ≤ l ≤ 13

–15 ≤ h ≤ 15,
–8 ≤ k ≤ 8,
–14 ≤ l ≤ 14

–6 ≤ h ≤ 7,
–14 ≤ k ≤ 14,
–30 ≤ l ≤ 32

Reflns collected/unique 6856/503 6958/506 8449/2026 21054/1784
Rint 0.0252 0.0409 0.0818 0.0552
Data/restraints/parameters 503/0/41 506/1/41 2026/0/100 1784/0/82
Data with I > 2s(I) 500 490 1459 1529
Goodness of fit on  F2 0.932 1.068 0.988 1.089
R1, wR2 (data I > 2s(I)) 0.0245, 0.0774 0.0260, 0.0776 0.0420, 0.1015 0.0313, 0.0853
R1, wR2 (all data) 0.0246, 0.0776 0.0265, 0.0780 0.0664, 0.1111 0.0382, 0.0890
Largest diff. peak/hole (e Å2) 0.394 and − 0.341 0.286 and − 0.437 0.574 and − 0.432 1.079 and − 0.662

Fig. 2  The molecular structure 
of compounds 1 and 2 showing 
numbering system used
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bromine has been found to exhibit an unusual form of dis-
order in the crystal with the large bromine atoms and the 
 CH2SO2CH2 group remaining relatively fixed but the two 
CH(–Br) centres occupying positions above and below the 
mean molecular plane to give two alternative forms which 
pack at random (Fig. 7) [28]. No such problems occur in 
the less symmetrical isomer 4.

The structures of 3 and 4 also contain a series of weak 
hydrogen bonding interactions (Fig. 8; Table 3). In 3 
the molecules form symmetrical R2

2(8) dimers through 
H(2B) and O(2) which are then linked by a further 
unsymmetrical R2

2(8) interaction involving H(2 A)–O(1) 
and H(5B)–O(1) interactions. In this case there is also a 
Cl(2)–Cl(4) interaction with a Cl–Cl distance of 3.397 Å. 
The structure of 4 shows five separate hydrogen bonding 
interactions with an R2

2(7) motif involving H(5 A)–O(1) 
and H(4 A)–O(2), an R2

1(6) motif involving H(2), H(4B) 
and O(2), and a further interaction between H(5B) and 
O(2).

Conclusion

The crystal and molecular structures of the isomeric 2,5- and 
2,3-dihydrothiophene 1,1-dioxides 1 and 2 have been fully 
documented for the first time and show similar perfectly 
planar rings with the expected bond lengths and angles. In 
contrast the 3,3,4,4-tetrachloro- and 2,3-dibromotetrahy-
drothiophene 1,1-dioxides 3 and 4 are distinctly non-planar 
with no sign of the disorder that occurs in the previously 
determined structure of the 3,4-dibromo isomer of 4.

Table 2  Bond lengths, angle and in ring torsions for 1–4 

Bond Å/angle ° 1 2 3 4

S(1)–O(1) 1.4496(10) 1.4499(11) 1.431(2) 1.442(2)
S(1)–O(1/2) 1.4496(10) 1.4499(11) 1.430(3) 1.441(2)
S(1)–C(2) 1.801(2) 1.744(2) 1.800(3) 1.833(3)
C(2)–C(3) 1.500(3) 1.325(3) 1.531(4) 1.524(4)
C(3)–C(4) 1.328(3) 1.502(3) 1.557(4) 1.527(4)
C(4)–C(5) 1.506(2) 1.536(3) 1.518(4) 1.540(4)
C(5)–S(1) 1.7960(18) 1.794(2) 1.816(3) 1.794(3)
C(3)–Cl(1) – – 1.766(3) –
C(3)–Cl(2) – – 1.777(3) –
C(4)–Cl(3) – – 1.779(3) –
C(4)–Cl(4) – – 1.772(3) –
C(2)–Br(2) – – – 1.923(3)
C(3)–Br(3) – – – 1.943(3)
C(5)–S(1)–C(2) 97.81(9) 95.62(10) 96.39(14) 96.14(13)
S(1)–C(2)–C(3) 103.87(13) 111.33(16) 104.97(19) 102.89(18)
C(2)–C(3)–C(4) 117.15(18) 117.85(19) 105.9(2) 105.8(2)
C(3)–C(4)–C(5) 117.61(18) 108.40(16) 106.7(2) 105.7(2)
C(4)–C(5)–S(1) 103.56(13) 106.80(15) 105.6(2) 105.21(19)
O(1)–S(1)–O(1/2) 116.94(8) 115.66(9) 118.83(16) 117.54(13)
C(2)–S(1)–O(1) 110.02(5) 110.73(6) 109.27(14) 109.07(13)
C(2)–S(1)–O(1/2) 110.02(5) 110.73(6) 110.09(16) 110.42(13)
C(5)–S(1)–O(1) 110.19(5) 111.18(6) 110.87(16) 112.01(14)
C(5)–S(1)–O(1/2) 110.19(5) 111.18(6) 109.08(15) 109.59(14)
C(3)–C(4)–C(5)–

S(1)
0.0 0.0 34.4(3) 36.2(2)

C(2)–C(3)–C(4)–
C(5)

0.0 0.0 –48.4(3) –52.7(3)

S(1)–C(2)–C(3)–
C(4)

0.0 0.0 39.0(2) 43.2(2)

C(5)–S(1)–C(2)–
C(3)

0.0 0.0 –17.0(2) –19.2(2)

C(4)–C(5)–S(1)–
C(2)

0.0 0.0 –10.3(2) –9.6(2)

Fig. 3  Simple substituted 
derivatives of 1 with CSD Ref 
Codes, literature references and 
sum of in-ring torsion angles S
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Fig. 4  Simple substituted 
derivatives of 2 with CSD Ref 
Codes, literature references and 
sum of in-ring torsion angles
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Table 3  Hydrogen bonding 
parameters (Å, °)

Compound D–H…A D–A D–H H…A Angle DHA

1 C(2)–H(2 A)…O(1) 3.440 0.990 2.510 156.3
 C(5)–H(5 A)…O(1) 3.364 0.990 2.403 163.4

2  C(2)–H(2)…O(1) 3.465 0.950 2.656 143.4
 C(4)–H(4 A)…O(1) 3.563 0.990 2.651 153.2
 C(5)–H(5 A)…O(1) 3.402 0.990 2.446 162.0

3  C(2)–H(2 A)…O(1) 3.274(3) 0.990 2.324 133.9
 C(5)–H(5B)…O(1) 3.099(4) 0.990 2.521 117.0
 C(2)–H(2B)…O(2) 3.112(4) 0.990 2.531 117.3

4  C(5)–H(5 A)…O(1) 3.481(3) 0.990 2.623 145.0
 C(4)–H(4 A)…O(2) 3.411(3) 0.989 2.451 163.6
 C(4)–H(4B)…O(2) 3.360(3) 0.990 2.509 144.0
 C(2)–H(2)…O(2) 3.338(4) 1.000 2.511 139.8
 C(5)–H(B)…O(2) 3.522(3) 0.990 2.605 154.1

Fig. 5  Hydrogen bonding motifs 
in the structures of 1 and 2 

Fig. 6  The molecular structure 
of compounds 3 and 4 showing 
numbering system used
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