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ABSTRACT
The ’MHC-I (major histocompatibility complex class I)-opathy’ 
concept describes a family of inflammatory conditions with 
overlapping clinical manifestations and a strong genetic link 
to the MHC-I antigen presentation pathway. Classical MHC-I-
opathies such as spondyloarthritis, Behçet’s disease, psoriasis 
and birdshot uveitis are widely recognised for their strong 
association with certain MHC-I alleles and gene variants 
of the antigen processing aminopeptidases ERAP1 and 
ERAP2 that implicates altered MHC-I peptide presentation to 
CD8+T cells in the pathogenesis. Progress in understanding 
the cause and treatment of these disorders is hampered 
by patient phenotypic heterogeneity and lack of systematic 
investigation of the MHC-I pathway.
Here, we discuss new insights into the biology of MHC-I-
opathies that strongly advocate for disease-overarching and 
integrated molecular and clinical investigation to decipher 
underlying disease mechanisms. Because this requires 
transformative multidisciplinary collaboration, we introduce 
the EULAR study group on MHC-I-opathies to unite clinical 
expertise in rheumatology, dermatology and ophthalmology, 
with fundamental and translational researchers from multiple 
disciplines such as immunology, genomics and proteomics, 
alongside patient partners. We prioritise standardisation 
of disease phenotypes and scientific nomenclature and 
propose interdisciplinary genetic and translational studies 
to exploit emerging therapeutic strategies to understand 
MHC-I-mediated disease mechanisms. These collaborative 
efforts are required to address outstanding questions in the 
etiopathogenesis of MHC-I-opathies towards improving 
patient treatment and prognostication.

THE INCEPTION OF THE MHC-I-OPATHY FAMILY
Inflammation against self is orchestrated by a 
continuum of incompletely understood innate and 
adaptive immune mechanisms. The term ‘autoin-
flammatory’ refers to inflammation against self, 
caused by abnormal innate immunity, whereas 

‘autoimmunity’ is caused by aberrant adaptive 
immunity.1 2 Since this dichotomous definition 
overlooked conditions such as psoriasis (PsO) 
and Behçet’s disease (BD), the concept of ‘mixed-
pattern’ or ‘intermediate’ diseases was proposed.3

Genome-wide association studies (GWAS) of 
MHC-I-associated diseases, such as BD (associ-
ated with HLA-B*51),4 5 PsO (associated with 
HLA-C*06:02),6–8 HLA-B*27-associated spondy-
loarthritis (SpA)9–11 HLA-B*27-associated anterior 
uveitis (AU)12 and HLA-A*29-associated birdshot 
uveitis (BU),13 14 revealed that these ‘intermediate 
diseases’ share a distinguishable genetic background 
defined by MHC-I genes, the antigen processing 
genes ERAP1 and ERAP2, and the IL-17 pathway 
gene IL23R. Such genetic overlap implicates 
MHC-I peptide presentation as the key mechanistic 
commonality. Furthermore, it substantiates the 
idea that BD, PsO, SpA and BU belong to a distinct 
disease cluster known as ‘MHC-I-opathies’.15

There is ongoing debate and incomplete evidence 
regarding underlying mechanisms of MHC-I-
opathies.16–18 MHC-I proteins (also called HLA-A, 
HLA-B and HLA-C) bind short peptides from 
degraded or pathogenic proteins, which have 
been proteolysed inside the cell by the protea-
some.19–21 Most MHC-I peptides are derived from 
proteins from the host. ERAP1 and ERAP2 are 
endoplasmic reticulum aminopeptidases associated 
with antigen processing that trim a certain frac-
tion of these peptides if they are not short enough 
before loading them onto MHC-I molecules.22 This 
process enables MHC-I to present tens of thou-
sands of peptides on the cell surface, collectively 
referred to as the ‘immunopeptidome’.23 CD8+T 
cells read out the immunopeptidome by binding 
to the peptide-MHC-I complexes with their T cell 
receptors (TCR) (figure 1). MHC-I molecules can 
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also bind to killer-cell immunoglobulin-like receptors (KIRs) and 
other receptors on natural killer (NK) cells.24

There is much conjecture about the cause(s) of MHC-I-
opathies15 25 26 and several popular hypotheses have been 
proposed which are not necessarily mutually exclusive. The 
primary hypothesis for the cause of MHC-I-opathies is that 
disease-associated MHC-I alleles present specific immunogenic 
peptides that trigger ‘autoimmune’ reactions (ie, the arthrito-
genic peptide theory).27 The genetic association with ERAP genes 
also supports this hypothesis since the activity of these enzymes 
can modify the immunopeptidome.28 Proof of concept has been 
shown in PsO and recently in SpA and HLA-B*27+AU.29 The 
identification of CD8+T cells in PsO react against melanocytes 
in the context of HLA-C06:02 as skin-specific target cells of the 
psoriatic autoimmune response,30–32 while CD8+T cells from 
synovial and eye fluid of SpA and AU patients recognise both self 
and microbial peptides presented by HLA-B*27.29

There is still no conclusive evidence that this mechanism 
underlies other MHC-I-opathies since mechanistic studies are 

technically challenging to conduct, owing to multiorgan involve-
ment having complex tissues, which requires labour-intensive 
technology to screen for many epitopes. Consequently, several 
alternative theories for MHC-I-opathies have been proposed, 
one of which suggests that MHC-I protein misfolding directly 
leads to inflammation. According to this theory, predisposing 
MHC-I molecules may exhibit properties which could cause 
excessive misfolding and accumulation in the ER, promoting the 
‘unfolded protein response’.33–38 Studies of (HLA-B*27) trans-
genic animals and cellular models support this hypothesis, but 
there is a paucity of translational evidence.39–43 A third popular 
hypothesis suggests that the predisposing MHC-I alleles are 
recognised by KIRs or leucocyte immunoglobulin-like receptors 
(LILRs) on the cell surface of NK cells.44 45

In our opinion, the first hypothesis applies to the majority of 
MHC-I-opathies (with the most robust evidence for PsO and 
SpA), but definitive proof for CD8+T cell-mediated pathologies 
is lacking for several other conditions. Hypotheses 2 and 3 may 
also apply to certain conditions. For example, in BD, ERAP1 may 
mediate HLA-B51 recognition via NK cells,17 46 47 and patho-
gens that can cause reactive arthritis induce unfolded protein 
responses in HLA-B*27-positive individuals.48 While these other 
pathways and mechanisms are implicated, including the very 
interesting interactions of altered microbiomes in patients,49 we 
focus our discussion on the MHC-I pathway as the key determi-
nant for this family of complex conditions.

THE MANY FACES AND CHALLENGES OF MHC-I-OPATHIES
Several conditions are considered to be ‘classical’ MHC-I-
opathies (PsO, psoriatic arthritis (PsA), SpA, B*27-AU, BD and 
BU) and share strikingly similar clinical symptoms (table 1).

BU is a rare and severe type of uveitis, leading to retinal damage 
and vision loss that exclusively affects HLA-A*29-positive indi-
viduals.50 51 Although it is unclear which other clinical features 
are shared between BU and other MHC-I-opathies, 1 study of 
118 cases revealed that many patients also suffer from arthralgia 
and PsO.52 We also discuss PsA because it shares many character-
istics with PsO, including strong association with MHC-I alleles 
and IL23R.7 8 53–55 While some patients with inflammatory bowel 
disease may have similar symptoms,56 we will only discuss clas-
sical MHC-I-opathies here.

MHC-I-opathies overlap in their pattern of organ involve-
ment (table 1). Uveitis, for instance, is a disease feature reported 
in every classical MHC-I-opathy, although with different prev-
alence and anatomical location (anterior/posterior).57 58 Sacro-
iliitis is present in patients with SpA, PsA as well as BD.59–61 
Cutaneous involvement is also a shared feature of MHC-I-
opathies (table 1).

However, not every patient exhibits the symptomatic hall-
marks of every clinical entity. For example, arterial, venous and 
neurological complications are common in BD, but infrequent 
in other MHC-I-opathies.18 62 For several MHC-I-opathies, 
patients with the associated risk MHC-I alleles are more likely 
to manifest early-onset disease and a worse prognosis.63–66 
Furthermore, substantial clinical and geographical variation in 
disease phenotypes exists, for example, the prevalence of gastro-
intestinal involvement in BD in Asian versus European popula-
tions.67 68

WHAT YOU (DO NOT) SEE IS WHAT YOU (DO NOT) GET!
The clinical management of MHC-I-opathy patients is compli-
cated by heterogeneity in age of onset, symptoms and disease 
course. Unlike cases with commonly recognised symptoms (e.g., 

Figure 1  An overview of the role of the MHC-I pathway in MHC-
I-opathies. The proteasome produces peptide fragments that are 
transported into the endoplasmic reticulum by the transporter 
associated with antigen processing (TAP) and trimmed by ERAP1 
and ERAP2 (ERAP) to a length of 8-11 amino acids before binding 
to MHC-I molecules. After trafficking to the cell surface the MHC-I-
peptide complex is “read out” by surveying immune cells, triggering 
antigen-specific CD8+ T cell responses or natural killer (NK) cell 
activation. MHC-I-opathies are genetically associated with functionally 
distinct variants of MHC-I and ERAP which alter the peptide repertoire 
presented by MHC-I. Autoreactive T cells in the periphery that escape 
tolerance mechanisms and promote inflammation against self-peptide 
epitopes. Biorender software was used to create elements from this 
figure under an academic license.  on A
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uveitis in SpA patients), asymptomatic or atypical involvement of 
the skin, bowel or other comorbidities in patients may be over-
looked (table  1). For example, reexamination of SpA patients 
revealed that up to one-third may have comorbid PsO.69 In the 
DUET study, over 40% of patients with B*27-AU were diag-
nosed with SpA or PsA on re-evaluation by a rheumatologist,70 
which was confirmed by other studies.71 Large population-level 
data also correlate disease manifestations of MHC-I-opathies 
such as uveitis, PsO, PsA and BD.58 72 73 Observations from well-
powered cohort studies substantiate that oral disease, which is a 
hallmark of BD, is also linked to SpA.74–76 Despite considerable 
phenotypic heterogeneity, these studies support that MHC-I-
opathies are interconnected conditions that cannot be under-
stood in isolation and require a multidisciplinary approach.

The human phenotype ontology (HPO) provides a framework 
for standardised nomenclature of disease symptoms, which 
can facilitate improved classification of disease phenotypes.77 
Although originally designed to systematically capture the clin-
ical manifestations of rare, monogenic conditions, HPO has 
more recently been used to successfully infer several rare pheno-
types of the UK Biobank.78 In its current form, the HPO may not 
be optimal for the annotation of the clinical spectrum of patients 
with MHC-I-opathies. As a result, the EULAR study group aims 
to evaluate the HPO and adapt it to fit the symptoms of MHC-
I-opathies. The spectrum of MHC-I-opathies will benefit from 
standardisation of disease manifestations, allowing existing 
cohorts to be merged into a well-powered study. The precise 
delineation of clinical phenotypes will allow us to relate them to 
molecular endotypes. We expect that this process will facilitate 
the discovery (and validation) of better diagnostic, prognostic 
and therapeutic biomarkers.

A COMMON GENETIC ARCHITECTURE
MHC-I, the tip of the iceberg
Strong genetic association with certain MHC-I alleles is the 
hallmark of the MHC-I-opathy cluster: MHC-I association 
studies date back to 1973 with the discovery of the association 
of HLA-B*27 and SpA as well as HLA-B*51 and BD (formerly 
‘HL-A5’),79–81 followed by reports on HLA-C*06:02 (previously 
known as ‘HLA-Cw6’) and PsO in 1977,82 83 and the association 
between HLA-A*29 and BU in 198284 (table 2). In comparison 
to genes associated with complex inflammatory conditions, the 
effect size of MHC-I alleles accounts for a disproportionate 
amount of genetic risk. For almost 50 years, researchers have 
struggled to understand the role these class I alleles play in their 
disease biology.

Interestingly, recent fine-mapping studies showed that statis-
tical adjustment for HLA-B*27 in SpA revealed independent 
associations for other MHC-I alleles, including HLA-A*02:01, 
HLA-B*07, HLA-B*57 and HLA-B*4085 86 (table  2). This 
is significant because it also implicates the MHC-I pathway 
for cases lacking the primary MHC-I risk allele and strongly 
incriminates peptide presentation rather than alternative 
mechanisms.

Association with several of these alleles was also found after 
correcting for the primary risk MHC-I allele in PsO (HLA-
A*02:01, HLA-B*27 and HLA-B*07), BD (eg, HLA-B*27 and 
HLA-B*57), PsA (eg, HLA-B*07 and HLA-A*02) and AU.7 12 87–90 
To date, small GWAS in the rare BU had limited power to detect 
HLA-A*29-independent loci in detail, but also reported inde-
pendent risk MHC-I alleles.13 14 These findings raise the possi-
bility that an ensemble of disease-overarching MHC-I alleles 
contribute to MHC-I-opathy susceptibility.

Table 1  Summary of tissue involvement per MHC-I-opathy, organised per clinical specialty (references underlying the summarised data and 
scores can be found in online supplemental table 1

Disease PsO* PsA† SpA B*27 AU BD BU

Medical specialty Primary risk MHC-I-allele(s) C*06 C*06/B*27 B*27 B*27 B*51 A*29

Prognosis worse when primary MHC-I allele present 3 0 3 n.a 3 0

Ophthalmology Uveitis‡ 1 1 3 3 3 3

Dermatology Oral ulcerations 0 1 1 0 3 0

Dermatology Genital ulcerations 0 0 0 0 3 0

Dermatology Psoriasiform dermatitis§ 3 3 2 2 1 1

Dermatology Pustular lesions¶ 2 2 1 0 3 0

Dermatology Erythema nodosum-like lesions 0 0 0 0 3 0

Rheumatology Spondylitis 1 3 3 3 1 0

Rheumatology Arthritis 2 3 3 2 3 0

Rheumatology Enthesitis 2 3 3 3 1 0

Rheumatol/immunol Vasculitis** 1 1 1 0 3 0

Gastroenterology Inflammatory bowel disease 1 1 2 1 2 0

Internal medicine Comorbid hypertension 1 2 2 0 0 2

Neurol/Int Med/cardiol Comorbid cardiovasc disease 2 2 2 0 1 0

Legend: 3 part of the disease ectrum

2 regularly reported

1 infrequently reported

0

3 part of the disease spectrum.
2 regularly report.
1 infrequently reported.
0 either unknown / no reports / not present.
*Psoriasis: besides plaque psoriasis. This encompasses other forms of psoriatic disease like psoriasis guttate and (several types of) pustular psoriasis.
†PsA: both axial and peripheral disease.
‡Uveitis anterior is the main subtype reported in PsO, PsA, SpA, whereas in Behçet’s multiple anatomical subtypes of uveitis are reported. BU manifests as posterior uveitis.
§Psoriasiform lesions: refers to the several types of psoriasis; classical plaque psoriasis, guttate, nail lesions and erythematous as well as pustular lesions.
¶Pustular lesions: covers acneiform, papulopustular and non-follicular pustules.
**Vasculitis in PsO as well as in PsA and SpA vasculitis is in the large vessels (aortitis); in B27-AU and BU not reported outside the eye; in Behçet’s vasculitis is in all types of vessels, arteries and veins.
BU, birdshot uveitis; PsA, psoriatic arthritis; PsO, psoriasis; SpA, spondyloarthritis.
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Therefore, functional studies that consider only one MHC-I 
allele may not capture the complexity of the MHC-I pathway in 
patients. This emphasises the need to use primary patient tissues 
to investigate disease mechanisms. It remains to be determined 
whether the full MHC haplotype (including ‘secondary’ risk 
MHC-I alleles) improves patient stratification. Large population-
based studies (ie, UK Biobank) support that MHC-I alleles are 
associated with a variety of health biomarkers.91 A first step 
into this direction could be the conduction of a multiancestral 
MHC-I-opathy GWAS analysis by combining several available 
large-scale genome-wide datasets and interrogating the MHC for 
different phenotypic states.

The devil is in the ERAP1 and ERAP2 details
Perhaps one of the major accomplishments for the progress in 
the understanding of MHC-I-opathies was the discovery of the 
association with the ERAP1 and/or ERAP2 genes.4 6 7 9 12–14 92–95 
These genes encode two ER-resident enzymes specialised in trim-
ming peptides to facilitate or prevent their binding in the groove 
of MHC-I.96 97 By generating and destroying peptide epitopes, 
ERAPs can affect CD8+T cell and NK cell responses.98–101 
Genetic variants in ERAP1 and ERAP2 affect the enzymatic 
activity and expression levels of these enzymes.93 102 Conse-
quently, a change in ERAP activity may expose CD8+T cells 
to altered peptide repertoires (self or non-self) via MHC-I risk 
alleles, which can be harmful.28

Genetic association between ERAP1 and MHC-I-opathies is 
typically observed in individuals carrying the primary risk MHC-
I.4 6 11 13 85 93 Coding variants in ERAP1 organise into several 
common haplotypes often referred to as ERAP1 ‘allotypes’103 104 
that exhibit a wide range of enzymatic activities towards peptide 
substrates and differentially shape the immunopeptidome of 
MHC-I.28 105 Risk polymorphisms in ERAP1 (and ERAP2) are 
also strongly associated with mRNA and protein expression 
levels of these aminopeptidases.50 102 106 Haplotype-based anal-
yses have singled out specific ERAP1 allotypes as risk factors 
for MHC-I-opathies. While several terms have been proposed 
for ERAP1 allotypes, standardised nomenclature has yet to be 
widely adopted. One functionally distinct ERAP1 allotype (often 
referred to as Haplotype 10 (hap10)) is a risk factor for BD and 
BU,93 107 but protective for SpA, AU and PsO.28 108 Interestingly, 
in PsO, the protective hap10 was less effective in generating 
the autoantigenic epitope than the risk haplotypes of ERAP1, 

leading to lower HLA-C expression and immunogenicity of 
melanocytes.31

ERAP1 may also influence NK cell responses via inhibitory 
receptors NKG2A/CD94 (also expressed by CD8+T cells109) to 
non-classical MHC-I molecule HLA-E.46 The inhibitory activity 
of HLA-E requires the presentation of a signal sequence from 
MHC-I molecules, which are also present in HLA-A29, HLA-
B27 and HLA-B51.110–112 Therefore, ERAPs may also affect NK 
cells and CD8+T cells via MHC-I-related molecules, as was 
previously shown in cancer models.46 113 Although KIR recep-
tors can recognise immunopeptidome changes caused by ERAP1, 
KIR genes do not influence HLA-B*27 and ERAP1-mediated 
ankylosing spondylitis risk.114 115 This suggests that the disease 
mechanisms mediated by ERAP1 and MHC-I are less dependent 
on KIRs.

In contrast to ERAP1, ERAP2 genetic variants are not associ-
ated with all MHC-I-opathies (eg, BD). Also, ERAP2 is associ-
ated with SpA regardless of HLA-B*27 status. Because there is 
also epistasis between ERAP1 and HLA-B*40 in SpA (indepen-
dent of HLA-B*27),85 it is possible that ERAP2 modifies disease 
in SpA via alternative risk MHC-I alleles. Functional studies 
support that ERAP2 significantly affects the immunopeptidome 
of many MHC-I alleles, including HLA-B*40115 116

Note that ERAP2 allotypes co-occur non-randomly with 
ERAP1 allotypes.93 105 Furthermore, although HLA-A*29 is 
common in many regions, HLA-A*29-positive individuals who 
carry both ERAP1 and ERAP2 risk alleles are only observed in 
countries where BU is prevalent.93 Therefore, an individual’s 
ERAP1 and ERAP2 allotypes along with their MHC-I profile 
(and T cell repertoire) are most likely to determine their suscep-
tibility to MHC-I-opathies.117

Studies linking ERAP genotypes with clinical end points may 
have potential,118 119 but we would like to emphasise that these 
studies should be carefully controlled and well powered. Both 
ERAP1 and ERAP2 are common denominators of MHC-I-
opathies, which place antigenic peptide presentation at the heart 
of their pathogenesis.

IL23R and T cells
There are many other genes associated with conditions within 
the MHC-I-opathy spectrum that have been discovered through 
GWAS. While they are important to disease biology, we only 
briefly discuss IL23R, a receptor for IL-23 expressed by T cells (and 

Table 2  Reported HLA class I associations in four MHC-I-opathies
MHC-I-opathy Prevalence Primary HLA class I association % cases negative for primary HLA class I allele Independent* HLA class I associations

Birdshot uveitis 1-5/500 000 HLA-A*29:02 0 HLA-A*3013 14

HLA-A*3314

Spondyloarthritis† 0.5% HLA-B*27 ~ <30 HLA-B*4085 86

HLA-A*0285

HLA-B*0785

HLA-B*5785

HLA-C*1586

Behçet’s Disease 0.19-120/100 0009 HLA-B*51 ~30–70 HLA-A*0287

HLA-B*2787

HLA-B*5787

HLA-A*0387

HLA-B*1587

HLA-B*4987

HLA-A*2687 89

HLA-C*0789

Psoriasis 2–4% HLA-C*06:02 ~30–70 HLA-A*02122

HLA-B*27122

HLA-B*07122

HLA-C*07176

*Identified by statistical adjusting for primary associated HLA class I allele.
†Majority of data are from genetic studies in ankylosing spondylitis. Includes both risk and protective alleles.
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innate lymphocytes), because it is common to MHC-I-opathies 
and is associated with disease severity and phenotypes.8 118 120–122 
Fascinatingly, despite IL23R expression by CD4+T cells, epigen-
etic analyses implicate CD8+T cells as major perpetrators of 
MHC-I-opathies.88 Interleukin-17-producing CD8+T cells 
(termed ‘Tc17’) infiltrating skin and synovial lesions in PsO, 
BD, SpA and PsA patients express IL23R.123–125 Tc17 cells are 
also more abundant in patients with BU.126 127 IL23R’s role in 
the pathophysiology of MHC-I-opathies is incompletely under-
stood, but likely to be tissue-dependent.128 This may explain 
why patients with PsO129 and PsA130 exhibit clinical response 
to therapy that disrupts T cell IL-23 signalling, while initial 
trials were less successful in SpA.131 132 A better understanding 
of clinical and molecular features will help overcome challenges 
posed by patient heterogeneity as well as identify therapeutic 
biomarkers which will guide the selection of candidates eligible 
for treatment with IL-23 inhibitors.21 128 131–134

UNMET NEEDS IN MHC-I-OPATHY PATHOPHYSIOLOGY 
UNDERSTANDING
Evidence for autoreactive CD8+ T cell involvement
A number of immunopeptidome studies in cell models have 
shown that polymorphisms in ERAP cause change in the 
peptides presented by HLA-B27, HLA-B51, HLA-A29 and 
other MHC-I alleles.28 115 116 Circumstantial evidence suggests 
that these enzymes introduce or remove peptides that bind to 
risk MHC-I alleles and signal CD8+T cells to attack healthy 
tissues. The fact that CD8+T cells are clonotypically expanded 
in patients with SpA, PsO and PsA supports this concept.135–138 
In BD, carriers of the disease-associated ERAP1 allotype107 
show enrichment for circulating antigen-experienced effector 
CD8+T cells and ERAP1 modulation influenced CD8+T cell 
responses.107 The lack of identification of causative autoantigens 
or indeed alloantigens has resulted in discussion about whether 
CD8+T cells drive pathology in MHC-I-opathies.17 Regardless, 

autoantigen-derived peptide recognition by CD8+T cells in 
patients has previously been reported, including an HLA-B51-
presented peptide derived from a stress-inducible autoantigen in 
BD,139 HLA-C06:02 presented peptide from innate host defence 
protein LL-37 in PsO,140 and HLA-B27-restricted epitope from 
a peptide hormone receptor and cartilage-derived peptides in 
SpA.141 142

To date, the most compelling conceptual proof that CD8+T 
cells mediate autoimmune inflammation is based on studies 
of PsO, and very recently in HLA-B*27-positive SpA and AU 
patients.29 30 Skin lesional CD8+T cells in PsO can recognise an 
HLA-C06:02-restricted autoantigen epitope from ADAMTSL5 
highly expressed in skin melanocytes.30 31 ADAMTSL5-specific 
CD8+T cells secrete PsO-promoting cytokines (eg, IL-17) 
specifically after recognising melanocyte-peptide processed by 
ERAP1 and presented by the disease-associated MHC-I HLA-
C06:02.30–32 Here, the immunogenicity of melanocytes for 
self-reactive CD8+T cell responses was increased by disease-
associated ERAP1 haplotypes through greater supply of the 
peptide autoantigen.30 It has, therefore, been suggested that 
pharmacological modulation of ERAP activity towards precursor 
peptides specifically presented by MHC-I alleles could reverse 
inflammation in MHC-I-associated diseases.143 144

Researchers recently found that tissue-infiltrating CD8+T 
cells shared TCRs in eye liquid as well as synovial fluid of HLA-
B*27-positive patients with AS and AU.29 These CD8+T cells 
specifically recognise microbial (eg, YEIH protein from reactive 
arthritis-triggering pathogens) and self-antigens (eg, peptides 
from GPER1 or PRPF3 proteins) specifically within the context 
of HLA-B27. According to these findings, environmental patho-
gens may trigger autoimmunity via CD8+T cell activation in 
MHC-I-opathies, thus supporting the primary hypothesis of 
the MHC-I-opathy pathogenesis. Future research might explore 
whether HLA-B27 presentations of these peptides are affected by 
risk allotypes of ERAP1 and whether pharmacological targeting 
of ERAPs interferes with these responses.

It remains unclear why of the thousands of self-peptides in 
the immunopeptidome only a minority become immunogenic, 
while the majority remain tolerable. However, T cell autoanti-
gens often have post-translational modifications or show altered 
binding conformation.145–147

What triggers CD8+T cell self-reactivity in MHC-I-opathies 
remains unknown. The classical view is that negative selection 
in the thymus eliminates autoreactive T cells. Some self-reactive 
CD8+T cells manage to escape this filtering process and are 
reintroduced into the circulation (sometimes at high frequencies) 
but kept in check by tolerance mechanisms.148–150

Interestingly, recent work suggests that thymic regula-
tory T-cells, rather than negative selection of autoreactive T 
cells, enforce protection against autoimmunity.148 151 Here, 
the cytokine IL-23 eliminates thymic regulatory T cells in an 
IL23R-dependent manner,152 while selectively enriching IL23R-
expressing CD8+T cells.153 Moreover, there is no sharp affinity 
threshold for the recognition of MHC-peptide complex by 
TCRs, and CD8+T cells with otherwise low affinity TCRs can be 
activated by a large increase in presented autoantigen.154 155 This 
also fits with the recently proposed ‘autoimmune surveillance of 
hypersecreting mutants’ theory that links high autoantigen levels 
to T-cell autoimmunity.156 Cross-presentation of extracellular 
antigens in dendritic cells can also lead to the entry of extra-
cellular antigens into the MHC class I pathway, thereby greatly 
expanding the potential pool of immunogenic peptides. Concep-
tually, this integrates the possibility of microbial agents causing 
disease, as demonstrated for SpA, and AU.29 Virus-triggered 

Box 1  The aims of the EULAR study group on "MHC-I-
opathy"

1.	 Multidisciplinary collaboration between rheumatologists, 
dermatologists and ophthalmologists for consensus and 
standardised annotation of disease symptoms.

2.	 Detailed phenotypic evaluation by patient-reported 
symptoms/outcomes.

3.	 Integration of GWAS data of MHC-I-opathy-related diseases, 
across a larger number of existing cohorts, to facilitate fine 
mapping of the genetic basis.

4.	 Harmonisation of the nomenclature (eg, ERAP allotypes) and 
provide expert synthesis of current best practice for the study 
of key aspects of the biology in MHC-I-opathies.

5.	 Establishment of a pan-European consortium with 
standardised clinicopathological disease phenotypes from 
aim 1 and 2, (complemented by molecular data on ERAP 
and MHC-I haplotypes and possibly other biological data 
such as metagenomics to assess microbiome involvement 
and TCR-repertoire data) for improved disease classification, 
diagnostic criteria and prognostic biomarkers for prediction of 
disease progression and efficacy of (type of) therapy.

6.	 Evaluation of MHC-I-opathies in different ethnic backgrounds, 
given the massive heterogeneity within class-1 antigens.

7.	 Patient participation: involvement of patient research 
partners.
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clonal CD8+T cell responses are processed through MHC class 
I, and some of these responses are controlled by ERAP1.157

Recent technological advancements which have increased the 
sensitivity and scale of analysing immunopeptidomes of primary 
patient tissues (ideally sampled at the affected organs) as-well 
as high-throughput profiling of (auto)antigen-specific T-cell 
repertoires (ie, single-cell TCR sequencing) may help identify 
CD8+T cell-mediated disease mechanisms in MHC-I-opathies 
in greater detail.158–161

Towards MHC-I pathway therapy
This study group’s ultimate goal is to improve disease outcome 
of MHC-I-opathies. Although definite disease mechanisms need 
to be established, available clinical and molecular evidence 
allow us to outline several potential strategies. Given that 
MHC-I is considered a root cause for MHC-I-opathies, thera-
peutic targeting of antigen processing and presentation seems 
self-evident. This may be achieved by interventions aimed at 
disrupting cytokine signalling (see section IL23R and T cells) or 
strategies that facilitate restoration of the microbiome.48 Patients 
with MHC-I-opathies may have an altered microbiota,162–164 
but healthy individuals may also show microbiota compositions 
that cluster according to their HLA alleles (eg, HLA-B*27, HLA-
A*29).165 Emerging T cell-antigen discovery approaches within 
the microbiome may provide an exciting field for upcoming 
studies.166 In case of autoantigen-mediated pathology, it may be 
possible to specifically negate T cell interaction by antibodies 
or small compounds that specifically block access to MHC-I-
peptide complexes. T-cell engagement may also be blocked 
by preventing or changing the abundance of target peptide 
presentation by manipulation upstream of MHC-I, including 
the cellular proteome (eg, chemotherapy), or pharmacological 
inhibition or modulation of the proteasome, TAP or the antigen 
loading complex,167–171 although with limitations in specificity at 
the cost of potential adverse effects.

Inhibiting or, depending on the disease, enhancing the action 
of ERAP1 and ERAP2 may be a promising approach, since these 
enzymes are highly specialised for antigen presentation, and much is 
known about their structure and function to allow the development 
of inhibitors or enhancers.143 144 172 The fact that their impact on 
antigen presentation may be limited to a part of the immunopep-
tidome,173 may constitute a middle ground between single antigen 
strategies (antibodies for MHC/peptide complex) and general 
suppression of the MHC-I pathway. Most of these therapeutic 
‘options’ are still in their infancy and require translational studies 
in suitable preclinical models. Although the HLA-B*27-transgenic 
rodent models,174 have provided valuable insights into the disease 
mechanisms of MHC-I-opathies, there remains an unmet need for 
additional transgenic MHC-I models. To determine if it is possible to 
target the MHC-I pathway therapeutically in patients, these models 
should be ‘fully’ humanised and capture a broader spectrum of clin-
ical and molecular characteristics.

Mission of the EULAR study group on MHC-I-opathies
As a result of the complexity of the clinical phenotypes and the 
lack of knowledge about the underlying mechanisms of MHC-I-
opathies, international cross-disciplinary collaborations and comple-
mentary scientific expertise are urgently needed. The EULAR study 
group on MHC-I-opathies provides an international network that 
brings medical specialists, translational and fundamental scientists 
under one umbrella with the aim of cooperatively overcoming long-
standing unmet needs in the disease management and understanding 
of the biology of MHC-I-opathies.

The study group (currently >50 participants: dermatologists, 
ophthalmologists, rheumatologist, scientists and patient repre-
sentatives from >15 countries) was founded in 2020 amidst the 
COVID-19 pandemic. The global pandemic restricted initial discus-
sion to online meetings. An inaugural meeting took place in May 
2022, in Amsterdam, followed by a meeting during EULAR in June 
2022 in Copenhagen. Study group research and collaborations will 
focus on the pathophysiology of MHC-I pathway in these condi-
tions. Briefly, the study group aims are summarised in box 1 and the 
objective is to harmonise, facilitate and improve research method-
ology and terminology, study disease mechanisms more collectively; 
foster basic and translational knowledge exchange in an interdisci-
plinary fashion through meetings via symposia during EULAR meet-
ings(https://www.eular.ch/myUploadData/files/study_group_aims_​
mhc_i_opathy_for_web.pdf) and disseminate progress via social 
media (eg, an open Linked-in page for interested colleagues, https://
www.linkedin.com/groups/12722534/). To accomplish these objec-
tives, the Study Group formed several multidisciplinary task forces 
composed of clinicians, biologists and patient representatives to 
prioritise unmet research needs that would require cross-European 
collaboration. For example, one of the task forces aims to conduct 
meta-analysis of GWAS data of the MHC-I-opathies to fine map 
the MHC and identify novel risk loci in relation to clinical features. 
Another task force currently works on evaluation of a patient-
reported symptom infrastructure, which has already been success-
fully employed in COVID-19 studies.175 Although currently all work 
within the study group is contributed in kind by its members, the 
rapidly growing study group aims to apply for external funding for 
research. This will also be required to achieve more ambitious goals, 
such as the collection of biomaterials to foster innovative research 
by deep immunoprofiling (eg, T-cell repertoires, MHC-I immu-
nopeptidomes) and translational studies (eg, ERAP modulation in 
patient tissues). The EULAR study group will complement their 
scientific objectives with the organisation of interactive workshops 
and symposia connected to EULAR to exchange basic, translational 
and clinical knowledge in an interdisciplinary fashion and further 
facilitate the growth of the study group by inclusion of physicians 
and scientists active in this field.

In conclusion, the EULAR study group on MHC-I-opathies 
bridges a variety of medical scientific disciplines with the ambi-
tious joint objective to conduct an integrated investigation of 
MHC-I-opathies to discover the cause and cure for a variety of 
complex inflammatory conditions.
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