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Abstract
The work in this thesis concerns generic surrogate modelling techniques for a re-

configurable antenna based on any mechanisms. To make sure of the universality of
the generic surrogate model, several new perspectives: related to field operating and
circuit operating; feature extraction from the antenna; and reconfigurable antenna,
are proposed to be a foundation and to provide guidance for the subsequent the-
ory and applications. Additionally, the mathematical derivation of non-linear func-
tion fitting and the corresponding equivalent circuit/network is presented as the basic
theory. Furthermore, three applications to corresponding antennas are presented to
demonstrate the feasibility and effectiveness of the surrogate modelling techniques.
Specifically, the first application contains two traditional antennas. They are a chassis
antenna with two resonators and a band-notched ultra-wideband pyramidal monopole
antenna. The second application to a frequency reconfigurable UWB antenna with a
tunable notched-band is to obtain a data-driven surrogate model. The third applica-
tion to the same reconfigurable UWB antenna is to obtain a physics-based surrogate
model. In these applications, the surrogate modelling approach has many advan-
tages. The approach is reliable and efficient. It has the flexibility for widespread use
in many complicated scenarios, because of its elastic order and its adaptable weight-
ing factor. It has fewer extracted parameters with better precision.

These surrogate modelling techniques could be applied to integrate the reconfig-
urable antenna into a communication system. Furthermore, the approach could also
be helpful in the microwave area auto design. Primarily, it could combine artificial
intelligence (AI) algorithms to realize future wireless communication such as Smart
Antenna, Software Defined Radio and Cognitive Radio.

The novelty and contributions are summarized as follows: (1) This work pro-
poses a completed systematic approach, including fundamental principles, rigorous
mathematical derivation and feasible application verification. (2) The approach has
the property of generalizability to cover all frequency reconfigurable antennas. (3)
As a post-processing approach, it can convert the discrete data of CAD simulation
and VNA measurement to a surrogate model with analytical function and equiva-
lent circuit. (4) Some traditional antennas and reconfigurable antennas are taken as
examples to demonstrate that the approach is feasible, effective, and precise. (5)
The approach has the flexible ability to adapt to strict requirements and complicated
scenarios.
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Chapter 1

Introduction

1.1 Background

Two decades ago, pioneer researchers conceived of the future wireless system [1],
and many related notions were proposed, such as Cognitive Radio (CR), Software
Defined Radio (SDR), Smart Antenna (SA), Reconfigurable Antenna, and Ultra-
WideBand (UWB).

A Cognitive Radio (CR) is a wireless system with self-adaptive ability in different
conditions. At the system level, Cognitive Radio involves various aspects, as shown
in Figure 1.1, including practical sensors, cooperative sensing, enabling algorithms,
approaches, and standards [2]. Unfortunately, many related aspects generate an enor-
mous challenge to CR’s realization, such as hardware requirements, hidden primary
user problems, decision fusion, and security.

Software Defined Radio (SDR) is a technology that fulfilled CR requirements
well. Such technology is heavily weighted in favour of the software aspect. Joseph
Mitola proposed the term ’Software Radio’ in [3], whose final target was commu-
nicating with desired operation frequency, impedance bandwidth, modulation and
data rate by controlling proper software. In a software framework level description,

Figure 1.1: Various aspects related to Cognitive Radio in [2].
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Figure 1.2: A visualization frame of Software Defined Radio in [6].

Figure 1.3: Principle of a smart antenna system [7].

the concept of SDR features in many related systems, such as Software Based Ra-
dio [4], Reconfigurable Radio, Flexible Architecture Radio [5]. Figure 1.2 shows a
visualization frame of SDR in [6]. It can be seen that SDR involves Operating Sys-
tem (OS), system components, Application Program Interface (API), and application
components.

Smart Antenna (SA) is a leading technology at the physics level to maximize sys-
tem capacity, improve quality and coverage of network [8], and suppress interference
[9]. The principle of the Smart Antenna is illustrated in Figure 1.3. The antenna’s
radiation pattern can be changed to adapt to the environment. For instance, this abil-
ity can avoid directing towards the interference source to improve communication
quality, and the tunable pattern can centralize towards the desired direction to reduce
power consumption. Of course, the implementation of this functionality depends on
not only the reconfigurable ability of antennas and sensors in the hardware aspect, but
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also the related algorithms of signal processing to control such antennas and sensors
in the software aspect [7].

From a framework-scale perspective, CR is regarded as an extension of the SDR
[10], just as the SDR is the extension of the Smart Antenna. Compared with Smart
Antenna, both Cognitive Radio and Software Defined Radio are at a system level, and
their realization necessarily depends on the development of the front end. Thus, they
make requests for antenna design. Especially among such requests, a reconfigurable
antenna is the fundamental and significant one desired by all.

A reconfigurable antenna can alter its own electromagnetic properties, includ-
ing working frequency, impedance bandwidth, polarization, and radiation pattern, in
a controlled and reversible manner. The opposite of a reconfigurable antenna is a
non-reconfigurable antenna, which is also called a traditional antenna. The reconfig-
urable antenna can accommodate more complicated environments than the traditional
antenna. Thus, antenna reconfiguration offers many advantages in practical applica-
tion. For instance, in a frequency reconfigurable antenna, several different operating
frequency bands can be integrated into a single antenna. Another example is that
the pattern reconfigurable antenna can radiate its signal towards the target to reduce
the power consumption. Indeed, with the extension of reconfiguration, the applica-
tions and the benefits of reconfigurable antennas become more and more. To date,
many reconfigurable antennas have been developed within a lot of novel technolo-
gies and components in mechanical and material areas. For example, researchers
have proposed a reconfigurable frequency antenna with movable metal posts [11],
a tunable beam antenna with a simple phase shifter [12], and a reconfigurable mi-
crostrip patch antenna on tunable liquid crystal substrate [13]. At the same time,
other techniques are utilized, such as Micro-Electro-Mechanical-Systems (MEMS)
devices [14]. For the development of reconfigurable antennas, the next stage is to
integrate more functionality into one single terminal to fulfil harsh requirements in
complicated scenarios. As the essential part of a wireless system, the diversity of
reconfigurable antennas provides possibility and convenience for realising CR, SDR,
and Smart Antenna [15], [16].

Additionally, Ultra-WideBand (UWB) spectrum has always caught researchers’
attention as a communication standard, since the Federal Communication Commis-
sion (FCC) declared the frequency spectrum of 3.1-10.6 GHz as UWB communica-
tion in 2002 [17]. UWB antennas have the advantages of broad bandwidth, minia-
turized electrical size, low cost, low energy consumption and high data rate. Figure
1.4 illustrates the normalized energy consumptions of Bluetooth, UWB, ZigBee, and
Wi-Fi, respectively. Among them, the UWB technique shows the lowest power for
both transmitting and receiving. Even the normalized energy consumption of UWB
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Figure 1.4: Comparison of the normalized
energy consumption in [19].

Figure 1.5: Comparison of the transmis-
sion time versus the data size in [19].

Figure 1.6: The AI-based multi-layer network framework of the satel-
lite communication system in [20].

is less than 3% of ZigBee. Figure 1.5 plots the transmission time of 4 popular com-
munication standards in logarithmic coordinate. Compared with ZigBee, Bluetooth
and Wi-Fi, the transmission time of the UWB technique is the least with the same
data size. Even the transmission time of the UWB is less than 1% of ZigBee. Since
such tremendous benefits, UWB antennas are good platforms combined with other
techniques, such as UWB antenna with notch-band. [18].

Recently, Artificial Intelligence (AI) has become a new frontier of academic re-
search in many scientific areas. In microwave and radio frequency (RF) areas, there
are special issues from IEEE Transactions on Antennas and Propagation in 2021
[21] and from IEEE Transactions on Microwave Theory and Techniques in 2021 [22]
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devoted to such scientific topics, Machine Learning in antenna design, a communi-
cation system based on AI. Many successful AI-based applications in communica-
tion systems have been proposed, as shown in Figure 1.6. With the development of
Computer-Aided Design (CAD) and Vector Network Analyzer (VNA), the antenna
design and measurement have been improved dramatically during the past twenty
years, so the design and fabrication of traditional antennas do not pose any difficul-
ties. The increasing usage of CAD and VNA results in a new trend of antenna design,
based on combination with new techniques from computer algorithms. AI algorithms
have widespread potential applications in the microwave area, because of the design
dependence on the computer. Moreover, new techniques in AI, such as Deep Learn-
ing, may have the capacity to “learn” from pre-existing antennas to optimize further
and to realize the auto design in the microwave and RF [23].

1.2 Challenges

Several challenges arise with further research and become a hot topic. Undoubtedly,
the successful resolution of such challenges will promote tremendous progress in
microwave and communication areas.

1.2.1 Challenges from Ultra-Wide Band

Due to its broad spectrum coverage, the UWB spectrum is easily affected by different
interfering frequency bands shown in Figure 1.7. For this issue, the effective solution
is to add a notched band in the UWB spectrum to avoid interference from the spe-
cific frequency band. For the interference from multiple frequencies simultaneously,
the UWB antennas within dual, triple, quadruple, and quintuple notched-bands are

Figure 1.7: A fishbone diagram model of the relationship between UWB
positioning accuracy in [24].
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proposed [25], [26]. From the perspective of filter, this solution is also regarded as
integrating the filtering functionality into the original UWB antenna [27]. The final
response of the filtering UWB antenna is also the UWB spectrum with a notched
band. The interference problem can be solved well by integrating notched-band or
filtering functionality into the UWB antenna, but a new challenge arises. The system
response of a notched-band UWB antenna is a broad working band except for one
or several narrow stop-band(s). Therefore, it requires that the surrogate modelling
technique must be able to accurately recognize the very narrow notched band from
the UWB spectrum. That is the new challenge from the UWB antenna with a notched
band.

1.2.2 Challenges from Reconfigurable Antenna

Many reconfigurable antennas based on various mechanisms provide more choices.
Simultaneously, the diversity of their mechanisms brings a tremendous challenge to
integrating the reconfigurable antennas into a communication system. The solution
is to find an efficient generic description that could cover all kinds of reconfigura-
tions, so the describable diversity will no longer be a problem. However, the generic
description is difficult to find, because it is not just applicable to the electromag-
netic area but also requires involving all possible physical areas, such as mechanical
structure and material physics.

In order to describe a reconfigurable antenna, a surrogate modelling method is
the best solution. The surrogate model is a simple model extracted from the com-
plicated simulation model. Thus, it can replace the expensive original simulation
model by approximating the input variables and the output responses [28]. There
have been many successful surrogate modeling techniques for non-reconfigurable an-
tennas, such as Genetic Algorithm [29], Vector Fitting [30], Passive Macromodeling
[31], and Space Mapping [32], [33] in Figure 1.8. However, these surrogate models
are unavailable for reconfigurable antennas. Thus, a generic description based on the
surrogate modelling method is needed.

Among the surrogate models, an analytical function in mathematics is the best
method to substitute the original reconfigurable antenna. The analytical function
can continuously describe and quantify the antenna properties, such as antenna re-
sponses, spatial radiation pattern, and polarization. Additionally, the analytical func-
tion has fewer extracted features than other types of surrogate models. The extracted
features/parameters could rebuild the antenna properties. Therefore, fewer extracted
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Figure 1.8: Illustration of the fundamental notation of Space Mapping Method in [34].

features/parameters mean higher model efficiency. The direct method to get the ana-
lytical function is to fit the discrete data from Computer-Aided Design (CAD) simu-
lation or Vector Network Analyzer (VNA) measurement. The result of the fitting pro-
cess is a fitting function, which is an analytical function to approximate the antenna
property. During the process of fitting the system response to obtain the completed
analytical function of frequency, the complex number field property of the system
responses needs to be considered. If only considering the response magnitude, the
outcome without the phase information is meaningless for the subsequent analysis
and application. On this basis of the analytical function, the transforms and oper-
ations in mathematics are available, so it is possible to integrate the reconfigurable
parameters into the analytical function as the input variables to obtain a surrogate
model of the reconfigurable antenna.

The whole process, including an immense amount of details, is a systematic
model, which is the challenge.

1.3 Objective

The primary object of this work is fitting analytical functions, extracting features
from a complicated reconfigurable antenna, and obtaining a proper surrogate model
to overcome the challenges described above. The study is classified into several areas
as follows:

1. Mathematical derivation of function fitting and parameter extraction from sys-
tem response of electromagnetic devices.

2. Function fitting and parameter extraction for traditional antenna, demonstrated
by the applications to a chassis antenna and a UWB antenna with fixed notched-
band.



8 Chapter 1. Introduction

3. Equivalent circuit and network analysis after obtaining the analytical rational
function.

4. Function fitting and parameter extraction for reconfigurable antenna and ob-
taining the corresponding surrogate model, revealed by the application to a
reconfigurable UWB pyramidal monopole antenna with tunable notched-band.

5. A physics-based surrogate modelling approach of reconfigurable antenna com-
bining network analysis method, verified by a reconfigurable UWB antenna
with tunable notched-band.

1.4 Novelty and Contribution

The novelty and contributions of this work are summarized as follows:

1. This work proposes a completed systematic approach, including fundamental
principles, rigorous mathematical derivation and feasible application verifica-
tion.

2. The approach has the property of generalizability to cover all frequency recon-
figurable antennas.

3. As a post-processing approach, it can convert the discrete data of CAD simula-
tion and VNA measurement to a surrogate model with analytical function and
equivalent circuit.

4. Some traditional antennas and reconfigurable antennas are taken as examples
to demonstrate that the approach is feasible, effective, and precise.

5. The approach has the flexible ability to adapt to strict requirements and com-
plicated scenarios.

1.5 Thesis Outline

The thesis consists of nine chapters. A brief introduction to the background, chal-
lenges, objective, novelty and thesis layout is presented in Chapter 1.

In Chapter 2, the reviewed literature about UWB antennas, reconfigurable anten-
nas and surrogate models are reported and summarised.

In Chapter 3, some new perspectives of field, circuit, feature extraction and re-
configurable antenna are discussed. Such perspectives are guidelines for this research
work.
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In Chapter 4, the mathematical derivation of precise rational function fitting
specifically used in microwave and RF is presented.

In Chapter 5, several methods converting rational function to the equivalent cir-
cuit are proposed. An approach combining rational function fitting with the network
analysis method is also presented to obtain an equivalent network from scattering
parameters of the multi-port system.

In Chapter 6, two applications of parameter extraction from traditional antennas
are performed. One is a chassis antenna with two coupling elements, and the other is
a UWB pyramidal antenna with a fixed notched band.

In Chapter 7, an application obtaining a proper surrogate model of the reconfig-
urable antenna is discussed. It is a reconfigurable UWB pyramidal monopole antenna
with a tunable notched band.

In Chapter 8, an application obtaining a physics-based surrogate model within
equivalent network analysis of a reconfigurable antenna is discussed. It is a reconfig-
urable UWB antenna with a tunable notched band.

Finally, Chapter 9 summarises this thesis and presents some promising academic
topics in future.
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Chapter 2

Literature Review

2.1 Ultra-Wide Band Antenna

Ultra-WideBand (UWB) antennas have the benefits of broad bandwidth, low cost,
low energy consumption and high data rate. For example, in 2001, IEEE 802.15, bit
rates up to 500 Mbps [26] were specified as a new standard on a physical layer of the
UWB spectrum. Based on this, many UWB antennas have been proposed [35]. At the
same time, the UWB antenna is a good platform for combining other techniques, such
as Multiple-Input Multiple-Output (MIMO) and notched band. In order to further
improve data rate, Multiple-Input Multiple-Output (MIMO) technology is usually
utilized on UWB antenna [36].

However, due to its broad spectrum, the UWB antenna is easily interfered with
by other electromagnetic signal sources. In order to avoid such interference, one of
the solutions is to etch a slot on the UWB antenna to obtain a notched band. There
are many kinds of slots [37], [38], [39], such as U-shape slot in Figure 2.1, L-shape
slot in Figure 2.2, circle-shape slot in [40], and complicated slot in Figure 2.3.

To obtain multiple notched bands in one single antenna to eliminate interference

Figure 2.1: UWB antenna with U-shape
slot in [18].

Figure 2.2: UWB antenna with L-shape
slot in [25].
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Figure 2.3: UWB antenna with compli-
cated slot in [26].

Figure 2.4: Geometry of UWB antenna
with parasite branches in [41].

Figure 2.5: Geometry of the UWB band-
notched antenna with switches in [46].

Figure 2.6: VSWR of the UWB band-
notched antenna with switches in [46].

from several frequency bands, the UWB antenna is etched with several slots [42],
[43].

In addition, other approaches to obtaining notched-band in the UWB antenna in-
clude parasitic strip, filtering integration, and defected ground structure (DGS) [41],
[44], [45]. In [41], parasite branches are used to generate the notched band in the
UWB antenna, its geometry shown in Figure 2.4.

Furthermore, the passive electronic elements, including switches, PIN diodes,
varactors and MEMS, are mounted on slots in UWB antennas to obtain the UWB
spectrum within switchable or tunable notched-band. Of course, they belong to the
reconfigurable antenna from a reconfiguration point of view.

In [46], a band-notched UWB monopole antenna has L-shape slots loaded on
the radiating part and U-shape slot loaded on the ground part, shown in Figure 2.5.
Three switches are mounted in the slots, so this antenna can choose different notched
bands. Its Voltage Standing Wave Ratio (VSWR) is shown in Figure 2.6, where it
can be clearly seen that this antenna has four states controlled by these switches.



2.1. Ultra-Wide Band Antenna 13

Figure 2.7: Geometry of the
UWB band-notched antenna

with varactors in [48].
Figure 2.8: VSWR of the UWB band-notched antenna

with varactors in [48].

Figure 2.9: Geometry of the UWB antenna with circle-slots in [49].

In [47], a band-notched UWB antenna with varactors is proposed. In [48], the
band-notched UWB antenna has four varactors in slots to obtain tunable notched
bands. Its geometry is shown in Figure 2.7. From its response in Figure 2.8, it can
be seen that the two notched bands of this antenna could be changed by tuning the
value of varactors.

In [49], four circle-shaped slots are etched on the monopole antenna, shown in
Figure 2.9. It has four notched bands to block the interference, and its VSWR is
plotted in Figure 2.10. Each narrow notched band could be associated with a simple
equivalent circuit consisting of resistor, capacitor and inductor. Thus, the equivalent
circuit of circle-slots in this antenna is plotted in Figure 2.11. The equivalent circuit
method is very effective in analysing the antenna. In Chapter 5, equivalent circuit
methods and equivalent network analysis are presented.
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Figure 2.10: VSWR of the UWB antenna with circle-slots in [49].

Figure 2.11: Equivalent circuit of the circle-slots part in [49].

2.2 Reconfigurable Antenna

A reconfigurable antenna has the ability to change an individual radiator’s funda-
mental operating characteristics, such as working frequency, impedance bandwidths,
radiation pattern and polarization. From this definition, it can be seen that the re-
configurable antenna could be any kind of antenna, for example, microstrip antenna
[50], band-notched UWB antenna [46], [47], [48], cavity-backed slot antenna [11],
and Vivaldi antenna [51].

The major types of reconfigurable antennas, categorized according to their recon-
figurable characteristics, are frequency reconfiguration, radiation pattern reconfigu-
ration, polarization reconfiguration, and hybrid reconfiguration. The original pur-
pose of the reconfigurable antennas would be to independently change each of their
individual fundamental characteristics to fulfil various requirements. In fact, it is a
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Table 2.1: Common Types of Reconfigurable Antenna Techniques.

Type Implemented Component or Material

physical change structural alteration
material change ferrites, liquid crystal
electrical change RF-MEMS, PIN-diode, varactor
hybrid techniques several techniques above

Figure 2.12: Mechanical reconfigurable antenna with rotation in [53].

challenge to obtain the desired change in antenna functionality without altering other
characteristics [52].

The antenna reconfiguration can be obtained by the change of current distribu-
tion, the change of the antenna’s physical structure, the change of the antenna radi-
ating edges, or the change of the feeding network. Each parameter of the antenna
characteristics can mutually affect others. Thus, all the antenna characteristics have
to be analyzed simultaneously during the design process. To integrate new dynamic
parameters into the initial traditional antenna, many factors such as complicated fab-
rication procedures, feedback circuitry, and control line design, should be considered.

In general, the reconfiguration is realized through the widespread techniques,
which are categorized into four types, listed in Table 2.1.

2.2.1 Mechanical Reconfiguration

Antennas with mechanical reconfiguration change the effective electrical length of
the resonant antenna or the resonant part by mechanical methods, so that the opera-
tion frequency would be changed. Of course, these mechanical methods often make
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Figure 2.13: Different States of
IPMC actuator in [14].

Figure 2.14: Resonant frequency with different
states of IPMC actuator in [14].

Figure 2.15: Reconfigurable cavity-
backed slot antenna using movable
metal post in [11]. (a) 3-D view. (b)
Side view at xz-plane. (c) Side view

at yz-plane.

Figure 2.16: Antenna response with tunable
metal post in [11].

use of electronic components to accomplish.
In [53], the primary radiation part of the reconfigurable antenna can be rotated,

as shown in Figure 2.12, so that it can alter between two working states through
rotation.

In [14], Ionic Polymer Metal Composite (IPMC) is used as an actuator, shown in
Figure 2.13. The actuator can change its bend degree by tuning its bias voltage, its
result shown in Figure 2.14. This reconfigurable antenna makes use of a bias circuit
to change the shape of resonant metal.

In [11], a reconfigurable full-metal cavity-backed slot antenna is proposed, shown
in Figure 2.15. A movable metal post controls its resonant frequency in Figure 2.16.
The equivalent circuit model in Figure 2.17 clearly indicates the reconfigurable an-
tenna’s mechanism and the movable post’s effect.
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Figure 2.17: Equivalent circuit model of the reconfigurable slot antenna in [11].

Figure 2.18: Geometry of patch antenna with
liquid crystal substrate in [13]. (a) Rectan-
gular patch antenna. (b) Theoretical cavity

model.

Figure 2.19: Resonant frequency as
function of substrate thickness when εz

changed in [13].

2.2.2 Material Reconfiguration

As an essential part of antennas, the change of substrate material could affect the
antenna characteristics. Therefore, this property is utilized to design a reconfigurable
antenna with material changes. For example, a ferro-electric material with change-
able relative permeability [54], [55] and a ferrite material with changeable relative
permeability [56], [57] are popularly applied as substrate materials of reconfigurable
antennas. However, the notable drawback of the material reconfigurable is the high
cost.

In [58], ferroelectric thin-film technology is used for tunable microwave devices,
such as phased array antennas. In [59], barium strontium titanate (BST) thin film
technology is used in a tunable filter and a phase shifter.

Additionally, the liquid crystal has been used as substrate material recently. In
[13], a rectangular microstrip patch antenna utilizes liquid crystal as its substrate ma-
terial, shown in Figure 2.18. Because the molecule orientations of liquid crystals are
directional, the permittivity of liquid crystals is a tensor in physical expression. That
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Figure 2.20: Resonant frequency as
function of substrate thickness when ε⊥

changed in [13].

Figure 2.21: Antenna resonant fre-
quency versus bias voltage in [13].

results in different permittivity with bias voltage on a different axis. The relations
among bias direction, substrate thickness, and resonant frequency are shown in Fig-
ure 2.19 and Figure 2.20. The final dynamic frequency range of the reconfigurable
antenna with tunable bias voltage is shown in Figure 2.21.

2.2.3 Electrical Reconfiguration

Antennas with electrical reconfiguration are loaded with electronic components, in-
cluding switch, PIN diode, GaAs FET, MEMS, and varactors. These electronic com-
ponents change the effective electrical length or current path so as to obtain the origi-
nal antenna’s reconfiguration. In addition, these components have their own practical
properties, which could be suitable for different scenarios.

A switch is used to obtain alternation among several specific frequency bands or
several specific radiation directions. That means the reconfiguration with switches is
not continuous but discrete. In [60], two silicon photo switches in a dipole antenna
are used to alter the length of dipole arms.

A diode is commonly used as a switch. Due to extra forward bias DC to control
RF current, its power efficiency is low. A PIN diode is a popular product widely used
in an RF circuit because of its low cost. In [51], there are many PIN diodes mounting
on a Vivaldi antenna, shown in Figure 2.22. It can be seen that the initial Vivaldi
antenna is cut into several pieces to configure enough independent bias circuits for
each PIN diode. That causes big trouble during design and fabrication since it leads
to fragility and vulnerability when used.

Because FET has the capacity of voltage-controlled-current, it has the benefit
of low power consumption without biased current. Nevertheless, FET has poorer
linearity and higher loss than PIN diode and varactor. GaAs FET is the popular
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Figure 2.22: Geometry of the reconfigurable Vivaldi antenna in [51].
(a) Antenna design diagram. (b) The practical antenna.

product used in a reconfigurable antenna. In [61], two FET components are loaded
into a slot to change the reactance.

A varactor diode can offer continuous tunable current, while its disadvantage is
poor linearity. In [62], a dual-band reconfigurable slot antenna is designed to load a
varactor.

MEMS device has the advantages of very low loss, wide bandwidth and low
power consumption. However, at the same time, its disadvantages are higher op-
erating voltage, higher cost and lower reliability than other semiconductor devices
[16].

Negative impedance converters are developed in frequency reconfigurable anten-
nas, in [15], [63].
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Figure 2.23: Configuration of the pattern
reconfigurable Vivaldi antenna in [64].

(a) Top view. (b) Bottom view.

Figure 2.24: Sample graphene nanoplates
and the resistance test results of graphene

nanoplate pad in [64].

Figure 2.25: Schematic of the
pattern reconfigurable antenna in

[12].

Figure 2.26: Equivalent circuit model of mi-
crostrip line in the pattern reconfigurable antenna

in [12].

Additionally, other electronic components associated with new materials are de-
veloped. In [64], the tunable resistors based on graphene nanoplate are used in the
Vivaldi antenna to obtain reconfiguration. The antenna configuration is shown in
Figure 2.23 and the tunable resistor with bias voltage is shown in Figure 2.24.

Besides the frequency reconfiguration, the electronic components are also used
for pattern reconfiguration. In [12], graphene is used in a radiation pattern reconfig-
urable antenna. The antenna schematic is shown in Figure 2.25. The equivalent cir-
cuit model of its crucial microstrip line is shown in Figure 2.26. With the illustration
of the equivalent circuit, its reconfiguration mechanism can be easily understood.

2.3 Surrogate Model

Simulation using Computer-Aided Design (CAD) has been widely used to design
and fabricate complicated systems. The CAD simulation can predict the system per-
formance, so researchers and engineers can easily optimize the design and fabricate
the product. There has been much commercial software in microwave and RF areas,
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Figure 2.27: Convergence rates of Genetic Algorithm Model for the
best out of 20 independent runs in [29].

including CST, HFSS, Sonnet, FeKo, Maxwell Eminence, Pspice, IE3D, Momen-
tum, and Artemis Modal. They are based on different algorithms, including Finite-
Difference Time-Domain (FDTD), Finite-Integration Time-Domain (FITD), Method
of Moments (MoM), Finite Element (FE), Boundary Element Method (BEM), Spec-
tral Method (SM), Transmission Line Method (TLM), Mode-Matching Method (MM),
and Transverse Resonant Method (TRM). Therefore, suitable software with proper
algorithms will simulate accurately and quickly for different conditions and require-
ments.

With the capacity of computers increasing continuously, computers will take on
more complicated tasks for simulation. Even so, it is still impractical to model a full-
wave simulation with every detail and to obtain overall relationships between all the
parameters and the system performance [65]. A full-wave simulation is to calculate
the EM field of the whole space using Maxwell’s Equations. In the microwave area,
the full-wave simulation of a large-scale complex system is always regarded as a
full-wave high-fidelity simulation. However, the full-wave simulation needs to be
reduced and simplified considering the time cost of practical design.

An effective way to reduce the computational runtime is to utilize surrogate mod-
els, also named approximation models [66]. The surrogate model is a simple model
extracted from the complicated simulation model. Thus, it can replace the expen-
sive original simulation model by approximating the input variables and the output
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responses [28]. The surrogate model could also realize electromagnetic design opti-
mization [67], [68], [69].

The quality of the surrogate modelling depends on the computational runtime
and the computer’s capability. Just as shown in Figure 2.27, the approximation per-
formance of the Genetic Algorithm Model is better with longer runtime. Various
applications based on different physical mechanisms are suited for different surro-
gate models.

There are many popular surrogate modelling techniques, such as Genetic Algo-
rithm Model [29], Neural Network Model [70], Space Mapping, Vector Fitting [30],
and Passive Macromodeling [31], [71].

Figure 2.28: Illustration of Space Mapping in [72].

2.3.1 Space Mapping

Space Mapping (SM) is one of the most popular optimization techniques as a surro-
gate model in microwave engineering. In 1994, SM was first proposed in [72]. The
foundation of SM based on multi-dimensional continuous space is that the continu-
ously changed input variable leads to the continuously changed function’s output, as
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Figure 2.29: General Space Mapping flow chart in [34].

Figure 2.30: Linking companion coarse (empirical) and fine (EM)
models through a mapping in [34].

shown in Figure 2.28. In order to improve the approximation precision, an iterative
process is used, as shown in Figure 2.29.

SM technique is meaningful to obtain a linkage between coarse (empirical) model
and fine (EM) model, shown in Figure 2.30. In particular, an equivalent circuit model
as a coarse model is significant for system analysis in microwave and RF. The equiv-
alent circuit model will help to reduce the difficulty, using circuit theory rather than
full-wave EM analysis. Unfortunately, precise equivalent circuit models are not so
easy to obtain from many systems, particularly broadband antenna [73] and substrate
integrated structure [74]. Another issue for SM is the convergence of the iteration
process. Because the mathematical space of SM is a multi-dimensional continuous
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Figure 2.31: Derivation of Space Mapping in [32].

Figure 2.32: Flow diagram of the Aggressive Space Mapping (ASM) algorithm in [32].

space, the extreme value problem of the performance function with all extracted pa-
rameters is complicated even in a very tiny space. It causes the convergence issue,
leading to the iterative process taking a long runtime without finding a good result
with acceptable precision.

SM has been successfully utilized in many applications of microwave and RF,
including filter [72], [75], [76], [33], [77], impedance transformer [34] , and antenna
[78], [79], [80].

With the development of the SM technique, the concept of parameter extraction
(PE) is mentioned in SM and highlighted gradually, shown in Figure 2.29. Parameter
extraction is significant for Artificial Intelligence, which has become a new trend and
a hot topic in scientific research.
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Figure 2.33: The first decade of Aggres-
sive Space Mapping (ASM) evolution in

[32].

Figure 2.34: The second decade of Ag-
gressive Space Mapping (ASM) evolu-

tion in [32].

SM has become one of the most widespread surrogate models because many
other models are derived from the original SM algorithm, shown in Figure 2.31.
It can be seen that the neural network could combine with the SM method. Among
them, Aggressive Space Mapping (ASM) [81] is a successful derivation, and it is still
developing. Figure 2.32 illustrates the difference between SM and ASM. In [32], the
evolution history of ASM theory and applications are summarized in Figure 2.33 and
Figure 2.34.

2.3.2 Passive Macromodeling

A simulation model on the computer containing all details of the large-scale sys-
tem is impossible and unnecessary. The Macromodeling based on several extracted
important parameters enables a feasible and effective simulation. The Marcomodel
is a reduced-complexity behavioural description of a system or a collection system
[71]. In other words, the Macromodel as an approximation method has to neglect
some unimportant aspects of the system. Many approaches are derived from Macro-
model, such as White-box Macromodeling, Gray-box Macromodeling, and Black-
box Macromodeling.

Figure 2.35 shows the detailed Macromodeling flow based on model order reduc-
tion. The flow begins with the CAD data, which contains all geometry and material
information of the overall system. Next, an electrical or electromagnetic system is
configured by these CAD data as interface ports, so that a large-scale circuit is es-
tablished with appropriate boundary conditions. At the same time, the differential
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Figure 2.35: Macromodeling flow chart based on model order reduction in [71].

Figure 2.36: Macromodeling flow chart based on computed re-
sponses by full-wave solvers in [71].

algebraic equations (DAEs) or the ordinary differential equations (ODEs) are easily
obtained using Maxwell’s equations and Kirchhoff’s Laws. Actually, the large-scale
circuit can be equivalent to the DAE/ODE through standard modified nodal analy-
sis (MNA). At this stage, both the circuit and the equations are large-scale, which
could be compressed to reduce the size and complexity through model order reduc-
tion (MOR) while preserving its main input-output characteristics. The last step is to
simulate the exported data using an external solver.

In [71], the second Macromodeling flow based on full-wave solvers is presented
in Figure 2.36. It also begins with the CAD data, which contains all geometry and
material information of the overall system. These CAD data configure an electrical
or electromagnetic system as interface ports. From this data system, the transient



2.3. Surrogate Model 27

Figure 2.37: Macromodeling flow chart based on measurement responses in [71].

responses in the time domain or the system responses in the frequency domain can
be obtained, which is different from the previous flow process. Actually, the transient
responses and frequency responses are regarded as the same, because they could
be mutually converted to each other through Fourier Transform or Inverse Fourier
Transform. And then, through a fitting method, the rational macromodel can be built
from these responses in the time domain or frequency domain. Based on the property
of rational functions, the rational macromodel could connect to an external solver.
The rational macromodel is so significant that a state-space model, passive model,
and equivalent netlist model could be obtained directly from it. Of course, a pole-
residue analysis can be done from the rational macromodel without going through a
state-space realization.

The last Macromodeling flow is indeed a black box in Figure 2.37. In this flow
process, the start point is from the measurement data of the practical hardware. The
most common method is using Vector Network Analyzer (VNA) to export a set of
the scattering parameters data of practical hardware in the frequency domain. An-
other method is using Time-Domain Reflectometry (TDR) triggered by an excitation
pulse to record the transient responses of the practical hardware. The transient re-
sponses can be converted to frequency responses, or vice versa. And then, from
these responses in the time or frequency domain, the essential rational macromodel
can be extracted by a fitting method. The subsequent flow process is the same as the
counterpart in Figure 2.36.
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2.4 Summary

From this background study, several conclusions are drawn, and some issues are ex-
posed. In the field of ultra-wideband antennas, it shows that many kinds of UWB
antennas are available in the current literature. The UWB antenna with a notched
band can avoid interference. However, it is difficult to extract features describing the
antenna system, due to its broad working band with one or several narrow notched
band(s). Thus, a precise surrogate modelling technique is required to accurately
recognize the narrow notched band from the UWB spectrum. In reconfigurable an-
tennas, many reconfiguration mechanisms are used to design the antenna. Compared
with traditional antennas, the significant advantage of the reconfigurable antenna is
its tunable performance. A proper surrogate model is required to connect the signal
processing and practical antenna parts. Furthermore, due to the diversity, the sur-
rogate model must be more generic to cover all kinds of reconfigurable antennas.
In the field of surrogate models, several techniques are presented. However, none
of them could be applied specifically in a reconfigurable antenna. Such surrogate
modelling techniques are essential to integrating the reconfigurable antennas into a
communication system. Addressing the above issues is the main objective of this
PhD study.
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Chapter 3

New Perspectives

In order to address such existing challenges mentioned in Chapter 1, new perspec-
tives are proposed as the principles in the thesis, which is the starting point of this
work and provides research direction. This chapter is the guideline of the whole
work. The embodiment of such new perspectives are in the subsequent chapters, in-
cluding analytical function fitting derivation in Chapter 4, equivalent circuit/network
techniques in Chapter 5, and surrogate modelling applications in Chapter 6, Chapter
7 and Chapter 8.

3.1 Field & Circuit

Field and circuit are two common perspectives to analyse electromagnetic systems.
The field perspective is embodied in the full-wave electromagnetic analysis based

on Maxwell’s Equations. Over the last two decades, a lot of CAD software has been
developed to facilitate such analysis. However, due to the large-scale and compli-
cated structure, the simulation of the EM system related to the field takes enormous
computer resources and long runtime, since the EM information in the total space
has to be calculated.

Circuit operating uses the equivalent circuit or transmission line to simplify and
reduce the full-wave EM system. The basic circuit theory is Kirchhoff’s Voltage/Current
Laws rather than Maxwell’s Equations, because the circuit operating is more acces-
sible and takes less runtime. Many basic books about microwave engineering [82]
mention it and explain it clearly. It is worth noting that there are two limited condi-
tions in the circuit operating. One is that the circuit operating works at low frequen-
cies. The other is that the circuit dimensions are small relative to the wavelength.
Both conditions require that the physical size of the EM system is small enough, so
that the phase delay from one point in the circuit to another could be negligible [83].

For such an issue with broadband, a novel approach could obtain a rational func-
tion in the frequency domain to describe the system response.
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The function of frequency describing the EM system performance could extend
from a constant frequency to a frequency band, so that the function could describe the
system with broadband. Additionally, if the function is in the complex domain, the
phase information of the EM system could be expressed accurately. Thus the phase
delay of a large-scale system will not be an intricate issue. Finally, the analytical
function could be easily converted to the equivalent circuit, which is essential and
valuable during design and analysis. Such examples and benefits will be shown in
Chapter 5 and Chapter 8.

3.2 Feature Extraction from Antenna

In the last decade, Artificial Intelligence (AI) has become a new frontier of academic
research and has generated a lot of successful processes in many areas, including
machine perception, computer vision, and speech recognition. It also attracts re-
searchers’ attention in microwave and radio frequency (RF) areas. In 2021, there
are special issues from IEEE Transactions on Antennas and Propagation [21] and
IEEE Transactions on Microwave Theory and Techniques [22] to devote such scien-
tific topics: Machine Learning in antenna design and communication system based
on AI.

In AI algorithms, feature extraction is a significant notion. How to extract the
features from the microwave system is a critical first step. A good feature extraction
should contain two points. The first one is that the extracted features could include
all or most of the system performances. In other words, using the extracted features
could almost construct the original EM system. The second one is that the number
of extracted features should be as few as possible. In order to evaluate the extracting
efficiency, a compression ratio, which is the ratio between the number of extracted
features and the number of original discrete data, is used.

3.3 Reconfigurable Antenna

A reconfigurable antenna can alter its own electromagnetic properties, including
working frequency, impedance bandwidth, polarization, and radiation pattern, in a
controlled and reversible manner [52]. The controllable components, such as me-
chanical actuators, tunable materials, RF switches, varactors and MEMS, are inte-
grated into the original traditional antenna to provide a dynamic response.

Using the mathematical expression to describe the above concept is a new per-
spective on the reconfigurable antenna. For a traditional antenna, the observable
response Ȟ(s) could be approximated by an analytical fitting function H(s). It is a



3.4. Summary 31

function of the only input variable, frequency (s or f ). For a reconfigurable antenna,
the additional variables (p1, p2, · · · ), named the input dynamic ranges of reconfigura-
tion, are integrated into the response function. The additional variables (p1, p2, · · · )
leads that the input and output space has additional dimensions. The response func-
tion of the reconfigurable antenna becomes H(s, p1, p2, · · · ), so it can display clearly
the relationships between the antenna responses and the reconfigurable parameters.

Strictly speaking, H(s) only represents the total responses of frequency without
any spatial distributional information. To describe the pattern reconfigurable an-
tenna, the radiation pattern of the traditional antenna could be denoted by R(s, θ, φ).
Likewise, with the integration of input dynamic ranges (p1, p2, · · · ), the new radia-
tion pattern becomes R(s, θ, φ, p1, p2, · · · ). The mathematical form shows clearly the
relationship between the radiation pattern and the input dynamic ranges.

Furthermore, the response characteristic in detail should be taken into account.
For example, the output of H(s) is in a complex field, and R(s) is a 2-dimensional
complex function.

To sum up, the reconfiguration extends the dimensions of the input variables in
mathematics.

3.4 Summary

Some perspectives have been developed as principles to guide the following research
work, which is classified into two parts: theory and applications. The theory part
contains the analytical function fitting in Chapter 4 and equivalent circuit methods
and equivalent network analysis in Chapter 5. Chapter 4 is to extract the analyti-
cal response function through the fitting method. Chapter 5 converts the analytical
function to equivalent circuit topology. The second part includes the application to
traditional antennas in Chapter 6, a data-driven surrogate modelling approach of a
reconfigurable antenna in Chapter 7, and a physics-based surrogate modelling ap-
proach of a reconfigurable antenna in Chapter 8. It is the practical application and
verification of the theory. Both the theory part and the application part are embodi-
ment and realization of the new perspectives in this chapter.
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Chapter 4

Function Fitting

In this chapter, an analytical function is obtained from the discrete numerical data of
the EM system response through the fitting method. A mathematical procedure for
finding the optimal fitting function to a known set of data is to minimize the sum of
the squares of the offsets between the known data set and the fitting function. During
this procedure, the offset is named residuals. The evaluation criterion is "to minimize
the sum of the squares of the offsets", which the name Least Square Method comes
from.

The linear least squares fitting technique is the simplest and most commonly
applied form of linear regression. It provides a solution to the problem of finding the
best fitting polynomial function through some data, experiments, or observations.
However, for a nonlinear function fitting to several unknown parameters, the linear
least squares method must cooperate with an iterative process to achieve the accurate
solution.

These principles and formulas in mathematics are basic and common, which
could be found in previous research [84]. Based on these, extension from a real
field to a complex field is derivated step by step in this thesis. Finally, a generic ap-
proach, Rational Fitting with Weighted Iteration (RFWI), is developed to specifically
obtain analytical rational function in the complex field for microwave system. It is
the theoretical foundation of subsequent work in this thesis.

4.1 Statistical Method

The Least Square Method is most famous as a fitting method to obtain an analytical
function. In this thesis, polynomial functions and rational functions fit in both real
and complex fields based on the least square method. To simplify the thesis structure,
the general formulas of rational function fitting are shown in this chapter. At the same
time, the basic formulas are in the Appendix A.

In the microwave area, the function in the complex field is essential since har-
monic electromagnetic field, electronic components (such as capacitors, inductors),
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and reflection coefficient are always expressed as complex functions. The rational
function in a complex field is chosen as the target function of the fitting.

4.1.1 Rational Function in Real Field

In mathematics, a rational function is also named a rational fraction. Because it is
a non-linear function, the least square method could not obtain an accurate fitting
function. Luckily, it is still possible to optimize this problem by linearizing the non-
linear function or by an iterative procedure. In the following, a simple linearizing
approximation is presented. With the subsequent iterative procedure, it will lead to a
precise solution.

I. (m, n)-order real rational function (General Expression)
From the basic formulas in Appendix A, it can be seen that with the higher order

of the rational function, the unknown parameters become more and the final matrix
equation becomes larger. The final matrix equations, such as Equation (A.12), Equa-
tion (A.16), Equation (A.20), are still regular. Based on the same process and such
regulation, the general formula with arbitrary order in the rational function can be
derived,

Y ≈ Y f =
Xm + b1Xm−1 + · · ·+ biXm−i + · · ·+ bm

a1Xn + a2Xn−1 + · · ·+ a jXn+1− j + · · ·+ an+1

=

Xm +
m∑

j=1
b jXm− j

n+1∑
j=1

a jXn+1− j

(4.1)

where Y is the observable output, Y f is the output of the fitting function, and X is
the observable input variable. In the fitting function, the unknown parameters in
denominator polynomial and in numerator polynomial are a j(1 ≤ j ≤ n + 1) and
bi(0 ≤ i ≤ m), respectively. The orders of denominator polynomial and numerator
polynomial are n + 1 and m, respectively. In order to keep the uniqueness of the
rational function, the coefficient of Xm in numerator polynomial is set 1 (or b0 = 1).

To display the derivation of each parameter in detail, the expectation of the
squared operator in statistics is used here. The expectation of the squared residual,
labelled as e, is
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e =E[(Y
n+1∑
j=1

a jXn+1− j − Xm −

m∑
j=1

b jXm− j)2]

=E[Y2(
n+1∑
j=1

a jXn+1− j)2 + X2m + (
m∑

j=1

b jXm− j)2

− 2XmY
n+1∑
j=1

a jXn+1− j − 2Y(
n+1∑
j=1

a jXn+1− j)(
m∑

j=1

b jXm− j) + 2Xm
m∑

j=1

b jXm− j]

(4.2)
The least squares method is to find the optimal parameters by minimizing the

expectation e. The fitting function contains m + n + 1 unknown parameters, which
are (a1, · · · , ai, · · · , an+1, b1, · · · , b j, · · · , bm). Thus, there are m + n + 1 gradient
equations, which are e on their partial derivatives, respectively. By setting each gra-
dient equation to zero, a group of equations composed of the unknown parameters is
obtained,



0 =
∂e
∂ai

= E[2Xn+1−iY2
n+1∑
j=1

a jXn+1− j − 2Xm+n+1−iY − 2Xn+1−iY
m∑

j=1
b jXm− j],

(1 ≤ i ≤ n + 1)

0 =
∂e
∂bi

= E[2Xm−i
m∑

j=1
b jXm− j − 2Xm−iY

n+1∑
j=1

a jXn+1− j + 2X2m−i],

(1 ≤ j ≤ m)

(4.3)
The partial equation group can be expressed as the matrix equation,

A · Γ = B (4.4)

where the unknown parameters (ai, b j) are spliced to form a new (m + n + 1)-
dimensional vector Γ as,

ΓT = [a1, a2, · · · , an+1, b1, b2, · · · , bm]. (4.5)

A and B composed of observable data (X, Y) are matrix and vector, respectively,

BT = [E[Xm+nY ], E[Xm+n−1Y ], · · · , E[Xm+n−iY ], · · · , E[XmY ],

E[X2m−1], E[X2m−2], · · · , E[X2m− j], · · · , E[Xm]]; (0 ≤ i ≤ n; 1 ≤ j ≤ m)
(4.6)
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A =

 A11 A12

A21 A22

 (4.7)

A11(i, j) = E[X2n+2−i− jY2] (1 ≤ i ≤ n + 1; 1 ≤ j ≤ n + 1)
A12(i, j) = − E[Xm+n+1−i− jY ] (1 ≤ i ≤ n + 1; 1 ≤ j ≤ m)

A21(i, j) = E[Xm+n+1−i− jY ] (1 ≤ i ≤ m; 1 ≤ j ≤ n + 1)
A22(i, j) = − E[X2m−i− j] (1 ≤ i ≤ m; 1 ≤ j ≤ m)

(4.8)

II. (m, n)-order real rational function (for Programme)
Although the general matrix equation looks regular and tidy in mathematics, a

programme-friendly expression is more useful in practical applications. Addition-
ally, the programs have many build-in and ready-made mathematical operations, es-
pecially the software Matlab is very good at matrix calculation and has a partial
derivative function.

Y ≈ Y f =
Xm + b1Xm−1 + · · ·+ biXm−i + · · ·+ bm

a1Xn + a2Xn−1 + · · ·+ a jXn+1− j + · · ·+ an+1

=

Xm +
m∑

j=1
b jXm− j

n+1∑
j=1

a jXn+1− j

=
Numerator

Denominator

(4.9)

After approximation, the expectation of squared residual is

e = E[(Y · Denominator − Numerator)2] (4.10)

The (m + n + 1)-dimensional vector Γ is

ΓT = [a1, a2, · · · , an+1, b1, b2, · · · , bm] (4.11)

Setting the gradient equations to zero can generate the equations to find out the
unknown parameters,

0 =
∂e
∂Γi

=
m+n+1∑

j=1

(Γ j ·
∂2e

∂Γi∂Γ j
) +

∂e
∂Γi

∣∣∣∣∣∣∣
Γ=0

, (1 ≤ i ≤ m + n + 1) (4.12)

The matrix equation can be expressed as

A · Γ = B (4.13)
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Ai j =
∂2e

∂Γi∂Γ j
; Bi = −

∂e
∂Γi

∣∣∣∣∣∣∣
Γ=0

(4.14)

For the programs, the formulas do not need to simplify but keep the mathematical
operations, such as Equation (4.12) and Equation (4.14). That is the main difference
from the general mathematical expression.

4.1.2 Rational Function in Complex Field

In the microwave area, a complex rational function has more practical meaning and
applications. For example, the complex rational function can be converted to an
equivalent lumped circuit.

I. (m, n)-order complex rational function (for Programme)
The general matrix equation of the rational function in a complex field is com-

plicated, while the programme formula looks tidy and easy to execute. Significantly,
the software Matlab is very good at matrix calculation and has built-in functionality
for the partial derivative function.

The fitting function Z f with the observable input variable s and m + n + 1 un-
known parameters (a1, · · · , an+1, b1, · · · , bm), approximating the observable output
Z, is,

Z ≈ Z f =
sm + b1sm−1 + · · ·+ bism−i + · · ·+ bm

a1sn + a2sn−1 + · · ·+ a jsn+1− j + · · ·+ an+1

=

sm +
m∑

j=1
b jsm− j

n+1∑
j=1

a jsn+1− j

=
Numerator

Denominator
.

(4.15)

The subscript letter f of Z f means fitting. Z f is the function of s, so its complete
expression is Z f (s). The notation s is related to frequency f or ω (s = j2π f , or
s = jω) in Fourier transform and Laplace transform. The fitting function Z f and ob-
servable output Z are in a complex field, and the input variable s is a pure imaginary
number, while the unknown parameters (a1, a2) are in the real field. So, Z, Z f , s ∈ C

and a1, a2 ∈ R. They can be expressed asZ = R + jX

s = jω
(4.16)

where R, X, and ω are real numbers (R, X,ω ∈ R). After approximation, the expec-
tation of squared residual e is
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e = E[|Z · Denominator − Numerator|2] (4.17)

The (m + n + 1)-dimensional vector Γ is

ΓT = [a1, a2, · · · , an+1, b1, b2, · · · , bm] (4.18)

Setting the gradient equations to zero can generate the equations to find out the
unknown parameters,

0 =
∂e
∂Γi

=
m+n+1∑

j=1

(Γ j ·
∂2e

∂Γi∂Γ j
) +

∂e
∂Γi

∣∣∣∣∣∣∣
Γ=0

, (1 ≤ i ≤ m + n + 1) (4.19)

The matrix equation can be expressed as

A · Γ = B (4.20)

Ai j =
∂2e

∂Γi∂Γ j
; Bi = −

∂e
∂Γi

∣∣∣∣∣∣∣
Γ=0

(4.21)

For the programmes, the formulas do not need to simplify but keep the mathe-
matical operations, such as Equation (4.19) and Equation (4.21).

4.2 Rational Fitting with Weighted Iteration (RFWI)

Based on the least squared method, the rational function fitting in the complex field
can be executable, which is discussed in the last section. For the non-linear func-
tion, the approximation to linearize the function is necessary, and the previous fitting
must combine with iteration to improve the precision. In the microwave area, it
could take into account all steps as a whole, including the fitting in a complex field,
compensatory correction and controllable iteration. Based on rigorous mathematical
derivation, a novel approach named Rational Fitting with Weighted Iteration (RFWI)
is developed.

4.2.1 Overdetermined Systems

To approximate the observable output of the system response Ȟ(s) in the frequency
domain, the fitting function H(s; x) as the type of rational function is:

Ȟ(s) ≈ H(s; x) =
N(s; x)
D(s; x)

=
sm + b1sm−1 + · · ·+ bism−i + · · ·+ bm

a1sn + a2sn−1 + · · ·+ a jsn+1− j + · · ·+ an+1
,

(4.22)
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where N(s; x) and D(s; x) denote numerator polynomial and denominator polyno-
mial, m and n are the degrees of the numerator and the denominator polynomials,
also named as the order of rational function relating to the functional complexity and
the precision limitation of the approximation function.

There are two reasons why the rational function is chosen as an approximation
function. Firstly, the order of rational function can be extended or be shrunk easily
with different precision requirements, which could get arbitrary accuracy if not con-
sidering computational runtime. Secondly, the rational function can be conveniently
converted to an equivalent lumped circuit, or vice versa [85], which could be valuable
for equivalent circuit and network analysis.

The unknown coefficients (ai, b j) are spliced to form a new (m+n+1)- dimen-
sional vector x as

x = (a1, a2, · · · , an+1, b1, b2, · · · , bm)
T . (4.23)

To avoid to confuse with Γ (reflection coefficient), the unknown coefficient vec-
tor x is used in the following. The unknown coefficient vector x, determining the ap-
proximation rational function H(s; x), belongs to the real number field, x ∈ Rm+n+1,
while both input variable s = jω and the fitting output H(s; x) of system responses
belong to the complex number field, s ∈ C and H(s; x) ∈ C.

The problem becomes finding an optimal solution to the non-linear mathematical
system:

r(s; x) = Ȟ(s) − H(s; x), (4.24)

x∗ = arg min
x
‖r(s; x)‖2, (4.25)

where r(s; x) is the non-linear residual function, and x∗ is the optimal solution to
minimize the Euclidean norm in the complex number field.

In practical application, the outcome of system response collected from CAD
simulation and VNA measurement is a set of discrete data in the frequency domain.
The number of data is always much larger than the dimensions of the unknown co-
efficient vector x. Thus, the problem is optimising of a non-linear overdetermined
system in mathematics.

Unfortunately, in accordance with the principle of least squares, the direct solu-
tion of a non-linear system is computationally intractable. Here, an approximation
method is used to keep the linearity of the residual function shown as:

rm(s; x) = Ȟ(s) · D(s; x) − N(s; x), (4.26)

xm∗ = arg min
x
‖rm(s; x)‖2, (4.27)
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where rm(s; x) is the modified linear residual function, and xm∗ denotes the corre-
sponding optimal solution.

With the practical discrete data to further solve this problem, Equation (4.26) can
be expressed as the typical matrix form,

rm,i = Ȟ(si) · D(si; x) − N(si; x), (1 ≤ i ≤ K) (4.28)

rm,i = bi −

m+n+1∑
j=1

ai jx j, (4.29)

rm = b − A · x, (4.30)

where A ∈ CK×(m+n+1), b ∈ CK , and K is the number of data in the frequency
domain.

The least square method minimizes the cost function

f (x) =
K∑

i=1

∣∣∣∣ri

∣∣∣∣2
=

K∑
i=1

ri · r∗i

=
K∑

i=1

(bi −

m+n+1∑
j=1

ai jx j) · (b∗i −
m+n+1∑

j=1

a∗i jx j)

(4.31)

The minimum is attained when all partial derivatives of f (x) with respect to each
component xk vanish,

0 =
∂ f

∂xk
(∀k)

=
K∑

i=1

(b∗i −
m+n+1∑

j=1

a∗i jx j) · (−aik) +
K∑

i=1

(bi −

m+n+1∑
j=1

ai jx j) · (−a∗ik)

=
K∑

i=1

m+n+1∑
j=1

a∗i jaikx j +
K∑

i=1

m+n+1∑
j=1

ai ja∗ikx j −

K∑
i=1

m+n+1∑
j=1

b∗i aik −

K∑
i=1

m+n+1∑
j=1

bia∗ik

(4.32)
Rearranging terms in a compact form as

AT A∗x + AH Ax = AT b∗ + AH b (4.33)
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If A has full column rank and the matrix (AT A∗ + AH A) is invertible, the solu-
tion of Equation (4.33) is

xm∗ = (AT A∗ + AH A)−1 · (AT b∗ + AH b) (4.34)

Subsequently, setting A = A1 + jA2,b = b1 + jb2, where A1, A2 ∈ RK×(m+n+1),
and b1, b2 ∈ RK ,

AT = AT
1 + jAT

2 (4.35)

A∗ = A1 − jA2 (4.36)

AH = AT
1 − jAT

2 (4.37)

b∗ = b1 − jb2 (4.38)

Equation (4.34) can be simplified and expressed only using real number nota-
tions,

xm∗ =(AT A∗ + AH A)−1 · (AT b∗ + AH b)

=[(AT
1 + jAT

2 )(A1 − jA2) + (AT
1 − jAT

2 )(A1 + jA2)]
−1

· [(AT
1 + jAT

2 )(b1 − jb2) + (AT
1 − jAT

2 )(b1 + jb2)]

=4 · (AT
1 A∗1 + AT

2 A2)
−1 · (AT

1 b1 + AT
2 b2)

(4.39)

Therefore, x could be figured out as a real result from Equation (4.39) and it will
take less runtime.

4.2.2 Weighting Correction

To offset the linear approximation without denominator polynomial in Equation (4.26),
a compensatory weighting factor Wd is defined as a K × K diagonal matrix,

Wd = diag


1∣∣∣∣D(si; x)

∣∣∣∣2
 . (4.40)

Meanwhile, a relative weighting factor Wr is defined for particular research require-
ments, where some of the simulated or measured data may be treated with more
significance than others. For example, in microwave and RF areas, the data at fre-
quencies where return loss exceeds 10dB may be more important than others, be-
cause they are considered to be in the working band. The relative weighting factor

Wr could be set as a K × K diagonal matrix, Wr = diag
{

1∣∣∣∣∣S 11(si; x)
∣∣∣∣∣k
}

, (k > 1)

. For another example about notched-band, researchers always care more about the
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stop-band region where the return loss value is approaching 0dB. Similarly, the rela-
tive weighting factor Wr could be set as Wr = diag

{∣∣∣∣S 11(si; x)
∣∣∣∣k} , (k > 1) to make

the fitting curve in a notched-band region more accurate. Therefore, for various sce-
narios and different requirements, the relative weighting factor Wr is made variable
to give this approach more flexibility.

Both the compensatory weighting factor Wd and the relative weighting factor Wr

compose a weighting factor W, as

W = Wd ·Wr . (4.41)

After considering the hybrid number field and the weighting factor W, the least
squares optimal solution is

xm∗ = (AT
w A∗w + AH

w Aw)
−1 · (AT

wb∗w + AH
w bw), (4.42)

where Aw = W · A, and bw = W · b.
Subsequently, decomposing A = A1 + jA2,b = b1 + jb2, where A1, A2 ∈

RK×(m+n+1), and b1, b2 ∈ RK , Equation (4.42) can be simplified and be expressed
only by real number notations,

xm∗ = 4 · (AT
1w A∗1w + AT

2w A2w)
−1 · (AT

1wb1w + AT
2wb2w), (4.43)

where A1w = W · A1, A2w = W · A2, b1w = W · b1, and b2w = W · b2. Here the
corresponding optimal solution xm∗, totally expressed by notations in the real number
field, could reduce computational runtime.

To quantify the fitting quality, variance σ2 is defined as

σ2 =
1

K

K∑
i=1

∣∣∣∣Ȟ(si) − H(si; x)
∣∣∣∣2 . (4.44)

Whilst the variance σ2 is merely related to the overall fitting performance, the de-
tailed information of fitting performance has to be observed from the corresponding
figures.

Since the weighting factor W is mutually determined by unknown coefficient
vector x, an iteration method has to be used to obtain their accurate value gradually.
Figure 4.1 is a flow chart illustrating this iterative process, where the blue boxes can
be set as a precision requirement and specific scenario.
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Figure 4.1: Flow chart of the iterative process.

4.3 Summary

A generic approach has been proposed to specifically obtain analytical rational func-
tion in the complex field for microwave systems. Based on linear least squares fitting
and iteration, this approach is extended from real field to complex field step by step.
Its flexible weighting factor and elastic order could adapt to the strict requirements
and complicated scenarios, which could be seen from the antenna applications in
Chapter 6, Chapter 7, and Chapter 8. Additionally, the analytical rational function is
a bridge between discrete numerical data of system response and its corresponding
equivalent circuit. In Chapter 5, some methods converting rational function to the
equivalent circuit are further discussed.





45

Chapter 5

Equivalent Circuit & Network
Analysis

An equivalent circuit/network is an important tool for analyzing the electromagnetic
structure in the microwave area. The equivalent circuit model of a narrow band sys-
tem is easily constructed, while the equivalent circuit model of a broadband system
is too intricate to obtain.

This chapter proposes some methods of obtaining equivalent circuits from an an-
alytical rational function. The analytical rational function is fitting to the discrete
observable data in Chapter 4. The conversion from the rational function to an equiv-
alent circuit is not unique. The converted equivalent circuit topologies and processes
are various, while the conversion from the circuit topology to the rational function is
unique. Furthermore, the multi-port equivalent network analysis is developed. The
equivalent circuit method is applied in a chassis antenna in Chapter 6, and the equiv-
alent network analysis is applied in a reconfigurable UWB antenna in Chapter 8.

5.1 Directly Translated Method

A novel method, named Directly Translated Method (DTM), has been developed
among the methods for converting from the rational function to the equivalent cir-
cuit. It leads to the least number of lumped components in the equivalent circuit.
The circuit topologies based on the Directly Translated Method are not unique but
various, and they have many types of lumped components and different groups of
the same type of components. To simplify the thesis structure, the general forms are
only shown in this chapter, while the basic forms are shown in the Appendix B.1.

5.1.1 Group of Resistors and Capacitors

The resistor and capacitor are the standard lumped components. The equivalent cir-
cuit composed of resistor(s) and capacitor(s) is easy to realize on the computer and
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in reality. The order of the rational function is an essential factor in determining the
topology. The definition and the type of the rational function in Equation (4.15) is
used in the following.

m = n (General Formula)
The n-order rational function is as:

Z(s) =
sn + b1sn−1 + · · ·+ bisn−i + · · ·+ bn

a1sn + a2sn−1 + · · ·+ a jsn+1− j + · · ·+ an+1
(5.1)

It can convert to the equivalent circuit topology within resistors and capacitors
in Figure 5.1. Each branch’s current of the equivalent circuit through Kirchhoff’s
Current/Voltage Laws is marked in Figure 5.2.

Figure 5.1: Equivalent circuit composed of resistors and ca-
pacitors for (n, n)-order rational function.

Figure 5.2: The current in equivalent circuit composed of re-
sistors and capacitors for n-order rational function.



5.1. Directly Translated Method 47

Based on Kirchhoff’s Current Law (KCL), the equations are

iRn+1 = i

iC1 + iR1 − iR2 = 0

iC2 + iR2 − iR3 = 0
...

...
...

iC j + iR j − iR j+1 = 0
...

...
...

iCn + iRn − iRn+1 = 0

(1 ≤ j ≤ n) (5.2)

Based on Kirchhoff’s Voltage Law (KVL), the equations are

−
1

sC1
iC1 + R1iR1 = 0

1
sC1

iC1 −
1

sC2
iC2 + R2iR2 = 0

...
...

...

1
sC j

iC j −
1

sC j+1
iC j+1 + R j+1iR j+1 = 0

...
...

...

1
sCn−1

iCn−1 −
1

sCn
iCn + RniRn = 0

(1 ≤ j ≤ (n − 1)) (5.3)

To solve the problem clearly, Equations (5.2) and Equation (5.3) can be spliced
together and expressed as the type of matrix equation,
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1

1 1 −1

1 1 −1
. . . . . . . . .

. . . . . . . . .

1 1 −1

− 1
sC1

R1

1
sC1

− 1
sC2

R2

. . . . . . . . .
. . . . . . . . .

1
sCn−1

− 1
sCn

Rn





iC1

iC2

iC3

...

iLn

iR1

iR2

iR3

...

...

iRn+1



=



i

0

0
...
...
...
...
...
...

0


(5.4)

The equivalent impedance of the circuit can be expressed by the lumped compo-
nents,

Z(s) =

∑
j

R jiR j

i
. (5.5)

5.1.2 Group of Resistors and Capacitors II

To illustrate the diversity of the conversion from the rational function to its equiva-
lent circuit, another circuit within resistors and capacitors but a different topology is
discussed.

m = n (General Formula)
The n-order rational function is as:

Z(s) =
sn + b1sn−1 + · · ·+ bisn−i + · · ·+ bn

a1sn + a2sn−1 + · · ·+ a jsn+1− j + · · ·+ an+1
(5.6)

It can convert to the equivalent circuit topology within resistors and capacitors
in Figure 5.3. Each branch’s current of the equivalent circuit through Kirchhoff’s
Current/Voltage Laws is marked in Figure 5.4.
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Figure 5.3: Equivalent circuit composed of resistors and capaci-
tors for n-order rational function.

Figure 5.4: The current in equivalent circuit composed of resis-
tors and capacitors for n-order rational function.

Based on Kirchhoff’s Current Law (KCL), the equations are

iC1 + iR0 = i

iC1 − iC2 − iR1 = 0

iC2 − iC3 − iR2 = 0
...

...
...

iC j − iC j+1 − iR j = 0
...

...
...

iCn−1 − iCn − iRn−1 = 0

iCn − iRn = 0

(1 ≤ j ≤ (n − 1)) (5.7)

Based on Kirchhoff’s Voltage Law (KVL), the equations are



50 Chapter 5. Equivalent Circuit & Network Analysis



1
sC1

iC1 − R0iR0 + R1iR1 = 0
1

sC2
iC2 − R1iR1 + R2iR2 = 0

...
...

...
1

sC j
iC j − R j−1iR j−1 + R jiR j = 0

...
...

...
1

sCn
iCn − Rn−1iRn−1 + RniRn = 0

(1 ≤ j ≤ n) (5.8)

To solve the problem clearly, Equations (5.7) and Equation (5.8) can be spliced
together and expressed as the type of matrix equation,

1 1

1 −1 −1

1 −1 −1
. . . . . . . . .

1 −1 −1

1 −1
1

sC1
−R0 R1

1
sC2

−R1 R2

. . . . . . . . .
. . . . . . . . .

1
sCn

−Rn−1 Rn





iC1

iC2

iC3

...

iCn

iR0

iR1

iR2

...

...

iRn



=



i

0

0
...
...
...
...
...
...

0


(5.9)

The equivalent impedance of the circuit can be expressed by the lumped compo-
nents,

Z(s) =
R0 · iR0

i
(5.10)

5.1.3 Group of Resistors and Inductors

The rational function is also converted to an equivalent circuit composed of the re-
sistors and inductors.

m = n (General Formula)
The n-order rational function is as:

Z(s) =
sn + b1sn−1 + · · ·+ bisn−i + · · ·+ bn

a1sn + a2sn−1 + · · ·+ a jsn+1− j + · · ·+ an+1
(5.11)
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Figure 5.5: Equivalent circuit composed of resistors and inductors for n-
order rational function.

Figure 5.6: The current in equivalent circuit composed of resistors and
inductors for n-order rational function.

It can convert to the equivalent circuit topology within resistors and inductors
in Figure 5.5. Each branch’s current of the equivalent circuit through Kirchhoff’s
Current/Voltage Laws is marked in Figure 5.6.

Based on Kirchhoff’s Current Law (KCL), the equations are

iRn+1 = i

iL1 + iR1 − iR2 = 0

iL2 + iR2 − iR3 = 0
...

...
...

iL j + iR j − iR j+1 = 0
...

...
...

iLn + iRn − iRn+1 = 0

(1 ≤ j ≤ n) (5.12)

Based on Kirchhoff’s Voltage Law (KVL), the equations are
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−sL1iL1 + R1iR1 = 0

sL1iL1 − sL2iL2 + R2iR2 = 0
...

...
...

sL jiL j − sL j+1iL j+1 + R j+1iR j+1 = 0
...

...
...

sLn−1iLn−1 − sLniLn + RniRn = 0

(1 ≤ j ≤ (n − 1)) (5.13)

To solve the problem clearly, Equations (5.12) and Equation (5.13) can be spliced
together and expressed as the type of matrix equation,

1

1 1 −1

1 1 −1
. . . . . . . . .

. . . . . . . . .

1 1 −1

−sL1 R1

sL1 −sL2 R2

. . . . . . . . .
. . . . . . . . .

sLn−1 −sLn Rn





iL1

iL2

iL3

...

iLn

iR1

iR2

iR3

...

...

iRn+1



=



i

0

0
...
...
...
...
...
...

0


(5.14)

The equivalent impedance of the circuit can be expressed by the lumped compo-
nents,

Z(s) =

∑
j

R jiR j

i
(5.15)

5.2 Partial Fraction Expansion Method

Partial Fraction Expansion (PFE) is a common method in the microwave area [86],
and it can also be used here to convert the rational function to an equivalent circuit.
Z(s) is a rational function of s to denote the equivalent impedance. When m ≥ n,
Z(s) is improper; when m < n, Z(s) is proper. The improper rational function
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can become proper after separating a polynomial. The proper rational function can
decompose into simple rational functions through PFE,

Z(s) =
Numerator(s, m)

Denominator(s, n)

=
Numerator(s, m)

(S − λ1)r1(s − λ2)r2 · · · (s − λn)rn

=
K(λ1, r1)

(s − λ1)r1
+

K(λ1, r1 − 1)
(s − λ1)r1−1 + · · ·+

K(λ1, 1)
s − λ1

+
K(λ2, r2)

(s − λ2)r2
+

K(λ2, r2 − 1)
(s − λ2)r2−1 + · · ·+

K(λ2, 1)
s − λ2

· · · · · · · · ·

+
K(λn, rn)

(s − λn)rn
+

K(λn, rn − 1)
(s − λn)rn−1 + · · ·+

K(λn, 1)
s − λn

=
n∑

i=1

ri∑
j=1

K(λi, j)
(s − λi) j

(5.16)

K(λi, ri − j) =
1
j!
·

d j

ds j [(s − λi)
ri · Z(s)]

∣∣∣∣∣∣∣
s=λi

(5.17)

Equation (5.16) is the sum of many simpler rational functions. In other words, the
large-scale equivalent circuit of the initial complicated rational function is equal to a
cascade of many small-scale equivalent circuits converted from the simpler rational
functions.

Compared with the Directly Translated Method, the Partial Fraction Expansion
Method has fewer steps. However, the equivalent circuit through the Partial Frac-
tion Expansion Method contains more components than that through the Directly
Translated Method.

5.3 Continued Fraction Method

Continued Fraction (CF) is also named: successive division, division algorithm, and
Euclidean algorithm. It can also obtain the corresponding equivalent circuit [87].
The equivalent circuit topologies are still various through the Continued Fraction
Method. To obtain the correct result, the process of Continued Fraction must follow
the explicit topology. To simplify the thesis structure, the general forms are only
shown here, while the basic forms are shown in the Appendix B.2.

n-order rational function (for Programme)
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For n-order rational function, the equivalent circuit topology is as Figure 5.1, so
the equivalent impedance is obtained from its lower-order equivalent impedance.

Z(0) = R1

Z(1) = R2 +
1

sC1 +
1

Z(0)

Z(2) = R3 +
1

sC2 +
1

Z(1)

...

Z(i) = Ri+1 +
1

sCi +
1

Z(i−1)

(5.18)

For the rational function with the exact order number, the function could be de-
termined by the coefficients of denominator polynomial and numerator polynomial.
Thus, such coefficients are extracted to represent the initial rational function for the
following calculation,

Z(i) =
N(i)

D(i)
=

[N(i)
i , N(i)

i−1, · · · , N(i)
j , · · · , N(i)

1 , N(i)
0 ]

[D(i)
i , D(i)

i−1, · · · , D(i)
j , · · · , D(i)

1 , D(i)
0 ]

, (0 ≤ j ≤ i) (5.19)

The lower-order rational function of the initial function is

Z(i−1) =
N(i−1)

D(i−1)
=

[N(i−1)
i−1 , N(i−1)

i−2 , · · · , N(i−1)
j , · · · , N(i−1)

1 , N(i−1)
0 ]

[D(i−1)
i−1 , D(i−1)

i−2 , · · · , D(i−1)
j , · · · , D(i−1)

1 , D(i−1)
0 ]

, (0 ≤ j ≤ (i−1))

(5.20)
Based on the Continued Fraction Method, the resistor and capacitor in Figure 5.1

are

Ri+1 =
N(i)

i

D(i)
i

(5.21)

Ci =
D(i)

i

N(i)
i−1 − Ri+1 · D

(i)
i−1

(5.22)

After obtaining the resistor and capacitor in i-level, the rational function can be
de-levelled,

N(i−1)
j = N(i)

j − Ri+1 · D
(i)
j , (0 ≤ j ≤ (i − 1)) (5.23)
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D(i−1)
j = D(i)

j −Ci · N
(i−1)
j−1 , (1 ≤ j ≤ (i − 1)) (5.24)

D(i−1)
0 = D(i)

0 (5.25)

So far, it accesses a new loop with the same operations until the last 1-order
rational function.

The Continued Fraction looks easier than DTM and PFE since there is no huge
matrix and partial calculation. However, its precision is not good for a high-order
function because of the truncation error.

5.4 Additions

5.4.1 Hybrid Method

Because of the diversity of the conversion from the rational function to its equivalent
circuit, there are many kinds of methods, not limited to DTM, PFE, and CF. Each
of them could obtain the equivalent circuit. They have their own pros and cons.
In practice, in order to obtain a specific circuit topology with less time, multiple
methods could be chosen. The large-scale circuit could be cut into several small
sections, and each section could use a particular method.

5.4.2 Order of Rational Function

The previous sections in this chapter have discussed the conversion from rational
function to equivalent circuit. All of them are chosen the (n, n)-order rational func-
tion, which only covers part of orders. In the following, other possible orders are
discussed.

I. 0 ≤ m < n
(I.A) 0 < m < n

The rational function is a proper fraction,

Z =
sm + b1sm−1 + · · ·+ bism−i + · · ·+ bm

a1sn + a2sn−1 + · · ·+ a jsn+1− j + · · ·+ an+1

=

sm +
m∑

j=1
b jsm− j

n+1∑
j=1

a jsn+1− j

(5.26)

(I.B) 0 = m < n

The rational function is a proper fraction,
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Z =
1

n+1∑
j=1

a jsn+1− j

(5.27)

II. m = n
(II.A) m = n , 0
The rational function could be simplified as the sum of one constant and one

proper fraction,

Z =
1
a1

+

n∑
j=1

(b j −
a j+1

a1
)sn− j

n+1∑
j=1

a jsn+1− j

(5.28)

(II.B) m = n = 0
The rational function could be simplified as one constant,

Z =
1
a1

(5.29)

III. m > n
(III.A) m > n > 0
The rational function could be simplified as the sum of one polynomial and one

proper fraction,

Z =
m−n+1∑

j=1

c jsm−n+1− j +

n∑
j=1

d jsn− j

n+1∑
j=1

a jsn+1− j

(5.30)

(III.B) m > n = 0
The rational function could be simplified as one polynomial,

Z =

sm +
m∑

j=1
b jsm− j

a1
=

m∑
j=0

c jsm− j (5.31)

For the proper fraction with arbitrary order, the method of obtaining an equivalent
circuit is the same as the method of an m-order rational function in the case of some
zero-coefficients. Therefore, the methods we have discussed before could cover all
possible cases.
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5.4.3 Negative Elements

The negative impedance converters (NIC) are proposed in reality and utilized in an-
tenna design in [63]. NIC can generate negative capacitances and negative induc-
tances by active elements in [15]. In this chapter, in order to make the theory suc-
cinct and clear, the negative impedance is not considered independently. The negative
capacitance is regarded as inductance, and the negative inductance is regarded as ca-
pacitance. Although the negative element is easily dealt with in mathematics, it may
become a problem in the simulation since some commercial software does not allow
the electronic components to be negative. Therefore, for this issue, negative elements
can be replaced by a group circuit within a controlled source.

For the broad frequency band system, negative elements would be common in
the circuit analysis, so it is necessary to discuss them.

I. negative resistor
A general resistor is defined as Equation (5.32) and it is shown in Figure 5.7.

U = R · I (5.32)

The negative resistor could be replaced by a group circuit of one positive resistor
and one voltage control current source (VCCS), shown in Figure 5.8.

In Figure 5.8, the port current I is

I = IR − IS , (5.33)

where IR and IS are the current through the resistor and the source, respectively.
The current of VCCS, IS , is

IS = g ·U (5.34)

Figure 5.7: Definition of general re-
sistor.

Figure 5.8: Group circuit of negative re-
sistor.



58 Chapter 5. Equivalent Circuit & Network Analysis

The current of resistor IR is
IR =

U
R

(5.35)

The equivalent resistance of the group composed of one positive resistor and one
VCCS, R′, is

R′ =
U
I
=

U
U
R
− g ·U

=
R

1 − g · R
(5.36)

If g >
1
R

, the equivalent resistance of the group circuit is negative, R′ < 0.

II. negative capacitor
A general capacitor is defined as Equation (5.37) and it is shown in Figure 5.9.

I = C ·
dU
dt

(5.37)

The negative capacitor could be replaced by a group circuit of one positive ca-
pacitor and one current-controlled current source (CCCS), shown in Figure 5.10.

In Figure 5.10, the port current I is

I = IC − IS (5.38)

where IC and IS are the current through the capacitor and the source, respectively.
The current of the positive capacitor IC is

IC = C ·
dU
dt

(5.39)

The current of the CCCS IS is

IS = α · IC (5.40)

Figure 5.9: Definition of general ca-
pacitor.

Figure 5.10: Group circuit of negative
capacitor.
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The port current could be expressed by the group circuit,

I = (1 − α) · IC = (1 − α) ·C ·
dU
dt

= C′ ·
dU
dt

(5.41)

The equivalent capacitance of the group circuit, C′, is

C′ = (1 − α) ·C (5.42)

If α > 1, the equivalent capacitance of the group circuit is negative, C′ < 0.

III. negative inductor
A general inductor is defined as Equation (5.43) and it is shown in Figure 5.11.

U = L ·
dI
dt

(5.43)

The negative inductor could be replaced by a group circuit of one positive induc-
tor and one voltage control voltage source (VCVS), shown in Figure 5.12.

The voltage of the port is

U = L ·
dI
dt

(5.44)

The voltage of the port U is also expressed by the voltage sum of the positive
inductor and VCVS,

U = UL −US (5.45)

The voltage of the positive inductor is

UL = L ·
dI
dt

(5.46)

Figure 5.11: Definition of general
inductor.

Figure 5.12: Group circuit of negative
inductor.
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The voltage of the VCVS US is

US = µ ·UL (5.47)

The port voltage is also expressed as

U = (1 − µ) ·UL = (1 − µ) · L ·
dI
dt

= L′ ·
dI
dt

(5.48)

The equivalent inductance of the group circuit, L′, is

L′ = (1 − µ) · L (5.49)

If µ > 1, the equivalent inductor of the group circuit is negative, L′ < 0.

5.5 Multiport Equivalent Network

On the basis of conversion from rational function to equivalent circuit, the compli-
cated electromagnetic structure could be researched by network analysis. From the
perspective of the network, the system described by the rational function is a one-port
network. For the multi-port network, the scattering matrix (S matrix) is an important
tool to describe the system property. For instance, the S matrix of an n-port network
is an n × n matrix. Especially, the rational function of the system response in the
previous discussion is regarded as a 1 × 1 matrix. Therefore, the definition and the
description of the system response are extended from one-port to multi-port network.

In [83], it indeed presents the method to denote the multi-port system, but its
theory and examples are constant matrices. That means its system only works at a
specific frequency or a very narrow band. When the constant elements of the S matrix
are all extended to the functions of frequency, the S matrix can describe a broadband
system. Each function of frequency could be obtained through the fitting method as
the type of rational function. And then, on the basis of the conversion technique from
rational function to an equivalent circuit, the multi-port equivalent circuit network is
constructed to substitute the initial complicated broadband multi-port system.

5.5.1 Two-Port Network

For a two-port network, its scattering matrix (S matrix), impedance matrix (Z matrix)
are 2× 2 matrixes, and its equivalent network is configured in Figure 5.13, where ZA,
ZB and ZC are unknown functions.
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Figure 5.13: Equivalent circuit network
of 2-port network.

Figure 5.14: Current in equivalent cir-
cuit network of 2-port network.

The branch current and port voltage are marked in Figure 5.14. Based on Kirch-
hoff’s Current/Voltage Laws, the equations areU1 = ZA · I1 + ZC · (I1 + I2)

U2 = ZB · I2 + ZC · (I1 + I2)
(5.50)

The equations are to rearrange terms as the port current (I1, I2)U1 = (ZA + ZC) · I1 + ZC · I2

U2 = ZC · I1 + (ZB + ZC) · I2

(5.51)

As the definition of impedance matrix (Z matrix) in [83], the Z matrix of the
2-port network in Figure 5.13 is

Z =

 ZA + ZC ZC

ZC ZB + ZC

 (5.52)


Z11 = ZA + ZC

Z12 = Z21 = ZC

Z22 = ZB + ZC

(5.53)

The elements of the Z matrix (Z11, Z12, Z21, Z22) are known conditions. In reality,
the impedance matrix (Z matrix) could be obtained by measurement or by conversion
from the scattering matrix (S matrix),

[Z] = ([U] + [S ])([U] − [S ])−1 (5.54)

[S ] = ([Z] + [U])−1([Z] + [U]) (5.55)
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Figure 5.15: Equivalent circuit network
of 3-port network.

Figure 5.16: Current in equivalent circuit
network of 3-port network.

Thus, the unknown functions (ZA, ZB, ZC) can be expressed by these known
elements (Z11, Z12, Z21, Z22), 

ZA = Z11 − Z12

ZB = Z22 − Z12

ZC = Z12

(5.56)

5.5.2 Three-Port Network

Likewise, for a three-port network, its scattering matrix (S matrix), impedance matrix
(Z matrix) are 3× 3 matrixes, and its equivalent network is configured in Figure 5.15,
where there are 6 unknown functions (F1, F2, F3, F4, F5, F6).

The branch current and port voltage are marked in Figure 5.16. Based on Kirch-
hoff’s Current/Voltage Laws, the equations are

U1 = F1 · (I1 − IF)

U2 = F3 · (I2 − IF)

U3 = F5 · (I3 − IF)

IF ·
∑

Fi = F1I1 + F3I2 + F5I3

(5.57)

The equations are to rearrange terms as the port current (I1, I2, I3)
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U1 = F1 ·

∑
Fi − F1∑

Fi
· I1 − F1 ·

F3∑
Fi
· I2 − F1 ·

F5∑
Fi
· I3

U2 = −F3 ·
F1∑

Fi
· I1 + F3 ·

∑
Fi − F3∑

Fi
· I2 − F3 ·

F5∑
Fi
· I3

U3 = −F5 ·
F1∑

Fi
· I1 − F5 ·

F3∑
Fi
· I2 + F5 ·

∑
Fi − F5∑

Fi
· I3

(5.58)

As the definition of impedance matrix (Z matrix) in [83], the Z matrix of the
3-port network in Figure 5.15 is

Z =



F1 · (
∑

Fi − F1)∑
Fi

−
F1 · F3∑

Fi
−

F1 · F5∑
Fi

−
F1 · F3∑

Fi

F3 · (
∑

Fi − F3)∑
Fi

−
F3 · F5∑

Fi

−
F1 · F5∑

Fi
−

F3 · F5∑
Fi

F5 · (
∑

Fi − F5)∑
Fi


(5.59)

All elements of the Z matrix could be obtained by measurement or by conversion
from the scattering matrix (S matrix) in Equation (5.54). Thus, the 6 unknown func-
tions (F1, F2, F3, F4, F5, F6) can be expressed by the 6 known elements (Z11, Z12,
Z13, Z22, Z23, Z33).

5.5.3 Multi-Port Network

Likewise, a multi-port network could be constructed. There is one matter worthy
of attention. The topology of the multi-port network should take account into the
degree of freedom in both known Z matrix and unknown functional components in
topology. For example, Figure 5.17 shows a 4-port equivalent network, where F9

and F10 are set to match the degree of freedom. Of course, the multi-port network
topology is not unique.

5.6 Summary

The equivalent circuit model and equivalent network model have been developed on
the basis of the rational function. Because of its graphical intuition, such equiva-
lent models could be helpful in designing antennas and analyzing the electromag-
netic property. Because the circuit and network follow the physical laws, such as
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Figure 5.17: Equivalent circuit network of 4-port network.

Maxwell’s Equations and Kirchhoff’s Laws, it can be used to obtain a physics-based
surrogate model in Chapter 8.
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Chapter 6

Parameter Extraction from
Traditional Antenna

A traditional antenna is simpler to analyse than a reconfigurable antenna since the
traditional antenna does not have the complication of a tuning range. Therefore,
deep research for a traditional antenna is valuable and necessary before researching
the reconfigurable antenna.

In this chapter, there are two traditional antennas. One is a chassis antenna with
two resonators, and the other is a band-notched ultra-wideband (UWB) pyramidal
monopole antenna. Parameters and rational functions are extracted using the tech-
niques developed in Chapter 4 and Chapter 5, and they can be used as surrogate
models.

6.1 Application I

6.1.1 Antenna Design

The chassis antenna with a ground plane size of 100 × 40mm2 and volumetric space
of 40 × 5 × 7mm3 in [88], its structure shown in Figure 6.1, is composed of two
resonators.

Figure 6.1: Geometry of the chassis antenna in [88].
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Figure 6.2: Reflection coefficient (dB) of
the chassis antenna and equivalent circuit

model in [88].

Figure 6.3: Smith chart of the chassis
antenna and equivalent circuit model in

[88].

Table 6.1: Unknown coefficient vector x

Notation a1 a2 a3 a4 a5 a6 a7
Value 0.441 11.3 220 3751 22367 142906 23002

Notation b1 b2 b3 b4 b5 b6
Value 10.4 653 3588 82388 244445 2088511

Due to coupling between resonators, the equivalent circuit becomes complicated,
not simply assembling two independent equivalent circuits together. In [88], Dr Hu
et al. plot the reflection coefficients of the chassis antenna in Figure 6.2 and Figure
6.3, and build the corresponding equivalent circuit through manual tuning. For this
equivalent circuit, although the fitting of modulus in Figure 6.2 is acceptable, the
fitting of the complex reflection coefficient on the Smith chart in Figure 6.3 deviates
seriously from the electromagnetic simulation, which makes the equivalent circuit
meaningless. Thus, a more accurate surrogate model is required.

6.1.2 Fitting and Extraction

For the rational function approximation, the higher-order function means the fitting
can be better. However, considering the subsequent equivalent circuit analysis based
on this fitting rational function, the lower-order rational function makes the equiva-
lent circuit topology simpler. Moreover, the original discrete numerical data comes
with the inevitable approximation and deviation during the simulation. Finally, to
balance between fitting performance and equivalent circuit complexity, the order
of the fitting rational function is set m = n = 6. The relative weighting factor
Wr = 1/|S 3

11| can emphasize the frequency band from 1GHz to 2.5GHz.
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Figure 6.4: Reflection coefficient of fit-
ting rational function and corresponding

original simulation data.

Figure 6.5: Smith chart of fitting ratio-
nal function and corresponding original

simulation data.

Figure 6.6: Real part of input impedance
of fitting rational function and corre-

sponding original data.

Figure 6.7: Imaginary part of input
impedance of fitting rational function

and corresponding original data.

After fitting and iteration process, the unknown coefficient vector x are listed in
Table 6.1. The reflection coefficient and Smith chart of the fitting functions’ curves
are shown in Figure 6.4 and Figure 6.5, where the original data from the simulation
are also plotted. Compared with Figure 6.2 and Figure 6.3, the fitting curves in Figure
6.4 and Figure 6.5 are optimized for both modulus and Smith chart of the antenna
response. Especially, the curve of the Smith chart in Figure 6.5 fits so well in all the
regions that the dispersion is eliminated when phase extraction is included.

Figure 6.6 and Figure 6.7 show the normalized input impedance of fitting rational
function and original data from CAD simulation. In Figure 6.6 and Figure 6.7, the
electronic components in the region (1GHz − 2.5GHz) is fitting better than those in
the region (0 − 0.5GHz), because of the relative weighting factor Wr = 1/|S 3

11|.
Thus, this rational function can be reliably used as a surrogate function in place of
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Figure 6.8: Equivalent circuit model of fitting rational function.

Table 6.2: Resistors and capacitors in the equivalent circuit

Notation R1 R2 R3 R4 R5 R6 R7
Value(Ω) 0.182 −0.0733 1.77 −1.09 5.83 −5.07 −2.58

Notation C1 C2 C3 C4 C5 C6
Value(F) 1.29 −1.24 0.0278 −0.1107 0.0031 −0.0232

the original discrete data from the simulation.
To further verify the fitting rational function and to analyse the antenna property,

an equivalent circuit composed of resistors and capacitors is constructed from this
fitting rational function. Figure 6.8 shows the equivalent circuit topology, and the
values of the electronic components are listed in Table 6.2. Since m = n = 6 in
the rational function, the equivalent circuit in Figure 6.8 is composed of 7 resistors
and 6 capacitors. There are several components with negative values, which do not
exist alone in reality. They can be substituted by the group circuit of the positive
electronic components and the controlled sources (CCCS, VCCS, VCVS), and the
software Simulink allows to set negative components directly.

The normalized input impedance of the equivalent circuit using Simulink is shown
in Figure 6.9 and Figure 6.10. The equivalent circuit curves are very close to the ra-
tional function curves in both the real and imaginary parts, demonstrating that the
truncation error is limited here. Thus, this equivalent circuit can be reliably used as
a surrogate circuit in place of the initial chassis antenna.

Therefore, the 13 extracted numbers in Table 6.1 could rebuild the antenna re-
sponse, and the 13 components in Table 6.2 could be used as the surrogate circuit
model. While the numbers of original discrete data from CST simulation are 1000,
the compression ratio of parameter extraction is 1.3% (=13/1,000).



6.2. Application II 69

Figure 6.9: Real part of input impedance
of the equivalent circuit in Simulink and

fitting rational function.

Figure 6.10: Imaginary part of input
impedance of the equivalent circuit in

Simulink and fitting rational function.

Figure 6.11: Geometry of the band-
notched UWB pyramidal antenna in [89].

Figure 6.12: Dimension of the antenna
with slot and capacitor in [89].

6.2 Application II

6.2.1 Antenna Design

A band-notched UWB pyramidal monopole antenna, its geometry shown in Figure
6.11, is taken as an application of the Rational Function with Weighted Iteration
(RFWI) approach. The prototype of antenna design comes from [89], and this an-
tenna is simulated using the transient solver in CST Microwave Studio R© to achieve
the desired completed antenna response, including its magnitude and phase informa-
tion.

The band-notched UWB pyramidal monopole antenna is composed of four pieces

Table 6.3: The design specifications of antenna

Notation Capacitor H h f α d W
Value 1pF 20.0mm 0.5mm 40◦ 3.0mm 80.0mm

Notation Wu Wb Ws Lu Lm Lb
Value 3.0mm 1.0mm 0.5mm 4.0mm 2.0mm 4.0mm
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Figure 6.13: Magnitude of reflection coef-
ficients of the band-notched UWB antenna.

Figure 6.14: Smith chart of the band-
notched UWB antenna.

Figure 6.15: Real part of reflection coef-
ficients of the band-notched UWB pyra-

midal antenna.

Figure 6.16: Imaginary part of reflection
coefficients of the band-notched UWB

pyramidal antenna.

of substrate TLY-3-0450-C5 (permittivity εr of 2.33, thickness of 1.143 mm). The
pyramidal antenna is set on the centre of a copper ground plane (80× 80mm2). A slot
is mounted with one 1pF capacitor in each face of the pyramidal monopole antenna.
The dimension of the antenna with slots and capacitors is shown in Figure 6.12, and
its corresponding design parameters are listed in Table 6.3.

To display accurately the system response in a complex number field, the mod-
ulus, real part, and imaginary part of reflection coefficient S 11 are plotted in Figure
6.13 and Figure 6.15, and Figure 6.16, respectively. The Smith Chart representa-
tion is shown in Figure 6.14. It can be seen that this antenna works in the range of
3.00GHz-5.75 GHz and 6.00GHz-11.00 GHz with a notched-band of 5.75GHz-6.00
GHz at 10dB return loss.
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Table 6.4: Unknown coefficient vector x of 10-order function

Notation a1 a2 a3 a4
Value 3.51 × 10−1 2.11 × 102 6.39 × 103 1.23 × 106

Notation a5 a6 a7 a8
Value 2.44 × 107 2.31 × 109 3.39 × 1010 1.60 × 1012

Notation a9 a10 a11
Value 1.90 × 1013 2.80 × 1014 4.27 × 1015

Notation b1 b2 b3 b4
Value −1.83 × 101 7.37 × 103 −1.43 × 105 2.06 × 107

Notation b5 b6 b7 b8
Value −3.59 × 108 2.73 × 1010 −3.45 × 1011 1.67 × 1013

Notation b9 b10
Value −1.01 × 1014 3.53 × 1015

6.2.2 Fitting and Extraction

For fitting the rational function, the higher-order function leads to better approxi-
mation performance. Meanwhile, the tedious function with higher order would lead
to longer computational runtime and result in more superfluous work when subse-
quently building an equivalent circuit based on this extracted rational function. Thus,
after balancing between approximation precision and concise surrogate model, the
order of the fitting rational function is set m = n = 8 and m = n = 10, respectively.
The weighting factor Wr = |S 2

11| could emphasize the notched band (5.75GHz-6.0
GHz) generated by slots and capacitors.

After weighted iterative calculation, the reflection coefficient S 11 and Smith chart
of the fitting rational function curves are shown in Figure 6.13, Figure 6.14, Figure
6.15, and Figure 6.16, respectively, to compare with those original data from CST
simulation. To explicitly display the quantitative difference between fitting curves
and original data from the simulation, Figure 6.13, Figure 6.15, and Figure 6.16
use a Cartesian coordinate system. The unknown coefficient vector x of 10-order
(m = n = 10) fitting rational function is listed in Table 6.4.

Because the input variable and the output value of system response belong to the
complex number field, the quality of fitting performance is related to both magnitude
and phase. It can be seen that the fitting rational function is reliable and efficient as
a surrogate function since the curves (m = n = 10) fit very well in these figures. In
particular, the notched band (5.75GHz-6.0 GHz) could be precisely recognized from
the operating UWB spectrum by the RFWI approach. And the fitting quality in the
notched-band is much better than in other regions because of the weighting factor
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setting Wr = |S 2
11|. The better fitting performance in Smith Chart demonstrates

that this approach could minimize phase distortion, which is significant for practical
utilization in the areas of microwave and RF.

Therefore, the fitting rational function is qualified to replace the initial band-
notched UWB pyramidal monopole antenna as a surrogate function. The surrogate
model only consists of 21 extracted real numbers in Table 6.4, so integrating the
band-notched UWB antenna into a communication system would be convenient for
both hardware and software in the future. More importantly, the RFWI approach
is applied not only to the antenna of this case and the kind of band-notched UWB
antenna but also to other kinds of antenna systems.

6.3 Summary

In this chapter, two traditional antennas, a chassis antenna and a band-notched UWB
antenna, have been taken as applications to utilize the function fitting approach in
Chapter 4 and the equivalent circuit method in Chapter 5. The extracted rational
functions have high fidelity to rebuild the antenna responses, so it demonstrates that
the principle in Chapter 3, the fitting approach in Chapter 4, and the equivalent cir-
cuit technique in Chapter 5 are feasible and effective. In the next chapter, a more
challengeable reconfigurable antenna is chosen to obtain the surrogate model.
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Chapter 7

Parameter Extraction from
Reconfigurable Antenna

The Rational Fitting with Weighted Iteration (RFWI) approach is applied in tradi-
tional antennas in the last chapter. To verify effectiveness for broadband, sensitive
recognition of very narrow band from UWB spectrum, and precision of the fitting
result, a more challenging reconfigurable UWB antenna with tunable notched-band
is taken to apply the RFWI approach and to obtain a data-driven surrogate model in
this chapter.

7.1 Antenna Design

It is a reconfigurable ultra-wideband (UWB) pyramidal monopole antenna with a tun-
able notched band, which comes from [89]. To obtain the accurate and whole system
response, including magnitude and phase information, the reconfigurable antenna is
simulated using CST Microwave Studio R©.

The structure of the reconfigurable UWB antenna is shown in Figure 7.1. The
antenna, composed of four pieces of substrate TLY-3-0450-C5 (permittivity of 2.33,
thickness of 1.143mm), is set on the centre of an 80 × 80mm2 copper ground plane.
A slot is mounted with a varactor in each face of the UWB pyramidal antenna. The

Figure 7.1: Geometry of the recon-
figurable UWB pyramidal antenna with

varactors in [89].
Figure 7.2: Dimension of the antenna

with slot and varactor.
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Table 7.1: Design specifications of the reconfigurable antenna

Notation W H h f α Lu Lm
Value 80.00mm 20.00mm 0.5mm 40◦ 4.0mm 2.0mm

Notation Lb d Wu Wb Ws
Value 4.0mm 3.0mm 3.0mm 1.0mm 0.5mm

Figure 7.3: Reflection coefficient (dB) of
the reconfigurable antenna with tunable

varactor in CST simulation.

Figure 7.4: Smith chart of the reconfig-
urable antenna with tunable varactor in

CST simulation.

dimension of one face with slot and varactor is shown in Figure 7.2 and the corre-
sponding design specifications are listed in Table 7.1.

To depict the whole system response in a complex number field, the reflection
coefficient in dB and Smith Chart of the reconfigurable antenna are shown in Figure
7.3 and Figure 7.4, respectively.

In Figure 7.3, the antenna works in the ultra-wideband (3GHz-11GHz), exclud-
ing the variable notched bands. The corresponding notched bands at -10 dB re-
flection coefficient, listed in Table 7.2, move towards lower frequency with a larger
varactor value. That is the tunable notched-band reconfiguration of this antenna.
The proportion of notched-bandwidth in ultra-wideband (3GHz-11GHz) is around
2.0% ∼ 3.4%.

7.2 Fitting and Extraction

After simulation, 1000 discrete complex data evenly distributed in the frequency
range (3GHz-11GHz) are collected from CST simulation. Due to the very narrow
notched-band (2.0% ∼ 3.4%) compared with ultra-wideband (3GHz-11GHz), there
are fewer data in the notched-band and the magnitude of such data changes dramati-
cally in Figure 7.3. When fitting, this situation must be taken into account; otherwise,
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Table 7.2: Notched-band with different varactor

Varactor Notched-Band Notched-BW Proportion
(pF) (GHz) (MHz) in UWB

0.1 8.88∼9.13 250 3.1%
0.2 7.94∼8.21 270 3.4%
0.3 7.31∼7.48 170 2.1%
0.4 6.89∼7.05 160 2.0%
0.5 6.57∼6.75 180 2.3%
0.6 6.33∼6.51 180 2.3%
0.7 6.15∼6.33 180 2.3%
0.8 6.00∼6.19 190 2.4%
0.9 5.87∼6.08 210 2.6%
1.0 5.73∼5.99 260 3.3%

Figure 7.5: Variance σ2 with different order.

the narrow notched band will not be recognized.
The tactic is to properly set the relative weighting factor Wr as

Wr = diag
{∣∣∣∣k1

∣∣∣∣+ ∣∣∣∣k2

∣∣∣∣+ c
}

, (c = 1) (7.1)

where k1 and k2 are forward slope and back slope of the magnitude of the reflection
coefficient in Figure 7.3, respectively. The bias constant c is to prevent the relative
weighting factor from becoming zero. For the first point, Wr = diag

{
2
∣∣∣∣k2

∣∣∣∣+ c
}
.

And for the last point, Wr = diag
{
2
∣∣∣∣k1

∣∣∣∣+ c
}
.

The order of rational function affects the limitation of fitting precision. The vari-
ance σ2 of 6-, 7-, 8-, 9-, 10-, 11-, and 12-order with fixed 0.5pF varactor using the
same iteration times is listed in Table 7.3 and plotted in Figure 7.5. The correspond-
ing magnitude of the S-parameter figure, Smith chart, real part and imaginary part
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Table 7.3: Variance σ2 with different order.

Order 6 7 8 9
Variance 5.28 × 10−3 4.49 × 10−3 7.31 × 10−4 5.31 × 10−4

Order 10 11 12
Variance 4.56 × 10−4 3.34 × 10−4 2.41 × 10−4

of the S-parameter are shown in Figure 7.6, Figure 7.7, Figure 7.8, and Figure 7.9,
respectively, where the order is set 6, 8, 10, and 12. In order to quantitatively dis-
play the fitting result, a Cartesian coordinate system is used in Figure 7.6, Figure 7.8,
and Figure 7.9. Figure 7.5, Figure 7.6, Figure 7.7, Figure 7.8, and Figure 7.9 illus-
trate graphically that the higher-order function fits better, but the higher-order fitting
spends more computational runtime. Trading off between precision and runtime, the
following orders in this chapter are all set 12.

In Figure 7.6, Figure 7.7, Figure 7.8, and Figure 7.9, for all curves, the part in
the notched-band range fits remarkably well, compared with other parts of the same
curve. Clearly, it demonstrates the relative weighting factor Wr in Equation (7.1) is
effective to recognize the narrow notched-band from the UWB spectrum.

Subsequently, the extracted parameters of fitting rational function with variable
varactor from 0.1pF to 1.0pF are listed in Table C.1. The variance σ2 between
rational function and simulation are listed in Table C.2. The S-parameter figures and
Smith chart of rational function fitting with 0.1pF, 0.2pF, 0.3pF, 0.4pF, 0.5pF,
0.7pF and 1.0pF and their corresponding original simulation are shown in Figure
7.10, Figure 7.11, Figure 7.12, and Figure 7.13. It can be seen that the variance σ2 in
Table C.2 are very tiny. In Figure 7.10, Figure 7.11, Figure 7.12, and Figure 7.13, all

Figure 7.6: Magnitude of S-parameter with
fixed 0.5pF varactor in the Cartesian coor-
dinate, when rational function is 6-, 8-, 10-,

12-Order, respectively.

Figure 7.7: Smith chart of the reconfig-
urable antenna with fixed 0.5pF varactor,
when rational function is 6-, 8-, 10-, 12-

Order, respectively.
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Figure 7.8: Real part of S-parameter
with fixed 0.5pF varactor in the Cartesian
coordinate, when rational function is 6-,

8-, 10-, 12-Order, respectively.

Figure 7.9: Imaginary part of S-parameter
with fixed 0.5pF varactor in the Cartesian
coordinate, when rational function is 6-, 8-

, 10-, 12-Order, respectively.

of the rational functions fit very well with the simulation data, including magnitude,
real part, and imaginary part of S-parameter, and Smith chart.

7.3 Interpolation

Although all rational functions fit well with 19 groups of antenna response and corre-
sponding parameters are extracted, the tunable varactor value of this reconfigurable
antenna is continuously variable and infinite. It is infeasible to simulate and fit all
possible responses. Thus, a proper method is required to construct a surrogate model.

Each of extracted parameters with different varactor values from 0.1pF to 1.0pF

of Table C.1 is plotted in Figure 7.14, where all parameters change smoothly. In
accordance with the foundation of Space Mapping [72], the system’s input variables
and output response are continuous multi-dimensional space. Therefore, a linear
interpolation method based on 19 groups of extracted parameters in Table C.1, is
able to approximate this reconfigurable antenna’s response with an arbitrary varactor
value.

By linear interpolation, the parameters of a rational function with some varactor
value are figured out and listed in Table C.4. The variance σ2 between interpolation
and simulation are listed in Table C.3, which are plotted in Figure 7.15. The S-
parameter figures and Smith chart with 0.12pF, 0.18pF, 0.28pF, 0.38pF, 0.48pF,
0.68pF, 0.98pF varactor and their corresponding original simulation as comparison
are depicted in Figure 7.16, Figure 7.17, Figure 7.18, and Figure 7.19.

The variance σ2 in Table C.3 is not as accurate as those in Table C.2, which is
clearly illustrated in Figure 7.15. However, the interpolation result is still acceptable
to be a surrogate model. If necessary, increasing groups of simulation and fitting
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Figure 7.10: Magnitude of S-parameter
with 12-order rational function, when tun-
able varactor is 0.1pF, 0.2pF, 0.3pF, 0.4pF,
0.5pF, 0.7pF, and 1.0pF, respectively. The
corresponding original curves in CST sim-
ulation are black solid lines as a contrast.

Figure 7.11: Smith chart of S-parameter
with 12-order rational function, when tun-
able varactor is 0.1pF, 0.2pF, 0.3pF, 0.4pF,
0.5pF, 0.7pF, and 1.0pF, respectively. The
corresponding original curves in CST sim-
ulation are black solid lines as a contrast.

Figure 7.12: Real part of S-parameter
with 12-order rational function, when
tunable varactor is 0.1pF, 0.2pF, 0.3pF,
0.4pF, 0.5pF, 0.7pF, and 1.0pF, respec-
tively. The corresponding original curves
in CST simulation are black solid lines as

a contrast.

Figure 7.13: Imaginary part of S-
parameter with 12-order rational func-
tion, when tunable varactor is 0.1pF,
0.2pF, 0.3pF, 0.4pF, 0.5pF, 0.7pF, and
1.0pF, respectively. The corresponding
original curves in CST simulation are

black solid lines as a contrast..
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Figure 7.14: Each dimension of unknown coefficient vector x with
different varactor from 0.1pF to 1.0pF obtained from the fitting ratio-

nal function.
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Figure 7.15: Variance σ2 with different varactor.

Figure 7.16: Magitude of S-parameter with
12-order function, when varactor is 0.12pF,
0.18pF, 0.28pF, 0.38pF, 0.48pF, 0.68pF,
and 0.98pF, respectively. The correspond-
ing curves in simulation are black solid

lines as a contrast.

Figure 7.17: Smith chart of S-parameter
with 12-order function, when varactor is
0.12pF, 0.18pF, 0.28pF, 0.38pF, 0.48pF,
0.68pF, and 0.98pF, respectively. The cor-
responding curves in simulation are black

solid lines as a contrast.

Figure 7.18: Real part of S-parameter with
12-order function, when varactor is 0.12pF,
0.18pF, 0.28pF, 0.38pF, 0.48pF, 0.68pF,
and 0.98pF, respectively. The correspond-
ing curves in simulation are black solid

lines as a contrast.

Figure 7.19: Imaginary part of S-parameter
with 12-order function, when varactor is
0.12pF, 0.18pF, 0.28pF, 0.38pF, 0.48pF,
0.68pF, and 0.98pF, respectively. The cor-
responding curves in simulation are black

solid lines as a contrast.
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data in Table C.1 can actually improve interpolation precision. In Figure 7.16, Fig-
ure 7.17, Figure 7.18, and Figure 7.19, the curves of interpolation are very close to
simulation curves, including both magnitude and phase. It indicates that the linear
interpolation method based on pre-existing data in Table C.1 is feasible to quickly
obtain a completed system response with an arbitrary varactor.

So far, a proper surrogate model has been obtained to substitute the reconfig-
urable ultra-wideband (UWB) pyramidal monopole antenna with a tunable notched
band.

7.4 Discussion

Through this example, the Rational Fitting with Weighted Iteration (RFWI) approach
has many advantages and potential applications.

Firstly, on account of elastic order of rational function and adaptable weight-
ing factor (Wr) in the iterative process, the RFWI approach has the flexibility to
be widely utilized for the specific requirements, such as the example shown in this
chapter, the precise recognition of the very narrow notched-band from the UWB
spectrum.

Secondly, it is effective to find a feasible surrogate model through the RFWI ap-
proach. In this chapter, the exported data from the CST simulation are 19 groups
of antenna responses, and each group contains 1000 complex numbers (38, 000 =

2 × 1, 000 × 19). After RFWI fitting, 25 real numbers composing one rational func-
tion are extracted from each group of responses (475 = 25× 19). Thus, the compres-
sion ratio of parameter extraction is 1.25% (=475/38,000). These 475 real numbers
with the linear interpolation method can construct the arbitrary responses of this re-
configurable antenna with tiny variance σ2 at the level of 10−3. In other words, the
combination of 475 real numbers in Table C.1 and the interpolation method is an
excellent surrogate model of the reconfigurable UWB antenna with tunable notched-
band.

The benefit of the surrogate model extracted through RFWI is meaningful to
integrating the complicated reconfigurable antenna into a communication system for
both software and hardware aspects. In the software aspect, the surrogate model
can combine faster with signal processing algorithm to uncover the potential ability
of reconfigurable antenna, since the surrogate model has less data, only 475 real
numbers. In the hardware aspect, it is convenient to be implemented into a chip since
the rational function is composed of simple arithmetical operations, only including
addition, multiplication (and power), and division.
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Besides the CAD simulation shown in this chapter, the VNA measurement can
also be the input data of the RFWI approach. Thus, this approach could also obtain
the surrogate model of a practical reconfigurable antenna.

Additionally, this approach is not subject to electrical loading reconfiguration.
In fact, besides electrical loading, this approach is able to be reliably applied to all
reconfigurable antennas based on different mechanisms, such as mechanical changes
and material changes.

Last but not least, RFWI is convenient to combine with Artificial Intelligence
(AI) algorithms. From an AI perspective, the RFWI approach is regarded as a pro-
cess of feature extraction. The feature is extracted very well through RFWI because
few output data contain completed information of the system response. And the
fitting process converts the complicated electromagnetic structure to an analytical
function, which could combine with an AI algorithm to realize the automated design
in microwave and RF areas in the future.

7.5 Summary

In this chapter, a more challenging reconfigurable UWB antenna with tunable notched-
band has been taken as an application using the Rational Fitting with Weight Iteration
(RFWI) approach. It demonstrates that the RFWI approach is a reliable and effi-
cient approach with high fidelity to extract parameters and obtain a surrogate model
from the reconfigurable antenna. However, as a data-driven approach, it restricts the
width of the reconfigurable range. To widen the reconfigurable range with the same
numbers of extracted parameters, a physics-based surrogate modelling approach is
developed in Chapter 8.
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Chapter 8

A Physics-Based Surrogate Model of
Reconfigurable Antenna

In the last chapter, a data-driven surrogate modelling approach is applied in a recon-
figurable UWB antenna. To increase the efficiency of feature extraction, a new sur-
rogate modelling approach is needed. There is no doubt that a physics-based generic
surrogate model is attractive but very difficult to find. Luckily, for a frequency re-
configurable antenna with electronic loadings, the model based on the equivalent
network analysis method is available as the physics-based surrogate model. It is the
reason that the network analysis is based on physical principles, such as Kirchhoff’s
Current/Voltage Law and Maxwell’s Equations. Additionally, equivalent circuit and
network analysis are the standard methods to simplify the complicated electromag-
netic structure [90] and design antenna [91]. Therefore, the surrogate model with
equivalent network analysis has fewer extracted features.

In this chapter, a physics-based surrogate model combining the RFWI approach
and equivalent network analysis is developed for a frequency reconfigurable antenna
with electronic loadings.

8.1 Physics-Based Surrogate Modelling Approach

The surrogate modelling flow is shown in Figure 8.1. The starting point of this
process in Figure 8.1 is a detailed design structure of the reconfigurable antenna,
including geometry sizes and material properties, so that the antenna can be modelled
on the computer or be fabricated in reality. The first step in this flow is to remove
all the dynamic electronic loadings from the original reconfigurable antenna. The
remaining part of the reconfigurable antenna without dynamic loadings is regarded
as a multi-port network. Let’s suppose the reconfigurable antenna has n dynamic
electronic loadings. The multi-port network without dynamic loadings has n + 1
ports since the additional port is for antenna feeding.
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Figure 8.1: Flow chart of the physics-based surrogate modeling process.

Because the multi-port network does not contain any dynamic components, its
responses in the frequency domain depend on only frequency. The responses can be
output through CAD simulation or VNA measurement, and the obtained responses
are discrete numerical data. The scattering parameter of the multi-port network is
an (n + 1) × (n + 1) matrix. Each element of the matrix only relies on the variable
frequency, and they can be approximated through Rational Fitting with Weighted
Iteration (RFWI) as the type of analytical rational function,

Š i j(s) ≈ S i j(s; x) =
sr + b1sr−1 + · · ·+ bisr−i + · · ·+ br

a1st + a2st−1 + · · ·+ a jst+1− j + · · ·+ at+1
,

(i, j = 1, 2, 3, · · · , n, n + 1)
(8.1)

where Š i j(s) is the observable scattering parameters, S i j(s; x) is the approximated
analytical rational function, and the unknown coefficient vector x is the extracted
feature of the analytical function. The scattering parameter matrix is a set of analyti-
cal rational functions, and such an analytical matrix could allow to be operated with
mathematical calculation and transformation.

The equivalent circuit distribution of the multi-port network could be generated
from the scattering matrix based on Kirchhoff’s Current/Voltage Law. And then, the
assembly of the multi-port equivalent network and the previously removed dynamic
electronic loadings becomes a new one-port network, which is the equivalent network
of the original reconfigurable antenna. Therefore, the reflection coefficient and the
equivalent impedance of the original reconfigurable antenna can be determined.



8.2. Antenna Design 85

Figure 8.2: Geometry of the reconfig-
urable antenna.

Figure 8.3: Dimension of one face with
slot and varactor.

Figure 8.4: Magnitude of reflection coef-
ficient of the reconfigurable antenna with

tunable varactor from CST simulation.

Figure 8.5: Smith chart of the reconfig-
urable antenna with tunable varactor from

CST simulation.

In fact, due to the inner complicated electromagnetic field of the multi-port net-
work, the validation of the equivalent network is limited in some specified condi-
tions. Connecting the dynamic electronic loadings actually changes the inner elec-
tromagnetic field and current distribution of the multi-port network, so the obtained
equivalent network needs to be modified. Thus, it is indispensable to make some
corrections based on the obtained equivalent network to optimize the physics-based
surrogate model of the original reconfigurable antenna.

8.2 Antenna Design

The application is a frequency reconfigurable ultra-wideband pyramidal monopole
antenna with tunable varactors. The antenna geometry and design are shown in Fig-
ure 8.2 and Figure 8.3, and the design specifications are followed in [92]. This recon-
figurable antenna has four tunable varactors mounted on these ports (P2, P3, P4, P5
in Figure 8.2), controlled by the same bias circuit. Thus, it only has one independent
input reconfigurable variable.

The antenna responses with variable varactor are simulated using the transient
solver in CST Microwave Studio R©. Its reflection coefficient in dB and on a Smith
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Figure 8.6: Magnitude of S parameters of the
multi-port network from CST simulation.

Figure 8.7: Phase of S parameters of the
multi-port network from CST simulation.

chart is plotted in Figure 8.4 and Figure 8.5. It can be seen that the reconfigurable
antenna works in the ultra-wideband (3GHz-11GHz), excluding the notched band,
which is tuned by the variable varactor. When the variable varactor is larger, the
notched band will move toward a lower frequency.

8.3 Parameter Extraction and Network Analysis

This reconfigurable antenna with four varactors is a suitable application for net-
work analysis since the network of the reconfigurable antenna without varactors is
5-port. The 5-port network is simulated using the transient solver in CST Microwave
Studio R©.

Its scattering parameter matrix is a 5 × 5 matrix. The geometry of this recon-
figurable antenna has several symmetrical properties, which could reduce the com-
plexity of the matrix and equivalent network [93], [94]. Firstly, for these ports con-
necting electronic loadings (P2, P3, P4, P5), their reflection parameters are equal:
S 22 = S 33 = S 44 = S 55. Secondly, for the feeding port (P1), four loading ports (P2,
P3, P4, P5) are the same: S 12 = S 13 = S 14 = S 15. Thirdly, for the loading ports
(P2, P3, P4, P5), their adjacent loading ports are the same. For example, P3 and P5
are the adjacent loading ports of P2, so S 23 = S 25. Fourthly, for the non-adjacent
loading ports, their relationships are equal, so S 24 = S 35. Fifthly, the 5-port network
is a reciprocal network, so S i j = S ji(i, j = 1, 2, 3, 4, 5). To sum up, there are only 5
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Figure 8.8: Rational function fitting of S11.

Figure 8.9: Rational function fitting of S12.

different independent elements (S 11, S 12, S 22, S 23, S 24) in this 5 × 5 matrix,

S 11

S 12 = S 13 = S 14 = S 15 = S 21 = S 31 = S 41 = S 51

S 22 = S 33 = S 44 = S 55

S 23 = S 25 = S 34 = S 45 = S 32 = S 52 = S 43 = S 54

S 24 = S 35 = S 42 = S 53

(8.2)

They are discrete numerical data sets in a complex field, including the magnitude
shown in Figure 8.6 and the phase shown in Figure 8.7. In order to do the subse-
quent calculation and transformation, fitting analytical functions with these discrete
numerical data is necessary. The RFWI approach is used for analytical rational func-
tion extraction. The fitting performances contain every independent element of the
matrix, S 11 shown in Figure 8.8, S 12 shown in Figure 8.9, S 22 shown in Figure 8.10,
S 23 shown in Figure 8.11, S 24 shown in Figure 8.12. The orders of the fitting analyt-
ical rational functions are 12-, 8-, 10-, 8-, and 10-order, respectively, so the extracted
numbers of these rational functions are 25, 17, 21, 17, and 21, respectively.
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Figure 8.10: Rational function fitting of S22.

Figure 8.11: Rational function fitting of S23.

Figure 8.12: Rational function fitting of S24.
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Figure 8.13: Equivalent network topology.

The impedance matrix, Z matrix, can be found directly from S parameter matrix,

[Z] = ([U] + [S ])([U] − [S ])−1 (8.3)

The topology of the 5-port equivalent network is plotted in Figure 8.13, where
five independent unknown components (Za, Zb, Zc, Zd, Ze) can be found from the Z
matrix. Because of the closure of rational functions in mathematics, the Z matrix
elements and the network components (Za, Zb, Zc, Zd, Ze) are also the rational func-
tions. The rational functions of the network components (Za, Zb, Zc, Zd, Ze) can be
conveniently converted to the equivalent lumped circuit [85].

Then, the 5-port equivalent network connecting four varactors becomes a new 1-
port equivalent network. All performances of the 1-port network can be determined,
including equivalent impedance and reflection coefficient. The reflection coefficient
of the 1-port network within the variable varactor can describe the dynamic recon-
figuration of the antenna.
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Figure 8.14: Magnitude of reflection co-
efficient of equivalent network with vri-
able varactor and the corresponding data

from CST simulation.

Figure 8.15: Phase of reflection coeffi-
cient of equivalent network with vriable
varactor and the corresponding data from

CST simulation.

Figure 8.16: 3-D magnitude of reflection
coefficient of equivalent network with
vriable varactor and the corresponding

data from CST simulation.

Figure 8.17: 3-D phase of reflection co-
efficient of equivalent network with vari-
able varactor and the corresponding data

from CST simulation.

8.4 Correction and Verification

The reflection coefficients of the 1-port equivalent network with dynamic reconfig-
uration contain the magnitude shown in Figure 8.14 and the phase shown in Figure
8.15, where the corresponding data from CST simulation are also plotted. In order to
clearly display the responses performance and the variation trend with the variable
varactor, 3-D figures with an additional axis representing the variable varactor plot
the reflection coefficient, including the 3-D magnitude shown in Figure 8.16 and the
3-D phase shown in Figure 8.17.

In Figures 8.14, Figure 8.15, Figure 8.16, Figure 8.17, it can be seen that the re-
markable antenna characteristics of the UWB spectrum and narrow notched band are
displayed. The frequency of the notch band gets lower as the varactor capacitance in-
creases, as expected from the simulation. However, the frequencies of notched bands
with the same varactor could not match quantitatively between equivalent network
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Figure 8.18: Notched-band peak frequency of equivalent network response
without correction and the corresponding data from CST simulation.

Table 8.1: Notched-band peak frequency of responses without correction

Peak Frequency from Peak Frequency from
Varactor(pF) CST Simulation Equivalent Network

(GHz) (GHz)

0.1 8.98 8.87
0.2 8.00 8.35
0.3 7.38 7.98
0.4 6.96 7.71
0.5 6.66 7.50
0.6 6.42 7.34
0.7 6.25 7.21
0.8 6.10 7.10
0.9 5.99 7.10
1.0 5.90 6.93

and CST simulation. The peak frequency of the notched bands with the variable
varactor is shown in Figure 8.18 and the corresponding data are listed in Table 8.1.
Thus, the proper correction is needed.

For the narrow dynamic range, a linear function is used as the correction,

Vc = aV + b, (8.4)

where V is the initial input variable varactor, and Vc is the input variable varactor
after linear correction. The correctional parameters (a, b) are set as a = 0.34 and
b = 0.09. With the linear correction, the peak frequency of notched bands with
variable varactor is shown in Figure 8.19 and the corresponding data are listed in
Table 8.2.
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Figure 8.19: Notched-band peak frequency of equivalent network response with
linear correction and the corresponding data from CST simulation.

Table 8.2: Notched-band peak frequency of responses with linear correction

Peak Frequency with
V(pF) Vc(pF) Linear Correction

(GHz)

0.1 0.124 8.87
0.2 0.158 8.35
0.3 0.192 7.98
0.4 0.226 7.71
0.5 0.260 7.50
0.6 0.294 7.34
0.7 0.328 7.21
0.8 0.362 7.10
0.9 0.396 7.10
1.0 0.430 6.93

For the broad dynamic range, the simple linear function is inaccurate, and a log-
arithmic function is used as the correction function,

Vc = a · log10(V + c) + b. (8.5)

The correctional parameters (a, b, c) are set as a = 0.5, b = 0.35, and c = 0.23.
With the logarithmic correction, the peak frequency of notched bands with variable
varactor is shown in Figure 8.20 and the corresponding data are listed in Table 8.3.

The above analysis completes the physics-based surrogate model with a broad dy-
namic range (0.1pF-1pF). In order to verify the validity of the continuously variable
varactor, the correctional model responses and the corresponding CST simulation are
illustrated in Figure 8.21 and Figure 8.22. For the magnitude in Figure 8.21 and the
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Figure 8.20: Notched-band peak frequency of equivalent network response with
logarithmic correction and the corresponding data from CST simulation.

Table 8.3: Notched-band peak frequency of responses with logarithmic correction

Peak Frequency with
V(pF) Vc(pF) Linear Correction

(GHz)

0.1 0.109 8.87
0.2 0.167 8.35
0.3 0.212 7.98
0.4 0.250 7.71
0.5 0.281 7.50
0.6 0.310 7.34
0.7 0.334 7.21
0.8 0.356 7.10
0.9 0.377 7.10
1.0 0.395 6.93
2.0 0.524 6.51
3.0 0.605 6.34
4.0 0.663 6.25
5.0 0.709 6.19
6.0 0.747 6.15
7.0 0.780 6.13
8.0 0.808 6.10
9.0 0.833 6.09
10.0 0.855 6.07
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Figure 8.21: After logarithmic correction, 3-D magnitude of re-
flection coefficient of equivalent network with vriable varactor

and the corresponding CST simulation.

Figure 8.22: After logarithmic correction, 3-D phase of reflection
coefficient of equivalent network with vriable varactor and the

corresponding CST simulation.

phase in Figure 8.22, the surfaces of response data representing both the surrogate
model and the CST simulation change smoothly, especially the better continuity of
the remarkable notched bands. It demonstrates that the final surrogate model is well
qualified to represent the original reconfigurable antenna.

8.5 Discussion

The proposed physics-based surrogate modelling technique is a comprehensive ap-
proach that combines the RFWI approach and network analysis. They aim to obtain a
surrogate model with fewer extracted features, higher fidelity, and a broader dynamic
range.
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In this chapter, the surrogate model is presented for the continuous frequency
reconfigurable antenna with tuning electronic components. As another common kind
of reconfigurable antenna, a switched frequency reconfigurable antenna with several
operating states can be designed using PIN diodes or other switch components. Its
surrogate model is a group of several traditional antennas’ models, or the surrogate
model in this chapter with several discrete input variables. That means the surrogate
model could be used for switched frequency reconfigurable antenna.

As the initial input data of this surrogate model, the discrete response data from
CAD simulation in this chapter could be substituted by those from practical VNA,
and the subsequent steps keep the same. In other words, this surrogate modelling
technique is also applied for a practical reconfigurable antenna.

It is significant and necessary to use the RFWI approach to fit the discrete re-
sponses data to extract the analytical rational functions. Those discrete data may
have different interval frequencies, even from different sources. For instance, some
of the data are from different CAD software simulations, while some of the data are
from VNA measurements. Thus, converting the discrete data to the analytical ratio-
nal functions is a necessity and a prerequisite to making the subsequent processes,
such as the transformation between the S matrix and the Z matrix, the design of the
equivalent network, the calculation of the reflection coefficient, and the correction of
the input variable.

Although the example antenna in this chapter with four varactors is regarded as
only one independent input variable, the surrogate model based on the equivalent
network can be applied for a more complicated reconfigurable antenna with multiple
electronic components, such as the reconfigurable antenna in [95].

Because this surrogate model could be expressed by the analytical rational func-
tions, it can describe the continuously dynamic reconfiguration of the antenna with
arbitrary input variables.

The number of extracted features is an important factor in determining the ex-
tracted efficiency of a surrogate model, especially when the model is embedded into
the hardware chip. At the stage of fitting scattering parameter matrix, 101 real num-
bers are extracted from the discrete responses data ( 101 = 25 + 21 + 17 + 21 + 17
). At the stage of the correction, there are three correctional coefficient numbers in
the logarithmic function. Even though a more complicated function is used to cor-
rect a much broader dynamic range, its numbers would be fewer. Finally, the total
extracted numbers for the surrogate model in this chapter are only 104 ( 104 = 101 +

3 ), which is much less than 475 in the last chapter. Thus, the surrogate model within
equivalent network analysis has a higher compression ratio, which will lead to lower
cost and faster reaction when integrating the original reconfigurable antenna into a
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communication system.
However, this surrogate model is only applied for a reconfigurable antenna with

electronic loadings, not for antennas using other reconfigurable mechanisms. That
is the limitation of this model, while the RFWI approach in [92] can be applied in
all kinds of frequency reconfigurable antenna, including mechanical and material
reconfiguration.

8.6 Summary

In this chapter, a reconfigurable UWB antenna with tunable notched-band, the same
antenna in Chapter 7, has been taken as an application to obtain a physics-based sur-
rogate model combining the Rational Fitting with Weight Iteration (RFWI) approach
and equivalent network analysis. The physics-based surrogate modelling approach is
feasible and efficient, and it has fewer extracted numbers with a wider reconfigurable
range than the data-driven surrogate model in Chapter 7.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

This thesis describes innovative research into ”Feature Extraction from Reconfig-
urable Antenna”. It is a completed modelling system, including guiding principles,
analytical function fitting derivation, equivalent circuit/network techniques, surro-
gate modelling applications to two traditional antennas, a data-driven surrogate mod-
elling application to a reconfigurable UWB antenna, and a physics-based surrogate
modelling application to a reconfigurable UWB antenna. All the applications demon-
strate that the new perspectives, theories and methods in this thesis are feasible, ef-
fective, and accurate. The obtained surrogate models have fewer extracted features,
higher fidelity, and a broader dynamic range. Furthermore, the surrogate model tech-
nique has many other potential applications. Firstly, it can be used for arbitrary fre-
quency reconfigurable antenna because of its universality. Secondly, it can be applied
for a practical reconfigurable antenna, when the initial input data of the surrogate is
the discrete response data from practical VNA measurement. Thirdly, the extracted
surrogate model is necessary to integrate the complicated reconfigurable antenna into
a communication system for both software and hardware aspects. Last but not least,
it is convenient to combine Artificial Intelligence (AI) to realize the automated design
in the microwave and RF areas in the future.

9.1.1 Analytical Function Fitting

In this thesis, the analytical rational function fitting has been presented. In particular,
it is suitable for the responses of microwave systems in a complex field. The deriva-
tion of functional fitting in mathematics is detailed step by step from real polynomial
function, to real rational function, to complex polynomial function, until complex
rational function. During this section, the general algorithms and computational
programme algorithms have been presented. Furthermore, for non-linear function
fitting, a novel approach, Rational Fitting with Weighted Iteration (RFWI), has been
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developed. It combines the least squares method and weighted iteration to extract
the rational function in the complex field from the discrete numerical data of CAD
simulation and VNA measurement. This approach is reliable and efficient, and its
flexible weighting factor could be adapted to a lot of harsh scenarios, even the pre-
cise recognition of a very narrow notched band within an ultra-wideband. It can be as
the basic module combined with other algorithms, such as interpolation and network
analysis, to find the proper surrogate models of antennas.

9.1.2 Equivalent Circuit and Equivalent Network

In this thesis, the general methods of the equivalent circuit and equivalent network
based on rational function have been presented. As the important tools to analyse
the electromagnetic structure, the equivalent circuit and network could construct a
visualized surrogate model. Because the conversion from the rational function to an
equivalent circuit is not unique, several methods are given, such as Directly Trans-
lated Method, Partial Fraction Expansion Method, and Continued Fraction. Various
topologies of the equivalent circuit composed of basic electronic components, in-
cluding resistor, capacitor and inductor, provide abundant and flexible choices for a
surrogate model. Furthermore, the multiport equivalent network method is developed
from the equivalent circuit. That extends the applications, from a simple traditional
antenna to a reconfigurable antenna and other microwave systems.

9.1.3 Parameter Extraction from Traditional Antennas

As the applications of function fitting technique and equivalent circuit method, two
traditional antennas are chosen to extract fitting rational functions and obtain surro-
gate models. The first traditional antenna is a chassis antenna with two resonators.
The second traditional antenna is a band-notched ultra-wideband (UWB) pyrami-
dal monopole antenna. The surrogate models match well with the CAD simulated
responses, including both magnitude and phase. They demonstrate that the RFWI ap-
proach and equivalent circuit method are reliable and efficient. The flexible weight-
ing factor and elastic order in the RFWI approach could be adapted to the harsh
scenarios and the specific requirements.

9.1.4 Parameter Extraction from Reconfigurable Antenna

For a reconfigurable antenna, a surrogate modelling approach combining Rational
Fitting with Weighted Iteration (RFWI) and linear interpolation is developed. It
can extract parameters and rational functions from the discrete numerical data of
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reconfigurable antenna responses from CAD simulation and VNA measurement. To
illustrate the validity and high-fidelity of this surrogate modelling approach, a re-
configurable UWB antenna with a tunable notched band is taken as a challenging
application. It has many advantages and potential applications. On account of the
elastic order and the adaptable weighting factor, this approach has the flexibility to be
widely utilized in complicated scenarios. It has fewer extracted parameters, only 475
real numbers, to construct the proper surrogate model. This approach is not subject
to electrical loading reconfiguration.

9.1.5 A Physics-Based Surrogate Model of Reconfigurable An-
tenna

A physics-based surrogate model, combining Rational Fitting with Weighted Itera-
tion (RFWI) and network analysis, is presented. It is a reliable and efficient approach
with high-fidelity to substitute the original reconfigurable antenna within electronic
components with a broad dynamic range. To demonstrate its feasibility and benefits,
an application to a frequency reconfigurable ultra-wideband antenna with tunable
varactors is taken as an example to obtain a successful surrogate model. This surro-
gate modelling technique has the benefits of fewer extracted numbers, better preci-
sion, and a broader variable range because of its physics-based equivalent network
analysis.

9.2 Future Work

This work has shown that the surrogate modelling approaches are feasible to replace
the traditional antennas and frequency reconfigurable antennas. However, radiation
pattern reconfigurable antennas and polarization reconfigurable antennas could not
be covered by the surrogate model. Furthermore, the function fitting techniques and
equivalent circuit network method as the basic module could combine with other
algorithms, such as the hotspot AI algorithms, to expand its applications. Thus, it is
a promising area of future research and development in this field.

Some further work can be researched in the future:

1. Obtain the generic surrogate models, which could cover the radiation pattern
reconfigurable antenna and the polarization reconfigurable antenna;

2. Combine the RFWI with the Gradient Descent method to optimize the conver-
gence issue to reduce the runtime;
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3. Combine the surrogate model with artificial intelligence (AI) algorithms to
optimize the antenna system;

4. Integrate the original reconfigurable antenna into a communication system
based on the surrogate model;

5. Design signal processing algorithm based on the surrogate model of a recon-
figurable antenna to realize the adaptive antenna system;

6. Obtain the generic surrogate model of a filter;

7. Obtain the physics-based surrogate model of a reconfigurable filter;

8. Design the filtering antenna with reconfigurable functionality;

9. Research electronic neuristor based on equivalent circuit and equivalent net-
work methods.
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Appendix A

Basic Forms of Function Fitting

A.1 Polynomial Function in Real Field

I. 1-order real polynomial function
The fitting function Y f with the observable input X and 2 unknown parameters

(a1, a2), could approximate the observable output Y , as

Y ≈ Y f = a1X + a2. (A.1)

To display the derivation of each parameter in detail, the expectation operator in
statistics is used here. The expectation of the squared residual, labelled as e, is

e =E[(Y − Y f )
2]

=E[(Y − (a1X + a2))
2]

=E[Y2 + a2
1X2 + a2

2 − 2a1XY − 2a2Y + 2a1a2X]

=E[Y2] + a2
1E[X2] + a2

2 − 2a1E[XY ] − 2a2E[Y ] + 2a1a2E[X].

(A.2)

The least squares method is to find the optimal parameters by minimizing the ex-
pectation e. Since the fitting function contains 2 unknown parameters (a1, a2), there
are 2 gradient equations, which are the fitting function on their partial derivatives,
respectively, 

∂e
∂a1

= 2a1E[X2] − 2E[XY ] + 2a2E[X]

∂e
∂a2

= 2a2 − 2E[Y ] + 2a1E[X].
(A.3)

By setting these gradient equations to zero, a group of equations composed of the
unknown parameters (a1, a2) is obtained,

∂e
∂a1

= 0

∂e
∂a2

= 0.
(A.4)
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Since the fitting function Y f is a linear function, the gradient equations still keep
such linearity that expectation operator E[·] could finally be moved on the observable
parameters (X2, X, Y , XY), a1E[X2] + a2E[X] = E[XY ]

a1E[X] + a2 = E[Y ].
(A.5)

Because the unknown parameters (a1, a2) are outside of the expectation operator,
the final solution of the unknown parameters (a1, a2) is easy and accurate to find
out. To display the solution clearly, Equation (A.5) could be expressed as the type of
matrix equation,  E[X2] E[X]

E[X] 1


 a1

a2

 =
 E[XY ]

E[Y ]

 (A.6)

For other order real polynomial function fitting, the process is similar to 1-order
real function here since they are all linear functions. Their final solutions to unknown
parameters could be accurately and easily obtained.

A.2 Rational Function in Real Field

I. (0, 1)-order real rational function
There are two order numbers in rational function since it is composed of denomi-

nator polynomial and numerator polynomial. The fitting function Y f with the observ-
able input X and 2 unknown parameters (a1, a2), could approximate the observable
output Y , as

Y ≈ Y f =
1

a1X + a2
. (A.7)

To linearize the non-linear rational function, the residual needs to be changed as
a new type,

r = Y · (a1X + a2) − 1. (A.8)

So, the expectation of squared residual, labelled as e, is

e =E[(Y · (a1X + a2) − 1)2]

=E[a2
1X2Y2 + a2

2Y2 + 1 + 2a1a2XY2 − 2a1XY − 2a2Y ]

=a2
1E[X2Y2] + a2

2E[Y2] + 1 + 2a1a2E[XY2] − 2a1E[XY ] − 2a2E[Y ].

(A.9)

It can be seen that the unknown parameters (a1, a2) are outside of the expec-
tation operator. Thus, gradient equations are still easy to get through their partial
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derivatives, respectively,
∂e
∂a1

= 2a1E[X2Y2] + 2a2E[XY2] − 2E[XY ]

∂e
∂a2

= 2a2E[Y2] + 2a1E[XY2] − 2E[Y ].
(A.10)

Likewise, setting these gradient equations to zero can generate the equations,
where the unknown parameters (a1, a2) can be solved,

∂e
∂a1

= 0

∂e
∂a2

= 0
(A.11)

The final solution to the unknown parameters (a1, a2) is expressed as the type of
matrix equation,  E[X2Y2] E[XY2]

E[XY2] E[Y2]


 a1

a2

 =
 E[XY ]

E[Y ]

 (A.12)

II. (0, 2)-order real rational function
Likewise, (0, 2)-order real rational function also follows the same process. Since

it has 3 unknown parameters (a1, a2, a3), the final matrix equation with a 3× 3 matrix
is more complicated.

Y ≈ Y f =
1

a1X2 + a2X + a3
(A.13)

After approximation, the expectation of squared residual is

e =E[(Y · (a1X2 + a2X + a3) − 1)2]

=E[a2
1X4Y2 + a2

2X2Y2 + a2
3Y2 + 1

+ 2a1a2X3Y2 + 2a1a3X2Y2 − 2a1X2Y

+ 2a2a3XY2 − 2a2XY − 2a3Y ]

=a2
1E[X4Y2] + a2

2E[X2Y2] + a2
3E[Y2] + 1

+ 2a1a2E[X3Y2] + 2a1a3E[X2Y2] − 2a1E[X2Y ]

+ 2a2a3E[XY2] − 2a2E[XY ] − 2a3E[Y ]

(A.14)

Setting the gradient equations to zero can generate the equations to find the un-
known parameters (a1, a2, a3),
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0 =
∂e
∂a1

= 2a1E[X4Y2] + 2a2E[X3Y2] + 2a3E[X2Y2] − 2E[X2Y ]

0 =
∂e
∂a2

= 2a2E[X2Y2] + 2a1E[X3Y2] + 2a3E[XY2] − 2E[XY ]

0 =
∂e
∂a3

= 2a3E[Y2] + 2a1E[X2Y2] + 2a2E[XY2] − 2E[Y ]

(A.15)

The final solution to the unknown parameters (a1, a2, a3) is expressed as the type
of matrix equation,

E[X4Y2] E[X3Y2] E[X2Y2]

E[X3Y2] E[X2Y2] E[XY2]

E[X2Y2] E[XY2] E[Y2]




a1

a2

a3

 =


E[X2Y ]

E[XY ]

E[Y ]

 . (A.16)

III. (1, 2)-order real rational function
Of course, the numerator order of the rational function could be set as non-zero.

It will lead to more unknown parameters.

Y ≈ Y f =
X + b1

a1X2 + a2X + a3
(A.17)

After approximation, the expectation of squared residual is

e =E[(Y · (a1X2 + a2X + a3) − (X + b1))
2]

=E[a2
1X4Y2 + a2

2X2Y2 + a3Y2 + X2 + b2
1

+ 2a1a2X3Y2 + 2a1a3X2Y2 − 2a1X3Y − 2a1b1X2Y

+ 2a2a3XY2 − 2a2X2Y − 2a2b1XY

− 2a3XY − 2a3b1Y + 2b1X]

(A.18)

Setting the gradient equations to zero can generate the equations to find the un-
known parameters (a1, a2, a3, b1),
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0 =
∂e
∂a1

= 2a1E[X4Y2] + 2a2E[X3Y2] + 2a3E[X2Y2] − 2E[X3Y ] − 2b1E[X2Y ]

0 =
∂e
∂a2

= 2a2E[X2Y2] + 2a1E[X3Y2] + 2a3E[XY2] − 2E[X2Y ] − 2b1E[XY ]

0 =
∂e
∂a3

= 2a3E[Y2] + 2a1E[X2Y2] + 2a2E[XY2] − 2E[XY ] − 2b1E[Y ]

0 =
∂e
∂b1

= 2b1 − 2a1E[X2Y ] − 2a2E[XY ] − 2a3E[Y ] + 2E[X]

(A.19)
The final solution to the unknown parameters(a1, a2, a3, b1) is expressed as the

type of matrix equation,

E[X4Y2] E[X3Y2] E[X2Y2] −E[X2Y ]

E[X3Y2] E[X2Y2] E[XY2] −E[XY ]

E[X2Y2] E[XY2] E[Y2] −E[Y ]

E[X2Y ] E[XY ] E[Y ] −1





a1

a2

a3

b1


=



E[X3Y ]

E[X2Y ]

E[XY ]

E[X]


(A.20)

A.3 Polynomial Function in Complex Field

I. 1-order complex polynomial function
The fitting function Z f with the observable input variable s and 2 unknown pa-

rameters (a1, a2), approximating the observable output Z, is,

Z ≈ Z f = a1s + a2. (A.21)

The subscript letter f of Z f means fitting. Z f is the function of s, so its complete
expression is Z f (s). The notation s is related to frequency f or ω (s = j2π f , or
s = jω) in Fourier transform and Laplace transform. The fitting function Z f and
observable Z are in a complex field, and the input variable s is a pure imaginary
number, while the unknown parameters (a1, a2) are in the real field. So, Z, Z f , s ∈ C

and a1, a2 ∈ R. They can be expressed asZ = R + jX

s = jω
, (A.22)



106 Appendix A. Basic Forms of Function Fitting

where R, X, and ω are real numbers (R, X,ω ∈ R). Likewise, the expectation of
squared residual e is

e =E[|Z − Z f |
2]

=E[|Z − (a1s + a2)|
2]

=E[|(R + jX) − ( ja1ω+ a2)|
2]

=E[(R − a2)
2] + E[(X − a1ω)

2]

=E[R2] − 2a2E[R] + a2
2 + E[X2] − 2a1E[ωX] + a2

1E[ω2],

(A.23)

where the residual is the modulus of the difference between 2 complex numbers (Z,
Z f ). By setting the gradient equations to zero, the unknown parameters can be found
accurately, 

0 =
∂e
∂a1

= −2E[ωX] + 2a1E[ω2]

0 =
∂e
∂a2

= −2E[R] + 2a2

(A.24)

The final solution to the unknown parameters (a1, a2) is expressed as the type of
matrix equation,  E[ω2] 0

0 1


 a1

a2

 =
 E[ωX]

E[R]

 (A.25)

From the final matrix equation, the unknown parameters (a1, a2) could be figured
out in the real field since in this equation all observable data are real numbers.

II. 2-order complex polynomial function
Likewise, 2-order polynomial function fitting can be figured out accurately, as

well.
Z ≈ Z f = a1s2 + a2s + a3 (A.26)Z = R + jX

s = jω
(A.27)

The expectation of squared residual e is

e =E[|Z − Z f |
2]

=E[|Z − (a1s2 + a2s + a3)|
2]

=E[(R + a1ω
2 − a3)

2] + E[(X − a2ω)
2]

=E[R2] + a2
1E[ω4] + a2

3 + 2a1E[ω2R] − 2a3E[R] − 2a1a3E[ω2]

+ E[X2] − 2a2E[ωX] + a2
2E[ω2]

(A.28)
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Setting the gradient equations to zero can generate the equations to find out the
unknown parameters,

0 =
∂e
∂a1

= 2a1E[ω4] + 2E[ω2R] − 2a3E[ω2]

0 =
∂e
∂a2

= −2E[ωX] + 2a2E[ω2]

0 =
∂e
∂a3

= 2a3 − 2E[R] − 2a1E[ω2]

(A.29)

The final solution to the unknown parameters (a1, a2, a3) is expressed as the type
of matrix equation,

E[ω4] 0 −E[ω2]

0 E[ω2] 0

−E[ω2] 0 1




a1

a2

a3

 =

−E[ω2R]

E[ωX]

E[R]

 (A.30)

Although the matrix equation is also regular, it is entirely different from that of the
polynomial function fitting in the real field, such as Equation (A.6). Actually, these
differences come from the Euclidean norm and complex field in Equation (A.28).

A.4 Rational Function in Complex Field

I. (0, 1)-order complex rational function
(0, 1)-order complex rational function is the simplest type, since its numerator is

constant and its denominator contains 2 unknown parameters (a1, a2).

Z ≈ Z f =
1

a1s + a2
(A.31)

Z = R + jX

s = jω
(A.32)

To linearize the non-linear rational function, the residual needs to be changed.
So, the expectation of squared residual, labelled as e, is
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e =E[|Z · (a1s + a2) − 1|2]

=E[|(R + jX)( ja1ω+ a2) − 1|2]

=E[(a2R − a1ωX − 1)2] + E[(a2X + a1ωR)2]

=a2
2E[R2] + a2

1E[ωX2] + 1 − 2a1a2E[ωRX] − 2a2E[R] + 2a1E[ωX]

+ a2
2E[X2] + a2

1E[ω2R2] + 2a1a2E[ωRX]

(A.33)

It can be seen that the unknown parameters (a1, a2) are outside of the expecta-
tion operator. Thus, the gradient equations are still easy to get through their partial
derivatives, respectively,

0 =
∂e
∂a1

= 2a1E[ωX2] + 2E[ωX] + 2a1E[ω2R2]

0 =
∂e
∂a2

= 2a2E[R2] − 2E[R] + 2a2E[X2]
(A.34)

Setting these gradient equations to zero can generate the equations. The final so-
lution to the unknown parameters (a1, a2) is expressed as the type of matrix equation,

E[ω2R2] + E[ω2X2] 0

0 E[R2] + E[X2]




a1

a2

 =

−E[ωX]

E[R]

 (A.35)

II. (0, 2)-order complex rational function
Likewise, (0, 2)-order complex rational function follows the same process, as

well. Since it has 3 unknown parameters (a1, a2, a3), the final matrix equation with
a 3 × 3 matrix is more complicated.

Z ≈ Z f =
1

a1s2 + a2s + a3
(A.36)

Z = R + jX

s = jω
(A.37)

After approximation, the expectation of squared residual is
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e =E[|Z · (a1s2 + a2s + a3) − 1|2]

=E[|(R + jX)(−a1ω
2 + ja2ω+ a3) − 1|2]

=E[(−a1ω
2R + a3R − a2ωX − 1)2] + E[(a2ωR − a1ω

2X + a3X)2]

=E[a2
1ω

4R2 + a2
3R2 + a2

2ω
2X2 + 1 − 2a1a3ω

2R2 + 2a1a2ω
3RX + 2a1ω

2R

− 2a2a3ωRX − 2a3R + 2a2ωX]

+ E[a2
2ω

2R2 + a2
1ω

4X2 + a2
3X2 − 2a1a2ω

3RX + 2a2a3ωRX − 2a1a3ω
2X2]

=a2
1E[ω4R2] + a2

3E[R2] + a2
2E[ω2X2] + 1

− 2a1a3E[ω2R2] + 2a1a2E[ω3RX] + 2a1E[ω2R]

− 2a2a3E[ωRX] − 2a3E[R] + 2a2E[ωX]

+ a2
2E[ω2R2] + a2

1E[ω4X2] + a2
3E[X2]

− 2a1a2E[ω3RX] + 2a2a3E[ωRX] − 2a1a3E[ω2X2]
(A.38)

Setting the gradient equation to zero can generate the equations to find the un-
known parameters (a1, a2, a3),

0 =
∂e
∂a1

= 2a1E[ω4R2] − 2a3E[ω2R2] + 2E[ω2R] + 2a1E[ω4X2] − 2a3E[ω2X2]

0 =
∂e
∂a2

= 2a2E[ω2X2] + 2E[ωX] + 2a2E[ω2R2]

0 =
∂e
∂a3

= 2a3E[R2] − 2a1E[ω2R2] − 2E[R] + 2a3E[X2] − 2a1E[ω2X2]

(A.39)
The final solution to the unknown parameters (a1, a2, a3) is expressed as the type

of matrix equation,
E[ω4R2] + E[ω4X2] 0 −E[ω2R2] − E[ω2X2]

0 E[ω2R2] + E[ω2X2] 0

−E[ω2R2] − E[ω2X2] 0 E[R2] + E[X2]



·


a1

a2

a3


=


−E[ω2R]

−E[ωX]

E[R]



(A.40)

Compared with Equation (A.16), the Matrix Equation (A.40) of a complex ratio-
nal function is more complicated.
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III. (1, 2)-order complex rational function
Of course, the numerator order of the rational function could be set as non-zero.

It will lead to more unknown parameters.

Z ≈ Z f =
s + b1

a1s2 + a2s + a3
(A.41)

Z = R + jX

s = jω
(A.42)

After approximation, the expectation of squared residual is

e =E[|Z · (a1s2 + a2s + a3) − (s + b1)|
2]

=E[|(R + jX)(−a1ω
2 + ja2ω+ a3) − ( jω+ b1)|

2]

=E[(−a1ω
2R + a3R − a2ωX − b1)

2] + E[(a2ωR − a1ω
2X + a3X −ω)2]

=E[a2
1ω

4R2 + a2
3R2 + a2

2ω
2X2 + b2

1 − 2a1a3ω
2R2 + 2a1a2ω

3RX + 2a1b1ω
2R

− 2a2a3ωRX − 2a3b1R + 2a2b1ωX]

+ E[a2
2ω

2R2 + a2
1ω

4X2 + a2
3X2 +ω2 − 2a1a2ω

3RX + 2a2a3ωRX − 2a2ω
2R

− 2a1a3ω
2X2 + 2a1ω

3X − 2a3ωX]

=a2
1E[ω4R2] + a2

3E[R2] + a2
2E[ω2X2] + b2

1

− 2a1a3E[ω2R2] + 2a1a2E[ω3RX] + 2a1b1E[ω2R]

− 2a2a3E[ωRX] − 2a3b1E[R] + 2a2b1E[ωX]

+ a2
2E[ω2R2] + a2

1E[ω4X2] + a2
3E[X2] + E[ω2]

− 2a1a2E[ω3RX] + 2a2a3E[ωRX] − 2a2E[ω2R]

− 2a1a3E[ω2X2] + 2a1E[ω3X] − 2a3E[ωX]
(A.43)

Setting the gradient equations to zero can generate the equations to find the un-
known parameters (a1, a2, a3, b1),
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0 =
∂e
∂a1

= 2a1E[ω4R2] − 2a3E[ω2R2] + 2b1E[ω2R]

+2a1E[ω4X2] − 2a3E[ω2X2] + 2E[ω3X]

0 =
∂e
∂a2

= 2a2E[ω2X2] + 2b1E[ωX] + 2a2E[ω2R2] − 2E[ω2R]

0 =
∂e
∂a3

= 2a3E[R2] − 2a1E[ω2R2] − 2b1E[R]

+2a3E[X2] − 2a1E[ω2X2] − 2E[ωX]

0 =
∂e
∂b1

= 2b1 + 2a1E[ω2R] − 2a3E[R] + 2a2E[ωX]

(A.44)

The final solution to the unknown parameters(a1, a2, a3, b1) is expressed as the
type of matrix equation,

E[ω4R2] + E[ω4X2] 0 −E[ω2R2] − E[ω2X2] E[ω2R]

0 E[ω2R2] + E[ω2X2] 0 E[ωX]

−E[ω2R2] − E[ω2X2] 0 E[R2] + E[X2] −E[R]

E[ω2R] E[ωX] −E[R] 1



·



a1

a2

a3

b1


=



−E[ω3X]

E[ω2R]

E[ωX]

0


(A.45)

The Matrix Equation (A.45) is much more complicated than Equation (A.20) in
the real field.
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Appendix B

Basic Forms of Equivalent Circuit

B.1 Directly Translated Method

B.1.1 Group of Resistors and Capacitors

I. m = n = 1
The (1, 1)-order rational function is as:

Z(s) =
s + b1

a1s + a2
. (B.1)

It can convert to the equivalent circuit topology in Figure B.1. There are 3 pa-
rameters (a1, a2, b1) in Equation (B.1), so the 3 unknown parameters (R1, R2, C1) in
Figure B.1 can be figured out through the following methods.

Method A

Figure B.1: Equivalent circuit composed of resistors and capaci-
tor for (1, 1)-order rational function.
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The equivalent impedance in Figure B.1 is

Z(s) =R2 + R1 ∥
1

sC1

=
sC1R1R2 + R1 + R2

sC1R1 + 1

=
s +

R1 + R2

C1R1R2

s ·
1

R2
+

1
C1R1R2

(B.2)

For the variable s, Equation (B.2) has the same type as Equation (B.1). Compar-
ing their counterpart coefficients, we can get the equations group,

a1 =
1

R2

a2 =
1

C1R1R2

b1 =
R1 + R2

C1R1R2

(B.3)

Through Equations (B.3), the unknown components (R1, R2, C1) in Figure B.1
can be solved, 

C1 =
a2

1

a1b1 − a2

R1 =
a1b1 − a2

a1a2

R2 =
1
a1

(B.4)

So far, the equivalent circuit within resistors and capacitor in Figure B.1 is ob-
tained from its corresponding (1, 1)-order rational function in Equation (B.1).

Method B
The corresponding equivalent circuit within resistors and capacitor in Figure B.1

can be constructed through Kirchhoff’s Current/Voltage Laws. Each branch’s current
of the equivalent circuit could be marked in Figure B.2.

Based on Kirchhoff’s Current Law (KCL), the equations areiR2 = i

iC1 + iR1 − iR2 = 0
(B.5)
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Figure B.2: The current in equivalent circuit composed of resis-
tors and capacitor for (1, 1)-order rational function.

Based on Kirchhoff’s Voltage Law (KVL), the equation is

−
1

sC1
· iC1 + R1iR1 = 0 (B.6)

To solve the problem clearly, Equations (B.5) and Equation (B.6) can be spliced
together and expressed as the type of matrix equation,

0 0 1

1 1 −1

− 1
sC1

R1 0




iC1

iR1

iR2

 =


i

0

0

 (B.7)

In Matrix Equation (B.7), the vector (iC1 , iR1 , iR2)
T contains 3 branch currents and

the 3× 3 matrix is composed of lumped components. Thus, the vector (iC1 , iR1 , iR2)
T

can be solved and expressed by the lumped components. Then, the equivalent impedance
of the circuit can be expressed by the lumped components,

Z(s) =

∑
j

R jiR j

i
=

R1iR1 + R2iR2

i
. (B.8)

The completed expression of Equation (B.8) is Equation (B.2). Thus, the subse-
quent process is the same as that in Method A.

Compared with Method A, the process of Method B has more steps. However,
the matrix equation in Method B is regular to be easily extended to the higher order.
Furthermore, in Method B, more information about the circuit can be obtained, such
as the current of each branch and the voltage of each node.

II. m = n = 2
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Figure B.3: Equivalent circuit composed of resistors and capaci-
tors for (2, 2)-order rational function.

Figure B.4: The current in equivalent circuit composed of resis-
tors and capacitors for (2, 2)-order rational function.

The (2, 2)-order rational function is as:

Z(s) =
s2 + b1s + b2

a1s2 + a2s + a3
. (B.9)

It can convert to the equivalent circuit topology in Figure B.3. There are 5 pa-
rameters (a1, a2, a3, b1, b2) in Equation (B.9), so that the 5 unknown parameters (R1,
R2, R3, C1, C2) in Figure B.3 can be figured out through the following methods.

Method A
The equivalent impedance in Figure B.3 is

Z(s) = R3 +
1

sC2
∥ (R2 +

1
sC1

∥ R1) (B.10)

Method B
The corresponding equivalent circuit within resistors and capacitor in Figure B.3

can be built through Kirchhoff’s Current/Voltage Laws. Each branch’s current of the
equivalent circuit could be marked in Figure B.4.
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Based on Kirchhoff’s Current Law (KCL), the equations are
iR3 = i

iC1 + iR1 − iR2 = 0

iC2 + iR2 − iR3 = 0

(B.11)

Based on Kirchhoff’s Voltage Law (KVL), the equations are
−

1
sC1

iC1 + R1iR1 = 0

1
sC1

iC1 −
1

sC2
iC2 + R2iR2 = 0

(B.12)

To solve the problem clearly, Equations (B.11) and Equations (B.12) can be
spliced together and expressed as the type of matrix equation,

0 0 0 0 1

1 0 1 −1 0

0 1 0 1 −1

− 1
sC1

0 R1 0 0

1
sC1

− 1
sC2

0 R2 0





iC1

iC2

iR1

iR2

iR3


=



i

0

0

0

0


(B.13)

In Matrix Equation (B.13), the vector (iC1 , iC2 , iR1 , iR2 , iR3)
T contains 5 branch

currents and the 5 × 5 matrix is composed of lumped components. Thus, the vector
(iC1 , iC2 , iR1 , iR2 , iR3)

T can be solved and expressed by the lumped components. Then,
the equivalent impedance of the circuit can be expressed by the lumped components,

Z(s) =

∑
j

R jiR j

i
=

R1iR1 + R2iR2 + R3iR3

i
(B.14)

B.1.2 Group of Resistors and Capacitors II

To illustrate the diversity of the conversion from the rational function to its equiva-
lent circuit, another circuit with the same numbers of resistors and capacitors but a
different topology is discussed.

I. m = n = 1
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Figure B.5: Equivalent circuit composed of resistors and capaci-
tor for (1, 1)-order rational function.

The (1, 1)-order rational function is as:

Z(s) =
s + b1

a1s + a2
(B.15)

It can convert to the equivalent circuit topology in Figure B.5. There are 3 pa-
rameters (a1, a2, b1) in Equation (B.15), so that the 3 unknown parameters (R0, R1,
C1) in Figure B.5 can be figured out through the following methods.

Method A
The equivalent impedance in Figure B.5 is

Z(s) =R0 ∥ (
1

sC1
+ R1)

=
sC1R0R1 + R0

sC1(R0 + R1) + 1

=
s +

1
C1R1

s ·
R0 + R1

R0R1
+

1
C1R0R1

(B.16)

For the variable s, Equation (B.16) has the same type of Equation (B.15). Com-
paring their counterpart coefficients, we can get the equations

a1 =
R0 + R1

R0R1
=

1
R0

+
1

R1

a2 =
1

C1R0R1

b1 =
1

C1R1

(B.17)
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Through Equations (B.17), the unknown components (R0, R1, C1) can be solved,

C1 =
a1b1 − a2

b2
1

R0 =
b1

a2

R1 =
b1

a1b1 − a2

(B.18)

So far, the equivalent circuit within resistors and capacitor in Figure B.5 is ob-
tained from its corresponding (1, 1)-order rational function.

Method B
The corresponding equivalent circuit within resistors and capacitor in Figure B.5

can be constructed through Kirchhoff’s Current/Voltage Laws. Each branch’s current
of the equivalent circuit could be marked in Figure B.6.

Based on Kirchhoff’s Current Law (KCL), the equations areiC1 + iR0 = i

iC1 − iR1 = 0
(B.19)

Based on Kirchhoff’s Voltage Law (KVL), the equation is

1
sC1

iC1 − R0iR0 + R1iR1 = 0 (B.20)

Figure B.6: The current in equivalent circuit composed of resis-
tors and capacitor for (1, 1)-order rational function.
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To solve the problem clearly, Equations (B.19) and Equation (B.20) can be spliced
together and expressed as the type of matrix equation,

1 1 0

1 0 −1

1
sC1

−R0 R1




iC1

iR0

iR1

 =


i

0

0

 (B.21)

In Matrix Equation (B.21), the vector (iC1 , iR0 , iR1)
T contains 3 branch currents

and the 3×3 matrix is composed of lumped components. Thus, the vector (iC1 , iR0 , iR1)
T

can be solved and expressed by the lumped components. Then, the equivalent impedance
of the circuit can be expressed by the lumped components,

Z(s) =
R0 · iR0

i
(B.22)

The complete expression of Equation (B.22) is Equation (B.16). Thus, the sub-
sequent process is the same as that in Method A.

Compared with Method A, the process of Method B has more steps. However,
the matrix equation in Method B is regular to be easily extended to the higher order.
Furthermore, in Method B, more information about the circuit can be obtained, such
as the current of each branch and the voltage of each node.

II. m = n = 2
The (2, 2)-order rational function is as:

Z(s) =
s2 + b1s + b2

a1s2 + a2s + a3
(B.23)

It can convert to the equivalent circuit topology in Figure B.7. There are 5 pa-
rameters (a1, a2, a3, b1, b2) in Equation (B.23), so that the 5 unknown parameters
(R0, R1, R2, C1, C2) in Figure B.7 can be figured out through the following methods.

Method A
The equivalent impedance in Figure B.7 is

Z(s) = R0 ∥ (
1

sC1
+ R1 ∥ (

1
sC2

+ R2)) (B.24)

Method B
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Figure B.7: Equivalent circuit composed of resistors and capaci-
tors for (2, 2)-order rational function.

Figure B.8: The current in equivalent circuit composed of resis-
tors and capacitors for (2, 2)-order rational function.

The corresponding equivalent circuit within resistors and capacitors in Figure B.7
can be built through Kirchhoff’s Current/Voltage Laws. Each branch’s current of the
equivalent circuit could be marked in Figure B.8.

Based on Kirchhoff’s Current Law (KCL), the equations are
iC1 + iR0 = i

iC1 − iC2 − iR1 = 0

iC2 − iR2 = 0

(B.25)

Based on Kirchhoff’s Voltage Law (KVL), the equations are
1

sC1
iC1 − R0iR0 + R1iR1 = 0

1
sC2

iC2 − R1iR1 + R2iR2 = 0
(B.26)
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To solve the problem clearly, Equations (B.25) and Equations (B.26) can be
spliced together and expressed as the type of matrix equation,

1 0 1 0 0

1 −1 0 −1 0

0 1 0 0 −1

1
sC1

0 −R0 R1 0

0 1
sC2

0 −R1 R2





iC1

iC2

iR0

iR1

iR2


=



i

0

0

0

0


(B.27)

In Matrix Equation (B.27), the vector (iC1 , iC2 , iR0 , iR1 , iR2)
T contains 5 branch

currents and the 5 × 5 matrix is composed of lumped components. Thus, the vector
(iC1 , iC2 , iR0 , iR1 , iR2)

T can be solved and expressed by the lumped components. Then,
the equivalent impedance of the circuit can be expressed by the lumped components,

Z(s) =
R0 · iR0

i
(B.28)

B.1.3 Group of Resistors and Inductors

The rational function is also converted to an equivalent circuit composed of the re-
sistors and inductors.

I. m = n = 1
The (1, 1)-order rational function is as:

Z(s) =
s + b1

a1s + a2
(B.29)

It can convert to the equivalent circuit topology in Figure B.9. There are 3 pa-
rameters (a1, a2, b1) in Equation (B.29), so that the 3 unknown parameters (R1, R2,
L1) in Figure B.9 can be figured out through the following methods.

Method A
The equivalent impedance in Figure B.9 is



B.1. Directly Translated Method 123

Figure B.9: Equivalent circuit composed of resistors and induc-
tor for (1, 1)-order rational function.

Z(s) =R2 + sL1 ∥ R1

=
sL1(R1 + R2) + R1R2

sL1 + R1

=

s +
R1R2

L1(R1 + R2)

S ·
1

R1 + R2
+

R1

L1(R1 + R2)

(B.30)

For the variable s, Equation (B.30) has the same type of Equation (B.29). Com-
paring their counterpart coefficients, we can get the equations

a1 =
1

R1 + R2

a2 =
R1

L1(R1 + R2)

b1 =
R1R2

L1(R1 + R2)

(B.31)

Through Equations (B.31), the unknown components (R1, R2, L1) can be solved,

L1 =
1
a2
−

a1b1

a2
2

R1 =
1
a1
−

b1

a2

R2 =
b1

a2

(B.32)

So far, the equivalent circuit within resistors and inductor in Figure B.9 is ob-
tained from its corresponding (1, 1)-order rational function.
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Figure B.10: The current in equivalent circuit composed of re-
sistors and inductor for (1, 1)-order rational function.

Method B
The corresponding equivalent circuit within resistors and inductor in Figure B.9

can be constructed through Kirchhoff’s Current/Voltage Laws. Each branch’s current
of the equivalent circuit could be marked in Figure B.10.

Based on Kirchhoff’s Current Law (KCL), the equations areiR2 = i

iL1 + iR1 − iR2 = 0
(B.33)

Based on Kirchhoff’s Voltage Law (KVL), the equation is

− sL1iL1 + R1iR1 = 0 (B.34)

To solve the problem clearly, Equations (B.33) and Equation (B.34) can be spliced
together and expressed as the type of matrix equation,

0 0 1

1 1 −1

−sL1 R1 0




iL1

iR1

iR2

 =


i

0

0

 (B.35)

In Matrix Equation (B.35), the vector (iL1 , iR1 , iR2)
T contains 3 branch currents

and the 3×3 matrix is composed of lumped components. Thus, the vector (iL1 , iR1 , iR2)
T

can be solved and expressed by the lumped components. Then, the equivalent impedance
of the circuit can be expressed by the lumped components,

Z(s) =

∑
j

R jiR j

i
=

R1iR1 + R2iR2

i
(B.36)
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Figure B.11: Equivalent circuit composed of resistors and induc-
tors for (2, 2)-order rational function.

II. m = n = 2
The (2, 2)-order rational function is as:

Z(s) =
s2 + b1s + b2

a1s2 + a2s + a3
(B.37)

It can convert to the equivalent circuit topology in Figure B.11. There are 5
parameters (a1, a2, a3, b1, b2) in Equation (B.37), so that 5 unknown parameters (R1,
R2, R3, L1, L2) in Figure B.11 can be figured out through the following methods.

Method A
The equivalent impedance in Figure B.11 is

Z(s) = R3 + sL2 ∥ (R2 + sL1 ∥ R1) (B.38)

Method B
The corresponding equivalent circuit within resistors and inductors in Figure

B.11 can be built through Kirchhoff’s Current/Voltage Laws. The current of each
branch in an equivalent circuit could be marked in Figure B.12.

Based on Kirchhoff’s Current Law (KCL), the equations are
iR3 = i

iL1 + iR1 − iR2 = 0

iL2 + iR2 − iR3 = 0

(B.39)
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Figure B.12: The current in equivalent circuit composed of re-
sistors and inductors for (2, 2)-order rational function.

Based on Kirchhoff’s Voltage Law (KVL), the equations are−sL1iL1 + R1iR1 = 0

sL1iL1 − sL2iL2 + R2iR2 = 0
(B.40)

To solve the problem clearly, Equations (B.39) and Equations (B.40) can be
spliced together and expressed as the type of matrix equation,

0 0 0 0 1

1 0 1 −1 0

0 1 0 1 −1

−sL1 0 R1 0 0

sL1 −sL2 0 R2 0





iL1

iL2

iR1

iR2

iR3


=



i

0

0

0

0


(B.41)

In Matrix Equation (B.41), the vector (iL1 , iL2 , iR1 , iR2 , iR3)
T contains 5 branch

currents and the 5 × 5 matrix is composed of lumped components. Thus, the vector
(iL1 , iL2 , iR1 , iR2 , iR3)

T can be solved and expressed by the lumped components. Then,
the equivalent impedance of the circuit can be expressed by the lumped components,

Z(s) =

∑
j

R jiR j

i
=

R1iR1 + R2iR2 + R3iR3

i
(B.42)
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B.2 Continued Fraction Method

Continued Fraction is also named: method of successive division, division algorithm,
and Euclidean algorithm. It can be used to obtain the corresponding equivalent cir-
cuit. The equivalent circuit topologies are still various through the Continued Frac-
tion Method. To obtain the correct result, the process of Continued Fraction must
follow the explicit topology.

I. 1-order rational function
For 1-order rational function, the equivalent circuit topology is as Figure B.1, so

its equivalent impedance is

Z(s) =R2 +
1

sC1
∥ R1

=R2 +
1

sC1 +
1

R1

(B.43)

As the type of Equation (B.43), the standard type of 1-order rational function
could be operated as

Z(s) =
s + b1

a1s + a2

=
1
a1

+
b1 −

a2

a1

a1s + a2

=
1
a1

+
1

a2
1

a1b1 − a2
· s +

a1a2

a1b1 − a2

(B.44)

Comparing the counterpart coefficients in Equation (B.43) and Equation (B.44),
the unknown components (C1, R1, R2) in Figure B.1 can be obtained,

C1 =
a2

1

a1b1 − a2

R1 =
a1b1 − a2

a1a2

R2 =
1
a1

(B.45)

II. 2-order rational function
For 2-order rational function, the equivalent circuit topology is as Figure B.3, so

its equivalent impedance is
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Z(s) =R3 +
1

sC2
∥ (R2 +

1
sC1

∥ R1)

=R3 +
1

sC2 +
1

R2 +
1

sC1 +
1

R1

(B.46)

As the type of Equation (B.46), the standard type of 2-order rational function
could be operated as

Z(s) =
s2 + b1s + b2

a1s2 + a2s + a3

=
1
a1

+
(b1 −

a2

a1
) · s + (b2 −

a3

a1
)

a1s2 + a2s + a3

=
1
a1

+
1

a1s2 + a2s + a3

a1b1 − a2

a1
· S +

a1b2 − a3

a1

=
1
a1

+
1

a2
1

a1b1 − a2
· s +

(a2 −
a2

1

a1b1 − a2
·

a1b2 − a3

a1
) · s + a3

a1b1 − a2

a1
· s +

a1b2 − a3

a1

=
1
a1

+
1

a2
1

a1b1 − a2
· s +

a2 · (a1b1 − a2) − a1 · (a1b2 − a3)

a1b1 − a2
· s + a3

a1b1 − a2

a1
· s +

a1b2 − a3

a1

=
1
a1

+
1

a2
1

a1b1 − a2
· s +

1
a1b1 − a2

a1
· s +

a1b2 − a3

a1

a2 · (a1b1 − a2) − a1 · (a1b2 − a3)

a1b1 − a2
· s + a3

(B.47)
Comparing the counterpart coefficients in Equation (B.46) and Equation (B.47),

the unknown components (C1, C2, R1, R2, R3) in Figure B.3 can be obtained,
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C1 =
a4

1a2
2 − 2a3

1a2b1b2 − 2a3
1a3b2 + a2

1a2
2b2

1 + 2a2
1a2

2b2 + 2a2
1a2a3b1 + ...

(a2 − a1b1) · (a2
1b2

2 − a1a2b1b2 + a1a3b2
1 − 2a1a3b2 + ...

... + a2
1a3 − 2a1a3

2b1 − 2a1a2
2a3 + a4

2

... + a2
2b2 − a2a3b1 + a2

3)

C2 =
a2

1

a1b1 − a2

R1 = −
a2

1b2
2 − a1a2b1b2 + a1a3b2

1 − 2a1a3b2 + a2
2b2 − a2a3b1 + a2

3

a3 · (−a2
1b2 + a1a2b1 + a1a3 − a2

2)

R2 =
(a1b1 − a2)2

a1 · [a2 · (a1b1 − a2) − a1 · (a1b2 − a3)]

R3 =
1
a1

(B.48)
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Appendix C

Data in Chapter 7

Table C.1: Unknown coefficient vector x with tunable varactor (0.1pF-1.0pF) from fitting.

a1 a2 a3 a4 a5
a6 a7 a8 a9 a10

Varactor a11 a12 a13 b1 b2
(pF) b3 b4 b5 b6 b7

b8 b9 b10 b11 b12

3.45 × 100 3.05 × 102 4.34 × 104 2.66 × 106 1.92 × 108

8.14 × 109 3.72 × 1011 1.03 × 1013 3.10 × 1014 4.99 × 1015

0.10 1.00 × 1017 7.00 × 1017 9.10 × 1018 −3.55 × 101 9.12 × 103

−3.73 × 105 3.08 × 107 −1.38 × 109 4.77 × 1010 −2.14 × 1012

3.50 × 1013 −1.34 × 1015 1.14 × 1016 −2.89 × 1017 1.09 × 1018

3.71 × 100 3.07 × 102 4.58 × 104 2.60 × 106 1.99 × 108

7.79 × 109 3.81 × 1011 9.75 × 1012 3.20 × 1014 4.78 × 1015

0.15 1.07 × 1017 6.91 × 1017 1.06 × 1019 −3.51 × 101 8.77 × 103

−3.60 × 105 2.84 × 107 −1.29 × 109 4.18 × 1010 −1.97 × 1012

2.84 × 1013 −1.21 × 1015 8.10 × 1015 −2.57 × 1017 4.81 × 1017

3.48 × 100 3.04 × 102 4.26 × 104 2.48 × 106 1.81 × 108

7.16 × 109 3.40 × 1011 8.75 × 1012 2.83 × 1014 4.24 × 1015

0.20 9.43 × 1016 6.13 × 1017 9.41 × 1018 −3.33 × 101 8.45 × 103

−3.34 × 105 2.65 × 107 −1.16 × 109 3.83 × 1010 −1.73 × 1012

2.58 × 1013 −1.05 × 1015 7.35 × 1015 −2.21 × 1017 4.60 × 1017

3.41 × 100 2.95 × 102 4.08 × 104 2.33 × 106 1.70 × 108

6.52 × 109 3.10 × 1011 7.73 × 1012 2.52 × 1014 3.64 × 1015

0.25 8.35 × 1016 5.08 × 1017 8.45 × 1018 −3.35 × 101 8.34 × 103

−3.27 × 105 2.61 × 107 −1.11 × 109 3.85 × 1010 −1.62 × 1012

2.74 × 1013 −9.74 × 1014 8.82 × 1015 −2.04 × 1017 8.49 × 1017
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a1 a2 a3 a4 a5
a6 a7 a8 a9 a10

Varactor a11 a12 a13 b1 b2
(pF) b3 b4 b5 b6 b7

b8 b9 b10 b11 b12

2.60 × 100 2.74 × 102 3.11 × 104 2.07 × 106 1.26 × 108

5.53 × 109 2.21 × 1011 6.26 × 1012 1.72 × 1014 2.80 × 1015

0.30 5.31 × 1016 3.56 × 1017 4.98 × 1018 −3.12 × 101 8.34 × 103

−2.97 × 105 2.67 × 107 −9.88 × 108 4.18 × 1010 −1.42 × 1012

3.35 × 1013 −8.54 × 1014 1.29 × 1016 −1.81 × 1017 1.80 × 1018

1.89 × 100 2.67 × 102 2.35 × 104 1.97 × 106 9.55 × 107

5.16 × 109 1.66 × 1011 5.79 × 1012 1.26 × 1014 2.62 × 1015

0.35 3.76 × 1016 3.43 × 1016 3.32 × 1018 −2.72 × 101 8.21 × 103

−2.57 × 105 2.61 × 107 −8.45 × 108 4.11 × 1010 −1.21 × 1012

3.37 × 1013 −7.29 × 1014 1.35 × 1016 −1.56 × 1017 1.99 × 1018

1.32 × 100 2.66 × 102 1.78 × 104 1.93 × 106 7.46 × 107

5.02 × 109 1.31 × 1011 5.67 × 1012 1.00 × 1014 2.64 × 1015

0.40 3.03 × 1016 3.68 × 1017 2.73 × 1018 −2.32 × 101 8.06 × 103

−2.19 × 105 2.53 × 107 −7.15 × 108 3.96 × 1010 −1.02 × 1012

3.25 × 1013 −6.22 × 1014 1.32 × 1016 −1.35 × 1017 1.99 × 1018

8.70 × 10−1 2.63 × 102 1.37 × 104 1.90 × 106 6.05 × 107

4.94 × 109 1.10 × 1011 5.63 × 1012 8.71 × 1013 2.70 × 1015

0.45 2.79 × 1016 3.96 × 1017 2.87 × 1018 −1.94 × 101 7.96 × 103

−1.84 × 105 2.47 × 107 −6.06 × 108 3.86 × 1010 −8.70 × 1011

3.20 × 1013 −5.40 × 1014 1.33 × 1016 −1.19 × 1017 2.05 × 1018

8.92 × 10−1 2.55 × 102 1.40 × 104 1.84 × 106 6.22 × 107

4.79 × 109 1.15 × 1011 5.49 × 1012 9.58 × 1013 2.65 × 1015

0.50 3.41 × 1016 3.91 × 1017 4.31 × 1018 −1.89 × 101 8.07 × 103

−1.80 × 105 2.54 × 107 −5.91 × 108 4.04 × 1010 −8.52 × 1011

3.43 × 1013 −5.35 × 1014 1.46 × 1016 −1.20 × 1017 2.34 × 1018

7.78 × 10−1 2.54 × 102 1.29 × 104 1.82 × 106 5.81 × 107

4.72 × 109 1.08 × 1011 5.40 × 1012 9.10 × 1013 2.62 × 1015

0.55 3.29 × 1016 3.91 × 1017 4.27 × 1018 −1.79 × 101 8.02 × 103

−1.71 × 105 2.52 × 107 −5.58 × 108 3.98 × 1010 −8.02 × 1011

3.37 × 1013 −5.04 × 1014 1.44 × 1016 −1.13 × 1017 2.31 × 1018

6.39 × 10−1 2.41 × 102 1.23 × 104 1.75 × 106 5.96 × 107

4.59 × 109 1.20 × 1011 5.39 × 1012 1.12 × 1014 2.72 × 1015

0.60 4.73 × 1016 4.12 × 1017 7.27 × 1018 −1.52 × 101 8.17 × 103

−1.53 × 105 2.63 × 107 −5.23 × 108 4.32 × 1010 −7.92 × 1011

3.82 × 1013 −5.31 × 1014 1.70 × 1016 −1.25 × 1017 2.81 × 1018

5.10 × 10−1 2.39 × 102 1.11 × 104 1.72 × 106 5.50 × 107

4.50 × 109 1.12 × 1011 5.26 × 1012 1.05 × 1014 2.64 × 1015

0.65 4.44 × 1016 4.03 × 1017 6.90 × 1018 −1.41 × 101 8.13 × 103

−1.42 × 105 2.60 × 107 −4.87 × 108 4.26 × 1010 −7.36 × 1011

3.76 × 1013 −4.94 × 1014 1.68 × 1016 −1.17 × 1017 2.81 × 1018
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a1 a2 a3 a4 a5
a6 a7 a8 a9 a10

Varactor a11 a12 a13 b1 b2
(pF) b3 b4 b5 b6 b7

b8 b9 b10 b11 b12

6.01 × 10−1 2.32 × 102 1.25 × 104 1.70 × 106 6.38 × 107

4.54 × 109 1.36 × 1011 5.48 × 1012 1.36 × 1014 2.86 × 1015

0.70 6.22 × 1016 4.40 × 1017 1.02 × 1019 −1.37 × 101 8.32 × 103

−1.44 × 105 2.75 × 107 −5.15 × 108 4.64 × 1010 −8.17 × 1011

4.23 × 1013 −5.77 × 1014 1.93 × 1016 −1.41 × 1017 3.24 × 1018

6.64 × 10−1 2.29 × 102 1.34 × 104 1.68 × 106 6.78 × 107

4.50 × 109 1.45 × 1011 5.44 × 1012 1.46 × 1014 2.85 × 1015

0.75 6.74 × 1016 4.39 × 1017 1.11 × 1019 −1.37 × 101 8.33 × 103

−1.46 × 105 2.76 × 107 −5.26 × 108 4.68 × 1010 −8.39 × 1011

4.26 × 1013 −5.94 × 1014 1.94 × 1016 −1.45 × 1017 3.22 × 1018

3.67 × 10−1 2.29 × 102 1.08 × 104 1.67 × 106 5.83 × 107

4.42 × 109 1.27 × 1011 5.32 × 1012 1.30 × 1014 2.78 × 1015

0.80 6.01 × 1016 4.34 × 1017 9.90 × 1018 −1.13 × 101 8.23 × 103

−1.26 × 105 2.69 × 107 −4.62 × 108 4.51 × 1010 −7.43 × 1011

4.08 × 1013 −5.29 × 1014 1.85 × 1016 −1.29 × 1017 3.07 × 1018

7.86 × 10−2 2.27 × 102 8.50 × 103 1.65 × 106 5.15 × 107

4.39 × 109 1.17 × 1011 5.31 × 1012 1.23 × 1014 2.80 × 1015

0.85 5.79 × 1016 4.45 × 1017 9.66 × 1018 −8.45 × 100 8.17 × 103

−1.05 × 105 2.66 × 107 −4.03 × 108 4.44 × 1010 −6.68 × 1011

4.01 × 1013 −4.85 × 1014 1.81 × 1016 −1.20 × 1017 3.00 × 1018

3.03 × 10−1 2.28 × 102 1.01 × 104 1.65 × 106 5.53 × 107

4.33 × 109 1.20 × 1011 5.14 × 1012 1.22 × 1014 2.66 × 1015

0.90 5.59 × 1016 4.14 × 1017 9.17 × 1018 −1.09 × 101 8.16 × 103

−1.22 × 105 2.64 × 107 −4.43 × 108 4.39 × 1010 −7.05 × 1011

3.94 × 1013 −4.97 × 1014 1.77 × 1016 −1.20 × 1017 2.92 × 1018

3.96 × 10−1 2.31 × 102 1.06 × 104 1.65 × 106 5.54 × 107

4.29 × 109 1.17 × 1011 5.02 × 1012 1.16 × 1014 2.56 × 1015

0.95 5.20 × 1016 3.93 × 1017 8.40 × 1018 −1.24 × 101 8.12 × 103

−1.30 × 105 2.61 × 107 −4.59 × 108 4.29 × 1010 −7.10 × 1011

3.81 × 1013 −4.89 × 1014 1.70 × 1016 −1.17 × 1017 2.79 × 1018

2.24 × 10−1 2.47 × 102 7.72 × 103 1.70 × 106 3.92 × 107

4.22 × 109 7.61 × 1010 4.67 × 1012 6.68 × 1013 2.25 × 1015

1.0 2.60 × 1016 3.43 × 1017 3.70 × 1018 −1.41 × 101 7.76 × 103

−1.33 × 105 2.36 × 107 −4.22 × 108 3.63 × 1010 −5.89 × 1011

3.00 × 1013 −3.66 × 1014 1.26 × 1016 −8.14 × 1016 1.98 × 1018
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Table C.2: Variance σ2 with different varactor.

Varactor (pF) 0.10 0.15 0.20 0.25 0.30
Variance σ2 4.72 × 10−5 5.12 × 10−5 4.62 × 10−5 4.76 × 10−5 6.46 × 10−5

Varactor (pF) 0.35 0.40 0.45 0.50 0.55
Variance σ2 9.65 × 10−5 1.43 × 10−4 2.01 × 10−4 2.41 × 10−4 2.71 × 10−4

Varactor (pF) 0.60 0.65 0.70 0.75 0.80
Variance σ2 5.50 × 10−4 4.22 × 10−4 7.30 × 10−4 5.60 × 10−4 4.22 × 10−4

Varactor (pF) 0.85 0.90 0.95 1.0
Variance σ2 5.37 × 10−4 6.89 × 10−4 7.82 × 10−4 4.68 × 10−4

Table C.3: Variance σ2 with different varactor

Varactor (pF) 0.12 0.18 0.22 0.28 0.32
Variance σ2 3.60 × 10−3 1.58 × 10−3 4.47 × 10−3 8.29 × 10−4 4.20 × 10−3

Varactor (pF) 0.38 0.42 0.48 0.52 0.58
Variance σ2 9.07 × 10−4 3.07 × 10−3 9.21 × 10−4 2.64 × 10−3 1.14 × 10−3

Varactor (pF) 0.62 0.68 0.72 0.78 0.82
Variance σ2 1.98 × 10−3 3.19 × 10−3 1.20 × 10−3 1.05 × 10−3 7.09 × 10−4

Varactor (pF) 0.88 0.92 0.98
Variance σ2 7.40 × 10−3 6.05 × 10−3 1.26 × 10−3
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Table C.4: Unknown coefficient vector x with tunable varactor from
linear interpolation for verfication.

a1 a2 a3 a4 a5
a6 a7 a8 a9 a10

Varactor a11 a12 a13 b1 b2
(pF) b3 b4 b5 b6 b7

b8 b9 b10 b11 b12

3.60 × 100 3.06 × 102 4.48 × 104 2.63 × 106 1.96 × 108

7.93 × 109 3.78 × 1011 9.96 × 1012 3.16 × 1014 4.87 × 1015

0.12 1.04 × 1017 6.95 × 1017 1.00 × 1019 −3.53 × 101 8.91 × 103

−3.65 × 105 2.93 × 107 −1.33 × 109 4.42 × 1010 −2.04 × 1012

3.11 × 1013 −1.26 × 1015 9.44 × 1015 −2.70 × 1017 7.23 × 1017

3.57 × 100 3.05 × 102 4.39 × 104 2.53 × 106 1.89 × 108

7.41 × 109 3.57 × 1011 9.15 × 1012 2.98 × 1014 4.46 × 1015

0.18 9.94 × 1016 6.44 × 1017 9.89 × 1018 −3.40 × 101 8.58 × 103

−3.44 × 105 2.73 × 107 −1.22 × 109 3.97 × 1010 −1.83 × 1012

2.68 × 1013 −1.12 × 1015 7.65 × 1015 −2.36 × 1017 4.69 × 1017

3.44 × 100 2.99 × 102 4.15 × 104 2.39 × 106 1.74 × 108

6.78 × 109 3.22 × 1011 8.14 × 1012 2.64 × 1014 3.88 × 1015

0.22 8.78 × 1016 5.50 × 1017 8.84 × 1018 −3.34 × 101 8.39 × 103

−3.30 × 105 2.63 × 107 −1.13 × 109 3.84 × 1010 −1.67 × 1012

2.68 × 1013 −1.01 × 1015 8.23 × 1015 −2.11 × 1017 6.94 × 1017

2.93 × 100 2.83 × 102 3.50 × 104 2.18 × 106 1.43 × 108

5.93 × 109 2.57 × 1011 6.85 × 1012 2.04 × 1014 3.14 × 1015

0.28 6.53 × 1016 4.16 × 1017 6.37 × 1018 −3.21 × 101 8.34 × 103

−3.09 × 105 2.65 × 107 −1.04 × 109 4.05 × 1010 −1.50 × 1012

3.11 × 1013 −9.02 × 1014 1.13 × 1016 −1.90 × 1017 1.42 × 1018

2.18 × 100 2.70 × 102 2.65 × 104 2.01 × 106 1.08 × 108

5.31 × 109 1.88 × 1011 5.98 × 1012 1.44 × 1014 2.69 × 1015

0.32 4.38 × 1016 3.48 × 1017 3.98 × 1018 −2.88 × 101 8.26 × 103

−2.73 × 105 2.64 × 107 −9.02 × 108 4.14 × 1010 −1.29 × 1012

3.36 × 1013 −7.79 × 1014 1.33 × 1016 −1.66 × 1017 1.91 × 1018

1.55 × 100 2.66 × 102 2.01 × 104 1.95 × 106 8.29 × 107

5.08 × 109 1.45 × 1011 5.72 × 1012 1.11 × 1014 2.63 × 1015

0.38 3.32 × 1016 3.58 × 1017 2.97 × 1018 −2.48 × 101 8.12 × 103

−2.34 × 105 2.56 × 107 −7.67 × 108 4.02 × 1010 −1.09 × 1012

3.30 × 1013 −6.65 × 1014 1.34 × 1016 −1.43 × 1017 1.99 × 1018

1.05 × 100 2.64 × 102 1.54 × 104 1.91 × 106 6.61 × 107

4.97 × 109 1.18 × 1011 5.65 × 1012 9.24 × 1013 2.68 × 1015

0.42 2.89 × 1016 3.85 × 1017 2.82 × 1018 −2.09 × 101 8.00 × 103

−1.98 × 105 2.50 × 107 −6.49 × 108 3.90 × 1010 −9.30 × 1011

3.22 × 1013 −5.73 × 1014 1.33 × 1016 −1.25 × 1017 2.03 × 1018
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a1 a2 a3 a4 a5
a6 a7 a8 a9 a10

Varactor a11 a12 a13 b1 b2
(pF) b3 b4 b5 b6 b7

b8 b9 b10 b11 b12

8.83 × 10−1 2.58 × 102 1.39 × 104 1.87 × 106 6.15 × 107

4.85 × 109 1.13 × 1011 5.55 × 1012 9.23 × 1013 2.67 × 1015

0.48 3.17 × 1016 3.93 × 1017 3.74 × 1018 −1.91 × 101 8.03 × 103

−1.82 × 105 2.52 × 107 −5.97 × 108 3.97 × 1010 −8.59 × 1011

3.34 × 1013 −5.37 × 1014 1.41 × 1016 −1.19 × 1017 2.22 × 1018

8.23 × 10−1 2.54 × 102 1.33 × 104 1.83 × 106 5.97 × 107

4.75 × 109 1.11 × 1011 5.43 × 1012 9.29 × 1013 2.63 × 1015

0.52 3.34 × 1016 3.91 × 1017 4.29 × 1018 −1.83 × 101 8.04 × 103

−1.74 × 105 2.53 × 107 −5.71 × 108 4.01 × 1010 −8.22 × 1011

3.39 × 1013 −5.17 × 1014 1.45 × 1016 −1.16 × 1017 2.32 × 1018

6.95 × 10−1 2.46 × 102 1.25 × 104 1.78 × 106 5.90 × 107

4.64 × 109 1.15 × 1011 5.40 × 1012 1.04 × 1014 2.68 × 1015

0.58 4.16 × 1016 4.04 × 1017 6.07 × 1018 −1.63 × 101 8.11 × 103

−1.60 × 105 2.59 × 107 −5.37 × 108 4.19 × 1010 −7.96 × 1011

3.64 × 1013 −5.20 × 1014 1.60 × 1016 −1.20 × 1017 2.61 × 1018

5.62 × 10−1 2.40 × 102 1.16 × 104 1.73 × 106 5.69 × 107

4.54 × 109 1.15 × 1011 5.32 × 1012 1.08 × 1014 2.67 × 1015

0.62 4.56 × 1016 4.06 × 1017 7.05 × 1018 −1.45 × 101 8.14 × 103

−1.46 × 105 2.62 × 107 −5.01 × 108 4.29 × 1010 −7.58 × 1011

3.78 × 1013 −5.09 × 1014 1.69 × 1016 −1.20 × 1017 2.81 × 1018

5.64 × 10−1 2.35 × 102 1.19 × 104 1.71 × 106 6.03 × 107

4.53 × 109 1.26 × 1011 5.39 × 1012 1.24 × 1014 2.77 × 1015

0.68 5.51 × 1016 4.25 × 1017 8.87 × 1018 −1.38 × 101 8.24 × 103

−1.43 × 105 2.69 × 107 −5.03 × 108 4.49 × 1010 −7.85 × 1011

4.04 × 1013 −5.44 × 1014 1.83 × 1016 −1.31 × 1017 3.06 × 1018

6.39 × 10−1 2.30 × 102 1.31 × 104 1.69 × 106 6.62 × 107

4.52 × 109 1.41 × 1011 5.46 × 1012 1.42 × 1014 2.85 × 1015

0.72 6.53 × 1016 4.39 × 1017 1.07 × 1019 −1.37 × 101 8.33 × 103

−1.45 × 105 2.75 × 107 −5.22 × 108 4.66 × 1010 −8.30 × 1011

4.25 × 1013 −5.87 × 1014 1.94 × 1016 −1.43 × 1017 3.23 × 1018

4.86 × 10−1 2.29 × 102 1.18 × 104 1.67 × 106 6.21 × 107

4.46 × 109 1.34 × 1011 5.37 × 1012 1.36 × 1014 2.81 × 1015

0.78 6.30 × 1016 4.36 × 1017 1.04 × 1019 −1.23 × 101 8.27 × 103

−1.34 × 105 2.72 × 107 −4.88 × 108 4.58 × 1010 −7.81 × 1011

4.15 × 1013 −5.55 × 1014 1.88 × 1016 −1.35 × 1017 3.13 × 1018

1.94 × 10−1 2.28 × 102 9.41 × 103 1.66 × 106 5.42 × 107

4.41 × 109 1.21 × 1011 5.32 × 1012 1.26 × 1014 2.79 × 1015

0.82 5.88 × 1016 4.40 × 1017 9.76 × 1018 −9.59 × 100 8.19 × 103

−1.13 × 105 2.67 × 107 −4.27 × 108 4.47 × 1010 −6.98 × 1011

4.04 × 1013 −5.03 × 1014 1.83 × 1016 −1.24 × 1017 3.03 × 1018
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a1 a2 a3 a4 a5
a6 a7 a8 a9 a10

Varactor a11 a12 a13 b1 b2
(pF) b3 b4 b5 b6 b7

b8 b9 b10 b11 b12

2.13 × 10−1 2.28 × 102 9.47 × 103 1.65 × 106 5.38 × 107

4.35 × 109 1.19 × 1011 5.21 × 1012 1.22 × 1014 2.72 × 1015

0.88 5.67 × 1016 4.26 × 1017 9.36 × 1018 −9.93 × 100 8.16 × 103

−1.15 × 105 2.65 × 107 −4.27 × 108 4.41 × 1010 −6.90 × 1011

3.96 × 1013 −4.92 × 1014 1.78 × 1016 −1.20 × 1017 2.95 × 1018

3.59 × 10−1 2.30 × 102 1.04 × 104 1.65 × 106 5.54 × 107

4.30 × 109 1.18 × 1011 5.07 × 1012 1.18 × 1014 2.60 × 1015

0.92 5.36 × 1016 4.01 × 1017 8.71 × 1018 −1.18 × 101 8.13 × 103

−1.27 × 105 2.62 × 107 −4.53 × 108 4.33 × 1010 −7.08 × 1011

3.86 × 1013 −4.92 × 1014 1.72 × 1016 −1.18 × 1017 2.84 × 1018

2.93 × 10−1 2.41 × 102 8.87 × 103 1.68 × 106 4.57 × 107

4.24 × 109 9.25 × 1010 4.81 × 1012 8.64 × 1013 2.37 × 1015

0.98 3.64 × 1016 3.63 × 1017 5.58 × 1018 −1.34 × 101 7.91 × 103

−1.32 × 105 2.46 × 107 −4.37 × 108 3.89 × 1010 −6.38 × 1011

3.32 × 1013 −4.15 × 1014 1.43 × 1016 −9.56 × 1016 2.31 × 1018
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