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Abstract

We consider long matrix products over max-plus algebra and develop bounds on
the transient of their length after which they admit a certain decomposition as the
product length exceeds these bounds. First we build on the weak CSR approach for
max-plus powers of a matrix by Merlet, Nowak, and Sergeev [68] and consider the
case when the products are tropical matrix powers of just one matrix. For this case
we obtain new bounds on the above mentioned transient that make use of the cyclicity
of the associated digraph and the tropical factor rank. Next, we develop a CSR
decomposition for tropical inhomogeneous matrix products and establish bounds in
which certain matrix products become CSR. We also critically examine the limitations
of the developed theory by presenting a number of counterexamples in the cases where

no bound exists for a matrix product to be CSR.



ACKNOWLEDGEMENTS

I would like to thank my PhD supervisor Dr Sergei Sergeev for not only introducing
me to max-plus algebra, but for his invaluable assistance in developing this thesis.
His passion for max-algebra has been an inspiration to me and he has consistently
gone above and beyond in helping me throughout my work on this thesis. I would
also like to thank Dr Glenn Merlet and Dr Thomas Nowak, who collaborated with
us to develop parts of Chapter [2| which are published in the paper [48]. I would like
to thank Dr Stefan Berezny for his assistance in my first publication [50]. I would
finally like to thank my close family and friends who have supported me throughout
my PhD, including Hannah Lomax for proofreading this thesis and her invaluable
comments, as well as the mathematical postgraduate community who have always

been an incredible help for me in every aspect of my PhD.



CONTENTS

(1 Introduction and Preliminary Information| 1
[LT  Titerature Reviewl . . . . . . . . . .. .. ... ... ... ... 2
(1.1.1  Max-plus Algebra and Tropical Mathematics|. . . . . . . . .. 2

[1.1.2  Thesis Outline and Closely Related Publications| . . . . . . .. 8

(1.2 Max-Plus Algebral. . . . . . ... ... ... ... ... . ... .. 16
(1.2.1 Basic Definitionsl . . . . ... .. ... . 000 16

[1.2.2  Weighted Digraphs and Max-Plus Matrices|. . . . . . . .. .. 18

[1.2.3  Inhomogeneous Products| . . . . . . ... ... ... ... ... 26

2 Bounds of Kim and Schwarz for the periodicity threshold of the |

[ tropical matrix powers| 30
1 TInfroductionl . . . . . . .. ... L 30
[2.2 Preliminary results] . . . . . .. ... ... o000 32
[2.3  The case ot Nachtigall expansion| . . . . .. ... ... ... ... .. 42
[2.4  Bounds for the Cycle Removal Threshold . . . . . . ... ... ... . 48
2.5 Bounds for T} (A, B) using the Cycle Removal Threshold| . . . . . . . 57

(2.5.1 Bounds of Schwarz and Kiml . . . . .. ... ... ... 57

[2.5.2  Bounds using factor rankl. . . . ... ..o 000 62




2.6 Bounds for To(A, B)| . . . . . .. ... 67
R7 Conclusionl. . . . ... .. 76
2.8 An Example . . . . .. ..o 7

3 Extending CSR decomposition to tropical inhomogeneous matrix |

83
3.1 Introduction| . . . . . . . . ... 83
[3.2  Assumptions and Notation| . . . . . . . ... ... ... ... ... .. 85

[3.2.1  Main assumptions|. . . . . . . ... ..o 85

[3.2.2  Extension to inhomogeneous products|. . . . . . . .. ... .. 88
[3.3 CSR products| . . . . . . . . ... 92
8.4 General results] . . . . . ... oo 107
3.5 The case where CSR works|. . . . . . .. ... ... ... ... ... 113
[3.6 The one loop special case|. . . . . . .. ... ... .. ... ... .. 127
[3.7  Counterexamples| . . . . . .. ... oo 137

[3.7.1 'T'he ambient graph is primitive but the critical graph is not| . 137

[3.7.2  More general casel . . . . .. ..o 146

[3.7.3  Critical graph 1s not connected| . . . . . . ... ... ... .. 154

.8 Conclusion|. . . . . . . . . .. 157
4 Conclusion and discussion| 159

[List of References| 162



CHAPTER 1

INTRODUCTION AND PRELIMINARY
INFORMATION

By max-plus algebra we mean the analogue of linear algebra based on the pair of
operations (@, ®) where, for some a, b, a ® b := max(a,b) and a ® b := a+ b. For both
of these operations an identity needs to exist. For ® the natural identity is 0 as it
is the neutral element for addition. For & we set the identity to be —oo as all real
numbers are strictly greater than —oco. Therefore we need to include —oo on the set
of real numbers as part of the semifield that these operations work on, which will be
denoted Ry.x = RU{—00}. These operations can be extended to matrices in the

same manner as linear algebra and it can be shown with the following example:

To elaborate, the first entry in the matrix on the RHS is calculated as —oo ® 2 ®
2®3 = —oo@® 5 = 5. The other entries are calculated in the same manner. The second

entry in the matrix on the RHS is calculated as —co®4&2® —co = —cof —00 = —00.



1.1 Literature Review

1.1.1 Max-plus Algebra and Tropical Mathematics

Max-plus algebra is useful in many different areas of mathematics. Some notable
examples include scheduling problems [58] 36] 51], cryptography [39], algebraic geom-
etry [74], combinatorial optimisation [10] and mathematical physics [66] [55]. Note
that we can replace the @ operator to be a & b := min(a, b) which is called min-plus
algebra or tropical algebra [2, [57]. Alternatively we can replace the ® operator to be
a ®b:=a x b and restrict ourselves to the set of nonnegative real numbers, then we
will be working in max-times algebra [83], 28]. In this thesis we will focus entirely on
max-plus algebra but many of the results presented here will have natural min-plus and
max-times analogues as all these semirings are isomorphic to the max-plus semiring
via the isomorphisms f(z) = —z and f(x) = log(x) respectively.

One of the earliest examples of max-plus algebra being used was by Cuninghame-
Green [19] in which it was shown that industrial processes could be modelled using
matrix algebra by changing operations from linear to max-plus. In this paper he
noted that they had been originally introduced in a previous work [20]. In those
early works, Cunninghame-Green introduced the new arithmetic and showed that the
most familiar laws of linear algebra still held under this new framework. It was then
further popularised in a lecture series [21] which brought it to the attention to the
mathematical community and also developed the connection between max-plus algebra
and graph theory. This was then utilised further by U. Zimmermann [97] as well as
Gondran and Minoux [35] by developing an approach to combinatorial optimisation

that is based on idempotent semirings, with some of its most notable applications being



methods to find optimal walks using matrices. The idea to express the Floyd-Warshall
algorithm and some other shortest path algorithms as a kind of Gaussian elimination
using max-plus semiring was considered by Carré [I4]. For further developments of
this idea, see the work of Litvinov, Rodionov, Sergeev and Sobolevskii [59]. Recently,
progress was made in a preprint by Joswig and Schroter [47] where they develop
parametrised versions of the Floyd-Warshall algorithm and Dijkstra’s algorithm using
tropical geometry, as well as using these to develop applications in real-world scenarios.

It should be noted that max-algebra is frequently called tropical mathematics, in
honour of Simon [73], therefore we will use these terms interchangeably throughout
the thesis. Since the beginning of 1990’s several textbooks on tropical algebras and
their relation to linear algebra have been written: by Baccelli, Cohen, Olsder and
Quadrat [4], Heidergott, Olsder and van der Woude [43], Gondran and Minoux [35]
and Butkovic¢ [I1]. A concise introduction to max-plus linear algebra can be found
in any of these books. Notably, the book by Butkovi¢ [11] is the basis of many of
the key definitions and concepts used in this thesis. Many articles of linear algebra
over the tropical semiring exist such as the survey by Akian, Bapat and Gaubert [I]
and another which looks at its relation to control theory by Cohen, Gaubert and
Quadrat [I7]. One of the main defining features of max-plus mathematics, as well as
tropical mathematics, is that for any a € Ry.x, a ® a = max(a, a) = a thus it is part
of idempotent mathematics.

This form of algebra also emerged independently on the other side of the iron
curtain. Soviet works on extremal algebras and idempotent analysis (as it was called
there) started with Vorobyov, a renowned game theorist. In the 1960’s he published a

number of works on max-plus algebra [90, 91, 02] in which he developed the theory of



A®z = b systems in max-plus algebra and derived the existence of tropical eigenvectors
from Brouwer’s fixed point theorem. Later, the academician Maslov started developing
idempotent analysis, aiming to apply it to quasiclassical approximation in quantum
physics [66], as well as some equations of mathematical economics and mathematical
physics such as the Hamilton-Jacobi-Bellman and Burgers’ equations [55]. In the
late 1980’s and early 1990’s he led an informal group of mathematicians including
Kolokoltsov, Yakovenko, Litvinov, Shpiz and Sobolevskii working on idempotent
mathematics. This group published many important and interesting works. One
such example is the article by Litvinov and Maslov [60] where they stated that
idempotent mathematics is the ”classical shadow” of traditional mathematics over
numerical fields, in the spirit of Bohr’s correspondence principle between quantum
and classical mechanics. In some other works, Litvinov, Maslov and Shpiz took
an algebraic approach to idempotent functional analysis [62] and developed a link
between idempotent mathematics and group representation theory [63]. Kolokoltsov
and Maslov developed applications of idempotent mathematics to the Hamilton-Jacobi-
Bellman equations as well as Burgers’ equation [55], see also a work by Khanin and
Sobolevskil [52]. Yet another area, which was studied by this group and is closer to the
main topic of this thesis, was the applications of idempotent mathematics in turnpike
theory developed by Kontorer and Yakovenko [56], which was also further explored by
Kolokoltsov and Maslov [55]. Litvinov also wrote many surveys to popularise max-plus
algebra and tropical mathematics, with a notable example being the survey [61] which
serves as a concise introduction to idempotent and tropical mathematics.

Tropical and idempotent mathematics has played a large part in developing

semiring theory in works such as the book by Golan [34]. Similar semirings have



been developed, both independently and in relation to the max-plus semiring. An
example is the max-min semiring, also known as the bottleneck semiring, in which the
real numbers are adjoined with 00 to accompany the addition operation max and
the multiplication operation min. The powers of max-min matrices were thoroughly
studied, in particular, the monograph by Gavalec [32], the paper by Gavalec and
Plavka [33] and Semancikova [78, [79], who used cyclic classes in the study of max-min
matrix powers and their periodicity transients. The same approach was later taken
by Butkovi¢ [I1], Sergeev and H.Schneider [81], 83] in their study of max-plus matrix
powers and their ultimate periodicity (with an immediate connection to this thesis).

The Boolean semiring holds close similarities to work in this thesis and the research
area in general, particularly, powers of a single Boolean matrix. A key concept, the
CSR decomposition, contains a Boolean matrix representing the critical subgraph
and the development of the powers of this matrix are crucial to the decomposition.
Many key results from works in Boolean algebra can be extrapolated to this setting
such as the ideas from the book by Brualdi and Ryser [9, Sections 3.4 and 3.5], which
was partly motivated by its use in nonnegative matrix theory and Perron-Frobenius
theory as referenced in the book by Berman and Plemmons [§]. Other works of note
come from Zhang [95], Gregory, Kirkland and Pullman [3§], as well as de Moor and
de Schutter [23], who studied periodicity transients of Boolean matrix powers and
showed how their results apply to periodicity transients of tropical matrix powers and
discrete event systems in max-plus algebra.

Naturally one can evolve the Boolean semiring to hold values between 1 and 0
inclusive. These are known as fuzzy sets and have been the study of many mathe-

maticians in this field such as Kim and Roush [54] or their extension with Cao [13] to



fuzzy sets by adjoining the incline property, * ® xy = x for any z,y € {0, 1} to the
usual idempotent semiring axioms.

A notable area of tropical mathematics is tropical convexity, which is a geometric
counterpart of tropical linear algebra pioneered by K. Zimmermann [96] and later
developed and popularised by Develin and Sturmfels [26], Joswig [46], Litvinov [61]
and by Cohen, Gaubert, Quadrat and Singer [I8]. Let us also mention the successes
of tropical algebraic geometry: in particular, the works of Mikhalkin [70] on counting
algebraic curves and Viro [88] who developed the patchworking method. A famous use
of the patchworking method was the application of it to the sixteenth Hilbert problem
by Viro [89]. Although tropical algebraic geometry and tropical convexity do not
have any direct connection to this thesis, some of the most powerful techniques and
fascinating results were developed and obtained in those areas of tropical mathematics.

For powers of matrices, the seminal monograph by Brualdi and Ryser [9] gives two
bounds on the exponent of a primitive (cyclicity is equal to 1) nonnegative matrix.
This is the smallest natural number k such that A? is positive for all ¢ > k. While this
is defined for linear algebra the crucial link here is that it is shown in the monograph [9
that the exponent of a primitive matrix A depends on the digraph associated with
such matrix D(A). In other words it is equal to the smallest natural number k such
that for any ordered pair of nodes from D(A) there exists a walk connecting those two
nodes and thus a walk of any length greater than said k. These bounds will play a

key role in both Chapter 2| and Chapter |3|in developing bounds on walks on digraphs.



The first bound is the Wielandt bound [93] defined as,

0 ifd=1
Wi(d) =

(d—12+1 ford> 1,

where d is the number of nodes in the given digraph. The second bound is the

Dulmage-Mendelsohn bound [27] defined as,

where d is the number of nodes and g is the minimal length of a cycle in D(A).
Naturally as these bounds were for primitive matrices there was a desire to

generalise them by introducing a non-trivial cyclicity v which led to two new bounds,

the Schwarz and Kim bounds. The Schwarz bound [77] is an improvement of the

Wielandt bound and is defined as,

Sch(v,d) = v Wi Q%J) + d(mod ),

where d(mod 7) is the lowest positive value p such that p = d+1v. The Kim bound [53]

is an improvement of the Dulmage-Mendelsohn bound and is defined as,

Kim(y,g,d) = g Q%J - 2) +d,

where ¢ is the length of the shortest cycle of D(A). These four bounds are crucial
for the following work in this thesis. The proof of Wielandt’s bound on exponents

was given in full by H.Schneider [75], where he transcribed and translated Wielandt’s
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personal diaries.

1.1.2 Thesis Outline and Closely Related Publications

This thesis will be focusing on transients on max-plus matrix products in two areas.
The first area will be powers of a single matrix. Inspired by the earlier works of
Nachtigall [72] and Molnarova [71], Sergeev and H.Schneider [83] developed the
CSR decomposition, where a tropical matrix power can be decomposed into A! =
M@ C®S"® R, where C, S and R are matrices developed from A and ) is the
maximum max-plus eigenvalue of A. Without loss of generality we will assume A\ = 0
as this can be made possible by scaling A appropriately which is an old idea used by
Cunninghame-Green and other pioneers. In the same paper [83] some bounds on T’
were given after which this property appears for all t > T'. Based on this idea and
the previous research on tropical matrix powers periodicity transients, Merlet, Nowak
and Sergeev developed more accurate bounds for this property and on the periodicity
transient of tropical matrix powers [68]. One method they employed in achieving this
was by introducing a graph theoretical term known as the cycle removal threshold,
which is a bound 7" in which certain walks with length greater than 7" can have cycles
added or removed to develop an associated walk with length less than 7. While these
bounds are useful we found them to be lacking, especially in the use of cyclicity and
the potential of introducing the tropical factor rank into the bounds. Therefore in
Chapter 2| we will take the bounds proposed by Merlet et al. [68] and refine them
further using the cyclicity of A as well as introducing new bounds that use the factor
rank of A where applicable. Some of these bounds will be proved directly and some of

them will be proved using new bounds on the cycle removal threshold using cyclicity
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and factor rank. Theorems [2.3.3] 2.5.4] 2.5.7] and [2.6.3] in Chapter [2] were published in

the joint paper with Merlet, Nowak and Sergeev [48]. Theorems [2.5.5| and [2.6.5| are

results that have not been previously published and are the bounds that involve the
tropical factor rank.

The second area will be working with inhomogeneous matrix products from semi-
groups. We will be looking for bounds on the transients, in which the matrix products
exhibit a factor rank property. To achieve this we create a product analogue of the
CSR decomposition and develop bounds in which matrix products become CSR as
well as show some cases where this does not happen. This work has been submitted as
a preprint co-authored with Sergeev [49] and there is a section devoted to the special
case, which was explored originally in collaboration with Berezny and Sergeev [50].

A lot of exploration has been done on periodicity transients of tropical matrix
powers, such as the work by Nachtigall [72] who developed expansions based on the
periodicity of a single matrix power. Hartmann and Arguelles [42] also wrote a key
work in this area by looking at transients for long walks over digraphs and making
use of the max-balancing scaling introduced by H.Schneider and M.Schneider [76].
Their ideas and results were crucial to Soto y Koelemeijer [87] who improved their
bounds on the transient, as well as to Merlet et al. [68], who formalised the notion of
Hartmann-Arguelles expansion and improved their bounds further. Akian, Gaubert
and Walsh developed local bounds for the transient on individual entries of tropical
matrix powers with infinite dimensions [3], an idea that was also used by Merlet et
al. [68]. Using the work by Nachtigall [72], H.Schneider and Sergeev [83] developed
the CSR decomposition as described earlier. As this decomposition plays a key role

throughout the entire thesis we will take some time to look at two papers which



develop the decomposition: the seminal work by H.Schneider and Sergeev [83], as well
as the paper by Merlet et al. [68] which serves as a basis for Chapter

The first paper [83] introduced the CSR decomposition as a method to show a
matrix power is periodic after O(d*log d) operations. Here the authors gave the initial
bound of 3d? in which a matrix power A’ where ¢ > 3d? can be expressed in CSR terms.
It is worth noting that this bound does not depend on the entries of A but on the size
of the matrix A itself. They also proved some elementary results for CSR as well as
develop a link between the CSR decomposition and certain walks on digraphs which
will be stated in Chapter . Merlet, Nowak, Sergeev and H.Schneider [67] explored
bounds on weighted digraphs further, looking at the Wielandt, Dulmage-Mendelsohn,
Schwarz and Kim bounds as well as bounds in Boolean algebra by Gregory, Kirkland
and Pullman [38] and generalising them into max-plus algebra.

In parallel, Merlet, Nowak and Sergeev [68] took a particular version of the CSR
decomposition, which they called the weak CSR decomposition. In that weak CSR
decomposition, one introduces a subordinate matrix B such that A* = C'S'R@ Bt. This
subordinate matrix can be constructed using three different decomposition schemes,
where the first scheme stemmed from the decomposition developed by Nachtigall [72],
the second stemmed from the transient work by Hartmann and Arguelles [42] and the
third was a completely new concept. They also defined two transients 77 and T, where
for all t > T1(A, B), A' = CS'R® B' and for all t > T5(A, B), CS'R > B". Therefore
for any ¢t > (T1(A, B),T»(A, B)), A" has a CSR decomposition as explored in the
paper by H.Schneider and Sergeev [83]. By essentially splitting the transient into two
steps using the weak CSR decomposition they developed bounds separately which

allowed them to greatly refine the original bound presented in the article [83] as well
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as the bounds of Hartmann and Arguelles [42], Soto y Koelemeijer [87] and some other
works. They also introduced the term cycle removal threshold and developed bounds
relating to both T} and T3 using this term, as well as bounds for the cycle removal
threshold itself. These bounds, along with optimal walk representation results will be
given in Chapter [2 These papers provide the groundwork on which Chapter 2] and
the joint paper [48] (with Merlet, Nowak and Sergeev) are based. By introducing the
cyclicity of the associated digraph we improved the bounds in many cases, particularly
by introducing the Schwarz bound and the Kim bound. Using the factor rank of A
we also develop bounds that have the potential to be much smaller than their non
factor rank counterparts. For some of the decomposition schemes we will use the cycle
removal threshold to develop these new bounds using cyclicity and factor rank. Note
that in a further paper, Merlet, Nowak and Sergeev [69] characterised the matrices
which attain the T} generalisations of the Wielandt and Dulmage-Mendelsohn bounds.

The other area of focus will be inhomogenous matrix products and much work has
been done in this field both inside and outside of max-plus mathematics. The two
books by Hartfiel [41] and Seneta [80] offer a comprehensive look at inhomogenous
matrix products in a linear algebra setting. In both books the authors focus on the
idea of matrix products converging to various states as the product length tends to
infinity. Weighted automata are closely related to inhomogenous products as discussed
by Daviaud, Guillon and Merlet [22] as well as Zhang [95] who worked in the Boolean
semiring. Some results on the Lyapunov exponents of max-plus inhomogeneous
stochastic products were obtained by Goverde, Heidergott and Merlet [37]. A number
of theoretical results have been also proved concerning the tropical matrix semigroups

and behaviour of inhomogeneous tropical matrix products. In particular, Gaubert [30]
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proved that the tropical matrix semigroups have the Burnside property and, with
Katz [31], he studied the decidability of the following reachability problem: given
a tropical matrix semigroup with r generators and entries from a semiring, is there
a product of these matrices which attains a prescribed matrix. As an application,
they show that this problem is undecidable for the max-plus semiring when r = 2.
Johnson and Kambites [45] provided a systematic study of the algebraic structure of
2 x 2 tropical matrices under multiplication. In relation to the CSR decomposition,
Izhakian, Johnson and Kambites [44] described general groups that could be found
within a tropical matrix semigroup, in which CSR’s can form one of these groups.

A common concept throughout this thesis is the notion of factor rank. By factor
rank we mean the value which is the smallest natural number r such that a matrix
can be expressed as the max-plus product of a matrix with r columns and a matrix
with r rows. In max-plus algebra is is also known as the Barvinok rank as it first
appeared in the paper by Barvinok, Johnson, Woeginger and Woodroofe [5]. However
there exist other forms of rank in max-plus algebra as discussed by Akian, Gaubert
and Guterman [2] as well as by Develin, Santos and Sturmfels [25]. A closely related
notion of tropical ultimate rank was introduced by Guillon, Izhakian, Mairesse and
Merlet [40] in which this notion exists for powers of tropical matrices. A key theorem
from this paper is that the ultimate rank of a matrix A, which is the common value
when several non-coinciding notions of matrix rank are equal to each other, is equal
to the sum of the cyclicities of all strongly connected components (s.c.c.s) of the
critical subgraph of D(A). What is interesting here is that a result from this thesis,
Theorem [3.3.12 which is proved for inhomogenous products of matrices, is similar to

the result of [40, Theorem 5.2].
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Before we delve into the core background of Chapter [3| we need to take a look at
a paper by Butkovi¢, H.Schneider and Sergeev [84] which introduces the concept of
visualisation scaling. This is a method in which one can, by a change of base, scale a
max-plus matrix A in such a way so that the entries associated with the edges on the
critical graph of D(A) are equal to the maximal eigenvalue. This also ensures that any
other edge that is not critical has a value that is less than or equal to said eigenvalue.
This concept is very useful in Chapter [3] as it allows us to scale the generators in the
semigroup to allow them to work with the main results given within the chapter. It
can also be noted that Litvinov, Sergeev and Shpiz [85] study common eigenvectors of
particular semigroups of matrices in tropical algebra, which opens up to the idea of a
common visualisation, a concept which is important for Chapter [3]

Let us take some time to explore the background for Chapter (3| the paper by Shue,
Anderson and Dey [86], which inspired its development, as well as the two papers
on which this chapter is based [50, 49]. The paper by Shue, Anderson and Dey [80]
investigated the asymptotic properties of certain inhomogeneous max-plus matrix
products. By restricting the matrices to having just one critical loop they showed
that as the product becomes long enough it exhibits a factor rank one property. Upon
reading the paper we discovered a gap in one of the proofs where cycles were removed
from walks associated with the product. Another main idea that came to us was
to look for bounds in which these factor rank properties appear. This led to the
development of the first publication in collaboration with Sergeev and Barezny [50],
where both an implicit and a weaker explicit bound on the length of inhomogeneous
product were developed, after which a very particular type of matrix product becomes

rank one. Naturally, as this was a very particular case, we looked to develop it
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into a more general setting as well as build on the theory around it. Chapter
presents the results of developing the initial case into a more general setting by
introducing an inhomogenous product analogue of CSR with the two definitions [3.3.1
and 3.3.2] in which the latter definition incorporates disjoint components of the critical
subgraph. Some preliminary results are given with this analogue, such as: showing
both definitions are equivalent in Proposition |3.3.5; giving optimal walk interpretations
of both definitions in Lemma [3.3.7} and showing that the factor rank of a matrix
that is CSR is bounded above by the sum of cyclicites over all s.c.c.s in the critical
graph (see Theorem .Notably we show the relation to the CSR decomposition
from H.Schneider and Sergeev [83] (see Proposition which opens it up to the
possibility of relating results from various papers [83] [68] [69] to this new concept. The
majority of these results are written in the preprint [49] but there exist some novel
results exclusively in this thesis.

There are many applications of max-plus mathematics to real world processes as
noted earlier but we will explore two areas briefly. The first application is turnpike
theory which is studied as an infinite horizon optimal control problem [94]. Informally
this is the concept that an optimal walk will traverse a certain area or certain points
as its length grows. This has many applications in economics such as capital growth
model as noted by Yakovenko and Kontorer [56] or stochastic processes as explored
by Marimon [65]. It was also explored by Kolokoltsov and Maslov in their book on
idempotent analysis [55], in relation to ideas put forward by Yakovenko.

Another widely known application of max-plus algebra is in railway scheduling as
the close association to weighted digraphs allows for easy modelling of some railway

scheduling problems. Interestingly, many of the key works on this application were
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written by academics at the Technical University of Delft, such as the PhD Theses of
Goverde [36], Soto y Koelemeijer [87], Kersbergen [51] and the textbook of Heidergott,
Olsder and van der Woude [43] which is an excellent introduction to this kind of
application of max-plus mathematics. We can relate inhomogeneous matrix products to
max-plus switching systems which have been studied in depth at the same university
by Kerbergen [51] and De Schutter alongside van den Boom in [24]. For further
exploration, it would be interesting to connect the work done by these experts to the
results of the present thesis.

The principal plan of the thesis is as follows. For the rest of Chapter [1| we will look
at preliminary definitions in max-plus algebra, weighted digraphs and inhomogeneous
matrix products. In Chapter [2| we will study powers of a single matrix and develop
new bounds on the 7T} and T5 parts of the periodicity transient, involving cyclicity and
factor rank. For T} we will, using cyclicity and the cycle removal threshold, develop
bounds that employ the Kim and Schwarz bounds, for T, we will improve on the
bounds from the paper [68] by using the cycle removal threshold and for both 77 and
T, we will also introduce bounds that feature the factor rank of the matrix. Finally
in Chapter [3| we will look at inhomogenous matrix products and develop bounds on
the length of inhomogeneous matrix products, for which the product assumes a CSR
form and its factor rank becomes bounded by the cyclicity of the critical graph. This
will be done in a special case, for which the product ultimately assumes a CSR form.
Then we will provide a number of counterexamples showing that the conditions of
that special case are necessary to impose and that in a more general case a different

approach has to be taken.
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1.2 Max-Plus Algebra

1.2.1 Basic Definitions

We begin the preliminaries with a formal definition of the max-plus semiring.

Definition 1.2.1 (Max-plus semiring). Let Ry, = RU{—00}. The max-plus semiring
(Runax, B, ®, —00,0) is the semiring with the operations @& and ® defined for any two

a,b € Ryax:
@ : The additive operator & where a & b = max(a,b);

® : The multiplicative operator @ where a @b = a+0b where + s the usual addition
defined for the real numbers. We also assume that —oo ® a = a ® —00 = —00

for any a € Ry.x.

With these operations, the additive identity is —oo, which we denote € and the multi-

plicative identity s 0.

The operations of this semiring are naturally extended to matrices and vectors and
this is known as max-plus algebra. To define max-plus multiplication for A = (a; )
and B = (b; ;) with entries from Ry« of appropriate sizes, we will use the following

rule,

(A ® B)i,j = @ Q; ® bk,j = 1%?3)(11 Q; + bk,j.

1<k<n
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In particular, the tth max-plus power of a square matrix A is defined as

A= ARAR...QA.

(t times)

For completeness we must also state that for any matrix A € R¥¢ A®0 = [ where
I is the tropical identity matrix, i.e. I = diag(0).
A common concept that will be used throughout the thesis are block matrices as

defined below.

Definition 1.2.2 (Block Matrices). A block matrix is an dy X dy matriz F' that can

be represented as several submatrices or blocks, i.e.

F171 FLQ FLJ
F— 2,1 2,2 2,J
Fl,l F[’Q c. F] J

)

Here F,;, fori € {1,2,...,1} and j € {1,2,...,J}, are matrices such that the
dimensions for two distinct blocks are not necessarily the same. However the sum of
row dimensions of the submatrices over the same j is equal to di and the sum of the
column dimension of the submatrices over the same i is equal to ds. Finally we write

F; j = —o0 if every entry in that block is equal to e.

The following definitions will play crucial roles in both Chapters [2] and [3] In
Chapter [2] we will use this definition to derive more refined bounds on the periodicity
transient. In Chapter [3| the bounds derived in the chapter are the transients in which

a matrix product will exhibit this property for some given value.
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Definition 1.2.3 (Factor rank). Let A € R4*%_ The Factor Rank r of A is the

smallest r € N such that A = UL where U € R4*" and L € R™%%.
Naturally there is an analogous definition in the max-plus semiring.

Definition 1.2.4 (Tropical Factor rank). Let A € R%1%9  The Tropical Factor Rank
r of A is the smallest r € N such that A =U ® L where U € R4X" and [ € R7 X%

max max

As most of this work is in the max-plus semiring we will use the tropical factor
rank always omitting the adjective ”tropical”.

Using the matrices U and L from the above definition we also define the matrix,

- U
F= ) (1.1)

L -

A —o0 .
Upon squaring this block matrix we have F? = , where A =L®U is

-0 A

an 7 by r max-plus matrix. Hence there exist similarities between A, A and F' which

will be explored in Chapter [2|

Definition 1.2.5 (Subordinate matrix). Let A € R4, We say B is subordinate if

max’

B can be constructed from A by setting some entries in A to € = —o0.

1.2.2 Weighted Digraphs and Max-Plus Matrices

This subsection presents some concepts and notation expressing the connection between
tropical matrices and weighted digraphs. Monographs [I1] [43] are our basic references

for such definitions.
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Definition 1.2.6 (Weighted digraphs). A directed graph (digraph) is a pair (N, F)
where N is a finite set of nodes and E C N X N = {(i,j): i,j € N} is the set of
edges, where (i,7) is a directed edge from node i to node j.

A weighted digraph is a digraph with associated weights w; ; € Ryax for each edge
(1,7) in the digraph.

A digraph associated with a square matrix A is a weighted digraph D(A) = (Na, Ex)
where the set N4 has the same number of elements as the number of rows or columns
in the matriz A. The set Eq4 C Na X Ny is the set of directed edges in D(A), where
(1,7) is an edge if and only if a;; # €, and in this case the weight of (i,j) equals

the corresponding entry in the matriz A, i.e., w;; = a;; € R.

Definition 1.2.7 (Walks, paths and weights). A sequence of nodes W = (ig, ..., 1) is
called a walk on a weighted digraph D = (N, E) if (is_1,is) € E for each s: 1 < s <.
This walk is a cycle if the start node ig and the end node i; are the same and the cycle
15 elementary if the start and end nodes are the only time in the walk that a repeated
node appears and a cycle of length 1 is called a loop. It is a path if no two nodes in
igy...,0 are the same. The length of W is [(W) = L.

The weight of W is defined as the max-plus product (i. e., the usual arithmetic sum)
of the weights of each edge (is_1,1s) traversed throughout the walk, and it is denoted by
pp(W). Note that a sequence W = (iy) is also a walk (without edges), and we assume
that it has weight and length 0.

The mean weight of W is defined as the ratio pp(W)/l(W).

For a digraph, being strongly connected is a particularly useful property.

Definition 1.2.8 (Strongly connected). A digraph is strongly connected, if for any

two nodes i and j there exists a walk connecting v to j.
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Definition 1.2.9 (Reducible, irreducible). A square matriz A is reducible if there
exists some permutation matriz P such that the matriz PT AP is block upper-triangular.

If no such P exists then the matriz is irreducible.

Note that, any strongly connected digraph is irreducible as shown with this following

lemma.

Lemma 1.2.10. Let A be a matriz in REY with an associated digraph D4. Then A

max

1s iwrreducible if and only if D is strongly connected.

A proof of this lemma is contained in [9 Theorem 3.2.1]. Finally a digraph is
called completely reducible, if it consists of a number of s.c.c.s, such that no two nodes
of any two different components can be connected to each other by a walk.

The following more refined notions are crucial in the study of ultimate periodicity

of tropical matrix powers.

Definition 1.2.11 (Cyclicity and cyclic classes). The cyclicity of a strongly con-
nected digraph is the highest common factor of the lengths of cycles within the graph.
The cyclicity of a completely reducible digraph is the lowest common multiple of the
cyclicities from each s.c.c. making up the digraph. Both will be denoted by ~.

For two nodes i,j € N we say that i and j are in the same cyclic class if there
exists a walk whose length is a multiple of v, connecting © to j or j to . This splits
the set of nodes into v cyclic classes: Cy,...,Cy—1. The notation C; — C,, means
that some (and hence all) walks connecting nodes of C; to nodes of Cy,, have lengths
congruent to k modulo 7. The cyclic class containing i will be also denoted by [i] and
for any i,j we will use [i] — [j] to say that there is a walk of length t connecting a

node in [i] to an node in [j].
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The correctness of the above definition of cyclic classes follows, for example, from [9]
Lemma 3.4.1]: in fact, every walk from ¢ to j on D has the same length modulo ~.

In tropical algebra, we often have to deal with two digraphs: 1) the digraph
associated with A and 2) the critical digraph of A. The latter digraph (being a

subdigraph of the first) is defined below.

Definition 1.2.12 (Maximum cycle mean and critical digraph). For a square matriz
A, the maximum cycle mean of D(A) denoted as A(A) (equivalently, the mazximum
cycle mean of A) is the biggest mean weight of all cycles of D(A).

A cycle in D(A) is called critical if its mean weight is equal to the mazimum cycle
mean (i.e., if its mean weight is mazximal).

The critical digraph of D(A), denoted by G°(A), is the subdigraph of D(A) whose
node set N, and edge set £, consist of nodes and edges that belong to all critical cycles

(i.e., that are critical).

Note that any critical digraph is completely reducible. The seminal Cyclicity
Theorem proved by Cohen, Dubois, Quadrat and Viot [16], [15] states that the cyclicity
of critical digraph of A is the ultimate period (see definition below) of the tropical
matrix powers sequence {A®'},>1, provided that A is irreducible and A(A) = 0. See
also Butkovic¢ [I1] and Sergeev [81] for more detailed analysis of the ultimate periodicity

of this sequence.

Definition 1.2.13 (Threshold of Ultimate Periodicity). Let o be the cyclicity of the
critical subgraph of D(A). The threshold of ultimate periodicity of powers of A, is

threshold of ultimate periodicity, denoted by T(A), is the smallest T" with the property

that Vk > T(A), \27 @ A®k = A®(+9)  We refer to o as the ultimate period of A.
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The following graph theoretical notion will be useful in Chapter

Definition 1.2.14 (Girth and Max-Girth). The girth, denoted g, of a strongly
connected digraph is the length of the shortest elementary cycle. The max-girth,

denoted g, is the mazimum over the girths of all the s.c.c.s of a digraph.

Below we will use notation for walk sets and their maximal weights that is similar

to that of Merlet et al. [6§].

Definition 1.2.15 (Sets of walks). Let D = (N, E) be a weighted digraph and let
i,j € N. The three sets Wp(i — ), Wh(i — j) and Whp(i &, j), where N C N is a

subset of nodes, are defined as follows:
Whp (i — j) is the set of walks over D connecting i to j;
WE(i — 7) is the set of walks over D of length k connecting i to j;

W (i N, J) is the set of walks over D connecting i to j that traverse at least

one node of N
The supremum of the weights in any set of walks YW will be denoted by p(WW).

Definition 1.2.16 (Geometrical equivalence). Let the matrices A and B have their
respective digraphs D(A) = (Na, E4) and D(B) = (Np, Eg). We say that A and B
are weakly geometrically equivalent if Ny = Ng and E4 = Ep, and they are strongly

geometrically equivalent if they are weakly geometrically equivalent and G¢(A) = G¢(B).

Before we move onto visualisation scaling we need to briefly discuss the matrix
inverse. The existence of an identity matrix implies the existence of multiplicative

inverse matrices, which were originally studied by Cunninghame-Green [21I]. He
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showed that, generally speaking, for a matrix A, there exists a matrix B such that
A® B =1= B® A if and only if A is a generalised permutation matrix. This type of
matrix can be formed by permuting a diagonal matrix, which is a matrix X = diag(x)
with entries X;; = 2; € R on the diagonal and X;; = ¢ off the diagonal (i.e., if i # j).
For a diagonal matrix X, its tropical inverse X~ can be found by changing the signs
on all the diagonal entires of X. The concept of visualisation scaling was studied by
Butkovi¢, H.Schneider and Sergeev [84], see also a paper by Sergeev [82] and references

therein for more background on this scaling.

Definition 1.2.17 (Visualisation). Matriz B is called a visualisation of A € R¥X? if
there exists a diagonal matriz X = diag(z), such that B= X" ® A® X, where X~
is the tropical inverse of X, and B satisfies the following conditions: B;; = \(B) for

Once A\(A) # €, a visualisation of A always exists and, moreover, vectors z providing
a visualisation by means of diagonal matrix scaling A — X~ ® A ® X are precisely

the tropical subeigenvectors of A, i.e., vectors satisfying A @ z < \(A) ® x.

Definition 1.2.18 (Max-balancing). Let A € R%*¢ and partition the set of nodes into

max

two disjoint sets N = N1 U Ny. The matriz A is max-balanced if

max a;; = max — a;;
1€N1,jE€EN2 1€N2,jEN

for any disjoint N1 and Ns.

As in the case of visualisation, by [76, Corollary 9], for any A € R%X¢ there exists a

vector x with real entries that provides a max-balancing by means of diagonal matrix

scaling A — X1AX. Thus the definitions can be combined to give.
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Definition 1.2.19 (Max-balancing scaling). Let A € R%X¢. The max-balancing

scaling of A is a vector with real entries x such that the matriz X 1AX (where

X = diag(z)) is max-balanced.

Note that, by definition, a max-balanced matrix is always visualised.
The following definition comes from the book by Butkovi¢ [I1] and is a staple in

max-plus algebra.

Definition 1.2.20 (Kleene Star and Metric Matrix). Let A € RZ%%. The Kleene star

max

A* is the matrix defined by the following infinite sum,

A =T AP AP P A @ . ...

Here I is the tropical identity matriz. The metric matrix A™ is a similar infinite sum

as the Kleene star with the exclusion of I, thus

AT =Ap A2 p A @ .. ..

Note that in order for these infinite sums to be truncated we require A\(4) < 0
otherwise we end up with matrix powers that grow with their power therefore the
summation would not converge. In relation to weighted walks on D(A) the Kleene

star and metric matrix represent the optimal weighted walks of any length over D(A),
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ie.,

(A= B (e Wpw(i = 1))

1eNU{0}

(A )i =D (0 Wpay (i = 1)) -

leN

For the rest of the thesis we refer to the representation of optimal weighted walks
in this manner as the optimal walk interpretation. To help understand some of the
definitions presented in this section we conclude with an example. Let A € R*** with

max

entries and associated weighted digraph:

(4) ® ® (3)

By definition for any entry a; ; = ¢ the associated digraph does not have a weighted
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edge connecting ¢ — j and vice versa. For example, the entry A;, = —1 has the
associated edge 3 — 4 with weight —1. Now we can calculate the cyclicity of the
digraph. Note that there are only two elementary cycles in this digraph, 1 — 2 — 1
of length 2 and 1 — 2 —+ 3 —+ 4 — 1 of length 4. Hence v = gcd(4,2) = 2 thus the
cyclicity is 2 where [1] = [3] = {1,3} and [2] = [4] = {2,4} are the distinct cyclic
classes. Also note that the shortest cycle is of length 2 therefore the girth of D(A)
is equal to 2. Since the cycle 1 — 2 — 1 has mean weight of 0 then it is the critical
cycle and as every other edge in the digraph is either equal to or less than 0 then
the associated matrix must be visualised. Finally we need to check that the matrix
is max-balanced and to do that we can check the associated digraph. See that there
exist 7 partitions of interest to check, four partitions of the form {a}{b, ¢,d} and three
partitions in the form {a, b}, {c,d}. We exclude the partition of {1,2,3,4}, as it is
trivial. For the partition of the first form the max weight of arcs leaving and entering
the partition is either 0 if a =1 or a =2 or —1 if a = 3 or a = 4. For the partitions of
the second form if a = 1 and b = 2 or vise versa, the max weight of arcs leaving and
entering the partition is —1, if a = 1 and b = 4 or vice versa the max weight of arcs
leaving and entering the partition is 0 and if @ = 1 and b = 3 or vise versa the max
weight of arcs leaving and entering the partition is 0. Therefore as all partitions have

the same weight entering and leaving the partition the matrix A is max-balanced.

1.2.3 Inhomogeneous Products

This section will introduce some definitions required for Chapter [} When referring to
an inhomogeneous product we are talking about the matrix I'(k) = A; ® Ay ® ... ® Ay

where A; € R¥? are generators from the, in general, infinite matrix set X'. We also
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say that this product has length k and this leads us to our first definition.

Definition 1.2.21 (Words). The word associated with the matriz product I'(k) is the

string of characters i from A; € X that make up said I'(k).

The following is designed for the use of representing an inhomogeneous product of

geometrically equivalent matrices in digraph form.

Definition 1.2.22 ([50],Definition 2.5). [Trellis Digraph] The trellis digraph Tr) =
(N, E) associated with the product T'(k) = A; ® Ay ® ... ® Ay, is the digraph with

the set of nodes N and the set of edges £, where:

(1) N consists of N + 1 copies of the set of nodes making up any A; denoted
Ny, ..., Ng, and the nodes in N; for each 0 <[ < k are denoted by 1:1[,...,d:

where d = |N|;
(2) & is defined by the following rules:

a) there are edges only between N; and N4, for each [,
b) we have (i : (I —1),7 : 1) € € if and only if (7,7) is an edge of D,,, and

the weight of that edge is (A4;); ;.

The weight of a walk W on Tr, is denoted by pr(W).

We now give an example to illustrate the notion of the trellis digraph. Let

F(k’) = A1 X A2 X A3, where

e 0 ¢ e 0 ¢ e 0 ¢
Al=10 ¢ —1].4 0 ¢ —4],4; 0 ¢ -3 (1.2)
-2 € ¢ -2 ¢ ¢ -1 ¢ ¢



Therefore we can draw the trellis digraph as follows:

Here we can see that there are 4 copies of the set of nodes {1,2,3,4} and between
each set of nodes there exists the edges given in the respective matrix A; with
their associated weights. Note that here the matrices A;,A; and Az are strongly
geometrically equivalent to each other as the edges connecting the copies of nodes are
the same.

The final definition is designed to describe walks on the trellis digraph with weights

associated to the inhomogeneous matrix product I'(k).

Definition 1.2.23 ([50],Definition 2.6). [Walks on Tr)/ Consider a trellis digraph
Trw)-

By an initial walk connecting ¢ to j on Trg) we mean a walk on 7r() connecting
node i : 0 to j : m where m is such that 0 < m < k.

By a final walk connecting ¢ to j on Trg) we mean a walk on Tr() connecting node

t:1toj:k, where [ is such that 0 <[ < k.
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By a strict initial walk to the critical nodes connecting i to j on Trg) we mean
a walk on Tr() connecting node ¢ : 0 to j : m where m is the first and the last time
the walk arrives at node j € N, and is such that 0 < m < k.

By a strict final walk from the critical nodes connecting i to j on Tr(;) we mean
a walk on Tp(;) connecting node i : [ to j : k, where [ is the first and the last time the
walk leaves node 7 € N, and is such that 0 <[ < k. We denote this with i — 5.

A full walk connecting i to j on Tr) is a walk on Tp() connecting node 7 : 0 to

J k.
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CHAPTER 2

BOUNDS OF KIM AND SCHWARZ FOR THE
PERIODICITY THRESHOLD OF THE
TROPICAL MATRIX POWERS

2.1 Introduction

This chapter is based on the results of the joint paper with Merlet, Nowak and
Sergeev [48] which are bounds on the ultimate periodicity of a sequence of max-plus
matrix powers {A'};>1, developing and improving the bounds obtained earlier by
Merlet, Nowak and Sergeev [68]. This work will make use of the CSR decomposition,
defined in 2.2.1] The idea of this decomposition is to approximate tropical matrix
powers with large exponents by products of the form CS'R, where C' and R are
extracted from the Kleene star of the matrix (A® —\) raised to the power equal to the
cyclicity of its critical graph, and S is diagonally similar to the associated max-plus
Boolean matrix of the critical subgraph of D(A). This decomposition was formally
introduced by H.Schneider and Sergeev [83] and two partial periodicity transients

were introduced: T7(A, B) which we call the weak CSR threshold, and 75(A, B) which

30



we call the Strong CSR threshold, where A is the given matrix and B is a subordinate
matrix developed following the Nachtigall, Hartman-Arguelles or Cycle Threshold
schemes, all of these will be formally defined later in this section. As shown by Merlet
et al. [68], the periodicity transient T'(A) is then bounded by max(T1(A, B), T>(A, B)).

The results in this chapter are published in the paper [48] and, for most of them,
the formulations were obtained as a result of the joint work with the co-authors and
the proofs are the results of independent work. There are also results that were
obtained exclusively by the co-authors and these will be explicitly stated.

The chapter will proceed as follows. For the rest of the introduction, the definition
of the CSR decomposition will be given with some key properties from the original
work by H.Schneider and Sergeev [83]. The results from Merlet et al. [68] will also be
presented as they are the initial bounds which the results of this chapter stem from.
In Section bounds using the Nachtigall decomposition will be presented. Then in
Section [2.4) the Cycle Removal Threshold will be introduced and some bounds on it will
be developed. The Cycle Removal Threshold bounds and other results are then utilised
in Section to develop bounds on T (A, B). Then the Cycle Removal Threshold
results are used to develop new bounds for T5(A, B) in Section 2.6/ Finally we will
present an example which shows a practical application of the bounds developed in
this chapter. In this final example, the bounds developed in this Chapter help to show
that the tropical matrix powers (in the case considered) are periodic from the very

beginning, while the previous bounds of [48] [68] fail to imply this property.
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2.2 Preliminary results

To begin, a formal introduction of the CSR decomposition is required.

Definition 2.2.1. Let A € R*" with \(A) = X. Consider the critical graph C =
(N, &) of the digraph of A. Let G = (gi;) be the Kleene star (A@ X7)7)" (by
Definition where o is the cyclicity of the critical graph. Define the matrices

C = (cij), S = (si5), R=(ri;) € REXY as:

Cij =
€ otherwise;
\
(
aij, if (i,7) € &
Sij =
€ otherwise;
\
(
TZ%] -
€ otherwise.

Then, for any subordinate matriz B we say that A' admits a weak CSR expansion with

this B if for some integer T we have

Al=CS"®@®R®B', Vt>T.

We denote the product C @ S* @ R derived from A as CS'R[A].
This definition can be extended to the s.c.c.s of the critical graph of A.

Definition 2.2.2. [68] Let Gy, ...,Gm be the distinct s.c.c.s of G°(A) with node sets

Ni,...,N,, such that Ny U...UN,, = N,. We define the CSR decomposition with
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respect to G, as the CSR decomposition following Definition|2.2. 1| using the subordinate
matriz AY) | which sets all entries in the columns and rows associated with the nodes

Ni,...,N,_1 toe. We denote the three matrices made using this decomposition as

C,, S, and R,.
Naturally this has the following result in association with Definition [2.2.1}]

Lemma 2.2.3. [68, Corollary 6.3] If Gi,...,Gn are the s.c.c.s of G°(A), then we

have:
CS'R=EPC,SLR,
v=1

It should be noted that many of the following properties, while developed for
Definition [2.2.1] have their analogues for Definition 2.2.2l When A is irreducible and

using [68, Theorem 2.2] we have the following statement about C'SR:

Lemma 2.2.4 ([48, Lemma 2.2]). Let A € R4 such that \(A) = 0. Then for any

max

natural t we have

lim A" = CS'R[A] (2.1)

k—o0
where o is the cyclicity of G(A).
We now present some key CSR properties from H.Schneider and Sergeev [83] and

we denote P® := CS'R for CSR as defined in Definition [2.2.1l The proofs will be

omitted here and can be found in the article [83].

Theorem 2.2.5 ([83, Theorem 3.3]). Let A € R have \(A) =0 and let T > 0 be

such that the sequence {S®'}i>r, where S is defined from from is periodic with

period .
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1. Fort >0,

p(Wi %)) <P il (2:2)
2. Fort>T+21(n—1),
p (Wi %5 ) =P8 Vi (2.3)

where T is the maximal cyclicity of the strongly connected components of C(A).

The previous theorem provides an optimal walk interpretation of CSR. However,
it starts to work only after a certain bound. A different approach is taken by Merlet
et al. [68], where a different optimal walk interpretation was established not involving
any bounds. Note that we are giving here a slightly simplified version of the original

result of in the article [68].

Theorem 2.2.6 ([68, Theorem 6.1]). Let A € RX" be a matriz with A(A) =0 and
C, S and R be defined as in Definition [2.2.1.

Let ~y be an integer multiple of v(G) and N be a set of critical nodes that contains
at least one node from each s.c.c of G°.

Then we have, for anyt,7 and t € N:

PO — (Wm(@' N, j)) (2.4)

17_7

where W (i &, g) ={W e W(i BN NIW) = t(modv)}.

The following properties show that CSR products form a cyclic group. Here 7 is

the same as in the previous theorem.
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Proposition 2.2.7 ([83, Proposition 3.2]). P = PO for all t > 0.
Theorem 2.2.8 ([83, Theorem 3.4]). Pli+tz) = PEIPE) for qll t) t, > 0.

Next, we also have the following properties, which describe the role of cyclic classes
and state that the non-critical rows and columns can be obtained as tropical linear

combinations of rows and columns with indices in N..

Theorem 2.2.9 ([83, Theorem 3.6]). Let A € R'*" have \(A) = 0. If [i] — [j], then

'P(t+s) _ 7)(3) : 7)~(iS) _ IP.(;Jrs)’ (25)

where Pi(,t) is the i™ row of P and 77,(;) is the j™ column of PW.

Corollary 2.2.10 ([83, Corollary 3.7]). Let A € R" have A(A) = 0. Then 771»(,0 =

(S'R);. and 73.(;) = (CS"); for alli e N..
Corollary 2.2.11 ([83, Corollary 3.8]). Let A € R " have A\(A) = 0. For each

max

k=1,...,n there exist oy, and By; where i € N, such that

PY =@ axP, P = P BuP (2.6)
ieNe ieN,

We now define the two threshold types which will be explored throughout the

chapter.

Definition 2.2.12. Let A € R%? and let B be any subordinate matriz to A. The

max

Weak CSR Threshold denoted by T\ (A, B) least number T' satisfying,

Vi>T, A'=CS'R[A]® B (2.7)
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Definition 2.2.13. Let A € R¥? be irreducible and let B be any subordinate matriz
to A. The Strong CSR Threshold denoted by T»(A, B) is the smallest number T
satsfying,

Vi>T, CS'R[A] > B (2.8)

The subordinate matrix B can be defined in a different ways which we refer to as
schemes. For all of the schemes the subordinate matrix is created from a well-defined

subgraph G of D(A) under the following rule,

e if ¢ or j is a node of G
bi,j == (29)

a;; otherwise.

The following three schemes come from Merlet et al. [68] and will be used throughout

the chapter.

(By) Nachtigall Scheme: For this scheme we set G = G°(A) (The critical subgraph of
D(A)). Then By is defined using (2.9).

(Bga) Hartman-Arguelles Scheme:Let V' be the max-balanced form of A (see Defini-
tion . For some p € Ryax the Hartman-Arguelles threshold graph Dy a(u)
is the digraph induced from the edges in D(V') where v; ; > p. In the case when
p = AA) then Dya(p) = G¢(A). If u = € then Dya(p) = D(A). Let u" be the
maximal g < A\(A) such that Dya(p"*) has a s.c.c. that does not contain any
s.c.c.s of G¢(A). Then the digraph G is the union of the s.c.c.s of Dy (u"®) that
contain the components of G°(A) and By is defined by [2.9]

(Bor) Cycle Threshold Scheme: Let u € Ry, define the Cycle Threshold graph
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Der(p) induced by the edges belonging to the cycles of D(A) with mean weight
greater than or equal to . As with the Harman-Arguelles scheme if = A(A)
then Dor(pn) = G¢(A) and if 4 = & then Dor(p) = D(A). Let u be the maximal
p < A(A) such that Der(p) has a s.c.c. that does not contain any s.c.c.s of
G°(A). Then the digraph G is the union of s.c.c.s of Der(u) that contain the
components of G°(A) and Ber is defined by

The subdigraphs defined by the Harmann-Arguelles scheme and the Cycle Threshold
scheme will be denoted by G"* and G¢.
We now present a brief example of these decomposition schemes at work. Let

A € R*** be a max-balanced matrix with entries

max

and its associated weighted digraph.
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—6

We can see that G°(A) is the loop (in red) 1 — 1 (as that cycle has the largest

mean weight which is 0) and that defines the Nachtigall decomposition for A as

9 9 9 9

e =3 -7 €

By =
e ¢ —6 -—10
e e —-10 -7
Now looking at the Hartman-Arguelles scheme we set ;* = —6 which gives a subgraph

of the loop 3 — 3 which is a s.c.c that does not contain G°(A). Following the definition,
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we have the decomposition as

Bra=

This happens as node 3 is connected to nodes 1 and 2 by two edges with weights
equal to —7. Therefore the loop 3 — 3 is disconnected when " = —6. Finally for
the Cycle Threshold scheme we can set u® = —7 and that gives us a subgraph that

includes the cycle 4 — 4 which is a s.c.c that does not contain G°(A). Hence the Cycle
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Threshold decomposition of A is

£ € e ¢
€ € € ¢
Ber =
£ € & ¢

For this decomposition if we had u® = —6 the cycle 1 — 2 — 3 — 1 has mean weight
—% which is just larger than —6 so the subgraph G would contain G¢(A). Therefore
we move p® = —7 which now contains the cycle 4 — 4. Since the edges connecting
nodes 3 to 4 both have weight 10 then this s.c.c does not contain G¢(A) and we get
the distinct decomposition.

The following statement holds in the particular case of the Nachtigall expansion

and was proved by my co-authors in the paper [48].
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Lemma 2.2.14 ([48, Lemma 2.3]). Let A be irreducible. Then A* > CS'R[A] if and
only if t > T\ y(A).

We also present some previous results for the bounds of 77(A, B) from the paper
by Merlet, Nowak and Sergeev [68]. The results for T5(A, B) from the same paper will

be presented later in this chapter.

Theorem 2.2.15 ([68, Theorem 4.1]). For any matriv A € R and for B = By,

max

B = By or B = Ber we have the following bound

Ti(A,B) <Wi(d)=(d—1)*+1  ford>1 (2.10)

If B = By or B = Bga, we have the following bounds

Ty(A, B) <DM(d,§) = §(d — 2) + d (2.11)

Ty(A, B) <(g — 1)(cr — 1) + (& + 1)cd (2.12)

where § = §(G°(A)) is the max-girth of G°(A), cr = cr(D(A)) is the length of the
longest elementary cycle in the associated digraph of A, cd = c¢d(D(A)) is the length

of the longest path in the associated digraph of A.

Theorem 2.2.16 ([68, Theorem 4.4]). For any matriz A € R4 we have the following

max’

bounds

T1(A, Ber) < Wi(d) (2.13)
T1(A, Ber) <(d — 1)cr + min(d, cd + cr + 1) (2.14)
T1(A, Ber) <(cd +cr —1)er +cd + 1 (2.15)
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where cr = cr(D(A)) and cd = cd(D(A)).

When speaking about 77 (A, B) we will also use the following simplified notation:

Tima(A) =T1(A, Bua(A)), Thvor(A) =Ti(A, Bor(A)).

Let Ay, As,--- A, be matrices with entries in Ry, such that the product A;A;

is well defined for each ¢ (with the indices considered modulo 7) and define

—oc0 A —o0 - —00

A= AL, oo |- (2.16)
00 e e =00 Ay
A"Y _w DT DR _w

This form can be written for any tropical matrix, with v as the cyclicity of the
associated graph.This can be done by grouping the nodes into distinct cyclic classes.
As the edges moving from [i] to [i + 1] represent the edges making up a single block

then by reordering the columns/rows one can write the matrix in the form (2.16)).

2.3 The case of Nachtigall expansion

Throughout the chapter we will be interested in the tropical powers of A and their
limits. These matrices always have a block decomposition compatible with ([2.16])
and at most one non-zero block on each row. We denote by A; the only possibly

non-zero block of A on row ¢, and all indices in what follows are always considered
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modulo . This is consistent with and for instance, A7 is block diagonal
with A] = A;---A;+,—1. This is a version of the more general form of identity
AY = A; ... Aiyy—1 for any v > 0 which is the same as saying that the i*™ block in AV
is equal to the product of matrix blocks A; ® A;11 ® ... ® A1

By construction, the nodes of D(A), where A is of the form (2.16]), can be split
into ~ sets NV; that are cyclically ordered such that an arc always goes from one set to
the next one and an arc from N; to N, is labelled by an entry of A;. Therefore, the
cycles on D(A) contain nodes from each N; and the length is an integer multiple of ~.
Moreover, a cycle with length [ with maximal average weight on D(A) gives a cycle
with length [/~ with maximal average weight on each D(A]). This is the idea behind
the proof of the following proposition. Note that its proof was omitted in the joint

paper [48], but we will give it here in full.

Proposition 2.3.1 ([48],Proposition 2.1). Let v be such that A admits a block de-

composition as in (2.16):
(1) A(A7) =7 AMA);

(2) 8(g°(A))) = &,

(3) e(G(A7)) = <A,

Y

Here \(B) is the maximal average weight of cycles (or circuits) on D(B) for any
B € R4 which is the largest tropical eigenvalue of B, g(D) the maximum of the

girths (length of shortest cycle) of its s.c.c.s, and ¢(D) is the cyclicity for arbitrary
digraph D.
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Proof. The proof of (1) is given in [I1, Theorem 4.5.10] and will be omitted. For the

proof of (2) we show the following two inequalities:

B(G°(A7)) > @ (2.17)
B(G°(A7) < w (2.18)

To prove we choose the elementary cycle V' with length [ from G¢(A]) that
attains the maximal girth over all elementary cycles in G¢(A7). By [7, Lemma 2.8],
the critical graph of a power of a matrix is the same as the power of the critical graph
of the matrix. Therefore there exists a cycle on G°(A) that has the same weight,
traverses all nodes of V' (albeit also with nodes from other A; in between), and has
length ~/. This cycle can be split into a number of elementary cycles and the length
of each of them does not exceed v§(G¢(A7)). Therefore we have (2.17).

Looking to ([2.18) we choose the cycle of length [ that attains the maximal girth
over G¢(A). Upon powering up the matrix A « times, the cycle will split into 7 disjoint
cycles, each of length % These cycles will be critical in A” as the power of a critical
graph of a matrix is the critical graph of a power of the same matrix. If all of these
cycles are elementary, then clearly g(A]) < w. If some of these cycles are not
elementary then we can take one and break it down into elementary cycles of either

smaller or equal length and this also gives g(A)) < w. Hence for either situation

we have (12.18)).
Therefore as both ([2.17)) and ([2.18)) hold then equality (2) holds.
For the proof of (3) we use [12, Theorem 2.1 (ii)]. This states that the node set of
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c(D(A))
ged(v,¢(D(A))

if «y is such that A admits block decomposition (2.16), then the length of all cycles of

each component of A7 consists of cyclic classes of A. It can be seen that,

D(A) is a multiple of v, therefore ged(vy,c(D(A))) = v and the result follows. O

We have the following straightforward relations where A; and A; are arbitrary

blocks from ([2.16)).

AP = A3(A L RAL, (2.19)
(A7)FHL = Af’i(A])’“A;’j (2.20)

Using Lemma we obtain the following identities as limits of (2.19) and (2.20):

CSMHRIA]; = AJCS*RIAL, JAL, (221)

CSFIR[A]] = Al CSFR[A]] ALY (2.22)

The following Lemma, Theorem [2.3.3] and Theorem were hypothesised and
proved by the coauthors [48] therefore we will state the results and omit the proofs
where necessary. We direct the reader to the paper [48] for the complete proofs.
Without loss of generality we can assume that A(A) = 0 and by Proposition we
also have A\(A]) = 0 for every i.

Lemma is used to deduce the following.
Lemma 2.3.2 ([48],Lemma 3.1). The following two relations hold for all i,j €
{1,...,7} where ~y is of :
(i) Tin(A) < ymax; Ty v (A]),
(i) |T1 n(AY) = Tun(A))| <1 for arbitrary i, j.

45



It should be reiterated that the proof given below was written by the co-authors [48],

but it will be included to highlight the use of Proposition [2.3.1]

Theorem 2.3.3 ([48],Theorem 3.2). Let A € R be irreducible. Denote by v the
cyclicity of D(A) and by g the mazimal girth of s.c.c.s of G¢(A). We denote by drem~y
the remainder of the Fuclidean division of d by ~v. The following upper bounds on

Tin(A) hold:

(i) v Wi Q%D + (dremv);

(2]

Proof. The bounds follow from the application of bounds of Theorem [2.2.15| to the

A} with minimal size. This size m is at most HJ When it is at most {%J — 1, the

bounds follow from the inequalities of Lemma [2.3.2, When m = L%J, we use the fact

that at most drem~ blocks have a strictly larger size (otherwise the total size would

be larger than d). In this case, we set

k= max Tiy(A)).

A7 has size m

Using (2.19) and ([2.22)) with k£ as above and s+t = drem vy and applying Lemma[2.2.14

we obtain

ATHE = AN(AL )AL > AZCS RIAL A

1+s

— CS’yk+s+tR[A]i.

o

In the above, we can select s in such a way that A/,  has size m = {%J Applying
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Lemma again, we obtain that

Tin(A) <y max Ty y(A])+dremn.

A7 has size m

Using Wielandt and Dulmage-Mendelsohn bounds for such blocks together with

Proposition [2.3.1] we obtain that

which concludes the proof. ]

The following theorem is the immediate result of applying Lemma [2.3.2[(ii)] to
the matrix F' defined in (1.1)) using the bounds in Theorem [2.2.15| and Theorem [2.3.3|

Recall the notion of factor rank introduced in Definition [[.2.4].

Theorem 2.3.4 ([48], Theorem 3.4). Let A € RY? be irreducible. Let r be the factor
rank of A, v the cyclicity of D(A), and g the maz-girth of G(A).

The following upper bounds on Ty n hold:
(i) Wi(r)+1;
(i) g-(r—2)+r+1.
(iii) ~. Wi (FJ) + (rremny) + 1;

g
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The first two bounds apply to reducible matrices as well.

2.4 Bounds for the Cycle Removal Threshold

In this section we introduce the concept of the cycle removal threshold and prove

some new bounds for it to be used throughout the chapter.

Definition 2.4.1 ([48],Definition 4.1). Let G be a subgraph of D(A) and v € N.
The cycle removal threshold T1).(A,G), of G is the smallest nonnegative integer T
for which the following holds: for all walks W € W(i EN j) with length > T, there is a

walk V€ W(i 9, j) obtained from W by possibly removing cycles of W and possibly
inserting cycles of G such that [(V) =1(W) (mod v) and [(V) < T.

We can give an example to explain this definition. Let D(A) be the digraph shown

below.

1) 0 3)
@
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If we define the subgraph of critical nodes G to be the subgraph in red then we start by
calculating T2 (A, G). As we can separate the nodes into critical and non-critical sets
then we can look at certain types of walks, namely critical to critical walks, critical
to non-critical walks (and vice versa) and non-critical to non-critical walks. We can
group the first three types of walks into walks with at least one critical node at the
ends and we can rename the final group into walks with no critical nodes at either
end. We will start with a walk with at least one end that is critical. If this walk
contains any cycle then we can delete it as all cycles have length modulo 2 and the
walk will still traverse G. Therefore the longest possible walk must be the longest
possible path where one end is non-critical and the other is critical. This will have
length 8 (7 — 5) and acts as a lower bound for T2(A,G). Turning our attention
to walks with no critical nodes at either end we suggest the walk consisting of the
cycle of length 8 from node 7 to itself (denoted by 7 — 7 for brevity) and the path
7—8 =9 — 6 — 3 (further denoted by 7 — 3). This walk does contain a cycle of
length 8 which we cannot delete as if it was removed, then the path 7 — 3 would not
traverse G. This is the longest possible walk of this nature as 7 — 3 is the longest
path not containing any critical nodes. This walk has length 12 and also acts as a
lower bound for T2(A,G). Any walk of length greater than 12 starting and ending on
a non-critical node must contain at least two cycles of length 8 or multiple cycles of
length 2 or 4 and a cycle of length 8. Therefore, one of those cycles can be removed
to give a walk of length less than or equal to 12. As 12 is the larger value over the
two groups then T2 (A, G) = 12.

Looking at T2 (A, G) we can take the same look at the groups of walks. Starting

with walks with at least one critical node at an end we have to now account for a
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potential odd number of cycles of length 2 as only two cycles of length 2 can be
removed for T4 (A,G). We can now consider the walk 7 to 5 which comprises of a
path from 7 to 5 and a cycle of length 2 from 1 to 1 inserted in the path. This walk
has length 10 and as there is only one cycle of length 2 it cannot be removed. This
is the largest possible walk of this nature and any walk of length greater than 10
with at least one end at a critical node will either have to contain a cycle of length
4, more than two cycles of length 2 or a cycle of length 8. All of these cycles can be
removed to give a walk of length less than or equal to 10. Looking at walks with no
critical nodes at either end we can take the same walk 7 — 3 considered above and
add in a single cycle of length 2 when the walk traverses those nodes. This gives a
walk of length 14 and no number of cycles of total length being a multiple of 4 can be
removed to give a walk that traverses . On the other hand, if we have any walk of
length greater than 14 connecting two non critical nodes then we have at least two
cycles of length 8 or multiple cycles of length 2 (in pairs)/4 and a cycle of length 8.
Therefore these cycles can be removed to give a walk that is less than or equal to 14
which implies that T does not exceed max(10,14) = 14. Hence Ta(A, G) = 14.

We bound 77¢(G;) thanks to the following proposition.

Proposition 2.4.2. [68, Proposition 9.5] Let A € R and G be a subgraph of D(A)

max

with dy nodes. Then

VyeN, TL(AG) <~vd+d—d —1.

In the paper [48] this bound was developed further. The formulation of the theorem

below was worked out in collaboration with the co-authors [48], and the proof was
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written independently.

Theorem 2.4.3 ([48],Proposition 4.5). Let A € R¥X? be irreducible and let G be a

max

strongly connected subgraph of D(A). Then
d

T2(A,G) <o {—J +d—o—1, (2.23)
Y

where v is the cyclicity of D(A) and o is the cyclicity of G.

Proof. Let m be the size of the smallest cyclic class of D(A).

Let us consider a walk W € W7 (i EN j). If W does not go through all nodes of G,
then we can insert cycles from G in it so that the new walk contains all nodes of G
and still belongs to W (i EN 7)-

Let Cy be the first cyclic class of size m encountered by W. The digraph D(A?)
consists of 7 isolated s.c.c.s, whose node sets are the cyclic classes of D(A). Denote
by A} the submatrix of A7 whose node set is Cj Let us call G the digraph which
consists of all nodes and edges of G that belong to D(A)).

Then, W can be decomposed into W = W VW, where W; only has its last node
in Cp and W5 only has its first node in Cy. By construction, there is a walk 1%
on D(AI(J)) with same weight, start and end node as V and {(V) = ~4I(V). As W goes
through all nodes of G, V goes through all (and hence some) nodes of G .

Applying Proposition to V and the subgraph G, of D(A)), we build a walk V;
with length at most %m +m — d; — 1, where d; is the number of nodes in G and
1(V)) =1(V) (mod ). Asdy > 1(Z)/y = o/v where Z is any cycle of G, we also have
1(V}) < gm +m — 2 — 1. This walk can be developed into a walk V3 on D(A) with

length at most om + ym — ¢ — v and such that {(V5) = (V) (mod o). To bound
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(W1 VoWs), we consider two cases.

If m< L%J, we just use that [(W;) <y —1 and I(W,) <~y —1 to get

Z(WMWQ)g2(7—1)+(7+a)(m —1) —a—7<om Cotd—1.

Ifm= LdJ, we use that [(W3) <~ —1 and [(W;) < drem~ to get

5
d d
I(W1Va W) < (7 — 1) + dremy + (7 + o) M _U_VZUM Cdo1

Thus, we proved ([2.23]).

When the subgraph G is a cycle we obtain the following result:

Corollary 2.4.4 ([48],Corollary 4.6). For A € R¥? and Z a cycle of D(A), we have:

max

T'9(A,Z) <1(Z) EJ +d—1(2) -1 (2.24)

where v is the cyclicity of D(A).

When the cycle of D(A) has the maximal possible length, which is ~y L%J , we also

have

Proposition 2.4.5 ([68, Proposition 9.4]). For A € R%*¢ and Z a cycle with length d

of D(A), we have T4(A,Z) < d*> —d + 1,
In the paper [48] this bound was developed further in the case where D(A) has
cyclicity . The formulation of the theorem below was worked out in collaboration

with the co-authors [48] and the proof was developed independently.
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Theorem 2.4.6 ([48],Proposition 4.8). For A € R with ~ being the cyclicity of

D(A) and Z an elementary cycle with length -y L%J of D(A), we have Tk (A, Z) <

'VQ%J —1>2+’y+d—1.

Proof. We first observe that the number of nodes in the smallest cyclic class is
m = L%J , for otherwise we have m < HJ and this case there is no elementary cycle
Z with the length ~ L%J . Indeed, such cycle would have to contain exactly {%J nodes
in each cyclic class, and all these nodes would have to be different since the cycle is
elementary, in contradiction with m < HJ .

So let m = L%J be the size of the smallest cyclic class of D(A).

Consider a walk W € WH (@) (; Z, j). If W does not go through all nodes of Z,
then we insert a copy of Z in it.

Let C) be the first cyclic class of size m encountered by W. The nodes of C}
are the nodes of D(A}). Let us call Zj the cycle on D(A]) corresponding to Z and
containing nodes from C},. This cycle is elementary with length L%J

We decompose W into W = W VW5 where W; has only an end node in C} and
W5 only has a start node in C. This can be done since W contains all nodes of
Z. Walk V can be contracted to a walk V on D(A") with the same weight, start
and end node as V. Since W contains all nodes of Z, walk V contains all nodes of
Zr.. We also have (V) = ~I1(V). Applying Proposition to V and Z on D(A)),
builds a walk V; with length [(V;) < m? —m + 1 and I(V}) = (V) (mod m), which
can be developed into a walk V; on D(A) with length at most ym? — ym + v and

[(V3) = I(V)ym. To bound [(W;VoWs), we can use [(W;) < drem~y, [(Ws) <~y —1,
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m = L%J, and d =~ HJ + (drem+y) to obtain

d|? d
Z(W1V2W2) < (’Y — 1) +dremy + 7y \‘;J — L;J + v
d 2
_’Y—l+d+’y({—J —1) :
Y
Thus, we proved the claim. 0

The following two results are not included in the paper [48], as we chose to pursue
a different approach to including factor rank in the bounds.

Now we will obtain some bounds on the cycle removal threshold that involve the
factor rank r. Being the results of independent work, these bounds are new with
respect to the paper [48] and they have not been published previously. We will use
the notation A and F introduced in (I.1]).

From [9][Theorem 3.4.5], the square of any strongly connected subgraph G of D(F)
with cyclicity o consists of two s.c.c.s with the same cyclicity g, which are called the
children of their parent G and are said to be related to one another. One of them is a
subgraph of D(A) and the other is a subgraph of D(A). In particular, if G is a s.c.c.
of G(F) then one of its children is a s.c.c. of G°(A) and the other an s.c.c. of G¢(A).
This principle can be also applied to any elementary cycle on D(F) of length [, whose

children are two elementary cycles of length é, where one of them is in D(A) and the

other is in D([l).

Theorem 2.4.7. Let an irreducible A € RE:4 have factor rank r and cyclicity v and

max
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let G be a strongly connected subgraph of D(F') with cyclicity o. Then
T9(F,.G) < o QZJ - 1) +or. (2.25)
g

Proof. Consider a walk W € W% (i 5, j) on D(F). By adding cycles of G if necessary
we can assume that W contains at least some nodes of G, which is the child of G in
D(A). Let k and [ be the first and the last node in W which belong to {n+1,...,n+7},
which are nodes of D(G), and let W be the walk between them. Clearly, k is the
second node of W and [ is the penultimate node of W. Contract W to V, a walk on
D(A). As W contains some nodes of D(A), so does V.

By Theorem , there exists V; with same start and end node as V, going through
a node of G, with length satisfying 1(V}) < S HJ +r—§—1and (V) = 1(V) rem §.
Walk V; is obtained from walk V' by removing cycles and possibly inserting cycles
from G.

The walk V; is then developed to walk W, on D(F) connecting k to [, also resulting
in a walk W; connecting i to j on D(F') with length at most o (HJ - 1) + 2r. As this

walk contains a node of G, and is obtained from W by removing cycles and possibly

inserting cycles from G, the claim follows. O

We can also give the following results in relation to what we have before. Note

that the proof for the second statement is analogous to the proof of Theorem [2.4.6]

Proposition 2.4.8. Let irreducible A € R have factor rank v and cyclicity v and

max

let Z be a cycle of D(A) with length 1 (see (1.1))). Then

(i) T (F,Z) <1 (M - 1) +or,
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(ii) T (F, Z) < 2y (HJ - 1)2 + 2y + 2r if Z is elementary with length | = 2~ HJ :
Proof. Regarding (i) the proof follows immediately from substituting [ into Theo-
rem [2.4.7| as the cyclicity of a cycle is the length of said cycle.

Regarding (7i) assume m = HJ be the size of the smallest cyclic class of D(A).
Otherwise we have m < HJ but, in F?, Z splits into two elementary cycles Z; and
71, both of length 715], which means that 7, contains [%] nodes in each cyclic class

of D(A), which is a contradiction. Therefore let m be the size of the smallest cyclic
class of D(F).

Consider a walk W € WH (@) (4 Z, j). If this walk does not traverse every node of
Z then we insert a copy of Z into it.

Let C, be the first cyclic class of D(A) size m encountered by . The nodes of Cj,
are the nodes of D(A}) Let Z; be the cycle on D(A]) corresponding to Z, containing
the nodes from Cj. It is elementary with length m = [£].

Now decompose W into W = W,V W5 where W; only has an end node in Cj, W5
only has its start node in C%, and V is the walk connecting W; to W5. We can do it
since W contains all nodes of Z. Walk V can be contracted to a walk V on D(A")
with the same weight and the same start and end nodes. As V' contains all the nodes
of Z then V contains all the nodes of Z;. We also have I(V) = 2vI(V). By applying
Proposition m to V and Zi, we build a walk V; with length l(f/l) <m?—m+1
and (V1) = (V) (mod m). This can be further developed into a walk V3 on D(F)
with length at most 2ym? — 2ym + 27 such that [(Vz) = (V) (mod 2ym). Finally

to bound (W VoWs), we use I[(W;) < 2rremy + 1, {(W5) <2y —1, m = HJ and
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r=- HJ + (rrem-) to give

2
I(WiVoWs) <2rrem~y + 1+ 2y — 1+ 2y {zJ — 2y {ZJ + 2
Y v

2
<2y (FJ - 1) + 2y +2r,
f)/

2.5 Bounds for Ti(A, B) using the Cycle Removal
Threshold

2.5.1 Bounds of Schwarz and Kim

In this section, we deduce the bounds of Schwarz and Kim and their factor rank
versions using the bounds for Cycle Removal Threshold which we established in the
previous section.

For this we use the following link between the cycle removal threshold and T} 5.

The statement will require the following notion, introduced Merlet et al. [68].

Definition 2.5.1. Let D be a subgraph of D(A) and v € N.

The exploration penalty ep”(i) of a node i € D is the least T € N such that for
any multiple t of v greater than or equal to T, there is a cycle on D with length t
starting at 1.

The exploration penalty ep? (D) of D is the mazximum of the ep? (i) fori € D.
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We will use the following bound for 71 (A, B):
Ti(A,B) < max (TJH(A,G) — v+ 1+ep(G)). (2.26)

Here Gy, - -+ ,G,, are the s.c.c.s of a representing subgraph G of G°(A). A representing
subgraph G of G°(A) is a completely reducible subgraph of G¢(A) such that every
s.c.c. of G°(A) contains exactly one s.c.c. of G. This concept was originally defined by

Merlet et al. [68]. We also denote 7; as the cyclicities of G; for [ € [m].

Proposition 2.5.2. [68, Proposition 6.5] Bound (2.26|) holds when B = Byx(A) or
B = Bya(A).

This proposition asserts that holds not only for the Nachtigall but also for
the Hartmann-Arguelles version of the weak CSR expansion. We will show that
will suffice for obtaining the bounds of Schwarz and Kim by means of the results of
Section 2.4l Note also that Lemma 2.2.74] does not hold in the case of the Hartmann-
Arguelles expansion. The formulation of the following proposition and theorem were
suggested by the co-authors [4§]. The proofs were written independently, based on
the ideas given by the co-authors.

Bound will be used only with G; being cycles, and in this case v, = I(G;)
and ep”(G) =0forl=1,...,m.

Let us first pay attention to the case L%J = 1, for which we will not use Proposi-

tion 2.5.2

Proposition 2.5.3 ([48],Proposition 5.2). If d < 27, where ~y is the cyclicity of
G¢(A), then for any A € RY? such that A(A) # —oco, and any t > drem~y, we
have A' = CS'R.
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Proof. Without loss of generality, we assume that A\(A) = 0.

Let us first notice that all cycles of D(A) have length ~, since their length is less
than 27 and divisible by ~. In particular, G°(A) has cyclicity v and all cycles of G¢(A)
have length . Moreover, at most dremy cyclic classes of D(A) have more than one
node, so that there is a class with only one node, G°(A) is strongly connected, and
the nodes in those classes are critical.

Proof of (CS'R);; < Aj;.

Let us take an optimal walk W € W7 (i LGN ), i.e., such that p(W) = (CS*R),;.

First assume that ¢ > [(W). Then, since W traverses a critical node and ¢t = [(IV)
(mod 7), we can form a walk of length ¢ by possibly inserting a number of critical cycles
into W (recall that all of them have length v). By doing so we obtain p(W) < (A?);.

Now let ¢ < [(W). We have t > drem~y and [(W) >t + . Since [(W) > drem+,
there is a path P, which is a prefix of W and which connects 7 to the first occurrence
of the only node k of a cyclic class with 1 element. Next we find the last occurrence of
k in W and take the path Ps, the suffix of W which connects k£ to j. Thus we obtain

a decomposition

W=hrP+Y C,

lel

where C for [ € I are cycles going through k. Note that all these cycles have length
~v by above arguments, and that all of them are critical, or this contradicts with the
optimality of W.

We have {(P;) < drem~ and [(P,) < v — 1, hence [(PP,) < v+ drem~. This
also implies I # () and we have p(W) = p(P. P).

Furthermore, as [(PyP;) = trem~, t > drem~y and [(P,P;) < v+ drem~, we

conclude that [( P P;) > t is impossible, so [( Py P,) < t with t—[(P, P,) being a multiple
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of 7. Applying the result for the first case to P, Py, we get p(W) = p(P1Py) < (AY);;.
Proof of A, < (CS'R);;.
Since at most drem~ cyclic classes of D(A) have more than one node, all walks

on D(A) with length ¢ > drem~ meet a cyclic class with only one node, which is
critical. Hence Aj; < (CS*R);;.

[]

We now prove that the bounds of Theorem apply to 17 p whenever we
have (2.26)), and in particular for B = By 4.

Theorem 2.5.4 ([48],Theorem 5.3). Suppose that B is defined in such a way that
(2.26)) is satisfied. Then the following bounds on T1(A.B) hold:

d
(i) v- Wi (L—J) + (drem~);
Y
d
i) g. | |[—|— 2) +d
e (|5]
where v is the cyclicity of D(A). In particular these bounds apply when B = By 4.

Proof. Let Gi,...,G, be the s.c.c. of G°(A) and let Zi,...,Z,, be the cycles of
minimal length in those components. Using Corollary with | = [(Z;) for any

ke {l,...,m}, we have

d
TP (A, Zy) < 1(Zy) hJ +d—1(Z) -1

TUZ) (A, 7)) — U(Ze) + 1 < 1(Z) Q%J — 2) +d
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for all kK =1,...,m. Combining with Proposition it becomes,

Ti(A,B) < ril’;él x(TN%) —1(Z) +1) < Ikn: x1(Zy) Q%J - 2) +d

o145

Therefore T (A, B) satisfies the second bound of Theorem [2.3.3]

Taking this further, when @ < L%J — 1, we obtain

SRR
(-5
TR

i ([2]) e

v

<7

I

2
/\/\
Q&\Q&

I
\g

which gives the first bound in Theorem [2.3.3]in this case. Otherwise, in the case when

UZx)
B!

= HJ for some k& we use Theorem [2.4.6|to obtain

T;LzJ(A,Zk)—l(Zk)JrlSV(EJ —1)2+7+d—1—7HJ +1

(4 om

Thus treating these two cases yields the first bound in Theorem [2.3.3| in the case

HJ > 1. The remaining case HJ = 1 was considered in Proposition 2.5.3 [
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2.5.2 Bounds using factor rank

The results of this subsection are new and were not published previously. The statement
of Theorem was worked out in collaboration with Sergeev and the proof was
written independently. Recall that if A has factor rank r, then we have the matrices

F and A introduced in (T1]). It is easy to see that T'(A4) < {@-‘ for the periodicity

thresholds, and therefore we have T(A) < max ([Tl(‘;’B)—‘ , FQ(I;’B)D for arbitrary B.
This motivates us to seek bounds for ({M—D (in this section) and for T5(F, B)
(later).

Rewriting (2.26)) for F', we obtain
Ty (F,B) < max (TI2(F,G) — v+ 1+ep™(G)). (2.27)

Here Gy, -, G, are the s.c.c.s of a representing subgraph G of G°(F') and ~; are the

cyclicities of G, for [ € [m]. By Proposition [2.5.2) bound ({2.27)) works for B = By(F)
or B = Bpa(F).

Theorem 2.5.5. Suppose that Ty (F, B) satisfies (2.27)). Then the following bounds

T\(F,B .
%W under the same assumptions.

on Tin(A) also apply to [
(i) Wi(r)+1;
(i) & (r—2) +7+1.
(iii) 7. Wi (H) + (rremny) + 1;

(iv) gQ%J —2) 4l

where 7 is the cyclicity of D(A).
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Proof. 1t suffices to prove (iii) and (iv), since (i) and (ii) follow from (iii) and (iv)
respectively for purely arithmetic reasons (recalling that v < r)

(iv): Let Zy, for k =1,...,m, be elementary cycles with minimal lengths in s.c.c.
Gi,...,Gy of the critical graph G°(F).

By Proposition part (i) we have
TY%)(F, 7)) < 1(Z) QZJ — 1) +2r (2.28)
v
We now combine this inequality with the bound ([2.27)):

Th(F, B) <max (T3")(Zy) = (Z) + 1)

<max (%) (EJ —2) +2r+1=2g<HJ —2) +or+1,

where we used that the maximal girth of G¢(F') is twice the maximal girth of G¢(A).
Using the above inequality we obtain the desired bound for {TI%(F)-‘

(iii): We split the proof of the Schwarz bound into three cases: (a): When
E < (2]~ 15 (b): When & = 2] > 15 (c) When £ = |£| = 1.

For case (a): we have that

QQ%J—2)+7’+1§7<(EJ—1)2+1>+rrem7+1 (2.29)

when & < |Z] —1.
¥ 8!
For case (b): Let Z, for k =1,...,m, be elementary cycles with minimal lengths

in s.c.c. Gy,...,G,, of the critical graph G¢(F). Let M; be the set of indices p such
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that % = HJ Then for all p € M; by Proposition [2.4.8 part (ii) we have

7 p 2y <oy (Q%J - 1>2+1> +or. (2.30)

Note that for all p ¢ M; we have @ < HJ —1.

Combining (2.28)) and - ) with bound ( - we obtain

Ti( ax (T (F. Zy) — U Z) + 1)

(&

(Z l
max iﬁéﬁ‘f (TEZ(F, Z),) — U(Zy) + 1), iré%(T( )(F,Zk)—l(Zk)+1)>

pul (IR (VRO R
() e

where we also used inequality (2.29). From this we obtain the desired bound for

[Tl(F,B)-‘
=3

The final case to check is when % = {;J = 1. To begin we use Proposition [2.5.3

with d = 7 on A that says that for r < 2y we have

Al = CS'R[A] for t > rrem~.

Recalling that A = UL and A = LU, we have

AT = UAL
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Using , we obtain
AT = UCS'RIA]L = CS™ R[A] for t > rrem~.

Therefore, for t > rrem~ + 1 we have A* = C'S*R[A], and the Schwarz bound (iii)

also holds in this case.

2.5.3 The case of cycle threshold expansion

The formulations and the proofs in this subsection are results of independent work,
based on the ideas given by the co-authors [48]. In this section we obtain a new bound
for the Cycle Threshold scheme using the bounds for the cycle removal threshold

obtained previously. It will use the following bound on 73 (A, B) :

Ti(A, B) < max {TX?(Z) + 1| Z cycle in G} (2.31)

Here G is a subgraph of D(A).
Proposition 2.5.6. [68, Proposition 6.5] When B = Beor, bound holds with
G =g,

For the definition of G see the description of the Cycle Threshold scheme in

Subsection 2.2l

Theorem 2.5.7 ([48],Theorem 5.5). If bound (2.31) holds, then we also have the

following bound:

Tl(A,B)§7<EJ—1>2+d+7
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where v is the cyclicity of D(A).
Before we prove this theorem, we first introduce the following lemma

Lemma 2.5.8. Let A € R and Z be an elementary cycle of D(A) of length I(Z)

max

which is not maximal, and let D(A) have cyclicity v. Then

2 (|2] 1) +a<a (|2 —1)2+d+7. (2.32)

Proof. As we bound the length of non maximal cycles by I(Z) < ~ L%J — 7y, we
substitute it into the LHS of the inequality (2.32)) to give

(2] s (11 ) (4]
(I

as required. N

Proof of Theorem[2.5.7, We can split this proof into two distinct cases, the first is
when there is a cycle of maximal length, which is [(Z) = v HJ, and the second is

when every cycle has length that is smaller than the maximal possible length, i.e.,
1(Z) <~ m .

For the first case we can use Theorem for maximal cycle length to give

4, 2y SVQ%J —1)2+d+7—1 (2.33)
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Turning to the second case, we can use Corollary which means that

TU2)(A,Z) < 1(2) EJ +d—1(Z) -1
TUD(A, Z)+1<1(Z) EJ +d—1(2)=12) Q%J — 1) + d.

We can use Lemma to bound this from above to get,
12) d d 2
T (A, Z)+1<1(Z) ; —1|4+d<y ; —-1) +d+~. (2.34)
Using (2.33) and ([2.34])) we obtain

Ty(A, B) < mgx{T;HJ (A, Z) + 1} <7 Q%J - 1>2 +d+ .

2.6 Bounds for T,(A, B)

In this section we develop new bounds for T5(A, B), where B is a subordinate to A,
i.e., a matrix obtained from A by setting some entries of A to ¢ and keeping all other
entries the same as in A. In particular, By(A), Bya(A) and Ber(A) are subordinate
matrices.

In the paper [68], multiple bounds were developed for 75 using bounds for the
cycle removal threshold (from the same paper). We are going to improve the following

bounds:

Proposition 2.6.1. [68, Theorem 4.5] Let A € R be irreducible and let B be

max
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subordinate to A. Denote by cdg = cd(D(B)) the biggest length of a path in the
associated digraph of B and by & the mazximal cyclicity of the components of G°(A).
If N\(B) = ¢, then T5(A, B) < c¢dp + 1 < ng. Otherwise we have the following bounds

(d® = d 4+ 1)(M(A) — min; a;y) + cdp(max;; by — \(B))

R = \A) ~ AB)

(2.35)

(6(d — 1) + d)(A(A) — miny; a;;) + edp(maxy; by — A(B))
MA) — A\(B)

Ty(A, B) < (2.36)

The formulation of Proposition and Theorem below were developed in

collaboration with the co-authors [48] and the proofs were written independently.

Proposition 2.6.2. Let A be an irreducible matriz, G be a representing subgraph of
G°(A) with s.c.c.s G1,...,Gm and let v, be the cyclicity of G;. Let B be subordinate to
A such that \(B) # . Then

max; (Tg} (gl))<)\(A) — minij aij) + ch(maXij bij — )\(B)) .

T5(A,B) < A(A) — A(B)

(2.37)

This proposition is inspired by [68, Theorem 10.1] but it is different since we need
to have the maximum of T, over subgraphs G; in the bound. Therefore it will require

a proof.

Proof. Assume that ¢ is greater than the RHS of (2.37). We need to prove that
tA(A) @ (CS'RIA))y; > tA(B) @ b (2.38)

holds for all 4,j, where A = A — M\(A) and B = B — \(B). Before we begin this, we
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need to bound (CS*R[A]);;. Using [68, Theorem 6.1] and [68, Corollary 6.2] we have

that

where N, are the node sets of the s.c.c. of G°(A), v, are the cyclicities of these

components, and the weights are computed in D(A). If (CS*R[A]);; is finite then one
of the sets W (z N, j) is non-empty. Let it be non-empty for v = p for some p,

then we have:
(CStR[A])U Z p (Wt”y“ (Z ﬂ j)) Z Tgf‘ (Qu) H]%iln dkl;

N, .
as Wik (z — j) contains a walk whose length does not exceed 7o (G,) and as

miny; ay; is non-positive. We further obtain that
(CS'R[A]);; > min (Tg;(gu) min a,d) . (2.39)

By [68, Lemma 10.2] if the entry (C'S'R[A]);; is not finite then neither is ZN)fJ
and there is nothing to prove so we assume that (C'S'R[A]);; (and, equivalently,
(CS'R[A)),;) is finite. Passing to A = A\(A4) ® A, we then use (2.39) to argue that the

inequality

£A(A) + min (Tg;(gy) (Ir]lciln g — A(A))) > t\(B) + cd (D(B)) (n}f}x bt — A(B))
(2.40)
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guarantees ([2.38]). Rearranging the last inequality we obtain

HA(A) = A(B)) = max T7¢(G,) (MA) — minag ) + ed (D(B)) (maxbu — A(B))
(2.41)

Since (A(A) — ming ay;) does not depend on v and A\(A) > A\(B), dividing this in-
equality by A(A) — A(B) we end up with ({2.37)). Therefore any ¢ greater than ([2.37)
will satisfy (2.38) as well, thus completing the proof. H

Using this proposition along with Corollary and Theorem [2.4.6| we obtain a

theorem for the bounds for T5.

Theorem 2.6.3. Let A € R be irreducible with cyclicity v and let B be subordinate

to A such that \(B) # €. Then the following bounds on T>(A, B) hold.

<7 (L%J - 1>2 +y+d— 1) (A(A) — ming; a;;) + cdp(max;; bij — A(B))

TQ(A7B) S

AA) — A\(B)
(2.42)
o % —1)4+d—1)(AA) — min;; a;;) + cdg(max;; b;; — A\(B))
PG |
(2.43)

where & is the greatest cyclicity of the s.c.c.s of G¢(A).

Proof. For the first bound we recall that the length of each cycle does not exceed HJ ,

and the second largest length does not exceed -~y Q%J - 1) . If a component G, has a

cycle of the maximal length ~ HJ then denoting it by Z, and using Theorem [2.4.6
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we have

d 2
TI\%)(A, Z,) < 7 (H - 1) +d+vy—1
Y
If it does not have such cycle, then using Corollary we obtain

T (4, 2,) < 1(Z,) H WZ)rd-1
Y

We can bound this above using Lemma to get again that

2
TUZ) (A, Z,) < v (FJ - 1) +d+v—1.
gl

Substituting this into Proposition we get the first bound.

For the second bound, using Theorem we obtain

T) (A G,) < (01, LEJ —0,+d— 1)

v

where G, is a component of G°(A) and o, is the cyclicity of this component.

Substituting this into Proposition [2.6.2| we get the second bound. O

With these bounds it remains to check that they are better bounds than the
previous ones. Obviously, (2.43)) is better than (2.36), and it remains to compare
(2.42) with (2.35)). This is achieved in the following

Remark 2.6.4. For any irreducible matriz A € R¥4 with subordinate matriz B, the

bound (2.42) is smaller than the bound (2.35)).

Proof. Upon comparing the two bounds the inequality simplifies down to trying to
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prove that

d 2
WQ—J —1) +y+d—1<d*—d+1.
gl

This simplifies down to

2 2
2
FJ —2{§J+2§d——2g+— (2.44)
gl v v

We can prove this by using induction on d. We begin by simplifying the LHS of the

statement to something easier to prove.

ol <2 2

Comparing this with the RHS of ([2.44)) it becomes,

2 . 2
(1) 2ol et ot 2
Y Y Y Yo

d2
— + 2y < d°
y

We begin the induction by taking the base case of d =« € N. This gives,

d2
— 42 <
p + <

= 3 <d.

This means that for d = v > 3 the base case works. We will need to check for the

cases (d,v) = (d,1) and (d,v) = (d,2) so they will be addressed after the induction.
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We now assume that if d =~ + k for k € NU {0} then,

(v + k)?

+ 2y < (v + k) (2.45)

Looking at the inductive step we set d =y + k + 1. Then
(v +k+ 1) OV 2ky+ 2y + 2k + 1+ k2

+ 2
Y

+ 2y

(v + k)

2y 42k +1

2y +2k+1
/‘)/

<A 4 2%y + K2+ 2y 4+ 2k +1

< (y+ k) +

=(y+k+1)>%

Therefore, by induction, the equation (2.44) holds for d,y > 3. To finalise this

proof we need to check the outlying cases, when (d,v) = (d, 1), (d,7v) = (d,2) and
(d,7) = (2,2).
Case 1: (d,v) = (d, 1) Setting v = 1 in ([2.44)) gives the inequality,

d®> —2d+2<d®>—2d+2.

which holds with equality for all values of d.

Case 2: (d,v) = (d,2) Setting v = 2 in ([2.44]) gives the inequality,

2 2
4 2|2 +2< e
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We can bound the LHS to give an easier statement to prove, which is,

d\> _(d-1) I
) —2 o< —d+1
(5) -2“5 22 G-au

d\? >
bt 9 < —
(2) +2<5
d>2v2
Which means that the statement is true for d > 3. It remains to show it is true for

the final case;

Case 3: (d,7y) = (2,2) We can plug in the values d = 2 and v = 2 into ([2.44) and

it gives,
2|° 5|2 +2<? )2 2
2 2 - 2 2 2
1<1
as required. Therefore ([2.44]) holds for all d,vy € N. H

We note that in the collaborative paper [48], a simplified version of the proof is
written that was developed by the coauthors.

Now we also present a development of this theorem in the case when A has a
nontrivial factor rank r. The proof is similar to the proof of Theorem [2.6.3 the
only difference is that we formulate the bound for F' and use Theorem [2.4.7] and

Proposition [2.4.8] instead of Theorem [2.4.6] and related results.

Theorem 2.6.5. Let A € R¥X? be irreducible with cyclicity v and factor rank r. Let

max

B be a subordinate to F. If N\(B) = ¢, then T5(F, B) < cdg + 1. If \(B) > ¢, then the

74



following bounds on T5(F, B) hold.

2 <’V (HJ - 1>2 ++ ”’) (A(F) — miny; fij) + cdp(max; byy — A(B))
A(F) = A(B)

(2.46)

2 (é <HJ — 1) + r> (A(F) — min,; fi;) + cdp(max;; bj; — A(B))
AF) — \(B)

. (2.47)

where & is the greatest cyclicity of the s.c.c.s of G¢(A).

Proof. If A\(B) = ¢ then powers of B will become —oo starting from cdp + 1 at most.
Thus the bound follows. So we now assume that A\(B) > ¢.

For the first bound we know that the length of each elementary cycle on D(F)
cannot exceed 2y L%J, and the length of the second largest cycle does not exceed
2y (L%J — 1). If the s.c.c.s G¢ of G°(F) contains an elementary cycle of maximal
length 27L§j then denoting it by Z, and using Proposition we have

2
T(F Z,) < 20 (FJ - 1) + 2y +2r.
Y

If no such cycle exists, then with Proposition [2.4.8

TUE)(F, 2,) < 1(Z,) (EJ - 1) +2r,
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If we bound [(Z,) < 2v (L%J — 1) and substitute that in we again have

2
T\%)(F, Z,) < 2y QZJ - 1) + 27y + 2.
Y

Finally using Proposition we have the first bound.
For the second bound we use Theorem to get

T (F,G°) < o, (FJ - 1> +or

g

where o, is the cyclicity of the s.c.c. G¢ of G°(F'). As the maximal cyclicity of G(A)
is 0, the maximal cyclicity of a component of G°(F) is 2. Substituting this into

Proposition [2.6.2] gives the second bound. O

2.7 Conclusion

The two main results of this Chapter that are published in [48] showed the validity of
the Schwarz and Kim bounds on 77, which originate from the works by Schwarz [77]
and Kim [53] respectively, for the Nachtigall scheme in Theorem and for the
Hartman-Arguelles scheme in Theorem [2.5.4, Making use of the cyclicity of the
digraph, these results can yield better bounds than the previously published bounds
of [68]. Another result, Theorem showed that by introducing a factor rank r
then the Weilandt number [93], Dulmage-Mendelsohn number [27], Schwarz bound,
and Kim bound apply to T} using the tropical factor rank of A, r, in place of the

number of nodes d with a negligible penalty of adding 1. As with the other results,
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if the associated matrix A has some factor rank r < d, then there will be sharper
bounds developed in that case. For T5, using the cycle removal threshold introduced in
Definition [2.4.1], new bounds are developed in Theorem [2.6.3] These bounds, especially
the ones involving factor rank, can yield much better results. It should be noted that
the factor rank bounds on 7T, depend on the entries of the subordinate matrix of F,
B, which in most tested cases resulted in B = —oo. This is an ideal outcome to yield
minimal bounds. However it raises the question of the existence of an initial matrix A
that produces a subordinate matrix of F', following the three schemes, that does not
equal —oo. This presents itself as a potential area of study.

There is some difference between the paper [48] and this chapter. In the paper [48],
no bound was obtained on 7(A, B) that involved the factor rank, in the case of
the Hartmann-Arguelles expansion. As a consequence of this the results of the
paper [48] do not yield a bound on T'(A) that would involve the factor rank, in
the case of that scheme. However here we took a different approach by bounding

T(A) < max qu(g’B)-‘ , FQ(};’B)-‘) recall that F' is the matrix defined in (I.1)) such

that its square consist of two diagonal blocks: A, and an r by r matrix A, where r

is the tropical factor rank of A as stated previously. Then, we obtained the bounds

involving factor rank for [@-‘ in Theorem [2.5.5| and {w—‘ in Theorem [2.6.5

2.8 An Example

To end this chapter we will go through an example to show the effectiveness of the

new bounds presented in the chapter.
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Let A be the matrix in R9%6 in the form (2.16)), with entries

max’

We do not show the directions of edges here as A is symmetrical therefore each edge
from i to j has a reverse edge from j to i. It can be easily that the v = 2 as the
digraph is made up of cycles of length 2. We can also see that as there are no smaller

cycles then g = 2 and obviously d = 6. Note that A has factor rank 2 and can be
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made up of the product

€ 0

e -1

e -1 0 —1
&

0 € e €

-1 =

-1 =«

-1

3

with the associated digraph:

3

0 -1

e € ¢ 0 -1 -1
e € €€ -1 -1 =2
€ e € ¢ —1 =2 =2
-1 - 0 -1 -1 ¢ € =«
-1 -2 -2 ¢ € ¢
-1 -2 -2 e € ¢

€ € € 0
€ 15 0 €
€ € e -1
€ e —1 =«
b
€ € e -1
€ e -1 =«
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e —2 =2 & € ¢

The subordinate matrices By and Bor of A only have entries equal to €, and it
follows from the associated digraph of F' that all three subordinate matrices of F' are
equal to —oo. Now we will present tables for 77 and 75 separately with the calculated

bounds.
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T, | NJHA Source cT Source | N, HA(r) Source

Wi 26 (2.10) 26 (2.10) 3 Thm [2.5.5(%)

DM | 14 @.11) N/A | N/A 3 Thm [2.5.5(4)
Sch 8 Thm [2.5.4(1) 16 | Thm [2.5.7] 1 Thm [2.5.5( i)
Kim 8 Thm 2.5.4f(7) | N/A N/A 1 Thm [2.5.5((iv)

T | [68] | Source | [48] | Source | T5(F, B) | Source

It can be seen from the table, for T}, that not only do the Kim and Schwarz bounds
prove better than the Weilandt and Dulmage-Mendelsohn bounds but the factor rank
versions are vastly better in this example. For 75 the same is also true. This means
that by choosing the factor rank bounds for the Nachtigall or Hartman-Arguelles
decomposition schemes we have T(A) = max(1,1) = 1 hence A" is CSR for ¢t > 1 .

More importantly it shows that the sequence of matrix powers of A is periodic with
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period 2 as seen below, which would not have been shown using the previous bounds.

0 -1 -1 ¢ € € € € € 0o -1 -1
-1 -2 -2 ¢ € 15 € € e -1 =2 =2
-1 -2 -2 ¢ 15 15 15 € e -1 -2 =2
A% = A3 =
€ € € 0 -1 -1 0o -1 -1 =« € €
€ € e -1 -2 =2 -1 -2 -2 ¢ € €
15 € e -1 -2 =2 -1 -2 -2 ¢ 15 €
0O -1 -1 ¢ € € 15 € € 0 -1 -1
-1 -2 -2 ¢ 15 € € 15 e -1 -2 =2
-1 -2 -2 ¢ € 15 € IS5 e -1 =2 =2
At = A5 =
€ 15 15 0O -1 -1 0O -1 -1 ¢ € €
15 € e -1 -2 =2 -1 -2 -2 ¢ € €
€ € e -1 -2 =2 -1 -2 -2 ¢ € €
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CHAPTER 3

EXTENDING CSR DECOMPOSITION TO
TROPICAL INHOMOGENEOUS MATRIX
PRODUCTS

3.1 Introduction

In this chapter, instead of studying max-plus powers of a single matrix, we will consider
a max-plus inhomogeneous matrix product of the form A4; ® A, ® ... ® A, where
matrices Ay,..., Ay are taken from an infinite matrix set X', where each generating
matrix in this set shares the same associated critical digraph. Denoting v, as the
cyclicity of a s.c.c. of the critical digraph for v = {1,...,m} and making use of
some core assumptions that are to be outlined, we will derive some bounds for the
rank-y - 7y, transient of inhomogeneous products of matrices from X, which is the
minimal K such that Ay ® Ay ® ... ® Ay for any £ > K can be represented as a
max-plus outer product of a column matrix of size d x Y " v, and a row matrix of
size Y - v, X d, where 7, is the cyclicity of the s.c.c. of the critical subgraph G¢ for

v =1{1,...,m}, which will depend on the matrix product.
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The main results of the chapter are in some relation to the bounds on the ul-
timate periodicity of the sequence of max-plus matrix powers {A’'};>1, similar to
those established by Merlet et al. [68, 67], and in Chapter . However the ideas of
Shue, Anderson and Dey [86], where the steady state properties of certain max-plus
inhomogeneous matrix products were considered, are used as a base to develop the
theory of the chapter. Their aim was to prove that, under certain assumptions, a
sufficiently long max-plus matrix product is rank-one meaning that it can be written
as the outer max-plus product of two vectors [86]. Components of these vectors are
optimal weights of walks going to and from node 1 respectively. However, there is an
oversight in [86, Corollary 3.1] with the removal of cycles from walks associated with
the product. The results by Shue et al. [86] are also proved for a sufficient k that is
large enough but no concrete bounds are established. This invited us to look for a
bound on the length of a max-plus inhomogeneous matrix product, after which, it
becomes an outer product of two vectors and the matrix product is rank-one. This is
what inspired the development of joint paper with Sergeev and Berezny [50] and will be
presented in Section [3.6] albeit with some improvement using newer developed theory.
The rank-one case requires the associated critical graph to be a single loop which is
restrictive, therefore generalising the critical digraph was the next aim and became
the driving force behind the development of the main part of this chapter, namely
Sections and [3.5] Rather than directly proving the factor rank property from an
inhomogeneous product, a CSR analogue is used, as explained earlier, which changes
the aim to develop bounds on CSR transients rather than factor rank transients. Upon
showing that the new definition of CSR exhibits similar properties to the original CSR

(see Definition [2.2.1)) then we can use similar proof methods and results from Merlet,
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Nowak, Schneider and Sergeev [67] as well as Brualdi and Ryser [9] to develop the
key result, which is Theorem [3.5.10] together with Corollary [3.5.12] which gives an
explicit bound on the length of the product after which it becomes CSR. However
there are limitations to this approach, namely, where it can be shown for other cases
that no bound exists for the CSR transient, and then we cannot guarantee a factor
rank property. The special case of a single loop critical subgraph is then revisited
in Section [3.6, which gives some improvemnt of the results obtained in collaboration
with Sergeev and Berezny in the paper [50]. In Section three cases where CSR
does not work are given along with the counterexamples that demonstrate this. In all
these counterexamples we present families of words of infinite length, in which the
product made using such a word is not CSR.

Most of the main results presented in this Chapter are enhanced versions of those ob-
tained in collaboration with Sergeev [49] and with Sergeev and Berezny [50](Section [3.6]).
While the formulations of these results were worked out together with Sergeev (and

Berezny, for Section [3.6), the proofs of all of them are the results of independent work.

3.2 Assumptions and Notation

3.2.1 Main assumptions

In this subsection, we set out the main assumptions about X and the matrices A,
that are drawn from this set. Firstly, recall that D(A,) is the same for all a.. Secondly,

it is not realistic to assume that the maximum cycle mean of each A, € X is zero
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therefore we normalise each matrix to give the new set of matrices ), where

V={A A=A, @A (A), Ay € X}

For simplicity we will assume that the set X has already been normalised and will
take this going forwards. With this normalised set we introduce the supremum and

infimum matrices of X'.

Notation 3.2.1 (45" and A™™).
AP entrywise supremum of all matrices in X. In formula, AP = @, 4 cr Aa-

A entrywise infimum of all matrices in X.

If the generating set X is finite then the non-e¢ entries of A%"P are also finite.
However if X' is infinite then an upper bound must be placed in order for the non-¢
entries to also be finite. Therefore we will assume that either the generating set is
finite or, in the case it is infinite, there exists a finite upper bound on the entries in the
generators of X'. Note that the latter requirement is implicit in Assumption |5| written
below. The concept of A%"P has been used before for various purposes. Gursoy, Mason
and Sergeev [7] use A™'P to find a common subeigenvector for a semigroup of matrices
(from which A®" is defined), which is a technique we will use later on. Gursoy and
Mason [6] also use A%"P and A(A®"P) to develop bounds for the max-eigenvalues over a

set of matrices.
Assumption A. Any matriz A, € X is irreducible.

Assumption B. Any two matrices A,, Ag € X are strongly geometrically equivalent,

to each other and to A" (Definition , which has all entries in Ryay.
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Notation 3.2.2. The common associated digraph of the matrices from X will be
denoted by D(X) = (N, E), and the common critical digraph by G°(X) = (N, E.). In

general, this critical digraph has m > 1 s.c.c.s, denoted by G5, forv=1,...,m.

Assumption C. Any matriz A, € X is weakly geometrically equivalent to A™. In

other words, for each (i,j) € E, we have (A™), ; # —oo.
Assumption D1. For the matriz A**P, we have A\(A**?) = 0.

The first three assumptions come from the previous works by Shue et al. [86] and
Kennedy-Cochran-Patrick et al. [50]. However, unlike in those works, we will no longer
assume that the critical graph consists just of one loop.

The final Assumption will be inspired by the visualisation scaling, Defini-
tion [1.2.17] and its connection to tropical subeigenvectors. Before stating Assump-
tion we first prove the following simple lemma. Note that as \(A%"P) = 0 we can
find a subeigenvector of AP by taking any column from the Kleene star (A%"P)*. The

claim below also follows from [7, Theorem 3.1].

Lemma 3.2.3 ([49],Lemma 2.11). Suppose that the vector x satisfies A*Px < x.

Then x provides a simultaneous visualisation for all matrices of X .

Proof. Let x be the vector that satisfies A*'Px < x. By construction, A% is the
supremum matrix of all the normalised generators in X'. Therefore A, < A% for all
these normalised generators A,. Hence the vector z also satisfies A,z < x and it can
be used to visualise A,. As this applies for all a then all A, can be simultaneously

visualised. O

This is referred to as the set of matrices having a common visualisation, therefore,
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without loss of generality we assume that we have performed this common visualisation

on all of the matrices in X to give the final core assumption.

Assumption D2. Forall A, € X, we have (Ay)ij = 0 and (A™), ; =0 for (i, j) € &,
and (Aq)i; <0 and (A™P),; <0 for (i,7) ¢ &..

From now on we will use Assumption[D2]instead of Assumption By Lemma

this can be done without loss of generality.

3.2.2 Extension to inhomogeneous products

Recall now that we have a set of matrices X', from which we can select matrices to
make arbitrary products.

Below we will need to use initial walks, final walks, strict initial walks to the
critical nodes, strict final walks from the critical nodes, and full walks as defined in
Definition [.2.7]

This leads to the following notation which we will mostly work with the following

sets of walks on T .
Notation 3.2.4 (Walk sets on T (I'(k))).

WE (@ = 7), Wi (i = 5) and Wh g (i — 7) = set of full walks (of length

k), and sets of initial and final walks of length | on T connecting i to j.

WE (i Ne, 7)s Wi it (4 Aoy 7) and Wi g, (i Aoy J) = set of full walks (of length
k), and sets of initial and final walks of length | on T traversing a critical node

and connecting © to j;
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Wr i (0 = NC||): set of strict initial walk to the critical nodes connecting i to a
node in N, so that this node of N. is the only node of N, that is visited by the

walk and it is visited only once;

Wr sinal([INe = 4): set of strict final walks from the critical nodes connecting a
node in N, to j so that this node of N. is the only node of N. that is visited by

the walk and it is visited only once.

1 —7 J : this denotes the situation where i : 0 can be connected to j : k on T by

a full walk.

Recall that p()V) denotes the optimal weight of a walk in a set of walks W. The
optimal walk interpretation of entries of I'(k) in terms of walks on 7 = T(I'(k)) is

now apparent:

L(k)ig =p (Wran(i — J)). (3.1)

We will also need special notation for the optimal weights of walks in the sets

W init (i = Ne||) and Wy sna(|JNV: — j) introduced above.

Notation 3.2.5 (Optimal weights of walks on T (I'(k))).
wy . = PWrinie (i = N||)) © the mazimal weight of walks in Wr it (i — N||),
Un..; = POVT snal([[Ne — 7)) ¢ the mazimal weight of walks in Wr gnal([|Ne — 7).

The following notation is for optimal values of various optimisation problems
involving paths and walks on D(A*P), D(A™), which will be used in our factor rank
bounds.

Notation 3.2.6 (Optimal weights of walks on D(A%"P) and D(A™)).
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a; N, © the weight of the optimal walk on D(AS™P) connecting node i to a node in

Ne;

B, © the weight of the optimal walk on D(A®™) connecting a node in N, to

node j;

Vi o the weight of the optimal path on D(AS™P) connecting node i to node j

without traversing any node in N..

w; . : the weight of the optimal walk on D(A™) connecting node i to a node in

Ne;

vn,; ¢ the weight of the optimal walk on D(A™) connecting a node in N. to

node j;

ufj : the weight of the optimal walk on D(A™) of length k connecting node i to

node 7j.

Note that «; ; is the only notation here that strictly represents a path. This is the
case because the walk W such that 7, ; = p(W) must not contain any non-critical

cycles otherwise it would not be optimal.

Remark 3.2.7. The Kleene star (ASP)* can be used to express «;n, and B, ;.

Similarly the Kleene star (A™)* can be used to express w; ., and VNG j-

Before we proceed to the next remark, let us introduce the following piece of

notation, inspired by the weak CSR expansion of Merlet et al. [68]:

90



Notation 3.2.8 (B"" and \.). Denote

€, ifi € N, or j € N,

(A%P); ;. otherwise

and by A\, the mazimum cycle mean of B%"P.
Using B*"" we have the following remark.

Remark 3.2.9. Metric matrices and Kleene stars of B (see Definition|1.2.2() can be
used to express ;. j and all other parameters defined in Notation . To calculate
them one needs shortest path algorithms such as the Floyd-Warshall [29] algorithm

which can also be used to compute whole metric matrices and Kleene stars.

Let us end this section with the following observation, which follows from the

geometric equivalence (Assumptions @ and

Lemma 3.2.10. The following are equivalent: (i) i — j; (ii) (I'(k));; > e, (iii)

k
uz7‘7 > 6-

Proof. We begin by assuming (i) to be true. This is the same as saying there exists a
walk on T(T'(k)) for any I'(k) = A; ® ... Ay, A; € X, connecting i to j with length &
and weight p > . Since this is true for any word making up I'(k) then it is true for
the word that gives the minimal weight for p which we denote p’ > . This is the same
weight as that of the walk on D(A™) connecting i to j of length k. Hence u,’f ;> €
and (7i7) holds.

Since p' is minimal then for any T'(k), T'(k);; > uf; > ¢ so (ii) holds.
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Finally as I'(k) > € then on the associated trellis digraph 7 (I'(k)), by definition,
a walk must exist connecting i to j of length k hence we are back to (i) and the

statements are equivalent. O

3.3 CSR products

In this section we introduce CSR decomposition of inhomogeneous products and
study the properties of this decomposition. We will give two definitions of the CSR
decomposition of I'(k) and prove their equivalence.

The threshold of ultimate periodicity (Definition [1.2.13)) is required to develop the

CSR decomposition for I'(k) as seen in the following definitions.

Definition 3.3.1 ([49],Definition 3.2). Let I'(k) = A1 ® ... ® Ay be a matriz product
of length k. Define C', S and R as follows:

S = (si;) is the matriz associated with the critical graph, i.e.

ai,j Zf (Zvj) € 50

15 otherwise.

Let v be the cyclicity of critical graph, and t be a big enough integer, such that

ty > T(S), where T(S) is the threshold of ultimate periodicity of (the powers
of) S.
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C and R are defined by the following formulae:

C=Tk)® 5(t+1)v—k(modv)’ R = St+D)y—k(mody) o L'(k).

The product of C', S¥m°d) and R will be denoted by C S*™modM R (k)]. We say
that T'(k) is CSR if CS*®@dM RID (k)] is equal to T'(k).

In the next definition, we prefer to define CSR terms corresponding to the compo-

nents of the critical graph.

Definition 3.3.2 ([49],Definition 3.3). Let I'(k) = A1 ® ... ® Ay be a matriz product
of length k, and let G, for v = 1,...,m (for some m > 1) be the components of
G°(X). For eachv=1,...,m define C,, S, and R, as follows:

Sy = (s¢;) € REXL is the matriz associated with the s.c.c. G of the critical
graph, i.e.,
ai,j Zf (Zuj) € Q,f,
Sii= (3.3)

€ otherwise.

Let vy, be the cyclicity of the critical component G:, and t,, be a big enough integer,

such that t,y, > T(S,), where T'(S,) is the threshold of ultimate periodicity of

(the powers of) S,,.

C, and R, are defined by the following formulae:

C,=T(k)® Sl(/tqul)’Yrk(modvu)’ R, = Slgtuﬂ)'vrk(mod%) @ T(k).
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The product of C,, Si™) and R, will be denoted by CySf(mOdV”)Ry[F(k)].
We say that I'(k) is CSR if

L(k) = @ C, 85 R, (k).
v=1

Using the definitions given above, we can write out the CSR terms more explicitly:

Csk(mod'y)R[F(k)] _ F(]{) ® S(t—&-l)’y—k(mod’y) ® Sk(mod'y) ® S(t—i—l)’y—k(mod’y) ® F(k’)
_ F(k‘) ® SQ(?H’l)’Y*k‘(mOd’y) ® F(k‘),

C, SR, [0 (k)] = D(k) @ Syt rwe=ktmeda) @ 1 (k),

Since the powers of S are ultimately periodic with period v and the powers of
S, are ultimately periodic with period ~,, and since we also have ty > T'(S) and
t,7, > T(S,), we can reduce the exponents of S and S, to (t + 1)y — k(mod ) and

(t, + 1)y, — k(mod ~, ), respectively, and thus

CSHmAdMNRIT(K)] =T(k) @ S* @ T(k), C,S*medwIR (k)] =T'(k) ® S @ I'(k),
for v = (t + 1)y — k(mod~), v, = (t, + 1)y, — k(mod~,), ty > T(5), t,v, > T(S,).

(3.4)

Below we will also need the following elementary observation.

Lemma 3.3.3 ([49],Lemma 3.4). Let v = (t + 1)y — k(mod~), where ty > T(S5).

Then, for any v, we can find t, such thatv = (t, +1)v, —k(mod~,) and t,v, > T(S,).

Proof. The existence of ¢, such that v = (¢, + 1), — k(mod~,) follows since 7 is a

multiple of 7,, and then we also have t,y, >ty > T(S) > T(S,). O
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This lemma allows us to also write

C,SkHmedvw) B ID(E)] =T(k) ® SY @ T'(k), (3.5)

with v as in (3.4)).

We also have some direct identities between Definition [3.3.1] and Definition [3.3.2

Lemma 3.3.4. We have the following identities:

C:éfBlC’l,, S:éésy, R:@Ry,

- . (3.6)
C® Sk’(mod’y) _ @Cu ® Slyf(mod%)7 Sk(mod’y) QR = @ S/Vf(mod’yu) ® R,.

v=1 v=1

Proof. Observe that, as each component G¢ is distinct, then the node sets of com-
ponents G5 and G are disjoint for any distinct vy,15 € {1,...,m}. For S this
means that S,, ® S,, = —oo where —oo is an abuse of notation representing an d x d
matrix with entries all equal to €. Hence we can stack each block together to give
S = @anl Sy-

By Definition [3.3.1 we have C' = T'(k) @ St+17-*(mod ) We can raise S = @, S,
to any power so raise it to (£+1)y—k(mod ). By Lemma[3.3.3) there exists a sequence

of t, for v = 1...m such that (t + 1)y — k(mod~) = (t, + 1)v, — k(mod ~,) for every
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v. Therefore

C = F(k’) ® S(t-i—l)’y—k(mod’y)

=I'(k)® GB Gt L) —k(mody)

v=1

= Pr) @ siowkmedn) — (RO,
v=1 v=1

Note that the penultimate step can happen as k is independent of v and the final step
comes from Definition B.3.2]

For C ® S*mod7) we can use Definition and we have C' ® S*md?) = (k) ®
SEDY - As before we can use the identity for S and raise both sides to the power
(t+1)y. As v = p,7, then we can substitute ¢, = tp, + p, — 1 for every v and this

gives

C® Sk(mod'y) _ F(k?) ® S(t—l—l)ﬂ/

m

=T(k) o @S¢
v=1
= PrE) e st =, o g5,
v=1 v=1

Again the penultimate step happens as k is independent of v and the final step comes
from using Definition [3.3.2

By symmetry we also have the identities for R and S*¥m°d7) @ R. m

Some of these identities can be used for the following proposition.

Proposition 3.3.5 ([49],Proposition 3.5). I'(k) is CSR by Definition if and
only if it is CSR by Definition [3.5.3.
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Proof. We need to show that
€M RIP(H)] = @) €, 55 R, D () (3.7
v=1
for arbitrary k. Using (3.4]) and (3.5)) we can rewrite (3.7)) equivalently as

F(k) ® S(t+1)'yfk(mod'y) ® F(k}) _ F(k}) ® <@ SIEtJrl)vk(mod'y)) ® F(/{Z) (38)

v=1

with ty > T'(S). Using S = ", S, from Lemma [3.3.4] we can raise both sides to
the same power to give us S* = @), S, for any ¢. This shows (3.8), and the claim

follows. L

This version of CSR is designed for products of matrices rather than powers of a
single matrix as given Definition by Schneider and Sergeev [83].
To give an optimal walk interpretation of CSR for inhomogeneous products, we

will need to define the trellis graph corresponding to these terms, by modifying
Definition [.2.22]

Definition 3.3.6 ([49],Definition 3.6). Let v = (t+ 1)y — k(mod ), where t is a large
enough number such that ty > T(S).
Define T'(T'(k)) as the digraph T' = (N',E") with the set of nodes N and edges &',

such that:

(1) N' consists of 2k +v + 1 copies of N which are denoted Ny, . .., Nogi, and the

nodes for Ny for each 0 <1 <2k + v are denoted by 1 :1,...,d:;

(2) & is defined by the following rules:
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a) there are edges only between N; and Njiq,

b) for 1 <1<k wehave (1:1—1,7:1) €& if and only if (i,7) € E(X) and
the weight of the edge is (A;);;,

c) fork+v+1<1<2k+wv wehave (i : 1l —1,5:1) € & if and only if
(i,j) € E(X) and the weight of the edge is (Ai—k—v)ij»

d) fork <l <k+v+1 wehave (i :1—1,75:1) € & if and only if (i, j) € G°(X)

and the weight of the edge is 0.

The weight of a walk on T'(I'(k)) is denoted by pr(W).

We will refer to this as symmetric extension of the trellis graph associated with
CSR from now on. The following optimal walk interpretation of CSR terms on 7 is

now obvious.

Lemma 3.3.7 ([49],Lemma 3.7). The following identities hold for all i,j

(Csk(mod’y)R[F(kﬂ)id =p (W%;&(i — ])) ’

mod 7y _ v e N
(CL K Ry DRy = p (Wi =5 5))

where v = (t + 1)y — k(mod ), with ty > T(S).

Proof. With (3.4) in mind, the first identity follows from the optimal walk interpreta-
tion of I'(k) ® S* @ I'(k), and the second identity follows from (3.5 and the optimal
walk interpretation of I'(k) ® S’ & I'(k). O

We can show that given a matrix product consisting of the same matrix, i.e.
['(k) = A*, then the original CSR definition is equivalent to the new one. Note that

this result is not contained in the preprint [49).
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Proposition 3.3.8. Let ['(k) = A* for some A € X and k > max, (T7(4,G°))
where vy, is the cyclicity of the strongly connected critical component GS of D(A). If
(k) is CSR by Definition then it is equal to CS*R from Definition M

Proof. Assume that I'(k) = AF = C.S¥mod7) RI['(k)]. To show that C.S*R = CSkm™edv) R[T(k)],
by Corollary and Proposition , we will show that C,SER, = C, S5 (modw)p (k)]
forall v = 1,...,m. To achieve this we need to use the optimal walk representations for

both products. By the analogue of (2.4) for C,S, R, (C,S*R,);; = p <W’m“ (¢ ﬁCy—> ])>

and by Lemma |3.3.7| we have (C’VS]J(mOd%)Ry[F(k)])M =p <W2]f}rfn(z Ne, ])) where

v=(t+ 1)y, — k(mod~,) for ¢t described in Definition Now all that is required
is to show that these two representations are equal. We will achieve this by proving

the following two inequalities,

p (W’W(z’ e, j)) > p (Wz’f;ﬁl(z' e, j)) (3.10)
and
p (W’W(z‘ e, j)) <p <W2’f;ﬁl(i e, j)> . (3.11)

We will tackle inequality first. Let W be the optimal walk over 7" of length
2k + v connecting i to j traversing AN” such that W € W%@E’H(z e, j) and, more
importantly, p(W) = p <W2]f—£fn(2 Ne, ])) Expanding v we have (W) = 2k + (t +
1)y, — k(mod~,) = k(mod~,). For this reason as all edges of W belong to D(A) and
W traverses a critical node, we can associate with W a walk of the same weight in
Wh (4 e, j), and then inequality follows.

Now we give a proof for inequality . Let W’ be the optimal walk of length con-

gruent to k(mod,) connecting i to j and traversing V. We have W' € Wk (; ﬁ) 7)
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and p(W') = p (W"" (i — j)). Now we need to develop this walk into another walk
W' of length 2k 4+ v with the same weight.

Assume that k is greater than or equal to 7)v(A,G,). Then a walk V can be
constructed such that p(W') = p(V') and (V') < k so we choose a node | € N? that the
walk V' traverses. As non-elementary, critical cycles exist for all ¢ such that v, > T'(S,)
then we add a critical cycle of length (¢ + 1)y, — k(mod~,) + & = 0(mod ~,) to V at
node [. As such a cycle exists then we obtain the walk V", such that p(V’) = p(V'), and
I(V') = 2k + v, and as the walk has a fixed length we can put it on the trellis digraph
associated with the matrix A%**v. Split this new walk into three V' = W, W,W3 where
W is the first k steps of the walk, W is the subsequent v steps of the walk and Wj
are the final k steps of the walk. As [(V) < k, and [(W;) = [(W3) = k, then walk W,
has critical edges only. Hence we can associate with V' a walk with the same weight
on 7" and we have p(V') <p <W$f§fn(z N, J )) hence the inequality follows.

As both inequalities are true then for k& > max, (777 (A, GS)), p <Wk’7” (¢ Ne, j)) =
P <W2’f£ﬁl(z Ne, j)) for all v and CS*R = CSkmedw) R[['(k)]. Therefore as I'(k) =
C Skmody) RIT(K)], then I'(k) = CS*R.

O

In what follows, we mostly work with Definition but we can switch between
the equivalent definitions if we find it convenient. Our next aims will be 1) to obtain
a bound on the factor rank of CSR decomposition and 2) to obtain inhomogenous

analogues of some properties of the ”one-matrix” CSR products, listed above in

Theorem [2.2.9, Corollaries [2.2.10[ and [2.2.11]

We now present a useful lemma that shows equality for columns of C), and rows of

R, with indices in the same cyclic class.
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Lemma 3.3.9 ([49],Lemma 3.8). For any i and for any two nodes x and y in the

same cyclic class of the critical component GS we have
(Colia = (Coliy and  (Ry)ei = (Ry)y. (3.12)

Proof. We prove the lemma for columns, as the case of the rows is similar.

For any i, j, denote (C,);; by ¢; ;. From the definition of C,, it follows that ¢;, is
the weight of an optimal walk in Wkti(ﬁi"tﬂ)%_k(m()d%)(i e, j) where t,y, > T(S,),
and such walk consists of two parts. The first part is a full walk on 7 connecting ¢
to the critical subgraph at some node s. The second part is a walk over the critical
subgraph of length (¢, + 1), — k(mod~,) connecting s to z with weight zero. As
the length of the second walk is greater than 7'(S,), a walk connecting s to z exists
if and only if [s] = _k(mod~,) [#]. If a full walk connecting i to [s] on 7T exists then,
for arbitrary x,y in the same cyclic class, ¢;, and ¢;, are both equal to the optimal
weight of all walks connecting 7 to [s] on T, where [s] —=_jmod~,) [2], otherwise both
¢i» and ¢, are equal to . This shows that ¢; , = ¢; .

The case of rows of R, is considered similarly, but instead of initial walks one has

to use final walks on 7. O

We can use this to prove the same property for C' and R of Definition [3.3.1

Corollary 3.3.10 ([49],Corollary 3.9). For any i and for any two nodes x and y in
the same critical component and the same cyclic class of said critical component, we
have

Cia: = Ci7y and Rxﬂ' = Ry,i (313)

)

Proof. We will prove only the first identity, as the proof of the second identity is
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similar. Let z,y belong to the same component G, of G¢(X), and let them belong to
the same cyclic class of that component. By Lemma we have (C),)iz = (Cp)iy,
and we also have (C,);, = (C,);, = € for any v # p. Using these identities and (3.6)),

we have

The next theorem explains why CSR is useful for inhomogeneous products. Note
that in the proof of it we use the CSR structure rather than the I'(k) ® S” @ I'(k)

representation that was used above.

Theorem 3.3.11 ([49], Theorem 3.10). The factor rank of each C,SE™ ") R, [T(K)]
is no more than vy, for v =1,...,m, and the factor rank of C.S*™°4M R (k)] is no

more than - 7.

Proof. For each v =1,...,m, take all the nodes from G, and order them into cyclic
classes Cg,...,CY _;. Take two columns with indices z,y € C; from the matrix C,. As
they are in the same cyclic class, by Lemma the columns are equal to each other.
This means that we can take a column representing a single node from each cyclic
class and since there are 7, distinct classes then there will be 7, distinct columns of
C,. The same also holds for any two rows of R,: if the row indices are in the same
cyclic class, then the rows are equal, so that we have v, distinct rows.

mod v,

Let us now check that the same holds for S ) ® R,. By the construction of
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Ghmod ) o Ynow that if ( Sff(m‘)d%))i,j # 0 then [i] —j(mod~,) [J]- Therefore

(SEmeaMQR,); = @) (S5 ;@(R,);, = P Gt e(R);. = (R

jENc ] [i]%k(mod'yy)[j]

This means that for a row ¢ such that [i] —4mod~,) [J] We have (S,lf(mOd%) ®R,)i. =
(R,);. and all such rows of 55" @ R, are equal to each other.

Our next aim is to define, for each v, matrices C) and R, with v, rows and -,
columns, such that C,SE™ 4R, [['(k)] = C!, ® R,,. To form matrix C!,, we select a
node of g7 from each cyclic class Cg,...,CY _; and define the column of C}, whose
index is the number of this node to be the column of C, with the same index. The
rest of the columns of C}, are set to —oo. To form matrix R;,, we use the same selected
nodes, but this time (instead of taking columns of C, and making them columns of

med ) o R whose indices are the numbers of selected

C!) we take the rows from S
nodes and make them rows of R/. The rest of the rows of R/ are set to —oo. Since
the columns of €, with indices in the same cyclic class are equal to each other and the
same is true about the rows of SE™ 4™ @ R, we have C,Si™ " R, [(k)] = C' @R,
thus the factor rank of any of these terms is no more than ~,.

We next form the matrices ¢ = @, C}, and R' = @,", R,,. Obviously, C; ®

R, = —oo for v; # 1, and therefore
C'®R =@ C,®R, =P C,SEmR,[D(k)] = CSH™ I R[D(k)].
v=1 v=1

Finally, as C" and, respectively, R" have """ v, columns with finite entries and,

respectively, rows with finite entries with the same indices, C.S*™° 4" R[['(k)] = C'® R’
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has factor rank at most > | 7,. O]

The next result follows immediately from Theorem [3.3.11] and underpins the key

factor rank aspect of the CSR decomposition.

Theorem 3.3.12 ([49],Corollary 3.11). If I'(k) is CSR, then its rank is no more than
D et Vo

Let us also prove the following results that are similar to [83, Corollary 3.7].

Proposition 3.3.13 ([49],Proposition 3.12). For each v =1,...,m

(C, @ SE™IW @ R, ). = (C, © SE™)). for je N

(C, @ SEmedw) @ R, = (S¥medw) @ R, for i€ NV.

Proof. As the proofs are very similar for both statements we will only prove the first

and omit the proof for the second statement. We begin by observing that

’init

(Cy ® Sllj(mOd%))i,j =p (Wk+t"%(i N ])> ’

where we used the definitions of €}, and S, and the identity Siv it St (since
t,v, > T(S,)). Here it is convenient to choose ¢, that satisfies (¢, +1)v, —k(mod~,) =
(t + 1)y — k(mod~y) = v, with ¢ used in the definition of 7’. With this choice
(t, + 1)y, < (t+ 1)y but ¢,7, > tv and this can be shown with Figure [3.1]

In Figure we can see that, as k(mod ) < -, v must sit somewhere on this line
segment in between ty and (¢ + 1)7. The same also holds true for t,7, and (t, + 1)7,.
Since v, <~y then the segment (¢,7,, (t, + 1)7,) must be smaller than (v, (t + 1))

and both inequalities follow.
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/. init

Using (3.9)), all we need to show is that p (WQI,“E’H(Z A, j)) =9 (WHt”% (1 — j)),

where v = (¢ + 1)y — k(mod y). We will achieve this by proving these two inequalities:

p(Wain =5 ) = p (Wi =) p (WiEaG =5 0) <p (WG = 5)
(3.14)
To prove the first inequality of we first consider ijrfgl”(z — '), where j' is
an arbitrary node of [j]. Optimal walk in any of these sets can be decomposed into
1) an optimal full walk on 7 connecting ¢ to a node of [j], and 2) a walk of weight 0
and length ¢,7, on G¢ connecting that node of [j] to j’, whose existence follows since
t,y, > T(S,). This decomposition implies that the weights of all these optimal walks
are equal. One of these walks denoted by W; can be concatenated with a walk W5 on
G¢ of length k£ — k(mod~,) + v and ending in j. We see that p(W;Ws) = p(W;) and
Wiy € W2 (i 255 ).
To prove the second inequality of we take a walk in W2]fJfrlﬁl(2 e, 7)

k+tV'YV

and decompose it into 1) a walk in Wy v" (i — j'), where j' € [j], 2) a walk in

W;c-,_’]gl(f;()d W)t (7' — 7). The weight of the first walk is bounded by p <Wk+t”7” (i =7 )) ,

’init
and the weight of the second walk is bounded by 0, thus the second inequality also
holds. O

Lrvivr et
v

Figure 3.1: Visual proof of (¢, + 1)y, < (t+ 1)y and t,v, > tvy

Corollary 3.3.14 ([49],Corollary 3.13). For CSR as defined in Definition we
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have,

(C @ Sk @ R) 5 = (C ® S*med) o for j €N,

(C @ SkmedM @ R), = (S¥med) @ RY,  for i€ N,.

Proof. The proofs for both statements are similar so we will only prove the first one.
Let 7 € N.. As all nodes from N, can be sorted into N” for some v = 1,...,m,
assume without loss of generality that j € N*.

Taking the RHS of the first statement and using (3.6|), we have

(C @ Skmed7)y - — (@ C, ® S{f<m°d%>> .
7

v=1

By Definition if j € N# then for all v # p, (C, ® Sllf(mOd%)).,j = —o00. Therefore,

for every v, (C, ® SE™97)) . will be dominated by (C, @ SE™**7)). .. Hence,

(@ C,® S’,f<m°d%>> = (C, ® Shtmedm)) . (3.15)
J

v=1

Turning our attention to the LHS of the first statement, by (3.6]) we get

(C @ SHmed o RB) . = (@ C, ® Skmed1) & R,,> .
7

v=1

Now we must show that, for j € N* and for all v, (C, ® S5™" @ R,).; <
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(C,® Sﬁ(mOdW) ® Ry,).;- By (3.9) this is the same as saying

)

o NY oo NE
p (W%}uu(@ - J)) <p (W72’Ififrull(z — J))
for arbitrary node ¢. Let W be the walk of length 2k + v connecting ¢ to j that
traverses NV, such that p(W) = p (W%E’ll(z e, j)> As j € N* then W is also a
m
walk of length 2k 4+ v connecting ¢ to j that traverses N#, hence W € W%J{,ﬁl(z Ne, 7)
and the inequality holds.

Therefore, as with the RHS, we have

(@ C, ® Skimedm) g Ru> = (C, ® Sk @ R,). ;. (3.16)
J

v=1 . q
il

Finally the first statement of Proposition |3.3.13| gives us equality between (3.15)
and (3.16)). As j was chosen arbitrarily, this holds for any j € N, and the result
follows. O]

3.4 General results

This section presents some results that hold for general inhomogeneous products

satisfying the assumptions set out in Section [3.2.1
Notation 3.4.1 (q). We will denote by q the number of critical nodes, i.e., g = |N.|.

The following results develop bounds for strict initial walks to the critical nodes and
strict final walks from the critical nodes for any given critical subgraph. Observe that,

under Assumptions [B| and [D2] we have A\, < 0, so that the bounds in the following
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lemmas make sense. Recall the sets of walks Wy init (¢ — N.||) and Wy gna(||INe — J)

introduced in Notation [3.2.4

Lemma 3.4.2 ([49],Lemma 4.3). Let W; n. be an optimal walk in Wy i (i — N¢||),

so that p(Wi n,) = w} ... Then we have the following bound on the length of Wi nr,:

d —q, Zf )\* =g,
[(Win.) < (3.17)

VNN y (d—4q), if \>¢

Proof. If A\, = ¢, then any walk in Wr it (i — N||) has to be a path, and its length is
bounded by d —g. Now let A, > ¢. As A\, < 0, the weight of the walk W, .. connecting
i to a node in N, is less than or equal to that of a path Py, on D(A™P) connecting i
to a node in N, plus the remaining length multiplied by \,. The remaining length is
bounded from above by d — ¢, since all intermediate nodes in W; ., are non-critical.

Hence

pT(Win.) < Psup(Pin.) + ({(Win,) — (d = @) A

We can bound psup(Pin;,) < @i, SO

pr(Win.) < ain, + ((Win,) = (d = q)) A (3.18)

Now assuming for contradiction that I(W; n;) > w +(d—gq) . This is equivalent

to

ain, + (((Win) = (d = )M < wiyg. (3.19)

In combining (3.18) and (3.19) we get pr(Win.) < w;,, meaning that W, is not
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optimal, a contradiction.Therefore, for any [ € N,

*
Wi N, — QN

(W <
(Win.) < x

+(d —q).

The proof is complete. 0

Lemma 3.4.3. Let Wy, ; be an optimal walk in Wr gnai(||[Ne — 7), so that p(W;, ;) =

*

VN, ;- Then we have the following bound on the length of Wy, ;:

d— q, Zf Aw = &,
{(Wa.g) < (3:20)

I . '_6 c,J . *
Ko D) 4 (d —q), if A > e

As the proof of this lemma is analogous to the proof of Lemma [3.4.2] it is omitted.

Remark 3.4.4. Observe that d—q is the limit of the expressions on the RHS of
and as Ay — €, hence we will not consider this case separately in the rest of
the chapter. If i € N, or j € N, then the length of the walk is, by definition, zero.
Therefore we shall use the adjusted bounds

*
Wi N, — QiN

i) < 306,00 - (42

A ) (322
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where

. 0 ifieN.
o(i, Ne) = (3.23)

1  otherwise.

_ 0 ifj €N
0N J) = < (3.24)

1 otherwise.

The following result is a bound designed for walks avoiding a subset of nodes,

which uses a nominal weight w.

Lemma 3.4.5. If v, ; = ¢, then any full walk connecting i to j on T (I'(k)) traverses
a node in N,.

]f’Yi,j > ¢, let
W= Vi

k
> N

+(d—q) (3.25)

for some w € R. Then any full walk W connecting i to j on T(I'(k)) that does not go

through any node | € N, has weight smaller than w.

Proof. In the case when ; ; = ¢, the claim follows by the definition of v; ; and by the
geometric equivalence between AP and the matrices from X. So we assume that
vi; > €. Any walk W that does not traverse any node in N, can be decomposed into
a path P connecting i to j avoiding N, and a number of cycles. Hence we have the

following bound:

pr(W) < pop(P) + (k — (d — q)) .
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We can further bound pg,,(P) < i ; so
pr(W) <7ij+ (k= (d = g)A.. (3.26)
Now can be rewritten as
Yij+ (k—(d—q)I < w. (3.27)

By combining (3.26) with (3.27)) we have p7(W) < w, which completes the proof. [

Using this bound we can obtain a bound after which the CSR term becomes a

valid upper bound for I'(k).

Theorem 3.4.6. If v;; = ¢ then I'(k);; < (C’Sk(mOdV)R[F(kJ)])ij.
If vi; > €, let

k> max (m + (d — q)) : (3.28)

7:7j: Z—>T]7’Yl,]>€ *

Then T'(k); ; < (CS*®@dMRIT(K)]);; for alli,j € N.

Proof. 1fi 7 j, then (T'(k));; = ¢. In this case, obviously, ['(k); ; < (C.S*®°d) R[D(K)]); ;.
If i =7 j, then (I'(k));; # €. Let W* be an optimal walk of length k on 7 (I'(k))
connecting ¢ to j with weight I'(k); ;. If k is greater than the bound then, by
Lemma for the walk to have weight equal to I'(k); ;, it must traverse at least
one node in A, The same is true when 7; ; = € and in this case, the expression (3.28))
is equal to d — ¢. Hence this walk belongs to the set Wk (i Ne, j) and further
D(k)is = p(W) < p (Wi 25 ).
Let f € N, be the first critical node in the first critical s.c.c G¢, with cyclicity

vy, that W* traverses. We can split the walk into W* = W; W3 where W is a walk
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connecting ¢ to f of length r and W3 is a walk connecting f to j of length & —r. We
have p(W*) = p(W1) + p(Ws).

Let 7' be the trellis extension for the matrix product C'S¥™°d?) R[T(k)] with length
2k + v where v = (t + 1)y — k(mod ) as described in Definition [3.3.6]

We now introduce the new walk W’ = W W,W5 on T'. Here W, and W3 are the
subwalks from TW* introduced before, where W, is viewed as an initial walk on 7’ and
W3 as a final walk on 77, and Wj is a cycle of length k + v that starts and ends at
f. Since k +v = 0(mod~,) and k +v > T(S) > T(S,), this cycle exists and can be
entirely made up of edges from G¢. This means the walk W’ is of length 2k + v and it
traverses the set of nodes N therefore W/ € Wty (; Ne, 7).

As W, is made entirely from critical edges, we have p(Ws) = 0 and p(W*) =

p(W') <p (W2'f+”(i e, j)), and using (3.37)) gives us
L(k)i; = p(W*) < (C, SR, [D(K)]);; < (CSM™ MV RID(K)])s 5,

where the last inequality is due to Proposition [3.3.5] The claim follows.

]

This bound is implicit, as it requires I'(k) to be calculated in order to generate the

transient. However, we can use A™ and u, ; to develop an explicit bound.

Corollary 3.4.7. Let

ko~
k> max (M + (d — q)) : (3.29)

0,5 i—=T i, >€
Then T'(k) < CS*medn) RIT(K)].
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Proof. By Lemma [3.2.10, ¢ —7 7 is equivalent to uf] > ¢, so maximum in (3.29) is
taken over i, j for which u}; and v; ; are finite. We also have u}; < (I'(k));; by the
definition of A™f,

Further, as A\, < 0, then any k that satisfies (3.29) will also satisfy (3.28). The

claim now follows from Theorem [3.4.6] O

Remark 3.4.8. All the results in this section do not require common visualisation
scaling on the matrices from X, but we need N\, < 0 and we require all critical edges to

have weight zero in all matrices of X.

3.5 The case where CSR works

In this section we present the results to the case when D(X) and G°(X) satisfy the

following assumption, in addition to the assumptions that were set out in Section [3.2.1]

Assumption 3.5.1. G°(X) is strongly connected and its cyclicity v is equal to the

cyclicity of D(X).

The equality between cyclicities means that the associated digraph D(X’) has the

same number of cyclic classes v as G°(X).

Notation 3.5.2. The cyclic classes of D(X) are denoted by Cy,...,C. .

For a node i € N, the cyclic class of this node with respect to D(X') will be denoted by
[i]'.

For a node i € N, we will use both [i] (the cyclic class with respect to G¢(X)) and
[i]" (the cyclic class with respect to D(X)), and an obvious inclusion relation between
them: [i] C [¢]".
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One of the ideas is to combine Lemmas |3.4.2] and [3.4.3| together with Schwarz’s

bound. To define this bound, following the work by Merlet et al. [68], we require the

Schwarz number (|1.1.1])

schr,) =2 Wi | 2] + o),

Here Wi(d) is the Wielandt’s number ([1.1.1)

Let us now prove the following lemma.

Lemma 3.5.3 ([49],Lemma 5.2). Let

b2 0N (MR () s o)+ 500G ) (T 10— g)).
(3.30)

Then

(i) If [i]" /~klj] then there are no full walks connecting i to j on T(I'(k)) (i.e.,
i T ).
(i1) If [i] = [j], then there is a full walk W connecting i to j on T (I'(k)) and going

through a critical node, and we have pr(W) = wj . + vi.; if W is optimal.

Proof. The property [i]" /4 [j]’ implies that there is no full walk W connecting i to j
on T(I'(k)).

In the case [i]' — [j]'; we construct a walk W' = W, \n W.W)y., ; of length k, where
Wi n. be an optimal walk in Wy i (i — Ne||) (see Lemma[3.4.2) , Wy, ; be an optimal
walk in Wr gnai(||Ne — j) (see Lemma , and W, is a walk that connects the

end of W,y to the beginning of W), ; and such that all edges of W, are critical (the
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existence of such W, is yet to be proved). Without loss of generality set [i]’ = C; and
[j]' = C,,: the cyclic classes of D(X) to which 7 and j belong. Let = be the final node
of Wi x, and let y be the first node of Wy ;. Set [z]' = C, and [y]' =C,,.

By [9, Lemma 3.4.1.iv] {(W; n..) = p1(mod ), (W ;) = (ps — p2)(mod y). Hence
the congruence of the walk W, to be inserted is (p3 — p1 — (p3 — p2))(mod~y) =
(p2 — p1)(mod~). As the cyclicity of the critical subgraph is the same as that of
the digraph, the cyclic classes of the critical subgraph are Cy,...,C,—1 and we can
assume that the numbering is such that Cy C C{,..., C,-1 C C;_l. Then z € Cp,
and y € Cp, and by [0, Lemma 3.4.1.iv] there exists a walk on the critical subgraph
of length congruent to (ps — p1)(mod-~y). Moreover, all walks connecting = to y
have such length and by Schwarz’s bound if & — (W, A.) — (W ;) > Sch(7,q)

then there is a walk of length equal to [((W') — (W, n,) — l(W,,j). According to

Lemmas [3.4.2] 3.4.3, and Remark [3.4.45 [(W; ) < 0(i, No) - (w"’i\ﬂ +(d — q))

(W) < (N, g) - (W + (d — q)), therefore k is a sufficient length for
k—1(Win.) — (W) to satisfy Schwarz’s bound, so a walk of the form W’ =
WinWWi ; exists and p(W') = wi . + vi. ;-

Let now W be an optimal full walk connecting i to j on 7 that passes through N,
at least once. As it passes through the critical nodes then the walk can be decomposed
into W = Wi W.Wa.; where W; . is a walk in Wy (i — N||), and Wy, is a
walk in Wr gna (V. — ), and W, connects the end of W; x, to the beginning of Wy
on T(I'(k)). We then have pr(Win,) < pr(Win,) and pr(Wi, ;) < pr(Wa,;) and

also pr(W,) < p(W,.) = 0. Since W is optimal then all of these inequalities hold with

equality, and pr(W) = wi . + vi. ;, as claimed. ]
Remark 3.5.4. It follows from the proof that, under the conditions of this lemma
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and in the case [i) =, [7]', there is an optimal full walk connecting i to j on Tru and
traversing a critical node that can be decomposed as W = W; y, W Wy, ;, where W .. 1s
an optimal walk in Wr it (1 — N||) and Wy, ; is an optimal walk in W gnal (|| Ne — 1),
and W, consists of edges solely in the critical subgraph. If semigroup’s generators
are also strictly visualised in the sense of the article by Butkovi¢, Schneider and

Sergeev [84)], then any such optimal full walk has to be of this form.

Lemma [3.5.3| gives us the first part of the final bound for the case. In order to be
able to use this lemma we must ensure that the walk must traverse N, hence we can
use Lemma in conjunction with Lemma to give us the following theorem.

For compactness we define the following notation.

Notation 3.5.5. Given the set X, inhomogeneous matriz product I'(k) and indices i

and j, we define

o =, Wi\, — QN
Tos(X, (1)) = 300 - (2 4 (- ) ) + Sehrea)
_ VN s — ;
+3N)  ( a )
w;“ + v s — i
T, (A, T(R), 1, ) = — 2T (g = g 1)
Theorem 3.5.6 ([49],Theorem 5.4). Let
k > max (Taﬁ(X> F(k’),i,j),T,Y(X,F(k),i,j)) (3'31)
if vij > € or just
k> Taﬁ(‘)(7 F(k),l,j), (332)
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if vi; =€, for somet,5 € N. Then
(i) If i) A [J]) then T'(k);; =€,
(ii) If [i] —& [7] then T(k)i; = win, + vi. ;-

Proof. We only need to prove the second part. By Lemma |[3.4.5| and taking w =

Wiy, + VN, i
w:NC + /Uji/;:yj B 717-7
A

k> +(d—q)

then any walk on 7 (I'(k)) that does not traverse the nodes in N, will have weight

smaller than w; y. + v}, ;, or such walk will not exist if 7, ; = . Using Lemma [3.5.3] if

k> 3(5,N,) (Mﬂ +(d- q)) +Sch(y,q) + DN, ) - (UN%% +(d- q))

and [i]" — [7]’ then the weight of any optimal full walk on 7 (I'(k)) connecting i to j
and traversing a critical node will be equal to wj \, +vi. ;. If vi; =€, [i]' =4 [j]" and
the above inequality holds, or if 7; ; > ¢, k satisfies both inequalities and [i]" — [7]',

then any optimal full walk traverses nodes in N, and has weight
L(k)ij = wiy, + U, -

]

Our next aim is to rewrite Theorem [3.5.6/in a CSR form, and we first want to look
at the optimal walk representations of w; . and v}, ;. This leads us to the following

lemma.
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Lemma 3.5.7 (J49],Lemma 5.5). We have
w; y, = p(Wéi,full(i — No)), UNLG = p(W;c’,full(/\/’c - J))- (3.33)

Proof. We will prove only the first of these two equalities, as the second one can be
proved in a similar way.
Let W; . be an optimal walk in Wy init(i — N¢||), with weight wy .. We are

required to prove that
P Wrimie(i = NJ|)) = p (Wéﬁ’,full(i — Afc)) ; (3.34)

where on the right we have the set of full walks connecting ¢ to a critical node on

T(T'(k)). We split (3.34) into two inequalities,

P Wrmie(i = NeJ|)) < p (W’l;,fun(i — Afc)) , DWrimi(t = Ne||) > p (W’I;"fun(i — NC))
(3.35)
For the first inequality in (3.35]), observe that we can concatenate W; »;, with a
walk V' on the critical graph which has length [(V) = k — (W, ;). The resulting
walk W; x.V belongs to W4 (i — N) and has weight w} . , which proves the first
inequality. For the second inequality, take an optimal walk W* & W%fuu(i — N),
whose weight is pOV} g (i = NC)). By observing the first occurrence of a critical node
in this walk, we represent W* = WV, where W € Wy (i — N||). We then have
p(W*) = p(W)+p(V) < p(W) < w; . proving the second inequality. Combining both
inequalities gives the equality and finishes the proof of w} . = p(W} (i =

N.)). The second part of the claim is proved similarly. O
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Remark 3.5.8. In the previous lemma, the length of the walks on the RHS does not

have to be restricted to k. We can obtain the following results:

wiy, = PWi(i = o)) for any I > min (MM) - (M +(d~ q)) k)

* m . . < . U* i /BNC)'
s = POV N = 30)for amym 2 min (SN g) - (252 4 0 g)) 1),

(3.36)

We now establish the connection between the previous Lemma and CSR.

Lemma 3.5.9 ([49],Lemma 5.7). We have one of the following cases:

(i) (CSHIIRID(K)))ig = e if il 7 5],

(ii) (CSMRdVRID(K)])ig = wiy, + vk of i = 5]
Proof. By Lemma we have p (Wmf}:ﬁl(z — j)) = (CSFmANR[T(k)]); ;, where
v=(t+ 1)y — k(mod~) and ty > T(S), and let W € W?rlffﬂfu(z — j) be optimal. W
can be decomposed as W;WyW3 where W is a full walk (of length k) connecting ¢
to some | € N, on T, W3 is a (full) walk of length & connecting some m € N to j

and Wy is a walk on the critical graph of length v connecting the end of W; to the

beginning of Wj. In formula,

(CSH= I RID(K)])i,; = max{p(W1) + p(Wa) + p(Ws):
Wl G Wfér*’full(i — l), WQ 6 Wgc(l — 7/77/)7 W3 E Wé:*’full(m — ])7 l,m 6 ./V’c}
(3.37)

If the weights of Wy, W5 and W3 in (3.37)) are finite then [i]" — [I], [I]) —+ [m]" and

[m)" = [j]', hence [i] — [j]. Thus (CS'R[I'(k)];;) > € implies [i]' = [j] proving
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(i).
As the cyclicity of the associated graph is the same as the cyclicity of the critical

graph, Lemma |3.5.7] implies that

win, =pWr(i = Cin)),  vi; = PW7(Crj = ), (3.38)

where C;, = Cj ), NN, is the cyclic class of G°(X) that can be found by intersecting
with critical nodes N, the cyclic class Cj; of D defined by [i]" — Cj,. Similarly,
Crj = Ci; NN, is the cyclic class of G°(X) that can be found by intersecting with
critical nodes N, the cyclic class C, ; of D defined by C; ; — [5]'-

Now note that in (3.37) we can similarly restrict [ to C;, and m to Cj;, which

transforms it to

(CSH I RIT(K)])s; = max{p(W1) + p(W2) + p(Ws):
Wi € Wég—(l — l), Wy € Wga(l — m), W3 € Wé“—(m — j), le Ci,k; m € Ckﬂ'}
(3.39)

Note that if a walk W, exists between any [ € C;;, and m € C; then using
we immediately obtain (C'S*™ 4V R[I(k)])i; = wiy. + vk, ;- Thus it remains to
show existence of Wy € Wg.(I — m) between any | € C;, and m € Cy ;. For this
note that since v = (t + 1)y — k(mod ) > T(S), either C;r —(y—k(mod~)) Cr,; and
a walk on G°(X) of length v exists between each pair of nodes in C;; and Cy j, or
Cik 7*(y—k(mod~)) Cr,; and then no such walk exists. We thus have to check that
Cikk —(y—k(mod~)) Cr,; on D. But this follows since we have [i]" —, [j]’, and since in the

sequence [i] = Cj ), —1 C}; — [j]" we then must have [ = (v — k(mod v))(mod ).

120



Combining Theorem and Lemma [3.5.9| we obtain the following result.

Theorem 3.5.10 ([49],Theorem 5.8). Let k be greater than or equal to
b2 e (s Toa(X D), 7), e T2 (6, (0..9))
1,] 2,]Yi,j >€

Then T'(k) = CS*mod RIT'(k)].

As with Theorem this bound requires I'(k) in order to calculate the bound,
which makes it implicit, but as with Corollary we can use w;y, < w;,, and
UN.j < Uy, ; to give us an explicit bound. This also leads to some analogous notation

in relation to Notation B.5.0

Notation 3.5.11. Given the set X and indices ¢ and j, we define:

, .. =, Wi N, — Q4N
T (X0, ) = 30, N) - (u (- q>) + Sch(v, )

As
= N (UL — B
N e )
C o WiN. T UNLG T Vi
T)(X,i,4) = 4 (d—q+1)

A

Corollary 3.5.12 ([49],Corollary 5.9). Let k be greater than or equal to

k > max (rrl;%xTC’Yﬂ(X,i,j), max Té(X,i,j))

i,j:"/i7j>€
Then T'(k) = CS*mod RIT(k)].

We will now present an example of this bound in action.
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Let D(G) be the eight node digraph with the following structure:

()

o_— W w T
) C
T— o e

(6)

along with the associated weight matrix.

E € € € € € € arg

g € ass ¢ 9 as.6 3 g

There are three critical cycles in this digraph; one cycle 1 — 2 — 3 — 4 of length 4,
and two cycles 1 =4 — 1 and 2 — 3 — 2 of length 2. There are also cycles of length
4, 6 and 8 which means that the cyclicity of the whole digraph is 2, which is the same
cyclicity of the critical subgraph. Therefore Assumption is satisfied and we can
continue. The semigroup of matrices X used by this example will be generated by

these five matrices:
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€

17 ¢

€

e —17

3

—-19 ¢ ¢

€

3

—-19

3

€

—16 ¢

—12

7/42:

7A4:

—16

—14

3

—11 ¢

e —18 ¢ €

€

—20

—11 ¢ €

3

€

—10

€

—13 €

—-17

e =12 ¢ ¢ -—11

€

—11

3

3

—-19 ¢

—10

A =

A3:

As
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Using these matrices we can calculate A% and A™,

e 0 ¢ 0 e € € ¢ e 0 ¢ 0 e« € € €
e ¢ 0 ¢ ¢ e =3 ¢ e e 0 ¢ =« e —-19 ¢
e 0 ¢ 0 e € € ¢ e 0 € 0 e« € € €
s _ 0 ¢ ¢ ¢ e —6 ¢ € yinf _ 0 ¢ € €€ € =16 ¢ €
—11 ¢ e € ¢ e -3 ¢ ’ —-19 ¢ € ¢ ¢ e —16 ¢
e € € € =8 ¢ € € e € € € —18 ¢ € €
E € € € ¢€ € e =5 E € € € € € e =20
e € -1 e € =2 € ¢ e € —19 ¢ € =11 ¢ €

as well as a; v, Bnjs Vinjs Win, and vy,

0 0 E € € € € € € €
0 0 €E € € € € € € €
0 0 E € € € € € € €
0 0 E € € € € € € €
Q5 N, = ) 5}(/6,]' = ) Yij =
-9 —14 e €€ ¢ —18 =10 -3 =8
—17 —6 € € € ¢ —18 =10 -3 -8
—6 -3 e €€ ¢ =15 -7 —-18 =5
-1 -8 e e ¢ ¢ —10 -2 —-13 —18

wir{Na:(O 000 —-19 =37 -39 —19),%&,3’:(0 000 —-34 —-16 —19 —39)-

Note that by definition \* = —14—8. With all the pieces ready we can now form the
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bound of Corollary [3.5.12

4 4 4 4 124 102 11.6 14.9 000O0 O 0 0 0

4 4 4 4 124 102 11.6 149 000O0 O 0 0 0

4 4 4 4 124 102 11.6 14.9 00 0O0 O 0 0 0

k> max 4 4 4 4 124 102 11.6 149 | 000O0 O 0 0 0
10.2 10.2 10.2 10.2 18.7 164 17.8 21.1 0 0 0 0 128 106 128 16.1
124 124 124 124 209 187 20 23.3 0000 19 128 15 183
15.3 15.3 15.3 153 23.8 21.6 229 26.2 0 00 0 179 157 139 21.2
12 12 12 12 204 18.22 19.6 22.9 0 00 0 146 123 10.6 13.9

=k > 23.8.

Therefore by Corollary [3.5.12] if the length of a product using the matrices from X
is greater than or equal to 24 then the resulting product will be CSR. We will show

such a product. Let I'(24) be the inhomogeneous matrix product made using the word

P = 551541235515535135454155 which gives us:

€ 0 € 0 =28 =« e =21

e —-19 e —-19 A7 ¢ e —40
-31 e =31 ¢ e =47 —42 ¢
-1 e =11 ¢ e =27 =22 ¢
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This matrix product is indeed CSR and by Definition we have,

—31

—11

D(24) =

—31
—11

—1

0

3

3

0

0 e 0 ¢
e 0 0

€

—28

—16

—11

€
—28
€

—28

3

—21

—16

—16

—11

—11

We can see that, for the C' matrix, columns 3 and 4 are copies of columns 1 and 2

respectively. The same is also true for the rows of the R matrix so they can be deleted.

As 24(mod 2) = 0 we replace the S matrix with the tropical identity matrix which

shows us that the matrix product I'(24) using the word P is indeed CSR and it has

factor rank equal to 2.
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3.6 The one loop special case

This case was initially explored by Kennedy-Cochran-Patrick et al. [50] as a precursor
to the results in the previous section. However we can use the general results from
this chapter to refine the bounds found in the paper [50]. We will use the following

assumption on the critical digraph of matrices from X
Assumption 3.6.1. G°(X) is a single loop situated at node 1 of length 1.

The following three corollaries are the one loop case version of the initial bound, final
bound and the bound avoiding N,. The claims follow immediately from Lemmas [3.4.2]

Remark [3.4.4] and Lemma [3.4.5] These statements are improved versions of [50],

Lemma 3.1, Lemma 3.2, and Lemma 3.4]. In what follows, we will use the following

simplified version of (3.23)) and ([3.24)):

N 0 ifi,jeN.
6(i,7) =

1 otherwise.

From Remark [3.4.4]

Corollary 3.6.2. Let Wy be an optimal strict initial walk to the critical nodes on
trellis digraph Trx) connecting i to 1. Then we have the following upper bound on its
length:

— Q5

I(Wh) <6(i,1) <w1A— + (d — 1)) : (3.40)

Corollary 3.6.3. Let Wy be an optimal strict final walk from the critical nodes on

trellis digraph Trxy connecting 1 to j. Then we have the following upper bound on its
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length:

(W) < 5(1,5) (Ul%ﬁ” +(d— 1)) . (3.41)

Corollary 3.6.4. If v;; = ¢ then any full walk connecting i to j on T (I'(k)) traverses

node 1. If v;; > €, let

* *
> Wi+ V15— Vi

d. 42
> T + (3.42)

Then any full walk W connecting i@ to j on Tra, that does not go through node 1 has

weight smaller than w;; + v7 ;.

The claim below is an improved version of [50, Lemma 3.3]. Note that it follows

from Lemma using that Sch(1,1) = 0. However, we also give a complete proof

based on Corollaries [3.6.2] and [3.6.3] written above.

Lemma 3.6.5. Let

k> 8(i,1) (g +(d - 1)) +(1,.) (1}”;&

+ (d— 1)) : (3.43)
Then any optimal full walk W connecting i to j on Trg) and going through node 1 is

decomposed as, W = W1CWy where Wy is an optimal strict initial walk from i to 1

and Wy is an optimal strict final walk from 1 to j which satisfy

) <366.1) (M s @),

1(Wy) < 6(1,5) (U“;ﬂ + (d — 1)) :
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C' is empty or consists of a number of loops 1 — 1 and

pr(W) = w;‘k,l + UT,J‘-

Proof. Let W be an optimal full walk connecting ¢ to j that traverses node 1 at least
once. Note first that all edges between the first and the last occurrence of 1 in W can
be replaced with the copies of (1,1), since these edges are present in every matrix
X, from X. Assumption implies that this leads to a strict increase of the weight,
therefore we must have W = W,C'Ws,, where C' consists of [(C) > 0 edges (1,1), W,

is a strict initial walk from i to 1 and W is a strict final walk from 1 to j. We have

pr(C) =0, so pr(W) = pr(W1) + pr(Wa).
Now we note that by Corollaries [3.6.2] and [3.6.3| the length k is sufficient for

constructing a walk W’ = V;C"V, where V) is an optimal strict initial walk from i to
1, C" consists of [(C") > 0 edges of (1,1) and V5 is an optimal strict final walk from 1
to j. The weight of this walk is w;; + v ;.

By the optimality of V; and Vi we have pr(W;) < pr(Vi) and pr(Ws) < pr(Va).
Since W is optimal, both inequalities should hold with equality.

That is, W, is an optimal strict initial walk connecting i to 1 and W5 is an optimal
strict final walk connecting 1 to j, so that Wl, Wg and C can be taken for Wi, Wa
and C' respectively.

The final step is to check the outlying case when ¢ = j = 1. This means that, by
the definition of the strict initial walks to critical nodes and strict final walks from
critical nodes, they will consist a single node at 1. For the strict initial walk this is

because it has reached 1 and thus it will stop. For the strict final walk it is because it
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cannot go back to 1 if it leaves therefore it must stay at 1. The lengths of these walks
will be 0 therefore their weights will, by definition, be zero. Since there can also [(C')
loops over C' then any k& > 0 will suffice in length to construct an optimal walk from

1 — 1. The proof is complete. O]

We can now combine the previous lemma and corollaries into a theorem that
does not require the CSR expansion to show a rank property. Theorem [3.6.6] and
Corollary are improved versions of [50, Theorem 4.1, Corollary 4.2, and Corollary
4.4], and they can also be obtained as corollaries of Theorem [3.5.6]

Theorem 3.6.6. Let T'(k) be an inhomogeneous mazx-plus matriz product T'(k) =

Al ® Ay ® ... ® A with k satisfying

* *
Wi+ V15— Vi

)\*

kZmaX(

+d,5(i,1) (—“’Zl; Sl - 1)) +3(1,5) (—”ij ;5“ +(d - 1)> )

(3.44)

for alli,j € N, then T'(k) is rank one, more precisely we have I'(k); j = wj, + vy ; for

all © and j, and

Proof. As seen by Lemma [3.6.4] if ;; = ¢ then any full walk connecting i to j on
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T (I(k)) traverses node 1. If v; ; > ¢ and if

* *
Wi TV~ Vi

k >
2 e

+d

then any walk on Tr) not going through node 1 will have weight smaller than w}; +o7 ;.

By Lemma |3.6.5] if

— Q41

k> 5,1 (—w — Ay

+(d— 1)) +3(1,5) (Ul% +(d— 1))

then any optimal full walk going through node 1 will consist of the three parts Wy, Wy
and C as defined in the Lemma and its weight will be w;; + vj ;. Hence if k satisfies

both inequalities then any optimal full walk goes through node 1 and has weight
['(k)ij = wiy +vi;

Observe that by definition the strict initial walk connecting 1 — 1 and the strict
final walk connecting 1 — 1 will have lengths equal to zero as shown in Lemma |3.6.5

Therefore wy ; and v, are equal to 0 hence,

ok * %
[(k)ig = Wi+ U = Wy,

F(k)l,] = wil + ’Uij — Uij-
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Then for all 7,7 € N,

_ * *

(k)i = wiy +07
_ * * * *
== wi71 + U171 + le + Ulvj

=T'(k)i1 + (k)1

If k satisfies the condition ([3.44) for all i, j € N then

[(k)iy = T(k)ia + (k)1

Since this applies for all 4,5 € N, T'(k);1 and I'(k);; can be written as vectors in R%.

Using the max-plus outer product of these two vectors it becomes

-F(k)u- -F(/f)l | T
F(k) = I'(K)2, “ I'(k)12
_F(k’)dJ_ _F(k)l d]
thus the proof is complete. O

The bound of Theorem [3.6.6|is implicit, and as we did for Corollary [3.5.12] we can

use w; n, < wiy, and vy, ; < vk, s to give us an explicit bound.

Corollary 3.6.7. Let I'(k) be an inhomogenous maz-plus matriz product I'(k) =

A ® Ay ® ... ® A with k satisfying

A*

i,jEN

k > max (“’i’l il Z{;j — 44,50, 1) (M +(d— 1)> +5(1,5) (”1%5” (d— 1>)>
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then I'(k) is rank one and

To illustrate this bound in action, let us consider an example. Let D4 be a digraph

consisting of five nodes with the generalised associated weight matrix,

Ay

a2

—1

a3

—2
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3

It can be seen that these satisfy the assumptions with the top left entry of each matrix

being zero. Using these we can calculate the coarser bound of Corollary 3.6.7 In

order to do that we need A and A™ which are

AsuP —

and

Ainf —

e € ]
e —6
-4 ¢
e €
-5 €]

We now begin to calculate the bounds of Corollary [3.6.7, The only cycle that does

not go through node 1 is (2 —+ 5 — 4 — 2) which has average weight \* =
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A™P we get a1, B1,; and 7, ; as the entries of

-O- -0- -e E € € 6-
-3 2 e =2 ¢ -1 =3
a=|-6,0=|-2|,7=|e -3 ¢ -2 —6
—4 1 e -1 ¢ -2 —4
| —1] | —1] e 1 ¢ 2 -2

0 0

-5 —4
w=|-14|,v=| -4
—10 -8
|6 | 10,

With these pieces we can construct the bounds for k£ for each combination of ¢ and j:

24.5 29 29 1326 20 30.5 30.5

0 0 0 0 0 0 13 7 175 175
0 155 0 23 23 720 14 245 245

kZ}??fé 0 275 0 35 32|, 16 29 23 335 33.5| | k=35
0 0
0 0

21.5 29 26] 115 245 185 29 29

This means that if a matrix product I'(k) has length greater then 35 then it will be
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rank-one. Let us now take a random product of length 44:

F(k):A1®A3®Al®A2®A3®A1®A2®A2®A1®A3®Al
QA RAT QAR A3RA3R A R AR AT ® A1 ® A3 ® Ay
AR A QAR A3 A A @A QA3 R Ay ® A1 ® As

AT RAIRAIRAI RAIRAIR AT R Ay R Ay ® A1 ® Ay

We obtain that

L(k)=|-10 —11 —12 —16 —14
—10 —11 —12 —16 —14

-6 -7 -8 -12 -10

We see that T'(k) = w;, ® (vf ;)" =T(k)i1 ® (T(k)1;)" where

e o5
-3 —1
w' = |-10|, v" = | -2
—10 —6
__6_ __4_
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Note that the bound appearing in Corollary is equal to

0000 0 0 85 4 145 85]
0 8 0 17 11 4 125 8 185 125
max 110 17 0 26 17|, | 10 185 14 245 185 =27.5,
0 20 0 26 20 13 215 17 275 215

0 17 0 26 17 11,5 20 155 26 20

which is indeed smaller than the coarser bound 35.

3.7 Counterexamples

Here we present a number of counterexamples for the different cases of digraph
structure. These counterexamples present families of products which are not CSR,

and we construct them in such a way that they have no upper bound on their length.

3.7.1 The ambient graph is primitive but the critical graph
is not

First we will look at two cases where we are unable to create a bound for matrix

products to become CSR. For the first case we will be looking at digraphs that are

primitive but have a critical subgraph with a non-trivial cylicity. Therefore we have

the following assumption:

Assumption P1. D(X) is primitive (i.e., vy(D(X)) = 1) and the critical subgraph

G¢(X), which is a single s.c.c., has cyclicity v(G°(X)) = v > 1.
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Using this assumption we can now present the a counterexample which shows that

no bound for k in terms of A% and A™ can exist that ensures that I'(k) is CSR.

First Counterexample

Let D(G) be the five node digraph with the following structure:

This digraph will have the following associated weight matrix.

There is a critical subgraph consisting of the cycle between nodes 1 and 2. There

also exist two cycles, 1 -3 —4 — 1 and 2 -+ 5 — 6 — 2, both of length 3 which
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makes D(A) primitive. We aim to present a family of words with infinite length such
that the products made up using these words are not CSR. Since the cyclicity of the
critical subgraph is 2 then we will have to create two classes of words, one of even
length and one of odd length to define the family.

The semigroup of matrices we will use is generated by the two matrices:

€ 0 —100 € € €
0 € € € —100 €
€ € € —100 € €
A =
—100 € 15 € € €
€ € € € € —100
€ —100 € € € €
€ 0 —100 ¢ € €
0 3 € e -1 ¢
€ € e —100 € €
A2 —
—1 € € € € €
€ € € € e =100
€ —100 € € € €

Let us first consider the class of words (1)%2 where t > 2, and let U = (A;)* A,
for arbitrary such ¢. We will first examine entries ug 1, U2, Ug2 and uy 5.

The entry ug; can be obtained as the weight of the walk 6 (21)(21)...(21) 341,

N J/
-

t—1
which is —301. This is the sum of the edge 6 — 2 on A; of weight —100, ¢ — 1 cycles

of 2 - 1 — 2 of weight zero minus the final edge to end at node 1, the edges 1 — 3

139



and 3 — 4 on A; with weights equal to —100, and finally the edge 4 — 1 in Ay with
weight —1. For this observe that the walk 621 has an even length and therefore we
need to use one of the three-cycles to make it odd, and using the southern three-cycle
in the end of the walk is the most profitable way to do so. The entry us5 is equal to
—1, as there is a walk that mostly rests on the critical cycle and only in the end jumps
to node 5. We also have ug2 = —100 (go to node 2 and remain on the critical cycle)
and uy 5 = —301 (use the southern triangle once, then dwell on the critical cycle and
in the end jump to node 5). Note that in the case of u; 5 we again need to use one of
the triangles to create a walk of an odd length.

We then compute

(CSR)[U]6,5 = (U53U>6’5 = max(u(,-,l + U255, Up,2 + U1,5> = -301 — 1= —-302.

However, ug; results from the walk 6(21)(21)...(21) 2562, with weight —401,
t~1
needing to use the northern triangle to make a walk of odd length.

The following an example of U and C'S?**!R[U] for t = 10:
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-201 0 —=100 —-500 —-301 —200

0 —-300 —400 -200 -1 —500
—401 —-200 -300 —-700 -501 —400
—100 —400 -500 —-300 —-101 —-600
—200 —-500 —-600 —400 -201 -700
—-301 —100 —200 —-600 —401 —-300

—-201 O —100 —401 —-202 —-200

0 =300 —400 —-200 -1 =500
0521(m°d2)R[U] _ —-401 -200 -300 —-601 —402 —400
—100 —400 -500 -300 -101 —600

—200 —500 —600 —400 —-201 —-700

-301 —100 —-200 -501 —-302 —300

We now consider the class of words (1)**12 where ¢ > 1, and let V = (A;)**1 A,
for arbitrary such t. We will first examine entries vs 1, v15, V22 and vy 5.

The entry vy; = —201 is obtained as the weight of the walk 2 (12)(12)...(12) 341:

N J/
-~

t—1
it is necessary to use one of the triangles to create a walk of even length, and using

the southern triangle once in the end of the walk is the most profitable way to do
so. The walk 125 already has an even length, and we only have to augment it with
enough copies of the critical cycle and use the arc 2 — 5 in the end of the walk, thus
getting v; 5 = —1. Obviously, vy 2 = 0 : we just stay on the critical cycle. The entry

Va5 = —301 is obtained as the weight of the walk (21)(21)...(21) 5625, where we have

. 7

~
t—1
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to use the northern triangle in the end of the walk to create a walk of even walk and

minimise the loss.

We then find
(CSQR[V])ZE) = (VSZV)2,5 = max(vg,1 + V15, V22 + Va5) = Va1 + U15 = —202,

which is bigger than vy 5 = —301.

The case for vy 5 is one for connecting a critical node to a non critical node. For
completeness we should also look at a walk connecting two non critical nodes, namely
the walk representing v, 5. To do this we will need to also look at the entries v4; and vy 5.

For vy = —301 the entry is obtained as the weight of the walk 4 (12)(12)...(12) 341.

(. J/
-~

t—

1
As the walk 41 has odd length, one of the triangles is required to make the walk even

so choosing the southern triangle is the most profitable way to achieve an even length
walk. The walk 412 already has an even length so we can augment it with enough
copies of the critical cycle to give us the desired length for the walk representing the

entry vs9 = —100. Using v, 5 and vy 5 discussed earlier we calculate

(CSQR[V])475 = (VSQV)475 = max(v471 + U1757 U4?2 + ’U2’5) = U4,1 + U1’5 = —302,

which is bigger than vy 5 = —401.

We now show an example of V for ¢t = 10:
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0 =300 —400 —-200 -1 —500
-201 0 —-100 -500 -301 —200
—200 —-500 —-600 —400 -201 -700
-301 —-100 —-200 —-600 —401 -300
—401 -200 -300 —-700 -501 —400
—100 —400 —-500 —-300 —101 —600

0 —-300 —400 -200 -1 —500
—-201 0 —100 —401 —-202 —-200
(1 g220mod Z)R[V] _ —200 —=500 —600 —400 -201 -—700
-301 —100 —-200 -501 -—302 -300
—401 —-200 —-300 —601 —402 —400

—100 —400 -500 —-300 -101 —600

Combining both classes we have a family of words covering all lengths greater than
29 such that any product made using these words will not be CSR. Therefore there
cannot be a transient for this case as there is no upper limit to the lengths of these

words.

Second Counterexample

There also exists another counterexample in the primitive case which shows that even
walks connecting two nodes from the same critical subgraph can not be CSR.

Let D(G) be the three node digraph with the following structure:
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The digraph has the following associated weight matrix.

e 0 €
A= € G2 0

0 a3z2 0433

For this example there is a single critical cycle of length 3 traversing all of the nodes.
There also exists two loops 2 — 2 and 3 — 3 and a cycle 2 — 3 — 2 of length 2. Like
the previous example this digraph is primitive but the critical subgraph has cyclicity 3.
As the cyclicity is greater than one we need to present three different classes of words
making up a family of words such that any product I'(k) made using these words will

not be CSR.

The semigroup of matrices that we will use is again generated only by two matrices:

€ 0 € € 0 5
Ai=1e =100 0 Ay=1e -1 0
0 —100 —100 0 —100 —1
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Let the first class of words be (1)322 for ¢t > 0, and let M = (A;)3*2A, for any
arbitrary ¢t. We will now examine the entries my 1, mj 2, Mmoo my 3 and mg .

Since all the walks are of length 0 modulo 3 then any walk connecting i to ¢ will
have weight zero as we can simply use the critical cycle. This gives m; 1 = mg2 = 0.
The entry my 5 can be obtained as the weight of the walk (123)™'2 which is —100. In
this entry observe that the walk 12 is of length 1 modulo 3 therefore we need to use
the two cycle 2 —+ 3 — 2 to give us a walk of the desired length. The entry m; 3 is
equal to the weight of the walk (123)""'3 and the entry ms is equal to the weight of
the walk (312)'"'2. For these entries observe that the walks 123 and 312 are both of
length 2 modulo 3 therefore we require a loop for both walks to give us the required
length. The most profitable time to use these loops are right at the end of the walk.

We then compute

(OSR) [M]LQ = (MS?’M)LQ = maX(le—f—ml,z, m1,2+m272,m173+m3,2) = —1—1 = —2.

However, as seen earlier the entry m; o has weight —100 which is less than the
CSR suggestion.
The following is an example of M and CS**3R[M] for ¢t = 10:

0 —100 -1 0 -2 -1
M=]-10 0 —100]| CSB@IRM=1|_100 0 -100
100 -1 0 100 -1 0

For efficiency we will simply present the final two classes and omit the in-depth

analysis of them:
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For walks of length 1 modulo 3 we have the class of words (1)3732 for ¢ > 0.
For walks of length 2 modulo 3 we have the class of words (1)3742 for ¢ > 0.

We will also present examples of products and their CSR counterparts made using

these words for t = 10 where N = (A4;)3 "3 Ay and P = (A% A,.

100 0 —100 100 0 —100
N=|-100 -1 o0 CSHmAIRIN] = | —100 -1 0
0 —100 -1 0 -2 -1
100 -1 0 100 -1 0
P=| 0 -—100 -1 | CS¥®™RPI=| 0 -2 -1
100 0 —100 100 0 —100

The combination of these three classes create a family of words such that any product
I'(k) made using these words is not CSR and as all the nodes are critical then there
exist walks connecting them that are not CSR.

We now extend these counterexamples to a more general form where we consider
digraphs with non-trivial cyclicity r along with critical subgraphs with cyclicity ~

which is greater than r. This leads to the following assumptions.

3.7.2 More general case

Assumption P2. D(X) has cyclicity v and the critical subgraph G°(X), which is

strongly connected, has cyclicity v > r.

In a similar method to the primitive example above, using the new assumptions,
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we can now describe a counterexample that shows that no bound for & in terms of
A% and A can exist that ensures T'(k) is CSR.

Let D(X) be a six node digraph with the following structure:

(1) (4) (6)

Here the critical cycle traverses nodes 1 —+ 2 — 3 — 4 — 1 however there also exists
another non-critical cycle of length six traversing 1 -2 —3 —5 — 6 — 4 — 1. This
means that while the cyclicity of the critical subgraph is 4 the cyclicity of D(G) is 2.
Therefore the digraph structure satisfies the assumptions and we can develop a family

of words with infinite length such that any I'(k) made using these words will not be
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CSR. As the cyclicity of the critical subgraph is 4 then we will require four classes of
words to fully define the family.

The semigroup of matrices that will be used is generated by two matrices:

e 0 ¢ € € € e 0 ¢ =« € €

e e 0 € € € e ¢ 0 =« € €

€ € ¢€ 0 —100 € e e ¢ 0 -1 €
Al — A2 g

0 ¢ ¢ € € € 0 ¢ ¢ =« € €

€ € € € € —100 € € € ¢ e —100

e € ¢ —100 15 € e € ¢ —1 =« €

Let us begin with the first class of words (1)*2 where ¢ > 2, and let L = (A;)* A, for
arbitrary such ¢t. We will begin by examining the entries [, 2, l15, {14 and l35.

The entry [y 2 can be obtained as the weight of the walk (1234) 12, which is 0.
——

t
As the walk 12 has length congruent to 1(mod4) then a walk exists on the critical
cycle connecting these nodes. The entry [ 5 is obtained from the weight of the walk

(1234) 1235641235, which is —301. As the walk 1235 has length congruent to 3(mod4)

——
t—2

then we need to add on the six cycle with weight —300 to give us a walk of length
congruent to 1(mod4) and finally the last step of the walk is to go from 3 to 5 with

weight —1. For the entry [; 4 = —201 which is the weight of the walk (1234) 123564

——
t—1

and the entry l35 = —1 comes from the weight of the walk (3412) 35. Note that in
——

t
the case of [; 4 we used the six cycle to give us the desired length of walk.
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We then compute

(CSR)[L]Lg, = (L ® 53 ® L)175 = max(llg + 1175, l174 + 1375) =—-201 —1=-202.

However [, 5, as explained earlier, results from a walk with weight —301.

The following is an example of L and CS*™ R[L] for ¢t = 10

€ 0 € —201 —-301 €
—300 € 0 € € —401

€ —300 € 0 -1 €

0 € —300 € € —101
-500 e =200 @« e —601

€ —400 ¢ —100 -101 €

€ 0 € —201 —202 15
—300 € 0 € € —401
C’S41(m°d4)R[L] _ € —300 € 0 -1 €
0 € —300 € € —101

—-500 € —-200 ¢ € —601

€ —400 € —-100 —-101 ¢

We now consider the second class of words (1)%+12 where ¢t > 2, and let M =

(A;)*T1 A, for arbitrary such t. We will examine the entries my o, my 5, my 4 and mo s:

my is the weight of the walk (4123) 412, which is 0;

~——
t

mys is the weight of the walk (4123) 41235641235, which is —301;

~——
t—2
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my4 is the weight of the walk (4123) 4123564, which is —201;

——
t—1

ma s is the weight of the walk (2341) 235, which is —1.

~——
t

Looking at the entries m45 and my 4, the walks 41235 and 41234 both have length
congruent to 0(mod 4) then we must include the six cycle to give us length congruent

to 2(mod 4) as required. Using these entries we can calculate,

(CSR[M))a5 = (MS*M), 5 = max(mys + mys, Maq +mas) = —201 — 1 = —202.

However, as explained above, my; = —301 which is less than (C'SR[M])45. We finish

this class with an example of M and C'S*™?R[M] for t = 10.

=300 ¢ 0 € € —401
€ —300 € 0 —1 €
0 € —300 € € —101
€ 0 € —201 —-301 €
e =500 e =200 —-201 ¢
—100 ¢ —400 ¢ € —201

—300 € 0 € € —401
€ —300 € 0 —1 €
C’S42(m°d4)R[M] _ 0 € —300 € € —101
€ 0 € —201 —-202 €

€ —-500 ¢ —200 —201 €

—-100 ¢ —400 ¢ € —201
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Moving on to the third class of words (1)%*22 where t > 2, and let N = (A;)%2A,

for arbitrary such ¢t. We now examine the entries ng s, ng2, 735, N34, Nea and nq 5

ns2 is the weight of the walk (3412) 3412, which is 0;

~——
t

ne2 is the weight of the walk 6 (4123) 412, which is —100;

——
t—2

nss is the weight of the walk (3421) 35641235, which is —301;

——
t—1

ns4 is the weight of the walk (3412) 3564, which is —201;

——
t

ne,4 is the weight of the walk 6 (4123) 4123564, which is —301;

——
t—1

ni1s is the weight of the walk (1234) 1235, which is —1.

~——
t

As before with the entries ng3 5, ns4 and ng4 the walks 35, 34 and 64 all have length
congruent to 1(mod4) therefore we must include the six cycle to give us a length
congruent to 3(mod4) as desired. As we have six entries we can look at two separate

calculations, starting with

(CSR[N])3,5 = (NSN)375 = max(ng,g + n3 5,134 + n1,5) = —-201 — 1= —-202.

As we can see from above the entry ns 5 results from a walk of weight —301 which is

smaller than (C'SR[N]);5. For the second calculation

(CSR[N])6,5 = (NSN)675 = maX(nG’g -+ n375,n6,4 + 71175) =-301-1= —302,
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which is bigger than the walk that results from ngs which is 6 (4123) 5641235, which

——
t—1

has weight —401.

We now give an example of N and CS*3R[N] for ¢t = 10,

€ =300 ¢ 0 -1 €

0 € —300 € € —101

€ 0 € —-201 —-301 €
=300 ¢ 0 € € —401
—200 e =500 @« e =301

5 —100 = —-301 —-401 ¢

€ —300 € 0 —1 €
0 € —300 € € —101
C’S43(m0d4)R[N] _ € 0 € —201 —-202 15
—300 € 0 € € —401

—-200 e =500 e e =301

€ —-100 ¢ =301 -302 ¢

We end by considering the final class of words (1)**32 where ¢t > 2, and let
R = (Ay)Y3 A, for arbitrary such ¢. As with the third class we consider the six entries

22, 52, T25, 24, T5.4 and T45:

ra2 is the weight of the walk (2341) 23412, which is 0;

——
t

52 is the weight of the walk 56 (4123) 412, which is —200;

~——
t—2

ro5 1s the weight of the walk (2341) 235641235, which is —301;

~——
t—1
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r94 is the weight of the walk (2341) 23564, which is —201;

——
t

154 is the weight of the walk 56 (4123) 4123564, which is —401;

——
t—1

ry5 1s the weight of the walk (4123) 41235, which is —1.

~——
t

For the entries 195,724 and 75 4 the walks 235, 234 and 564 all have length congruent
to 2(mod 4) hence in order to get a length congruent to 0(mod 4) we must include the
six cycle for those walks.

With these six entries we can calculate two entries from C'SR[R],

(CSR[N])Q@ = (R2)275 = max(rgjg + ’I’L25,7“274 + T475) = —201 — 1 = —202,

(OSR[ND575 == (R2)575 == maX(T572 + 7“27577“574 + T475) = —401 —1= —402

We can see that both calculations are larger than 755 and 75 5 respectively. We know

the walk that results from 755 and the walk that results from 75 5 is 56 (4123) 5641235,

———
t—1

which has weight —501.
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We end the final class with an example of R and C'S*™R[R] for ¢t = 10,

0 € —-300 € € —101
€ 0 € —201 —-301 €
=300 ¢ 0 € € —401
€ =300 ¢ 0 -1 €
e =200 e —401 -501 =«
—-400 e =100 e e —a01

0 € —300 € 15 —101
€ 0 € —201 —202 €
C’S44(m°d4)R[R] _ —300 15 0 15 € —401
€ —300 € 0 —1 €

e =200 ¢ —401 —-402 ¢

—400 € —100 ¢ € —501

Combining all these classes gives us a family of words covering all lengths greater
than 9 such that any product made using these words will not be CSR. Therefore no

transient can exist as there is no upper limit to the lengths of these words.

3.7.3 Critical graph is not connected

For this counterexample we now consider a digraph with multiple critical components

Gy, ..., G5, which are each s.c.c.s with respective cyclicities v1, ..., V.

Assumption P3. G¢(X) is composed of multiple s.c.c.s G5, ..., G, where the compo-

nent G¢ has cyclicity ;. The cyclicity of D(X) is lemi(7y;), which is the same as the
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cyclicity of G¢(X).

Let us now show a counterexample, which demonstrates that, for the case of several
critical components, we cannot have any bounds after which the product becomes CSR
in terms of A" and A™. The reason is that the non-critical parts of optimal walks
whose weights are the entries of C' and R cannot be separated in time: in general,
they will use the same letters, and such walks on the symmetric extension of T (I'(k))
cannot be transformed back to the walks on 7 (I'(k)).

Let D(X) be the four node digraph with the following structure:

Q e (4)

along with the following associated weight matrix

For this digraph we have a critical subgraph comprised of three separate loops at
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nodes 1,2 and 3. There is also a cycle of length 4 which means the cyclicity of the
digraph is 1. We are going to present a class of words of infinite length such that the
matrix generated by this class of words is not CSR.

We introduce a semigroup of tropical matrices with two generators X = {A;, Ay}

where A, to A, are

0 —100 € € 0 -1 ¢ 15
€ 0 —100 € € 0 -1 €
Al == 3 AQ =
€ € 0 —100 € € 0 —100
—100 € € € —100 ¢ € €

and the class of the words that we will consider is (1)"2, where ¢ > 2. In other words
we will consider a set of matrices of the form U = (A;)* Ay (the actual value of ¢ > 2
will not matter to us).

We have: u; 2 = —1 (as the weight of the walk 11...12), us3 = —1 (as the weight

t+1
of the walk 22...23),and therefore (CS™ R[U])13 = (U?)13 = u12 @ ug3 = —2, but
t+1
uy3 = —101 (as the weight of the walk 122...23).
7 t
Similarly, we can also look at the entry wu,3. Then we have uys = —101 (as

the weight of the walk 411...12), us3 = —1 and hence (CS*™'R), 3 = (USU)y3 =

t
Ugo @ uzg = —102, but uy3 = —201 (as the weight of the walk 4122...23).

t—1
Here is an example of the word from the class for ¢ = 10 and the corresponding
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CSR

0 -1 =101 —-300 0 —1 —2
—300 0 —1 =200 —201 0 -1
W = : Csll(mod UR[W] —
—200 —201 0 —100 —200 —201 0
—100 —101 —201 —400 —100 —101 -—-102

Therefore any matrix product of length greater than 3 which has been made
following this word will not be CSR. Hence there can be no upper bound to guarantee

the CSR decomposition in this case.

3.8 Conclusion

In order to achieve the key results an inhomogeneous product analogue of CSR
(Definition[2.2.1)) was introduced in Definition[3.3.1} and in Theorem 3.3.12]it was shown
that any matrix product that is CSR has rank at most Y | 7,. By creating this new
definition we have developed a product analogue for the CSR decomposition and, due to
Proposition [3.3.8] there could exist some scope in bringing previous results on the CSR
decomposition of matrix powers to inhomogenous matrix products. In Theorem [3.4.6
a condition on the length of the product was established in which a product with
length satisfying the condition is bounded above by its CSR decomposition. If we
assume that for every A; making up the product, the associated digraph is strongly
connected and the cyclicity of its critical digraph is equal to the cyclicity of the
associated digraph of A;, then in Theorem [3.5.10| we established another condition

in which a product of length satisfying the condition, and the assumptions, becomes
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CSR. In Theorem [3.6.6| a condition for the case when the critical subgraph is a single
loop is developed, in which the CSR definition is forgone and any product with length
satisfying this transient exhibits a rank-one property. In Corollaries [3.4.7]
and we deduced explicit bounds on the length of an inhomogeneous product,
after which the product is bounded by its CSR decomposition, is equal to its CSR
decomposition, and exhibits the rank-one property, respectively. These corollaries are
deduced from Theorems[3.4.6] and respectively, and they make use of A™f,
the infimum matrix. For these cases we now have both implicit and explicit bounds
on not only a CSR property but a factor rank property as well due to Theorem [3.3.12
However there are also more general cases in which a CSR property cannot be found
and the set of counterexamples showing this were presented in Section [3.7]

Finally in Section [3.7| the three cases where CSR does not work were as counterex-
amples. The first case was when the digraph is primitive (7 = 1) but the critical
subgraph is not, the second case was a more general version of the first case, where
the critical subgraph is strongly connected, but the cyclicity of the ambient digraph is
strictly less than the cyclicity of the critical subgraph, and the final case was when
the critical subgraph is made up of more than one distinct s.c.c. (each of them being
a loop). In all the counterexamples we presented families of words of infinite length,
in which the product made using such a word was not CSR. These counterexamples
give insight into where this new definiton of CSR does not work and could give rise to

potential restrictions require in order to produce working examples in these cases.
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CHAPTER 4

CONCLUSION AND DISCUSSION

In this chapter we will briefly summarise the results presented in this thesis as well as
outline some directions for further research.
In Chapter [2| we not only showed the validity of the Schwarz and Kim bounds

on T1(A, B) for the Nachtigall and Hartman-Arguelles decomposition schemes (see

Theorems [2.3.3] and [2.5.4] respectively), but we also refined the bounds on 77 (A, B)

for the Cycle Threshold decomposition scheme in Theorem by introducing the
cyclicity into the bounds. For Ty(A, B) we improved the bounds of Proposition m

by introducing cyclicity to give the new bounds in Theorem All these results

have been published in the paper [48]. In Theorems [2.3.4] and [2.5.5| we also developed

new bounds on T3 (A, B) for both the Nachtigall and Hartman-Arguelles schemes using
a factor rank property, as well as developing bounds on T5(F, B) involving the factor
rank in Theorem [2.6.5, These results appear in this thesis for the first time and, using
the example at the end of Chapter [2| we show how effective these new bounds can be.

These results lie atop a long history of periodicity transients for matrix powers

but that is not to say that it will be the end for them. There will always be scope
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to improve the bounds by introducing more graph theoretical terms into the bounds
or by refining them further. It should be noted that the paper by Merlet et al. [69]
characterises the matrices that attain the Wielandt and Dulmage-Mendelsohn bounds
which, for a natural extension, means that similar theory could be developed for both
the Kim and Schwarz bounds as well as the factor rank bounds.

In Chapter |3| we develop the inhomogeneous product analogue of CSR, for which
we proved a factor rank property of matrix products that are CSR (Theorem .
We also show the link between this new product analogue of CSR and the original
definition of CSR that is used for Chapter [2 which is an original result for this thesis.
Using the new CSR definition we then develop a bound, in Theorem [3.5.10] in which
for a certain case, matrix products become CSR and naturally exhibit a factor rank
property which is currently in the preprint [49]. We also outline a more strict, rank-1,
case in Theorem [3.6.6| where we forgo the use of the CSR definition to show the
property directly. This case was published in the paper [50]. For the cases which did
not work we presented counterexamples in which families of words are given where no
bound exists on products using these words becoming CSR.

Naturally there are many directions in which to expand on this research. The
first, and maybe most important, direction is to find a way to develop bounds on
the cases where counterexamples exist. This could be achieved in many ways with
some simple examples being altering the CSR definition in some way, or to exert
some control over the word making up the product. It should also be noticed that
in every counterexample only a select few entries were not CSR which introduces
the potential of an approximation to CSR in a similar vein to the infinite horizon

case explored by Akian, Gaubert, and Walsh [3]. Another direction for further
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exploration would be to develop applications of these results. For instance these
results tie in with discrete turnpike theory. This can be seen from [3, Theorem
7.5] in which the authors show that turnpikes are equivalent to walks of maximal
weight traversing the critical nodes. There are also applications in optimal control
optimisation with distinct applications in railway networks such as the work done by
Soto y Koelemeijer [87] or the textbook by Heidergott, Olsder and van der Woude [43].
By using the discrete system z(k) = A ® x(k — 1), where Ay is some prescribed
matrix and z(k) is the result vector, one can recursively substitute the previous state
togive (k) =A@ A1 ®...® Ay ® 2(0) = I'(k) ® z(0). Naturally, our results on
tropical inhomogenous products can be utilised to develop applications on optimal
control systems where such products are involved. Examples of such systems include
the process industry using model-predictive control as explored by De Schutter and
van den Boom [24] and legged locomotion of robots, which was explored by Lopes,

Kersbergen, De Schutter, van den Boom, and Babuska [64].
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