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Abstract 

The chemical industry requires highly accurate and reliable measurements to ensure smooth operation 

and effective monitoring of processing facilities. However, measured data inevitably contains errors 

from various sources. Traditionally in flow systems, data reconciliation through mass balancing is 

applied to reduce error by estimating balanced flows. However, this approach can only handle random 

errors. For non-random errors (called gross errors, GEs) which are caused by measurement bias, 

instrument failures, or process leaks, among others, this approach would return incorrect results.  In 

recent years, many gross error detection (GED) methods have been proposed by the research 

community. It is recognised that the basic principle of GED is a special case of the detection of 

outliers (or anomalies) in data analytics. With the developments of Machine Learning (ML) research, 

patterns in the data can be discovered to provide effective detection of anomalous instances. In this 

paper, we present a comprehensive study of the application of ML-based Anomaly Detection methods 

(ADMs) in the GED context on a number of synthetic datasets and compare the results with several 

established GED approaches. We also perform data transformation on the measurement data and 

compare its associated results to the original results, as well as investigate the effects of training size 

on the detection performance. One class Support Vector Machine outperformed other ADMs and five 

selected statistical tests for GED on Accuracy, F1 Score, and Overall Power while Interquartile 

Range (IQR) method obtained the best selectivity outcome among the top 6 AMDs and the five 

statistical tests. The results indicate that ADMs can potentially be applied to GED problems. 

Keywords: Gross Error Detection, Machine Learning, Anomaly Detection, Deep Learning 

1. Introduction 

In the chemical industry, highly accurate and reliable measurements play an important role in process 

condition monitoring, control, and operational optimisation. Efficiency analysis and improved 

measurement accuracy lead not only to more profitable operations but can also be useful for detecting 

operational faults. Unfortunately, due to the nature of measurement, measured data inevitably contains 

errors from several sources such as power supply fluctuations, network transmission and signal 

conversion noise, analog input filtering, and changes in ambient conditions [1]. We describe this type 

of error as random measurement error. It generally has a normal distribution with zero mean and 

known variance.  

Data reconciliation aims to eliminate random errors by reconciling measurements to process 

constraints e.g., mass or energy balance. Data Reconciliation (DR) emerged in the mid-1960s and 

since then it has been applied to many areas such as the chemical and energy industries [2]. 

Established data reconciliation techniques use mathematical methods, such as least-squares, to adjust 

measurements utilising process model equations such as equilibrium equations and conservation laws 

                  



   
 

   
 

[1]. Those data points that require to be adjusted more than an expected amount are flagged up as 

potential errors for further investigation. 

It is widely recognized that the techniques of reconciliation work under the assumption that only 

random errors are present in the data. If non-random errors (called gross errors, GEs) caused by, for 

example, instrument failure, measurement bias, or process leaks, are also present, the reconciled result 

can be very inaccurate and even infeasible [1]. Detecting GEs is thus an important step before 

obtaining final reconciled estimates.  

In the past years, several gross error detection (GED) methods were introduced and most of them are 

based on statistical tests. The first statistical GED method was proposed by Reilly and Carpani [3] in 

1963. Since then, further methods such as the measurement test [4], and the nodal test [5] have been 

proposed and widely applied. Although statistical tests are widely used by industries, two of their 

obvious shortcomings should be noticed. First, the statistical tests work on process data which is 

corrected with the help of steady-state material and balance models of the process [1]. In the existing 

literature, GED and DR models work under the assumption that model equations capture the process 

without any mathematical error. In practice, however, the models could be inaccurate, highly likely 

leading to uncertainties in states which violate the underlying assumption. Moreover, statistical tests 

for GED only look at a snapshot in time but there are patterns in data that can help to understand how 

a system or a particular meter is performing over time. With the help of Machine Learning (ML) 

approaches, patterns in data can be discovered to obtain useful knowledge for decision-making. While 

improving upon statistical GEDs, new approaches from Machine Learning (ML) such as Neural 

Networks [6] and ensembles of GE detectors [7], have also been developed and many of them have 

proved to be suitable for applications.  From this point of view, this paper aims to explore the 

potential of a data-driven approach utilising ML for the problem of GED. 

The basic principle of GED is a special case of the detection of outliers (or anomalies) in data 

analytics [1]. Anomalies are patterns that do not conform to a well-defined notion of behaviours  [8]. 

Anomaly detection (AD) refers to the labelling of observations as anomalous through methods, 

models, and items based on data [9]. Nowadays, many applications of AD can be found in diverse 

areas, such as cybersecurity [10], fraud detection [11], industrial fault and damage detection [12], 

medical diagnosis [13], event data in earth sciences [14], and physics [15]. A notable example of AD 

is in the aerospace area where anomalous readings from a spacecraft sensor could signify a fault of 

components in the spacecraft [16]. AD is also related to novelty detection, which aims to detect 

previously unobserved patterns in the data, with the difference being that novel patterns are usually 

incorporated into the normal model after detection [8]. Despite many ADMs being introduced, AD 

has been considered a challenging topic, due to large variability within datasets and the lack of 

anomalous events for training [9]. 

It is noted that many methods based on ML have been introduced for various applications where ML 

refers to the use of algorithms that learn from data to perform human-level tasks such as recognition 

and understanding. In recent years, a new subfield of ML called Deep Learning (DL) has achieved 

state-of-the-art results in many areas. DL utilizes model architecture with processing layers to learn 

data representations with multiple abstraction levels [17]. With DL, it becomes possible to 

automatically learn relevant features, with exceptional success in comparison to traditional methods. 

DL is the driving force behind many artificial intelligence (AI) applications and services that improve 

automation, performing analytical and physical tasks without human intervention. DL-based 

approaches to AD have delivered improved results on complex datasets and renewed interest in this 

area, with a great variety of new methods being introduced [9]. To our knowledge, there has been no 

review of ML and anomaly detection methods (ADMs) for GED. There are also no existing papers 

where DL-based methods were used for the GED problem in the literature or where a broader 

comparison was made with the different ADMs. We believe that it is important to (i) raise awareness 

                  



   
 

   
 

in the chemical engineering community of an important application of ML/DL to the GED problem 

and (ii) showcase how newer ML/DL approaches can be used and performed on a number of 

benchmark systems. This motivates us to conduct an extensive review of the ADMs and evaluate their 

performances when solving the problem of GED so as to explore their potential in practical GED 

applications. 

Our contributions are as follows: 

 It is recognized that there are already published systems that aim at creating diverse 

benchmarks for DR and GED [18], however, they have been used effectively for conventional 

approaches without focusing on ML/DL as well as any comparisons of existing methods. To 

apply ADMs to the problem of GED, training data is required from which to exploit the 

pattern of gross errors. To our knowledge, there is a lack of training datasets for the problem 

of GED in the literature which prevents the application of ADMs to this problem. In this 

study, we generate a number of measurement datasets, including training and testing data, 

associated with 16 systems introduced in the literature. 

 We conduct an extensive review of existing ADMs based on ML and DL. The main 

approaches in the literature will be delineated and examples for each approach will be 

provided. Our review also highlights the main challenges currently faced and potential 

research directions.  

 We propose a learning system to detect GEs by using ADMs. Our model describes a data 

pipeline consisting of multiple sequential steps from data pre-processing to detection model 

training and deployment. Our study aims to introduce a pipeline on how to implement and 

deploy an AD-based framework for the GED problem, starting from the raw measurement 

data to the trained detection model. 

 We train 19 ADMs on the training datasets associated with the 16 systems to generate 

detection models. These models are applied to test datasets to determine whether anomalies 

are present in them. The performance of ADM models is evaluated against a number of 

established performance metrics. We explore what novelty and performance improvement 

ADMs can bring to the GED problem as well as provide a guidance of choosing an ADM in 

specific situations. 

The paper is organized as follows. In Section 2, methods for GE detection and identification for 

steady-state cases, along with ML and DL-based ADMs are introduced. In Section 3, the general 

model of a GED system using ADMs and all settings for the comparative study are described. 

Experimental results are presented in Section 4; here the results of the ADMs and several existing 

GED methods are compared when using datasets generated from 16 systems collected from the 

literature. Finally, our conclusions are presented in Section 5. 

2. Background and Literature Review 

2.1 Methods for Gross Error Detection and Identification 

There are four notable requirements when designing any GED method [1] (i) detect the presence of 

one or more GEs (the detection problem) (ii) identify and locate the single GE (the identification 

problem) (iii) identify and locate multiple gross errors (MGE) present in the system (the MGE 

identification problem) (iv) GE magnitude estimation problem. In this section, we will mention 

several existing GED methods for steady-state cases [19]. 

It is assumed that random error present in any measurement follows a normal distribution with zero 

mean and known variance. Therefore, the normalised error which follows the standard normal 

distribution mostly falls inside a confidence interval at a given or chosen significance level. This 

statistical principle is the basis of statistical tests to detect GEs. The statistical tests are commonly 

                  



   
 

   
 

based on hypothesis testing by choosing between the null hypothesis H0 “no gross error is present” 

and the alternative hypothesis H1 “one or more gross errors are present”. The null hypothesis is 

accepted or rejected by comparing a test statistic to an appropriate critical value. One of the most 

widely used statistical tests is the multivariate global test (GT) [3] in which the test statistic is 

calculated based on the vector of constraint residuals and its covariance matrix. The constraint test or 

nodal test (NT) [5] works on each constraint residual separately by exploiting diagonal terms of the 

covariance matrix of constraint residuals. Crowe [20] introduced the maximum power constraint test 

based on a linear transformation of constraint residuals raising the probability of detecting GEs above 

that of the NT. The measurement test [4] (MT) meanwhile treats each measurement separately when 

detecting GEs on each stream. MT uses measurement adjustments which are the differences between 

measurements and associated reconciled estimates to calculate the test statistic. Since MT or NT 

includes a set of univariate tests for streams or nodes and each test uses the same critical value, the 

probability of Type I error of one of the univariate tests in MT and NT will be higher than the 

specified value of the significance level. To overcome this issue, Mah and Tamhane  [21] proposed to 

modify the significance level based on the Sidak inequality so as to control the Type I error 

probability. Rollins and Davis [22] proposed another modification of the significance level based on 

the Bonferroni confidence interval. Narasimhan and Mah [23] introduced the Generalized Likelihood 

Ratio (GLR) test which aims to maximise a ratio of posterior probabilities of obtaining residual 

vectors under the H0 and H1 hypotheses to find GEs. Another approach which is used for gross error 

detection is Inter Quartile Range (IQR), in which an instance outside of the range between the first 

and third quartile is considered anomalous [24]. Tong and Crowe [25] mentioned the limitations of 

several multivariate and univariate tests including GT, MT, and NT relating to ignorance of the 

covariance between each pair of elements in the covariance matrices. They then proposed principal 

component tests which provide more advantages by exploiting the entire information of the 

covariance matrix of constraint residuals and measurement adjustments through Principal Component 

Analysis (PCA)-based projections. Each of the above-mentioned methods aims to solve the detection 

problem. The NT, MT, GLR, and PCA tests also aim to identify and locate GEs while the GLR test 

can also estimate the GE value.  

For the MGE identification problem, several methods have been introduced with one of three main 

strategies: (i) serial elimination (ii) serial compensation, and (iii) collective (or simultaneous) 

compensation [26]. 

Describing the serial elimination strategy, Rosenberg et al. [27] reviewed the early work in Ripps 

[28], Nogita [29], and Romagnoli and Stephannopoulos [30] such that when a GE is detected by using 

a GED method like GT or MT, the measurements are then removed sequentially in a group of specific 

size until no suspect set of measurements can be found. Yang et al. [31]  used the serial elimination 

strategy in designing a combined test from MT and NT. MT is applied to discover a potential stream 

list containing the GEs and then NT is applied on nodes associated with streams in that list to obtain 

the stream with the highest test statistic. This stream will be removed from the measurements and the 

iteration is run until no GEs are found. Congli et al. [32] changed the order of the MT-NT combined 

method by applying NT first to detect potential nodes containing GEs and then applying MT on 

streams associated with these nodes. Jiang et al. [19] applied GT and serial elimination strategy 

together to detect and identify GE for operational data in power plants. The detection results of their 

method were then validated by checking on-site inspection and maintenance records in order to ensure 

a reliable detection outcome. 

In the serial compensation strategy, GEs are also detected but instead of removing them from the 

measurement as in the elimination strategy, they are replaced by estimated values. Wang et al. [33] 

applied this strategy to modify the combined MT-NT of [31] so that the coefficient matrix remained 

unchanged, reducing early termination of the combined test. 

                  



   
 

   
 

Finally, collective compensation strategy methods attempt to detect all GEs simultaneously in a 

single iteration. Keller et al. [34] used the magnitudes estimated collectively by GLR [23] to 

compensate for the GEs in case GEs are present in the systems. Sanchez et al. [35] introduced a two-

stage algorithm to simultaneously estimate biases and leaks in process plants. In the first stage, 

starting with each constraint, data reconciliation is applied to determine the associated objective 

function. The global test is run in each case by using the value of the objective function. If the null 

hypothesis H0 of this test is rejected, all measurements involved in the considered constraint and a 

leak from the corresponding node are added to the list of suspected gross errors. In the second stage, 

each combination including several candidates in the suspected list is evaluated. The combinations 

contain GEs if they raise the lowest objective function value and satisfy the global test i.e., H0 

hypothesis is accepted. Loyola-Fuentes and Smith [2] used the GT for GED and modified the 

simultaneous work of [3] with a non-linear programming implementation in order to detect GE in 

crude oil pre-heat trains undergoing shell-side and tube-side fouling deposition. 

The importance of using historical information relating to past failure data on measuring instruments 

for further enhancement of test procedure performance emerged in the late 1990s. The Bayesian 

approach proposed by Tamhane et al. [36] was the first attempt to employ such historical information 

to model the occurrences of GEs. Under distribution assumptions for the random error and binary 

indicator of GE on each measurement, the authors utilised the Bayesian method to model the posterior 

probability of the indicator given historical information. According to Bayes’ rule, the GE indicator 

was determined by maximizing the posterior probability. Yuan et al. [37] proposed a hierarchical 

Bayesian framework to solve both GED and DR problems. The measurement model was given in the 

same way as in [36] concerning the GE indicator and magnitude, however, the posterior probability 

was proposed in a more complicated form by estimating the indicator and magnitude of GE, the 

reconciled measurement, and covariance matrices given by historical data. The complicated posterior 

probability was broken down into three inference layers for reconciled measurement and GE 

magnitude (layer 1), covariance matrices (layer 2), and GE indicator (layer 3) under Bayes rule. In 

recent years, with a proliferation of applications of ML in many areas, several ML-based models 

trained on historical data were introduced to detect and identify GEs. Reddy and Mavrovouniotis [6] 

used a 3-layer neural network including one input layer, one hidden layer, and one output layer, to 

estimate the value of each measurement and its associated residual error. For each test sample, if the 

sum of the squares of the residuals does not fall within the established confidence limits, this sample 

is highly likely to contain a GE. Gerber et al. [38] treated GED as a classification problem in which 

the ground truth of each measurement is encoded into binary value for detection and categorical value 

for the identification task. The authors experimented with 3 classifiers namely decision tree, linear, 

and quadratic discriminative analysis on 10 datasets generated from a simple two-product splitter 

process. Nguyen et al. [7] proposed an ensemble of GED methods in which the outputs of each 

method given in the form of p-values are combined by using the Fisher combination method for the 

final GED conclusion. The proposed ensemble was further improved by searching for a suitable 

subset of methods in the ensemble for each sample. The authors used Particle Swarm Optimization 

(PSO), an effective swarm-based continuous optimization method, for the search process. Dobos et al. 

[39] also introduced an ensemble of GED methods in which the outputs of all methods in the 

ensemble are combined by using a weighted combining method i.e., each method is associated with a 

specific weighted value in the combining. 

2.2 Anomaly Detection Methods 

2.2.1. Traditional Machine Learning methods for Anomaly Detection 

ML refers to a class of algorithms that learn from data to perform human-level tasks with reasonable 

accuracy. In the past years, although many ML methods have been introduced to detect anomalous 

samples from the data, there exists a number of challenges that make the design of an effective ML 

                  



   
 

   
 

method for AD difficult. Firstly, the amount of labelled anomalous data is lacking, which has an 

adverse impact on the training of ML models. Secondly, each domain has a different notion of 

anomaly, which makes it difficult to transfer a technique developed in one domain to another. Thirdly, 

data often contains noise that is very hard to distinguish from the real anomalies, and this negatively 

affects the performance of the ML model. Fourthly, in many areas, the concept of anomaly evolves 

over time and the ML model must be updated accordingly. In this section, we will review the major 

approaches in applying ML to AD. 

ML techniques for AD can be divided into several broad categories: density estimation and 

probability-based methods, one-class classification methods, reconstruction-based methods, and 

proximity-based methods. Density-based ADMs are based on the principle in which outliers are 

usually in low-density regions as opposed to normal instances [40]. One of the simplest methods in 

this class is the "three-sigma" rule, which considers points more than three standard deviations from 

the mean to be anomalies [41]. Classic density estimation methods for AD include kernel density 

estimator [42], Gaussian Mixture Model (GMM) [43], and histogram estimator [9]. It should be noted 

that the number of required parameters for these models increase exponentially as the number of 

dimensions increases. In [40], Zheng et al. proposed ECOD, which first finds the empirical 

cumulative distribution for each data dimension, then estimates the tail probabilities per dimension. 

Finally, an outlier score is calculated by aggregating estimated tail probabilities across dimensions. 

COPOD, proposed by Li et al. [44] , is built on the concept of copulas, which are functions that can 

separate marginal distributions of a given multivariate distribution, which allows separate modelling 

of each dimension. An empirical copula is first constructed which is then used to predict tail 

probabilities of each data point. Pevný et al. [45] proposed LODA, which uses a number of one-

dimensional histograms constructed using random projection to approximate the joint probability, 

followed by an ensemble of histogram detectors. In [46] the authors introduced HBOS, which 

calculates histograms using dynamic bin width for each dimension, and the product of the inverse of 

the estimated density is used as the final anomaly score. We can see a difference between HBOS and 

ECOD and COPOD in which while HBOS constructs histograms using random projection to 

approximate the joint probability, and the density in each histogram is used as an anomaly score, 

ECOD and COPOD model the distribution of each dimension separately before estimating the tail 

probabilities for the outlier detection. Although the histogram-based techniques are relatively simple, 

they may struggle to capture the interactions between different attributes. It is noted that density-based 

ADMs work based on statistical assumptions regarding the data they are applied to. Therefore, their 

performance is strongly influenced by the robustness of these assumptions. Those methods often 

provide confidence intervals along with their outputs, ensuring statistically justifiable results with 

guaranteed margins of error, as long as the underlying density and probabilistic assumptions are 

satisfied [8]. 

One-class ADMs find an optimal decision boundary to differentiate the abnormal instances by 

learning from normal instances only during training so that the trained model can identify anomalous 

cases it has never seen before [8]. The objective of one-class classification is to learn the decision 

boundary using unlabeled data which minimizes the falsely raised alarms for normal instances (type I 

error) and undetected true anomalies (type II error) [9] These methods are based on the argument that 

full density estimation is not necessary for AD, since only one single density level set is needed [47]. 

One-class classification can be seen as binary classification in which only accessing normal data is 

available. The one-class classification objective is then to minimize the falsely raised alarms for 

normal instances and missed anomalies [9]. In this category, one-class Support Vector Machine 

(OCSVM) [48] is a popular technique for unsupervised AD. OCSVM works on the basic idea of 

minimizing the hypersphere of the single class of examples in training data and considers all the other 

samples outside the hypersphere to be outliers or out of training data distribution. Another notable 

method is Support Vector Data Description (SVDD) [47] which is based on the observation that a 

good data description covers all the target data but no superfluous space. A spherically shaped 

                  



   
 

   
 

boundary is created around the dataset using a few training instances to separate the normal and 

abnormal instances. Elliptic Envelope, proposed in [49] seeks to find the subset of training instances 

whose covariance matrix has the lowest determinant [50], and the constructed ellipse which covers 

these instances is then used to determine whether a point is anomalous or not. It is noted that one-class 

ADMs trained a model on normal instances only to create a decision boundary so that the model can 

identify anomalous cases it has never seen before. One-class ADMs do not put any statistical 

assumptions about the data distribution like other approaches such as density and probability-based, 

which make one-class ADMs more generalised than their peers [9]. On the other hand, one-class 

ADMs return binary output on each test instance, which can also be seen as a disadvantage when a 

meaningful anomaly score in the form of probability is desired for decision-making [8]. 

Reconstruction-based methods for AD meanwhile learn a model which can reconstruct normal 

instances while failing at reconstructing anomalous instances [9]. Most of these models, such as 

Principal Component Analysis (PCA) [51], are motivated by geometrical considerations, but some are 

connected to density estimation. There are two assumptions underlying these methods: the manifold 

and prototype assumptions. The manifold assumption asserts that the data is mostly represented by 

some lower dimension manifold which resides in the data space, while the prototype assumption 

asserts that there exists a finite number of prototypical elements in the data space which reasonably 

characterizes the data. One of the most popular reconstruction-based methods is autoencoders, which 

is a neural network consisting of two parts: encoder and decoder [52]. The encoder embeds the input 

data into a lower-dimensional space while the decoder reconstructs the resulting embedding into the 

original space. The autoencoder is then trained to minimize the reconstruction error between the input 

and the output of the decoder, which forces the network to learn the best representation of the data in 

the hidden layer. The data instances with high reconstruction errors are assumed to be anomalies. 

Another example is Variational Autoencoder (VAE) which adopts a stochastic autoencoding process 

by encoding and decoding the parameters through the encoder and decoder network but unlike 

autoencoders, VAE assumes that the latent representation has Gaussian distribution, and the VAE is 

trained to minimize the mean reconstruction errors [53]. In [51], the authors proposed to use PCA for 

anomaly detection based on the observation that the first few principal components explain most of 

the variance in the data and large values of the last components represent significant deviations from 

the normal instances. The principal components are extracted, and an instance is classified as 

anomalous if the sum of the first or last components exceeds a certain threshold. Kriegel et al. [54] 

proposed SOD which detects anomalies using the deviations from the neighbours of each instance in 

the axis-parallel subspace spanned by the neighbours. Among these methods, autoencoders and VAE 

project the data into a lower dimension before projecting back to the original space by using a neural 

network. The anomalies would have higher reconstruction errors compared to normal instances. Other 

methods such as PCA meanwhile use principal components of the data for reconstruction. 

Reconstruction-based ADMs are capable of handling high-dimensional datasets due to their ability to 

perform dimensionality reduction. They can also serve as a pre-processing step for input data before 

applying a different method in another category [8]. However, it should be noted that certain 

reconstruction-based methods, such as PCA and autoencoder, are not suitable for datasets with high 

levels of noise as they may yield poor results [69].  

Proximity-based ADMs separate anomalous instances from normal instances using a predefined 

proximity metric. In proximity-based methods, an instance is anomalous if its locality, or proximity, is 

sparsely populated. There are three ways of defining proximity: cluster-based, distance-based, and 

density-based [55]. In the cluster-based approach, the dataset is divided into a number of clusters and 

an instance is classified as anomalous depending on its non-membership in the clusters, its distance 

from the nearest cluster, or the size of the closest cluster. In the distance-based approach, the distance 

from an instance to its nearest neighbours is used to define proximity, while in the density-based 

approach, the number of other points in a local region is used to define which instance is anomalous. 

                  



   
 

   
 

In [56], the authors proposed Isolation Forest, which is based on the observation that tree structure can 

be constructed to isolate anomalous instances at the root. An ensemble of these isolation trees is 

created to detect the anomalous instances which have shorter average path lengths than the normal 

instances. Local Outlier Factor (LOF), proposed in [57], computes the local density deviation of a 

given data point compared to its neighbors. The instances with a significantly lower density than their 

neighbors are considered anomalous. Angiulli et al. [58] proposed to use the sum of distances from an 

instance to its k-nearest neighbors as the anomaly scores, which are efficiently calculated by 

linearizing the search space. In [59], the authors noted that approaches based on distance calculation 

are not effective on high-dimensional data due to the curse of dimensionality. They proposed Angle-

Based Outlier Detection (ABOD) which uses the variance of the angles between a point and all other 

pairs of points in the dataset as the anomaly score. Almardeny et al. [60] proposed Rotation-based 

Outlier Detection (ROD), which first decomposes the full attribute space into different subspaces, 

then rotates the data instances about the geometric mean to construct the anomaly score. In [61] the 

authors noted that LOF implicitly assumes that the data is distributed spherically, which might be 

restrictive. The authors proposed a Connectivity-based Outlier Factor (COF) method, based on the 

concept of chaining distance, which is the minimum of the sum of the distance of the k neighbors and 

the instance. The authors noted that chaining distance can be used as an approximation for local 

density of the neighborhood while the ratio of the chain distance of a data point to the average chain 

distance of all nearest neighbors at that point is used to define the anomaly score. In [62], the authors 

proposed Linear Method for Deviation Detection (LMDD), a linear-complexity algorithm which 

minimises dissimilarity between instances to detect the anomalies using a dissimilarity function and a 

smoothing factor. Among these methods, density-based methods such as LOF uses the number of 

other points in a local region as a criterion to detect anomalies. In contrast, distance-based methods 

such as COF and LMDD use the distance from an instance to its nearest neighbours as a proximity 

measure, while cluster-based methods like ROD separates the data into a number of clusters so that an 

instance is classified based on its membership values in the clusters. Proximity-based ADMs have an 

advantage from the fact that they do not require any statistical assumptions about the data, and thus 

that makes them suitable for many types of datasets. By contrast, there are some disadvantages of 

proximity-based ADMs in which their performances are largely dependent on the proximity measure 

to distinguish between normal and anomalous instances, the computation requirements for the testing 

phase might be high, and if the data has either normal instances without enough neighbours or 

abnormal instances with enough neighbours then there will be missed anomalies.  

2.2.2. Deep Learning methods for Anomaly Detection 

DL is an emerging subfield of ML which utilizes model architecture with processing layers to learn 

data representations with multiple abstraction levels [17]. With DL, it becomes possible to 

automatically learn relevant features, with exceptional success over traditional methods [63], 

especially in computer vision [64]. DL-based approaches to AD have delivered improved state-of-the-

art results on complex datasets and renewed interest in this area, with a great variety of new methods 

being introduced [9]. Unlike traditional methods, DL-based approaches to AD mitigate the burden of 

feature engineering and enables effective, scalable solutions. The main approaches in applying DL to 

AD are: deep autoencoders variant, deep one-class classification, deep generative models, such as 

Generative Adversarial Networks (GAN), variants, and self-supervised methods [9]. 

An autoencoder consists of two parts: the encoder and the decoder. The encoder maps the input to a 

smaller dimension to extract salient features, and the decoder maps these features back to the original 

dimension to reconstruct the input [9]. Some popular variants of deep autoencoders for AD include 

denoising autoencoders [65], variational autoencoders (VAE) [9], Adversarial Autoencoders [66], and 

Recurrent Neural Network (RNN)-based autoencoders [67]. An example of Adversarial Autoencoder 

in AD is SO-GAAL [68], which uses a mini-max game between a generator and a discriminator to 

generate informative potential. The generator directly generates artificial anomalies which are closed 

to real data through the guidance of the discriminator. Artificial anomalies enable the discriminator to 

                  



   
 

   
 

learn to distinguish between normal instances and anomalies based on a separation boundary between 

them. In [69], the authors proposed an improvement to Robust PCA [70] by replacing linear 

projection with a deep and robust autoencoder, which allows the method to capture complex non-

linear structures for AD. In [71], Aytekin at el. showed that adding L2 normalization for the training 

of deep autoencoders results in more separable clusters. Based on this observation, the authors 

performed k-mean clustering on the resulting L2 normalized representation of the deep autoencoder, 

and the distances from the centroids to each sample can be used for AD. In [72], the authors noted the 

assumption that anomalies always correspond to high reconstruction error might not always be correct 

and used a memory module [73] to augment the autoencoder. Given an input, the method firsts obtain 

an encoding from the encoder, which is then used to query the most relevant items in the memory for 

reconstruction. In the training stage, the memory content is encouraged to represent the normal data. 

Liu et al. [74] proposed a robust framework based on collaborative autoencoders to jointly identify 

normal observations in the dataset while learning its feature representation for AD. 

One-class Support Vector Machine (OCSVM) [48] is one of the most popular one-class classification 

techniques for AD. However, it is known that the complexity of SVM grows quadratically with the 

number of training instances, which is a serious challenge for high-dimensional datasets [75]. In [76], 

the authors proposed to use Deep Belief Network (DBN) for feature extraction before applying 

OCSVM for AD. Ruff et al. [52] observed that most deep ADMs involve networks trained on a 

separate task which is then adapted to AD. The authors proposed Deep SVDD, which uses a deep 

neural network jointly trained to map the data into a hypersphere of minimal volume. Deep SVDD 

does not suffer from two limitations of OCSVM and the original SVDD relating to quadratically 

scaling with the number of samples and large amount of memory requirement to store the support 

vectors. An important problem usually encountered in deep one-class classification is feature map 

collapse without regularization [9]. Possible solutions for this problem include regularization [77], 

freezing the embeddings [76], or using pseudo-labelling [78]. A variant of one-class SVM for time-

series is introduced in [79] in which a dilated recurrent neural network with skip connections is used 

to capture temporal connections. A one-class objective for time series is then obtained by using 

multiple hyperspheres in a hierarchical clustering process. Oza et al. [80] proposed a one-class 

Convolutional Neural Network (CNN), in which a pre-trained CNN is trained using pseudo-negative 

class created from zero-centered Gaussian noise in the latent space. Unlike other approaches, this 

method allows the use of transfer learning [81] for AD. 

Deep generative-based ADMs use deep generative models such as GAN to generate artificial 

anomalies and a discriminator will learn to differentiate between an anomaly and a normal instance. A 

GAN consists of a generator and a discriminator network in which these two networks are 

adversarially trained with the generator trained to deceive the discriminator, and the discriminator 

trained to differentiate between the input and the output by the generator [9]. In [82], the authors 

proposed OCGAN, which exclusively constrains the latent space to represent the given class. An 

adversarial discriminator is used in the input space. A GAN-inspired method is proposed in [83], in 

which two deep networks compete for AD. One network performs novelty detection, while the other 

enhances the normal samples and distorts the outliers. The method proposed in [84] followed a 

probabilistic approach and computed the probability that a sample was generated by the inlier 

distribution. This is achieved by linearizing the parameterized manifold capturing the underlying 

inlier distribution and factorizing the probability calculation using local coordinates of the manifold 

tangent space. It should be noted that GAN suffers from significant problems relating to training 

stability [9]. Zenati et al. [85] proposed Adversarially Learned Anomaly Detection (ALAD), which 

used bi-directional GAN to adversarially derive learned features for AD while ensuring GAN stability 

during training, which leads to significantly improved performance. In [86], the authors introduced 

GANomaly, which used a conditional GAN to jointly model the generation of high-dimensional 

image space and the inference of latent space. Encoder-decoder-encoder subnetworks allowed the 

mapping of the input image to its latent representation, and the distance between the generated output 

image and the latent vectors are minimized. Among these methods, OCGAN is trained similarly to the 

original GAN, while other methods use different types of GAN such as bi-directional GAN, 

                  



   
 

   
 

conditional GAN, and encoder-decoder-encoder subnetworks (e.g. GANomaly) to adversarially 

derive learned features for AD. It is noted that the instances generated by using deep generative 

ADMs models such as GAN are shown to be realistic compared to the real data. With the involvement 

of generated instances in the adversarial training methods, the deep generative ADMs models might 

obtain good performance on some kinds of datasets. The drawback meanwhile is that these models are 

trained using an alternating optimization scheme, which usually does not provide stable outputs i.e. 

different runs may yield different outputs [9]. 

Self-supervised learning-based ADMs use a predefined auxiliary task to help the model distinguish 

between anomalies and normal instances without using labeled data [9] [87]. A wide range of 

auxiliary tasks has been proposed in self-supervised learning, such as colorization, rotation, cropping, 

or masked word prediction. Recent studies have also demonstrated that the representations learned 

from self-supervised tasks can improve AD performance, provided that the anomaly score and the 

auxiliary task are chosen correctly [88]. There are two types of self-supervised learning for AD: self-

predictive methods and contrastive methods. In self-predictive methods, a transformation is applied to 

the input sample and the model either predicts the applied transformation or reconstructs the original 

input. An example of self-predictive methods is CutPaste [89], which notes that geometric 

transformations such as rotation and translation are effective in learning semantic concepts but not 

regularity. In CutPaste, small random rectangular regions are cut and pasted at another location. A 

deep network is then trained to distinguish normal images from these images. Another example is the 

method in [87] which used an auxiliary classification task in which normal examples are combined 

with instances sampled from several distributions, such as Gaussian and Poisson, for the method to 

learn the normal data features. In contrastive methods, the objective of the auxiliary task is to 

emphasize the contrast between “positive” and ”negative” samples to make the models learn more 

effectively. In [90], the authors proposed Contrasting Shifted instances (CSI), which seeks to contrast 

a given example not only with other instances but also distributionally shifted augmentations of itself. 

It should be noted that despite many successes in multiple areas, until recently self-supervised 

learning AD has been mostly applied to image data and other types of data in which the auxiliary task 

can be easily defined [88], which might not be the case for many domains. Self-supervised ADMs 

have a significant advantage in which the pretext tasks which these methods use do not require ground 

truth labels when training the detection model. This makes them suitable for a wider range of datasets 

where obtaining ground truth information can be costly or unavailable [9]. On the other hand, the 

appropriate pretext task needs to be carefully chosen to obtain a good performance. For example, 

Hojjati et al. [88] suggested that some methods based on pretext tasks like geometric transformations 

and contrastive methods work well for detecting semantic anomalies, whereas other methods based on 

pixel-level transformations are more appropriate for defect detection. Since it is difficult to define the 

auxiliary task for GED, in this paper we do not include self-supervised ADMs in our experiments.  

Table 1. The main approaches in anomaly detection using Machine Learning and Deep 

Learning 

Deep Learning (DL) 

based, or Machine 

Learning (ML) 

based 

Approach References 

ML Reconstruction-based 

models 

Autoencoders [52], PCA [51], SOD [54] 

One-class classification 

models 

One-class SVM [48], SVDD [47], Elliptic 

Envelope [49] 

Density estimation and 

probability models 

GMM [43], Kernel density estimator [42], 

Histogram estimator [9], ECOD [40], COPOD 

[44], LODA [45], HBOS [46] 

Proximity-based models Isolation Forest [56], LOF [57], [58], ABOD 

[59], [60], COF [61], KNN [9], LMDD [62], 

                  



   
 

   
 

ROD [60] 

DL Reconstruction-based 

models 

Denoising autoencoders [65], Variational 

autoencoders (VAE) [9], Robust autoencoder 

[69], L2-normalized deep autoencoder [71], 

Memory-augmented deep autoencoder [72], 

Collaborative deep autoencoder [74], Adversarial 

Autoencoder [66], RNN-based autoencoder [67], 

SO-GAAL [68] 

One-class classification 

models 

Hybrid DBN-1SVM [76], Deep SVDD [52], 

RNN-based OCSVM [79], One-class CNN [80], 

Robust Deep PCA [69] 

Deep generative models OCGAN [82], [83], [84], ALAD [85], 

GANomaly [86] 

Self-supervised models CSI [90], [87], CutPaste [89] 

3. Experimental Studies 

Fig 1 shows how a ML-based AD model for GED works. Measurement data for training are first 

processed, for example, missing values are removed, or some measurements are transformed and 

normalized before becoming the training data. A ML-based ADM is then trained on the training data 

to generate a detection model. Among ML paradigms with different settings, supervised and 

unsupervised ML are the most popular ones. In supervised learning, we have a labelled dataset   

including   observations (    ), where    (          ) is a feature vector that belongs to the 

input domain, and    is the class label of   which belongs to the target domain. The relationship 

between   and    can be described by an unknown function   i.e.,     ( ). Supervised ML 

algorithms aim to propose an approximation (also called hypothesis)   for the function  . On that 

basis, we apply   to predict the class label of unseen samples. On the other hand, the class label    is 

not given in unsupervised learning so the learning algorithm focuses on exploring hidden knowledge 

and patterns of the data from   feature vectors only. For the GED problem, when the GE information 

of measurement data is given, we can train a supervised ML algorithm on the training data. Several 

methods mentioned in section 2 like the Bayesian approach [37] [39] and Neural Network [6] used 

this ML paradigm to train a GED system. However, to our knowledge and experience, the 

requirement concerning available GE information is hard to fulfill in real-life applications because of 

an expensive checking inspection on the historical measurement data. The setting of unsupervised ML 

meanwhile seems to be more realistic and feasible for the problem of GED. The details of each 

component and process of the proposed model in Fig 1 are given as follows:  

Data preparation: Due to the heterogeneous origin and setup of data acquisition devices, real-world 

data may be collected with either redundant, incomplete, or inconsistent information. Applying ML 

algorithms to that raw data may not obtain high-quality results as they would fail to identify patterns 

effectively. Therefore, collected measurement data may need to be prepared before it can be used as 

training data for an ADM. Data preparation is the process of sorting and filtering the raw data to 

remove unnecessary and inaccurate data to make it in a suitable form for further analysis and 

processing. There is no unique set of tasks in the data preparation process, however, the process for 

GED systems typically involves several main tasks including (i) data structuring: the data is modeled 

and organized to meet the analytics requirements (ii) data cleansing: missing and inconsistent 

information on the data is imputed and resolved (iii) data selection: a subset of redundant readings 

was selected (iv) data transformation: the data is transformed into a unified and usable format. 

                  



   
 

   
 

 

Fig.1. The model of a gross error detection system using machine learning-based anomaly 

detection methods 

Data preparation was found in several existing studies concerning the GED problem including the 

data transformation in the PCA test of Tong and Crowe [25] and data selection and transformation in 

the PCA and Neural Network-based method of Reddy and Mavrovouniotis [6]. PCA serves as the 

foundation for multivariate data analysis using projection methods. It is frequently used to obtain 

lower-dimensional data while retaining most of the data's variation by projecting each data point onto 

only the first few principal components. PCA is important in terms of representing multivariate data 

in a smaller set of variables which can improve the observation of trends, clusters, and outliers in the 

data. The measurement selection procedure in redundant readings was also mentioned in [6] in which 

44 variables were selected among 65 variables of readings. The selected variables were then 

transformed by three sequential steps: replacing exhibited strong linear correlation by their first 

principal component score, mean-centering, and scaling into a specific range. 

In this study, we use PCA and Random Projection on measurement data for the data transformation. 

Like PCA, Random Projection [91][92] linear transformation in which the pairwise distance between 

pairs of points can be preserved with a specific probability and distortion level ε before and after 

conducting a projection. Random projections are useful in dimension reduction if the dimension of the 

projected data is chosen to be lower than that of the original data. Random projections are simply 

obtained by using a     random matrix   {   }  where   and   are the dimensions of the original 

data and projected data, respectively) and the {   } are random variables such that  (   )  

     (   )   . Several forms of {   }  are given by [92]:  

 Plus-minus-one or Bernoulli random projection:    √ ⁄ {   } where     is randomly 

chosen from *    + such that   (     )    (      )    ⁄ . 

 Achlioptas random projection:    √ ⁄ {   } where     is randomly chosen from { √    

√ } such that   (    √ )    (     √ )    ⁄  and   (    √ )    ⁄ . 

 Normal random projection:    √ ⁄ {   } where     is distributed according to  (   ) 

distribution. 

Training data: The training data is the output of data preparation in a well-prepared instance to train 

a detection model. In the model in Fig 1, the training dataset is fed to an ADM to teach it how to 

detect the presence of GEs. In this study, we generated training data on 16 systems collected from the 

literature (please find these systems’ information in Fig.S5-S20 in the Supplement Material). Our 

study covered a large range of systems, starting from only 3 streams up to 50 streams. All the selected 

systems were introduced in the benchmark paper from the GED problem [18]. Table S.9. in the 

Supplement Material shows the number of streams of the benchmark scenarios, and the characteristics 

of the streams (parallel stream, recycled stream, or measurement) that can be used as a reference when 

selecting the right datasets for the experiments. In these systems, the true values of measurements and 

the variances of random errors associated with all streams were given. First, the random error was 
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generated under the assumption of a normal distribution with zero mean and given variance. The 

generated random errors for all streams were added to the true measurements to create the base case 

data i.e., no-GEs data. Then GEs were generated for all streams and added to those base cases. In this 

work, each GE was generated under a uniform distribution between      to      of the associated 

measurement value. The training data for a system of   streams contains 1000 samples with non-GE, 

10 samples with GE on the     stream. Hence, the training data includes           samples  

  (          ). The ground truth of GE presentation is not required for the training since we 

experiment on unsupervised ADMs. The details of the systems in the experiments can be found in the 

Supplemental Material. 

ADM and Detection Model: To train ADMs effectively, it is necessary to have properly initialized 

hyper-parameters. Each method has a different set of hyper-parameters that normally affect its 

performance. In DL-based methods, the number of neurons in each layer and the number of layers are 

two important hyper-parameters to specify the architecture of the DL system. The optimiser which 

would find the optimal weights of neurons in the network can yield very different detection results 

according to different choices, although recent optimisers such as Adam have improved the 

optimisation process considerably. The learning rate of the optimiser is also an important hyper-

parameter since small learning rates might make the computational time increase while large learning 

rates might make the model oscillate. Finally, the number of epochs, which is the number of times a 

DL-based method passes through the dataset during training, needs to be determined carefully to 

reduce underfitting or overfitting situations during the training. Meanwhile, the parameters of ML-

based methods are usually approach-dependent. For example, the proximity approach such as LOF 

and KNN requires the number of neighbours from which the anomalies can be determined. Tree-

based methods like Isolation Forest require a number of trees from which to create an ensemble of 

trees for collaborated detection. The density-based methods like LODA require the number of 

histogram bins and the number of random cuts to determine the density of the training data. 

In the experiments, we used 19 ML or DL-based ADMs from 4 different categories of ADMs (please 

see Table 1) to ensure that the selected methods cover all approaches to handle anomalous instances. 

The selected methods have been introduced recently or are state-of-the-art models for AD [8] and 

have not yet been applied to the problem of GED. Four ML-based methods namely Isolation Forest 

[56], LOF [57], One-class SVM [48], and Elliptic Envelope [49] are implemented by using the Scikit-

learn library [93], while the remaining methods are implemented by using the PyOD library [94] in 

which three models, VAE [9], SO-GAAL [68], and Deep SVDD [52] are DL-based while the 

remaining are ML-based methods. Among the methods implemented in the Scikit-learn library, two 

are one-class classification models (One-class SVM and Elliptic Envelope) while the other two are 

proximity-based methods (Isolation Forest and LOF). Meanwhile, among the methods implemented in 

the PyOD library, five methods are proximity-based (ABOD [59], COF [61], KNN [9], LMDD [62], 

ROD [60]), four methods are density estimation and probability-based (ECOD [40], COPOD [44], 

LODA [45], HBOS [46]), five methods are reconstruction-based (Autoencoder [52], VAE [9], PCA 

[51], SOD [54], SO-GAAL [68]), and one method is one-class classification method (Deep SVDD 

[52]).  

In the experiment, we used the values of the hyperparameters provided by the authors of the original 

papers or ML/DL libraries, which in our opinion can give a good basis for comparison for two 

reasons. First, practitioners may face challenges to use some models arising from areas in which they 

are not experts because of the requirements on the knowledge and experience for the tuning parameter 

procedure. While it may be possible through tuning to achieve better performances on specific 

datasets, we aim to demonstrate that competitive results to the benchmark algorithms (statistical tests) 

can be obtained with the pre-defined hyperparameters, obviating the need for an additional tuning 

overhead for each application. By using the default or suggested hyperparameters’ value for the 

models, we can provide a more achievable result that would fit most applications. Besides, although 

                  



   
 

   
 

tuning the hyperparameters of experimental methods can improve GE detection results, it normally 

would take longer if we would try to showcase the methods with different hyperparameters, especially 

for DL-based models. The detailed hyper-parameter settings of each method in the experiment are 

given in Table 2. 

 

Table 2. Anomaly detection models used in the experiments and their hyperparameter settings. 

Model name Library Hyper-parameters 

Isolation Forest (denoted by iForest) Scikit-learn Number of trees: 500. 

Local Outlier Factor (denoted by LOF) Scikit-learn Number of neighbors: 5. 

One-class SVM (denoted by OCSVM) Scikit-learn RBF kernel. Nu: 0.5. 

Elliptic Envelope Scikit-learn Proportion of outliers in the dataset: 0.1.  

KNN  PyOD Number of neighbors: 5. 

ECOD  PyOD Proportion of outliers in the dataset: 0.1.  

COPOD  PyOD Proportion of outliers in the dataset: 0.1.   

ABOD  PyOD Number of neighbors: 5. 

ROD PyOD Proportion of outliers in the dataset: 0.1.  

LODA   PyOD Number of histogram bins: 10. Number of 

random cuts: 100. 

Autoencoder  PyOD Number of hidden neurons per layer: [64, 

32, 32, 64]. Activation function: ReLU. 

Number of epochs: 100. Optimiser: Adam. 

VAE  PyOD Number of neurons in encoder: [128, 64, 

32]. Number of neurons in decoder: [32, 

64, 128]. Number of epochs: 100. 

Optimiser: Adam. 

SO-GAAL  PyOD Discriminator learning rate: 0.01. 

Generator learning rate: 0.0001. Stop 

epoch: 20. Optimiser: SGD. 

Deep SVDD  PyOD Number of neurons per hidden layer: [64, 

32]. Activation function: ReLU. Number 

of epochs: 100. Optimiser: Adam.  

PCA  PyOD Proportion of outliers in the dataset: 0.1.  

LMDD PyOD Number of iterations: 50.  

COF  PyOD Number of neighbors: 20. 

HBOS  PyOD Number of bins: 10. 

SOD PyOD Number of neighbors: 20. 

 

Testing process: In the model in Fig 1, a test sample is first passed through the data preparation 

process. All preparation steps applied to measurement data for training once again will be applied to 

each test sample in the same order. The data preparation step outputs the suitable format to input to 

the detection model. In this study, test samples were also generated on 16 systems to study the 

performance of ADMs. We generated two test datasets for each system in which each GE was 

generated under a uniform distribution between     and     of the associated measurement value 

for the first one, and between      and      of the associated measurement value for the second 

one. It is recognised that the first test dataset is more challenging than the second one for the GED 

task because of the smaller magnitudes of GEs. The data generation for testing data is the same as the 

training data generation.  According to a system with   streams, we generated the test data of 

(   )       samples in which 1000 samples with no-GE, 1000 samples with GE on the     

                  



   
 

   
 

stream. The information details of experimental datasets generated from 16 systems are shown in 

Table A1. 

The performances of all ADMs on the test samples were reported according to 4 performance metrics 

namely Overall power (OP), Selectivity, Accuracy, and F1-Score. OP and Selectivity are two popular 

metrics when evaluating the performance of GED methods while Accuracy and F1-Score are two 

popular metrics used in the ML community to evaluate the performance of ML methods. We illustrate 

the confusion matrix which summarises how successful an ADM is at predicting samples belonging to 

GE or non-GE class. Four performance metrics are computed based on the confusion matrix by using 

the equations (1)-(4). Accuracy aims to measure all the correctly identified cases i.e., considering both 

true positive and true negative cases of a GE detector. The OP is intuitively the ability of a GE 

detector to find all the positive samples i.e., GE samples. The Selectivity meanwhile is intuitively the 

ability of a GE detector not to label as positive a sample that is negative i.e., non-GE. It is recognised 

that the OP is the Recall while the Selectivity is the Precision, two popular performance matrices used 

in the ML community. The F1 score takes into consideration both False Negative and False Positive 

in the detection results as the metric is the harmonic mean of the Precision (Selectivity) and Recall 

(OP). 

 

 Predicted GE 

Actual GE  GE = Yes GE = No 

GE = Yes True Positive (TP) False Negative (FN) 

GE = No False Positive (FP) True Negative (TN) 
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 (4) 

We used the Friedman test [95] to test the difference between the performances concerning each of 

these 4 metrics of 19 experimental ADMs on 32 test datasets. The Friedman test is used to test the 

null hypothesis that all methods perform equally on the datasets. If the null hypothesis is rejected i.e., 

the p-value of the Friedman test is smaller than a specific threshold, a post-hoc test is then conducted. 

In this case, we used Nemenyi post-hoc test for all pairwise comparisons based on the rankings of 

ADMs on all experimental test datasets. Two methods are considered to perform differently with a 

statistical significance if the p-value computed from the post-hoc test statistic is smaller than an 

adjusted value of confidence level computed from Nemenyi’s procedure. In this work, the confidence 

level of the Nemenyi test was set to 0.05. 

4. Experimental results and discussions 

4.1. Comparison among ADMs 

Tables 3 to 6 show the accuracy and OP results of the 19 experimental ADMs on the 32 test datasets. 

The F1 Score and Selectivity results of the ADMs can be found in the Supplemental Material. The 

Friedman test returns p-values smaller than 2.2E-16 for each performance metric which means we 

reject the null hypothesis of “no difference in the performances of all ADMs”. The Nemenyi post-hoc 

test results in Fig 2 to 5 show a similar pattern relating to the accuracy, F1 score, and OP in which 

OCSVM ranks first among 19 methods on these performance metrics. 

                  



   
 

   
 

4.1.1. Comparison based on detection Accuracy 

For accuracy, the Nemenyi post-hoc test result indicates that OCSVM ranks first among all 

experimental methods and is better than 15 ADMs (PCA, iForest, LMDD, Autoencoder, ABOD, 

HBOS, LOF, LODA, Deep SVDD, ECOD, COF, ROD, COPOD, SOD, SO-GAAL).  Elliptic 

Envelop ranks second and is better than 9 ADMs (LOF, LODA, Deep SVDD, ECOD, COF, ROD, 

COPOD, SOD, SO-GAAL). The top 5 ADMs ranked based on accuracy are OCSVM, Elliptic 

Envelope, KNN, VAE, and PCA in which the Nemenyi test indicates that there are no differences in 

the performance of OCSVM, Elliptic Envelope, KNN, and VAE. The 5 poorest methods based on 

accuracy are COF, ROD, COPOD, SOD, and SO-GAAL.  

                  



   
 

   
 

Table 3. The Accuracy of the 19 experimental ADMs on the 16 datasets with     of GEs 

 
iForest LOF OCSVM Elliptic Envelope KNN ECOD COPOD ABOD ROD LODA Autoencoder VAE SO-GAAL Deep SVDD PCA LMDD COF HBOS SOD 

P1 0.499 0.454 0.687 0.491 0.497 0.323 0.360 0.463 0.311 0.394 0.454 0.472 0.407 0.289 0.458 0.451 0.287 0.462 0.284 

P2 0.430 0.527 0.788 0.572 0.561 0.224 0.215 0.535 0.213 0.361 0.488 0.521 0.292 0.163 0.497 0.392 0.171 0.393 0.182 

P3 0.421 0.553 0.756 0.804 0.517 0.162 0.120 0.505 0.160 0.246 0.746 0.784 0.077 0.152 0.778 0.156 0.250 0.406 0.113 

P4 0.475 0.631 0.838 0.646 0.637 0.215 0.211 0.620 0.222 0.476 0.586 0.609 0.143 0.159 0.561 0.406 0.172 0.395 0.186 

P5 0.307 0.357 0.729 0.368 0.376 0.211 0.207 0.348 0.195 0.189 0.309 0.337 0.111 0.145 0.352 0.473 0.132 0.303 0.139 

P6 0.213 0.205 0.514 0.209 0.210 0.206 0.208 0.212 0.199 0.204 0.206 0.206 0.194 0.204 0.206 0.406 0.161 0.212 0.125 

P7 0.243 0.358 0.683 0.357 0.381 0.190 0.189 0.337 0.197 0.168 0.292 0.303 0.091 0.166 0.313 0.327 0.287 0.233 0.126 

P8 0.259 0.211 0.917 0.246 0.232 0.187 0.180 0.201 0.163 0.195 0.219 0.243 0.083 0.166 0.221 0.467 0.292 0.219 0.119 

P9 0.214 0.196 0.923 0.255 0.174 0.162 0.173 0.193 0.166 0.171 0.209 0.226 0.077 0.155 0.216 0.277 0.274 0.223 0.195 

P10 0.248 0.354 0.685 0.351 0.344 0.152 0.123 0.338 0.137 0.146 0.202 0.228 0.197 0.099 0.210 0.362 0.100 0.289 0.100 

P11 0.199 0.174 0.923 0.184 0.217 0.173 0.166 0.199 0.152 0.186 0.169 0.184 0.077 0.135 0.187 0.243 0.253 0.211 0.153 

P12 0.265 0.573 0.786 0.635 0.569 0.173 0.157 0.606 0.158 0.177 0.525 0.593 0.077 0.228 0.605 0.317 0.115 0.293 0.110 

P13 0.181 0.093 0.578 0.167 0.178 0.152 0.152 0.145 0.148 0.171 0.159 0.159 0.158 0.205 0.165 0.275 0.079 0.183 0.075 

P14 0.328 0.066 0.947 0.256 0.291 0.151 0.119 0.105 0.149 0.151 0.080 0.085 0.040 0.137 0.083 0.397 0.185 0.216 0.183 

P15 0.248 0.052 0.691 0.082 0.164 0.157 0.140 0.063 0.098 0.148 0.068 0.071 0.034 0.212 0.070 0.163 0.195 0.165 0.172 

P16 0.355 0.032 0.980 0.033 0.077 0.166 0.151 0.031 0.139 0.134 0.020 0.020 0.020 0.147 0.020 0.334 0.091 0.217 0.033 

Ave 0.305 0.302 0.777 0.354 0.339 0.188 0.179 0.306 0.175 0.220 0.296 0.315 0.130 0.173 0.309 0.340 0.190 0.276 0.143 

 

 

 

                  



   
 

   
 

Table 4. The Accuracy of the 19 experimental ADMs on the 16 datasets with      of GEs 

 
iForest LOF OCSVM Elliptic Envelope KNN ECOD COPOD ABOD ROD LODA Autoencoder VAE SO-GAAL Deep SVDD PCA LMDD COF HBOS SOD 

P1 0.866 0.791 0.849 0.861 0.867 0.323 0.344 0.847 0.321 0.650 0.805 0.830 0.505 0.533 0.821 0.476 0.298 0.809 0.307 

P2 0.814 0.847 0.902 0.885 0.878 0.221 0.199 0.845 0.195 0.300 0.886 0.896 0.294 0.372 0.897 0.475 0.180 0.540 0.211 

P3 0.670 0.779 0.845 0.997 0.775 0.165 0.117 0.737 0.173 0.290 0.998 0.998 0.166 0.459 0.998 0.314 0.152 0.505 0.109 

P4 0.887 0.880 0.926 0.916 0.907 0.213 0.192 0.880 0.188 0.887 0.930 0.940 0.143 0.235 0.927 0.485 0.170 0.479 0.193 

P5 0.628 0.570 0.888 0.738 0.688 0.197 0.185 0.613 0.187 0.396 0.726 0.756 0.111 0.216 0.763 0.450 0.147 0.411 0.172 

P6 0.245 0.232 0.573 0.258 0.246 0.212 0.213 0.255 0.208 0.257 0.248 0.259 0.201 0.206 0.248 0.372 0.186 0.239 0.143 

P7 0.365 0.550 0.760 0.569 0.569 0.177 0.169 0.533 0.200 0.314 0.560 0.566 0.222 0.218 0.563 0.365 0.188 0.272 0.135 

P8 0.524 0.398 0.917 0.638 0.446 0.172 0.150 0.396 0.152 0.452 0.581 0.626 0.083 0.184 0.592 0.343 0.266 0.293 0.150 

P9 0.349 0.388 0.923 0.514 0.360 0.162 0.151 0.377 0.173 0.263 0.499 0.520 0.077 0.185 0.505 0.178 0.273 0.305 0.156 

P10 0.456 0.741 0.871 0.765 0.689 0.156 0.119 0.595 0.158 0.503 0.767 0.787 0.173 0.144 0.773 0.297 0.103 0.470 0.108 

P11 0.372 0.303 0.923 0.558 0.366 0.150 0.129 0.354 0.146 0.286 0.513 0.550 0.077 0.198 0.563 0.219 0.142 0.316 0.121 

P12 0.459 0.802 0.882 0.920 0.767 0.164 0.145 0.788 0.159 0.368 0.949 0.959 0.320 0.644 0.956 0.363 0.095 0.364 0.128 

P13 0.266 0.095 0.658 0.279 0.280 0.148 0.128 0.213 0.144 0.263 0.270 0.273 0.197 0.191 0.277 0.166 0.129 0.245 0.135 

P14 0.482 0.067 0.952 0.762 0.634 0.148 0.109 0.303 0.135 0.538 0.753 0.758 0.040 0.333 0.754 0.263 0.077 0.264 0.075 

P15 0.368 0.055 0.813 0.366 0.406 0.151 0.120 0.157 0.109 0.241 0.336 0.347 0.034 0.258 0.344 0.285 0.171 0.280 0.219 

P16 0.525 0.037 0.980 0.039 0.278 0.172 0.154 0.057 0.143 0.128 0.020 0.020 0.020 0.222 0.020 0.405 0.049 0.308 0.037 

Ave 0.517 0.471 0.854 0.629 0.572 0.183 0.164 0.497 0.174 0.384 0.615 0.630 0.166 0.287 0.625 0.341 0.164 0.381 0.150 

 

 

 

                  



   
 

   
 

Table 5. The OP of the 19 experimental ADMs on the 16 datasets with     of GEs 

 
iForest LOF OCSVM 

Elliptic 

Envelope 
KNN ECOD COPOD ABOD ROD LODA Autoencoder VAE SO-GAAL 

Deep 

SVDD 
PCA LMDD COF HBOS SOD 

P1 0.365 0.307 0.739 0.349 0.363 0.116 0.153 0.314 0.097 0.218 0.303 0.326 0.243 0.083 0.307 0.336 0.064 0.311 0.056 

P2 0.345 0.460 0.830 0.511 0.500 0.101 0.085 0.468 0.084 0.270 0.413 0.450 0.190 0.036 0.423 0.313 0.035 0.309 0.047 

P3 0.377 0.519 0.773 0.790 0.483 0.095 0.047 0.467 0.091 0.185 0.726 0.767 0.000 0.091 0.762 0.086 0.187 0.361 0.039 

P4 0.394 0.578 0.880 0.594 0.583 0.090 0.080 0.564 0.094 0.396 0.524 0.550 0.000 0.034 0.494 0.315 0.038 0.304 0.052 

P5 0.227 0.284 0.757 0.295 0.305 0.119 0.109 0.274 0.098 0.097 0.228 0.259 0.000 0.048 0.278 0.439 0.023 0.227 0.031 

P6 0.115 0.105 0.514 0.109 0.110 0.106 0.108 0.113 0.098 0.103 0.106 0.107 0.091 0.106 0.105 0.370 0.044 0.114 0.001 

P7 0.177 0.301 0.698 0.300 0.326 0.116 0.112 0.277 0.123 0.092 0.229 0.242 0.000 0.096 0.253 0.271 0.220 0.166 0.039 

P8 0.200 0.147 1.000 0.184 0.169 0.119 0.108 0.135 0.091 0.128 0.153 0.180 0.000 0.102 0.155 0.449 0.229 0.157 0.039 

P9 0.154 0.136 1.000 0.197 0.111 0.096 0.107 0.131 0.101 0.107 0.146 0.165 0.000 0.096 0.154 0.234 0.214 0.167 0.128 

P10 0.193 0.306 0.697 0.302 0.296 0.088 0.056 0.289 0.072 0.085 0.141 0.169 0.142 0.037 0.150 0.328 0.031 0.240 0.031 

P11 0.137 0.112 1.000 0.119 0.159 0.108 0.099 0.139 0.085 0.125 0.103 0.119 0.000 0.073 0.122 0.190 0.192 0.151 0.083 

P12 0.207 0.540 0.807 0.606 0.535 0.107 0.088 0.577 0.089 0.115 0.487 0.561 0.000 0.172 0.575 0.264 0.041 0.240 0.036 

P13 0.136 0.039 0.585 0.120 0.133 0.105 0.102 0.096 0.099 0.125 0.111 0.111 0.111 0.166 0.118 0.241 0.021 0.139 0.017 

P14 0.304 0.028 0.984 0.226 0.263 0.118 0.083 0.068 0.115 0.118 0.042 0.047 0.000 0.108 0.045 0.382 0.151 0.187 0.149 

P15 0.226 0.019 0.700 0.050 0.137 0.129 0.111 0.030 0.067 0.120 0.035 0.038 0.000 0.192 0.037 0.136 0.167 0.138 0.143 

P16 0.345 0.013 1.000 0.014 0.059 0.151 0.135 0.012 0.123 0.119 0.000 0.000 0.000 0.134 0.000 0.324 0.073 0.203 0.013 

Ave 0.244 0.243 0.810 0.298 0.283 0.110 0.099 0.247 0.095 0.150 0.234 0.256 0.049 0.098 0.249 0.292 0.108 0.213 0.057 

 

 

 

                  



   
 

   
 

Table 6. The OP of the 19 experimental ADMs on the 16 datasets with      of GEs 

 
iForest LOF OCSVM 

Elliptic 

Envelope 
KNN ECOD COPOD ABOD ROD LODA Autoencoder VAE SO-GAAL 

Deep 

SVDD 
PCA LMDD COF HBOS SOD 

P1 0.858 0.754 0.967 0.849 0.858 0.114 0.126 0.826 0.096 0.565 0.773 0.810 0.377 0.408 0.798 0.344 0.075 0.779 0.103 

P2 0.794 0.834 0.966 0.877 0.869 0.098 0.066 0.831 0.061 0.199 0.877 0.889 0.190 0.279 0.890 0.399 0.050 0.479 0.090 

P3 0.647 0.763 0.870 1.000 0.762 0.099 0.044 0.719 0.105 0.236 1.000 1.000 0.101 0.427 1.000 0.258 0.082 0.468 0.035 

P4 0.876 0.869 0.988 0.910 0.898 0.088 0.058 0.867 0.053 0.875 0.924 0.935 0.000 0.127 0.921 0.400 0.037 0.403 0.067 

P5 0.590 0.523 0.935 0.712 0.656 0.101 0.083 0.572 0.086 0.329 0.698 0.732 0.000 0.131 0.739 0.391 0.042 0.350 0.069 

P6 0.152 0.136 0.582 0.165 0.153 0.111 0.107 0.162 0.106 0.165 0.155 0.167 0.096 0.106 0.153 0.318 0.070 0.144 0.021 

P7 0.309 0.510 0.785 0.534 0.534 0.098 0.086 0.492 0.122 0.254 0.522 0.530 0.155 0.152 0.525 0.305 0.109 0.209 0.049 

P8 0.489 0.350 1.000 0.612 0.402 0.101 0.073 0.346 0.076 0.411 0.548 0.599 0.000 0.122 0.561 0.293 0.203 0.239 0.073 

P9 0.302 0.344 1.000 0.479 0.314 0.096 0.082 0.332 0.107 0.212 0.463 0.486 0.000 0.127 0.470 0.116 0.213 0.258 0.086 

P10 0.418 0.723 0.896 0.748 0.667 0.093 0.052 0.568 0.095 0.468 0.750 0.771 0.117 0.088 0.757 0.245 0.034 0.435 0.039 

P11 0.325 0.251 1.000 0.524 0.320 0.082 0.057 0.307 0.076 0.232 0.475 0.515 0.000 0.141 0.530 0.157 0.070 0.265 0.048 

P12 0.418 0.788 0.912 0.915 0.750 0.097 0.074 0.775 0.089 0.323 0.946 0.958 0.270 0.623 0.955 0.310 0.020 0.318 0.055 

P13 0.226 0.042 0.669 0.239 0.241 0.098 0.074 0.168 0.093 0.222 0.230 0.232 0.155 0.153 0.236 0.117 0.074 0.204 0.081 

P14 0.464 0.030 0.988 0.752 0.620 0.115 0.072 0.274 0.100 0.522 0.742 0.748 0.000 0.313 0.744 0.234 0.039 0.237 0.037 

P15 0.350 0.022 0.827 0.344 0.387 0.122 0.089 0.127 0.078 0.216 0.313 0.324 0.000 0.241 0.321 0.263 0.141 0.258 0.191 

P16 0.519 0.018 1.000 0.020 0.264 0.157 0.138 0.039 0.127 0.113 0.000 0.000 0.000 0.211 0.000 0.398 0.030 0.296 0.018 

Ave 0.484 0.435 0.899 0.605 0.543 0.104 0.080 0.463 0.092 0.334 0.589 0.606 0.091 0.228 0.600 0.284 0.081 0.334 0.066 

                  



   
 

   
 

In detail, OCSVM obtains an average accuracy of 0.777 on 5% GE datasets, which is higher than the 

second-best method (Elliptic Envelope) by more than 40%. There are 9 ADMs (iForest, LOF, Elliptic 

Envelope, KNN, ABOD, Autoencoder, VAE, PCA, and LMDD) which obtain accuracies between 

30% and 35%. SO-GAAL and SOD are the two poorest methods in this experiment in which their 

average accuracies are only about 14%. It is observed that P16 is the most challenging dataset for the 

experimental methods in which 10 methods obtained the poorest results on this dataset compared to 

those on the other datasets. Meanwhile, on the P1 dataset, 8 methods obtained the highest value of 

accuracy among their results on 16 datasets. 

On 10% GE datasets, the accuracies of 13 methods increase at different rates while the performances 

of the others remain the same or even poorer than their performances on 5% GE datasets. 

Autoencoder and PCA are two methods with the most significant increase of 0.319 and 0.316. By 

contrast, COF, COPOD, and ECOD show a decrease in their accuracies (0.190 to 0.164 of COF, 

0.179 to 0.164 of COPOD, and 0.188 to 0.183 of ECOD). Even though the average accuracy of 

OCSVM increases by only 0.077, this method is still the best ADM on 10% GE datasets (0.854 vs. 

0.630 of the second-rank method VAE). 

On 5% GE cases, OCSVM ranks first on 15 datasets. This method is outperformed by Elliptic 

Envelope, VAE, and PCA on the P3 datasets, obtaining 5% smaller accuracy than the first ranked 

method (Elliptic Envelope). When the magnitude of GEs increases to 10%, the better performance of 

OCSVM is not as clear as in the 5% cases in which OCSVM ranks first on 12 datasets. On the P1 and 

P4 dataset, OCSVM ranks fourth while on P3 and P12 datasets, OCSVM ranks fifth among all 

methods. The differences between the accuracy of OCSVM and the top performance methods on the 

P1 and P5 dataset are not significant. On the P1 dataset, for example, the accuracy of OCSVM is 

0.849, which is about 2% smaller than the top 3 methods on this dataset (0.861 of Elliptic Envelope, 

0.866 of iForest, and 0.87 of KNN). On the P4 dataset, OCSVM obtained an accuracy of 0.926 which 

is slightly smaller than that of PCA (0.927), Autoencoder (0.930), and VAE (0.940). Meanwhile, on 

P3 and P12 datasets, although OCSVM performed well, it was outperformed by some ADMs, for 

example, 0.845 vs. 0.998 of Autoencoder, VAE, and PCA on the P3 dataset. 

4.1.2. Comparison based on Overall Power 

For OP, the null hypothesis that all methods performed similarly is rejected. The Nemenyi post-hoc 

test result in Fig 3 shows that OCSVM obtains better results compared to the VAE, iForest, PCA, 

LMDD, Autoencoder, ABOD, HBOS, LOF, LODA, Deep SVDD, ECOD, COF, ROD, COPOD, 

SOD, and SO-GAAL on the 32 datasets. On 5% GE datasets, OCSVM ranks first on 15 datasets and 

ranks second on the P3 datasets. On 10% GE datasets, OCSVM ranks first on 14 datasets and ranks 

fifth on the P3 and P12 dataset. Compared to the results relating to accuracy where OCSVM ranks 

fourth on the P1 and P4 dataset for OP, OCSVM ranks first on these datasets. It is noted that OP is the 

Recall, which is intuitively the ability of a GE detector to find all the GE samples. This means 

OCSVM has a powerful ability to detect GE samples in a test dataset.  

Once again, the Elliptic Envelope is the second-best method in our experiment. Although this method 

did not perform well on the 5% GE datasets like P6, P11, P15, and P16, on the 10% GE datasets, its 

OP result increases significantly on 13 datasets except P4 dataset (an increase from 0.880 to 0.910), 

P6 dataset (an increase from 0.109 to 0.165) and P16 dataset (an increase from 0.014 to 0.020). On P1 

and P14 dataset, for example, the OPs of the Elliptic Envelope increase about 50% when GE 

magnitude increases from 5% to 10%. VAE performed in the same manner as Elliptic Envelope in 

which it did not obtain high performances on 5% GE datasets but improved the performances on 10% 

GE datasets. This method unfortunately could not detect any GE samples on P16 dataset (its OP is 

0.000 which means its true positive is 0.000). 

4.1.3. Comparison based on Selectivity 

                  



   
 

   
 

The performances of all ADMs for Selectivity are shown in Table S1 and S2 in the Supplemental 

Material. We again reported the Nemenyi post-hoc test results in Fig 4 for the pairwise comparison. 

On this performance metric, SOD, Elliptic Envelope, COPOD, VAE, and PCA are the top 5 methods. 

It is observed that 18 ADMs obtain high values of selectivity on the 5% GE datasets except for SO-

GAAL on some datasets. On 10% GE datasets, the results of those 18 methods relating to the 

selectivity are even better than those on 5% GE datasets: many methods obtained Selectivity of 99%. 

The Nemenyi test results indicate that SOD, Elliptic Envelope, and COPOD are better than iForest, 

ROD, LOF, LMDD, LODA, HBOS, ECOD, OCSVM, Deep SVDD, and SO-GAAL. It is noted that 

SOD is the second poorest method among 19 ADMs on the other performance metrics. The high 

value of the selectivity of SOD is from its small value of false positive because this method is only 

able to detect a very small number of GE samples and most of these detections are correct. A similar 

observation can be found in the case of COPOD. 

In contrast, Elliptic Envelope and VAE are two methods obtaining the second and fourth ranks 

concerning the Selectivity metric. This demonstrates the ability of these methods not to label as 

positive a sample that is negative i.e., non-GE. OCSVM, meanwhile, was slightly outperformed by 

some ADMs concerning the Selectivity metric (OCSVM’s average Selectivity score was 0.931 for up 

to 5% GEs compared to the best average Selectivity score was 0.978 of COPOD), although this 

method ranks first concerning the other performance metrics. That means OCSVM tends to predict 

non-GE samples to have GEs, resulting in slightly high values of the false positive  (or slightly low 

values of the Selectivity). 

4.1.4. Comparison based on F1 score 

We compared the ADMs based on the F1 Score (please see the results in Table.S3 and Table.S4 in the 

Supplemental Material). In this case, the p-value obtained by using the Friedman test is smaller than 

0.05. Hence, we rejected the null hypotheses and conducted the post-hoc test for all pairwise 

comparisons among the 19 methods. A similar pattern can be observed from the Nemenyi test results 

on accuracy and Overall Power. Based on the Nemenyi test, OCSVM is better than iForest, PCA, 

LMDD, Autoencoder, ABOD, HBOS, LOF, LODA, Deep SVDD, ECOD, COF, ROD, COPOD, 

SOD, SO-GAAL. The second-ranked method Elliptic Envelope meanwhile is better than LOF, 

LODA, Deep SVDD, ECOD, COF, ROD, COPOD, SOD, and SO-GAAL. Once again, OCSVM 

ranks first among 19 methods, followed by Elliptic Envelope and KNN. The top 5 poorest methods 

are COF, ROD, COPOD, SOD, and SO-GAAL. 

On 5% GE datasets, OCSVM ranks first on up to 15 datasets for F1 score. This method performed 

poorly on the P3 dataset only, ranking fourth on this dataset and obtaining a 3% smaller value for the 

F1 score than the first-rank method. On 10% GE datasets, OCSVM ranked first on 13 datasets, ranked 

second on P4 dataset, and ranked fifth on P3 and P12 datasets. It is noted that OCSVM ranks fourth 

on P1 and P4 dataset with 10% GE for accuracy. The high values of F1 score of OCSVM indicate that 

this method obtained a good balance between the Selectivity (Precision) and OP (Recall) since F1 

Score is the harmonic mean of those metrics. 

To sum up, the experimental results and the statistical test results indicate that: 

- OCSVM is the best ADM in the experiment concerning accuracy, F1 score, and OP. This method 

has a strong ability to detect GE samples (high values of OP or Recall) and achieves a balance 

between Precision (Selectivity) and Recall (OP) (high values of F1 score). OCSVM obtained slightly 

smaller values of selectivity compared to the other methods. This indicates that OCSVM tends to 

assign the positive label to non-GE samples slightly more than other methods. 

- Elliptic Envelope is the second-best ADM for the GED in our experiment, maintaining the second 

rank for four performance metrics. Although this method did not perform well on 5% GE datasets, its 

performance improved significantly on 10% GE datasets. Elliptic Envelop underperformed compared 

                  



   
 

   
 

to OCSVM in general but is much better than that competitor on the selectivity metrics. In practice, 

the Elliptic Envelope can be considered in datasets with large values of the magnitude of GEs.  

- Other ADMs like KNN, PCA, iForest, and VAE performed in the same manner as Elliptic Envelope, 

performing poorly on 5% GE datasets but performing well on 10% GE datasets. These methods 

maintained the middle ranks concerning 4 performance metrics. 

- SO-GAAL, SOD, COPOD, ROD, COF, ECOD, Deep SVDD, and LODA are the poorest methods to 

detect GE in our experiments. Although SOD obtained the best results relating to selectivity, this 

method can correctly detect a very small number of GE samples. 

We put some explanations about the performance differences among experimental methods. It is 

noted that the 16 systems we used in the experiments contain linear relationships between streams 

[18]. As a result, the methods like OCSVM or Elliptic Envelope which provide decision boundaries 

between normal and abnormal instances with consideration to the linear relations on data attributes 

can obtain high performance on the experimental datasets. Besides, KNN and PCA obtained good 

results on 10% GE datasets but performed poorly on 5% GE datasets. This could be due to their 

sensitivity to certain parameters such as the proportion of outliers in the dataset. Previous research 

[96] showed that PCA is highly sensitive to its parameters. Additionally, since PCA transforms data to 

a different space, anomalous instances may exhibit either better or worse discriminative 

characteristics when distinguished from normal instances. Therefore, while PCA may perform well on 

some datasets, it may perform poorly on others. 

Poor-performing methods such as ECOD and COPOD were shown to be ineffective in detecting 

dependency anomalies in previous research [97] (ECOD and COPOD ranked 1
st
 and 3

rd
 as the poorest 

methods in their experiments to detect dependency anomalies). In our datasets, instances were 

generated according to process constraints (such as equations of mass or energy balance) between 

streams, resulting in dependent relationships between stream variances. This explains why ECOD and 

COPOD performed poorly on the experimental datasets. 

 

Table.7. The Friedman test results for 19 methods on 32 datasets 

Metric Chi-squared df p-value 

Accuracy 331.74 18 < 2.2e-16 

F1 331.41 18 < 2.2e-16 

OP 333.29 18 < 2.2e-16 

Selectivity 344.8 18 < 2.2e-16 

                  



   
 

   
 

 

Fig.2. Nemenyi test results on Accuracies of 19 ADMs 

OCSVM > PCA, iForest, LMDD, Autoencoder, ABOD, HBOS, LOF, LODA, Deep SVDD, ECOD, COF, ROD, COPOD, SOD, SO-GAAL 

Elliptic Envelope > LOF, LODA, Deep SVDD, ECOD, COF, ROD, COPOD, SOD, SO-GAAL 

KNN > LODA, Deep SVDD, ECOD, COF, ROD, COPOD, SOD, SO-GAAL 

VAE, PCA, iForest, LMDD > Deep SVDD, ECOD, COF, ROD, COPOD, SOD, SO-GAAL 

Autoencoder > ECOD, COF, ROD, COPOD, SOD, SO-GAAL 

 

Fig.3. Nemenyi test results on OPs of 19 ADMs 

                  



   
 

   
 

OCSVM > VAE, iForest, PCA, LMDD, Autoencoder, ABOD, HBOS, LOF, LODA, Deep SVDD, ECOD, COF, ROD, COPOD, SOD, SO-

GAAL 

Elliptic Envelope > LOF, LODA, Deep SVDD, ECOD, COF, ROD, COPOD, SOD, SO-GAAL 

KNN > LODA, Deep SVDD, ECOD, COF, ROD, COPOD, SOD, SO-GAAL 

VAE, PCA, iForest > Deep SVDD, ECOD, COF, ROD, COPOD, SOD, SO-GAAL 

 

Fig.4. Nemenyi test results on selectivity values of 19 ADMs 

 SOD, Elliptic Envelope, COPOD > iForest, ROD, LOF, LMDD, LODA, HBOS, ECOD, OCSVM, Deep SVDD, SO-GAAL 

VAE > LOF, LMDD, LODA, HBOS, ECOD, OCSVM, Deep SVDD, SO-GAAL 

PCA, Autoencoder, COF > LMDD, LODA, HBOS, ECOD, OCSVM, Deep SVDD, SO-GAAL 

KNN, ABOD > ECOD, OCSVM, Deep SVDD, SO-GAAL 

iForest, ROD, LOF > OCSVM, Deep SVDD, SO-GAAL 

 

                  



   
 

   
 

 

Fig.5. Nemenyi test results on F1 scores of 19 ADMs 

OCSVM > iForest, PCA, LMDD, Autoencoder, ABOD, HBOS, LOF, LODA, Deep SVDD, ECOD, COF, ROD, COPOD, SOD, SO-GAAL 

Elliptic Envelope > LOF, LODA, Deep SVDD, ECOD, COF, ROD, COPOD, SOD, SO-GAAL 

KNN > LODA, Deep SVDD, ECOD, COF, ROD, COPOD, SOD, SO-GAAL 

VAE, PCA, iForest > Deep SVDD, ECOD, COF, ROD, COPOD, SOD, SO-GAAL 

LMDD > ECOD, COF, ROD, COPOD, SOD, SO-GAAL 

 

4.2. The impacts of data preparation 

We investigate the impacts of data preparation on the performance of ADMs on the experimental 

datasets. The training data was transformed by using PCA or RP before feeding into an ADM. Fig.6 

shows the Accuracy of 4 selected ADMs on the experimental systems with a different number of 

retained components or dimensions. The red dashed lines in these figures show the accuracy of an 

ADM on the original P4 dataset with 10% of GE. We denoted “Method Name+PCA”, “Method 

Name+Normal”, “Method Name+Bernoulli”, and “Method Name+Achlioptas” as the names of an 

ADM training on dataset transformed by using a data transformation method. The figures of the other 

methods as well as the figures relating to OP, F1-Score, and Selectivity outputs can be found in Fig 

S1-S4 in the Supplemental Material. 

It is observed that using either PCA or Random Projection does not boost the performance of 

OCSVM. When 1,2,3, and 4 components (dimensions) were chosen, the accuracies of OCSVM on 

those transformed datasets are smaller than the accuracy of OCSVM on the original dataset. When the 

number of retained components (dimensions) were 5 and 6, the accuracies associated with PCA, 

normal RP, Bernoulli RP, and Achlioptas RP are equal to the original accuracy. 

By contrast, using data transformation can improve the performance of LMDD, COPOD, and HBOS 

to varying degrees. Concerning COPOD, the COPOD+PCA case attains 25.3%, 29.2%, 25.5%, 

26.3%, 23.8%, and 22% with 1, 2, 3, 4, 5, and 6 retained components respectively which are 2%-9% 

higher than the original result of COPOD. When using RP, COPOD can improve its performance in 

                  



   
 

   
 

all cases except COPOD+Achlioptas with 1 dimension. The most improved case is by using Normal 

RP in which the accuracy of COPOD increases by up to 13.8%. 

Significant improvements can be observed in the cases associated with HBOS. By using Bernoulli 

RP, the accuracy of HBOS can improve by up to more than 30% with 2, 3, 4, 5, and 6 dimensions. 

Normal RP also can boost the performance of HBOS+Normal with smaller increases from 10% to 

30%. HBOS+Achlioptas meanwhile does not show any improvement when 1, 3, 4, and 5 dimensions 

were used. Finally, the results associated with LMDD method show a different pattern compared to 

those of OCSVM, COPOD, and HBOS. While using 1 component or dimension helped to 

significantly increase the accuracy of LMDD (more than 50% increase), the results are even poorer 

than the original one when more than 1 component or dimension was used. 

To sum up, the experiments demonstrate that using a data transformation method like PCA or RP can 

improve the performance of an ADM with different significances. For the best-performing methods 

data transformation/dimensional reduction does not significantly improve GED performance. For the 

poorest performing methods, it does help, however not significantly to challenge the best-performing 

methods. In practice, a data transformation method can be used on the measurement data before it is 

fed into an ADM. To determine which data transformation methods will be used for a particular 

dataset and ADM, we can evaluate them on a validation set and compare their performances. It is 

widely recognized that if a method performs well on the validation set, it can likely obtain high 

performance on the test data. 

 

 

 

                  



   
 

   
 

 

 

 

Fig.6. The accuracies of 4 selected ADMs on the P4 dataset (10% GE) with different data 

transformation methods 

                  



   
 

   
 

4.3. The impacts of size of training data 

We investigated impacts of the size of training dataset on the performance of ADMs for the GED. Fig 
7 to 10 show the performances of the top 6 ADMs namely OCSVM, KNN, VAE, PCA, Elliptic 
Envelope, and iForest on 4 systems with two different training sizes: training dataset 1 (1000 non-GEs 

and m*10 observations where GEs are present on each stream) and training dataset 2 (10000 non-GEs 
observations and m*100 observations where GEs are present on each stream). Dataset 2 is 10 times 
larger than dataset 1 however the ratio of GEs to non-GEs has been maintained. 

It can be seen that using different numbers of training samples may impact the performance of some 
methods. On P1 and P2 system, the performance of VAE and OCSVM improve slightly when more 
training samples are available. In detail, on P1 system, the OP of VAE is 34.1% (5%) and 84.5% 
(10%) on the training dataset 2 which is better than the OP of VAE on the training dataset 1 by 1.5% 
(5%) and 3.5% (10%). On P2 dataset, the OP of OCSVM slightly increases from 82.98% (5%) and 

96.57% (10%) (on the training dataset 1) to 83.8% (5%) and 97.11% (10%) (on the training dataset 2). 
A similar pattern can be found in the performance of VAE and OCSVM relating to accuracy and F1 
score. On P4 system, the performance of 5 methods (VAE, KNN, PCA, OCSVM, and Elliptic 
Envelope) improve with more training samples except for iForest on the P4 10% GE dataset. 

By contrast, on P1 and P2 system, Elliptic Envelope, KNN, PCA, and iForest performed slightly 
poorer on training dataset 2 than on training set 1.  For example, the F1 score of Elliptic Envelope is 
50.69% (5%) and 90.14% (10%) on the training dataset 1 and 50.1% (5%) and 89.9% (10%) on the 
training dataset 2 of P1 system, respectively. The F1 score of iForest decreased from 52.22% (5%) 

and 90.56% (10%) to 50.5% (5%) and 89.6% (10%) when more training samples were used. On P3 
system with 5% GE, the reductions in the performance Elliptic Envelope, KNN, PCA, and iForest are 
more significant than those on the P1 and P2 system. VAE for example obtained 76.72% of OP on the 
training dataset 1 while this method only obtained 57.5% of OP on the training dataset 2. 

To sum up, the size of training datasets may affect the performances of ADMs on experimental 
systems with different significances. Some methods obtained better results while some methods 
performed poorer when more training samples were used. When applying an ADM on a training 
dataset, the method tries to distinguish between GE and non-GE samples to form a detection-making 

strategy on test samples. Using more training samples may change the discriminative ability of the 
training data that affect the performance of the detection-making strategy of ADMs.  

4.4. The training and testing time 

Table 8 shows the training time of 19 ADMs on the 16 datasets with ±5% of GEs. The experiments 

were conducted on a PC with a Core i7 processor and 128GB RAM.  For iForest, LOF, OCSVM, 
Elliptic Envelope, KNN, ECOD, COPOD, ABOD, LODA, Autoencoder, VAE, Deep SVDD, PCA, 
COF, HBOS, in most cases their training times never exceed five minutes, except for OCSVM and 
COF on the P16 dataset, which took 896 and 1230 seconds (or 15 and 20 minutes) for training 
respectively. 

Meanwhile, ROD, SO-GAAL, LMDD, and SOD took much higher training time than the others, 
requiring a training time of 357.037, 236.701, 2204.309, and 216.284 seconds on average, 
respectively. The training time of ROD is the smallest among these 4 methods on the P1-P15 datasets. 

In detail, for the P1 dataset, ROD took around 2 seconds for training while SO-GAAL, LMDD, and 
SOD required 65.76, 14.338, and 15.822 seconds respectively. From P2 to P15, SO-GAAL required at 
most 464.937 seconds (on P15) which is lower than the required training time of ROD on P15 by 
more than 200 seconds, while SOD had the highest training time at around 360 seconds on the P14 
dataset. For the P16 dataset, SO-GAAL took just around 10 minutes for training, while ROD and 
SOD required 4176.322 and 1629.394 seconds, which is higher by 6.15 and 3.39 times compared to 

the time for training on the P15 dataset. Finally, the sets of training time of LMDD on the P1-P13 
dataset were from 14 seconds to almost 13 minutes, but on P14, P15, and P16 dataset the required 
times for training were more than 25000 seconds or almost 7 hours, which is the highest among all 
methods on all datasets.  

                  



   
 

   
 

Table 9 shows the testing time for the 19 ADMs on the 16 datasets. The methods which did not 
require more than 5 minutes for training also had small testing time. Even though SO-GAAL required 
from 1 to 7.73 minutes for training, it only required less than 1 second for testing on all datasets. For 

the ROD method, on P1 to P15, the required testing time was from more than 0.5 seconds to around 2 
minutes. However, on the P16 dataset, the testing time of this method was up to 17 minutes. The 
testing time required for LMDD and SOD were comparable to the training time, especially for LMDD 
on the P16 dataset which required roughly 7 hours. 

The reported training and testing time of ADMs on the 16 datasets demonstrate that these methods are 
practical when used to detect GEs. 

4.4. Comparison with conventional methods 

We chose the top 6 ADMs in the above experiments to compare with several conventional GED 
methods. Five statistical tests namely GT, MT, NT, IQR, and GLR were selected as the baselines. The 
statistics of MT GT, NT, and GLR were calculated based on uncertainties of streams provided in the 
original studies (see Fig S5-S20). The significant level of these tests was set to 0.05. We did not 
compare with other serial elimination, serial compensation, and collective compensation methods 

because those methods aim to investigate the location of GEs on the measurement data while ADMs 
output the binary results indicating whether GE presents on the measurement data or not. We did not 
compare with other supervised ML methods such as the ensemble methods in [7, 39] or probabilistic-
based methods such as Bayesian Network in [37] because those methods require ground truth 
information of GE for the training data which is not necessary to train unsupervised ADMs. Tables 10 
to 13 show the F1 Score and Selectivity of the top 6 ADMs and 5 statistical tests on the experimental 

datasets. The Accuracy and OP of these methods can be found in Table.S.5-Table.S.8 in the 
Supplemental Material. 

The Friedman test shows that there are differences in the performances of the top 6 ADMs and the 5 
statistical tests on all four performance metrics. Fig 11 to 14 show the Nemenyi post-hoc test when 
comparing each pairwise of experimental methods. It can be seen that OCSVM ranks first, followed 
by MT, GLR, NT, IQR, and Elliptic Envelop while PCA, iForest, and GT are the 3 poorest methods 
on Accuracy, F1 score, and OP. 

For F1 Score, Accuracy, and OP, OCSVM is better than NT, IQR, Elliptic Envelope, VAE, KNN, 
PCA, iForest, and GT. MT and GLR perform exactly similar and are better than VAE, KNN, PCA, 
iForest, and GT. While NT is better than iForest and GT and there are no statistical differences in the 

performances of MT, GLR, NT, IQR, and Elliptic Envelop. On average, OCSVM obtained 85.9% and 
91.3% for F1 Score on 5% and 10% GE dataset respectively. Those values are about 15% and 10% 
better than the average values of the second-best methods (MT and GLR). On 5% GE datasets, 
OCSVM performed poorer than MT and GLR on P5 and P10 system only. By contrast, iForest, GT, 
KNN, and PCA obtained 38.1%, 41.7%, 41.4%, and 35.7% of F1 Score on average. Although the 
performances of those methods improved on 10% GE datasets, they are still the poorest among all 10 
experimental methods. 

For Selectivity, IQR and Elliptic Envelope are better than GT, iForest, NT, MT, GLR, and OCSVM 

based on the Nemenyi test. Meanwhile, VAE, KNN, and PCA are better than NT, MT, GLR, and 
OCSVM; GT and iForest are better than MT, GLR, and OCSVM. OCSVM predicted the presence of 
GE on non-GE samples a little more than some methods, resulting in its slightly low value of 
Selectivity (Precision). The difference between the Selectivity of OCSVM compared to those of the 
best ADMs (IQR) is about 5% only. IQR is the confident method in which its Selectivity is 98.1% and 
99.15% on average on 5% and 10% GE datasets. Elliptic Envelop performed well when considering 

the Selectivity as this method obtained 97.6% and 98.7% on average on 5% and 10% GE datasets. 
The NT, MT, and GLR performed poorer than all ADMs except OCSVM. That means those statistical 
tests have a strong tendency to label as positive (i.e., has GE) a sample that is negative (i.e., has no 
GE).  

                  



   
 

   
 

To conclude, OCSVM, MT, and GLR are the top three methods in the experiments concerning OP, F1 
Score, and Accuracy. However, these methods label a sample as positive a little more than the other 
methods like IQR and Elliptic Envelop, resulting in slightly lower values of Selectivity (Precision). 

                  



   
 

   
 

 

Fig.7. The performance of 6 selected ADMs on P1 datasets 

 

                  



   
 

   
 

 

Fig.8. The performance of 6 selected ADMs on P2 datasets 

 

                  



   
 

   
 

 

Fig.9. The performance of 6 selected ADMs on P3 datasets 

 

                  



   
 

   
 

 

Fig.10. The performance of 6 selected ADMs on P4 datasets 

 

 

                  



   
 

   
 

Table.8. Training times in seconds of 19 ADMs on the 16 datasets with     of GEs 

 
iForest LOF OCSVM Elliptic Envelope KNN ECOD COPOD ABOD ROD LODA Autoencoder VAE SO-GAAL Deep SVDD PCA LMDD COF HBOS SOD 

P1 1.305 0.018 0.509 1.124 0.018 0.007 0.007 1.984 2.086 0.083 21.547 22.866 65.76 20.133 0.002 14.338 3.205 1.62 15.822 

P2 1.621 0.211 1.645 2.824 0.213 0.02 0.02 1.208 3.835 0.111 33.155 37.903 114.112 32.808 0.004 61.214 9.978 0.004 29.247 

P3 2.291 0.653 7.814 6.959 0.632 0.068 0.068 2.518 43.699 0.166 59.59 66.647 212.882 57.741 0.015 348.248 36.219 0.009 98.283 

P4 1.587 0.27 1.850 2.738 0.27 0.019 0.019 1.26 3.976 0.109 33.106 37.098 112.13 32.373 0.004 61.06 9.517 0.004 28.924 

P5 1.829 0.565 3.382 2.669 0.549 0.032 0.032 1.845 10.353 0.125 41.099 46.923 144.518 41.073 0.008 119.046 16.208 0.005 47.783 

P6 1.802 0.254 2.104 2.658 0.254 0.026 0.026 1.388 6.256 0.119 34.415 38.961 125.714 34.386 0.007 90.988 12.924 0.005 37.563 

P7 2.106 0.794 3.906 2.642 0.793 0.048 0.048 2.378 22.266 0.143 53.854 59.924 173.333 48.913 0.011 225.782 24.667 0.007 71.152 

P8 2.194 0.489 24.763 3.740 0.488 0.057 0.057 2.243 30.489 0.155 58.392 65.13 189.047 52.981 0.012 298.654 29.785 0.008 83.83 

P9 2.364 0.514 35.307 3.124 0.513 0.067 0.067 2.366 40.829 0.162 57.789 66.526 205.137 57.462 0.015 348.882 36.187 0.009 98.305 

P10 2.461 2.175 8.644 5.454 2.174 0.078 0.078 4.285 57.075 0.172 67.503 74.958 222.549 61.116 0.035 445.025 41.6 0.01 115.818 

P11 2.325 0.214 25.595 3.722 0.214 0.068 0.067 2.094 43.022 0.16 58.086 66.114 208.727 57.186 0.014 346.958 35.685 0.009 97.639 

P12 2.277 1.314 7.423 6.943 1.302 0.067 0.067 3.172 43.931 0.159 58.546 68.098 209.438 57.752 0.015 345.688 35.247 0.009 99.274 

P13 2.956 0.485 11.483 10.314 0.218 0.119 0.119 2.69 106.615 0.194 75.707 85.827 271.187 74.181 0.024 760.507 66.486 0.014 166.521 

P14 4.313 0.456 99.574 28.237 0.497 0.271 0.257 4.168 441.898 0.263 120.266 133.56 399.759 107.38 0.067 2580.398 182.662 0.026 359.666 

P15 4.866 0.627 52.368 17.752 0.707 0.360 0.36 4.992 679.947 0.295 139.425 154.057 464.937 124.001 0.092 3938.922 267.139 0.033 481.33 

P16 10.016 0.953 895.679 97.350 1.122 1.040 1.06 8.176 4176.322 0.317 193.118 209.082 667.99 155.374 0.248 25283.23 1229.203 1.31 1629.394 

Ave 2.895 0.625 73.878 12.391 0.623 0.147 0.147 2.923 357.037 0.171 69.100 77.105 236.701 63.429 0.036 2204.309 127.295 0.193 216.284 

 

 

 

                  



   
 

   
 

Table.9. Testing times in seconds of 19 ADMs on the 16 datasets with     of GEs 

 

iForest LOF OCSVM Elliptic Envelope KNN ECOD COPOD ABOD ROD LODA Autoencoder VAE SO-GAAL Deep SVDD PCA LMDD COF HBOS SOD 

P1 0.598 0.042 0.387 0.027 0.355 0.038 0.038 0.607 0.561 0.089 0.332 0.403 0.279 0.302 0.028 13.2 3.275 0.028 9.632 

P2 0.858 0.236 1.181 0.05 0.854 0.087 0.086 1.236 0.32 0.158 0.4 0.43 0.401 0.39 0.051 61.181 10.254 0.051 29.214 

P3 1.442 0.729 4.551 0.167 1.9 0.242 0.245 2.623 4.185 0.292 0.704 0.762 0.687 0.728 0.165 347.675 36.2 0.102 98.096 

P4 0.836 0.295 1.215 0.047 0.91 0.085 0.083 1.293 0.299 0.148 0.396 0.429 0.388 0.393 0.048 60.832 9.682 0.048 28.728 

P5 1.055 0.606 2.097 0.125 1.372 0.123 0.122 1.867 0.828 0.191 0.494 0.532 0.493 0.489 0.13 118.862 16.586 0.064 47.628 

P6 1.075 0.429 1.565 0.119 1.114 0.104 0.103 1.55 0.52 0.177 0.528 0.631 0.462 0.488 0.118 90.932 12.922 0.055 37.496 

P7 1.317 0.958 3.133 0.141 1.917 0.174 0.171 2.507 1.946 0.227 0.593 0.629 0.598 0.606 0.141 225.906 25.145 0.083 71.07 

P8 1.374 0.574 8.056 0.16 1.613 0.204 0.199 2.299 2.928 0.254 0.735 0.823 0.653 0.689 0.149 298.822 29.848 0.091 83.628 

P9 1.53 0.738 8.96 0.157 1.855 0.231 0.229 2.592 4.042 0.273 0.7 0.749 0.715 0.716 0.162 348.13 36.242 0.101 97.967 

P10 1.587 2.519 5.357 0.168 3.81 0.265 0.261 4.567 5.629 0.287 0.746 0.787 0.741 0.746 0.165 444.382 42.18 0.109 115.108 

P11 1.487 0.372 7.897 0.158 1.491 0.231 0.23 2.236 4.012 0.263 0.687 0.75 0.685 0.69 0.158 346.812 35.813 0.139 97.649 

P12 1.426 1.526 4.548 0.174 2.677 0.233 0.23 3.411 4.03 0.27 0.717 0.745 0.703 0.688 0.166 347.482 36.341 0.139 98.878 

P13 2.038 0.347 8.522 0.206 9.291 0.392 0.389 5.545 13.01 0.337 0.93 0.96 0.879 0.895 0.195 761.461 66.344 0.137 166.14 

P14 3.162 0.687 31.042 0.303 27.897 0.831 0.832 10.606 68.014 0.487 1.351 1.401 1.314 1.33 0.28 2494.167 183.64 0.226 359.973 

P15 3.544 0.917 30.346 0.345 37.21 1.223 1.2 30.006 128.758 0.56 1.538 1.633 1.561 1.566 0.345 3914.821 264.872 0.278 479.979 

P16 7.539 1.443 198.911 0.639 288.202 2.807 2.793 140.906 1025.422 0.831 2.227 2.348 2.121 2.101 0.63 25459.72 1161.52 0.546 1623.655 

Ave 1.929 0.776 19.861 0.187 23.904 0.454 0.451 13.366 79.032 0.303 0.817 0.876 0.793 0.801 0.183 2208.399 123.179 0.137 215.303 

 

 

 

                  



   
 

   
 

 
 

Fig.11. Nemenyi test results on Accuracy when comparing 6 ADMs to 5 

statistical tests 
OCSVM > NT, IQR, Elliptic Envelope, VAE, KNN, PCA, iForest, GT 

MT, GLR> VAE, KNN, PCA, iForest, GT 

NT > iForest, GT 

Fig.12. Nemenyi test results on OP when comparing 6 ADMs to 5 statistical 

tests 
OCSVM > NT, IQR, Elliptic Envelope, VAE, KNN, PCA, iForest, GT 

MT, GLR> VAE, KNN, PCA, iForest, GT 

NT > iForest, GT 
  

 
 

Fig.13. Nemenyi test results on Selectivity when comparing 6 ADMs to 5 

statistical tests 
IQR, Elliptic Envelope > GT, iForest, NT, MT, GLR, OCSVM 

VAE, KNN, PCA > NT, MT, GLR, OCSVM 

GT, iForest > MT, GLR, OCSVM 

Fig.14. Nemenyi test results on F1 Score when comparing 6 ADMs to 5 

statistical tests 
OCSVM > NT, IQR, Elliptic Envelope, VAE, KNN, PCA, iForest, GT 

MT, GLR> VAE, KNN, PCA, iForest, GT 

NT > iForest, GT 
 

                  



   
 

   
 

Table.10. The F1 Score of the top 6 ADMs and 5 statistical tests on the 16 datasets with     of 

GEs 

  iForest OCSVM Elliptic Envelope KNN VAE PCA GT MT NT GLR IQR 

P1 0.522 0.780 0.507 0.520 0.481 0.460 0.237 0.237 0.237 0.237 0.066 

P2 0.509 0.870 0.672 0.661 0.617 0.591 0.414 0.622 0.498 0.622 0.495 

P3 0.546 0.854 0.881 0.649 0.867 0.864 0.503 0.656 0.591 0.656 0.945 

P4 0.563 0.903 0.742 0.734 0.707 0.659 0.686 0.828 0.782 0.828 0.658 

P5 0.368 0.832 0.454 0.465 0.410 0.433 0.847 0.898 0.879 0.898 0.383 

P6 0.204 0.649 0.195 0.195 0.190 0.189 0.192 0.451 0.332 0.451 0.069 

P7 0.299 0.800 0.459 0.489 0.387 0.401 0.349 0.690 0.596 0.690 0.422 

P8 0.331 0.957 0.309 0.287 0.304 0.267 0.185 0.487 0.414 0.487 0.257 

P9 0.265 0.960 0.328 0.199 0.282 0.267 0.291 0.641 0.563 0.641 0.350 

P10 0.323 0.804 0.463 0.456 0.289 0.260 0.552 0.838 0.775 0.838 0.711 

P11 0.241 0.960 0.212 0.272 0.212 0.218 0.213 0.657 0.567 0.657 0.314 

P12 0.342 0.875 0.754 0.696 0.718 0.729 0.676 0.854 0.818 0.854 0.837 

P13 0.238 0.723 0.214 0.234 0.199 0.210 0.095 0.592 0.442 0.592 0.194 

P14 0.465 0.973 0.368 0.416 0.091 0.086 0.522 0.896 0.845 0.896 0.872 

P15 0.367 0.814 0.095 0.240 0.073 0.071 0.195 0.795 0.665 0.795 0.489 

P16 0.512 0.990 0.027 0.111 0.000 0.000 0.717 0.971 0.945 0.971 0.990 

Ave 0.381 0.859 0.418 0.414 0.364 0.357 0.417 0.694 0.622 0.694 0.503 

 

Table.11. The F1 Score of the top 6 ADMs and 5 statistical tests on the 16 datasets with      

of GEs 

 
iForest OCSVM Elliptic Envelope KNN VAE PCA GT MT NT GLR IQR 

P1 0.906 0.906 0.901 0.906 0.877 0.870 0.573 0.573 0.573 0.573 0.598 

P2 0.880 0.944 0.929 0.924 0.936 0.937 0.758 0.829 0.784 0.829 0.893 

P3 0.784 0.912 0.998 0.862 0.999 0.999 0.694 0.778 0.739 0.778 0.998 

P4 0.930 0.958 0.949 0.943 0.964 0.956 0.922 0.955 0.953 0.955 0.936 

P5 0.738 0.937 0.829 0.789 0.842 0.847 0.913 0.932 0.923 0.932 0.824 

P6 0.260 0.705 0.280 0.262 0.283 0.263 0.194 0.491 0.370 0.491 0.113 

P7 0.470 0.856 0.693 0.693 0.689 0.686 0.619 0.809 0.751 0.809 0.681 

P8 0.653 0.957 0.756 0.571 0.746 0.716 0.460 0.703 0.638 0.703 0.789 

P9 0.461 0.960 0.646 0.476 0.652 0.637 0.549 0.768 0.721 0.768 0.673 

P10 0.588 0.928 0.856 0.799 0.870 0.861 0.822 0.946 0.931 0.946 0.932 

P11 0.488 0.960 0.686 0.482 0.678 0.691 0.551 0.860 0.804 0.860 0.825 

P12 0.588 0.934 0.955 0.856 0.977 0.976 0.857 0.932 0.920 0.932 0.977 

P13 0.367 0.786 0.384 0.386 0.375 0.381 0.176 0.708 0.550 0.708 0.421 

P14 0.633 0.975 0.858 0.765 0.856 0.853 0.835 0.955 0.918 0.955 0.961 

P15 0.516 0.895 0.512 0.557 0.490 0.486 0.470 0.883 0.799 0.883 0.930 

P16 0.682 0.990 0.039 0.418 0.000 0.000 0.894 0.977 0.964 0.977 0.995 

Ave 0.622 0.913 0.704 0.668 0.702 0.697 0.643 0.819 0.771 0.819 0.784 

 

 

                  



   
 

   
 

Table.12. The Selectivity of the top 6 ADMs and 5 statistical tests on the 16 datasets with     

of GEs 

  iForest OCSVM Elliptic Envelope KNN VAE PCA GT MT NT GLR IQR 

P1 0.919 0.826 0.926 0.916 0.917 0.913 0.901 0.901 0.901 0.901 0.972 

P2 0.972 0.915 0.982 0.977 0.981 0.979 0.980 0.958 0.960 0.958 0.997 

P3 0.990 0.954 0.997 0.989 0.998 0.998 0.990 0.971 0.976 0.971 0.997 

P4 0.983 0.927 0.989 0.989 0.989 0.987 0.984 0.949 0.959 0.949 0.997 

P5 0.972 0.925 0.981 0.978 0.979 0.977 0.913 0.897 0.901 0.897 0.991 

P6 0.892 0.882 0.894 0.896 0.885 0.889 0.883 0.879 0.878 0.879 0.894 

P7 0.949 0.936 0.974 0.978 0.967 0.969 0.971 0.942 0.946 0.942 0.988 

P8 0.962 0.917 0.967 0.960 0.968 0.968 0.954 0.942 0.944 0.942 0.978 

P9 0.966 0.923 0.983 0.950 0.979 0.978 0.951 0.940 0.939 0.940 0.982 

P10 0.985 0.951 0.998 0.992 0.995 0.995 0.980 0.955 0.956 0.955 0.991 

P11 0.967 0.923 0.974 0.956 0.978 0.977 0.965 0.943 0.947 0.943 0.976 

P12 0.984 0.954 0.998 0.995 0.996 0.996 0.992 0.965 0.972 0.965 0.995 

P13 0.957 0.945 0.958 0.956 0.959 0.957 0.956 0.948 0.947 0.948 0.959 

P14 0.987 0.962 1.000 0.995 1.000 1.000 0.996 0.975 0.975 0.975 0.994 

P15 0.981 0.971 0.990 0.985 0.993 0.991 0.983 0.970 0.972 0.970 0.985 

P16 0.993 0.980 1.000 1.000 0.000 0.000 0.998 0.983 0.986 0.983 0.995 

Ave 0.966 0.931 0.976 0.970 0.912 0.911 0.962 0.945 0.947 0.945 0.981 

 

Table.13. The Selectivity of the top 6 ADMs and 5 statistical tests on the 16 datasets with      

of GEs 

 
iForest OCSVM Elliptic Envelope KNN VAE PCA GT MT NT GLR IQR 

P1 0.960 0.852 0.961 0.960 0.956 0.956 0.966 0.966 0.966 0.966 0.998 

P2 0.987 0.924 0.987 0.987 0.989 0.989 0.990 0.972 0.977 0.972 0.999 

P3 0.993 0.958 0.997 0.993 0.998 0.998 0.992 0.979 0.984 0.979 0.997 

P4 0.991 0.930 0.992 0.993 0.995 0.994 0.991 0.962 0.971 0.962 1.0 

P5 0.987 0.939 0.991 0.989 0.991 0.992 0.925 0.907 0.912 0.907 0.997 

P6 0.914 0.892 0.926 0.917 0.921 0.921 0.908 0.891 0.898 0.891 0.940 

P7 0.974 0.941 0.987 0.986 0.988 0.989 0.988 0.951 0.960 0.951 0.993 

P8 0.982 0.917 0.990 0.984 0.990 0.990 0.983 0.965 0.969 0.965 0.995 

P9 0.976 0.923 0.989 0.978 0.988 0.989 0.972 0.952 0.953 0.952 0.992 

P10 0.991 0.963 0.999 0.996 0.999 0.999 0.987 0.961 0.966 0.961 0.994 

P11 0.986 0.923 0.994 0.981 0.995 0.995 0.992 0.963 0.968 0.963 0.995 

P12 0.991 0.959 0.998 0.996 0.998 0.997 0.994 0.968 0.976 0.968 0.995 

P13 0.973 0.953 0.980 0.976 0.982 0.981 0.980 0.956 0.959 0.956 0.985 

P14 0.992 0.963 1.000 0.998 1.000 1.000 0.998 0.978 0.979 0.978 0.995 

P15 0.987 0.975 0.998 0.995 0.999 0.999 0.995 0.975 0.979 0.975 0.995 

P16 0.995 0.980 1.000 1.000 0.000 0.000 0.999 0.984 0.986 0.984 0.994 

Ave 0.980 0.937 0.987 0.983 0.924 0.924 0.979 0.958 0.963 0.958 0.9915 

 

                  



   
 

   
 

The ADMs can be effectively used to detect GEs on the measurement data since two ADMs namely 

OCSVM and Elliptic Envelop outperform the others as well as the statistical tests. It is noted that 

ADMs can be used if historical measurement data is available, making ADMs more practical than 

supervised ML methods for the GED task [6] [7] since labelling the training samples to train 

supervised ML (i.e., associating each measurement data with GE information) requires huge cost and 

effort. It should also be noted that the statistical tests require uncertainty estimation of each stream in 

the system based on experts' input and are therefore disadvantageous compared to ADMs.  

Although OCSVM outperforms the others on F1 Score, Accuracy, and OP, this method outputted a 

higher value of false positive than the others, which makes this method less reliable because of 

labelling non-GE samples as GE samples. This also happened with MT and GLR’s outputs. 

5. Conclusions 

In this paper, we have introduced an application of ADMs to detect GEs on measurement data when 

historical data is available. We first reviewed the developments of GE techniques including statistical 

tests, serial elimination, serial compensation, collective compensation methods, and several ML-based 

methods. We also conducted an intensive review of ML-based and DL-based ADMs. The 

experimental framework was introduced with several steps: data preparation, training data generation, 

training a GED model, and detecting on testing data. 

The experiments were conducted with 19 selected ADMs on synthetic datasets generated from 16 

systems in the literature. We generated 16 training datasets and 32 testing datasets with 5% and 10% 

of GE on each stream in each system. We used 4 performance metrics namely Accuracy, Overall 

Power (OP), Selectivity, and F1 Score to report the performance of the 19 ADMs on the testing 

datasets.  

The experimental results indicate that:  

 The top 6 ADMs including OCSVM, Elliptic Envelop, KNN, PCA, VAE, and iForest were 

obtained from the experimental results and Nemenyi test results. OCSVM outperformed the 

other ADMs based on OP, Accuracy, and F1 Score. OCSVM achieved slightly lower 

Selectivity than several ADMs however this was not sufficient to undermine its overall 

performance. 

 We observed the sensitivity of KNN and PCA based on their performances in the 

experiments. Their performance should be evaluated on a validation set before deciding 

whether they are selected for applications. Besides, methods like ECOD and COPOD 

performed poorly because they are ineffective in detecting dependency anomalies. These 

methods thus should not be used to detect the GEs for systems including dependent 

relationships between stream variances. 

 The ADMs can potentially be applied to detect GEs on the measurement data when historical 

data is available. Based on the experimental results, OCSVM should be the first choice 

for GED applications, especially for linear systems. 

 We compared the top 6 ADMs to the 5 statistical tests namely IQR, NT, MT, GLR, and GT. 

Experimental results showed that OCSVM, MT, and GLR are the top 3 methods based on OP, 

Accuracy, and F1 Score. Like OCSVM, MT, and GLR obtained slightly high values of false 

positive that make their detection results slightly less reliable. The statistical tests need the 

information of balance equations and information uncertainty in the calculation, which is 

usually based on a subjective opinion from experts and is therefore not applicable to 

automated AD. However, when the historical data is not available to train ADMs, MT or 

GLR should be the first choice for applications. 

                  



   
 

   
 

 Applying data transformation to the measurement data before training with an ADM can 

increase the performance of some ADM, especially the worst-performance ones. In this study, 

we applied two data transformation and dimension reduction methods namely PCA and 

Random Projection to the measurement data. Experimental results showed that the 

performances of some ADMs improved with different significances. In practice, the data 

transformation method and its hyper-parameters can be determined by evaluating the 

performance of ADM on a validation set.  

 The size of the training data affects the performance of the ADMs to varying degrees. In some 

methods like OCSVM or VAE, using more training samples to train an ADM could improve 

its performance. On the other hand, the performances of some methods like iForest or PCA 

are downgraded when more training samples were used. 

Some future work can be considered (i) searching for the optimal hyper-parameters of an ADM on a 

particular dataset to further improve its performance (ii) exploring approaches to reduce the high false 

positive of some ADMs to make their detection results more reliable (iii) developing ADMs-based 

ensemble to obtain better results than using a single ADM. 
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Table A1. Information of experimental datasets (with     of GEs or      of GEs) 

generated from 16 systems 

 
# of training instances # of testing instances # of dimensions 

P1 4000 4000 3 

P2 7000 7000 6 

P3 13000 13000 12 

P4 7000 7000 6 

P5 9000 9000 8 

P6 8000 8000 7 

P7 11000 11000 10 

P8 12000 12000 11 

P9 13000 13000 12 

P10 14000 14000 13 

P11 13000 13000 12 

P12 13000 13000 12 

P13 17000 17000 16 

                  



   
 

   
 

P14 25000 25000 24 

P15 29000 29000 28 

P16 51000 51000 50 

 

Table A2. Abbreviations used in the paper 

Abbrevi

ation Meaning 

Abbrevi

ation Meaning 

GE Gross Error SOD Subspace Outlier Degree 

GED Gross Error Detection 

OCGA

N 

One-class Generative Adversarial 

Network 

ML Machine Learning LODA  Lightweight online detector of anomalies 

ADM Anomaly Detection Method HBOS Histogram-based Outlier Score 

DL Deep Learning  KNN K-Nearest Neighbours 

AI Artificial Intelligence  

SO-

GAAL 

Single-Objective Generative 

Adversarial Active Learning 

MGE Multiple Gross Error 

Deep 

SVDD Deep Support Vector Data Description  

GT Global Test  DR Data Reconciliation 

NT Constraint Test or Nodal Test  GAN Generative Adversarial Networks 

MT Measurement Test  IQR Interquartile Range 

GLR Generalized Likelihood Ratio  RNN Recurrent Neural Network 

PCA Principal Component Analysis  DBN Deep Belief Network 

PCO Particle Swarm Optimization  CNN Convolutional Neural Network 

GMM Gaussian Mixture Model ALAD 

Adversarially Learned Anomaly 

Detection 

OCSV

M One-class Support Vector Machine  CSI Contrasting Shifted instances 

SVDD Support Vector Data Description  iForest Isolation Forest  

PCA Principal Component Analysis OP Overall power  

VAE Variational Autoencoder  TP True Positive 

LOF Local Outlier Factor  FP False Positive 

ABOD Angle-Based Outlier Detection  FN False Negative 

ROD  Rotation-based Outlier Detection  TN True Negative 

COF Connectivity-based Outlier Factor  df Degrees of freedom 

LMDD 

Linear Method for Deviation 

Detection Ave Average 

ECOD 
Empirical-Cumulative-distribution-

based Outlier Detection CD Critical Difference 

COPOD Copula-based Outlier Detector RP Random Projection 
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Supplemental Material 
Paper: A comparative study of anomaly detection methods for gross error detection problems 

Table S.1. The Selectivity of the19 experimental ADMs on the 16 datasets with ±𝟓𝟓% of GEs 

 iForest LOF OCSVM Elliptic Envelope KNN ECOD COPOD ABOD ROD LODA Autoencoder VAE SO_GAAL Deep SVDD PCA LMDD COF HBOS SOD 

P1 0.919 0.899 0.826 0.926 0.916 0.857 0.962 0.914 0.866 0.891 0.906 0.917 0.877 0.732 0.913 0.833 0.818 0.917 0.845 

P2 0.972 0.974 0.915 0.982 0.977 0.944 0.992 0.978 0.979 0.947 0.978 0.981 0.924 0.741 0.979 0.933 0.955 0.947 0.976 

P3 0.990 0.993 0.954 0.997 0.989 0.978 0.996 0.993 0.989 0.987 0.998 0.998 0.000 0.907 0.998 0.998 0.999 0.988 1.000 

P4 0.983 0.985 0.927 0.989 0.989 0.942 0.998 0.988 0.988 0.982 0.987 0.989 0.000 0.700 0.987 0.977 0.912 0.969 0.969 

P5 0.972 0.975 0.925 0.981 0.978 0.950 0.986 0.975 0.962 0.918 0.977 0.979 0.000 0.832 0.977 0.932 1.000 0.952 1.000 

P6 0.892 0.890 0.882 0.894 0.896 0.884 0.897 0.888 0.878 0.895 0.886 0.885 0.889 0.870 0.889 0.884 0.936 0.889 1.000 

P7 0.949 0.979 0.936 0.974 0.978 0.946 0.967 0.979 0.959 0.926 0.969 0.967 0.000 0.881 0.969 0.963 0.983 0.946 1.000 

P8 0.962 0.946 0.917 0.967 0.960 0.953 0.977 0.954 0.961 0.954 0.967 0.968 0.000 0.900 0.968 0.937 0.996 0.945 1.000 

P9 0.966 0.957 0.923 0.983 0.950 0.961 0.972 0.961 0.959 0.953 0.978 0.979 0.000 0.897 0.978 0.932 1.000 0.950 1.000 

P10 0.985 0.995 0.951 0.998 0.992 0.978 0.991 0.992 0.983 0.949 0.994 0.995 0.953 0.848 0.995 0.957 1.000 0.976 1.000 

P11 0.967 0.946 0.923 0.974 0.956 0.964 0.976 0.956 0.958 0.956 0.974 0.978 0.000 0.881 0.977 0.949 0.996 0.961 1.000 

P12 0.984 0.995 0.954 0.998 0.995 0.973 0.995 0.993 0.984 0.952 0.996 0.996 0.000 0.951 0.996 0.986 0.996 0.974 1.000 

P13 0.957 0.942 0.945 0.958 0.956 0.954 0.966 0.954 0.953 0.956 0.956 0.959 0.949 0.935 0.957 0.952 1.000 0.953 1.000 

P14 0.987 0.957 0.962 1.000 0.995 0.984 0.994 0.995 0.987 0.982 1.000 1.000 0.000 0.935 1.000 0.973 1.000 0.981 1.000 

P15 0.981 0.973 0.971 0.990 0.985 0.982 0.990 0.987 0.986 0.981 0.992 0.993 0.000 0.957 0.991 0.979 1.000 0.979 1.000 

P16 0.993 0.992 0.980 1.000 1.000 0.992 0.995 0.993 0.992 0.984 0.000 0.000 0.000 0.968 0.000 0.988 1.000 0.990 1.000 

Average 0.966 0.962 0.931 0.976 0.970 0.953 0.978 0.969 0.962 0.951 0.910 0.912 0.287 0.871 0.911 0.948 0.974 0.957 0.987 



 

Table S.2. The Selectivity of the 19 experimental ADMs on the 16 datasets with ±𝟏𝟏𝟏𝟏% of GEs 

 iForest LOF OCSVM Elliptic Envelope KNN ECOD COPOD ABOD ROD LODA Autoencoder VAE SO_GAAL Deep SVDD PCA LMDD COF HBOS SOD 

P1 0.960 0.959 0.852 0.961 0.960 0.872 0.997 0.965 0.993 0.948 0.960 0.956 0.910 0.930 0.956 0.890 0.869 0.959 0.792 

P2 0.987 0.985 0.924 0.987 0.987 0.945 0.997 0.987 0.997 0.926 0.989 0.989 0.931 0.960 0.989 0.975 0.887 0.968 0.895 

P3 0.993 0.996 0.958 0.997 0.993 0.971 0.996 0.995 0.995 0.980 0.997 0.998 0.957 0.971 0.998 0.995 0.994 0.992 1.000 

P4 0.991 0.990 0.930 0.992 0.993 0.946 0.994 0.993 0.997 0.992 0.994 0.995 0.000 0.865 0.994 0.997 0.878 0.976 0.889 

P5 0.987 0.987 0.939 0.991 0.989 0.963 1.000 0.987 0.994 0.977 0.992 0.991 0.000 0.912 0.992 0.975 0.974 0.967 0.989 

P6 0.914 0.911 0.892 0.926 0.917 0.907 0.942 0.926 0.907 0.918 0.916 0.921 0.912 0.884 0.921 0.899 0.994 0.915 1.000 

P7 0.974 0.989 0.941 0.987 0.986 0.965 0.993 0.987 0.981 0.967 0.988 0.988 0.934 0.927 0.989 0.991 0.979 0.956 1.000 

P8 0.982 0.980 0.917 0.990 0.984 0.968 0.996 0.986 0.981 0.979 0.990 0.990 0.000 0.908 0.990 0.969 0.985 0.960 1.000 

P9 0.976 0.979 0.923 0.989 0.978 0.964 0.983 0.981 0.975 0.957 0.989 0.988 0.000 0.928 0.989 0.947 0.999 0.963 1.000 

P10 0.991 0.998 0.963 0.999 0.996 0.982 0.996 0.994 0.987 0.992 0.999 0.999 0.940 0.907 0.999 0.992 0.991 0.986 0.992 

P11 0.986 0.976 0.923 0.994 0.981 0.973 0.999 0.979 0.988 0.979 0.995 0.995 0.000 0.934 0.995 0.983 0.998 0.976 1.000 

P12 0.991 0.997 0.959 0.998 0.996 0.977 0.997 0.994 0.992 0.976 0.998 0.998 0.974 0.986 0.997 1.000 0.996 0.979 1.000 

P13 0.973 0.923 0.953 0.980 0.976 0.977 0.985 0.976 0.974 0.979 0.980 0.982 0.953 0.924 0.981 0.969 1.000 0.971 1.000 

P14 0.992 0.961 0.963 1.000 0.998 0.986 0.995 0.999 0.990 0.995 1.000 1.000 0.000 0.977 1.000 0.994 1.000 0.984 1.000 

P15 0.987 0.970 0.975 0.998 0.995 0.988 0.995 0.996 0.990 0.991 0.999 0.999 0.000 0.962 0.999 0.985 1.000 0.986 1.000 

P16 0.995 0.993 0.980 1.000 1.000 0.990 0.994 0.994 0.991 0.983 0.000 0.000 0.000 0.977 0.000 0.989 1.000 0.992 1.000 

Average 0.980 0.975 0.937 0.987 0.983 0.961 0.991 0.984 0.983 0.971 0.924 0.924 0.469 0.935 0.924 0.972 0.972 0.971 0.972 

 

 



Table S.3. The F1 Score of the 19 experimental ADMs on the 16 datasets with ±𝟓𝟓% of GEs 

 iForest LOF OCSVM Elliptic Envelope KNN ECOD COPOD ABOD ROD LODA Autoencoder VAE SO_GAAL Deep SVDD PCA LMDD COF HBOS SOD 

P1 0.522 0.458 0.780 0.507 0.520 0.205 0.264 0.468 0.174 0.351 0.454 0.481 0.381 0.149 0.460 0.478 0.119 0.465 0.106 

P2 0.509 0.625 0.870 0.672 0.661 0.183 0.157 0.633 0.154 0.420 0.581 0.617 0.315 0.068 0.591 0.469 0.068 0.466 0.089 

P3 0.546 0.682 0.854 0.881 0.649 0.173 0.089 0.635 0.167 0.312 0.841 0.867 0.000 0.165 0.864 0.158 0.315 0.529 0.075 

P4 0.563 0.729 0.903 0.742 0.734 0.164 0.148 0.718 0.171 0.565 0.685 0.707 0.000 0.065 0.659 0.476 0.073 0.463 0.098 

P5 0.368 0.439 0.832 0.454 0.465 0.211 0.196 0.428 0.178 0.175 0.370 0.410 0.000 0.091 0.433 0.597 0.045 0.367 0.060 

P6 0.204 0.187 0.649 0.195 0.195 0.190 0.192 0.201 0.176 0.185 0.189 0.190 0.164 0.189 0.189 0.522 0.084 0.202 0.001 

P7 0.299 0.460 0.800 0.459 0.489 0.206 0.201 0.432 0.217 0.168 0.370 0.387 0.000 0.173 0.401 0.422 0.359 0.282 0.074 

P8 0.331 0.255 0.957 0.309 0.287 0.212 0.194 0.237 0.166 0.225 0.264 0.304 0.000 0.183 0.267 0.607 0.372 0.269 0.076 

P9 0.265 0.238 0.960 0.328 0.199 0.174 0.193 0.230 0.183 0.193 0.254 0.282 0.000 0.173 0.267 0.374 0.352 0.284 0.226 

P10 0.323 0.469 0.804 0.463 0.456 0.162 0.107 0.448 0.134 0.156 0.247 0.289 0.247 0.071 0.260 0.489 0.059 0.385 0.060 

P11 0.241 0.200 0.960 0.212 0.272 0.195 0.179 0.243 0.157 0.220 0.186 0.212 0.000 0.134 0.218 0.317 0.322 0.261 0.153 

P12 0.342 0.700 0.875 0.754 0.696 0.192 0.161 0.730 0.164 0.205 0.654 0.718 0.000 0.292 0.729 0.416 0.079 0.386 0.070 

P13 0.238 0.074 0.723 0.214 0.234 0.188 0.185 0.174 0.180 0.222 0.199 0.199 0.199 0.283 0.210 0.385 0.042 0.243 0.034 

P14 0.465 0.054 0.973 0.368 0.416 0.211 0.152 0.128 0.206 0.210 0.080 0.091 0.000 0.194 0.086 0.549 0.263 0.314 0.259 

P15 0.367 0.038 0.814 0.095 0.240 0.229 0.199 0.058 0.125 0.213 0.068 0.073 0.000 0.320 0.071 0.238 0.286 0.242 0.250 

P16 0.512 0.025 0.990 0.027 0.111 0.261 0.238 0.023 0.219 0.212 0.000 0.000 0.000 0.236 0.000 0.488 0.136 0.337 0.026 

Average 0.381 0.352 0.859 0.418 0.414 0.197 0.178 0.362 0.173 0.252 0.340 0.364 0.082 0.174 0.357 0.437 0.186 0.343 0.104 

 

 

 



Table S.4. The F1 Score of the 19 experimental ADMs on the 16 datasets with ±𝟏𝟏𝟏𝟏% of GEs 

 iForest LOF OCSVM Elliptic Envelope KNN ECOD COPOD ABOD ROD LODA Autoencoder VAE SO_GAAL Deep SVDD PCA LMDD COF HBOS SOD 

P1 0.906 0.844 0.906 0.901 0.906 0.202 0.223 0.890 0.175 0.708 0.856 0.877 0.533 0.567 0.870 0.496 0.139 0.860 0.182 

P2 0.880 0.903 0.944 0.929 0.924 0.177 0.123 0.902 0.114 0.328 0.929 0.936 0.316 0.433 0.937 0.566 0.094 0.641 0.163 

P3 0.784 0.864 0.912 0.998 0.862 0.179 0.084 0.835 0.189 0.380 0.999 0.999 0.183 0.593 0.999 0.410 0.152 0.636 0.068 

P4 0.930 0.925 0.958 0.949 0.943 0.160 0.109 0.925 0.101 0.930 0.958 0.964 0.000 0.222 0.956 0.571 0.071 0.570 0.124 

P5 0.738 0.684 0.937 0.829 0.789 0.183 0.153 0.724 0.157 0.492 0.819 0.842 0.000 0.229 0.847 0.558 0.081 0.514 0.129 

P6 0.260 0.237 0.705 0.280 0.262 0.198 0.193 0.275 0.190 0.280 0.265 0.283 0.174 0.190 0.263 0.470 0.130 0.249 0.041 

P7 0.470 0.673 0.856 0.693 0.693 0.179 0.158 0.657 0.217 0.403 0.683 0.689 0.266 0.261 0.686 0.466 0.196 0.343 0.093 

P8 0.653 0.516 0.957 0.756 0.571 0.182 0.137 0.512 0.142 0.579 0.706 0.746 0.000 0.215 0.716 0.450 0.336 0.382 0.136 

P9 0.461 0.509 0.960 0.646 0.476 0.175 0.152 0.496 0.193 0.347 0.630 0.652 0.000 0.224 0.637 0.206 0.351 0.407 0.158 

P10 0.588 0.838 0.928 0.856 0.799 0.170 0.098 0.723 0.173 0.636 0.856 0.870 0.208 0.160 0.861 0.393 0.066 0.604 0.076 

P11 0.488 0.399 0.960 0.686 0.482 0.151 0.108 0.467 0.141 0.375 0.643 0.678 0.000 0.245 0.691 0.270 0.131 0.417 0.092 

P12 0.588 0.880 0.934 0.955 0.856 0.176 0.138 0.871 0.164 0.485 0.971 0.977 0.423 0.763 0.976 0.474 0.040 0.480 0.105 

P13 0.367 0.080 0.786 0.384 0.386 0.177 0.138 0.287 0.169 0.362 0.372 0.375 0.267 0.263 0.381 0.209 0.139 0.337 0.149 

P14 0.633 0.057 0.975 0.858 0.765 0.205 0.135 0.430 0.181 0.685 0.852 0.856 0.000 0.474 0.853 0.379 0.074 0.382 0.071 

P15 0.516 0.043 0.895 0.512 0.557 0.217 0.163 0.226 0.145 0.355 0.476 0.490 0.000 0.386 0.486 0.416 0.247 0.409 0.321 

P16 0.682 0.034 0.990 0.039 0.418 0.271 0.243 0.075 0.225 0.202 0.000 0.000 0.000 0.347 0.000 0.567 0.059 0.456 0.035 

Average 0.622 0.530 0.913 0.704 0.668 0.188 0.147 0.581 0.167 0.472 0.688 0.702 0.148 0.348 0.697 0.431 0.144 0.480 0.121 

 

 

 











 

Fig.S1. The Accuracy of ADMs on P4 dataset (10% GE) with different data transformation methods 

 

 









 

Fig.S2. The F1 Score of ADMs on P4 dataset (10% GE) with different data transformation methods 











 

Fig.S3. The OP of ADMs on P4 dataset (10% GE) with different data transformation methods 

 

 



 

 

 







 

Fig.S4. The Selectivity of ADMs on P4 dataset (10% GE) with different data transformation methods 

 

 

  



Table.S5. Accuracy of the top 6 ADMs and 5 statistical tests on the 16 datasets with ±𝟓𝟓% of GEs 

 iForest OCSVM Elliptic Envelope KNN VAE PCA GT MT NT GLR IQR 
P1 0.499 0.687 0.491 0.497 0.472 0.458 0.341 0.341 0.341 0.341 0.275 
P2 0.430 0.788 0.572 0.561 0.521 0.497 0.363 0.520 0.419 0.520 0.424 
P3 0.421 0.756 0.804 0.517 0.784 0.778 0.385 0.521 0.458 0.521 0.903 
P4 0.475 0.838 0.646 0.637 0.609 0.561 0.587 0.738 0.684 0.738 0.562 
P5 0.307 0.729 0.368 0.376 0.337 0.352 0.747 0.818 0.790 0.818 0.320 
P6 0.213 0.514 0.209 0.210 0.206 0.206 0.207 0.354 0.279 0.354 0.153 
P7 0.243 0.683 0.357 0.381 0.303 0.313 0.279 0.556 0.464 0.556 0.332 
P8 0.259 0.917 0.246 0.232 0.243 0.221 0.173 0.366 0.312 0.366 0.216 
P9 0.214 0.923 0.255 0.174 0.226 0.216 0.227 0.497 0.424 0.497 0.270 
P10 0.248 0.685 0.351 0.344 0.228 0.210 0.421 0.731 0.649 0.731 0.581 
P11 0.199 0.923 0.184 0.217 0.184 0.187 0.183 0.514 0.429 0.514 0.245 
P12 0.265 0.786 0.635 0.569 0.593 0.605 0.547 0.758 0.710 0.758 0.740 
P13 0.181 0.578 0.167 0.178 0.159 0.165 0.104 0.441 0.315 0.441 0.156 
P14 0.328 0.947 0.256 0.291 0.085 0.083 0.378 0.815 0.737 0.815 0.782 
P15 0.248 0.691 0.082 0.164 0.071 0.070 0.137 0.664 0.509 0.664 0.344 
P16 0.355 0.980 0.033 0.077 0.020 0.020 0.567 0.944 0.896 0.944 0.980 

Average 0.305 0.777 0.354 0.339 0.315 0.309 0.353 0.597 0.526 0.599 0.455 
 

 

 

 

 

 

 



Table.S6. Accuracy of the top 6 ADMs and 5 statistical tests on the 16 datasets with ±𝟏𝟏𝟏𝟏% of GEs 

 iForest OCSVM Elliptic Envelope KNN VAE PCA GT MT NT GLR IQR 
P1 0.866 0.849 0.861 0.867 0.830 0.821 0.545 0.545 0.545 0.545 0.569 
P2 0.814 0.902 0.885 0.878 0.896 0.897 0.664 0.744 0.691 0.744 0.834 
P3 0.670 0.845 0.997 0.775 0.998 0.998 0.566 0.660 0.615 0.660 0.997 
P4 0.887 0.926 0.916 0.907 0.940 0.927 0.874 0.924 0.921 0.924 0.897 
P5 0.628 0.888 0.738 0.688 0.756 0.763 0.847 0.875 0.861 0.875 0.734 
P6 0.245 0.573 0.258 0.246 0.259 0.248 0.210 0.385 0.306 0.385 0.174 
P7 0.365 0.760 0.569 0.569 0.566 0.563 0.496 0.698 0.628 0.698 0.559 
P8 0.524 0.917 0.638 0.446 0.626 0.592 0.354 0.572 0.505 0.572 0.680 
P9 0.349 0.923 0.514 0.360 0.520 0.505 0.420 0.641 0.586 0.641 0.543 
P10 0.456 0.871 0.765 0.689 0.787 0.773 0.717 0.902 0.877 0.902 0.882 
P11 0.372 0.923 0.558 0.366 0.550 0.563 0.426 0.767 0.690 0.767 0.724 
P12 0.459 0.882 0.920 0.767 0.959 0.956 0.768 0.879 0.860 0.879 0.958 
P13 0.266 0.658 0.279 0.280 0.273 0.277 0.148 0.564 0.406 0.564 0.307 
P14 0.482 0.952 0.762 0.634 0.758 0.754 0.727 0.915 0.852 0.915 0.928 
P15 0.368 0.813 0.366 0.406 0.347 0.344 0.330 0.794 0.672 0.794 0.874 
P16 0.525 0.980 0.039 0.278 0.020 0.020 0.813 0.956 0.931 0.956 0.989 

Average 0.517 0.854 0.629 0.572 0.630 0.625 0.557 0.739 0.684 0.739 0.728 
 

  



Table.S7. OP of the top 6 ADMs and 5 statistical tests on the 16 datasets with ±𝟓𝟓% of GEs 

 iForest OCSVM Elliptic Envelope KNN VAE PCA GT MT NT GLR IQR 
P1 0.365 0.739 0.349 0.363 0.326 0.307 0.136 0.136 0.136 0.136 0.034 
P2 0.345 0.830 0.511 0.500 0.450 0.423 0.262 0.461 0.336 0.461 0.329 
P3 0.377 0.773 0.790 0.483 0.767 0.762 0.337 0.496 0.424 0.496 0.898 
P4 0.394 0.880 0.594 0.583 0.550 0.494 0.527 0.734 0.660 0.734 0.491 
P5 0.227 0.757 0.295 0.305 0.259 0.278 0.791 0.899 0.858 0.899 0.237 
P6 0.115 0.514 0.109 0.110 0.107 0.105 0.108 0.303 0.205 0.303 0.036 
P7 0.177 0.698 0.300 0.326 0.242 0.253 0.213 0.545 0.436 0.545 0.269 
P8 0.200 1.000 0.184 0.169 0.180 0.155 0.102 0.328 0.265 0.328 0.148 
P9 0.154 1.000 0.197 0.111 0.165 0.154 0.172 0.486 0.402 0.486 0.213 
P10 0.193 0.697 0.302 0.296 0.169 0.150 0.384 0.746 0.652 0.746 0.554 
P11 0.137 1.000 0.119 0.159 0.119 0.122 0.119 0.504 0.404 0.504 0.187 
P12 0.207 0.807 0.606 0.535 0.561 0.575 0.513 0.765 0.707 0.765 0.722 
P13 0.136 0.585 0.120 0.133 0.111 0.118 0.050 0.430 0.288 0.430 0.108 
P14 0.304 0.984 0.226 0.263 0.047 0.045 0.353 0.828 0.745 0.828 0.778 
P15 0.226 0.700 0.050 0.137 0.038 0.037 0.109 0.673 0.506 0.673 0.325 
P16 0.345 1.000 0.014 0.059 0.000 0.000 0.559 0.960 0.907 0.960 0.984 

Average 0.2439 0.8103 0.2979 0.2833 0.2557 0.2486 0.2959 0.5809 0.4957 0.5809 0.395 
 

  



Table.S8. OP of the top 6 ADMs and 5 statistical tests on the 16 datasets with ±𝟏𝟏𝟏𝟏% of GEs 

 iForest OCSVM Elliptic Envelope KNN VAE PCA GT MT NT GLR IQR 
P1 0.858 0.967 0.849 0.858 0.810 0.798 0.407 0.407 0.407 0.407 0.426 
P2 0.794 0.966 0.877 0.869 0.889 0.890 0.614 0.722 0.655 0.722 0.808 
P3 0.647 0.870 1.000 0.762 1.000 1.000 0.534 0.645 0.592 0.645 1.000 
P4 0.876 0.988 0.910 0.898 0.935 0.921 0.862 0.949 0.936 0.949 0.880 
P5 0.590 0.935 0.712 0.656 0.732 0.739 0.901 0.958 0.934 0.958 0.703 
P6 0.152 0.582 0.165 0.153 0.167 0.153 0.108 0.339 0.233 0.339 0.060 
P7 0.309 0.785 0.534 0.534 0.530 0.525 0.451 0.704 0.616 0.704 0.519 
P8 0.489 1.000 0.612 0.402 0.599 0.561 0.301 0.553 0.476 0.553 0.654 
P9 0.302 1.000 0.479 0.314 0.486 0.470 0.383 0.643 0.580 0.643 0.509 
P10 0.418 0.896 0.748 0.667 0.771 0.757 0.705 0.933 0.899 0.933 0.878 
P11 0.325 1.000 0.524 0.320 0.515 0.530 0.381 0.777 0.687 0.777 0.704 
P12 0.418 0.912 0.915 0.750 0.958 0.955 0.753 0.898 0.870 0.898 0.960 
P13 0.226 0.669 0.239 0.241 0.232 0.236 0.097 0.563 0.386 0.563 0.268 
P14 0.464 0.988 0.752 0.620 0.748 0.744 0.718 0.932 0.865 0.932 0.930 
P15 0.350 0.827 0.344 0.387 0.324 0.321 0.307 0.807 0.675 0.807 0.873 
P16 0.519 1.000 0.020 0.264 0.000 0.000 0.810 0.971 0.944 0.971 0.995 

Average 0.4836 0.8991 0.6050 0.5434 0.6060 0.6000 0.5208 0.7376 0.6722 0.7376 0.698 
 

  



Fig.S5. Separator equipment used in GED of Problem 1 (P1) 

 

Stream Name Real Value Uncertainty 
1 8.5 3.2541 
2 4.5 3.2200 
3 4 2.4150 

 

 

Fig.S6. Reaction and separation flowsheet used in GED of Problem 2 (P2) 

 

Stream Name Real Value Uncertainty 
1 11 1.6262 
2 10 1.6125 
3 21 1.6496 
4 11 1.6514 
5 4 5.7009 
6 4 3.0619 

 

 

  



Fig.S7. Atmospheric tower flowsheet used in GED of Problem 3 (P3) 

 

Stream Name Real Value Uncertainty 
1 189.98 1.1271 
2 174.6 1.1159 
3 3.139 1.0863 
4 32.77 1.0531 
5 33.47 1.1954 
6 7.25 1.1972 
7 0.316 1.1263 
8 92.376 1.1468 
9 28.629 1.2599 
10 23.8 1.2609 
11 18.526 1.0802 
12 55.568 1.1613 

 

Fig.S8. Heat exchanger with by-pass valve flowsheet used in GED of Problem 4 (P4) 

 

Stream Name Real Value Uncertainty 
1 100 1.0000 
2 64 1.5625 
3 36 2.7778 
4 64 1.5625 
5 36 2.7778 
6 100 1.0000 

 

 



Fig.S9. Generic mass balance flowsheet used in GED of Problem 5 (P5) 

 

Stream Name Real Value Uncertainty 
1 98.7 1.0066 
2 41.1 1.5598 
3 78.9 1.1258 
4 30.2 1.8197 
5 109.1 0.9574 
6 19.8 2.2473 
7 57.6 1.3176 
8 37.8 1.6265 

 

Fig.S10. Heat exchanger network with recycle flowsheet used in GED of Problem 6 (P6) 

 

Stream Name Real Value Uncertainty 
1 5 20.0000 
2 15 6.6667 
3 15 6.6667 
4 5 20.0000 
5 10 10.0000 
6 5 20.0000 
7 5 20.0000 

 

  



Fig.S11. Diagram of a reaction-separation flowsheet used in GED of Problem 7 (P7) 

 

Stream Name Real Value Uncertainty 
1 50 2.0000 
2 75 1.3333 
3 75 1.3333 
4 48 2.0833 
5 30 3.3333 
6 25 4.0000 
7 5 7.7460 
8 5 7.7460 
9 3 10.5409 
10 2 15.8114 

 

Fig.S12. Juice extraction plant flowsheet used in GED of Problem 8 (P8) 

 



Stream Name Real Value Uncertainty 
1 3600 3.0892 
2 1850 3.0811 
3 1750 3.0977 
4 2837 3.0772 
5 730 3.0288 
6 25 3.1200 
7 8 2.8500 
8 137 2.2993 
9 2700 3.1467 
10 58 2.9483 
11 672 2.9821 

 

Fig.S13. Generic mass balance flowsheet used in GED of Problem 9 (P9) 

 

Stream Name Real Value Uncertainty 
1 230 16.3370 
2 21 5.1429 
3 209 2.3923 
4 35 5.2143 
5 174 1.1494 
6 15 5.8667 
7 159 4.5566 
8 50 2.0000 
9 209 2.3923 
10 94 2.1277 
11 115 15.7391 
12 44 5.4205 

 

  



Fig.S14. Generic mass balance flowsheet used in GED of Problem 10 (P10) 

 

Stream Name Real Value Uncertainty 
1 28 0.9821 
2 5 0.9996 
3 5 3.4496 
4 7 2.0743 
5 11 3.3825 
6 4 3.1768 
7 3 4.5407 
8 5 0.9081 
9 5 1.9045 
10 4 1.8130 
11 3 2.1179 
12 14 1.0500 
13 14 0.9331 

 

Fig.S15. Mineral beneficiation circuit flowsheet used in GED of Problem 11 (P11) 

 



Stream Name Real Value Uncertainty 
1 690 3.0073 
2 725 3.0105 
3 700 2.9973 
4 685 3.0094 
5 35 3.0746 
6 15 2.5020 
7 25 3.3456 
8 20 3.5040 
9 30 2.2670 
10 5 2.8740 
11 5 2.7120 
12 10 2.7930 

 

Fig.S16. Generic mass balance data flowsheet used in GED of Problem 12 (P12) 

 

Stream Name Real Value Uncertainty 
1 100 1.0000 
2 30 1.0000 
3 40 1.0000 
4 30 1.0000 
5 15 2.0000 
6 5 2.0000 
7 10 2.0000 
8 70 1.0000 
9 10 3.0000 
10 20 2.0000 
11 80 1.0000 
12 100 1.0000 

 

 



Fig.S17. Flotation circuit flowsheet used in GED of Problem 13 (P13) 

 

Stream Name Real Value Uncertainty 
1 25 4.0000 
2 27 4.9074 
3 22 6.6364 
4 2 10.0000 
5 20 4.5800 
6 24 4.5875 
7 14 7.4286 
8 10 4.7200 
9 10 4.0100 
10 4 5.1750 
11 5 6.0000 
12 7 4.6857 
13 1 5.2000 
14 8 4.6125 
15 5 5.0000 
16 3 12.8333 

 

  



Fig.S18. Proposed mass balance of an industrial water treatment unit flowsheet used in GED of 
Problem 14 (P14) 

 

Stream Name Real Value Uncertainty 
1 50 1.0662 
2 150 0.9735 
3 140 1.1004 
4 140 1.0367 
5 480 1.5857 
6 480 1.5857 
7 480 1.7364 
8 220 0.9711 
9 260 1.1017 
10 260 1.1017 
11 85.8 0.9640 
12 15.8 2.7911 
13 70 1.1029 
14 15.8 2.7911 
15 174.2 1.1701 
16 3.484 2.7191 
17 3.484 2.7191 
18 73.484 3.8808 
19 170.716 1.0884 
20 170.716 1.1711 
21 55 0.9675 
22 115.716 1.2678 
23 200 0.9883 
24 20 0.7987 



 

Fig.S19. Steam metering system flowsheet used in GED of Problem 15 (P15) 

 

Stream Name Real Value Uncertainty 
1 0.86 2.5000 
2 1 2.5000 
3 111.82 2.5000 
4 109.96 2.5000 
5 53.27 2.5000 
6 112.27 2.5000 
7 2.32 2.5000 
8 164.05 2.5000 
9 0.83 2.5000 

10 52.41 2.5000 
11 14.86 2.5000 
12 67.27 2.5000 
13 111.27 2.5000 
14 91.86 2.5000 
15 60 2.5000 
16 23.64 2.5000 
17 32.73 2.5000 
18 16.23 2.5000 
19 7.85 2.5000 
20 10.5 2.5000 
21 87.32 2.5000 
22 5.45 2.5000 
23 2.59 2.5000 
24 46.63 2.5000 
25 85.46 2.5000 
26 81.32 2.5000 
27 70.79 2.5000 
28 72.23 2.5000 

  



Fig.S20. Ethylene plant flowsheet used in GED of Problem 16 (P16) 

 

Stream Name Real Value Uncertainty 
S319 225.45 0.9159 
S316 167.89 0.7829 
S312 1332 0.8351 
S378 1332 0.8375 
S336 2276.9 0.8175 
S357 137.5 0.8871 
S346 917.89 0.8506 

S359P1 532.38 0.8911 
S347 385.51 0.8607 
S352 385.51 0.8607 
S356 385.51 0.8607 
S358 100.32 0.8480 

S357P 285.19 0.7919 
S359P2 147.69 0.9065 

S359 680.07 0.9343 
S338P 683.07 0.9302 
S338 683.07 0.9137 

S341P 1593.8 0.9390 
S341 1593.8 0.9390 
S414 582.6 0.9068 
S502 582.6 0.9068 



S411 1178.2 0.7872 
S401 2872.5 0.8272 
S415 3.84 0.8428 
S402 2876.3 0.9024 
S404 2876.3 0.9024 
S405 2876.3 0.9024 
S407 2876.3 0.9024 
S408 3098.2 0.8349 
S453 1400 0.8187 
S460 1337.7 0.9119 
S456 11.357 0.8759 
S452 349.07 0.8542 
S511 501.44 0.8724 
S503 392.1 0.8516 

S384P 33.8 0.8686 
S52P 535.24 0.1868 
S592 244.46 0.8810 
S581 147.64 0.8128 
S525 31.13 3.2123 
S524 504.11 0.8793 
S536 7.0011 0.8315 
S527 497.11 0.8411 
S549 233.72 0.8263 
S550 247.55 0.8582 
S537 15.835 0.7862 
S598 13.365 0.9008 
S599 2.47 0.9289 
S267 308.47 0.9279 
S538 310.94 0.8826 

 

  



Table.S.9. Characteristics of the systems in the experiments 

Problem Streams Characteristics Number of streams 
P1 2, 3 S 3 
P2 2, 3; 5, 6 P 6 

P3 
2, 11; 9, 12; 4, 5, 6, 7, 8 P 

12 
1, 2 (11), 9 (12), 3 R 

P4 Information was not provided 6 

P5 
4, 5 P 

8 
2, 6, 7, 8 M 

P6 2, 3, 4; 2, 3, 5, 6 R 7 

P7 
5, 9; 8, 10 M 

10 
5, 7, 8, 9; 2, 3, 5, 6 R 

P8 2, 3; 6, 7; 8, 9; 10, 11 P 11 

P9 
1, 2 P 

12 8, 9, 10 R 
3, 4, 5; 5, 6, 7 M 

P10 1, 2; 8, 9, 10, 13; 5, 11, 12 M 13 

P11 
2, 3, 6, 7; 2, 7, 9, 8, 5; 9, 12, 10 R 

12 
5, 6, 8; 10, 11, 12 M 

P12 
5, 6, 7 P 

12 
1, 2, 3, 4; 4, 9, 10; 8, 9, 11; 10, 11, 12 M 

P13 
12, 13 P 

16 2, 3, 4; 6, 7, 10; 12 (13), 14, 16 R 
1, 2, 4; 6, 7, 8; 7, 9, 10; 14, 15, 16 M 

P14 
1, 2, 3, 4; 21, 22; 23, 24 P 

24 
10, 11, 15; 15, 16, 19 M 

P15 
10, 12, 22, 18, 7, 5; 26, 8, 5, 1, 3, 15, 26 R 

28 
1, 2, 3, 4; 5, 6, 7, 8, 9; 10, 11, 12; 12, 16, 22, 25 M 

P16 
319, 316, 378, 312; 456, 460; 592, 581; 549, 550, … P 

50 408, 453; 441, 401, 402, 404, 405, 407; … R 
503, 592, 581; 537, 598, 599; … M 

 

* P: Parallel Streams, R: Recycle, M: Measurement, S: Separation [1] 

[1] EC do Valle, RA Kalid, AR Secchi, A Kiperstok. Collection of benchmark test problems 
for data reconciliation and gross error detection and identification, Computers and Chemical 
Engineering. 111 (2018) 134-148. 
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