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Abstract: The planetary boundary layer (PBL) is the main region for the exchange of matter, 15 

momentum and energy between land and atmosphere. The transport processes in the PBL 16 

determine the distribution of temperature, water vapour, wind speed and other physical quantities 17 

within the PBL and are very important for the simulation of the physical characteristics of the 18 

meteorology. Based on the two non-local closure PBL schemes (YSU, ACM2) and two local 19 

closure PBL schemes (MYJ, MYNN) in the Weather Research and Forecasting (WRF) model, 20 

seasonal and daily cycles of meteorological variables over the Yangtze River Delta (YRD) region 21 

are investigated. It is shown that all the four PBL schemes overestimate 10-m wind speed and 2-m 22 

temperature, while underestimate relative humidity. The MYJ scheme produces the largest biases 23 

on 10-m wind speed and the smallest biases on humidity, while the ACM2 scheme show 24 

WRF-simulated 2-m temperature and 10-m wind speed are closer to surface meteorological 25 

observations in summer. The ACM2 scheme performs well with daytime PBL height, the MYNN 26 

scheme performs the lowest mean bias of 0.04 km and the ACM2 scheme shows the highest 27 

correlation coefficient of 0.59 compared with observational data. It is found that there is a varying 28 

degree of sensitivity of the respective PBL in winter and summer and a best-performing PBL 29 

scheme should be chosen to predict various meteorological conditions under different seasons 30 

over a complicated region like the YRD. 31 

 32 
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Highlights 36 

• WRF model performance with four PBL schemes over the YRD region are evaluated. 37 

• Seasonal and diurnal variations of surface meteorological parameters are presented. 38 

• ACM2 scheme shows good performance during summer while MYJ scheme performs 39 

better in winter.  40 

 41 

1 Introduction 42 

Through the interaction of surface forcing and turbulent motion, the planetary boundary layer 43 

(PBL) leads to mixed exchange between surface water vapour, heat and upper-level momentum, 44 

which in turn affects the near-surface meteorological field and diffusion of atmospheric pollutants 45 

[Ayotte et al., 1996; Jia and Zhang, 2020; Sullivan et al., 1994]. The structure and variations of the 46 

PBL directly reflect changes in surface thermal conditions and are characterised by significant 47 

diurnal variations with temperature. Since the turbulent motion of the PBL is generally much 48 

smaller than the horizontal grid spacing of existing small- and medium-scale models, sub-grid 49 

scale effects need to be considered [Bryan et al., 2003]. The heat and momentum fluxes in the 50 

boundary layer are transported by turbulent motions, which are difficult to resolve on the spatial 51 

and temporal scales [Penchah et al., 2017] even with general engineering turbulence models, and 52 

hence general engineering or application simulations require the introduction of a PBL 53 

parameterisation scheme to calculate the physical quantities of heat and momentum in the 54 

boundary layer [Draxl et al., 2014; Smith and Thomsen, 2010].  55 

 56 

PBL parameterisation scheme mainly describes the vertical transport of atmospheric momentum, 57 

heat, water vapour and other physical quantities in the boundary layer [Garratt, 1994]. 58 

Uncertainties in the physical parameterisation schemes of models such as cumulus convection, 59 

surface processes, and PBL scheme are some of the main causes of errors in the regional climate 60 

modeling system [Wang et al., 2014]. Hence the choice and use of parameterisation schemes is of 61 

vital importance to the prediction of meteorological fields within the boundary layer, the trajectory 62 

study of air pollutant diffusion and the simulation of large-scale weather systems such as typhoons 63 

and rainstorms [Bright et al., 2002; Han et al., 2008; Li et al., 2016, Oozeer et al., 2016]. Literally 64 

the accuracy of numerical weather prediction depends solely on the choice of a good 65 

parameterisation scheme. At present, the parameterisation schemes of numerical models mainly 66 
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include simple population parameter method, K-profile method, closed method, original 67 

asymmetric convection method and spectral diffusion theory [Hu et al., 2010; Moeng, 1984; Shin 68 

and Hong, 2011].  69 

The Weather Research and Forecasting (WRF) [Skamarock et al., 2008], a mesoscale model 70 

widely used at present for weather forecasting and research, has many different kinds of boundary 71 

layer parameterisation schemes that can be chosen by simply changing the parameterisation 72 

options. For the mesoscale model, the resolution of the model in the horizontal and vertical 73 

directions is higher than that of the large-scale model, and the boundary layer process can be 74 

considered more carefully than the large-scale model. Therefore, some mesoscale phenomena can 75 

be simulated in more details. The consideration of the boundary layer is also based on the research 76 

results of the boundary layer itself. Due to the importance of boundary layer parameterisation 77 

scheme to a successful numerical simulation, many studies examine a large number of sensitivity 78 

tests for PBL schemes [Coniglio et al., 2013; Gopalakrishnan et al., 2013; Mohan and Bhati, 2011; 79 

Smith and Thomsen, 2010; Yver et al., 2013]. Following the incessant development of models and 80 

PBL physics, some comparative studies have been carried out to study the applicability and 81 

applications of specific schemes in different regions. However, there is no uniformity in the set of 82 

schemes that diagnoses better for each application. Generally, the model performance is under the 83 

influence of the season or time of day, the variables considered and the regional characteristics. 84 

One cannot determine an optimal set of model configuration in general terms. There are obvious 85 

discrepancies among different research conclusions, or the research results depend on individual 86 

cases of the study. 87 

 88 

PBL schemes are used to describe the vertical fluxes of heat, momentum, moisture due to eddy 89 

transport within the whole atmospheric column in the turbulent processes [Banks and Baldasano, 90 

2016]. The number of unknowns of the equations appearing in a turbulent motion equation set is 91 

greater than the number of equations sets, making the original closed equation set non-closed, i.e., 92 

a set containing an infinite number of equations is needed to fully describe turbulence. To solve 93 

this problem, a finite number of equations is used to approximate the unknown quantity, which is 94 

known as turbulence modelling [Hariprasad et al., 2014; Holt and Raman, 1988]. One major 95 

component of the turbulence processes is whether a local or non-local mixing approach is 96 

employed. The local closure schemes obtain the turbulent fluxes using the mean variables and 97 

their gradients at each model grid. The non-local closure schemes use multiple vertical levels and 98 

profiles of convective boundary layer to determine variables [Cohen et al., 2015]. The sensitivity 99 

of different parameterisation schemes is closely related to meteorological and geographical 100 

environments. The MM5 model is used by Zhang and Zheng [2004] to simulate surface wind and 101 
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temperature in the central part of summer in the United States. Results show that the non-local 102 

Blackadar (BLK) scheme performs better in predicting the daily cycle of temperature and surface 103 

wind speed compared with other schemes. Sanjay [2008] shows that the non-local Troen-Mahrt 104 

(TM) scheme coupled to the land surface scheme causes boundary layer transition mixing, 105 

resulting in low humidity in the boundary layer under the condition of clear air in northwest India. 106 

Kwun et al. [2009] simulates the ocean surface wind speed during the typhoon using MM5 (5
th

 107 

generation mesoscale model) and WRF in combination with various parameterization schemes. It 108 

is found that the wind speed obtained from the WRF coupled with the Yonsei University (YSU) 109 

and Mellor-Yamada-Janjić (MYJ) schemes are most consistent with observations. By quantifying 110 

the meteorological elements simulated by four PBL schemes (YSU), asymmetric convection 111 

model 2 (ACM2), MYJ, and Bougeault and Lacarrere (BouLac) in the WRF model, Xie et al. 112 

[2012] shows that the PBL height simulated by the MYJ and BouLac schemes is higher than that 113 

by the YSU and ACM2 schemes. It is more conducive to the upward transport of warm and humid 114 

airflow and the development of strong convection. Ooi et al. [2018] uses the MYJ scheme and 115 

studies the momentum and air pollutant transfers during the monsoon climates of Malaysia. Hu et 116 

al. [2010] evaluates three PBL schemes in the WRF model and found that the non-local YSU 117 

scheme and ACM2 scheme simulated strong daytime boundary layer mixing and entrapment, 118 

resulting in higher temperatures and lower humidity, while the local MYJ scheme predicted lower 119 

temperature and humidity due to weaker mixing and entrainment. At night the mixing of the YSU 120 

scheme is stronger than that of the ACM2 and the MYJ schemes, and the predicted temperature is 121 

also higher and humidity was lower. Wang et al. [2017a] uses the WRF model coupled with four 122 

commonly used PBL schemes (ACM2, MYJ, Mellor-Yamada-Nakanishi-Niino Level 2.5 123 

(MYNN2), and YSU) to predict the meteorological elements and boundary layer structure in a 124 

typical farmland area of China, and finds that the ACM2 scheme shows good performance on both 125 

sunny and cloudy days. 126 

 127 

While there are a good number of works studying the sensitivity of the various parameterisation 128 

schemes, there is one general commonality in all of these studies: the simulation period is 129 

generally very short and is usually concentrated with an episode of meteorological event. The 130 

accuracy of the work, hence, cannot or may not be able to be extrapolated to post-event 131 

calculations. It is also found that in some cases, while YSU or ACM2 is good for day-time 132 

calculations, their performances are generally not the same for night-time or even a different 133 

season. Preliminary works [Chu et al., 2019; García‐Díez et al., 2013; Kala et al., 2015; Madala 134 

et al., 2015] have shown that there are seasonal variations or discrepancy of various 135 

parameterization schemes and this is the inspiration of this work, we would like to insert an effort 136 
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to study the seasonal sensitivity of various parameterisation schemes and extrapolate their 137 

applicability. 138 

 139 

The objective of this study is hence to investigate the performance of the turbulence 140 

parameterisation scheme in the WRF mesoscale model of boundary laminar flow structure 141 

simulations in the East Asian subtropical region of Yangtze River Delta (YRD) region in China, a 142 

city-cluster that has been suffering from serious air pollution in recent years. In particular, we 143 

focus on the seasonal discrepancy in the study area and assess the respective skill of four different 144 

PBL schemes in reproducing the meteorological variables in different seasons and discuss their 145 

respective applicability. This research will provide valuable suggestions regarding more suitable 146 

PBL scheme selections in WRF to drive more reasonable air quality simulations  147 

2 Methodology 148 

2.1 WRF configuration 149 

The WRF version 4.0 is employed as the numerical tool in this study. It is a non-hydrostatic 150 

mesoscale weather simulation system with flexible resolution and parametric scheme. Initial and 151 

lateral boundary conditions are 6 hourly (1.0°×1.0° resolution) Global Final Analysis (FNL) data, 152 

provided by the National Center for Environmental Prediction-National Center for Atmospheric 153 

Research (NCEP/NCAR). The first 24 h of the simulation period is used as spin-up time and the 154 

remaining simulations are computed with a 120 h forecast cycle for analyses for each episodes of 155 

study. 156 

 157 

In this study, three nested domains are configured, the horizontal grid resolution for domains 1, 2, 158 

3 are 36 km, 12 km, and 4 km, respectively. The coarse D01 (186 × 149) covers most of the East 159 

Asia and part of Southeast Asia, while D02 (148 × 241) covers east China. D03 (205 × 229) 160 

encompasses the entire YRD region (Fig. 1). The Yangtze Delta is located in the north marine 161 

monsoon subtropical climate zone of southeast China. The weather is generally warm and humid 162 

in summer and cool and dry in winter. The three domains use the same 39 vertical levels with a 163 

model top set at 50-hPa where first 19 layers are from the planetary boundary layer. Simulations 164 

are conducted for July and November 2018, started at 0000UTC. The whole month is divided into 165 

6 parts with 5 days concluded. The initial 24 hours are considered as a spin-up period, and the 166 

respective outputs during these two periods are excluded from the analysis. The analysis nudging 167 

option is switched on above the PBL for the horizontal wind components, potential temperature, 168 

and water vapour mixing ratio through three domains.  169 
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 170 

Fig 1. (a) The three nested modeling domains for WRF model and (b) terrain height for the inner Yangtze 171 

River Delta (YRD) region 172 

The main physical-parameterisation schemes contain the Lin microphysics scheme [Lin et al., 173 

1983], the NOAH land surface scheme [Chen and Dudhia, 2001], the Kain–Fritsch (KF) cumulus 174 

parameterisation (only used in D01 and D02) [Kain and Fritsch, 1993], the rapid radiative transfer 175 

model shortwave radiation scheme and the rapid radiative transfer model longwave radiation 176 

scheme [Mlawer et al., 1997]. 177 

2.2 PBL scheme 178 

Two local and two non-local schemes are implemented in this study. These four models are chosen 179 

due to the extensive use in research and are the most commonly used in application [Clark et al., 180 

2015; Deppe et al., 2013; Lo et al., 2008; Steele et al., 2013; Su and Fung, 2015; Yerramilli et al., 181 

2010]. The Yonsei University (YSU) PBL scheme is a first-order non-local closure scheme. 182 

Revised from the Medium-Range Forecast (MRF) scheme, the significant improvement to YSU is 183 

the addition of an explicit term for the treatment of the entrainment process at the top of YSU. 184 

PBL height in the YSU scheme is determined from the Richardson bulk number, with a critical 185 

bulk Richardson number of 0.25 over land. This scheme improves the boundary layer diffusion 186 

algorithm to allow deeper mixing in windy conditions. Compared to MRF, vertical mixing in the 187 

buoyancy driven is increased and in the mechanic driven is decreased [Hong et al., 2006]. 188 

However, it also shows weakness in mixing too little over the cold oceans and producing a too low 189 

nocturnal PBL height [Hong, 2010]. 190 

 191 

The ACM2 scheme [Pleim, 2007] is a combination of ACM1 and adds an eddy diffusion 192 

component to the non-local transport. It calculates the PBL height above the level of neutral 193 

buoyancy by using bulk Richardson number over the critical value of 0.25. ACM2 is intended to 194 

better represent the shape of the vertical profiles and be more applicable to humidity, winds, or 195 

trace chemical mixing ratios in the boundary layer scheme. It also has defects in showing a deeper 196 
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mixing PBL than other schemes due to its larger critical the bulk Richardson number [Huang et al., 197 

2019]. 198 

 199 

The MYJ scheme [Janjić, 1990] is a one-and-half order local turbulence closure scheme. It 200 

diagnoses the vertical mixing process in PBL and free atmosphere through forecasting the TKE, 201 

combining with one additional prognostic equation of the TKE. In this method, the upper limit of 202 

the main length scale is given, which depends on the turbulence kinetic energy and the shear stress 203 

of the buoyancy and driving flow. Under unstable conditions, the equation form of this upper limit 204 

is derived from the turbulent kinetic energy during the growth of turbulence satisfying 205 

non-singular conditions. By comparison, The MYJ scheme shows moister, cooler and little mixing 206 

PBL than other schemes since it has a smaller turbulent mixing [Hu et al., 2010]. 207 

 208 

The MYNN scheme [Nakanishi and Niino, 2006] is a one-and-half order, local closure scheme. To 209 

overcome the biases of insufficient growth of convective boundary layer and under-estimated TKE, 210 

MYNN considers the effects of buoyancy in the diagnosis of the pressure covariance terms, and 211 

uses closure constants in the stability functions and mixing length formulations that are based on 212 

large eddy simulation (LES) results rather than observational datasets. This scheme takes into 213 

account the effect of buoyancy on the barometric correlation term and introduces the condensation 214 

physics process, and is applied to the study of fog events in general [Chaouch et al., 2017; Li et al., 215 

2012; Román-Cascón et al., 2012]. 216 

2.3 Model performance evaluation 217 

The meteorological simulations containing 2-m surface temperature, 10-m wind speed, relative 218 

humidity from four capital stations at Shanghai (121.336°N 31.198°E), Hangzhou (120.432°N 219 

30.228°E), Nanjing (118.862°N 31.742°E), Hefei (117.298°N 31.78°E) are compared with the 220 

hourly meteorological observations to validate the model. The observational data are obtained 221 

from the National Oceanic and Atmospheric Administration (NOAA)’s National Climate Data 222 

Center archive (http://www.ncdc.noaa.gov/oa/ncdc.html). Meteorology variables are evaluated 223 

employing mean bias (MB), root of mean square error (RMSE), and correlation coefficient (R). In 224 

statistics, they are usually defined as: 225 

MB =
1

𝑁
∑(𝑀𝑖 − 𝑂𝑖)

𝑁

𝑖=1

 , 

RMSE = √
1

𝑁
∑(𝑀𝑖 − 𝑂𝑖)2

𝑁

𝑖=1

 , 

http://www.ncdc.noaa.gov/oa/ncdc.html
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R =
1

𝑁
∑

(𝑀𝑖 − �̅�)(𝑂𝑖 − �̅�)

√1
𝑁

∑ (𝑀𝑖 − �̅�)2𝑁
𝑖=1

√1
𝑁

∑ (𝑂𝑖 − �̅�)2𝑁
𝑖=1

𝑁

𝑖=1

  

where M and O refer to the simulated and observed meteorological values, respectively. N 226 

represents the number of data pairs. 227 

3 Results and discussions 228 

3.1 Comparison of surface meteorological variables 229 

The 2-m temperature (T2), 10-m wind speed (WS10) and relative humidity (RH) are critically 230 

important variables to precisely predict air quality model simulations and hence these three 231 

variables will be used as main indicators for evaluation. Tables 1 and 2 show the MB, RMSE and 232 

R between the WRF simulated meteorological factors and the observations at four airport stations 233 

in the YRD region. Figures 2, 4 and 6 show the monthly time series of the model predicted and 234 

observed meteorology variables. There is a period of missing observation data in late November. 235 

3.1.1 2-m temperature 236 

Aside from the fact that all four PBL schemes have different degrees of overestimation around 6 237 

July, the simulated 2-m temperatures are generally consistent with the observed trends, which is 238 

usual for most temperature WRF-simulations [Giannaros et al., 2013; Hogrefe et al., 2015; 239 

Mallard et al., 2014; Mughal et al., 2019; Wang et al., 2017b]. In terms of individual cases over 240 

the summer in particular, except the local-closure MYJ scheme, other three schemes 241 

underestimate 2-m temperature in Shanghai, while four PBL schemes slightly overestimate 2-m 242 

temperature in Hefei. All four PBL schemes underestimate 2-m temperature in Nanjing and 243 

Hangzhou. The YSU and ACM2 schemes perform better than the MYJ and MYNN schemes at 244 

2-m temperature with the least RMSE (2.55, 2.32, 2.73 and 2.56 ℃ for YSU, ACM2, MYJ and 245 

MYNN scheme) (Table 1). In general, the simulations of summer temperature are higher than the 246 

observations. Shin and Hong [2011] also reports positive biases with the different PBL schemes. 247 

The average observed temperature in summer is 29.92℃ and the average of ACM2 scheme is 248 

closest to the observation with 29.93℃. In terms of RMSE and correlation coefficient in summer, 249 

ACM2 scheme is also better than other schemes. The temporal series of the WRF model-simulated 250 

meteorological variables against observations from the four meteorological stations of July is 251 

shown in Fig. 2a. It is reasonable to infer that the monthly overestimation of simulated 2-m 252 

temperature of four PBL schemes at Hefei is in large part due to a notable overestimation in the 253 

early and mid-July. Among which the MYJ scheme provides the highest bias. All four PBL 254 

schemes provide some overestimations at the beginning of July. 255 
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 256 

Fig 2. Comparisons of the time series of 2-m temperature predicted with WRF against observations at four sites for 257 

summer (a) and winter (b). 258 

Different from the case of summer, simulations of the four PBL schemes for 2-m temperature are 259 

overestimated at all sites in winter (Fig. 2b). The main reason is that the boundary layer is mostly 260 

in a steady stable state in winter, and coupled with the influence of complex topography, strong 261 
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inversion temperature, insufficient development of turbulence in the near-surface layer, and the 262 

transport of material and energy is dominated by the local area. The MYNN scheme overestimates 263 

the most among all simulations. In Shanghai, the YSU scheme shows the lowest MB of 0.83 ℃, 264 

the ACM2 and MYJ schemes perform slightly better with high correlation coefficient with 0.87 265 

(Table 2). Though the simulations of the YSU, ACM2 and MYJ schemes are close, 2-m 266 

temperature simulations of local closure MYJ scheme are better than those of non-local closure 267 

YSU and ACM2 schemes. Simulated 2-m temperature deviation in winter with MB is greater than 268 

that in summer while the consistency of winter is much better than summer on the whole. This is 269 

probably due to the lower temperature in winter and the smaller amplitude variation brought about 270 

by the simulation compared to summer. 271 

 272 

Comparing the average diurnal changes of 2-m temperature, it can be seen that all four PBL 273 

schemes could reflect the diurnal variations reasonably well (Fig. 3). Due to the different 274 

treatment of physical processes in the boundary layer, even if the same land surface parameters are 275 

used, the difference in surface turbulence transportation will cause significant discrepancies in the 276 

simulated surface temperature of the four experiments [Lee et al., 2006]. In summer, the daytime 277 

simulations of T2 are generally higher than the observations, but lower than observations at night. 278 

On the contrary, during winter night, the simulations exhibit overestimation. The main reason for 279 

the overestimation in summer daytime is that the YRD region is located in the intersection zone of 280 

land and sea. Under the influence of the summer monsoon, the water vapour transport is stronger 281 

in the daytime, resulting in stronger water vapor transport. A small cold bias is observed during the 282 

summer night which may attribute to an overestimation of the surface cooling rate during the PBL 283 

collapse. Similar finding is also reported by Cuchiara et al. [2014]. The surface temperature 284 

simulated by the local closure MYJ scheme during winter night is better than that simulated by the 285 

non-local closure YSU and ACM2 schemes. The boundary layer is in a steady state during winter, 286 

especially due to the influence of valley topography with strong inversion temperature, 287 

near-surface turbulence is not fully developed, material and energy transport are mainly local. 288 

 289 
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Fig 3. Average diurnal changes of 2-m temperature for summer (a) and winter (b). 290 
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3.1.2 10-m wind speed 291 

All four PBL schemes overestimate 10 m-wind speed over the YRD region (Fig. 4), however, 292 

there are some differences among the cities due to their specific locations. Different from 293 

Shanghai, located along the coastline, the other three sites are all located in inner YRD region, 294 

closer to the western or southern hills. The WRF model is unable to capture this special 295 

geographical environment as well as sub-grid scale local fluctuations, resulting in the 296 

overestimations. Jiménez et al. [2012] also reports that wind speed was overestimated in the plains 297 

and valleys. The ACM2, the MYNN and the YSU schemes underestimate 10 m-wind speed at 298 

Shanghai, while the MYJ scheme shows overestimation. Four PBL schemes exhibit 299 

overestimation in the other three cities. Among them, the MYNN scheme is the least 300 

underestimated with the lowest MB of 0.38 m s
-1

 in summer (Table 1) and 0.17 m s
-1

 in winter 301 

(Table 2). Other studies also have shown a general tendency of overestimation regarding the 10-m 302 

wind speed simulation [Cheng et al., 2005; Mölders, 2008]. The discrepancies in wind speed 303 

simulation from the different schemes may be caused by different mixing lengths due to different 304 

turbulence coefficients and friction velocities for each scheme. 305 
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 306 

Fig 4. Comparisons of the time series of 10-m wind speed predicted with WRF against observations at four sites 307 

for summer (a) and winter (b). 308 

 309 

Similar to July, all four PBL schemes overestimate 10 m-wind speed at Nanjing, Hangzhou and 310 

Hefei in November, but the gap becomes lower. Relative to the lower consistency of Hefei 311 
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simulations in summer, the overall consistency of the winter simulations is better, with all 312 

correlation coefficient higher than 0.54. Wind speed fluctuates more in summer than in winter, 313 

both physically and also in simulations. Among the four PBL schemes, the MYJ scheme produces 314 

the most obvious level of fluctuations. The 10-m wind speed simulations in winter are much closer 315 

to observations than summer, and all four PBL parameters perform much better compared to the 316 

summer simulations. Seasonal diurnal variation also corresponds to the good performance of 317 

ACM2 and MYNN (Fig. 5). Simulations in winter are close to the observations before 0800UTC, 318 

and higher than observations after 0800UTC (Fig. 5b). The reason is partly due to the 319 

overestimation of the surface friction velocity at night. The MYNN2 scheme provides the lowest 320 

bias throughout the day and night hours in summer as well as these night hours in winter. This is 321 

expected since the MYNN is based on local closure, which is better suited for stable conditions 322 

prevailing in winter. This may also be due to higher diffusivity coefficients simulated by ACM2 323 

and MYNN [Hariprasad et al., 2014], which exhibit lower wind speed and subsequent less errors 324 

compared with other schemes. 325 

 326 

Fig 5. Average diurnal changes of 10-m wind speed for summer (a) and winter (b). 327 

3.1.3 Relative humidity 328 

As for relative humidity, all four PBL schemes mostly exhibit underestimations. Underestimation 329 

of humidity by MYJ and YSU schemes is also reported by Misenis and Zhang [2010] in air quality 330 

simulations over the coastal Mississippi. It can be seen from Table 1 and 2 that ACM2 scheme 331 

shows the lowest MB of -4.86 and highest correlation coefficient of 0.71 in summer (Fig. 6a), 332 

MYJ scheme provides the lowest MB of -5.86 and relatively good correlation coefficient of 0.69 333 

in winter (Fig. 6b). The underestimation of humidity is greater in winter than that in summer. This 334 

may be attributed to the moisture content of the atmosphere, which is inherently small in winter, 335 

and the diurnal temperature variation becomes the dominant factor in relative humidity changes. 336 

In winter, due to weak mixing and clamping, the relative humidity simulation of MYJ scheme is 337 

higher than the other schemes. 338 
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 339 

 340 

Fig 6. Comparisons of the time series of relative humidity predicted with WRF against observations at four sites 341 

for summer (a) and winter (b). 342 

 343 

The diurnal relative humidity variation is relatively well reproduced with all PBL schemes. 344 



16 

 

Relative humidity is not an output of the model but inferred from some variables of temperature, 345 

water vapour mixing ratio, and surface pressure. During daytime in summer, strong 346 

underestimation is shown with all PBL schemes and dry bias becomes smaller in night hours (Fig. 347 

7a). It is seen that ACM2 simulates the relative humidity better. In winter, all PBL schemes 348 

provide dry bias during day and night hours (Fig. 7b). Gunwani and Mohan [2017] also reports 349 

that in temperate zone higher dry bias is modeled by all PBL schemes compared to other climate 350 

zones. 351 

 352 

 353 

Fig 7. Average diurnal changes of relative humidity for summer (a) and winter (b). 354 

3.2 Comparison of PBL height 355 

3.2.1 Temporal variations of PBL height 356 

One of the largest sources of errors in mesoscale model simulations is the diagnosis of the PBL 357 

height. Estimates of the hourly PBL height between 0800 and 1700LST are determined based on 358 

observations from a micropulse lidar (MPL) at Hefei Environmental Protection Bureau (31.78 N, 359 

117.20 E). Due to the instrument limitations, the PBL height at night and early morning is not 360 

considered. Figure 8a shows hourly average PBL heights estimated from the MPL on 18 July 2018. 361 

The mean PBL height for the day is 1.46 km with a small aerosol extinction. Based on the 362 

available hourly PBL data, the WRF model simulations are compared. 363 

 364 

Figure 8b compares the hourly average results in the daytime from MPL to the PBL heights 365 

simulated by the WRF model. It is noted that in general the WRF model systematically 366 

underestimates the PBL height. The MYJ scheme leads to the most underestimation with MB of 367 

-0.51 km. The ACM2 scheme exhibits the lowest MB of 0.12 km. As for the daytime-maximum 368 

PBL heights, the ACM2 also shows the lowest discrepancies compared to the MPL estimate with 369 

0.07 km. The MYNN scheme shows an optimal performance in which the correlation coefficient 370 
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was 0.90 and the ACM2 scheme demonstrates relatively a good result with 0.88. Fig. 8c provides 371 

time-series comparisons for July of four PBL schemes simulations to the lidar measurement. Due 372 

to limitation of data acquisition, some dates occur data missing. The strong diurnal daytime PBL 373 

patterns are captured in all four experiments especially for the MYJ scheme, however, four 374 

schemes exhibit varying degrees of overestimations at daytime-maximum PBL height. For 375 

comparison of the data available, the MYNN exhibits the lowest MB of 0.04 km and the ACM2 376 

scheme shows the highest correlation coefficient of 0.59. 377 
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Table 1 Statistics of WRF model performance with different PBL schemes in July, 2018 378 

379  Shanghai Nanjing Hangzhou Hefei Average 

 MB RMSE R MB RMSE R MB RMSE R MB RMSE R MB RMSE R 

T2/℃ 

YSU -0.15 2.17 0.69 -0.06 2.38 0.76 -0.74 2.64 0.71 1.77 2.99 0.78 0.20 2.55 0.72 

ACM2 -0.35 1.80 0.79 -0.27 2.10 0.81 -0.70 2.33 0.77 1.72 3.03 0.77 0.10 2.32 0.77 

MYJ 0.25 2.49 0.68 -0.26 2.41 0.76 -0.91 2.76 0.71 2.03 3.25 0.76 0.28 2.73 0.72 

MYNN -0.06 2.32 0.63 -0.42 2.21 0.80 -0.85 2.33 0.70 1.67 3.01 0.77 0.09 2.56 0.71 

WS10/ms
-1

 

YSU -0.46 1.52 0.70 0.81 1.90 0.54 0.96 1.90 0.54 0.64 1.68 0.29 0.49 1.75 0.55 

ACM2 -0.45 1.49 0.71 0.98 2.01 0.55 1.12 1.95 0.59 0.55 1.56 0.30 0.55 1.75 0.58 

MYJ 1.03 2.20 0.62 1.33 2.48 0.52 1.46 2.55 0.51 1.89 2.68 0.27 1.43 2.48 0.53 

MYNN -0.60 1.55 0.71 0.71 2.01c 0.48 0.77 1.80 0.56 0.64 1.64 0.29 0.38 1.75 0.58 

RH/% 

YSU -3.76 11.13 0.67 -2.54 12.12 0.68 1.39 12.80 0.61 -16.20 19.37 0.67 -5.28 13.86 0.66 

ACM2 -2.62 9.70 0.76 -1.32 11.14 0.74 -0.29 11.50 0.70 -15.22 18.11 0.64 -4.86 12.61 0.71 

MYJ -4.76 13.22 0.59 -0.98 12.07 0.66 1.22 13.75 0.55 -15.52 18.35 0.67 -5.01 14.35 0.62 

MYNN -5.16 11.68 0.65 -1.00 10.97 0.73 1.33 12.61 0.63 -16.03 19.56 0.64 -5.22 13.71 0.66 
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Table 2 Statistics of WRF model performance with different PBL schemes in November, 2018 380 

 SH   NJ   HZ   HF   Ave   

 MB RMSE R MB RMSE R MB RMSE R MB RMSE R MB RMSE R 

T2/℃ 

YSU 0.83 1.80 0.85 0.68 2.12 0.87 1.23 2.13 0.60 0.83 2.07 0.89 0.89 2.03 0.86 

ACM2 0.91 1.73 0.87 0.88 2.26 0.86 1.40 2.22 0.61 0.80 2.00 0.89 1.00 2.05 0.87 

MYJ 0.84 1.70 0.87 0.67 2.10 0.87 1.22 2.08 0.65 0.68 2.12 0.87 0.28 2.00 0.87 

MYNN 1.24 2.08 0.84 1.00 2.17 0.88 1.51 2.37 0.50 1.01 2.15 0.89 1.19 2.19 0.86 

WS10/m·s
-1

 

YSU -0.34 1.35 0.60 0.60 1.35 0.66 0.33 1.23 0.62 0.56 1.41 0.55 0.28 1.33 0.57 

ACM2 -0.31 1.39 0.56 0.62 1.43 0.62 0.29 1.28 0.57 0.53 1.46 0.54 0.28 1.39 0.54 

MYJ 0.28 1.49 0.62 0.57 1.61 0.62 0.90 1.64 0.58 0.56 1.57 0.60 0.58 1.58 0.59 

MYNN -0.54 1.41 0.59 0.45 1.31 0.63 0.38 1.30 0.56 0.38 1.35 0.55 0.17 1.34 0.57 

RH/% 

YSU -8.52 15.11 0.66 -6.21 14.82 0.67 -12.50 18.90 0.77 -6.78 13.03 0.80 -8.50 15.46 0.67 

ACM2 -8.74 15.34 0.67 -8.26 15.85 0.66 -14.35 20.32 0.76 -8.81 14.67 0.78 -10.04 16.55 0.66 

MYJ -6.66 13.21 0.71 -3.23 13.06 0.68 -10.56 16.81 0.80 -3.01 11.85 0.78 -5.86 13.73 0.69 

MYNN -12.42 17.75 0.66 -8.12 14.25 0.74 -15.50 20.77 0.75 -8.09 12.87 0.84 -11.03 16.41 0.70 
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 381 

Fig 8. (a) Time-series of aerosol extinction, overlaid with hourly PBL heights. (b) Time series of daytime 382 

PBL heights simulations and hourly average from the lidar on 18 July 2018. (c) Time series of monthly PBL 383 

heights simulated by WRF and available hourly average from the lidar of July 2018. 384 

4 Conclusions 385 

In this study, a seasonal sensitivity analysis study from the Weather Research and Forecasting 386 

(WRF) mesoscale model is conducted to explore the impacts of four most commonly used PBL 387 

schemes (YSU, ACM2, MYJ and MYNN) on meteorological variables over the YRD region. The 388 

WRF simulation indicates that all the four PBL schemes overestimate the 2-m temperature 389 

(0.09~0.20℃ for July; 0.28~1.19℃ for November) and 10-m wind speed (0.38~1.43m/s for July; 390 

0.17~0.58m/s for November), underestimate the relative humidity (-4.07~-5.86% for July; 391 
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-5.86%~-11.03% for November). Warm bias in summer is mostly shown in daytime, mainly as a 392 

consequence of overestimated breeze circulations. The warm deviation in winter is possibly 393 

related to the unresolved strong temperature inversion and the stability limitation of surface 394 

parameterisation. Wind speed of overestimation in summer is higher than winter.  395 

 396 

Diagnosis of the surface level meteorological variables indicate that for temperature the non-local 397 

closure scheme ACM2 simulated well in summer while MYJ performs better in winter. For wind 398 

speed, ACM2 scheme and the local closure scheme MYNN produced better simulations, and the 399 

MYJ and YSU schemes slightly overestimated the winds than the formers. For humidity, ACM2 400 

and YSU schemes simulate reasonably well in summer and relatively underestimated in winter 401 

while the other three schemes produced close simulations and the MYNN performed larger bias in 402 

winter. Generally, the simulations of winter cases are better than that of summer cases, the reason 403 

is related to the relatively stable flow field in winter. ACM2 performs better in meteorological 404 

factors than other three schemes in summer and MYJ provides better simulations in winter. 405 

 406 

Comparisons of the PBL heights reveal that all four PBL schemes show varying degrees of 407 

underestimation, with the MYJ scheme exhibited the largest underestimation and the ACM2 408 

scheme the smallest. All four schemes capture a strong diurnal PBL pattern of daily variation 409 

while the MYNN scheme performed the lowest MB and the ACM2 scheme provided the highest 410 

correlation coefficient. 411 

 412 

In summary, we find that model systematic errors are dependent on the seasonal and daily cycles, 413 

and variable terrain conditions that causes different atmospheric factors. The non-local PBL 414 

scheme ACM2 performs well for model simulations of the meteorology and PBL height in 415 

summer while the local PBL scheme exhibits better simulation results in winter over YRD region.  416 
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